1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "VPlanPredicator.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/SizeOpts.h" 140 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 141 #include <algorithm> 142 #include <cassert> 143 #include <cstdint> 144 #include <cstdlib> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <memory> 149 #include <string> 150 #include <tuple> 151 #include <utility> 152 #include <vector> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 /// @{ 160 /// Metadata attribute names 161 static const char *const LLVMLoopVectorizeFollowupAll = 162 "llvm.loop.vectorize.followup_all"; 163 static const char *const LLVMLoopVectorizeFollowupVectorized = 164 "llvm.loop.vectorize.followup_vectorized"; 165 static const char *const LLVMLoopVectorizeFollowupEpilogue = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 static cl::opt<bool> MaximizeBandwidth( 181 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 182 cl::desc("Maximize bandwidth when selecting vectorization factor which " 183 "will be determined by the smallest type in loop.")); 184 185 static cl::opt<bool> EnableInterleavedMemAccesses( 186 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 187 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 188 189 /// An interleave-group may need masking if it resides in a block that needs 190 /// predication, or in order to mask away gaps. 191 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 192 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 193 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 194 195 /// We don't interleave loops with a known constant trip count below this 196 /// number. 197 static const unsigned TinyTripCountInterleaveThreshold = 128; 198 199 static cl::opt<unsigned> ForceTargetNumScalarRegs( 200 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's number of scalar registers.")); 202 203 static cl::opt<unsigned> ForceTargetNumVectorRegs( 204 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 205 cl::desc("A flag that overrides the target's number of vector registers.")); 206 207 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 208 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 209 cl::desc("A flag that overrides the target's max interleave factor for " 210 "scalar loops.")); 211 212 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 213 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 214 cl::desc("A flag that overrides the target's max interleave factor for " 215 "vectorized loops.")); 216 217 static cl::opt<unsigned> ForceTargetInstructionCost( 218 "force-target-instruction-cost", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's expected cost for " 220 "an instruction to a single constant value. Mostly " 221 "useful for getting consistent testing.")); 222 223 static cl::opt<unsigned> SmallLoopCost( 224 "small-loop-cost", cl::init(20), cl::Hidden, 225 cl::desc( 226 "The cost of a loop that is considered 'small' by the interleaver.")); 227 228 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 229 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 230 cl::desc("Enable the use of the block frequency analysis to access PGO " 231 "heuristics minimizing code growth in cold regions and being more " 232 "aggressive in hot regions.")); 233 234 // Runtime interleave loops for load/store throughput. 235 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 236 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 237 cl::desc( 238 "Enable runtime interleaving until load/store ports are saturated")); 239 240 /// The number of stores in a loop that are allowed to need predication. 241 static cl::opt<unsigned> NumberOfStoresToPredicate( 242 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 243 cl::desc("Max number of stores to be predicated behind an if.")); 244 245 static cl::opt<bool> EnableIndVarRegisterHeur( 246 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 247 cl::desc("Count the induction variable only once when interleaving")); 248 249 static cl::opt<bool> EnableCondStoresVectorization( 250 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 251 cl::desc("Enable if predication of stores during vectorization.")); 252 253 static cl::opt<unsigned> MaxNestedScalarReductionIC( 254 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 255 cl::desc("The maximum interleave count to use when interleaving a scalar " 256 "reduction in a nested loop.")); 257 258 cl::opt<bool> EnableVPlanNativePath( 259 "enable-vplan-native-path", cl::init(false), cl::Hidden, 260 cl::desc("Enable VPlan-native vectorization path with " 261 "support for outer loop vectorization.")); 262 263 // FIXME: Remove this switch once we have divergence analysis. Currently we 264 // assume divergent non-backedge branches when this switch is true. 265 cl::opt<bool> EnableVPlanPredication( 266 "enable-vplan-predication", cl::init(false), cl::Hidden, 267 cl::desc("Enable VPlan-native vectorization path predicator with " 268 "support for outer loop vectorization.")); 269 270 // This flag enables the stress testing of the VPlan H-CFG construction in the 271 // VPlan-native vectorization path. It must be used in conjuction with 272 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 273 // verification of the H-CFGs built. 274 static cl::opt<bool> VPlanBuildStressTest( 275 "vplan-build-stress-test", cl::init(false), cl::Hidden, 276 cl::desc( 277 "Build VPlan for every supported loop nest in the function and bail " 278 "out right after the build (stress test the VPlan H-CFG construction " 279 "in the VPlan-native vectorization path).")); 280 281 cl::opt<bool> llvm::EnableLoopInterleaving( 282 "interleave-loops", cl::init(true), cl::Hidden, 283 cl::desc("Enable loop interleaving in Loop vectorization passes")); 284 cl::opt<bool> llvm::EnableLoopVectorization( 285 "vectorize-loops", cl::init(true), cl::Hidden, 286 cl::desc("Run the Loop vectorization passes")); 287 288 /// A helper function for converting Scalar types to vector types. 289 /// If the incoming type is void, we return void. If the VF is 1, we return 290 /// the scalar type. 291 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 292 if (Scalar->isVoidTy() || VF == 1) 293 return Scalar; 294 return VectorType::get(Scalar, VF); 295 } 296 297 /// A helper function that returns the type of loaded or stored value. 298 static Type *getMemInstValueType(Value *I) { 299 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 300 "Expected Load or Store instruction"); 301 if (auto *LI = dyn_cast<LoadInst>(I)) 302 return LI->getType(); 303 return cast<StoreInst>(I)->getValueOperand()->getType(); 304 } 305 306 /// A helper function that returns true if the given type is irregular. The 307 /// type is irregular if its allocated size doesn't equal the store size of an 308 /// element of the corresponding vector type at the given vectorization factor. 309 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 310 // Determine if an array of VF elements of type Ty is "bitcast compatible" 311 // with a <VF x Ty> vector. 312 if (VF > 1) { 313 auto *VectorTy = VectorType::get(Ty, VF); 314 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 315 } 316 317 // If the vectorization factor is one, we just check if an array of type Ty 318 // requires padding between elements. 319 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 320 } 321 322 /// A helper function that returns the reciprocal of the block probability of 323 /// predicated blocks. If we return X, we are assuming the predicated block 324 /// will execute once for every X iterations of the loop header. 325 /// 326 /// TODO: We should use actual block probability here, if available. Currently, 327 /// we always assume predicated blocks have a 50% chance of executing. 328 static unsigned getReciprocalPredBlockProb() { return 2; } 329 330 /// A helper function that adds a 'fast' flag to floating-point operations. 331 static Value *addFastMathFlag(Value *V) { 332 if (isa<FPMathOperator>(V)) 333 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 334 return V; 335 } 336 337 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 338 if (isa<FPMathOperator>(V)) 339 cast<Instruction>(V)->setFastMathFlags(FMF); 340 return V; 341 } 342 343 /// A helper function that returns an integer or floating-point constant with 344 /// value C. 345 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 346 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 347 : ConstantFP::get(Ty, C); 348 } 349 350 namespace llvm { 351 352 /// InnerLoopVectorizer vectorizes loops which contain only one basic 353 /// block to a specified vectorization factor (VF). 354 /// This class performs the widening of scalars into vectors, or multiple 355 /// scalars. This class also implements the following features: 356 /// * It inserts an epilogue loop for handling loops that don't have iteration 357 /// counts that are known to be a multiple of the vectorization factor. 358 /// * It handles the code generation for reduction variables. 359 /// * Scalarization (implementation using scalars) of un-vectorizable 360 /// instructions. 361 /// InnerLoopVectorizer does not perform any vectorization-legality 362 /// checks, and relies on the caller to check for the different legality 363 /// aspects. The InnerLoopVectorizer relies on the 364 /// LoopVectorizationLegality class to provide information about the induction 365 /// and reduction variables that were found to a given vectorization factor. 366 class InnerLoopVectorizer { 367 public: 368 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 369 LoopInfo *LI, DominatorTree *DT, 370 const TargetLibraryInfo *TLI, 371 const TargetTransformInfo *TTI, AssumptionCache *AC, 372 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 373 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 374 LoopVectorizationCostModel *CM) 375 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 376 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 377 Builder(PSE.getSE()->getContext()), 378 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 379 virtual ~InnerLoopVectorizer() = default; 380 381 /// Create a new empty loop. Unlink the old loop and connect the new one. 382 /// Return the pre-header block of the new loop. 383 BasicBlock *createVectorizedLoopSkeleton(); 384 385 /// Widen a single instruction within the innermost loop. 386 void widenInstruction(Instruction &I); 387 388 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 389 void fixVectorizedLoop(); 390 391 // Return true if any runtime check is added. 392 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 393 394 /// A type for vectorized values in the new loop. Each value from the 395 /// original loop, when vectorized, is represented by UF vector values in the 396 /// new unrolled loop, where UF is the unroll factor. 397 using VectorParts = SmallVector<Value *, 2>; 398 399 /// Vectorize a single PHINode in a block. This method handles the induction 400 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 401 /// arbitrary length vectors. 402 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 403 404 /// A helper function to scalarize a single Instruction in the innermost loop. 405 /// Generates a sequence of scalar instances for each lane between \p MinLane 406 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 407 /// inclusive.. 408 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 409 bool IfPredicateInstr); 410 411 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 412 /// is provided, the integer induction variable will first be truncated to 413 /// the corresponding type. 414 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 415 416 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 417 /// vector or scalar value on-demand if one is not yet available. When 418 /// vectorizing a loop, we visit the definition of an instruction before its 419 /// uses. When visiting the definition, we either vectorize or scalarize the 420 /// instruction, creating an entry for it in the corresponding map. (In some 421 /// cases, such as induction variables, we will create both vector and scalar 422 /// entries.) Then, as we encounter uses of the definition, we derive values 423 /// for each scalar or vector use unless such a value is already available. 424 /// For example, if we scalarize a definition and one of its uses is vector, 425 /// we build the required vector on-demand with an insertelement sequence 426 /// when visiting the use. Otherwise, if the use is scalar, we can use the 427 /// existing scalar definition. 428 /// 429 /// Return a value in the new loop corresponding to \p V from the original 430 /// loop at unroll index \p Part. If the value has already been vectorized, 431 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 432 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 433 /// a new vector value on-demand by inserting the scalar values into a vector 434 /// with an insertelement sequence. If the value has been neither vectorized 435 /// nor scalarized, it must be loop invariant, so we simply broadcast the 436 /// value into a vector. 437 Value *getOrCreateVectorValue(Value *V, unsigned Part); 438 439 /// Return a value in the new loop corresponding to \p V from the original 440 /// loop at unroll and vector indices \p Instance. If the value has been 441 /// vectorized but not scalarized, the necessary extractelement instruction 442 /// will be generated. 443 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 444 445 /// Construct the vector value of a scalarized value \p V one lane at a time. 446 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 447 448 /// Try to vectorize the interleaved access group that \p Instr belongs to, 449 /// optionally masking the vector operations if \p BlockInMask is non-null. 450 void vectorizeInterleaveGroup(Instruction *Instr, 451 VectorParts *BlockInMask = nullptr); 452 453 /// Vectorize Load and Store instructions, optionally masking the vector 454 /// operations if \p BlockInMask is non-null. 455 void vectorizeMemoryInstruction(Instruction *Instr, 456 VectorParts *BlockInMask = nullptr); 457 458 /// Set the debug location in the builder using the debug location in 459 /// the instruction. 460 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 461 462 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 463 void fixNonInductionPHIs(void); 464 465 protected: 466 friend class LoopVectorizationPlanner; 467 468 /// A small list of PHINodes. 469 using PhiVector = SmallVector<PHINode *, 4>; 470 471 /// A type for scalarized values in the new loop. Each value from the 472 /// original loop, when scalarized, is represented by UF x VF scalar values 473 /// in the new unrolled loop, where UF is the unroll factor and VF is the 474 /// vectorization factor. 475 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 476 477 /// Set up the values of the IVs correctly when exiting the vector loop. 478 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 479 Value *CountRoundDown, Value *EndValue, 480 BasicBlock *MiddleBlock); 481 482 /// Create a new induction variable inside L. 483 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 484 Value *Step, Instruction *DL); 485 486 /// Handle all cross-iteration phis in the header. 487 void fixCrossIterationPHIs(); 488 489 /// Fix a first-order recurrence. This is the second phase of vectorizing 490 /// this phi node. 491 void fixFirstOrderRecurrence(PHINode *Phi); 492 493 /// Fix a reduction cross-iteration phi. This is the second phase of 494 /// vectorizing this phi node. 495 void fixReduction(PHINode *Phi); 496 497 /// The Loop exit block may have single value PHI nodes with some 498 /// incoming value. While vectorizing we only handled real values 499 /// that were defined inside the loop and we should have one value for 500 /// each predecessor of its parent basic block. See PR14725. 501 void fixLCSSAPHIs(); 502 503 /// Iteratively sink the scalarized operands of a predicated instruction into 504 /// the block that was created for it. 505 void sinkScalarOperands(Instruction *PredInst); 506 507 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 508 /// represented as. 509 void truncateToMinimalBitwidths(); 510 511 /// Insert the new loop to the loop hierarchy and pass manager 512 /// and update the analysis passes. 513 void updateAnalysis(); 514 515 /// Create a broadcast instruction. This method generates a broadcast 516 /// instruction (shuffle) for loop invariant values and for the induction 517 /// value. If this is the induction variable then we extend it to N, N+1, ... 518 /// this is needed because each iteration in the loop corresponds to a SIMD 519 /// element. 520 virtual Value *getBroadcastInstrs(Value *V); 521 522 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 523 /// to each vector element of Val. The sequence starts at StartIndex. 524 /// \p Opcode is relevant for FP induction variable. 525 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 526 Instruction::BinaryOps Opcode = 527 Instruction::BinaryOpsEnd); 528 529 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 530 /// variable on which to base the steps, \p Step is the size of the step, and 531 /// \p EntryVal is the value from the original loop that maps to the steps. 532 /// Note that \p EntryVal doesn't have to be an induction variable - it 533 /// can also be a truncate instruction. 534 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 535 const InductionDescriptor &ID); 536 537 /// Create a vector induction phi node based on an existing scalar one. \p 538 /// EntryVal is the value from the original loop that maps to the vector phi 539 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 540 /// truncate instruction, instead of widening the original IV, we widen a 541 /// version of the IV truncated to \p EntryVal's type. 542 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 543 Value *Step, Instruction *EntryVal); 544 545 /// Returns true if an instruction \p I should be scalarized instead of 546 /// vectorized for the chosen vectorization factor. 547 bool shouldScalarizeInstruction(Instruction *I) const; 548 549 /// Returns true if we should generate a scalar version of \p IV. 550 bool needsScalarInduction(Instruction *IV) const; 551 552 /// If there is a cast involved in the induction variable \p ID, which should 553 /// be ignored in the vectorized loop body, this function records the 554 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 555 /// cast. We had already proved that the casted Phi is equal to the uncasted 556 /// Phi in the vectorized loop (under a runtime guard), and therefore 557 /// there is no need to vectorize the cast - the same value can be used in the 558 /// vector loop for both the Phi and the cast. 559 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 560 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 561 /// 562 /// \p EntryVal is the value from the original loop that maps to the vector 563 /// phi node and is used to distinguish what is the IV currently being 564 /// processed - original one (if \p EntryVal is a phi corresponding to the 565 /// original IV) or the "newly-created" one based on the proof mentioned above 566 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 567 /// latter case \p EntryVal is a TruncInst and we must not record anything for 568 /// that IV, but it's error-prone to expect callers of this routine to care 569 /// about that, hence this explicit parameter. 570 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 571 const Instruction *EntryVal, 572 Value *VectorLoopValue, 573 unsigned Part, 574 unsigned Lane = UINT_MAX); 575 576 /// Generate a shuffle sequence that will reverse the vector Vec. 577 virtual Value *reverseVector(Value *Vec); 578 579 /// Returns (and creates if needed) the original loop trip count. 580 Value *getOrCreateTripCount(Loop *NewLoop); 581 582 /// Returns (and creates if needed) the trip count of the widened loop. 583 Value *getOrCreateVectorTripCount(Loop *NewLoop); 584 585 /// Returns a bitcasted value to the requested vector type. 586 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 587 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 588 const DataLayout &DL); 589 590 /// Emit a bypass check to see if the vector trip count is zero, including if 591 /// it overflows. 592 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 593 594 /// Emit a bypass check to see if all of the SCEV assumptions we've 595 /// had to make are correct. 596 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 597 598 /// Emit bypass checks to check any memory assumptions we may have made. 599 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 600 601 /// Compute the transformed value of Index at offset StartValue using step 602 /// StepValue. 603 /// For integer induction, returns StartValue + Index * StepValue. 604 /// For pointer induction, returns StartValue[Index * StepValue]. 605 /// FIXME: The newly created binary instructions should contain nsw/nuw 606 /// flags, which can be found from the original scalar operations. 607 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 608 const DataLayout &DL, 609 const InductionDescriptor &ID) const; 610 611 /// Add additional metadata to \p To that was not present on \p Orig. 612 /// 613 /// Currently this is used to add the noalias annotations based on the 614 /// inserted memchecks. Use this for instructions that are *cloned* into the 615 /// vector loop. 616 void addNewMetadata(Instruction *To, const Instruction *Orig); 617 618 /// Add metadata from one instruction to another. 619 /// 620 /// This includes both the original MDs from \p From and additional ones (\see 621 /// addNewMetadata). Use this for *newly created* instructions in the vector 622 /// loop. 623 void addMetadata(Instruction *To, Instruction *From); 624 625 /// Similar to the previous function but it adds the metadata to a 626 /// vector of instructions. 627 void addMetadata(ArrayRef<Value *> To, Instruction *From); 628 629 /// The original loop. 630 Loop *OrigLoop; 631 632 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 633 /// dynamic knowledge to simplify SCEV expressions and converts them to a 634 /// more usable form. 635 PredicatedScalarEvolution &PSE; 636 637 /// Loop Info. 638 LoopInfo *LI; 639 640 /// Dominator Tree. 641 DominatorTree *DT; 642 643 /// Alias Analysis. 644 AliasAnalysis *AA; 645 646 /// Target Library Info. 647 const TargetLibraryInfo *TLI; 648 649 /// Target Transform Info. 650 const TargetTransformInfo *TTI; 651 652 /// Assumption Cache. 653 AssumptionCache *AC; 654 655 /// Interface to emit optimization remarks. 656 OptimizationRemarkEmitter *ORE; 657 658 /// LoopVersioning. It's only set up (non-null) if memchecks were 659 /// used. 660 /// 661 /// This is currently only used to add no-alias metadata based on the 662 /// memchecks. The actually versioning is performed manually. 663 std::unique_ptr<LoopVersioning> LVer; 664 665 /// The vectorization SIMD factor to use. Each vector will have this many 666 /// vector elements. 667 unsigned VF; 668 669 /// The vectorization unroll factor to use. Each scalar is vectorized to this 670 /// many different vector instructions. 671 unsigned UF; 672 673 /// The builder that we use 674 IRBuilder<> Builder; 675 676 // --- Vectorization state --- 677 678 /// The vector-loop preheader. 679 BasicBlock *LoopVectorPreHeader; 680 681 /// The scalar-loop preheader. 682 BasicBlock *LoopScalarPreHeader; 683 684 /// Middle Block between the vector and the scalar. 685 BasicBlock *LoopMiddleBlock; 686 687 /// The ExitBlock of the scalar loop. 688 BasicBlock *LoopExitBlock; 689 690 /// The vector loop body. 691 BasicBlock *LoopVectorBody; 692 693 /// The scalar loop body. 694 BasicBlock *LoopScalarBody; 695 696 /// A list of all bypass blocks. The first block is the entry of the loop. 697 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 698 699 /// The new Induction variable which was added to the new block. 700 PHINode *Induction = nullptr; 701 702 /// The induction variable of the old basic block. 703 PHINode *OldInduction = nullptr; 704 705 /// Maps values from the original loop to their corresponding values in the 706 /// vectorized loop. A key value can map to either vector values, scalar 707 /// values or both kinds of values, depending on whether the key was 708 /// vectorized and scalarized. 709 VectorizerValueMap VectorLoopValueMap; 710 711 /// Store instructions that were predicated. 712 SmallVector<Instruction *, 4> PredicatedInstructions; 713 714 /// Trip count of the original loop. 715 Value *TripCount = nullptr; 716 717 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 718 Value *VectorTripCount = nullptr; 719 720 /// The legality analysis. 721 LoopVectorizationLegality *Legal; 722 723 /// The profitablity analysis. 724 LoopVectorizationCostModel *Cost; 725 726 // Record whether runtime checks are added. 727 bool AddedSafetyChecks = false; 728 729 // Holds the end values for each induction variable. We save the end values 730 // so we can later fix-up the external users of the induction variables. 731 DenseMap<PHINode *, Value *> IVEndValues; 732 733 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 734 // fixed up at the end of vector code generation. 735 SmallVector<PHINode *, 8> OrigPHIsToFix; 736 }; 737 738 class InnerLoopUnroller : public InnerLoopVectorizer { 739 public: 740 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 741 LoopInfo *LI, DominatorTree *DT, 742 const TargetLibraryInfo *TLI, 743 const TargetTransformInfo *TTI, AssumptionCache *AC, 744 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 745 LoopVectorizationLegality *LVL, 746 LoopVectorizationCostModel *CM) 747 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 748 UnrollFactor, LVL, CM) {} 749 750 private: 751 Value *getBroadcastInstrs(Value *V) override; 752 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 753 Instruction::BinaryOps Opcode = 754 Instruction::BinaryOpsEnd) override; 755 Value *reverseVector(Value *Vec) override; 756 }; 757 758 } // end namespace llvm 759 760 /// Look for a meaningful debug location on the instruction or it's 761 /// operands. 762 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 763 if (!I) 764 return I; 765 766 DebugLoc Empty; 767 if (I->getDebugLoc() != Empty) 768 return I; 769 770 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 771 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 772 if (OpInst->getDebugLoc() != Empty) 773 return OpInst; 774 } 775 776 return I; 777 } 778 779 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 780 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 781 const DILocation *DIL = Inst->getDebugLoc(); 782 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 783 !isa<DbgInfoIntrinsic>(Inst)) { 784 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 785 if (NewDIL) 786 B.SetCurrentDebugLocation(NewDIL.getValue()); 787 else 788 LLVM_DEBUG(dbgs() 789 << "Failed to create new discriminator: " 790 << DIL->getFilename() << " Line: " << DIL->getLine()); 791 } 792 else 793 B.SetCurrentDebugLocation(DIL); 794 } else 795 B.SetCurrentDebugLocation(DebugLoc()); 796 } 797 798 #ifndef NDEBUG 799 /// \return string containing a file name and a line # for the given loop. 800 static std::string getDebugLocString(const Loop *L) { 801 std::string Result; 802 if (L) { 803 raw_string_ostream OS(Result); 804 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 805 LoopDbgLoc.print(OS); 806 else 807 // Just print the module name. 808 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 809 OS.flush(); 810 } 811 return Result; 812 } 813 #endif 814 815 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 816 const Instruction *Orig) { 817 // If the loop was versioned with memchecks, add the corresponding no-alias 818 // metadata. 819 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 820 LVer->annotateInstWithNoAlias(To, Orig); 821 } 822 823 void InnerLoopVectorizer::addMetadata(Instruction *To, 824 Instruction *From) { 825 propagateMetadata(To, From); 826 addNewMetadata(To, From); 827 } 828 829 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 830 Instruction *From) { 831 for (Value *V : To) { 832 if (Instruction *I = dyn_cast<Instruction>(V)) 833 addMetadata(I, From); 834 } 835 } 836 837 namespace llvm { 838 839 /// LoopVectorizationCostModel - estimates the expected speedups due to 840 /// vectorization. 841 /// In many cases vectorization is not profitable. This can happen because of 842 /// a number of reasons. In this class we mainly attempt to predict the 843 /// expected speedup/slowdowns due to the supported instruction set. We use the 844 /// TargetTransformInfo to query the different backends for the cost of 845 /// different operations. 846 class LoopVectorizationCostModel { 847 public: 848 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 849 LoopInfo *LI, LoopVectorizationLegality *Legal, 850 const TargetTransformInfo &TTI, 851 const TargetLibraryInfo *TLI, DemandedBits *DB, 852 AssumptionCache *AC, 853 OptimizationRemarkEmitter *ORE, const Function *F, 854 const LoopVectorizeHints *Hints, 855 InterleavedAccessInfo &IAI) 856 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 857 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 858 859 /// \return An upper bound for the vectorization factor, or None if 860 /// vectorization and interleaving should be avoided up front. 861 Optional<unsigned> computeMaxVF(bool OptForSize); 862 863 /// \return The most profitable vectorization factor and the cost of that VF. 864 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 865 /// then this vectorization factor will be selected if vectorization is 866 /// possible. 867 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 868 869 /// Setup cost-based decisions for user vectorization factor. 870 void selectUserVectorizationFactor(unsigned UserVF) { 871 collectUniformsAndScalars(UserVF); 872 collectInstsToScalarize(UserVF); 873 } 874 875 /// \return The size (in bits) of the smallest and widest types in the code 876 /// that needs to be vectorized. We ignore values that remain scalar such as 877 /// 64 bit loop indices. 878 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 879 880 /// \return The desired interleave count. 881 /// If interleave count has been specified by metadata it will be returned. 882 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 883 /// are the selected vectorization factor and the cost of the selected VF. 884 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 885 unsigned LoopCost); 886 887 /// Memory access instruction may be vectorized in more than one way. 888 /// Form of instruction after vectorization depends on cost. 889 /// This function takes cost-based decisions for Load/Store instructions 890 /// and collects them in a map. This decisions map is used for building 891 /// the lists of loop-uniform and loop-scalar instructions. 892 /// The calculated cost is saved with widening decision in order to 893 /// avoid redundant calculations. 894 void setCostBasedWideningDecision(unsigned VF); 895 896 /// A struct that represents some properties of the register usage 897 /// of a loop. 898 struct RegisterUsage { 899 /// Holds the number of loop invariant values that are used in the loop. 900 unsigned LoopInvariantRegs; 901 902 /// Holds the maximum number of concurrent live intervals in the loop. 903 unsigned MaxLocalUsers; 904 }; 905 906 /// \return Returns information about the register usages of the loop for the 907 /// given vectorization factors. 908 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 909 910 /// Collect values we want to ignore in the cost model. 911 void collectValuesToIgnore(); 912 913 /// \returns The smallest bitwidth each instruction can be represented with. 914 /// The vector equivalents of these instructions should be truncated to this 915 /// type. 916 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 917 return MinBWs; 918 } 919 920 /// \returns True if it is more profitable to scalarize instruction \p I for 921 /// vectorization factor \p VF. 922 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 923 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 924 925 // Cost model is not run in the VPlan-native path - return conservative 926 // result until this changes. 927 if (EnableVPlanNativePath) 928 return false; 929 930 auto Scalars = InstsToScalarize.find(VF); 931 assert(Scalars != InstsToScalarize.end() && 932 "VF not yet analyzed for scalarization profitability"); 933 return Scalars->second.find(I) != Scalars->second.end(); 934 } 935 936 /// Returns true if \p I is known to be uniform after vectorization. 937 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 938 if (VF == 1) 939 return true; 940 941 // Cost model is not run in the VPlan-native path - return conservative 942 // result until this changes. 943 if (EnableVPlanNativePath) 944 return false; 945 946 auto UniformsPerVF = Uniforms.find(VF); 947 assert(UniformsPerVF != Uniforms.end() && 948 "VF not yet analyzed for uniformity"); 949 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 950 } 951 952 /// Returns true if \p I is known to be scalar after vectorization. 953 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 954 if (VF == 1) 955 return true; 956 957 // Cost model is not run in the VPlan-native path - return conservative 958 // result until this changes. 959 if (EnableVPlanNativePath) 960 return false; 961 962 auto ScalarsPerVF = Scalars.find(VF); 963 assert(ScalarsPerVF != Scalars.end() && 964 "Scalar values are not calculated for VF"); 965 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 966 } 967 968 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 969 /// for vectorization factor \p VF. 970 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 971 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 972 !isProfitableToScalarize(I, VF) && 973 !isScalarAfterVectorization(I, VF); 974 } 975 976 /// Decision that was taken during cost calculation for memory instruction. 977 enum InstWidening { 978 CM_Unknown, 979 CM_Widen, // For consecutive accesses with stride +1. 980 CM_Widen_Reverse, // For consecutive accesses with stride -1. 981 CM_Interleave, 982 CM_GatherScatter, 983 CM_Scalarize 984 }; 985 986 /// Save vectorization decision \p W and \p Cost taken by the cost model for 987 /// instruction \p I and vector width \p VF. 988 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 989 unsigned Cost) { 990 assert(VF >= 2 && "Expected VF >=2"); 991 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 992 } 993 994 /// Save vectorization decision \p W and \p Cost taken by the cost model for 995 /// interleaving group \p Grp and vector width \p VF. 996 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 997 InstWidening W, unsigned Cost) { 998 assert(VF >= 2 && "Expected VF >=2"); 999 /// Broadcast this decicion to all instructions inside the group. 1000 /// But the cost will be assigned to one instruction only. 1001 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1002 if (auto *I = Grp->getMember(i)) { 1003 if (Grp->getInsertPos() == I) 1004 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1005 else 1006 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1007 } 1008 } 1009 } 1010 1011 /// Return the cost model decision for the given instruction \p I and vector 1012 /// width \p VF. Return CM_Unknown if this instruction did not pass 1013 /// through the cost modeling. 1014 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1015 assert(VF >= 2 && "Expected VF >=2"); 1016 1017 // Cost model is not run in the VPlan-native path - return conservative 1018 // result until this changes. 1019 if (EnableVPlanNativePath) 1020 return CM_GatherScatter; 1021 1022 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1023 auto Itr = WideningDecisions.find(InstOnVF); 1024 if (Itr == WideningDecisions.end()) 1025 return CM_Unknown; 1026 return Itr->second.first; 1027 } 1028 1029 /// Return the vectorization cost for the given instruction \p I and vector 1030 /// width \p VF. 1031 unsigned getWideningCost(Instruction *I, unsigned VF) { 1032 assert(VF >= 2 && "Expected VF >=2"); 1033 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1034 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1035 "The cost is not calculated"); 1036 return WideningDecisions[InstOnVF].second; 1037 } 1038 1039 /// Return True if instruction \p I is an optimizable truncate whose operand 1040 /// is an induction variable. Such a truncate will be removed by adding a new 1041 /// induction variable with the destination type. 1042 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1043 // If the instruction is not a truncate, return false. 1044 auto *Trunc = dyn_cast<TruncInst>(I); 1045 if (!Trunc) 1046 return false; 1047 1048 // Get the source and destination types of the truncate. 1049 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1050 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1051 1052 // If the truncate is free for the given types, return false. Replacing a 1053 // free truncate with an induction variable would add an induction variable 1054 // update instruction to each iteration of the loop. We exclude from this 1055 // check the primary induction variable since it will need an update 1056 // instruction regardless. 1057 Value *Op = Trunc->getOperand(0); 1058 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1059 return false; 1060 1061 // If the truncated value is not an induction variable, return false. 1062 return Legal->isInductionPhi(Op); 1063 } 1064 1065 /// Collects the instructions to scalarize for each predicated instruction in 1066 /// the loop. 1067 void collectInstsToScalarize(unsigned VF); 1068 1069 /// Collect Uniform and Scalar values for the given \p VF. 1070 /// The sets depend on CM decision for Load/Store instructions 1071 /// that may be vectorized as interleave, gather-scatter or scalarized. 1072 void collectUniformsAndScalars(unsigned VF) { 1073 // Do the analysis once. 1074 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1075 return; 1076 setCostBasedWideningDecision(VF); 1077 collectLoopUniforms(VF); 1078 collectLoopScalars(VF); 1079 } 1080 1081 /// Returns true if the target machine supports masked store operation 1082 /// for the given \p DataType and kind of access to \p Ptr. 1083 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1084 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1085 } 1086 1087 /// Returns true if the target machine supports masked load operation 1088 /// for the given \p DataType and kind of access to \p Ptr. 1089 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1090 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1091 } 1092 1093 /// Returns true if the target machine supports masked scatter operation 1094 /// for the given \p DataType. 1095 bool isLegalMaskedScatter(Type *DataType) { 1096 return TTI.isLegalMaskedScatter(DataType); 1097 } 1098 1099 /// Returns true if the target machine supports masked gather operation 1100 /// for the given \p DataType. 1101 bool isLegalMaskedGather(Type *DataType) { 1102 return TTI.isLegalMaskedGather(DataType); 1103 } 1104 1105 /// Returns true if the target machine can represent \p V as a masked gather 1106 /// or scatter operation. 1107 bool isLegalGatherOrScatter(Value *V) { 1108 bool LI = isa<LoadInst>(V); 1109 bool SI = isa<StoreInst>(V); 1110 if (!LI && !SI) 1111 return false; 1112 auto *Ty = getMemInstValueType(V); 1113 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1114 } 1115 1116 /// Returns true if \p I is an instruction that will be scalarized with 1117 /// predication. Such instructions include conditional stores and 1118 /// instructions that may divide by zero. 1119 /// If a non-zero VF has been calculated, we check if I will be scalarized 1120 /// predication for that VF. 1121 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1122 1123 // Returns true if \p I is an instruction that will be predicated either 1124 // through scalar predication or masked load/store or masked gather/scatter. 1125 // Superset of instructions that return true for isScalarWithPredication. 1126 bool isPredicatedInst(Instruction *I) { 1127 if (!blockNeedsPredication(I->getParent())) 1128 return false; 1129 // Loads and stores that need some form of masked operation are predicated 1130 // instructions. 1131 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1132 return Legal->isMaskRequired(I); 1133 return isScalarWithPredication(I); 1134 } 1135 1136 /// Returns true if \p I is a memory instruction with consecutive memory 1137 /// access that can be widened. 1138 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1139 1140 /// Returns true if \p I is a memory instruction in an interleaved-group 1141 /// of memory accesses that can be vectorized with wide vector loads/stores 1142 /// and shuffles. 1143 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1144 1145 /// Check if \p Instr belongs to any interleaved access group. 1146 bool isAccessInterleaved(Instruction *Instr) { 1147 return InterleaveInfo.isInterleaved(Instr); 1148 } 1149 1150 /// Get the interleaved access group that \p Instr belongs to. 1151 const InterleaveGroup<Instruction> * 1152 getInterleavedAccessGroup(Instruction *Instr) { 1153 return InterleaveInfo.getInterleaveGroup(Instr); 1154 } 1155 1156 /// Returns true if an interleaved group requires a scalar iteration 1157 /// to handle accesses with gaps, and there is nothing preventing us from 1158 /// creating a scalar epilogue. 1159 bool requiresScalarEpilogue() const { 1160 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1161 } 1162 1163 /// Returns true if a scalar epilogue is not allowed due to optsize. 1164 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1165 1166 /// Returns true if all loop blocks should be masked to fold tail loop. 1167 bool foldTailByMasking() const { return FoldTailByMasking; } 1168 1169 bool blockNeedsPredication(BasicBlock *BB) { 1170 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1171 } 1172 1173 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1174 /// with factor VF. Return the cost of the instruction, including 1175 /// scalarization overhead if it's needed. 1176 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1177 1178 /// Estimate cost of a call instruction CI if it were vectorized with factor 1179 /// VF. Return the cost of the instruction, including scalarization overhead 1180 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1181 /// scalarized - 1182 /// i.e. either vector version isn't available, or is too expensive. 1183 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1184 1185 private: 1186 unsigned NumPredStores = 0; 1187 1188 /// \return An upper bound for the vectorization factor, larger than zero. 1189 /// One is returned if vectorization should best be avoided due to cost. 1190 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1191 1192 /// The vectorization cost is a combination of the cost itself and a boolean 1193 /// indicating whether any of the contributing operations will actually 1194 /// operate on 1195 /// vector values after type legalization in the backend. If this latter value 1196 /// is 1197 /// false, then all operations will be scalarized (i.e. no vectorization has 1198 /// actually taken place). 1199 using VectorizationCostTy = std::pair<unsigned, bool>; 1200 1201 /// Returns the expected execution cost. The unit of the cost does 1202 /// not matter because we use the 'cost' units to compare different 1203 /// vector widths. The cost that is returned is *not* normalized by 1204 /// the factor width. 1205 VectorizationCostTy expectedCost(unsigned VF); 1206 1207 /// Returns the execution time cost of an instruction for a given vector 1208 /// width. Vector width of one means scalar. 1209 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1210 1211 /// The cost-computation logic from getInstructionCost which provides 1212 /// the vector type as an output parameter. 1213 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1214 1215 /// Calculate vectorization cost of memory instruction \p I. 1216 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1217 1218 /// The cost computation for scalarized memory instruction. 1219 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1220 1221 /// The cost computation for interleaving group of memory instructions. 1222 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1223 1224 /// The cost computation for Gather/Scatter instruction. 1225 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1226 1227 /// The cost computation for widening instruction \p I with consecutive 1228 /// memory access. 1229 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1230 1231 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1232 /// Load: scalar load + broadcast. 1233 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1234 /// element) 1235 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1236 1237 /// Estimate the overhead of scalarizing an instruction. This is a 1238 /// convenience wrapper for the type-based getScalarizationOverhead API. 1239 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1240 1241 /// Returns whether the instruction is a load or store and will be a emitted 1242 /// as a vector operation. 1243 bool isConsecutiveLoadOrStore(Instruction *I); 1244 1245 /// Returns true if an artificially high cost for emulated masked memrefs 1246 /// should be used. 1247 bool useEmulatedMaskMemRefHack(Instruction *I); 1248 1249 /// Create an analysis remark that explains why vectorization failed 1250 /// 1251 /// \p RemarkName is the identifier for the remark. \return the remark object 1252 /// that can be streamed to. 1253 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1254 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1255 RemarkName, TheLoop); 1256 } 1257 1258 /// Map of scalar integer values to the smallest bitwidth they can be legally 1259 /// represented as. The vector equivalents of these values should be truncated 1260 /// to this type. 1261 MapVector<Instruction *, uint64_t> MinBWs; 1262 1263 /// A type representing the costs for instructions if they were to be 1264 /// scalarized rather than vectorized. The entries are Instruction-Cost 1265 /// pairs. 1266 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1267 1268 /// A set containing all BasicBlocks that are known to present after 1269 /// vectorization as a predicated block. 1270 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1271 1272 /// Records whether it is allowed to have the original scalar loop execute at 1273 /// least once. This may be needed as a fallback loop in case runtime 1274 /// aliasing/dependence checks fail, or to handle the tail/remainder 1275 /// iterations when the trip count is unknown or doesn't divide by the VF, 1276 /// or as a peel-loop to handle gaps in interleave-groups. 1277 /// Under optsize and when the trip count is very small we don't allow any 1278 /// iterations to execute in the scalar loop. 1279 bool IsScalarEpilogueAllowed = true; 1280 1281 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1282 bool FoldTailByMasking = false; 1283 1284 /// A map holding scalar costs for different vectorization factors. The 1285 /// presence of a cost for an instruction in the mapping indicates that the 1286 /// instruction will be scalarized when vectorizing with the associated 1287 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1288 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1289 1290 /// Holds the instructions known to be uniform after vectorization. 1291 /// The data is collected per VF. 1292 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1293 1294 /// Holds the instructions known to be scalar after vectorization. 1295 /// The data is collected per VF. 1296 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1297 1298 /// Holds the instructions (address computations) that are forced to be 1299 /// scalarized. 1300 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1301 1302 /// Returns the expected difference in cost from scalarizing the expression 1303 /// feeding a predicated instruction \p PredInst. The instructions to 1304 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1305 /// non-negative return value implies the expression will be scalarized. 1306 /// Currently, only single-use chains are considered for scalarization. 1307 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1308 unsigned VF); 1309 1310 /// Collect the instructions that are uniform after vectorization. An 1311 /// instruction is uniform if we represent it with a single scalar value in 1312 /// the vectorized loop corresponding to each vector iteration. Examples of 1313 /// uniform instructions include pointer operands of consecutive or 1314 /// interleaved memory accesses. Note that although uniformity implies an 1315 /// instruction will be scalar, the reverse is not true. In general, a 1316 /// scalarized instruction will be represented by VF scalar values in the 1317 /// vectorized loop, each corresponding to an iteration of the original 1318 /// scalar loop. 1319 void collectLoopUniforms(unsigned VF); 1320 1321 /// Collect the instructions that are scalar after vectorization. An 1322 /// instruction is scalar if it is known to be uniform or will be scalarized 1323 /// during vectorization. Non-uniform scalarized instructions will be 1324 /// represented by VF values in the vectorized loop, each corresponding to an 1325 /// iteration of the original scalar loop. 1326 void collectLoopScalars(unsigned VF); 1327 1328 /// Keeps cost model vectorization decision and cost for instructions. 1329 /// Right now it is used for memory instructions only. 1330 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1331 std::pair<InstWidening, unsigned>>; 1332 1333 DecisionList WideningDecisions; 1334 1335 /// Returns true if \p V is expected to be vectorized and it needs to be 1336 /// extracted. 1337 bool needsExtract(Value *V, unsigned VF) const { 1338 Instruction *I = dyn_cast<Instruction>(V); 1339 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1340 return false; 1341 1342 // Assume we can vectorize V (and hence we need extraction) if the 1343 // scalars are not computed yet. This can happen, because it is called 1344 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1345 // the scalars are collected. That should be a safe assumption in most 1346 // cases, because we check if the operands have vectorizable types 1347 // beforehand in LoopVectorizationLegality. 1348 return Scalars.find(VF) == Scalars.end() || 1349 !isScalarAfterVectorization(I, VF); 1350 }; 1351 1352 /// Returns a range containing only operands needing to be extracted. 1353 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1354 unsigned VF) { 1355 return SmallVector<Value *, 4>(make_filter_range( 1356 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1357 } 1358 1359 public: 1360 /// The loop that we evaluate. 1361 Loop *TheLoop; 1362 1363 /// Predicated scalar evolution analysis. 1364 PredicatedScalarEvolution &PSE; 1365 1366 /// Loop Info analysis. 1367 LoopInfo *LI; 1368 1369 /// Vectorization legality. 1370 LoopVectorizationLegality *Legal; 1371 1372 /// Vector target information. 1373 const TargetTransformInfo &TTI; 1374 1375 /// Target Library Info. 1376 const TargetLibraryInfo *TLI; 1377 1378 /// Demanded bits analysis. 1379 DemandedBits *DB; 1380 1381 /// Assumption cache. 1382 AssumptionCache *AC; 1383 1384 /// Interface to emit optimization remarks. 1385 OptimizationRemarkEmitter *ORE; 1386 1387 const Function *TheFunction; 1388 1389 /// Loop Vectorize Hint. 1390 const LoopVectorizeHints *Hints; 1391 1392 /// The interleave access information contains groups of interleaved accesses 1393 /// with the same stride and close to each other. 1394 InterleavedAccessInfo &InterleaveInfo; 1395 1396 /// Values to ignore in the cost model. 1397 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1398 1399 /// Values to ignore in the cost model when VF > 1. 1400 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1401 }; 1402 1403 } // end namespace llvm 1404 1405 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1406 // vectorization. The loop needs to be annotated with #pragma omp simd 1407 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1408 // vector length information is not provided, vectorization is not considered 1409 // explicit. Interleave hints are not allowed either. These limitations will be 1410 // relaxed in the future. 1411 // Please, note that we are currently forced to abuse the pragma 'clang 1412 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1413 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1414 // provides *explicit vectorization hints* (LV can bypass legal checks and 1415 // assume that vectorization is legal). However, both hints are implemented 1416 // using the same metadata (llvm.loop.vectorize, processed by 1417 // LoopVectorizeHints). This will be fixed in the future when the native IR 1418 // representation for pragma 'omp simd' is introduced. 1419 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1420 OptimizationRemarkEmitter *ORE) { 1421 assert(!OuterLp->empty() && "This is not an outer loop"); 1422 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1423 1424 // Only outer loops with an explicit vectorization hint are supported. 1425 // Unannotated outer loops are ignored. 1426 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1427 return false; 1428 1429 Function *Fn = OuterLp->getHeader()->getParent(); 1430 if (!Hints.allowVectorization(Fn, OuterLp, 1431 true /*VectorizeOnlyWhenForced*/)) { 1432 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1433 return false; 1434 } 1435 1436 if (Hints.getInterleave() > 1) { 1437 // TODO: Interleave support is future work. 1438 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1439 "outer loops.\n"); 1440 Hints.emitRemarkWithHints(); 1441 return false; 1442 } 1443 1444 return true; 1445 } 1446 1447 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1448 OptimizationRemarkEmitter *ORE, 1449 SmallVectorImpl<Loop *> &V) { 1450 // Collect inner loops and outer loops without irreducible control flow. For 1451 // now, only collect outer loops that have explicit vectorization hints. If we 1452 // are stress testing the VPlan H-CFG construction, we collect the outermost 1453 // loop of every loop nest. 1454 if (L.empty() || VPlanBuildStressTest || 1455 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1456 LoopBlocksRPO RPOT(&L); 1457 RPOT.perform(LI); 1458 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1459 V.push_back(&L); 1460 // TODO: Collect inner loops inside marked outer loops in case 1461 // vectorization fails for the outer loop. Do not invoke 1462 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1463 // already known to be reducible. We can use an inherited attribute for 1464 // that. 1465 return; 1466 } 1467 } 1468 for (Loop *InnerL : L) 1469 collectSupportedLoops(*InnerL, LI, ORE, V); 1470 } 1471 1472 namespace { 1473 1474 /// The LoopVectorize Pass. 1475 struct LoopVectorize : public FunctionPass { 1476 /// Pass identification, replacement for typeid 1477 static char ID; 1478 1479 LoopVectorizePass Impl; 1480 1481 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1482 bool VectorizeOnlyWhenForced = false) 1483 : FunctionPass(ID) { 1484 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1485 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1486 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1487 } 1488 1489 bool runOnFunction(Function &F) override { 1490 if (skipFunction(F)) 1491 return false; 1492 1493 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1494 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1495 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1496 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1497 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1498 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1499 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1500 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1501 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1502 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1503 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1504 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1505 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1506 1507 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1508 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1509 1510 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1511 GetLAA, *ORE, PSI); 1512 } 1513 1514 void getAnalysisUsage(AnalysisUsage &AU) const override { 1515 AU.addRequired<AssumptionCacheTracker>(); 1516 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1517 AU.addRequired<DominatorTreeWrapperPass>(); 1518 AU.addRequired<LoopInfoWrapperPass>(); 1519 AU.addRequired<ScalarEvolutionWrapperPass>(); 1520 AU.addRequired<TargetTransformInfoWrapperPass>(); 1521 AU.addRequired<AAResultsWrapperPass>(); 1522 AU.addRequired<LoopAccessLegacyAnalysis>(); 1523 AU.addRequired<DemandedBitsWrapperPass>(); 1524 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1525 1526 // We currently do not preserve loopinfo/dominator analyses with outer loop 1527 // vectorization. Until this is addressed, mark these analyses as preserved 1528 // only for non-VPlan-native path. 1529 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1530 if (!EnableVPlanNativePath) { 1531 AU.addPreserved<LoopInfoWrapperPass>(); 1532 AU.addPreserved<DominatorTreeWrapperPass>(); 1533 } 1534 1535 AU.addPreserved<BasicAAWrapperPass>(); 1536 AU.addPreserved<GlobalsAAWrapperPass>(); 1537 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1538 } 1539 }; 1540 1541 } // end anonymous namespace 1542 1543 //===----------------------------------------------------------------------===// 1544 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1545 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1546 //===----------------------------------------------------------------------===// 1547 1548 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1549 // We need to place the broadcast of invariant variables outside the loop, 1550 // but only if it's proven safe to do so. Else, broadcast will be inside 1551 // vector loop body. 1552 Instruction *Instr = dyn_cast<Instruction>(V); 1553 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1554 (!Instr || 1555 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1556 // Place the code for broadcasting invariant variables in the new preheader. 1557 IRBuilder<>::InsertPointGuard Guard(Builder); 1558 if (SafeToHoist) 1559 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1560 1561 // Broadcast the scalar into all locations in the vector. 1562 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1563 1564 return Shuf; 1565 } 1566 1567 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1568 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1569 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1570 "Expected either an induction phi-node or a truncate of it!"); 1571 Value *Start = II.getStartValue(); 1572 1573 // Construct the initial value of the vector IV in the vector loop preheader 1574 auto CurrIP = Builder.saveIP(); 1575 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1576 if (isa<TruncInst>(EntryVal)) { 1577 assert(Start->getType()->isIntegerTy() && 1578 "Truncation requires an integer type"); 1579 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1580 Step = Builder.CreateTrunc(Step, TruncType); 1581 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1582 } 1583 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1584 Value *SteppedStart = 1585 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1586 1587 // We create vector phi nodes for both integer and floating-point induction 1588 // variables. Here, we determine the kind of arithmetic we will perform. 1589 Instruction::BinaryOps AddOp; 1590 Instruction::BinaryOps MulOp; 1591 if (Step->getType()->isIntegerTy()) { 1592 AddOp = Instruction::Add; 1593 MulOp = Instruction::Mul; 1594 } else { 1595 AddOp = II.getInductionOpcode(); 1596 MulOp = Instruction::FMul; 1597 } 1598 1599 // Multiply the vectorization factor by the step using integer or 1600 // floating-point arithmetic as appropriate. 1601 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1602 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1603 1604 // Create a vector splat to use in the induction update. 1605 // 1606 // FIXME: If the step is non-constant, we create the vector splat with 1607 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1608 // handle a constant vector splat. 1609 Value *SplatVF = isa<Constant>(Mul) 1610 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1611 : Builder.CreateVectorSplat(VF, Mul); 1612 Builder.restoreIP(CurrIP); 1613 1614 // We may need to add the step a number of times, depending on the unroll 1615 // factor. The last of those goes into the PHI. 1616 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1617 &*LoopVectorBody->getFirstInsertionPt()); 1618 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1619 Instruction *LastInduction = VecInd; 1620 for (unsigned Part = 0; Part < UF; ++Part) { 1621 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1622 1623 if (isa<TruncInst>(EntryVal)) 1624 addMetadata(LastInduction, EntryVal); 1625 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1626 1627 LastInduction = cast<Instruction>(addFastMathFlag( 1628 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1629 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1630 } 1631 1632 // Move the last step to the end of the latch block. This ensures consistent 1633 // placement of all induction updates. 1634 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1635 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1636 auto *ICmp = cast<Instruction>(Br->getCondition()); 1637 LastInduction->moveBefore(ICmp); 1638 LastInduction->setName("vec.ind.next"); 1639 1640 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1641 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1642 } 1643 1644 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1645 return Cost->isScalarAfterVectorization(I, VF) || 1646 Cost->isProfitableToScalarize(I, VF); 1647 } 1648 1649 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1650 if (shouldScalarizeInstruction(IV)) 1651 return true; 1652 auto isScalarInst = [&](User *U) -> bool { 1653 auto *I = cast<Instruction>(U); 1654 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1655 }; 1656 return llvm::any_of(IV->users(), isScalarInst); 1657 } 1658 1659 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1660 const InductionDescriptor &ID, const Instruction *EntryVal, 1661 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1662 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1663 "Expected either an induction phi-node or a truncate of it!"); 1664 1665 // This induction variable is not the phi from the original loop but the 1666 // newly-created IV based on the proof that casted Phi is equal to the 1667 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1668 // re-uses the same InductionDescriptor that original IV uses but we don't 1669 // have to do any recording in this case - that is done when original IV is 1670 // processed. 1671 if (isa<TruncInst>(EntryVal)) 1672 return; 1673 1674 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1675 if (Casts.empty()) 1676 return; 1677 // Only the first Cast instruction in the Casts vector is of interest. 1678 // The rest of the Casts (if exist) have no uses outside the 1679 // induction update chain itself. 1680 Instruction *CastInst = *Casts.begin(); 1681 if (Lane < UINT_MAX) 1682 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1683 else 1684 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1685 } 1686 1687 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1688 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1689 "Primary induction variable must have an integer type"); 1690 1691 auto II = Legal->getInductionVars()->find(IV); 1692 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1693 1694 auto ID = II->second; 1695 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1696 1697 // The scalar value to broadcast. This will be derived from the canonical 1698 // induction variable. 1699 Value *ScalarIV = nullptr; 1700 1701 // The value from the original loop to which we are mapping the new induction 1702 // variable. 1703 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1704 1705 // True if we have vectorized the induction variable. 1706 auto VectorizedIV = false; 1707 1708 // Determine if we want a scalar version of the induction variable. This is 1709 // true if the induction variable itself is not widened, or if it has at 1710 // least one user in the loop that is not widened. 1711 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1712 1713 // Generate code for the induction step. Note that induction steps are 1714 // required to be loop-invariant 1715 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1716 "Induction step should be loop invariant"); 1717 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1718 Value *Step = nullptr; 1719 if (PSE.getSE()->isSCEVable(IV->getType())) { 1720 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1721 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1722 LoopVectorPreHeader->getTerminator()); 1723 } else { 1724 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1725 } 1726 1727 // Try to create a new independent vector induction variable. If we can't 1728 // create the phi node, we will splat the scalar induction variable in each 1729 // loop iteration. 1730 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1731 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1732 VectorizedIV = true; 1733 } 1734 1735 // If we haven't yet vectorized the induction variable, or if we will create 1736 // a scalar one, we need to define the scalar induction variable and step 1737 // values. If we were given a truncation type, truncate the canonical 1738 // induction variable and step. Otherwise, derive these values from the 1739 // induction descriptor. 1740 if (!VectorizedIV || NeedsScalarIV) { 1741 ScalarIV = Induction; 1742 if (IV != OldInduction) { 1743 ScalarIV = IV->getType()->isIntegerTy() 1744 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1745 : Builder.CreateCast(Instruction::SIToFP, Induction, 1746 IV->getType()); 1747 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1748 ScalarIV->setName("offset.idx"); 1749 } 1750 if (Trunc) { 1751 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1752 assert(Step->getType()->isIntegerTy() && 1753 "Truncation requires an integer step"); 1754 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1755 Step = Builder.CreateTrunc(Step, TruncType); 1756 } 1757 } 1758 1759 // If we haven't yet vectorized the induction variable, splat the scalar 1760 // induction variable, and build the necessary step vectors. 1761 // TODO: Don't do it unless the vectorized IV is really required. 1762 if (!VectorizedIV) { 1763 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1764 for (unsigned Part = 0; Part < UF; ++Part) { 1765 Value *EntryPart = 1766 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1767 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1768 if (Trunc) 1769 addMetadata(EntryPart, Trunc); 1770 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1771 } 1772 } 1773 1774 // If an induction variable is only used for counting loop iterations or 1775 // calculating addresses, it doesn't need to be widened. Create scalar steps 1776 // that can be used by instructions we will later scalarize. Note that the 1777 // addition of the scalar steps will not increase the number of instructions 1778 // in the loop in the common case prior to InstCombine. We will be trading 1779 // one vector extract for each scalar step. 1780 if (NeedsScalarIV) 1781 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1782 } 1783 1784 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1785 Instruction::BinaryOps BinOp) { 1786 // Create and check the types. 1787 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1788 int VLen = Val->getType()->getVectorNumElements(); 1789 1790 Type *STy = Val->getType()->getScalarType(); 1791 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1792 "Induction Step must be an integer or FP"); 1793 assert(Step->getType() == STy && "Step has wrong type"); 1794 1795 SmallVector<Constant *, 8> Indices; 1796 1797 if (STy->isIntegerTy()) { 1798 // Create a vector of consecutive numbers from zero to VF. 1799 for (int i = 0; i < VLen; ++i) 1800 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1801 1802 // Add the consecutive indices to the vector value. 1803 Constant *Cv = ConstantVector::get(Indices); 1804 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1805 Step = Builder.CreateVectorSplat(VLen, Step); 1806 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1807 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1808 // which can be found from the original scalar operations. 1809 Step = Builder.CreateMul(Cv, Step); 1810 return Builder.CreateAdd(Val, Step, "induction"); 1811 } 1812 1813 // Floating point induction. 1814 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1815 "Binary Opcode should be specified for FP induction"); 1816 // Create a vector of consecutive numbers from zero to VF. 1817 for (int i = 0; i < VLen; ++i) 1818 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1819 1820 // Add the consecutive indices to the vector value. 1821 Constant *Cv = ConstantVector::get(Indices); 1822 1823 Step = Builder.CreateVectorSplat(VLen, Step); 1824 1825 // Floating point operations had to be 'fast' to enable the induction. 1826 FastMathFlags Flags; 1827 Flags.setFast(); 1828 1829 Value *MulOp = Builder.CreateFMul(Cv, Step); 1830 if (isa<Instruction>(MulOp)) 1831 // Have to check, MulOp may be a constant 1832 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1833 1834 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1835 if (isa<Instruction>(BOp)) 1836 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1837 return BOp; 1838 } 1839 1840 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1841 Instruction *EntryVal, 1842 const InductionDescriptor &ID) { 1843 // We shouldn't have to build scalar steps if we aren't vectorizing. 1844 assert(VF > 1 && "VF should be greater than one"); 1845 1846 // Get the value type and ensure it and the step have the same integer type. 1847 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1848 assert(ScalarIVTy == Step->getType() && 1849 "Val and Step should have the same type"); 1850 1851 // We build scalar steps for both integer and floating-point induction 1852 // variables. Here, we determine the kind of arithmetic we will perform. 1853 Instruction::BinaryOps AddOp; 1854 Instruction::BinaryOps MulOp; 1855 if (ScalarIVTy->isIntegerTy()) { 1856 AddOp = Instruction::Add; 1857 MulOp = Instruction::Mul; 1858 } else { 1859 AddOp = ID.getInductionOpcode(); 1860 MulOp = Instruction::FMul; 1861 } 1862 1863 // Determine the number of scalars we need to generate for each unroll 1864 // iteration. If EntryVal is uniform, we only need to generate the first 1865 // lane. Otherwise, we generate all VF values. 1866 unsigned Lanes = 1867 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1868 : VF; 1869 // Compute the scalar steps and save the results in VectorLoopValueMap. 1870 for (unsigned Part = 0; Part < UF; ++Part) { 1871 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1872 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1873 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1874 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1875 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1876 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1877 } 1878 } 1879 } 1880 1881 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1882 assert(V != Induction && "The new induction variable should not be used."); 1883 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1884 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1885 1886 // If we have a stride that is replaced by one, do it here. Defer this for 1887 // the VPlan-native path until we start running Legal checks in that path. 1888 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1889 V = ConstantInt::get(V->getType(), 1); 1890 1891 // If we have a vector mapped to this value, return it. 1892 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1893 return VectorLoopValueMap.getVectorValue(V, Part); 1894 1895 // If the value has not been vectorized, check if it has been scalarized 1896 // instead. If it has been scalarized, and we actually need the value in 1897 // vector form, we will construct the vector values on demand. 1898 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1899 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1900 1901 // If we've scalarized a value, that value should be an instruction. 1902 auto *I = cast<Instruction>(V); 1903 1904 // If we aren't vectorizing, we can just copy the scalar map values over to 1905 // the vector map. 1906 if (VF == 1) { 1907 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1908 return ScalarValue; 1909 } 1910 1911 // Get the last scalar instruction we generated for V and Part. If the value 1912 // is known to be uniform after vectorization, this corresponds to lane zero 1913 // of the Part unroll iteration. Otherwise, the last instruction is the one 1914 // we created for the last vector lane of the Part unroll iteration. 1915 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1916 auto *LastInst = cast<Instruction>( 1917 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1918 1919 // Set the insert point after the last scalarized instruction. This ensures 1920 // the insertelement sequence will directly follow the scalar definitions. 1921 auto OldIP = Builder.saveIP(); 1922 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1923 Builder.SetInsertPoint(&*NewIP); 1924 1925 // However, if we are vectorizing, we need to construct the vector values. 1926 // If the value is known to be uniform after vectorization, we can just 1927 // broadcast the scalar value corresponding to lane zero for each unroll 1928 // iteration. Otherwise, we construct the vector values using insertelement 1929 // instructions. Since the resulting vectors are stored in 1930 // VectorLoopValueMap, we will only generate the insertelements once. 1931 Value *VectorValue = nullptr; 1932 if (Cost->isUniformAfterVectorization(I, VF)) { 1933 VectorValue = getBroadcastInstrs(ScalarValue); 1934 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1935 } else { 1936 // Initialize packing with insertelements to start from undef. 1937 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1938 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1939 for (unsigned Lane = 0; Lane < VF; ++Lane) 1940 packScalarIntoVectorValue(V, {Part, Lane}); 1941 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1942 } 1943 Builder.restoreIP(OldIP); 1944 return VectorValue; 1945 } 1946 1947 // If this scalar is unknown, assume that it is a constant or that it is 1948 // loop invariant. Broadcast V and save the value for future uses. 1949 Value *B = getBroadcastInstrs(V); 1950 VectorLoopValueMap.setVectorValue(V, Part, B); 1951 return B; 1952 } 1953 1954 Value * 1955 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1956 const VPIteration &Instance) { 1957 // If the value is not an instruction contained in the loop, it should 1958 // already be scalar. 1959 if (OrigLoop->isLoopInvariant(V)) 1960 return V; 1961 1962 assert(Instance.Lane > 0 1963 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1964 : true && "Uniform values only have lane zero"); 1965 1966 // If the value from the original loop has not been vectorized, it is 1967 // represented by UF x VF scalar values in the new loop. Return the requested 1968 // scalar value. 1969 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1970 return VectorLoopValueMap.getScalarValue(V, Instance); 1971 1972 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1973 // for the given unroll part. If this entry is not a vector type (i.e., the 1974 // vectorization factor is one), there is no need to generate an 1975 // extractelement instruction. 1976 auto *U = getOrCreateVectorValue(V, Instance.Part); 1977 if (!U->getType()->isVectorTy()) { 1978 assert(VF == 1 && "Value not scalarized has non-vector type"); 1979 return U; 1980 } 1981 1982 // Otherwise, the value from the original loop has been vectorized and is 1983 // represented by UF vector values. Extract and return the requested scalar 1984 // value from the appropriate vector lane. 1985 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1986 } 1987 1988 void InnerLoopVectorizer::packScalarIntoVectorValue( 1989 Value *V, const VPIteration &Instance) { 1990 assert(V != Induction && "The new induction variable should not be used."); 1991 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1992 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1993 1994 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1995 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1996 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1997 Builder.getInt32(Instance.Lane)); 1998 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1999 } 2000 2001 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2002 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2003 SmallVector<Constant *, 8> ShuffleMask; 2004 for (unsigned i = 0; i < VF; ++i) 2005 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2006 2007 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2008 ConstantVector::get(ShuffleMask), 2009 "reverse"); 2010 } 2011 2012 // Return whether we allow using masked interleave-groups (for dealing with 2013 // strided loads/stores that reside in predicated blocks, or for dealing 2014 // with gaps). 2015 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2016 // If an override option has been passed in for interleaved accesses, use it. 2017 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2018 return EnableMaskedInterleavedMemAccesses; 2019 2020 return TTI.enableMaskedInterleavedAccessVectorization(); 2021 } 2022 2023 // Try to vectorize the interleave group that \p Instr belongs to. 2024 // 2025 // E.g. Translate following interleaved load group (factor = 3): 2026 // for (i = 0; i < N; i+=3) { 2027 // R = Pic[i]; // Member of index 0 2028 // G = Pic[i+1]; // Member of index 1 2029 // B = Pic[i+2]; // Member of index 2 2030 // ... // do something to R, G, B 2031 // } 2032 // To: 2033 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2034 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2035 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2036 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2037 // 2038 // Or translate following interleaved store group (factor = 3): 2039 // for (i = 0; i < N; i+=3) { 2040 // ... do something to R, G, B 2041 // Pic[i] = R; // Member of index 0 2042 // Pic[i+1] = G; // Member of index 1 2043 // Pic[i+2] = B; // Member of index 2 2044 // } 2045 // To: 2046 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2047 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2048 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2049 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2050 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2051 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2052 VectorParts *BlockInMask) { 2053 const InterleaveGroup<Instruction> *Group = 2054 Cost->getInterleavedAccessGroup(Instr); 2055 assert(Group && "Fail to get an interleaved access group."); 2056 2057 // Skip if current instruction is not the insert position. 2058 if (Instr != Group->getInsertPos()) 2059 return; 2060 2061 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2062 Value *Ptr = getLoadStorePointerOperand(Instr); 2063 2064 // Prepare for the vector type of the interleaved load/store. 2065 Type *ScalarTy = getMemInstValueType(Instr); 2066 unsigned InterleaveFactor = Group->getFactor(); 2067 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2068 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2069 2070 // Prepare for the new pointers. 2071 setDebugLocFromInst(Builder, Ptr); 2072 SmallVector<Value *, 2> NewPtrs; 2073 unsigned Index = Group->getIndex(Instr); 2074 2075 VectorParts Mask; 2076 bool IsMaskForCondRequired = BlockInMask; 2077 if (IsMaskForCondRequired) { 2078 Mask = *BlockInMask; 2079 // TODO: extend the masked interleaved-group support to reversed access. 2080 assert(!Group->isReverse() && "Reversed masked interleave-group " 2081 "not supported."); 2082 } 2083 2084 // If the group is reverse, adjust the index to refer to the last vector lane 2085 // instead of the first. We adjust the index from the first vector lane, 2086 // rather than directly getting the pointer for lane VF - 1, because the 2087 // pointer operand of the interleaved access is supposed to be uniform. For 2088 // uniform instructions, we're only required to generate a value for the 2089 // first vector lane in each unroll iteration. 2090 if (Group->isReverse()) 2091 Index += (VF - 1) * Group->getFactor(); 2092 2093 bool InBounds = false; 2094 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2095 InBounds = gep->isInBounds(); 2096 2097 for (unsigned Part = 0; Part < UF; Part++) { 2098 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2099 2100 // Notice current instruction could be any index. Need to adjust the address 2101 // to the member of index 0. 2102 // 2103 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2104 // b = A[i]; // Member of index 0 2105 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2106 // 2107 // E.g. A[i+1] = a; // Member of index 1 2108 // A[i] = b; // Member of index 0 2109 // A[i+2] = c; // Member of index 2 (Current instruction) 2110 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2111 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2112 if (InBounds) 2113 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2114 2115 // Cast to the vector pointer type. 2116 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2117 } 2118 2119 setDebugLocFromInst(Builder, Instr); 2120 Value *UndefVec = UndefValue::get(VecTy); 2121 2122 Value *MaskForGaps = nullptr; 2123 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2124 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2125 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2126 } 2127 2128 // Vectorize the interleaved load group. 2129 if (isa<LoadInst>(Instr)) { 2130 // For each unroll part, create a wide load for the group. 2131 SmallVector<Value *, 2> NewLoads; 2132 for (unsigned Part = 0; Part < UF; Part++) { 2133 Instruction *NewLoad; 2134 if (IsMaskForCondRequired || MaskForGaps) { 2135 assert(useMaskedInterleavedAccesses(*TTI) && 2136 "masked interleaved groups are not allowed."); 2137 Value *GroupMask = MaskForGaps; 2138 if (IsMaskForCondRequired) { 2139 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2140 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2141 Value *ShuffledMask = Builder.CreateShuffleVector( 2142 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2143 GroupMask = MaskForGaps 2144 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2145 MaskForGaps) 2146 : ShuffledMask; 2147 } 2148 NewLoad = 2149 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2150 GroupMask, UndefVec, "wide.masked.vec"); 2151 } 2152 else 2153 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2154 Group->getAlignment(), "wide.vec"); 2155 Group->addMetadata(NewLoad); 2156 NewLoads.push_back(NewLoad); 2157 } 2158 2159 // For each member in the group, shuffle out the appropriate data from the 2160 // wide loads. 2161 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2162 Instruction *Member = Group->getMember(I); 2163 2164 // Skip the gaps in the group. 2165 if (!Member) 2166 continue; 2167 2168 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2169 for (unsigned Part = 0; Part < UF; Part++) { 2170 Value *StridedVec = Builder.CreateShuffleVector( 2171 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2172 2173 // If this member has different type, cast the result type. 2174 if (Member->getType() != ScalarTy) { 2175 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2176 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2177 } 2178 2179 if (Group->isReverse()) 2180 StridedVec = reverseVector(StridedVec); 2181 2182 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2183 } 2184 } 2185 return; 2186 } 2187 2188 // The sub vector type for current instruction. 2189 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2190 2191 // Vectorize the interleaved store group. 2192 for (unsigned Part = 0; Part < UF; Part++) { 2193 // Collect the stored vector from each member. 2194 SmallVector<Value *, 4> StoredVecs; 2195 for (unsigned i = 0; i < InterleaveFactor; i++) { 2196 // Interleaved store group doesn't allow a gap, so each index has a member 2197 Instruction *Member = Group->getMember(i); 2198 assert(Member && "Fail to get a member from an interleaved store group"); 2199 2200 Value *StoredVec = getOrCreateVectorValue( 2201 cast<StoreInst>(Member)->getValueOperand(), Part); 2202 if (Group->isReverse()) 2203 StoredVec = reverseVector(StoredVec); 2204 2205 // If this member has different type, cast it to a unified type. 2206 2207 if (StoredVec->getType() != SubVT) 2208 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2209 2210 StoredVecs.push_back(StoredVec); 2211 } 2212 2213 // Concatenate all vectors into a wide vector. 2214 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2215 2216 // Interleave the elements in the wide vector. 2217 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2218 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2219 "interleaved.vec"); 2220 2221 Instruction *NewStoreInstr; 2222 if (IsMaskForCondRequired) { 2223 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2224 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2225 Value *ShuffledMask = Builder.CreateShuffleVector( 2226 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2227 NewStoreInstr = Builder.CreateMaskedStore( 2228 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2229 } 2230 else 2231 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2232 Group->getAlignment()); 2233 2234 Group->addMetadata(NewStoreInstr); 2235 } 2236 } 2237 2238 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2239 VectorParts *BlockInMask) { 2240 // Attempt to issue a wide load. 2241 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2242 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2243 2244 assert((LI || SI) && "Invalid Load/Store instruction"); 2245 2246 LoopVectorizationCostModel::InstWidening Decision = 2247 Cost->getWideningDecision(Instr, VF); 2248 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2249 "CM decision should be taken at this point"); 2250 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2251 return vectorizeInterleaveGroup(Instr); 2252 2253 Type *ScalarDataTy = getMemInstValueType(Instr); 2254 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2255 Value *Ptr = getLoadStorePointerOperand(Instr); 2256 unsigned Alignment = getLoadStoreAlignment(Instr); 2257 // An alignment of 0 means target abi alignment. We need to use the scalar's 2258 // target abi alignment in such a case. 2259 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2260 if (!Alignment) 2261 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2262 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2263 2264 // Determine if the pointer operand of the access is either consecutive or 2265 // reverse consecutive. 2266 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2267 bool ConsecutiveStride = 2268 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2269 bool CreateGatherScatter = 2270 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2271 2272 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2273 // gather/scatter. Otherwise Decision should have been to Scalarize. 2274 assert((ConsecutiveStride || CreateGatherScatter) && 2275 "The instruction should be scalarized"); 2276 2277 // Handle consecutive loads/stores. 2278 if (ConsecutiveStride) 2279 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2280 2281 VectorParts Mask; 2282 bool isMaskRequired = BlockInMask; 2283 if (isMaskRequired) 2284 Mask = *BlockInMask; 2285 2286 bool InBounds = false; 2287 if (auto *gep = dyn_cast<GetElementPtrInst>( 2288 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2289 InBounds = gep->isInBounds(); 2290 2291 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2292 // Calculate the pointer for the specific unroll-part. 2293 GetElementPtrInst *PartPtr = nullptr; 2294 2295 if (Reverse) { 2296 // If the address is consecutive but reversed, then the 2297 // wide store needs to start at the last vector element. 2298 PartPtr = cast<GetElementPtrInst>( 2299 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2300 PartPtr->setIsInBounds(InBounds); 2301 PartPtr = cast<GetElementPtrInst>( 2302 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2303 PartPtr->setIsInBounds(InBounds); 2304 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2305 Mask[Part] = reverseVector(Mask[Part]); 2306 } else { 2307 PartPtr = cast<GetElementPtrInst>( 2308 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2309 PartPtr->setIsInBounds(InBounds); 2310 } 2311 2312 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2313 }; 2314 2315 // Handle Stores: 2316 if (SI) { 2317 setDebugLocFromInst(Builder, SI); 2318 2319 for (unsigned Part = 0; Part < UF; ++Part) { 2320 Instruction *NewSI = nullptr; 2321 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2322 if (CreateGatherScatter) { 2323 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2324 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2325 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2326 MaskPart); 2327 } else { 2328 if (Reverse) { 2329 // If we store to reverse consecutive memory locations, then we need 2330 // to reverse the order of elements in the stored value. 2331 StoredVal = reverseVector(StoredVal); 2332 // We don't want to update the value in the map as it might be used in 2333 // another expression. So don't call resetVectorValue(StoredVal). 2334 } 2335 auto *VecPtr = CreateVecPtr(Part, Ptr); 2336 if (isMaskRequired) 2337 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2338 Mask[Part]); 2339 else 2340 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2341 } 2342 addMetadata(NewSI, SI); 2343 } 2344 return; 2345 } 2346 2347 // Handle loads. 2348 assert(LI && "Must have a load instruction"); 2349 setDebugLocFromInst(Builder, LI); 2350 for (unsigned Part = 0; Part < UF; ++Part) { 2351 Value *NewLI; 2352 if (CreateGatherScatter) { 2353 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2354 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2355 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2356 nullptr, "wide.masked.gather"); 2357 addMetadata(NewLI, LI); 2358 } else { 2359 auto *VecPtr = CreateVecPtr(Part, Ptr); 2360 if (isMaskRequired) 2361 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2362 UndefValue::get(DataTy), 2363 "wide.masked.load"); 2364 else 2365 NewLI = 2366 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2367 2368 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2369 addMetadata(NewLI, LI); 2370 if (Reverse) 2371 NewLI = reverseVector(NewLI); 2372 } 2373 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2374 } 2375 } 2376 2377 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2378 const VPIteration &Instance, 2379 bool IfPredicateInstr) { 2380 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2381 2382 setDebugLocFromInst(Builder, Instr); 2383 2384 // Does this instruction return a value ? 2385 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2386 2387 Instruction *Cloned = Instr->clone(); 2388 if (!IsVoidRetTy) 2389 Cloned->setName(Instr->getName() + ".cloned"); 2390 2391 // Replace the operands of the cloned instructions with their scalar 2392 // equivalents in the new loop. 2393 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2394 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2395 Cloned->setOperand(op, NewOp); 2396 } 2397 addNewMetadata(Cloned, Instr); 2398 2399 // Place the cloned scalar in the new loop. 2400 Builder.Insert(Cloned); 2401 2402 // Add the cloned scalar to the scalar map entry. 2403 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2404 2405 // If we just cloned a new assumption, add it the assumption cache. 2406 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2407 if (II->getIntrinsicID() == Intrinsic::assume) 2408 AC->registerAssumption(II); 2409 2410 // End if-block. 2411 if (IfPredicateInstr) 2412 PredicatedInstructions.push_back(Cloned); 2413 } 2414 2415 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2416 Value *End, Value *Step, 2417 Instruction *DL) { 2418 BasicBlock *Header = L->getHeader(); 2419 BasicBlock *Latch = L->getLoopLatch(); 2420 // As we're just creating this loop, it's possible no latch exists 2421 // yet. If so, use the header as this will be a single block loop. 2422 if (!Latch) 2423 Latch = Header; 2424 2425 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2426 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2427 setDebugLocFromInst(Builder, OldInst); 2428 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2429 2430 Builder.SetInsertPoint(Latch->getTerminator()); 2431 setDebugLocFromInst(Builder, OldInst); 2432 2433 // Create i+1 and fill the PHINode. 2434 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2435 Induction->addIncoming(Start, L->getLoopPreheader()); 2436 Induction->addIncoming(Next, Latch); 2437 // Create the compare. 2438 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2439 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2440 2441 // Now we have two terminators. Remove the old one from the block. 2442 Latch->getTerminator()->eraseFromParent(); 2443 2444 return Induction; 2445 } 2446 2447 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2448 if (TripCount) 2449 return TripCount; 2450 2451 assert(L && "Create Trip Count for null loop."); 2452 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2453 // Find the loop boundaries. 2454 ScalarEvolution *SE = PSE.getSE(); 2455 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2456 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2457 "Invalid loop count"); 2458 2459 Type *IdxTy = Legal->getWidestInductionType(); 2460 assert(IdxTy && "No type for induction"); 2461 2462 // The exit count might have the type of i64 while the phi is i32. This can 2463 // happen if we have an induction variable that is sign extended before the 2464 // compare. The only way that we get a backedge taken count is that the 2465 // induction variable was signed and as such will not overflow. In such a case 2466 // truncation is legal. 2467 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2468 IdxTy->getPrimitiveSizeInBits()) 2469 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2470 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2471 2472 // Get the total trip count from the count by adding 1. 2473 const SCEV *ExitCount = SE->getAddExpr( 2474 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2475 2476 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2477 2478 // Expand the trip count and place the new instructions in the preheader. 2479 // Notice that the pre-header does not change, only the loop body. 2480 SCEVExpander Exp(*SE, DL, "induction"); 2481 2482 // Count holds the overall loop count (N). 2483 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2484 L->getLoopPreheader()->getTerminator()); 2485 2486 if (TripCount->getType()->isPointerTy()) 2487 TripCount = 2488 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2489 L->getLoopPreheader()->getTerminator()); 2490 2491 return TripCount; 2492 } 2493 2494 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2495 if (VectorTripCount) 2496 return VectorTripCount; 2497 2498 Value *TC = getOrCreateTripCount(L); 2499 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2500 2501 Type *Ty = TC->getType(); 2502 Constant *Step = ConstantInt::get(Ty, VF * UF); 2503 2504 // If the tail is to be folded by masking, round the number of iterations N 2505 // up to a multiple of Step instead of rounding down. This is done by first 2506 // adding Step-1 and then rounding down. Note that it's ok if this addition 2507 // overflows: the vector induction variable will eventually wrap to zero given 2508 // that it starts at zero and its Step is a power of two; the loop will then 2509 // exit, with the last early-exit vector comparison also producing all-true. 2510 if (Cost->foldTailByMasking()) { 2511 assert(isPowerOf2_32(VF * UF) && 2512 "VF*UF must be a power of 2 when folding tail by masking"); 2513 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2514 } 2515 2516 // Now we need to generate the expression for the part of the loop that the 2517 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2518 // iterations are not required for correctness, or N - Step, otherwise. Step 2519 // is equal to the vectorization factor (number of SIMD elements) times the 2520 // unroll factor (number of SIMD instructions). 2521 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2522 2523 // If there is a non-reversed interleaved group that may speculatively access 2524 // memory out-of-bounds, we need to ensure that there will be at least one 2525 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2526 // the trip count, we set the remainder to be equal to the step. If the step 2527 // does not evenly divide the trip count, no adjustment is necessary since 2528 // there will already be scalar iterations. Note that the minimum iterations 2529 // check ensures that N >= Step. 2530 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2531 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2532 R = Builder.CreateSelect(IsZero, Step, R); 2533 } 2534 2535 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2536 2537 return VectorTripCount; 2538 } 2539 2540 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2541 const DataLayout &DL) { 2542 // Verify that V is a vector type with same number of elements as DstVTy. 2543 unsigned VF = DstVTy->getNumElements(); 2544 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2545 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2546 Type *SrcElemTy = SrcVecTy->getElementType(); 2547 Type *DstElemTy = DstVTy->getElementType(); 2548 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2549 "Vector elements must have same size"); 2550 2551 // Do a direct cast if element types are castable. 2552 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2553 return Builder.CreateBitOrPointerCast(V, DstVTy); 2554 } 2555 // V cannot be directly casted to desired vector type. 2556 // May happen when V is a floating point vector but DstVTy is a vector of 2557 // pointers or vice-versa. Handle this using a two-step bitcast using an 2558 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2559 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2560 "Only one type should be a pointer type"); 2561 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2562 "Only one type should be a floating point type"); 2563 Type *IntTy = 2564 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2565 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2566 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2567 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2568 } 2569 2570 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2571 BasicBlock *Bypass) { 2572 Value *Count = getOrCreateTripCount(L); 2573 BasicBlock *BB = L->getLoopPreheader(); 2574 IRBuilder<> Builder(BB->getTerminator()); 2575 2576 // Generate code to check if the loop's trip count is less than VF * UF, or 2577 // equal to it in case a scalar epilogue is required; this implies that the 2578 // vector trip count is zero. This check also covers the case where adding one 2579 // to the backedge-taken count overflowed leading to an incorrect trip count 2580 // of zero. In this case we will also jump to the scalar loop. 2581 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2582 : ICmpInst::ICMP_ULT; 2583 2584 // If tail is to be folded, vector loop takes care of all iterations. 2585 Value *CheckMinIters = Builder.getFalse(); 2586 if (!Cost->foldTailByMasking()) 2587 CheckMinIters = Builder.CreateICmp( 2588 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2589 "min.iters.check"); 2590 2591 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2592 // Update dominator tree immediately if the generated block is a 2593 // LoopBypassBlock because SCEV expansions to generate loop bypass 2594 // checks may query it before the current function is finished. 2595 DT->addNewBlock(NewBB, BB); 2596 if (L->getParentLoop()) 2597 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2598 ReplaceInstWithInst(BB->getTerminator(), 2599 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2600 LoopBypassBlocks.push_back(BB); 2601 } 2602 2603 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2604 BasicBlock *BB = L->getLoopPreheader(); 2605 2606 // Generate the code to check that the SCEV assumptions that we made. 2607 // We want the new basic block to start at the first instruction in a 2608 // sequence of instructions that form a check. 2609 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2610 "scev.check"); 2611 Value *SCEVCheck = 2612 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2613 2614 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2615 if (C->isZero()) 2616 return; 2617 2618 assert(!Cost->foldTailByMasking() && 2619 "Cannot SCEV check stride or overflow when folding tail"); 2620 // Create a new block containing the stride check. 2621 BB->setName("vector.scevcheck"); 2622 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2623 // Update dominator tree immediately if the generated block is a 2624 // LoopBypassBlock because SCEV expansions to generate loop bypass 2625 // checks may query it before the current function is finished. 2626 DT->addNewBlock(NewBB, BB); 2627 if (L->getParentLoop()) 2628 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2629 ReplaceInstWithInst(BB->getTerminator(), 2630 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2631 LoopBypassBlocks.push_back(BB); 2632 AddedSafetyChecks = true; 2633 } 2634 2635 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2636 // VPlan-native path does not do any analysis for runtime checks currently. 2637 if (EnableVPlanNativePath) 2638 return; 2639 2640 BasicBlock *BB = L->getLoopPreheader(); 2641 2642 // Generate the code that checks in runtime if arrays overlap. We put the 2643 // checks into a separate block to make the more common case of few elements 2644 // faster. 2645 Instruction *FirstCheckInst; 2646 Instruction *MemRuntimeCheck; 2647 std::tie(FirstCheckInst, MemRuntimeCheck) = 2648 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2649 if (!MemRuntimeCheck) 2650 return; 2651 2652 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2653 // Create a new block containing the memory check. 2654 BB->setName("vector.memcheck"); 2655 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2656 // Update dominator tree immediately if the generated block is a 2657 // LoopBypassBlock because SCEV expansions to generate loop bypass 2658 // checks may query it before the current function is finished. 2659 DT->addNewBlock(NewBB, BB); 2660 if (L->getParentLoop()) 2661 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2662 ReplaceInstWithInst(BB->getTerminator(), 2663 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2664 LoopBypassBlocks.push_back(BB); 2665 AddedSafetyChecks = true; 2666 2667 // We currently don't use LoopVersioning for the actual loop cloning but we 2668 // still use it to add the noalias metadata. 2669 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2670 PSE.getSE()); 2671 LVer->prepareNoAliasMetadata(); 2672 } 2673 2674 Value *InnerLoopVectorizer::emitTransformedIndex( 2675 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2676 const InductionDescriptor &ID) const { 2677 2678 SCEVExpander Exp(*SE, DL, "induction"); 2679 auto Step = ID.getStep(); 2680 auto StartValue = ID.getStartValue(); 2681 assert(Index->getType() == Step->getType() && 2682 "Index type does not match StepValue type"); 2683 2684 // Note: the IR at this point is broken. We cannot use SE to create any new 2685 // SCEV and then expand it, hoping that SCEV's simplification will give us 2686 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2687 // lead to various SCEV crashes. So all we can do is to use builder and rely 2688 // on InstCombine for future simplifications. Here we handle some trivial 2689 // cases only. 2690 auto CreateAdd = [&B](Value *X, Value *Y) { 2691 assert(X->getType() == Y->getType() && "Types don't match!"); 2692 if (auto *CX = dyn_cast<ConstantInt>(X)) 2693 if (CX->isZero()) 2694 return Y; 2695 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2696 if (CY->isZero()) 2697 return X; 2698 return B.CreateAdd(X, Y); 2699 }; 2700 2701 auto CreateMul = [&B](Value *X, Value *Y) { 2702 assert(X->getType() == Y->getType() && "Types don't match!"); 2703 if (auto *CX = dyn_cast<ConstantInt>(X)) 2704 if (CX->isOne()) 2705 return Y; 2706 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2707 if (CY->isOne()) 2708 return X; 2709 return B.CreateMul(X, Y); 2710 }; 2711 2712 switch (ID.getKind()) { 2713 case InductionDescriptor::IK_IntInduction: { 2714 assert(Index->getType() == StartValue->getType() && 2715 "Index type does not match StartValue type"); 2716 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2717 return B.CreateSub(StartValue, Index); 2718 auto *Offset = CreateMul( 2719 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2720 return CreateAdd(StartValue, Offset); 2721 } 2722 case InductionDescriptor::IK_PtrInduction: { 2723 assert(isa<SCEVConstant>(Step) && 2724 "Expected constant step for pointer induction"); 2725 return B.CreateGEP( 2726 StartValue->getType()->getPointerElementType(), StartValue, 2727 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2728 &*B.GetInsertPoint()))); 2729 } 2730 case InductionDescriptor::IK_FpInduction: { 2731 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2732 auto InductionBinOp = ID.getInductionBinOp(); 2733 assert(InductionBinOp && 2734 (InductionBinOp->getOpcode() == Instruction::FAdd || 2735 InductionBinOp->getOpcode() == Instruction::FSub) && 2736 "Original bin op should be defined for FP induction"); 2737 2738 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2739 2740 // Floating point operations had to be 'fast' to enable the induction. 2741 FastMathFlags Flags; 2742 Flags.setFast(); 2743 2744 Value *MulExp = B.CreateFMul(StepValue, Index); 2745 if (isa<Instruction>(MulExp)) 2746 // We have to check, the MulExp may be a constant. 2747 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2748 2749 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2750 "induction"); 2751 if (isa<Instruction>(BOp)) 2752 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2753 2754 return BOp; 2755 } 2756 case InductionDescriptor::IK_NoInduction: 2757 return nullptr; 2758 } 2759 llvm_unreachable("invalid enum"); 2760 } 2761 2762 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2763 /* 2764 In this function we generate a new loop. The new loop will contain 2765 the vectorized instructions while the old loop will continue to run the 2766 scalar remainder. 2767 2768 [ ] <-- loop iteration number check. 2769 / | 2770 / v 2771 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2772 | / | 2773 | / v 2774 || [ ] <-- vector pre header. 2775 |/ | 2776 | v 2777 | [ ] \ 2778 | [ ]_| <-- vector loop. 2779 | | 2780 | v 2781 | -[ ] <--- middle-block. 2782 | / | 2783 | / v 2784 -|- >[ ] <--- new preheader. 2785 | | 2786 | v 2787 | [ ] \ 2788 | [ ]_| <-- old scalar loop to handle remainder. 2789 \ | 2790 \ v 2791 >[ ] <-- exit block. 2792 ... 2793 */ 2794 2795 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2796 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2797 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2798 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2799 assert(VectorPH && "Invalid loop structure"); 2800 assert(ExitBlock && "Must have an exit block"); 2801 2802 // Some loops have a single integer induction variable, while other loops 2803 // don't. One example is c++ iterators that often have multiple pointer 2804 // induction variables. In the code below we also support a case where we 2805 // don't have a single induction variable. 2806 // 2807 // We try to obtain an induction variable from the original loop as hard 2808 // as possible. However if we don't find one that: 2809 // - is an integer 2810 // - counts from zero, stepping by one 2811 // - is the size of the widest induction variable type 2812 // then we create a new one. 2813 OldInduction = Legal->getPrimaryInduction(); 2814 Type *IdxTy = Legal->getWidestInductionType(); 2815 2816 // Split the single block loop into the two loop structure described above. 2817 BasicBlock *VecBody = 2818 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2819 BasicBlock *MiddleBlock = 2820 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2821 BasicBlock *ScalarPH = 2822 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2823 2824 // Create and register the new vector loop. 2825 Loop *Lp = LI->AllocateLoop(); 2826 Loop *ParentLoop = OrigLoop->getParentLoop(); 2827 2828 // Insert the new loop into the loop nest and register the new basic blocks 2829 // before calling any utilities such as SCEV that require valid LoopInfo. 2830 if (ParentLoop) { 2831 ParentLoop->addChildLoop(Lp); 2832 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2833 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2834 } else { 2835 LI->addTopLevelLoop(Lp); 2836 } 2837 Lp->addBasicBlockToLoop(VecBody, *LI); 2838 2839 // Find the loop boundaries. 2840 Value *Count = getOrCreateTripCount(Lp); 2841 2842 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2843 2844 // Now, compare the new count to zero. If it is zero skip the vector loop and 2845 // jump to the scalar loop. This check also covers the case where the 2846 // backedge-taken count is uint##_max: adding one to it will overflow leading 2847 // to an incorrect trip count of zero. In this (rare) case we will also jump 2848 // to the scalar loop. 2849 emitMinimumIterationCountCheck(Lp, ScalarPH); 2850 2851 // Generate the code to check any assumptions that we've made for SCEV 2852 // expressions. 2853 emitSCEVChecks(Lp, ScalarPH); 2854 2855 // Generate the code that checks in runtime if arrays overlap. We put the 2856 // checks into a separate block to make the more common case of few elements 2857 // faster. 2858 emitMemRuntimeChecks(Lp, ScalarPH); 2859 2860 // Generate the induction variable. 2861 // The loop step is equal to the vectorization factor (num of SIMD elements) 2862 // times the unroll factor (num of SIMD instructions). 2863 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2864 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2865 Induction = 2866 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2867 getDebugLocFromInstOrOperands(OldInduction)); 2868 2869 // We are going to resume the execution of the scalar loop. 2870 // Go over all of the induction variables that we found and fix the 2871 // PHIs that are left in the scalar version of the loop. 2872 // The starting values of PHI nodes depend on the counter of the last 2873 // iteration in the vectorized loop. 2874 // If we come from a bypass edge then we need to start from the original 2875 // start value. 2876 2877 // This variable saves the new starting index for the scalar loop. It is used 2878 // to test if there are any tail iterations left once the vector loop has 2879 // completed. 2880 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2881 for (auto &InductionEntry : *List) { 2882 PHINode *OrigPhi = InductionEntry.first; 2883 InductionDescriptor II = InductionEntry.second; 2884 2885 // Create phi nodes to merge from the backedge-taken check block. 2886 PHINode *BCResumeVal = PHINode::Create( 2887 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2888 // Copy original phi DL over to the new one. 2889 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2890 Value *&EndValue = IVEndValues[OrigPhi]; 2891 if (OrigPhi == OldInduction) { 2892 // We know what the end value is. 2893 EndValue = CountRoundDown; 2894 } else { 2895 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2896 Type *StepType = II.getStep()->getType(); 2897 Instruction::CastOps CastOp = 2898 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2899 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2900 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2901 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2902 EndValue->setName("ind.end"); 2903 } 2904 2905 // The new PHI merges the original incoming value, in case of a bypass, 2906 // or the value at the end of the vectorized loop. 2907 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2908 2909 // Fix the scalar body counter (PHI node). 2910 // The old induction's phi node in the scalar body needs the truncated 2911 // value. 2912 for (BasicBlock *BB : LoopBypassBlocks) 2913 BCResumeVal->addIncoming(II.getStartValue(), BB); 2914 OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); 2915 } 2916 2917 // We need the OrigLoop (scalar loop part) latch terminator to help 2918 // produce correct debug info for the middle block BB instructions. 2919 // The legality check stage guarantees that the loop will have a single 2920 // latch. 2921 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 2922 "Scalar loop latch terminator isn't a branch"); 2923 BranchInst *ScalarLatchBr = 2924 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 2925 2926 // Add a check in the middle block to see if we have completed 2927 // all of the iterations in the first vector loop. 2928 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2929 // If tail is to be folded, we know we don't need to run the remainder. 2930 Value *CmpN = Builder.getTrue(); 2931 if (!Cost->foldTailByMasking()) { 2932 CmpN = 2933 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2934 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2935 2936 // Here we use the same DebugLoc as the scalar loop latch branch instead 2937 // of the corresponding compare because they may have ended up with 2938 // different line numbers and we want to avoid awkward line stepping while 2939 // debugging. Eg. if the compare has got a line number inside the loop. 2940 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2941 } 2942 2943 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 2944 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2945 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 2946 2947 // Get ready to start creating new instructions into the vectorized body. 2948 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2949 2950 // Save the state. 2951 LoopVectorPreHeader = Lp->getLoopPreheader(); 2952 LoopScalarPreHeader = ScalarPH; 2953 LoopMiddleBlock = MiddleBlock; 2954 LoopExitBlock = ExitBlock; 2955 LoopVectorBody = VecBody; 2956 LoopScalarBody = OldBasicBlock; 2957 2958 Optional<MDNode *> VectorizedLoopID = 2959 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2960 LLVMLoopVectorizeFollowupVectorized}); 2961 if (VectorizedLoopID.hasValue()) { 2962 Lp->setLoopID(VectorizedLoopID.getValue()); 2963 2964 // Do not setAlreadyVectorized if loop attributes have been defined 2965 // explicitly. 2966 return LoopVectorPreHeader; 2967 } 2968 2969 // Keep all loop hints from the original loop on the vector loop (we'll 2970 // replace the vectorizer-specific hints below). 2971 if (MDNode *LID = OrigLoop->getLoopID()) 2972 Lp->setLoopID(LID); 2973 2974 LoopVectorizeHints Hints(Lp, true, *ORE); 2975 Hints.setAlreadyVectorized(); 2976 2977 return LoopVectorPreHeader; 2978 } 2979 2980 // Fix up external users of the induction variable. At this point, we are 2981 // in LCSSA form, with all external PHIs that use the IV having one input value, 2982 // coming from the remainder loop. We need those PHIs to also have a correct 2983 // value for the IV when arriving directly from the middle block. 2984 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2985 const InductionDescriptor &II, 2986 Value *CountRoundDown, Value *EndValue, 2987 BasicBlock *MiddleBlock) { 2988 // There are two kinds of external IV usages - those that use the value 2989 // computed in the last iteration (the PHI) and those that use the penultimate 2990 // value (the value that feeds into the phi from the loop latch). 2991 // We allow both, but they, obviously, have different values. 2992 2993 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2994 2995 DenseMap<Value *, Value *> MissingVals; 2996 2997 // An external user of the last iteration's value should see the value that 2998 // the remainder loop uses to initialize its own IV. 2999 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3000 for (User *U : PostInc->users()) { 3001 Instruction *UI = cast<Instruction>(U); 3002 if (!OrigLoop->contains(UI)) { 3003 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3004 MissingVals[UI] = EndValue; 3005 } 3006 } 3007 3008 // An external user of the penultimate value need to see EndValue - Step. 3009 // The simplest way to get this is to recompute it from the constituent SCEVs, 3010 // that is Start + (Step * (CRD - 1)). 3011 for (User *U : OrigPhi->users()) { 3012 auto *UI = cast<Instruction>(U); 3013 if (!OrigLoop->contains(UI)) { 3014 const DataLayout &DL = 3015 OrigLoop->getHeader()->getModule()->getDataLayout(); 3016 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3017 3018 IRBuilder<> B(MiddleBlock->getTerminator()); 3019 Value *CountMinusOne = B.CreateSub( 3020 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3021 Value *CMO = 3022 !II.getStep()->getType()->isIntegerTy() 3023 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3024 II.getStep()->getType()) 3025 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3026 CMO->setName("cast.cmo"); 3027 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3028 Escape->setName("ind.escape"); 3029 MissingVals[UI] = Escape; 3030 } 3031 } 3032 3033 for (auto &I : MissingVals) { 3034 PHINode *PHI = cast<PHINode>(I.first); 3035 // One corner case we have to handle is two IVs "chasing" each-other, 3036 // that is %IV2 = phi [...], [ %IV1, %latch ] 3037 // In this case, if IV1 has an external use, we need to avoid adding both 3038 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3039 // don't already have an incoming value for the middle block. 3040 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3041 PHI->addIncoming(I.second, MiddleBlock); 3042 } 3043 } 3044 3045 namespace { 3046 3047 struct CSEDenseMapInfo { 3048 static bool canHandle(const Instruction *I) { 3049 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3050 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3051 } 3052 3053 static inline Instruction *getEmptyKey() { 3054 return DenseMapInfo<Instruction *>::getEmptyKey(); 3055 } 3056 3057 static inline Instruction *getTombstoneKey() { 3058 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3059 } 3060 3061 static unsigned getHashValue(const Instruction *I) { 3062 assert(canHandle(I) && "Unknown instruction!"); 3063 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3064 I->value_op_end())); 3065 } 3066 3067 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3068 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3069 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3070 return LHS == RHS; 3071 return LHS->isIdenticalTo(RHS); 3072 } 3073 }; 3074 3075 } // end anonymous namespace 3076 3077 ///Perform cse of induction variable instructions. 3078 static void cse(BasicBlock *BB) { 3079 // Perform simple cse. 3080 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3081 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3082 Instruction *In = &*I++; 3083 3084 if (!CSEDenseMapInfo::canHandle(In)) 3085 continue; 3086 3087 // Check if we can replace this instruction with any of the 3088 // visited instructions. 3089 if (Instruction *V = CSEMap.lookup(In)) { 3090 In->replaceAllUsesWith(V); 3091 In->eraseFromParent(); 3092 continue; 3093 } 3094 3095 CSEMap[In] = In; 3096 } 3097 } 3098 3099 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3100 unsigned VF, 3101 bool &NeedToScalarize) { 3102 Function *F = CI->getCalledFunction(); 3103 StringRef FnName = CI->getCalledFunction()->getName(); 3104 Type *ScalarRetTy = CI->getType(); 3105 SmallVector<Type *, 4> Tys, ScalarTys; 3106 for (auto &ArgOp : CI->arg_operands()) 3107 ScalarTys.push_back(ArgOp->getType()); 3108 3109 // Estimate cost of scalarized vector call. The source operands are assumed 3110 // to be vectors, so we need to extract individual elements from there, 3111 // execute VF scalar calls, and then gather the result into the vector return 3112 // value. 3113 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3114 if (VF == 1) 3115 return ScalarCallCost; 3116 3117 // Compute corresponding vector type for return value and arguments. 3118 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3119 for (Type *ScalarTy : ScalarTys) 3120 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3121 3122 // Compute costs of unpacking argument values for the scalar calls and 3123 // packing the return values to a vector. 3124 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3125 3126 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3127 3128 // If we can't emit a vector call for this function, then the currently found 3129 // cost is the cost we need to return. 3130 NeedToScalarize = true; 3131 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3132 return Cost; 3133 3134 // If the corresponding vector cost is cheaper, return its cost. 3135 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3136 if (VectorCallCost < Cost) { 3137 NeedToScalarize = false; 3138 return VectorCallCost; 3139 } 3140 return Cost; 3141 } 3142 3143 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3144 unsigned VF) { 3145 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3146 assert(ID && "Expected intrinsic call!"); 3147 3148 FastMathFlags FMF; 3149 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3150 FMF = FPMO->getFastMathFlags(); 3151 3152 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3153 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3154 } 3155 3156 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3157 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3158 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3159 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3160 } 3161 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3162 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3163 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3164 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3165 } 3166 3167 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3168 // For every instruction `I` in MinBWs, truncate the operands, create a 3169 // truncated version of `I` and reextend its result. InstCombine runs 3170 // later and will remove any ext/trunc pairs. 3171 SmallPtrSet<Value *, 4> Erased; 3172 for (const auto &KV : Cost->getMinimalBitwidths()) { 3173 // If the value wasn't vectorized, we must maintain the original scalar 3174 // type. The absence of the value from VectorLoopValueMap indicates that it 3175 // wasn't vectorized. 3176 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3177 continue; 3178 for (unsigned Part = 0; Part < UF; ++Part) { 3179 Value *I = getOrCreateVectorValue(KV.first, Part); 3180 if (Erased.find(I) != Erased.end() || I->use_empty() || 3181 !isa<Instruction>(I)) 3182 continue; 3183 Type *OriginalTy = I->getType(); 3184 Type *ScalarTruncatedTy = 3185 IntegerType::get(OriginalTy->getContext(), KV.second); 3186 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3187 OriginalTy->getVectorNumElements()); 3188 if (TruncatedTy == OriginalTy) 3189 continue; 3190 3191 IRBuilder<> B(cast<Instruction>(I)); 3192 auto ShrinkOperand = [&](Value *V) -> Value * { 3193 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3194 if (ZI->getSrcTy() == TruncatedTy) 3195 return ZI->getOperand(0); 3196 return B.CreateZExtOrTrunc(V, TruncatedTy); 3197 }; 3198 3199 // The actual instruction modification depends on the instruction type, 3200 // unfortunately. 3201 Value *NewI = nullptr; 3202 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3203 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3204 ShrinkOperand(BO->getOperand(1))); 3205 3206 // Any wrapping introduced by shrinking this operation shouldn't be 3207 // considered undefined behavior. So, we can't unconditionally copy 3208 // arithmetic wrapping flags to NewI. 3209 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3210 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3211 NewI = 3212 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3213 ShrinkOperand(CI->getOperand(1))); 3214 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3215 NewI = B.CreateSelect(SI->getCondition(), 3216 ShrinkOperand(SI->getTrueValue()), 3217 ShrinkOperand(SI->getFalseValue())); 3218 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3219 switch (CI->getOpcode()) { 3220 default: 3221 llvm_unreachable("Unhandled cast!"); 3222 case Instruction::Trunc: 3223 NewI = ShrinkOperand(CI->getOperand(0)); 3224 break; 3225 case Instruction::SExt: 3226 NewI = B.CreateSExtOrTrunc( 3227 CI->getOperand(0), 3228 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3229 break; 3230 case Instruction::ZExt: 3231 NewI = B.CreateZExtOrTrunc( 3232 CI->getOperand(0), 3233 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3234 break; 3235 } 3236 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3237 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3238 auto *O0 = B.CreateZExtOrTrunc( 3239 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3240 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3241 auto *O1 = B.CreateZExtOrTrunc( 3242 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3243 3244 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3245 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3246 // Don't do anything with the operands, just extend the result. 3247 continue; 3248 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3249 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3250 auto *O0 = B.CreateZExtOrTrunc( 3251 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3252 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3253 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3254 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3255 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3256 auto *O0 = B.CreateZExtOrTrunc( 3257 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3258 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3259 } else { 3260 // If we don't know what to do, be conservative and don't do anything. 3261 continue; 3262 } 3263 3264 // Lastly, extend the result. 3265 NewI->takeName(cast<Instruction>(I)); 3266 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3267 I->replaceAllUsesWith(Res); 3268 cast<Instruction>(I)->eraseFromParent(); 3269 Erased.insert(I); 3270 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3271 } 3272 } 3273 3274 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3275 for (const auto &KV : Cost->getMinimalBitwidths()) { 3276 // If the value wasn't vectorized, we must maintain the original scalar 3277 // type. The absence of the value from VectorLoopValueMap indicates that it 3278 // wasn't vectorized. 3279 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3280 continue; 3281 for (unsigned Part = 0; Part < UF; ++Part) { 3282 Value *I = getOrCreateVectorValue(KV.first, Part); 3283 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3284 if (Inst && Inst->use_empty()) { 3285 Value *NewI = Inst->getOperand(0); 3286 Inst->eraseFromParent(); 3287 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3288 } 3289 } 3290 } 3291 } 3292 3293 void InnerLoopVectorizer::fixVectorizedLoop() { 3294 // Insert truncates and extends for any truncated instructions as hints to 3295 // InstCombine. 3296 if (VF > 1) 3297 truncateToMinimalBitwidths(); 3298 3299 // Fix widened non-induction PHIs by setting up the PHI operands. 3300 if (OrigPHIsToFix.size()) { 3301 assert(EnableVPlanNativePath && 3302 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3303 fixNonInductionPHIs(); 3304 } 3305 3306 // At this point every instruction in the original loop is widened to a 3307 // vector form. Now we need to fix the recurrences in the loop. These PHI 3308 // nodes are currently empty because we did not want to introduce cycles. 3309 // This is the second stage of vectorizing recurrences. 3310 fixCrossIterationPHIs(); 3311 3312 // Update the dominator tree. 3313 // 3314 // FIXME: After creating the structure of the new loop, the dominator tree is 3315 // no longer up-to-date, and it remains that way until we update it 3316 // here. An out-of-date dominator tree is problematic for SCEV, 3317 // because SCEVExpander uses it to guide code generation. The 3318 // vectorizer use SCEVExpanders in several places. Instead, we should 3319 // keep the dominator tree up-to-date as we go. 3320 updateAnalysis(); 3321 3322 // Fix-up external users of the induction variables. 3323 for (auto &Entry : *Legal->getInductionVars()) 3324 fixupIVUsers(Entry.first, Entry.second, 3325 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3326 IVEndValues[Entry.first], LoopMiddleBlock); 3327 3328 fixLCSSAPHIs(); 3329 for (Instruction *PI : PredicatedInstructions) 3330 sinkScalarOperands(&*PI); 3331 3332 // Remove redundant induction instructions. 3333 cse(LoopVectorBody); 3334 } 3335 3336 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3337 // In order to support recurrences we need to be able to vectorize Phi nodes. 3338 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3339 // stage #2: We now need to fix the recurrences by adding incoming edges to 3340 // the currently empty PHI nodes. At this point every instruction in the 3341 // original loop is widened to a vector form so we can use them to construct 3342 // the incoming edges. 3343 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3344 // Handle first-order recurrences and reductions that need to be fixed. 3345 if (Legal->isFirstOrderRecurrence(&Phi)) 3346 fixFirstOrderRecurrence(&Phi); 3347 else if (Legal->isReductionVariable(&Phi)) 3348 fixReduction(&Phi); 3349 } 3350 } 3351 3352 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3353 // This is the second phase of vectorizing first-order recurrences. An 3354 // overview of the transformation is described below. Suppose we have the 3355 // following loop. 3356 // 3357 // for (int i = 0; i < n; ++i) 3358 // b[i] = a[i] - a[i - 1]; 3359 // 3360 // There is a first-order recurrence on "a". For this loop, the shorthand 3361 // scalar IR looks like: 3362 // 3363 // scalar.ph: 3364 // s_init = a[-1] 3365 // br scalar.body 3366 // 3367 // scalar.body: 3368 // i = phi [0, scalar.ph], [i+1, scalar.body] 3369 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3370 // s2 = a[i] 3371 // b[i] = s2 - s1 3372 // br cond, scalar.body, ... 3373 // 3374 // In this example, s1 is a recurrence because it's value depends on the 3375 // previous iteration. In the first phase of vectorization, we created a 3376 // temporary value for s1. We now complete the vectorization and produce the 3377 // shorthand vector IR shown below (for VF = 4, UF = 1). 3378 // 3379 // vector.ph: 3380 // v_init = vector(..., ..., ..., a[-1]) 3381 // br vector.body 3382 // 3383 // vector.body 3384 // i = phi [0, vector.ph], [i+4, vector.body] 3385 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3386 // v2 = a[i, i+1, i+2, i+3]; 3387 // v3 = vector(v1(3), v2(0, 1, 2)) 3388 // b[i, i+1, i+2, i+3] = v2 - v3 3389 // br cond, vector.body, middle.block 3390 // 3391 // middle.block: 3392 // x = v2(3) 3393 // br scalar.ph 3394 // 3395 // scalar.ph: 3396 // s_init = phi [x, middle.block], [a[-1], otherwise] 3397 // br scalar.body 3398 // 3399 // After execution completes the vector loop, we extract the next value of 3400 // the recurrence (x) to use as the initial value in the scalar loop. 3401 3402 // Get the original loop preheader and single loop latch. 3403 auto *Preheader = OrigLoop->getLoopPreheader(); 3404 auto *Latch = OrigLoop->getLoopLatch(); 3405 3406 // Get the initial and previous values of the scalar recurrence. 3407 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3408 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3409 3410 // Create a vector from the initial value. 3411 auto *VectorInit = ScalarInit; 3412 if (VF > 1) { 3413 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3414 VectorInit = Builder.CreateInsertElement( 3415 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3416 Builder.getInt32(VF - 1), "vector.recur.init"); 3417 } 3418 3419 // We constructed a temporary phi node in the first phase of vectorization. 3420 // This phi node will eventually be deleted. 3421 Builder.SetInsertPoint( 3422 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3423 3424 // Create a phi node for the new recurrence. The current value will either be 3425 // the initial value inserted into a vector or loop-varying vector value. 3426 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3427 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3428 3429 // Get the vectorized previous value of the last part UF - 1. It appears last 3430 // among all unrolled iterations, due to the order of their construction. 3431 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3432 3433 // Set the insertion point after the previous value if it is an instruction. 3434 // Note that the previous value may have been constant-folded so it is not 3435 // guaranteed to be an instruction in the vector loop. Also, if the previous 3436 // value is a phi node, we should insert after all the phi nodes to avoid 3437 // breaking basic block verification. 3438 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3439 isa<PHINode>(PreviousLastPart)) 3440 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3441 else 3442 Builder.SetInsertPoint( 3443 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3444 3445 // We will construct a vector for the recurrence by combining the values for 3446 // the current and previous iterations. This is the required shuffle mask. 3447 SmallVector<Constant *, 8> ShuffleMask(VF); 3448 ShuffleMask[0] = Builder.getInt32(VF - 1); 3449 for (unsigned I = 1; I < VF; ++I) 3450 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3451 3452 // The vector from which to take the initial value for the current iteration 3453 // (actual or unrolled). Initially, this is the vector phi node. 3454 Value *Incoming = VecPhi; 3455 3456 // Shuffle the current and previous vector and update the vector parts. 3457 for (unsigned Part = 0; Part < UF; ++Part) { 3458 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3459 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3460 auto *Shuffle = 3461 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3462 ConstantVector::get(ShuffleMask)) 3463 : Incoming; 3464 PhiPart->replaceAllUsesWith(Shuffle); 3465 cast<Instruction>(PhiPart)->eraseFromParent(); 3466 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3467 Incoming = PreviousPart; 3468 } 3469 3470 // Fix the latch value of the new recurrence in the vector loop. 3471 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3472 3473 // Extract the last vector element in the middle block. This will be the 3474 // initial value for the recurrence when jumping to the scalar loop. 3475 auto *ExtractForScalar = Incoming; 3476 if (VF > 1) { 3477 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3478 ExtractForScalar = Builder.CreateExtractElement( 3479 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3480 } 3481 // Extract the second last element in the middle block if the 3482 // Phi is used outside the loop. We need to extract the phi itself 3483 // and not the last element (the phi update in the current iteration). This 3484 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3485 // when the scalar loop is not run at all. 3486 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3487 if (VF > 1) 3488 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3489 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3490 // When loop is unrolled without vectorizing, initialize 3491 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3492 // `Incoming`. This is analogous to the vectorized case above: extracting the 3493 // second last element when VF > 1. 3494 else if (UF > 1) 3495 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3496 3497 // Fix the initial value of the original recurrence in the scalar loop. 3498 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3499 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3500 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3501 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3502 Start->addIncoming(Incoming, BB); 3503 } 3504 3505 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3506 Phi->setName("scalar.recur"); 3507 3508 // Finally, fix users of the recurrence outside the loop. The users will need 3509 // either the last value of the scalar recurrence or the last value of the 3510 // vector recurrence we extracted in the middle block. Since the loop is in 3511 // LCSSA form, we just need to find all the phi nodes for the original scalar 3512 // recurrence in the exit block, and then add an edge for the middle block. 3513 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3514 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3515 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3516 } 3517 } 3518 } 3519 3520 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3521 Constant *Zero = Builder.getInt32(0); 3522 3523 // Get it's reduction variable descriptor. 3524 assert(Legal->isReductionVariable(Phi) && 3525 "Unable to find the reduction variable"); 3526 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3527 3528 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3529 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3530 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3531 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3532 RdxDesc.getMinMaxRecurrenceKind(); 3533 setDebugLocFromInst(Builder, ReductionStartValue); 3534 3535 // We need to generate a reduction vector from the incoming scalar. 3536 // To do so, we need to generate the 'identity' vector and override 3537 // one of the elements with the incoming scalar reduction. We need 3538 // to do it in the vector-loop preheader. 3539 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3540 3541 // This is the vector-clone of the value that leaves the loop. 3542 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3543 3544 // Find the reduction identity variable. Zero for addition, or, xor, 3545 // one for multiplication, -1 for And. 3546 Value *Identity; 3547 Value *VectorStart; 3548 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3549 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3550 // MinMax reduction have the start value as their identify. 3551 if (VF == 1) { 3552 VectorStart = Identity = ReductionStartValue; 3553 } else { 3554 VectorStart = Identity = 3555 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3556 } 3557 } else { 3558 // Handle other reduction kinds: 3559 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3560 RK, VecTy->getScalarType()); 3561 if (VF == 1) { 3562 Identity = Iden; 3563 // This vector is the Identity vector where the first element is the 3564 // incoming scalar reduction. 3565 VectorStart = ReductionStartValue; 3566 } else { 3567 Identity = ConstantVector::getSplat(VF, Iden); 3568 3569 // This vector is the Identity vector where the first element is the 3570 // incoming scalar reduction. 3571 VectorStart = 3572 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3573 } 3574 } 3575 3576 // Fix the vector-loop phi. 3577 3578 // Reductions do not have to start at zero. They can start with 3579 // any loop invariant values. 3580 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3581 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3582 for (unsigned Part = 0; Part < UF; ++Part) { 3583 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3584 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3585 // Make sure to add the reduction stat value only to the 3586 // first unroll part. 3587 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3588 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3589 cast<PHINode>(VecRdxPhi) 3590 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3591 } 3592 3593 // Before each round, move the insertion point right between 3594 // the PHIs and the values we are going to write. 3595 // This allows us to write both PHINodes and the extractelement 3596 // instructions. 3597 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3598 3599 setDebugLocFromInst(Builder, LoopExitInst); 3600 3601 // If the vector reduction can be performed in a smaller type, we truncate 3602 // then extend the loop exit value to enable InstCombine to evaluate the 3603 // entire expression in the smaller type. 3604 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3605 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3606 Builder.SetInsertPoint( 3607 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3608 VectorParts RdxParts(UF); 3609 for (unsigned Part = 0; Part < UF; ++Part) { 3610 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3611 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3612 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3613 : Builder.CreateZExt(Trunc, VecTy); 3614 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3615 UI != RdxParts[Part]->user_end();) 3616 if (*UI != Trunc) { 3617 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3618 RdxParts[Part] = Extnd; 3619 } else { 3620 ++UI; 3621 } 3622 } 3623 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3624 for (unsigned Part = 0; Part < UF; ++Part) { 3625 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3626 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3627 } 3628 } 3629 3630 // Reduce all of the unrolled parts into a single vector. 3631 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3632 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3633 3634 // The middle block terminator has already been assigned a DebugLoc here (the 3635 // OrigLoop's single latch terminator). We want the whole middle block to 3636 // appear to execute on this line because: (a) it is all compiler generated, 3637 // (b) these instructions are always executed after evaluating the latch 3638 // conditional branch, and (c) other passes may add new predecessors which 3639 // terminate on this line. This is the easiest way to ensure we don't 3640 // accidentally cause an extra step back into the loop while debugging. 3641 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3642 for (unsigned Part = 1; Part < UF; ++Part) { 3643 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3644 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3645 // Floating point operations had to be 'fast' to enable the reduction. 3646 ReducedPartRdx = addFastMathFlag( 3647 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3648 ReducedPartRdx, "bin.rdx"), 3649 RdxDesc.getFastMathFlags()); 3650 else 3651 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3652 RdxPart); 3653 } 3654 3655 if (VF > 1) { 3656 bool NoNaN = Legal->hasFunNoNaNAttr(); 3657 ReducedPartRdx = 3658 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3659 // If the reduction can be performed in a smaller type, we need to extend 3660 // the reduction to the wider type before we branch to the original loop. 3661 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3662 ReducedPartRdx = 3663 RdxDesc.isSigned() 3664 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3665 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3666 } 3667 3668 // Create a phi node that merges control-flow from the backedge-taken check 3669 // block and the middle block. 3670 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3671 LoopScalarPreHeader->getTerminator()); 3672 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3673 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3674 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3675 3676 // Now, we need to fix the users of the reduction variable 3677 // inside and outside of the scalar remainder loop. 3678 // We know that the loop is in LCSSA form. We need to update the 3679 // PHI nodes in the exit blocks. 3680 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3681 // All PHINodes need to have a single entry edge, or two if 3682 // we already fixed them. 3683 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3684 3685 // We found a reduction value exit-PHI. Update it with the 3686 // incoming bypass edge. 3687 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3688 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3689 } // end of the LCSSA phi scan. 3690 3691 // Fix the scalar loop reduction variable with the incoming reduction sum 3692 // from the vector body and from the backedge value. 3693 int IncomingEdgeBlockIdx = 3694 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3695 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3696 // Pick the other block. 3697 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3698 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3699 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3700 } 3701 3702 void InnerLoopVectorizer::fixLCSSAPHIs() { 3703 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3704 if (LCSSAPhi.getNumIncomingValues() == 1) { 3705 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3706 // Non-instruction incoming values will have only one value. 3707 unsigned LastLane = 0; 3708 if (isa<Instruction>(IncomingValue)) 3709 LastLane = Cost->isUniformAfterVectorization( 3710 cast<Instruction>(IncomingValue), VF) 3711 ? 0 3712 : VF - 1; 3713 // Can be a loop invariant incoming value or the last scalar value to be 3714 // extracted from the vectorized loop. 3715 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3716 Value *lastIncomingValue = 3717 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3718 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3719 } 3720 } 3721 } 3722 3723 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3724 // The basic block and loop containing the predicated instruction. 3725 auto *PredBB = PredInst->getParent(); 3726 auto *VectorLoop = LI->getLoopFor(PredBB); 3727 3728 // Initialize a worklist with the operands of the predicated instruction. 3729 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3730 3731 // Holds instructions that we need to analyze again. An instruction may be 3732 // reanalyzed if we don't yet know if we can sink it or not. 3733 SmallVector<Instruction *, 8> InstsToReanalyze; 3734 3735 // Returns true if a given use occurs in the predicated block. Phi nodes use 3736 // their operands in their corresponding predecessor blocks. 3737 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3738 auto *I = cast<Instruction>(U.getUser()); 3739 BasicBlock *BB = I->getParent(); 3740 if (auto *Phi = dyn_cast<PHINode>(I)) 3741 BB = Phi->getIncomingBlock( 3742 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3743 return BB == PredBB; 3744 }; 3745 3746 // Iteratively sink the scalarized operands of the predicated instruction 3747 // into the block we created for it. When an instruction is sunk, it's 3748 // operands are then added to the worklist. The algorithm ends after one pass 3749 // through the worklist doesn't sink a single instruction. 3750 bool Changed; 3751 do { 3752 // Add the instructions that need to be reanalyzed to the worklist, and 3753 // reset the changed indicator. 3754 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3755 InstsToReanalyze.clear(); 3756 Changed = false; 3757 3758 while (!Worklist.empty()) { 3759 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3760 3761 // We can't sink an instruction if it is a phi node, is already in the 3762 // predicated block, is not in the loop, or may have side effects. 3763 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3764 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3765 continue; 3766 3767 // It's legal to sink the instruction if all its uses occur in the 3768 // predicated block. Otherwise, there's nothing to do yet, and we may 3769 // need to reanalyze the instruction. 3770 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3771 InstsToReanalyze.push_back(I); 3772 continue; 3773 } 3774 3775 // Move the instruction to the beginning of the predicated block, and add 3776 // it's operands to the worklist. 3777 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3778 Worklist.insert(I->op_begin(), I->op_end()); 3779 3780 // The sinking may have enabled other instructions to be sunk, so we will 3781 // need to iterate. 3782 Changed = true; 3783 } 3784 } while (Changed); 3785 } 3786 3787 void InnerLoopVectorizer::fixNonInductionPHIs() { 3788 for (PHINode *OrigPhi : OrigPHIsToFix) { 3789 PHINode *NewPhi = 3790 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3791 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3792 3793 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3794 predecessors(OrigPhi->getParent())); 3795 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3796 predecessors(NewPhi->getParent())); 3797 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3798 "Scalar and Vector BB should have the same number of predecessors"); 3799 3800 // The insertion point in Builder may be invalidated by the time we get 3801 // here. Force the Builder insertion point to something valid so that we do 3802 // not run into issues during insertion point restore in 3803 // getOrCreateVectorValue calls below. 3804 Builder.SetInsertPoint(NewPhi); 3805 3806 // The predecessor order is preserved and we can rely on mapping between 3807 // scalar and vector block predecessors. 3808 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3809 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3810 3811 // When looking up the new scalar/vector values to fix up, use incoming 3812 // values from original phi. 3813 Value *ScIncV = 3814 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3815 3816 // Scalar incoming value may need a broadcast 3817 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3818 NewPhi->addIncoming(NewIncV, NewPredBB); 3819 } 3820 } 3821 } 3822 3823 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3824 unsigned VF) { 3825 PHINode *P = cast<PHINode>(PN); 3826 if (EnableVPlanNativePath) { 3827 // Currently we enter here in the VPlan-native path for non-induction 3828 // PHIs where all control flow is uniform. We simply widen these PHIs. 3829 // Create a vector phi with no operands - the vector phi operands will be 3830 // set at the end of vector code generation. 3831 Type *VecTy = 3832 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3833 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3834 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3835 OrigPHIsToFix.push_back(P); 3836 3837 return; 3838 } 3839 3840 assert(PN->getParent() == OrigLoop->getHeader() && 3841 "Non-header phis should have been handled elsewhere"); 3842 3843 // In order to support recurrences we need to be able to vectorize Phi nodes. 3844 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3845 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3846 // this value when we vectorize all of the instructions that use the PHI. 3847 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3848 for (unsigned Part = 0; Part < UF; ++Part) { 3849 // This is phase one of vectorizing PHIs. 3850 Type *VecTy = 3851 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3852 Value *EntryPart = PHINode::Create( 3853 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3854 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3855 } 3856 return; 3857 } 3858 3859 setDebugLocFromInst(Builder, P); 3860 3861 // This PHINode must be an induction variable. 3862 // Make sure that we know about it. 3863 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3864 3865 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3866 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3867 3868 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3869 // which can be found from the original scalar operations. 3870 switch (II.getKind()) { 3871 case InductionDescriptor::IK_NoInduction: 3872 llvm_unreachable("Unknown induction"); 3873 case InductionDescriptor::IK_IntInduction: 3874 case InductionDescriptor::IK_FpInduction: 3875 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3876 case InductionDescriptor::IK_PtrInduction: { 3877 // Handle the pointer induction variable case. 3878 assert(P->getType()->isPointerTy() && "Unexpected type."); 3879 // This is the normalized GEP that starts counting at zero. 3880 Value *PtrInd = Induction; 3881 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3882 // Determine the number of scalars we need to generate for each unroll 3883 // iteration. If the instruction is uniform, we only need to generate the 3884 // first lane. Otherwise, we generate all VF values. 3885 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3886 // These are the scalar results. Notice that we don't generate vector GEPs 3887 // because scalar GEPs result in better code. 3888 for (unsigned Part = 0; Part < UF; ++Part) { 3889 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3890 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3891 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3892 Value *SclrGep = 3893 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3894 SclrGep->setName("next.gep"); 3895 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3896 } 3897 } 3898 return; 3899 } 3900 } 3901 } 3902 3903 /// A helper function for checking whether an integer division-related 3904 /// instruction may divide by zero (in which case it must be predicated if 3905 /// executed conditionally in the scalar code). 3906 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3907 /// Non-zero divisors that are non compile-time constants will not be 3908 /// converted into multiplication, so we will still end up scalarizing 3909 /// the division, but can do so w/o predication. 3910 static bool mayDivideByZero(Instruction &I) { 3911 assert((I.getOpcode() == Instruction::UDiv || 3912 I.getOpcode() == Instruction::SDiv || 3913 I.getOpcode() == Instruction::URem || 3914 I.getOpcode() == Instruction::SRem) && 3915 "Unexpected instruction"); 3916 Value *Divisor = I.getOperand(1); 3917 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3918 return !CInt || CInt->isZero(); 3919 } 3920 3921 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3922 switch (I.getOpcode()) { 3923 case Instruction::Br: 3924 case Instruction::PHI: 3925 llvm_unreachable("This instruction is handled by a different recipe."); 3926 case Instruction::GetElementPtr: { 3927 // Construct a vector GEP by widening the operands of the scalar GEP as 3928 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3929 // results in a vector of pointers when at least one operand of the GEP 3930 // is vector-typed. Thus, to keep the representation compact, we only use 3931 // vector-typed operands for loop-varying values. 3932 auto *GEP = cast<GetElementPtrInst>(&I); 3933 3934 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3935 // If we are vectorizing, but the GEP has only loop-invariant operands, 3936 // the GEP we build (by only using vector-typed operands for 3937 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3938 // produce a vector of pointers, we need to either arbitrarily pick an 3939 // operand to broadcast, or broadcast a clone of the original GEP. 3940 // Here, we broadcast a clone of the original. 3941 // 3942 // TODO: If at some point we decide to scalarize instructions having 3943 // loop-invariant operands, this special case will no longer be 3944 // required. We would add the scalarization decision to 3945 // collectLoopScalars() and teach getVectorValue() to broadcast 3946 // the lane-zero scalar value. 3947 auto *Clone = Builder.Insert(GEP->clone()); 3948 for (unsigned Part = 0; Part < UF; ++Part) { 3949 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3950 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3951 addMetadata(EntryPart, GEP); 3952 } 3953 } else { 3954 // If the GEP has at least one loop-varying operand, we are sure to 3955 // produce a vector of pointers. But if we are only unrolling, we want 3956 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3957 // produce with the code below will be scalar (if VF == 1) or vector 3958 // (otherwise). Note that for the unroll-only case, we still maintain 3959 // values in the vector mapping with initVector, as we do for other 3960 // instructions. 3961 for (unsigned Part = 0; Part < UF; ++Part) { 3962 // The pointer operand of the new GEP. If it's loop-invariant, we 3963 // won't broadcast it. 3964 auto *Ptr = 3965 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3966 ? GEP->getPointerOperand() 3967 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3968 3969 // Collect all the indices for the new GEP. If any index is 3970 // loop-invariant, we won't broadcast it. 3971 SmallVector<Value *, 4> Indices; 3972 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3973 if (OrigLoop->isLoopInvariant(U.get())) 3974 Indices.push_back(U.get()); 3975 else 3976 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3977 } 3978 3979 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3980 // but it should be a vector, otherwise. 3981 auto *NewGEP = 3982 GEP->isInBounds() 3983 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3984 Indices) 3985 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3986 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3987 "NewGEP is not a pointer vector"); 3988 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3989 addMetadata(NewGEP, GEP); 3990 } 3991 } 3992 3993 break; 3994 } 3995 case Instruction::UDiv: 3996 case Instruction::SDiv: 3997 case Instruction::SRem: 3998 case Instruction::URem: 3999 case Instruction::Add: 4000 case Instruction::FAdd: 4001 case Instruction::Sub: 4002 case Instruction::FSub: 4003 case Instruction::FNeg: 4004 case Instruction::Mul: 4005 case Instruction::FMul: 4006 case Instruction::FDiv: 4007 case Instruction::FRem: 4008 case Instruction::Shl: 4009 case Instruction::LShr: 4010 case Instruction::AShr: 4011 case Instruction::And: 4012 case Instruction::Or: 4013 case Instruction::Xor: { 4014 // Just widen unops and binops. 4015 setDebugLocFromInst(Builder, &I); 4016 4017 for (unsigned Part = 0; Part < UF; ++Part) { 4018 SmallVector<Value *, 2> Ops; 4019 for (Value *Op : I.operands()) 4020 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4021 4022 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4023 4024 if (auto *VecOp = dyn_cast<Instruction>(V)) 4025 VecOp->copyIRFlags(&I); 4026 4027 // Use this vector value for all users of the original instruction. 4028 VectorLoopValueMap.setVectorValue(&I, Part, V); 4029 addMetadata(V, &I); 4030 } 4031 4032 break; 4033 } 4034 case Instruction::Select: { 4035 // Widen selects. 4036 // If the selector is loop invariant we can create a select 4037 // instruction with a scalar condition. Otherwise, use vector-select. 4038 auto *SE = PSE.getSE(); 4039 bool InvariantCond = 4040 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4041 setDebugLocFromInst(Builder, &I); 4042 4043 // The condition can be loop invariant but still defined inside the 4044 // loop. This means that we can't just use the original 'cond' value. 4045 // We have to take the 'vectorized' value and pick the first lane. 4046 // Instcombine will make this a no-op. 4047 4048 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4049 4050 for (unsigned Part = 0; Part < UF; ++Part) { 4051 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4052 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4053 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4054 Value *Sel = 4055 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4056 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4057 addMetadata(Sel, &I); 4058 } 4059 4060 break; 4061 } 4062 4063 case Instruction::ICmp: 4064 case Instruction::FCmp: { 4065 // Widen compares. Generate vector compares. 4066 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4067 auto *Cmp = dyn_cast<CmpInst>(&I); 4068 setDebugLocFromInst(Builder, Cmp); 4069 for (unsigned Part = 0; Part < UF; ++Part) { 4070 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4071 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4072 Value *C = nullptr; 4073 if (FCmp) { 4074 // Propagate fast math flags. 4075 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4076 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4077 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4078 } else { 4079 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4080 } 4081 VectorLoopValueMap.setVectorValue(&I, Part, C); 4082 addMetadata(C, &I); 4083 } 4084 4085 break; 4086 } 4087 4088 case Instruction::ZExt: 4089 case Instruction::SExt: 4090 case Instruction::FPToUI: 4091 case Instruction::FPToSI: 4092 case Instruction::FPExt: 4093 case Instruction::PtrToInt: 4094 case Instruction::IntToPtr: 4095 case Instruction::SIToFP: 4096 case Instruction::UIToFP: 4097 case Instruction::Trunc: 4098 case Instruction::FPTrunc: 4099 case Instruction::BitCast: { 4100 auto *CI = dyn_cast<CastInst>(&I); 4101 setDebugLocFromInst(Builder, CI); 4102 4103 /// Vectorize casts. 4104 Type *DestTy = 4105 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4106 4107 for (unsigned Part = 0; Part < UF; ++Part) { 4108 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4109 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4110 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4111 addMetadata(Cast, &I); 4112 } 4113 break; 4114 } 4115 4116 case Instruction::Call: { 4117 // Ignore dbg intrinsics. 4118 if (isa<DbgInfoIntrinsic>(I)) 4119 break; 4120 setDebugLocFromInst(Builder, &I); 4121 4122 Module *M = I.getParent()->getParent()->getParent(); 4123 auto *CI = cast<CallInst>(&I); 4124 4125 StringRef FnName = CI->getCalledFunction()->getName(); 4126 Function *F = CI->getCalledFunction(); 4127 Type *RetTy = ToVectorTy(CI->getType(), VF); 4128 SmallVector<Type *, 4> Tys; 4129 for (Value *ArgOperand : CI->arg_operands()) 4130 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4131 4132 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4133 4134 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4135 // version of the instruction. 4136 // Is it beneficial to perform intrinsic call compared to lib call? 4137 bool NeedToScalarize; 4138 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4139 bool UseVectorIntrinsic = 4140 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4141 assert((UseVectorIntrinsic || !NeedToScalarize) && 4142 "Instruction should be scalarized elsewhere."); 4143 4144 for (unsigned Part = 0; Part < UF; ++Part) { 4145 SmallVector<Value *, 4> Args; 4146 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4147 Value *Arg = CI->getArgOperand(i); 4148 // Some intrinsics have a scalar argument - don't replace it with a 4149 // vector. 4150 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4151 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4152 Args.push_back(Arg); 4153 } 4154 4155 Function *VectorF; 4156 if (UseVectorIntrinsic) { 4157 // Use vector version of the intrinsic. 4158 Type *TysForDecl[] = {CI->getType()}; 4159 if (VF > 1) 4160 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4161 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4162 } else { 4163 // Use vector version of the library call. 4164 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4165 assert(!VFnName.empty() && "Vector function name is empty."); 4166 VectorF = M->getFunction(VFnName); 4167 if (!VectorF) { 4168 // Generate a declaration 4169 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4170 VectorF = 4171 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4172 VectorF->copyAttributesFrom(F); 4173 } 4174 } 4175 assert(VectorF && "Can't create vector function."); 4176 4177 SmallVector<OperandBundleDef, 1> OpBundles; 4178 CI->getOperandBundlesAsDefs(OpBundles); 4179 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4180 4181 if (isa<FPMathOperator>(V)) 4182 V->copyFastMathFlags(CI); 4183 4184 VectorLoopValueMap.setVectorValue(&I, Part, V); 4185 addMetadata(V, &I); 4186 } 4187 4188 break; 4189 } 4190 4191 default: 4192 // This instruction is not vectorized by simple widening. 4193 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4194 llvm_unreachable("Unhandled instruction!"); 4195 } // end of switch. 4196 } 4197 4198 void InnerLoopVectorizer::updateAnalysis() { 4199 // Forget the original basic block. 4200 PSE.getSE()->forgetLoop(OrigLoop); 4201 4202 // DT is not kept up-to-date for outer loop vectorization 4203 if (EnableVPlanNativePath) 4204 return; 4205 4206 // Update the dominator tree information. 4207 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4208 "Entry does not dominate exit."); 4209 4210 DT->addNewBlock(LoopMiddleBlock, 4211 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4212 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4213 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4214 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4215 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4216 } 4217 4218 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4219 // We should not collect Scalars more than once per VF. Right now, this 4220 // function is called from collectUniformsAndScalars(), which already does 4221 // this check. Collecting Scalars for VF=1 does not make any sense. 4222 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4223 "This function should not be visited twice for the same VF"); 4224 4225 SmallSetVector<Instruction *, 8> Worklist; 4226 4227 // These sets are used to seed the analysis with pointers used by memory 4228 // accesses that will remain scalar. 4229 SmallSetVector<Instruction *, 8> ScalarPtrs; 4230 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4231 4232 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4233 // The pointer operands of loads and stores will be scalar as long as the 4234 // memory access is not a gather or scatter operation. The value operand of a 4235 // store will remain scalar if the store is scalarized. 4236 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4237 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4238 assert(WideningDecision != CM_Unknown && 4239 "Widening decision should be ready at this moment"); 4240 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4241 if (Ptr == Store->getValueOperand()) 4242 return WideningDecision == CM_Scalarize; 4243 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4244 "Ptr is neither a value or pointer operand"); 4245 return WideningDecision != CM_GatherScatter; 4246 }; 4247 4248 // A helper that returns true if the given value is a bitcast or 4249 // getelementptr instruction contained in the loop. 4250 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4251 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4252 isa<GetElementPtrInst>(V)) && 4253 !TheLoop->isLoopInvariant(V); 4254 }; 4255 4256 // A helper that evaluates a memory access's use of a pointer. If the use 4257 // will be a scalar use, and the pointer is only used by memory accesses, we 4258 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4259 // PossibleNonScalarPtrs. 4260 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4261 // We only care about bitcast and getelementptr instructions contained in 4262 // the loop. 4263 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4264 return; 4265 4266 // If the pointer has already been identified as scalar (e.g., if it was 4267 // also identified as uniform), there's nothing to do. 4268 auto *I = cast<Instruction>(Ptr); 4269 if (Worklist.count(I)) 4270 return; 4271 4272 // If the use of the pointer will be a scalar use, and all users of the 4273 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4274 // place the pointer in PossibleNonScalarPtrs. 4275 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4276 return isa<LoadInst>(U) || isa<StoreInst>(U); 4277 })) 4278 ScalarPtrs.insert(I); 4279 else 4280 PossibleNonScalarPtrs.insert(I); 4281 }; 4282 4283 // We seed the scalars analysis with three classes of instructions: (1) 4284 // instructions marked uniform-after-vectorization, (2) bitcast and 4285 // getelementptr instructions used by memory accesses requiring a scalar use, 4286 // and (3) pointer induction variables and their update instructions (we 4287 // currently only scalarize these). 4288 // 4289 // (1) Add to the worklist all instructions that have been identified as 4290 // uniform-after-vectorization. 4291 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4292 4293 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4294 // memory accesses requiring a scalar use. The pointer operands of loads and 4295 // stores will be scalar as long as the memory accesses is not a gather or 4296 // scatter operation. The value operand of a store will remain scalar if the 4297 // store is scalarized. 4298 for (auto *BB : TheLoop->blocks()) 4299 for (auto &I : *BB) { 4300 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4301 evaluatePtrUse(Load, Load->getPointerOperand()); 4302 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4303 evaluatePtrUse(Store, Store->getPointerOperand()); 4304 evaluatePtrUse(Store, Store->getValueOperand()); 4305 } 4306 } 4307 for (auto *I : ScalarPtrs) 4308 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4309 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4310 Worklist.insert(I); 4311 } 4312 4313 // (3) Add to the worklist all pointer induction variables and their update 4314 // instructions. 4315 // 4316 // TODO: Once we are able to vectorize pointer induction variables we should 4317 // no longer insert them into the worklist here. 4318 auto *Latch = TheLoop->getLoopLatch(); 4319 for (auto &Induction : *Legal->getInductionVars()) { 4320 auto *Ind = Induction.first; 4321 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4322 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4323 continue; 4324 Worklist.insert(Ind); 4325 Worklist.insert(IndUpdate); 4326 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4327 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4328 << "\n"); 4329 } 4330 4331 // Insert the forced scalars. 4332 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4333 // induction variable when the PHI user is scalarized. 4334 auto ForcedScalar = ForcedScalars.find(VF); 4335 if (ForcedScalar != ForcedScalars.end()) 4336 for (auto *I : ForcedScalar->second) 4337 Worklist.insert(I); 4338 4339 // Expand the worklist by looking through any bitcasts and getelementptr 4340 // instructions we've already identified as scalar. This is similar to the 4341 // expansion step in collectLoopUniforms(); however, here we're only 4342 // expanding to include additional bitcasts and getelementptr instructions. 4343 unsigned Idx = 0; 4344 while (Idx != Worklist.size()) { 4345 Instruction *Dst = Worklist[Idx++]; 4346 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4347 continue; 4348 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4349 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4350 auto *J = cast<Instruction>(U); 4351 return !TheLoop->contains(J) || Worklist.count(J) || 4352 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4353 isScalarUse(J, Src)); 4354 })) { 4355 Worklist.insert(Src); 4356 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4357 } 4358 } 4359 4360 // An induction variable will remain scalar if all users of the induction 4361 // variable and induction variable update remain scalar. 4362 for (auto &Induction : *Legal->getInductionVars()) { 4363 auto *Ind = Induction.first; 4364 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4365 4366 // We already considered pointer induction variables, so there's no reason 4367 // to look at their users again. 4368 // 4369 // TODO: Once we are able to vectorize pointer induction variables we 4370 // should no longer skip over them here. 4371 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4372 continue; 4373 4374 // Determine if all users of the induction variable are scalar after 4375 // vectorization. 4376 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4377 auto *I = cast<Instruction>(U); 4378 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4379 }); 4380 if (!ScalarInd) 4381 continue; 4382 4383 // Determine if all users of the induction variable update instruction are 4384 // scalar after vectorization. 4385 auto ScalarIndUpdate = 4386 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4387 auto *I = cast<Instruction>(U); 4388 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4389 }); 4390 if (!ScalarIndUpdate) 4391 continue; 4392 4393 // The induction variable and its update instruction will remain scalar. 4394 Worklist.insert(Ind); 4395 Worklist.insert(IndUpdate); 4396 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4397 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4398 << "\n"); 4399 } 4400 4401 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4402 } 4403 4404 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4405 if (!blockNeedsPredication(I->getParent())) 4406 return false; 4407 switch(I->getOpcode()) { 4408 default: 4409 break; 4410 case Instruction::Load: 4411 case Instruction::Store: { 4412 if (!Legal->isMaskRequired(I)) 4413 return false; 4414 auto *Ptr = getLoadStorePointerOperand(I); 4415 auto *Ty = getMemInstValueType(I); 4416 // We have already decided how to vectorize this instruction, get that 4417 // result. 4418 if (VF > 1) { 4419 InstWidening WideningDecision = getWideningDecision(I, VF); 4420 assert(WideningDecision != CM_Unknown && 4421 "Widening decision should be ready at this moment"); 4422 return WideningDecision == CM_Scalarize; 4423 } 4424 return isa<LoadInst>(I) ? 4425 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4426 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4427 } 4428 case Instruction::UDiv: 4429 case Instruction::SDiv: 4430 case Instruction::SRem: 4431 case Instruction::URem: 4432 return mayDivideByZero(*I); 4433 } 4434 return false; 4435 } 4436 4437 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4438 unsigned VF) { 4439 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4440 assert(getWideningDecision(I, VF) == CM_Unknown && 4441 "Decision should not be set yet."); 4442 auto *Group = getInterleavedAccessGroup(I); 4443 assert(Group && "Must have a group."); 4444 4445 // If the instruction's allocated size doesn't equal it's type size, it 4446 // requires padding and will be scalarized. 4447 auto &DL = I->getModule()->getDataLayout(); 4448 auto *ScalarTy = getMemInstValueType(I); 4449 if (hasIrregularType(ScalarTy, DL, VF)) 4450 return false; 4451 4452 // Check if masking is required. 4453 // A Group may need masking for one of two reasons: it resides in a block that 4454 // needs predication, or it was decided to use masking to deal with gaps. 4455 bool PredicatedAccessRequiresMasking = 4456 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4457 bool AccessWithGapsRequiresMasking = 4458 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4459 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4460 return true; 4461 4462 // If masked interleaving is required, we expect that the user/target had 4463 // enabled it, because otherwise it either wouldn't have been created or 4464 // it should have been invalidated by the CostModel. 4465 assert(useMaskedInterleavedAccesses(TTI) && 4466 "Masked interleave-groups for predicated accesses are not enabled."); 4467 4468 auto *Ty = getMemInstValueType(I); 4469 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4470 : TTI.isLegalMaskedStore(Ty); 4471 } 4472 4473 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4474 unsigned VF) { 4475 // Get and ensure we have a valid memory instruction. 4476 LoadInst *LI = dyn_cast<LoadInst>(I); 4477 StoreInst *SI = dyn_cast<StoreInst>(I); 4478 assert((LI || SI) && "Invalid memory instruction"); 4479 4480 auto *Ptr = getLoadStorePointerOperand(I); 4481 4482 // In order to be widened, the pointer should be consecutive, first of all. 4483 if (!Legal->isConsecutivePtr(Ptr)) 4484 return false; 4485 4486 // If the instruction is a store located in a predicated block, it will be 4487 // scalarized. 4488 if (isScalarWithPredication(I)) 4489 return false; 4490 4491 // If the instruction's allocated size doesn't equal it's type size, it 4492 // requires padding and will be scalarized. 4493 auto &DL = I->getModule()->getDataLayout(); 4494 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4495 if (hasIrregularType(ScalarTy, DL, VF)) 4496 return false; 4497 4498 return true; 4499 } 4500 4501 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4502 // We should not collect Uniforms more than once per VF. Right now, 4503 // this function is called from collectUniformsAndScalars(), which 4504 // already does this check. Collecting Uniforms for VF=1 does not make any 4505 // sense. 4506 4507 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4508 "This function should not be visited twice for the same VF"); 4509 4510 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4511 // not analyze again. Uniforms.count(VF) will return 1. 4512 Uniforms[VF].clear(); 4513 4514 // We now know that the loop is vectorizable! 4515 // Collect instructions inside the loop that will remain uniform after 4516 // vectorization. 4517 4518 // Global values, params and instructions outside of current loop are out of 4519 // scope. 4520 auto isOutOfScope = [&](Value *V) -> bool { 4521 Instruction *I = dyn_cast<Instruction>(V); 4522 return (!I || !TheLoop->contains(I)); 4523 }; 4524 4525 SetVector<Instruction *> Worklist; 4526 BasicBlock *Latch = TheLoop->getLoopLatch(); 4527 4528 // Start with the conditional branch. If the branch condition is an 4529 // instruction contained in the loop that is only used by the branch, it is 4530 // uniform. 4531 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4532 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4533 Worklist.insert(Cmp); 4534 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4535 } 4536 4537 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4538 // are pointers that are treated like consecutive pointers during 4539 // vectorization. The pointer operands of interleaved accesses are an 4540 // example. 4541 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4542 4543 // Holds pointer operands of instructions that are possibly non-uniform. 4544 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4545 4546 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4547 InstWidening WideningDecision = getWideningDecision(I, VF); 4548 assert(WideningDecision != CM_Unknown && 4549 "Widening decision should be ready at this moment"); 4550 4551 return (WideningDecision == CM_Widen || 4552 WideningDecision == CM_Widen_Reverse || 4553 WideningDecision == CM_Interleave); 4554 }; 4555 // Iterate over the instructions in the loop, and collect all 4556 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4557 // that a consecutive-like pointer operand will be scalarized, we collect it 4558 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4559 // getelementptr instruction can be used by both vectorized and scalarized 4560 // memory instructions. For example, if a loop loads and stores from the same 4561 // location, but the store is conditional, the store will be scalarized, and 4562 // the getelementptr won't remain uniform. 4563 for (auto *BB : TheLoop->blocks()) 4564 for (auto &I : *BB) { 4565 // If there's no pointer operand, there's nothing to do. 4566 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4567 if (!Ptr) 4568 continue; 4569 4570 // True if all users of Ptr are memory accesses that have Ptr as their 4571 // pointer operand. 4572 auto UsersAreMemAccesses = 4573 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4574 return getLoadStorePointerOperand(U) == Ptr; 4575 }); 4576 4577 // Ensure the memory instruction will not be scalarized or used by 4578 // gather/scatter, making its pointer operand non-uniform. If the pointer 4579 // operand is used by any instruction other than a memory access, we 4580 // conservatively assume the pointer operand may be non-uniform. 4581 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4582 PossibleNonUniformPtrs.insert(Ptr); 4583 4584 // If the memory instruction will be vectorized and its pointer operand 4585 // is consecutive-like, or interleaving - the pointer operand should 4586 // remain uniform. 4587 else 4588 ConsecutiveLikePtrs.insert(Ptr); 4589 } 4590 4591 // Add to the Worklist all consecutive and consecutive-like pointers that 4592 // aren't also identified as possibly non-uniform. 4593 for (auto *V : ConsecutiveLikePtrs) 4594 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4595 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4596 Worklist.insert(V); 4597 } 4598 4599 // Expand Worklist in topological order: whenever a new instruction 4600 // is added , its users should be already inside Worklist. It ensures 4601 // a uniform instruction will only be used by uniform instructions. 4602 unsigned idx = 0; 4603 while (idx != Worklist.size()) { 4604 Instruction *I = Worklist[idx++]; 4605 4606 for (auto OV : I->operand_values()) { 4607 // isOutOfScope operands cannot be uniform instructions. 4608 if (isOutOfScope(OV)) 4609 continue; 4610 // First order recurrence Phi's should typically be considered 4611 // non-uniform. 4612 auto *OP = dyn_cast<PHINode>(OV); 4613 if (OP && Legal->isFirstOrderRecurrence(OP)) 4614 continue; 4615 // If all the users of the operand are uniform, then add the 4616 // operand into the uniform worklist. 4617 auto *OI = cast<Instruction>(OV); 4618 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4619 auto *J = cast<Instruction>(U); 4620 return Worklist.count(J) || 4621 (OI == getLoadStorePointerOperand(J) && 4622 isUniformDecision(J, VF)); 4623 })) { 4624 Worklist.insert(OI); 4625 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4626 } 4627 } 4628 } 4629 4630 // Returns true if Ptr is the pointer operand of a memory access instruction 4631 // I, and I is known to not require scalarization. 4632 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4633 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4634 }; 4635 4636 // For an instruction to be added into Worklist above, all its users inside 4637 // the loop should also be in Worklist. However, this condition cannot be 4638 // true for phi nodes that form a cyclic dependence. We must process phi 4639 // nodes separately. An induction variable will remain uniform if all users 4640 // of the induction variable and induction variable update remain uniform. 4641 // The code below handles both pointer and non-pointer induction variables. 4642 for (auto &Induction : *Legal->getInductionVars()) { 4643 auto *Ind = Induction.first; 4644 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4645 4646 // Determine if all users of the induction variable are uniform after 4647 // vectorization. 4648 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4649 auto *I = cast<Instruction>(U); 4650 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4651 isVectorizedMemAccessUse(I, Ind); 4652 }); 4653 if (!UniformInd) 4654 continue; 4655 4656 // Determine if all users of the induction variable update instruction are 4657 // uniform after vectorization. 4658 auto UniformIndUpdate = 4659 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4660 auto *I = cast<Instruction>(U); 4661 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4662 isVectorizedMemAccessUse(I, IndUpdate); 4663 }); 4664 if (!UniformIndUpdate) 4665 continue; 4666 4667 // The induction variable and its update instruction will remain uniform. 4668 Worklist.insert(Ind); 4669 Worklist.insert(IndUpdate); 4670 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4671 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4672 << "\n"); 4673 } 4674 4675 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4676 } 4677 4678 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4679 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4680 // TODO: It may by useful to do since it's still likely to be dynamically 4681 // uniform if the target can skip. 4682 LLVM_DEBUG( 4683 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4684 4685 ORE->emit( 4686 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4687 << "runtime pointer checks needed. Not enabled for divergent target"); 4688 4689 return None; 4690 } 4691 4692 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4693 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4694 return computeFeasibleMaxVF(OptForSize, TC); 4695 4696 if (Legal->getRuntimePointerChecking()->Need) { 4697 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4698 << "runtime pointer checks needed. Enable vectorization of this " 4699 "loop with '#pragma clang loop vectorize(enable)' when " 4700 "compiling with -Os/-Oz"); 4701 LLVM_DEBUG( 4702 dbgs() 4703 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4704 return None; 4705 } 4706 4707 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4708 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4709 << "runtime SCEV checks needed. Enable vectorization of this " 4710 "loop with '#pragma clang loop vectorize(enable)' when " 4711 "compiling with -Os/-Oz"); 4712 LLVM_DEBUG( 4713 dbgs() 4714 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4715 return None; 4716 } 4717 4718 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4719 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4720 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4721 << "runtime stride == 1 checks needed. Enable vectorization of " 4722 "this loop with '#pragma clang loop vectorize(enable)' when " 4723 "compiling with -Os/-Oz"); 4724 LLVM_DEBUG( 4725 dbgs() 4726 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4727 return None; 4728 } 4729 4730 // If we optimize the program for size, avoid creating the tail loop. 4731 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4732 4733 if (TC == 1) { 4734 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4735 << "loop trip count is one, irrelevant for vectorization"); 4736 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4737 return None; 4738 } 4739 4740 // Record that scalar epilogue is not allowed. 4741 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4742 4743 IsScalarEpilogueAllowed = !OptForSize; 4744 4745 // We don't create an epilogue when optimizing for size. 4746 // Invalidate interleave groups that require an epilogue if we can't mask 4747 // the interleave-group. 4748 if (!useMaskedInterleavedAccesses(TTI)) 4749 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4750 4751 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4752 4753 if (TC > 0 && TC % MaxVF == 0) { 4754 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4755 return MaxVF; 4756 } 4757 4758 // If we don't know the precise trip count, or if the trip count that we 4759 // found modulo the vectorization factor is not zero, try to fold the tail 4760 // by masking. 4761 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4762 if (Legal->canFoldTailByMasking()) { 4763 FoldTailByMasking = true; 4764 return MaxVF; 4765 } 4766 4767 if (TC == 0) { 4768 ORE->emit( 4769 createMissedAnalysis("UnknownLoopCountComplexCFG") 4770 << "unable to calculate the loop count due to complex control flow"); 4771 return None; 4772 } 4773 4774 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4775 << "cannot optimize for size and vectorize at the same time. " 4776 "Enable vectorization of this loop with '#pragma clang loop " 4777 "vectorize(enable)' when compiling with -Os/-Oz"); 4778 return None; 4779 } 4780 4781 unsigned 4782 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4783 unsigned ConstTripCount) { 4784 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4785 unsigned SmallestType, WidestType; 4786 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4787 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4788 4789 // Get the maximum safe dependence distance in bits computed by LAA. 4790 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4791 // the memory accesses that is most restrictive (involved in the smallest 4792 // dependence distance). 4793 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4794 4795 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4796 4797 unsigned MaxVectorSize = WidestRegister / WidestType; 4798 4799 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4800 << " / " << WidestType << " bits.\n"); 4801 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4802 << WidestRegister << " bits.\n"); 4803 4804 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4805 " into one vector!"); 4806 if (MaxVectorSize == 0) { 4807 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4808 MaxVectorSize = 1; 4809 return MaxVectorSize; 4810 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4811 isPowerOf2_32(ConstTripCount)) { 4812 // We need to clamp the VF to be the ConstTripCount. There is no point in 4813 // choosing a higher viable VF as done in the loop below. 4814 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4815 << ConstTripCount << "\n"); 4816 MaxVectorSize = ConstTripCount; 4817 return MaxVectorSize; 4818 } 4819 4820 unsigned MaxVF = MaxVectorSize; 4821 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4822 (MaximizeBandwidth && !OptForSize)) { 4823 // Collect all viable vectorization factors larger than the default MaxVF 4824 // (i.e. MaxVectorSize). 4825 SmallVector<unsigned, 8> VFs; 4826 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4827 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4828 VFs.push_back(VS); 4829 4830 // For each VF calculate its register usage. 4831 auto RUs = calculateRegisterUsage(VFs); 4832 4833 // Select the largest VF which doesn't require more registers than existing 4834 // ones. 4835 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4836 for (int i = RUs.size() - 1; i >= 0; --i) { 4837 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4838 MaxVF = VFs[i]; 4839 break; 4840 } 4841 } 4842 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4843 if (MaxVF < MinVF) { 4844 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4845 << ") with target's minimum: " << MinVF << '\n'); 4846 MaxVF = MinVF; 4847 } 4848 } 4849 } 4850 return MaxVF; 4851 } 4852 4853 VectorizationFactor 4854 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4855 float Cost = expectedCost(1).first; 4856 const float ScalarCost = Cost; 4857 unsigned Width = 1; 4858 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4859 4860 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4861 if (ForceVectorization && MaxVF > 1) { 4862 // Ignore scalar width, because the user explicitly wants vectorization. 4863 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4864 // evaluation. 4865 Cost = std::numeric_limits<float>::max(); 4866 } 4867 4868 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4869 // Notice that the vector loop needs to be executed less times, so 4870 // we need to divide the cost of the vector loops by the width of 4871 // the vector elements. 4872 VectorizationCostTy C = expectedCost(i); 4873 float VectorCost = C.first / (float)i; 4874 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4875 << " costs: " << (int)VectorCost << ".\n"); 4876 if (!C.second && !ForceVectorization) { 4877 LLVM_DEBUG( 4878 dbgs() << "LV: Not considering vector loop of width " << i 4879 << " because it will not generate any vector instructions.\n"); 4880 continue; 4881 } 4882 if (VectorCost < Cost) { 4883 Cost = VectorCost; 4884 Width = i; 4885 } 4886 } 4887 4888 if (!EnableCondStoresVectorization && NumPredStores) { 4889 ORE->emit(createMissedAnalysis("ConditionalStore") 4890 << "store that is conditionally executed prevents vectorization"); 4891 LLVM_DEBUG( 4892 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4893 Width = 1; 4894 Cost = ScalarCost; 4895 } 4896 4897 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4898 << "LV: Vectorization seems to be not beneficial, " 4899 << "but was forced by a user.\n"); 4900 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4901 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4902 return Factor; 4903 } 4904 4905 std::pair<unsigned, unsigned> 4906 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4907 unsigned MinWidth = -1U; 4908 unsigned MaxWidth = 8; 4909 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4910 4911 // For each block. 4912 for (BasicBlock *BB : TheLoop->blocks()) { 4913 // For each instruction in the loop. 4914 for (Instruction &I : BB->instructionsWithoutDebug()) { 4915 Type *T = I.getType(); 4916 4917 // Skip ignored values. 4918 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4919 continue; 4920 4921 // Only examine Loads, Stores and PHINodes. 4922 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4923 continue; 4924 4925 // Examine PHI nodes that are reduction variables. Update the type to 4926 // account for the recurrence type. 4927 if (auto *PN = dyn_cast<PHINode>(&I)) { 4928 if (!Legal->isReductionVariable(PN)) 4929 continue; 4930 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4931 T = RdxDesc.getRecurrenceType(); 4932 } 4933 4934 // Examine the stored values. 4935 if (auto *ST = dyn_cast<StoreInst>(&I)) 4936 T = ST->getValueOperand()->getType(); 4937 4938 // Ignore loaded pointer types and stored pointer types that are not 4939 // vectorizable. 4940 // 4941 // FIXME: The check here attempts to predict whether a load or store will 4942 // be vectorized. We only know this for certain after a VF has 4943 // been selected. Here, we assume that if an access can be 4944 // vectorized, it will be. We should also look at extending this 4945 // optimization to non-pointer types. 4946 // 4947 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4948 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4949 continue; 4950 4951 MinWidth = std::min(MinWidth, 4952 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4953 MaxWidth = std::max(MaxWidth, 4954 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4955 } 4956 } 4957 4958 return {MinWidth, MaxWidth}; 4959 } 4960 4961 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4962 unsigned VF, 4963 unsigned LoopCost) { 4964 // -- The interleave heuristics -- 4965 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4966 // There are many micro-architectural considerations that we can't predict 4967 // at this level. For example, frontend pressure (on decode or fetch) due to 4968 // code size, or the number and capabilities of the execution ports. 4969 // 4970 // We use the following heuristics to select the interleave count: 4971 // 1. If the code has reductions, then we interleave to break the cross 4972 // iteration dependency. 4973 // 2. If the loop is really small, then we interleave to reduce the loop 4974 // overhead. 4975 // 3. We don't interleave if we think that we will spill registers to memory 4976 // due to the increased register pressure. 4977 4978 // When we optimize for size, we don't interleave. 4979 if (OptForSize) 4980 return 1; 4981 4982 // We used the distance for the interleave count. 4983 if (Legal->getMaxSafeDepDistBytes() != -1U) 4984 return 1; 4985 4986 // Do not interleave loops with a relatively small trip count. 4987 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4988 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4989 return 1; 4990 4991 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4992 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4993 << " registers\n"); 4994 4995 if (VF == 1) { 4996 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4997 TargetNumRegisters = ForceTargetNumScalarRegs; 4998 } else { 4999 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5000 TargetNumRegisters = ForceTargetNumVectorRegs; 5001 } 5002 5003 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5004 // We divide by these constants so assume that we have at least one 5005 // instruction that uses at least one register. 5006 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5007 5008 // We calculate the interleave count using the following formula. 5009 // Subtract the number of loop invariants from the number of available 5010 // registers. These registers are used by all of the interleaved instances. 5011 // Next, divide the remaining registers by the number of registers that is 5012 // required by the loop, in order to estimate how many parallel instances 5013 // fit without causing spills. All of this is rounded down if necessary to be 5014 // a power of two. We want power of two interleave count to simplify any 5015 // addressing operations or alignment considerations. 5016 // We also want power of two interleave counts to ensure that the induction 5017 // variable of the vector loop wraps to zero, when tail is folded by masking; 5018 // this currently happens when OptForSize, in which case IC is set to 1 above. 5019 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5020 R.MaxLocalUsers); 5021 5022 // Don't count the induction variable as interleaved. 5023 if (EnableIndVarRegisterHeur) 5024 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5025 std::max(1U, (R.MaxLocalUsers - 1))); 5026 5027 // Clamp the interleave ranges to reasonable counts. 5028 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5029 5030 // Check if the user has overridden the max. 5031 if (VF == 1) { 5032 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5033 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5034 } else { 5035 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5036 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5037 } 5038 5039 // If we did not calculate the cost for VF (because the user selected the VF) 5040 // then we calculate the cost of VF here. 5041 if (LoopCost == 0) 5042 LoopCost = expectedCost(VF).first; 5043 5044 assert(LoopCost && "Non-zero loop cost expected"); 5045 5046 // Clamp the calculated IC to be between the 1 and the max interleave count 5047 // that the target allows. 5048 if (IC > MaxInterleaveCount) 5049 IC = MaxInterleaveCount; 5050 else if (IC < 1) 5051 IC = 1; 5052 5053 // Interleave if we vectorized this loop and there is a reduction that could 5054 // benefit from interleaving. 5055 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5056 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5057 return IC; 5058 } 5059 5060 // Note that if we've already vectorized the loop we will have done the 5061 // runtime check and so interleaving won't require further checks. 5062 bool InterleavingRequiresRuntimePointerCheck = 5063 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5064 5065 // We want to interleave small loops in order to reduce the loop overhead and 5066 // potentially expose ILP opportunities. 5067 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5068 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5069 // We assume that the cost overhead is 1 and we use the cost model 5070 // to estimate the cost of the loop and interleave until the cost of the 5071 // loop overhead is about 5% of the cost of the loop. 5072 unsigned SmallIC = 5073 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5074 5075 // Interleave until store/load ports (estimated by max interleave count) are 5076 // saturated. 5077 unsigned NumStores = Legal->getNumStores(); 5078 unsigned NumLoads = Legal->getNumLoads(); 5079 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5080 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5081 5082 // If we have a scalar reduction (vector reductions are already dealt with 5083 // by this point), we can increase the critical path length if the loop 5084 // we're interleaving is inside another loop. Limit, by default to 2, so the 5085 // critical path only gets increased by one reduction operation. 5086 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5087 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5088 SmallIC = std::min(SmallIC, F); 5089 StoresIC = std::min(StoresIC, F); 5090 LoadsIC = std::min(LoadsIC, F); 5091 } 5092 5093 if (EnableLoadStoreRuntimeInterleave && 5094 std::max(StoresIC, LoadsIC) > SmallIC) { 5095 LLVM_DEBUG( 5096 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5097 return std::max(StoresIC, LoadsIC); 5098 } 5099 5100 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5101 return SmallIC; 5102 } 5103 5104 // Interleave if this is a large loop (small loops are already dealt with by 5105 // this point) that could benefit from interleaving. 5106 bool HasReductions = !Legal->getReductionVars()->empty(); 5107 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5108 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5109 return IC; 5110 } 5111 5112 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5113 return 1; 5114 } 5115 5116 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5117 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5118 // This function calculates the register usage by measuring the highest number 5119 // of values that are alive at a single location. Obviously, this is a very 5120 // rough estimation. We scan the loop in a topological order in order and 5121 // assign a number to each instruction. We use RPO to ensure that defs are 5122 // met before their users. We assume that each instruction that has in-loop 5123 // users starts an interval. We record every time that an in-loop value is 5124 // used, so we have a list of the first and last occurrences of each 5125 // instruction. Next, we transpose this data structure into a multi map that 5126 // holds the list of intervals that *end* at a specific location. This multi 5127 // map allows us to perform a linear search. We scan the instructions linearly 5128 // and record each time that a new interval starts, by placing it in a set. 5129 // If we find this value in the multi-map then we remove it from the set. 5130 // The max register usage is the maximum size of the set. 5131 // We also search for instructions that are defined outside the loop, but are 5132 // used inside the loop. We need this number separately from the max-interval 5133 // usage number because when we unroll, loop-invariant values do not take 5134 // more register. 5135 LoopBlocksDFS DFS(TheLoop); 5136 DFS.perform(LI); 5137 5138 RegisterUsage RU; 5139 5140 // Each 'key' in the map opens a new interval. The values 5141 // of the map are the index of the 'last seen' usage of the 5142 // instruction that is the key. 5143 using IntervalMap = DenseMap<Instruction *, unsigned>; 5144 5145 // Maps instruction to its index. 5146 SmallVector<Instruction *, 64> IdxToInstr; 5147 // Marks the end of each interval. 5148 IntervalMap EndPoint; 5149 // Saves the list of instruction indices that are used in the loop. 5150 SmallPtrSet<Instruction *, 8> Ends; 5151 // Saves the list of values that are used in the loop but are 5152 // defined outside the loop, such as arguments and constants. 5153 SmallPtrSet<Value *, 8> LoopInvariants; 5154 5155 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5156 for (Instruction &I : BB->instructionsWithoutDebug()) { 5157 IdxToInstr.push_back(&I); 5158 5159 // Save the end location of each USE. 5160 for (Value *U : I.operands()) { 5161 auto *Instr = dyn_cast<Instruction>(U); 5162 5163 // Ignore non-instruction values such as arguments, constants, etc. 5164 if (!Instr) 5165 continue; 5166 5167 // If this instruction is outside the loop then record it and continue. 5168 if (!TheLoop->contains(Instr)) { 5169 LoopInvariants.insert(Instr); 5170 continue; 5171 } 5172 5173 // Overwrite previous end points. 5174 EndPoint[Instr] = IdxToInstr.size(); 5175 Ends.insert(Instr); 5176 } 5177 } 5178 } 5179 5180 // Saves the list of intervals that end with the index in 'key'. 5181 using InstrList = SmallVector<Instruction *, 2>; 5182 DenseMap<unsigned, InstrList> TransposeEnds; 5183 5184 // Transpose the EndPoints to a list of values that end at each index. 5185 for (auto &Interval : EndPoint) 5186 TransposeEnds[Interval.second].push_back(Interval.first); 5187 5188 SmallPtrSet<Instruction *, 8> OpenIntervals; 5189 5190 // Get the size of the widest register. 5191 unsigned MaxSafeDepDist = -1U; 5192 if (Legal->getMaxSafeDepDistBytes() != -1U) 5193 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5194 unsigned WidestRegister = 5195 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5196 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5197 5198 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5199 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5200 5201 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5202 5203 // A lambda that gets the register usage for the given type and VF. 5204 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5205 if (Ty->isTokenTy()) 5206 return 0U; 5207 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5208 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5209 }; 5210 5211 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5212 Instruction *I = IdxToInstr[i]; 5213 5214 // Remove all of the instructions that end at this location. 5215 InstrList &List = TransposeEnds[i]; 5216 for (Instruction *ToRemove : List) 5217 OpenIntervals.erase(ToRemove); 5218 5219 // Ignore instructions that are never used within the loop. 5220 if (Ends.find(I) == Ends.end()) 5221 continue; 5222 5223 // Skip ignored values. 5224 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5225 continue; 5226 5227 // For each VF find the maximum usage of registers. 5228 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5229 if (VFs[j] == 1) { 5230 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5231 continue; 5232 } 5233 collectUniformsAndScalars(VFs[j]); 5234 // Count the number of live intervals. 5235 unsigned RegUsage = 0; 5236 for (auto Inst : OpenIntervals) { 5237 // Skip ignored values for VF > 1. 5238 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5239 isScalarAfterVectorization(Inst, VFs[j])) 5240 continue; 5241 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5242 } 5243 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5244 } 5245 5246 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5247 << OpenIntervals.size() << '\n'); 5248 5249 // Add the current instruction to the list of open intervals. 5250 OpenIntervals.insert(I); 5251 } 5252 5253 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5254 unsigned Invariant = 0; 5255 if (VFs[i] == 1) 5256 Invariant = LoopInvariants.size(); 5257 else { 5258 for (auto Inst : LoopInvariants) 5259 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5260 } 5261 5262 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5263 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5264 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5265 << '\n'); 5266 5267 RU.LoopInvariantRegs = Invariant; 5268 RU.MaxLocalUsers = MaxUsages[i]; 5269 RUs[i] = RU; 5270 } 5271 5272 return RUs; 5273 } 5274 5275 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5276 // TODO: Cost model for emulated masked load/store is completely 5277 // broken. This hack guides the cost model to use an artificially 5278 // high enough value to practically disable vectorization with such 5279 // operations, except where previously deployed legality hack allowed 5280 // using very low cost values. This is to avoid regressions coming simply 5281 // from moving "masked load/store" check from legality to cost model. 5282 // Masked Load/Gather emulation was previously never allowed. 5283 // Limited number of Masked Store/Scatter emulation was allowed. 5284 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5285 return isa<LoadInst>(I) || 5286 (isa<StoreInst>(I) && 5287 NumPredStores > NumberOfStoresToPredicate); 5288 } 5289 5290 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5291 // If we aren't vectorizing the loop, or if we've already collected the 5292 // instructions to scalarize, there's nothing to do. Collection may already 5293 // have occurred if we have a user-selected VF and are now computing the 5294 // expected cost for interleaving. 5295 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5296 return; 5297 5298 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5299 // not profitable to scalarize any instructions, the presence of VF in the 5300 // map will indicate that we've analyzed it already. 5301 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5302 5303 // Find all the instructions that are scalar with predication in the loop and 5304 // determine if it would be better to not if-convert the blocks they are in. 5305 // If so, we also record the instructions to scalarize. 5306 for (BasicBlock *BB : TheLoop->blocks()) { 5307 if (!blockNeedsPredication(BB)) 5308 continue; 5309 for (Instruction &I : *BB) 5310 if (isScalarWithPredication(&I)) { 5311 ScalarCostsTy ScalarCosts; 5312 // Do not apply discount logic if hacked cost is needed 5313 // for emulated masked memrefs. 5314 if (!useEmulatedMaskMemRefHack(&I) && 5315 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5316 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5317 // Remember that BB will remain after vectorization. 5318 PredicatedBBsAfterVectorization.insert(BB); 5319 } 5320 } 5321 } 5322 5323 int LoopVectorizationCostModel::computePredInstDiscount( 5324 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5325 unsigned VF) { 5326 assert(!isUniformAfterVectorization(PredInst, VF) && 5327 "Instruction marked uniform-after-vectorization will be predicated"); 5328 5329 // Initialize the discount to zero, meaning that the scalar version and the 5330 // vector version cost the same. 5331 int Discount = 0; 5332 5333 // Holds instructions to analyze. The instructions we visit are mapped in 5334 // ScalarCosts. Those instructions are the ones that would be scalarized if 5335 // we find that the scalar version costs less. 5336 SmallVector<Instruction *, 8> Worklist; 5337 5338 // Returns true if the given instruction can be scalarized. 5339 auto canBeScalarized = [&](Instruction *I) -> bool { 5340 // We only attempt to scalarize instructions forming a single-use chain 5341 // from the original predicated block that would otherwise be vectorized. 5342 // Although not strictly necessary, we give up on instructions we know will 5343 // already be scalar to avoid traversing chains that are unlikely to be 5344 // beneficial. 5345 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5346 isScalarAfterVectorization(I, VF)) 5347 return false; 5348 5349 // If the instruction is scalar with predication, it will be analyzed 5350 // separately. We ignore it within the context of PredInst. 5351 if (isScalarWithPredication(I)) 5352 return false; 5353 5354 // If any of the instruction's operands are uniform after vectorization, 5355 // the instruction cannot be scalarized. This prevents, for example, a 5356 // masked load from being scalarized. 5357 // 5358 // We assume we will only emit a value for lane zero of an instruction 5359 // marked uniform after vectorization, rather than VF identical values. 5360 // Thus, if we scalarize an instruction that uses a uniform, we would 5361 // create uses of values corresponding to the lanes we aren't emitting code 5362 // for. This behavior can be changed by allowing getScalarValue to clone 5363 // the lane zero values for uniforms rather than asserting. 5364 for (Use &U : I->operands()) 5365 if (auto *J = dyn_cast<Instruction>(U.get())) 5366 if (isUniformAfterVectorization(J, VF)) 5367 return false; 5368 5369 // Otherwise, we can scalarize the instruction. 5370 return true; 5371 }; 5372 5373 // Compute the expected cost discount from scalarizing the entire expression 5374 // feeding the predicated instruction. We currently only consider expressions 5375 // that are single-use instruction chains. 5376 Worklist.push_back(PredInst); 5377 while (!Worklist.empty()) { 5378 Instruction *I = Worklist.pop_back_val(); 5379 5380 // If we've already analyzed the instruction, there's nothing to do. 5381 if (ScalarCosts.find(I) != ScalarCosts.end()) 5382 continue; 5383 5384 // Compute the cost of the vector instruction. Note that this cost already 5385 // includes the scalarization overhead of the predicated instruction. 5386 unsigned VectorCost = getInstructionCost(I, VF).first; 5387 5388 // Compute the cost of the scalarized instruction. This cost is the cost of 5389 // the instruction as if it wasn't if-converted and instead remained in the 5390 // predicated block. We will scale this cost by block probability after 5391 // computing the scalarization overhead. 5392 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5393 5394 // Compute the scalarization overhead of needed insertelement instructions 5395 // and phi nodes. 5396 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5397 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5398 true, false); 5399 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5400 } 5401 5402 // Compute the scalarization overhead of needed extractelement 5403 // instructions. For each of the instruction's operands, if the operand can 5404 // be scalarized, add it to the worklist; otherwise, account for the 5405 // overhead. 5406 for (Use &U : I->operands()) 5407 if (auto *J = dyn_cast<Instruction>(U.get())) { 5408 assert(VectorType::isValidElementType(J->getType()) && 5409 "Instruction has non-scalar type"); 5410 if (canBeScalarized(J)) 5411 Worklist.push_back(J); 5412 else if (needsExtract(J, VF)) 5413 ScalarCost += TTI.getScalarizationOverhead( 5414 ToVectorTy(J->getType(),VF), false, true); 5415 } 5416 5417 // Scale the total scalar cost by block probability. 5418 ScalarCost /= getReciprocalPredBlockProb(); 5419 5420 // Compute the discount. A non-negative discount means the vector version 5421 // of the instruction costs more, and scalarizing would be beneficial. 5422 Discount += VectorCost - ScalarCost; 5423 ScalarCosts[I] = ScalarCost; 5424 } 5425 5426 return Discount; 5427 } 5428 5429 LoopVectorizationCostModel::VectorizationCostTy 5430 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5431 VectorizationCostTy Cost; 5432 5433 // For each block. 5434 for (BasicBlock *BB : TheLoop->blocks()) { 5435 VectorizationCostTy BlockCost; 5436 5437 // For each instruction in the old loop. 5438 for (Instruction &I : BB->instructionsWithoutDebug()) { 5439 // Skip ignored values. 5440 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5441 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5442 continue; 5443 5444 VectorizationCostTy C = getInstructionCost(&I, VF); 5445 5446 // Check if we should override the cost. 5447 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5448 C.first = ForceTargetInstructionCost; 5449 5450 BlockCost.first += C.first; 5451 BlockCost.second |= C.second; 5452 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5453 << " for VF " << VF << " For instruction: " << I 5454 << '\n'); 5455 } 5456 5457 // If we are vectorizing a predicated block, it will have been 5458 // if-converted. This means that the block's instructions (aside from 5459 // stores and instructions that may divide by zero) will now be 5460 // unconditionally executed. For the scalar case, we may not always execute 5461 // the predicated block. Thus, scale the block's cost by the probability of 5462 // executing it. 5463 if (VF == 1 && blockNeedsPredication(BB)) 5464 BlockCost.first /= getReciprocalPredBlockProb(); 5465 5466 Cost.first += BlockCost.first; 5467 Cost.second |= BlockCost.second; 5468 } 5469 5470 return Cost; 5471 } 5472 5473 /// Gets Address Access SCEV after verifying that the access pattern 5474 /// is loop invariant except the induction variable dependence. 5475 /// 5476 /// This SCEV can be sent to the Target in order to estimate the address 5477 /// calculation cost. 5478 static const SCEV *getAddressAccessSCEV( 5479 Value *Ptr, 5480 LoopVectorizationLegality *Legal, 5481 PredicatedScalarEvolution &PSE, 5482 const Loop *TheLoop) { 5483 5484 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5485 if (!Gep) 5486 return nullptr; 5487 5488 // We are looking for a gep with all loop invariant indices except for one 5489 // which should be an induction variable. 5490 auto SE = PSE.getSE(); 5491 unsigned NumOperands = Gep->getNumOperands(); 5492 for (unsigned i = 1; i < NumOperands; ++i) { 5493 Value *Opd = Gep->getOperand(i); 5494 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5495 !Legal->isInductionVariable(Opd)) 5496 return nullptr; 5497 } 5498 5499 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5500 return PSE.getSCEV(Ptr); 5501 } 5502 5503 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5504 return Legal->hasStride(I->getOperand(0)) || 5505 Legal->hasStride(I->getOperand(1)); 5506 } 5507 5508 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5509 unsigned VF) { 5510 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5511 Type *ValTy = getMemInstValueType(I); 5512 auto SE = PSE.getSE(); 5513 5514 unsigned Alignment = getLoadStoreAlignment(I); 5515 unsigned AS = getLoadStoreAddressSpace(I); 5516 Value *Ptr = getLoadStorePointerOperand(I); 5517 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5518 5519 // Figure out whether the access is strided and get the stride value 5520 // if it's known in compile time 5521 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5522 5523 // Get the cost of the scalar memory instruction and address computation. 5524 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5525 5526 // Don't pass *I here, since it is scalar but will actually be part of a 5527 // vectorized loop where the user of it is a vectorized instruction. 5528 Cost += VF * 5529 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5530 AS); 5531 5532 // Get the overhead of the extractelement and insertelement instructions 5533 // we might create due to scalarization. 5534 Cost += getScalarizationOverhead(I, VF); 5535 5536 // If we have a predicated store, it may not be executed for each vector 5537 // lane. Scale the cost by the probability of executing the predicated 5538 // block. 5539 if (isPredicatedInst(I)) { 5540 Cost /= getReciprocalPredBlockProb(); 5541 5542 if (useEmulatedMaskMemRefHack(I)) 5543 // Artificially setting to a high enough value to practically disable 5544 // vectorization with such operations. 5545 Cost = 3000000; 5546 } 5547 5548 return Cost; 5549 } 5550 5551 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5552 unsigned VF) { 5553 Type *ValTy = getMemInstValueType(I); 5554 Type *VectorTy = ToVectorTy(ValTy, VF); 5555 unsigned Alignment = getLoadStoreAlignment(I); 5556 Value *Ptr = getLoadStorePointerOperand(I); 5557 unsigned AS = getLoadStoreAddressSpace(I); 5558 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5559 5560 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5561 "Stride should be 1 or -1 for consecutive memory access"); 5562 unsigned Cost = 0; 5563 if (Legal->isMaskRequired(I)) 5564 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5565 else 5566 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5567 5568 bool Reverse = ConsecutiveStride < 0; 5569 if (Reverse) 5570 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5571 return Cost; 5572 } 5573 5574 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5575 unsigned VF) { 5576 Type *ValTy = getMemInstValueType(I); 5577 Type *VectorTy = ToVectorTy(ValTy, VF); 5578 unsigned Alignment = getLoadStoreAlignment(I); 5579 unsigned AS = getLoadStoreAddressSpace(I); 5580 if (isa<LoadInst>(I)) { 5581 return TTI.getAddressComputationCost(ValTy) + 5582 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5583 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5584 } 5585 StoreInst *SI = cast<StoreInst>(I); 5586 5587 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5588 return TTI.getAddressComputationCost(ValTy) + 5589 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5590 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5591 Instruction::ExtractElement, 5592 VectorTy, VF - 1)); 5593 } 5594 5595 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5596 unsigned VF) { 5597 Type *ValTy = getMemInstValueType(I); 5598 Type *VectorTy = ToVectorTy(ValTy, VF); 5599 unsigned Alignment = getLoadStoreAlignment(I); 5600 Value *Ptr = getLoadStorePointerOperand(I); 5601 5602 return TTI.getAddressComputationCost(VectorTy) + 5603 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5604 Legal->isMaskRequired(I), Alignment); 5605 } 5606 5607 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5608 unsigned VF) { 5609 Type *ValTy = getMemInstValueType(I); 5610 Type *VectorTy = ToVectorTy(ValTy, VF); 5611 unsigned AS = getLoadStoreAddressSpace(I); 5612 5613 auto Group = getInterleavedAccessGroup(I); 5614 assert(Group && "Fail to get an interleaved access group."); 5615 5616 unsigned InterleaveFactor = Group->getFactor(); 5617 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5618 5619 // Holds the indices of existing members in an interleaved load group. 5620 // An interleaved store group doesn't need this as it doesn't allow gaps. 5621 SmallVector<unsigned, 4> Indices; 5622 if (isa<LoadInst>(I)) { 5623 for (unsigned i = 0; i < InterleaveFactor; i++) 5624 if (Group->getMember(i)) 5625 Indices.push_back(i); 5626 } 5627 5628 // Calculate the cost of the whole interleaved group. 5629 bool UseMaskForGaps = 5630 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5631 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5632 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5633 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5634 5635 if (Group->isReverse()) { 5636 // TODO: Add support for reversed masked interleaved access. 5637 assert(!Legal->isMaskRequired(I) && 5638 "Reverse masked interleaved access not supported."); 5639 Cost += Group->getNumMembers() * 5640 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5641 } 5642 return Cost; 5643 } 5644 5645 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5646 unsigned VF) { 5647 // Calculate scalar cost only. Vectorization cost should be ready at this 5648 // moment. 5649 if (VF == 1) { 5650 Type *ValTy = getMemInstValueType(I); 5651 unsigned Alignment = getLoadStoreAlignment(I); 5652 unsigned AS = getLoadStoreAddressSpace(I); 5653 5654 return TTI.getAddressComputationCost(ValTy) + 5655 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5656 } 5657 return getWideningCost(I, VF); 5658 } 5659 5660 LoopVectorizationCostModel::VectorizationCostTy 5661 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5662 // If we know that this instruction will remain uniform, check the cost of 5663 // the scalar version. 5664 if (isUniformAfterVectorization(I, VF)) 5665 VF = 1; 5666 5667 if (VF > 1 && isProfitableToScalarize(I, VF)) 5668 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5669 5670 // Forced scalars do not have any scalarization overhead. 5671 auto ForcedScalar = ForcedScalars.find(VF); 5672 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5673 auto InstSet = ForcedScalar->second; 5674 if (InstSet.find(I) != InstSet.end()) 5675 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5676 } 5677 5678 Type *VectorTy; 5679 unsigned C = getInstructionCost(I, VF, VectorTy); 5680 5681 bool TypeNotScalarized = 5682 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5683 return VectorizationCostTy(C, TypeNotScalarized); 5684 } 5685 5686 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5687 unsigned VF) { 5688 5689 if (VF == 1) 5690 return 0; 5691 5692 unsigned Cost = 0; 5693 Type *RetTy = ToVectorTy(I->getType(), VF); 5694 if (!RetTy->isVoidTy() && 5695 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5696 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5697 5698 // Some targets keep addresses scalar. 5699 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5700 return Cost; 5701 5702 // Some targets support efficient element stores. 5703 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5704 return Cost; 5705 5706 // Collect operands to consider. 5707 CallInst *CI = dyn_cast<CallInst>(I); 5708 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 5709 5710 // Skip operands that do not require extraction/scalarization and do not incur 5711 // any overhead. 5712 return Cost + TTI.getOperandsScalarizationOverhead( 5713 filterExtractingOperands(Ops, VF), VF); 5714 } 5715 5716 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5717 if (VF == 1) 5718 return; 5719 NumPredStores = 0; 5720 for (BasicBlock *BB : TheLoop->blocks()) { 5721 // For each instruction in the old loop. 5722 for (Instruction &I : *BB) { 5723 Value *Ptr = getLoadStorePointerOperand(&I); 5724 if (!Ptr) 5725 continue; 5726 5727 // TODO: We should generate better code and update the cost model for 5728 // predicated uniform stores. Today they are treated as any other 5729 // predicated store (see added test cases in 5730 // invariant-store-vectorization.ll). 5731 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5732 NumPredStores++; 5733 5734 if (Legal->isUniform(Ptr) && 5735 // Conditional loads and stores should be scalarized and predicated. 5736 // isScalarWithPredication cannot be used here since masked 5737 // gather/scatters are not considered scalar with predication. 5738 !Legal->blockNeedsPredication(I.getParent())) { 5739 // TODO: Avoid replicating loads and stores instead of 5740 // relying on instcombine to remove them. 5741 // Load: Scalar load + broadcast 5742 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5743 unsigned Cost = getUniformMemOpCost(&I, VF); 5744 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5745 continue; 5746 } 5747 5748 // We assume that widening is the best solution when possible. 5749 if (memoryInstructionCanBeWidened(&I, VF)) { 5750 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5751 int ConsecutiveStride = 5752 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5753 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5754 "Expected consecutive stride."); 5755 InstWidening Decision = 5756 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5757 setWideningDecision(&I, VF, Decision, Cost); 5758 continue; 5759 } 5760 5761 // Choose between Interleaving, Gather/Scatter or Scalarization. 5762 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5763 unsigned NumAccesses = 1; 5764 if (isAccessInterleaved(&I)) { 5765 auto Group = getInterleavedAccessGroup(&I); 5766 assert(Group && "Fail to get an interleaved access group."); 5767 5768 // Make one decision for the whole group. 5769 if (getWideningDecision(&I, VF) != CM_Unknown) 5770 continue; 5771 5772 NumAccesses = Group->getNumMembers(); 5773 if (interleavedAccessCanBeWidened(&I, VF)) 5774 InterleaveCost = getInterleaveGroupCost(&I, VF); 5775 } 5776 5777 unsigned GatherScatterCost = 5778 isLegalGatherOrScatter(&I) 5779 ? getGatherScatterCost(&I, VF) * NumAccesses 5780 : std::numeric_limits<unsigned>::max(); 5781 5782 unsigned ScalarizationCost = 5783 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5784 5785 // Choose better solution for the current VF, 5786 // write down this decision and use it during vectorization. 5787 unsigned Cost; 5788 InstWidening Decision; 5789 if (InterleaveCost <= GatherScatterCost && 5790 InterleaveCost < ScalarizationCost) { 5791 Decision = CM_Interleave; 5792 Cost = InterleaveCost; 5793 } else if (GatherScatterCost < ScalarizationCost) { 5794 Decision = CM_GatherScatter; 5795 Cost = GatherScatterCost; 5796 } else { 5797 Decision = CM_Scalarize; 5798 Cost = ScalarizationCost; 5799 } 5800 // If the instructions belongs to an interleave group, the whole group 5801 // receives the same decision. The whole group receives the cost, but 5802 // the cost will actually be assigned to one instruction. 5803 if (auto Group = getInterleavedAccessGroup(&I)) 5804 setWideningDecision(Group, VF, Decision, Cost); 5805 else 5806 setWideningDecision(&I, VF, Decision, Cost); 5807 } 5808 } 5809 5810 // Make sure that any load of address and any other address computation 5811 // remains scalar unless there is gather/scatter support. This avoids 5812 // inevitable extracts into address registers, and also has the benefit of 5813 // activating LSR more, since that pass can't optimize vectorized 5814 // addresses. 5815 if (TTI.prefersVectorizedAddressing()) 5816 return; 5817 5818 // Start with all scalar pointer uses. 5819 SmallPtrSet<Instruction *, 8> AddrDefs; 5820 for (BasicBlock *BB : TheLoop->blocks()) 5821 for (Instruction &I : *BB) { 5822 Instruction *PtrDef = 5823 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5824 if (PtrDef && TheLoop->contains(PtrDef) && 5825 getWideningDecision(&I, VF) != CM_GatherScatter) 5826 AddrDefs.insert(PtrDef); 5827 } 5828 5829 // Add all instructions used to generate the addresses. 5830 SmallVector<Instruction *, 4> Worklist; 5831 for (auto *I : AddrDefs) 5832 Worklist.push_back(I); 5833 while (!Worklist.empty()) { 5834 Instruction *I = Worklist.pop_back_val(); 5835 for (auto &Op : I->operands()) 5836 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5837 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5838 AddrDefs.insert(InstOp).second) 5839 Worklist.push_back(InstOp); 5840 } 5841 5842 for (auto *I : AddrDefs) { 5843 if (isa<LoadInst>(I)) { 5844 // Setting the desired widening decision should ideally be handled in 5845 // by cost functions, but since this involves the task of finding out 5846 // if the loaded register is involved in an address computation, it is 5847 // instead changed here when we know this is the case. 5848 InstWidening Decision = getWideningDecision(I, VF); 5849 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5850 // Scalarize a widened load of address. 5851 setWideningDecision(I, VF, CM_Scalarize, 5852 (VF * getMemoryInstructionCost(I, 1))); 5853 else if (auto Group = getInterleavedAccessGroup(I)) { 5854 // Scalarize an interleave group of address loads. 5855 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5856 if (Instruction *Member = Group->getMember(I)) 5857 setWideningDecision(Member, VF, CM_Scalarize, 5858 (VF * getMemoryInstructionCost(Member, 1))); 5859 } 5860 } 5861 } else 5862 // Make sure I gets scalarized and a cost estimate without 5863 // scalarization overhead. 5864 ForcedScalars[VF].insert(I); 5865 } 5866 } 5867 5868 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5869 unsigned VF, 5870 Type *&VectorTy) { 5871 Type *RetTy = I->getType(); 5872 if (canTruncateToMinimalBitwidth(I, VF)) 5873 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5874 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5875 auto SE = PSE.getSE(); 5876 5877 // TODO: We need to estimate the cost of intrinsic calls. 5878 switch (I->getOpcode()) { 5879 case Instruction::GetElementPtr: 5880 // We mark this instruction as zero-cost because the cost of GEPs in 5881 // vectorized code depends on whether the corresponding memory instruction 5882 // is scalarized or not. Therefore, we handle GEPs with the memory 5883 // instruction cost. 5884 return 0; 5885 case Instruction::Br: { 5886 // In cases of scalarized and predicated instructions, there will be VF 5887 // predicated blocks in the vectorized loop. Each branch around these 5888 // blocks requires also an extract of its vector compare i1 element. 5889 bool ScalarPredicatedBB = false; 5890 BranchInst *BI = cast<BranchInst>(I); 5891 if (VF > 1 && BI->isConditional() && 5892 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5893 PredicatedBBsAfterVectorization.end() || 5894 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5895 PredicatedBBsAfterVectorization.end())) 5896 ScalarPredicatedBB = true; 5897 5898 if (ScalarPredicatedBB) { 5899 // Return cost for branches around scalarized and predicated blocks. 5900 Type *Vec_i1Ty = 5901 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5902 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5903 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5904 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5905 // The back-edge branch will remain, as will all scalar branches. 5906 return TTI.getCFInstrCost(Instruction::Br); 5907 else 5908 // This branch will be eliminated by if-conversion. 5909 return 0; 5910 // Note: We currently assume zero cost for an unconditional branch inside 5911 // a predicated block since it will become a fall-through, although we 5912 // may decide in the future to call TTI for all branches. 5913 } 5914 case Instruction::PHI: { 5915 auto *Phi = cast<PHINode>(I); 5916 5917 // First-order recurrences are replaced by vector shuffles inside the loop. 5918 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5919 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5920 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5921 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5922 5923 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5924 // converted into select instructions. We require N - 1 selects per phi 5925 // node, where N is the number of incoming values. 5926 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5927 return (Phi->getNumIncomingValues() - 1) * 5928 TTI.getCmpSelInstrCost( 5929 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5930 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5931 5932 return TTI.getCFInstrCost(Instruction::PHI); 5933 } 5934 case Instruction::UDiv: 5935 case Instruction::SDiv: 5936 case Instruction::URem: 5937 case Instruction::SRem: 5938 // If we have a predicated instruction, it may not be executed for each 5939 // vector lane. Get the scalarization cost and scale this amount by the 5940 // probability of executing the predicated block. If the instruction is not 5941 // predicated, we fall through to the next case. 5942 if (VF > 1 && isScalarWithPredication(I)) { 5943 unsigned Cost = 0; 5944 5945 // These instructions have a non-void type, so account for the phi nodes 5946 // that we will create. This cost is likely to be zero. The phi node 5947 // cost, if any, should be scaled by the block probability because it 5948 // models a copy at the end of each predicated block. 5949 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5950 5951 // The cost of the non-predicated instruction. 5952 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5953 5954 // The cost of insertelement and extractelement instructions needed for 5955 // scalarization. 5956 Cost += getScalarizationOverhead(I, VF); 5957 5958 // Scale the cost by the probability of executing the predicated blocks. 5959 // This assumes the predicated block for each vector lane is equally 5960 // likely. 5961 return Cost / getReciprocalPredBlockProb(); 5962 } 5963 LLVM_FALLTHROUGH; 5964 case Instruction::Add: 5965 case Instruction::FAdd: 5966 case Instruction::Sub: 5967 case Instruction::FSub: 5968 case Instruction::Mul: 5969 case Instruction::FMul: 5970 case Instruction::FDiv: 5971 case Instruction::FRem: 5972 case Instruction::Shl: 5973 case Instruction::LShr: 5974 case Instruction::AShr: 5975 case Instruction::And: 5976 case Instruction::Or: 5977 case Instruction::Xor: { 5978 // Since we will replace the stride by 1 the multiplication should go away. 5979 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5980 return 0; 5981 // Certain instructions can be cheaper to vectorize if they have a constant 5982 // second vector operand. One example of this are shifts on x86. 5983 Value *Op2 = I->getOperand(1); 5984 TargetTransformInfo::OperandValueProperties Op2VP; 5985 TargetTransformInfo::OperandValueKind Op2VK = 5986 TTI.getOperandInfo(Op2, Op2VP); 5987 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5988 Op2VK = TargetTransformInfo::OK_UniformValue; 5989 5990 SmallVector<const Value *, 4> Operands(I->operand_values()); 5991 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5992 return N * TTI.getArithmeticInstrCost( 5993 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5994 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5995 } 5996 case Instruction::FNeg: { 5997 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5998 return N * TTI.getArithmeticInstrCost( 5999 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6000 TargetTransformInfo::OK_AnyValue, 6001 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6002 I->getOperand(0)); 6003 } 6004 case Instruction::Select: { 6005 SelectInst *SI = cast<SelectInst>(I); 6006 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6007 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6008 Type *CondTy = SI->getCondition()->getType(); 6009 if (!ScalarCond) 6010 CondTy = VectorType::get(CondTy, VF); 6011 6012 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6013 } 6014 case Instruction::ICmp: 6015 case Instruction::FCmp: { 6016 Type *ValTy = I->getOperand(0)->getType(); 6017 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6018 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6019 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6020 VectorTy = ToVectorTy(ValTy, VF); 6021 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6022 } 6023 case Instruction::Store: 6024 case Instruction::Load: { 6025 unsigned Width = VF; 6026 if (Width > 1) { 6027 InstWidening Decision = getWideningDecision(I, Width); 6028 assert(Decision != CM_Unknown && 6029 "CM decision should be taken at this point"); 6030 if (Decision == CM_Scalarize) 6031 Width = 1; 6032 } 6033 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6034 return getMemoryInstructionCost(I, VF); 6035 } 6036 case Instruction::ZExt: 6037 case Instruction::SExt: 6038 case Instruction::FPToUI: 6039 case Instruction::FPToSI: 6040 case Instruction::FPExt: 6041 case Instruction::PtrToInt: 6042 case Instruction::IntToPtr: 6043 case Instruction::SIToFP: 6044 case Instruction::UIToFP: 6045 case Instruction::Trunc: 6046 case Instruction::FPTrunc: 6047 case Instruction::BitCast: { 6048 // We optimize the truncation of induction variables having constant 6049 // integer steps. The cost of these truncations is the same as the scalar 6050 // operation. 6051 if (isOptimizableIVTruncate(I, VF)) { 6052 auto *Trunc = cast<TruncInst>(I); 6053 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6054 Trunc->getSrcTy(), Trunc); 6055 } 6056 6057 Type *SrcScalarTy = I->getOperand(0)->getType(); 6058 Type *SrcVecTy = 6059 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6060 if (canTruncateToMinimalBitwidth(I, VF)) { 6061 // This cast is going to be shrunk. This may remove the cast or it might 6062 // turn it into slightly different cast. For example, if MinBW == 16, 6063 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6064 // 6065 // Calculate the modified src and dest types. 6066 Type *MinVecTy = VectorTy; 6067 if (I->getOpcode() == Instruction::Trunc) { 6068 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6069 VectorTy = 6070 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6071 } else if (I->getOpcode() == Instruction::ZExt || 6072 I->getOpcode() == Instruction::SExt) { 6073 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6074 VectorTy = 6075 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6076 } 6077 } 6078 6079 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6080 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6081 } 6082 case Instruction::Call: { 6083 bool NeedToScalarize; 6084 CallInst *CI = cast<CallInst>(I); 6085 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6086 if (getVectorIntrinsicIDForCall(CI, TLI)) 6087 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6088 return CallCost; 6089 } 6090 default: 6091 // The cost of executing VF copies of the scalar instruction. This opcode 6092 // is unknown. Assume that it is the same as 'mul'. 6093 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6094 getScalarizationOverhead(I, VF); 6095 } // end of switch. 6096 } 6097 6098 char LoopVectorize::ID = 0; 6099 6100 static const char lv_name[] = "Loop Vectorization"; 6101 6102 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6103 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6104 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6105 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6106 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6107 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6108 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6109 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6110 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6111 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6112 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6113 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6114 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6115 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6116 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6117 6118 namespace llvm { 6119 6120 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6121 6122 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6123 bool VectorizeOnlyWhenForced) { 6124 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6125 } 6126 6127 } // end namespace llvm 6128 6129 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6130 // Check if the pointer operand of a load or store instruction is 6131 // consecutive. 6132 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6133 return Legal->isConsecutivePtr(Ptr); 6134 return false; 6135 } 6136 6137 void LoopVectorizationCostModel::collectValuesToIgnore() { 6138 // Ignore ephemeral values. 6139 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6140 6141 // Ignore type-promoting instructions we identified during reduction 6142 // detection. 6143 for (auto &Reduction : *Legal->getReductionVars()) { 6144 RecurrenceDescriptor &RedDes = Reduction.second; 6145 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6146 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6147 } 6148 // Ignore type-casting instructions we identified during induction 6149 // detection. 6150 for (auto &Induction : *Legal->getInductionVars()) { 6151 InductionDescriptor &IndDes = Induction.second; 6152 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6153 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6154 } 6155 } 6156 6157 // TODO: we could return a pair of values that specify the max VF and 6158 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6159 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6160 // doesn't have a cost model that can choose which plan to execute if 6161 // more than one is generated. 6162 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6163 LoopVectorizationCostModel &CM) { 6164 unsigned WidestType; 6165 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6166 return WidestVectorRegBits / WidestType; 6167 } 6168 6169 VectorizationFactor 6170 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6171 unsigned UserVF) { 6172 unsigned VF = UserVF; 6173 // Outer loop handling: They may require CFG and instruction level 6174 // transformations before even evaluating whether vectorization is profitable. 6175 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6176 // the vectorization pipeline. 6177 if (!OrigLoop->empty()) { 6178 // If the user doesn't provide a vectorization factor, determine a 6179 // reasonable one. 6180 if (!UserVF) { 6181 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6182 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6183 6184 // Make sure we have a VF > 1 for stress testing. 6185 if (VPlanBuildStressTest && VF < 2) { 6186 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6187 << "overriding computed VF.\n"); 6188 VF = 4; 6189 } 6190 } 6191 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6192 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6193 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6194 << " to build VPlans.\n"); 6195 buildVPlans(VF, VF); 6196 6197 // For VPlan build stress testing, we bail out after VPlan construction. 6198 if (VPlanBuildStressTest) 6199 return VectorizationFactor::Disabled(); 6200 6201 return {VF, 0}; 6202 } 6203 6204 LLVM_DEBUG( 6205 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6206 "VPlan-native path.\n"); 6207 return VectorizationFactor::Disabled(); 6208 } 6209 6210 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, 6211 unsigned UserVF) { 6212 assert(OrigLoop->empty() && "Inner loop expected."); 6213 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6214 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6215 return None; 6216 6217 // Invalidate interleave groups if all blocks of loop will be predicated. 6218 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6219 !useMaskedInterleavedAccesses(*TTI)) { 6220 LLVM_DEBUG( 6221 dbgs() 6222 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6223 "which requires masked-interleaved support.\n"); 6224 CM.InterleaveInfo.reset(); 6225 } 6226 6227 if (UserVF) { 6228 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6229 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6230 // Collect the instructions (and their associated costs) that will be more 6231 // profitable to scalarize. 6232 CM.selectUserVectorizationFactor(UserVF); 6233 buildVPlansWithVPRecipes(UserVF, UserVF); 6234 LLVM_DEBUG(printPlans(dbgs())); 6235 return {{UserVF, 0}}; 6236 } 6237 6238 unsigned MaxVF = MaybeMaxVF.getValue(); 6239 assert(MaxVF != 0 && "MaxVF is zero."); 6240 6241 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6242 // Collect Uniform and Scalar instructions after vectorization with VF. 6243 CM.collectUniformsAndScalars(VF); 6244 6245 // Collect the instructions (and their associated costs) that will be more 6246 // profitable to scalarize. 6247 if (VF > 1) 6248 CM.collectInstsToScalarize(VF); 6249 } 6250 6251 buildVPlansWithVPRecipes(1, MaxVF); 6252 LLVM_DEBUG(printPlans(dbgs())); 6253 if (MaxVF == 1) 6254 return VectorizationFactor::Disabled(); 6255 6256 // Select the optimal vectorization factor. 6257 return CM.selectVectorizationFactor(MaxVF); 6258 } 6259 6260 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6261 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6262 << '\n'); 6263 BestVF = VF; 6264 BestUF = UF; 6265 6266 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6267 return !Plan->hasVF(VF); 6268 }); 6269 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6270 } 6271 6272 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6273 DominatorTree *DT) { 6274 // Perform the actual loop transformation. 6275 6276 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6277 VPCallbackILV CallbackILV(ILV); 6278 6279 VPTransformState State{BestVF, BestUF, LI, 6280 DT, ILV.Builder, ILV.VectorLoopValueMap, 6281 &ILV, CallbackILV}; 6282 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6283 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6284 6285 //===------------------------------------------------===// 6286 // 6287 // Notice: any optimization or new instruction that go 6288 // into the code below should also be implemented in 6289 // the cost-model. 6290 // 6291 //===------------------------------------------------===// 6292 6293 // 2. Copy and widen instructions from the old loop into the new loop. 6294 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6295 VPlans.front()->execute(&State); 6296 6297 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6298 // predication, updating analyses. 6299 ILV.fixVectorizedLoop(); 6300 } 6301 6302 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6303 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6304 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6305 6306 // We create new control-flow for the vectorized loop, so the original 6307 // condition will be dead after vectorization if it's only used by the 6308 // branch. 6309 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6310 if (Cmp && Cmp->hasOneUse()) 6311 DeadInstructions.insert(Cmp); 6312 6313 // We create new "steps" for induction variable updates to which the original 6314 // induction variables map. An original update instruction will be dead if 6315 // all its users except the induction variable are dead. 6316 for (auto &Induction : *Legal->getInductionVars()) { 6317 PHINode *Ind = Induction.first; 6318 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6319 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6320 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6321 DeadInstructions.end(); 6322 })) 6323 DeadInstructions.insert(IndUpdate); 6324 6325 // We record as "Dead" also the type-casting instructions we had identified 6326 // during induction analysis. We don't need any handling for them in the 6327 // vectorized loop because we have proven that, under a proper runtime 6328 // test guarding the vectorized loop, the value of the phi, and the casted 6329 // value of the phi, are the same. The last instruction in this casting chain 6330 // will get its scalar/vector/widened def from the scalar/vector/widened def 6331 // of the respective phi node. Any other casts in the induction def-use chain 6332 // have no other uses outside the phi update chain, and will be ignored. 6333 InductionDescriptor &IndDes = Induction.second; 6334 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6335 DeadInstructions.insert(Casts.begin(), Casts.end()); 6336 } 6337 } 6338 6339 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6340 6341 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6342 6343 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6344 Instruction::BinaryOps BinOp) { 6345 // When unrolling and the VF is 1, we only need to add a simple scalar. 6346 Type *Ty = Val->getType(); 6347 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6348 6349 if (Ty->isFloatingPointTy()) { 6350 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6351 6352 // Floating point operations had to be 'fast' to enable the unrolling. 6353 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6354 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6355 } 6356 Constant *C = ConstantInt::get(Ty, StartIdx); 6357 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6358 } 6359 6360 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6361 SmallVector<Metadata *, 4> MDs; 6362 // Reserve first location for self reference to the LoopID metadata node. 6363 MDs.push_back(nullptr); 6364 bool IsUnrollMetadata = false; 6365 MDNode *LoopID = L->getLoopID(); 6366 if (LoopID) { 6367 // First find existing loop unrolling disable metadata. 6368 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6369 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6370 if (MD) { 6371 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6372 IsUnrollMetadata = 6373 S && S->getString().startswith("llvm.loop.unroll.disable"); 6374 } 6375 MDs.push_back(LoopID->getOperand(i)); 6376 } 6377 } 6378 6379 if (!IsUnrollMetadata) { 6380 // Add runtime unroll disable metadata. 6381 LLVMContext &Context = L->getHeader()->getContext(); 6382 SmallVector<Metadata *, 1> DisableOperands; 6383 DisableOperands.push_back( 6384 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6385 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6386 MDs.push_back(DisableNode); 6387 MDNode *NewLoopID = MDNode::get(Context, MDs); 6388 // Set operand 0 to refer to the loop id itself. 6389 NewLoopID->replaceOperandWith(0, NewLoopID); 6390 L->setLoopID(NewLoopID); 6391 } 6392 } 6393 6394 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6395 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6396 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6397 bool PredicateAtRangeStart = Predicate(Range.Start); 6398 6399 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6400 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6401 Range.End = TmpVF; 6402 break; 6403 } 6404 6405 return PredicateAtRangeStart; 6406 } 6407 6408 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6409 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6410 /// of VF's starting at a given VF and extending it as much as possible. Each 6411 /// vectorization decision can potentially shorten this sub-range during 6412 /// buildVPlan(). 6413 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6414 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6415 VFRange SubRange = {VF, MaxVF + 1}; 6416 VPlans.push_back(buildVPlan(SubRange)); 6417 VF = SubRange.End; 6418 } 6419 } 6420 6421 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6422 VPlanPtr &Plan) { 6423 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6424 6425 // Look for cached value. 6426 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6427 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6428 if (ECEntryIt != EdgeMaskCache.end()) 6429 return ECEntryIt->second; 6430 6431 VPValue *SrcMask = createBlockInMask(Src, Plan); 6432 6433 // The terminator has to be a branch inst! 6434 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6435 assert(BI && "Unexpected terminator found"); 6436 6437 if (!BI->isConditional()) 6438 return EdgeMaskCache[Edge] = SrcMask; 6439 6440 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6441 assert(EdgeMask && "No Edge Mask found for condition"); 6442 6443 if (BI->getSuccessor(0) != Dst) 6444 EdgeMask = Builder.createNot(EdgeMask); 6445 6446 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6447 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6448 6449 return EdgeMaskCache[Edge] = EdgeMask; 6450 } 6451 6452 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6453 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6454 6455 // Look for cached value. 6456 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6457 if (BCEntryIt != BlockMaskCache.end()) 6458 return BCEntryIt->second; 6459 6460 // All-one mask is modelled as no-mask following the convention for masked 6461 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6462 VPValue *BlockMask = nullptr; 6463 6464 if (OrigLoop->getHeader() == BB) { 6465 if (!CM.blockNeedsPredication(BB)) 6466 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6467 6468 // Introduce the early-exit compare IV <= BTC to form header block mask. 6469 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6470 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6471 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6472 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6473 return BlockMaskCache[BB] = BlockMask; 6474 } 6475 6476 // This is the block mask. We OR all incoming edges. 6477 for (auto *Predecessor : predecessors(BB)) { 6478 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6479 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6480 return BlockMaskCache[BB] = EdgeMask; 6481 6482 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6483 BlockMask = EdgeMask; 6484 continue; 6485 } 6486 6487 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6488 } 6489 6490 return BlockMaskCache[BB] = BlockMask; 6491 } 6492 6493 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6494 VFRange &Range, 6495 VPlanPtr &Plan) { 6496 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6497 if (!IG) 6498 return nullptr; 6499 6500 // Now check if IG is relevant for VF's in the given range. 6501 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6502 return [=](unsigned VF) -> bool { 6503 return (VF >= 2 && // Query is illegal for VF == 1 6504 CM.getWideningDecision(I, VF) == 6505 LoopVectorizationCostModel::CM_Interleave); 6506 }; 6507 }; 6508 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6509 return nullptr; 6510 6511 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6512 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6513 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6514 assert(I == IG->getInsertPos() && 6515 "Generating a recipe for an adjunct member of an interleave group"); 6516 6517 VPValue *Mask = nullptr; 6518 if (Legal->isMaskRequired(I)) 6519 Mask = createBlockInMask(I->getParent(), Plan); 6520 6521 return new VPInterleaveRecipe(IG, Mask); 6522 } 6523 6524 VPWidenMemoryInstructionRecipe * 6525 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6526 VPlanPtr &Plan) { 6527 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6528 return nullptr; 6529 6530 auto willWiden = [&](unsigned VF) -> bool { 6531 if (VF == 1) 6532 return false; 6533 if (CM.isScalarAfterVectorization(I, VF) || 6534 CM.isProfitableToScalarize(I, VF)) 6535 return false; 6536 LoopVectorizationCostModel::InstWidening Decision = 6537 CM.getWideningDecision(I, VF); 6538 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6539 "CM decision should be taken at this point."); 6540 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6541 "Interleave memory opportunity should be caught earlier."); 6542 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6543 }; 6544 6545 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6546 return nullptr; 6547 6548 VPValue *Mask = nullptr; 6549 if (Legal->isMaskRequired(I)) 6550 Mask = createBlockInMask(I->getParent(), Plan); 6551 6552 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6553 } 6554 6555 VPWidenIntOrFpInductionRecipe * 6556 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6557 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6558 // Check if this is an integer or fp induction. If so, build the recipe that 6559 // produces its scalar and vector values. 6560 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6561 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6562 II.getKind() == InductionDescriptor::IK_FpInduction) 6563 return new VPWidenIntOrFpInductionRecipe(Phi); 6564 6565 return nullptr; 6566 } 6567 6568 // Optimize the special case where the source is a constant integer 6569 // induction variable. Notice that we can only optimize the 'trunc' case 6570 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6571 // (c) other casts depend on pointer size. 6572 6573 // Determine whether \p K is a truncation based on an induction variable that 6574 // can be optimized. 6575 auto isOptimizableIVTruncate = 6576 [&](Instruction *K) -> std::function<bool(unsigned)> { 6577 return 6578 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6579 }; 6580 6581 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6582 isOptimizableIVTruncate(I), Range)) 6583 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6584 cast<TruncInst>(I)); 6585 return nullptr; 6586 } 6587 6588 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6589 PHINode *Phi = dyn_cast<PHINode>(I); 6590 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6591 return nullptr; 6592 6593 // We know that all PHIs in non-header blocks are converted into selects, so 6594 // we don't have to worry about the insertion order and we can just use the 6595 // builder. At this point we generate the predication tree. There may be 6596 // duplications since this is a simple recursive scan, but future 6597 // optimizations will clean it up. 6598 6599 SmallVector<VPValue *, 2> Masks; 6600 unsigned NumIncoming = Phi->getNumIncomingValues(); 6601 for (unsigned In = 0; In < NumIncoming; In++) { 6602 VPValue *EdgeMask = 6603 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6604 assert((EdgeMask || NumIncoming == 1) && 6605 "Multiple predecessors with one having a full mask"); 6606 if (EdgeMask) 6607 Masks.push_back(EdgeMask); 6608 } 6609 return new VPBlendRecipe(Phi, Masks); 6610 } 6611 6612 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6613 VFRange &Range) { 6614 6615 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6616 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6617 6618 if (IsPredicated) 6619 return false; 6620 6621 auto IsVectorizableOpcode = [](unsigned Opcode) { 6622 switch (Opcode) { 6623 case Instruction::Add: 6624 case Instruction::And: 6625 case Instruction::AShr: 6626 case Instruction::BitCast: 6627 case Instruction::Br: 6628 case Instruction::Call: 6629 case Instruction::FAdd: 6630 case Instruction::FCmp: 6631 case Instruction::FDiv: 6632 case Instruction::FMul: 6633 case Instruction::FNeg: 6634 case Instruction::FPExt: 6635 case Instruction::FPToSI: 6636 case Instruction::FPToUI: 6637 case Instruction::FPTrunc: 6638 case Instruction::FRem: 6639 case Instruction::FSub: 6640 case Instruction::GetElementPtr: 6641 case Instruction::ICmp: 6642 case Instruction::IntToPtr: 6643 case Instruction::Load: 6644 case Instruction::LShr: 6645 case Instruction::Mul: 6646 case Instruction::Or: 6647 case Instruction::PHI: 6648 case Instruction::PtrToInt: 6649 case Instruction::SDiv: 6650 case Instruction::Select: 6651 case Instruction::SExt: 6652 case Instruction::Shl: 6653 case Instruction::SIToFP: 6654 case Instruction::SRem: 6655 case Instruction::Store: 6656 case Instruction::Sub: 6657 case Instruction::Trunc: 6658 case Instruction::UDiv: 6659 case Instruction::UIToFP: 6660 case Instruction::URem: 6661 case Instruction::Xor: 6662 case Instruction::ZExt: 6663 return true; 6664 } 6665 return false; 6666 }; 6667 6668 if (!IsVectorizableOpcode(I->getOpcode())) 6669 return false; 6670 6671 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6672 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6673 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6674 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6675 return false; 6676 } 6677 6678 auto willWiden = [&](unsigned VF) -> bool { 6679 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6680 CM.isProfitableToScalarize(I, VF))) 6681 return false; 6682 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6683 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6684 // The following case may be scalarized depending on the VF. 6685 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6686 // version of the instruction. 6687 // Is it beneficial to perform intrinsic call compared to lib call? 6688 bool NeedToScalarize; 6689 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6690 bool UseVectorIntrinsic = 6691 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6692 return UseVectorIntrinsic || !NeedToScalarize; 6693 } 6694 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6695 assert(CM.getWideningDecision(I, VF) == 6696 LoopVectorizationCostModel::CM_Scalarize && 6697 "Memory widening decisions should have been taken care by now"); 6698 return false; 6699 } 6700 return true; 6701 }; 6702 6703 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6704 return false; 6705 6706 // Success: widen this instruction. We optimize the common case where 6707 // consecutive instructions can be represented by a single recipe. 6708 if (!VPBB->empty()) { 6709 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6710 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6711 return true; 6712 } 6713 6714 VPBB->appendRecipe(new VPWidenRecipe(I)); 6715 return true; 6716 } 6717 6718 VPBasicBlock *VPRecipeBuilder::handleReplication( 6719 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6720 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6721 VPlanPtr &Plan) { 6722 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6723 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6724 Range); 6725 6726 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6727 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6728 6729 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6730 6731 // Find if I uses a predicated instruction. If so, it will use its scalar 6732 // value. Avoid hoisting the insert-element which packs the scalar value into 6733 // a vector value, as that happens iff all users use the vector value. 6734 for (auto &Op : I->operands()) 6735 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6736 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6737 PredInst2Recipe[PredInst]->setAlsoPack(false); 6738 6739 // Finalize the recipe for Instr, first if it is not predicated. 6740 if (!IsPredicated) { 6741 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6742 VPBB->appendRecipe(Recipe); 6743 return VPBB; 6744 } 6745 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6746 assert(VPBB->getSuccessors().empty() && 6747 "VPBB has successors when handling predicated replication."); 6748 // Record predicated instructions for above packing optimizations. 6749 PredInst2Recipe[I] = Recipe; 6750 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6751 VPBlockUtils::insertBlockAfter(Region, VPBB); 6752 auto *RegSucc = new VPBasicBlock(); 6753 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6754 return RegSucc; 6755 } 6756 6757 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6758 VPRecipeBase *PredRecipe, 6759 VPlanPtr &Plan) { 6760 // Instructions marked for predication are replicated and placed under an 6761 // if-then construct to prevent side-effects. 6762 6763 // Generate recipes to compute the block mask for this region. 6764 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6765 6766 // Build the triangular if-then region. 6767 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6768 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6769 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6770 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6771 auto *PHIRecipe = 6772 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6773 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6774 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6775 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6776 6777 // Note: first set Entry as region entry and then connect successors starting 6778 // from it in order, to propagate the "parent" of each VPBasicBlock. 6779 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6780 VPBlockUtils::connectBlocks(Pred, Exit); 6781 6782 return Region; 6783 } 6784 6785 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6786 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6787 VPRecipeBase *Recipe = nullptr; 6788 // Check if Instr should belong to an interleave memory recipe, or already 6789 // does. In the latter case Instr is irrelevant. 6790 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6791 VPBB->appendRecipe(Recipe); 6792 return true; 6793 } 6794 6795 // Check if Instr is a memory operation that should be widened. 6796 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6797 VPBB->appendRecipe(Recipe); 6798 return true; 6799 } 6800 6801 // Check if Instr should form some PHI recipe. 6802 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6803 VPBB->appendRecipe(Recipe); 6804 return true; 6805 } 6806 if ((Recipe = tryToBlend(Instr, Plan))) { 6807 VPBB->appendRecipe(Recipe); 6808 return true; 6809 } 6810 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6811 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6812 return true; 6813 } 6814 6815 // Check if Instr is to be widened by a general VPWidenRecipe, after 6816 // having first checked for specific widening recipes that deal with 6817 // Interleave Groups, Inductions and Phi nodes. 6818 if (tryToWiden(Instr, VPBB, Range)) 6819 return true; 6820 6821 return false; 6822 } 6823 6824 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6825 unsigned MaxVF) { 6826 assert(OrigLoop->empty() && "Inner loop expected."); 6827 6828 // Collect conditions feeding internal conditional branches; they need to be 6829 // represented in VPlan for it to model masking. 6830 SmallPtrSet<Value *, 1> NeedDef; 6831 6832 auto *Latch = OrigLoop->getLoopLatch(); 6833 for (BasicBlock *BB : OrigLoop->blocks()) { 6834 if (BB == Latch) 6835 continue; 6836 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6837 if (Branch && Branch->isConditional()) 6838 NeedDef.insert(Branch->getCondition()); 6839 } 6840 6841 // If the tail is to be folded by masking, the primary induction variable 6842 // needs to be represented in VPlan for it to model early-exit masking. 6843 if (CM.foldTailByMasking()) 6844 NeedDef.insert(Legal->getPrimaryInduction()); 6845 6846 // Collect instructions from the original loop that will become trivially dead 6847 // in the vectorized loop. We don't need to vectorize these instructions. For 6848 // example, original induction update instructions can become dead because we 6849 // separately emit induction "steps" when generating code for the new loop. 6850 // Similarly, we create a new latch condition when setting up the structure 6851 // of the new loop, so the old one can become dead. 6852 SmallPtrSet<Instruction *, 4> DeadInstructions; 6853 collectTriviallyDeadInstructions(DeadInstructions); 6854 6855 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6856 VFRange SubRange = {VF, MaxVF + 1}; 6857 VPlans.push_back( 6858 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6859 VF = SubRange.End; 6860 } 6861 } 6862 6863 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6864 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6865 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6866 // Hold a mapping from predicated instructions to their recipes, in order to 6867 // fix their AlsoPack behavior if a user is determined to replicate and use a 6868 // scalar instead of vector value. 6869 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6870 6871 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6872 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6873 6874 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6875 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6876 auto Plan = llvm::make_unique<VPlan>(VPBB); 6877 6878 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 6879 // Represent values that will have defs inside VPlan. 6880 for (Value *V : NeedDef) 6881 Plan->addVPValue(V); 6882 6883 // Scan the body of the loop in a topological order to visit each basic block 6884 // after having visited its predecessor basic blocks. 6885 LoopBlocksDFS DFS(OrigLoop); 6886 DFS.perform(LI); 6887 6888 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6889 // Relevant instructions from basic block BB will be grouped into VPRecipe 6890 // ingredients and fill a new VPBasicBlock. 6891 unsigned VPBBsForBB = 0; 6892 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6893 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6894 VPBB = FirstVPBBForBB; 6895 Builder.setInsertPoint(VPBB); 6896 6897 std::vector<Instruction *> Ingredients; 6898 6899 // Organize the ingredients to vectorize from current basic block in the 6900 // right order. 6901 for (Instruction &I : BB->instructionsWithoutDebug()) { 6902 Instruction *Instr = &I; 6903 6904 // First filter out irrelevant instructions, to ensure no recipes are 6905 // built for them. 6906 if (isa<BranchInst>(Instr) || 6907 DeadInstructions.find(Instr) != DeadInstructions.end()) 6908 continue; 6909 6910 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6911 // member of the IG, do not construct any Recipe for it. 6912 const InterleaveGroup<Instruction> *IG = 6913 CM.getInterleavedAccessGroup(Instr); 6914 if (IG && Instr != IG->getInsertPos() && 6915 Range.Start >= 2 && // Query is illegal for VF == 1 6916 CM.getWideningDecision(Instr, Range.Start) == 6917 LoopVectorizationCostModel::CM_Interleave) { 6918 auto SinkCandidate = SinkAfterInverse.find(Instr); 6919 if (SinkCandidate != SinkAfterInverse.end()) 6920 Ingredients.push_back(SinkCandidate->second); 6921 continue; 6922 } 6923 6924 // Move instructions to handle first-order recurrences, step 1: avoid 6925 // handling this instruction until after we've handled the instruction it 6926 // should follow. 6927 auto SAIt = SinkAfter.find(Instr); 6928 if (SAIt != SinkAfter.end()) { 6929 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6930 << *SAIt->second 6931 << " to vectorize a 1st order recurrence.\n"); 6932 SinkAfterInverse[SAIt->second] = Instr; 6933 continue; 6934 } 6935 6936 Ingredients.push_back(Instr); 6937 6938 // Move instructions to handle first-order recurrences, step 2: push the 6939 // instruction to be sunk at its insertion point. 6940 auto SAInvIt = SinkAfterInverse.find(Instr); 6941 if (SAInvIt != SinkAfterInverse.end()) 6942 Ingredients.push_back(SAInvIt->second); 6943 } 6944 6945 // Introduce each ingredient into VPlan. 6946 for (Instruction *Instr : Ingredients) { 6947 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6948 continue; 6949 6950 // Otherwise, if all widening options failed, Instruction is to be 6951 // replicated. This may create a successor for VPBB. 6952 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6953 Instr, Range, VPBB, PredInst2Recipe, Plan); 6954 if (NextVPBB != VPBB) { 6955 VPBB = NextVPBB; 6956 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6957 : ""); 6958 } 6959 } 6960 } 6961 6962 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6963 // may also be empty, such as the last one VPBB, reflecting original 6964 // basic-blocks with no recipes. 6965 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6966 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6967 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6968 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6969 delete PreEntry; 6970 6971 std::string PlanName; 6972 raw_string_ostream RSO(PlanName); 6973 unsigned VF = Range.Start; 6974 Plan->addVF(VF); 6975 RSO << "Initial VPlan for VF={" << VF; 6976 for (VF *= 2; VF < Range.End; VF *= 2) { 6977 Plan->addVF(VF); 6978 RSO << "," << VF; 6979 } 6980 RSO << "},UF>=1"; 6981 RSO.flush(); 6982 Plan->setName(PlanName); 6983 6984 return Plan; 6985 } 6986 6987 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6988 // Outer loop handling: They may require CFG and instruction level 6989 // transformations before even evaluating whether vectorization is profitable. 6990 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6991 // the vectorization pipeline. 6992 assert(!OrigLoop->empty()); 6993 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6994 6995 // Create new empty VPlan 6996 auto Plan = llvm::make_unique<VPlan>(); 6997 6998 // Build hierarchical CFG 6999 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7000 HCFGBuilder.buildHierarchicalCFG(); 7001 7002 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7003 Plan->addVF(VF); 7004 7005 if (EnableVPlanPredication) { 7006 VPlanPredicator VPP(*Plan); 7007 VPP.predicate(); 7008 7009 // Avoid running transformation to recipes until masked code generation in 7010 // VPlan-native path is in place. 7011 return Plan; 7012 } 7013 7014 SmallPtrSet<Instruction *, 1> DeadInstructions; 7015 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 7016 Plan, Legal->getInductionVars(), DeadInstructions); 7017 7018 return Plan; 7019 } 7020 7021 Value* LoopVectorizationPlanner::VPCallbackILV:: 7022 getOrCreateVectorValues(Value *V, unsigned Part) { 7023 return ILV.getOrCreateVectorValue(V, Part); 7024 } 7025 7026 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7027 O << " +\n" 7028 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7029 IG->getInsertPos()->printAsOperand(O, false); 7030 if (User) { 7031 O << ", "; 7032 User->getOperand(0)->printAsOperand(O); 7033 } 7034 O << "\\l\""; 7035 for (unsigned i = 0; i < IG->getFactor(); ++i) 7036 if (Instruction *I = IG->getMember(i)) 7037 O << " +\n" 7038 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7039 } 7040 7041 void VPWidenRecipe::execute(VPTransformState &State) { 7042 for (auto &Instr : make_range(Begin, End)) 7043 State.ILV->widenInstruction(Instr); 7044 } 7045 7046 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7047 assert(!State.Instance && "Int or FP induction being replicated."); 7048 State.ILV->widenIntOrFpInduction(IV, Trunc); 7049 } 7050 7051 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7052 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7053 } 7054 7055 void VPBlendRecipe::execute(VPTransformState &State) { 7056 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7057 // We know that all PHIs in non-header blocks are converted into 7058 // selects, so we don't have to worry about the insertion order and we 7059 // can just use the builder. 7060 // At this point we generate the predication tree. There may be 7061 // duplications since this is a simple recursive scan, but future 7062 // optimizations will clean it up. 7063 7064 unsigned NumIncoming = Phi->getNumIncomingValues(); 7065 7066 assert((User || NumIncoming == 1) && 7067 "Multiple predecessors with predecessors having a full mask"); 7068 // Generate a sequence of selects of the form: 7069 // SELECT(Mask3, In3, 7070 // SELECT(Mask2, In2, 7071 // ( ...))) 7072 InnerLoopVectorizer::VectorParts Entry(State.UF); 7073 for (unsigned In = 0; In < NumIncoming; ++In) { 7074 for (unsigned Part = 0; Part < State.UF; ++Part) { 7075 // We might have single edge PHIs (blocks) - use an identity 7076 // 'select' for the first PHI operand. 7077 Value *In0 = 7078 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7079 if (In == 0) 7080 Entry[Part] = In0; // Initialize with the first incoming value. 7081 else { 7082 // Select between the current value and the previous incoming edge 7083 // based on the incoming mask. 7084 Value *Cond = State.get(User->getOperand(In), Part); 7085 Entry[Part] = 7086 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7087 } 7088 } 7089 } 7090 for (unsigned Part = 0; Part < State.UF; ++Part) 7091 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7092 } 7093 7094 void VPInterleaveRecipe::execute(VPTransformState &State) { 7095 assert(!State.Instance && "Interleave group being replicated."); 7096 if (!User) 7097 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7098 7099 // Last (and currently only) operand is a mask. 7100 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7101 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7102 for (unsigned Part = 0; Part < State.UF; ++Part) 7103 MaskValues[Part] = State.get(Mask, Part); 7104 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7105 } 7106 7107 void VPReplicateRecipe::execute(VPTransformState &State) { 7108 if (State.Instance) { // Generate a single instance. 7109 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7110 // Insert scalar instance packing it into a vector. 7111 if (AlsoPack && State.VF > 1) { 7112 // If we're constructing lane 0, initialize to start from undef. 7113 if (State.Instance->Lane == 0) { 7114 Value *Undef = 7115 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7116 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7117 } 7118 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7119 } 7120 return; 7121 } 7122 7123 // Generate scalar instances for all VF lanes of all UF parts, unless the 7124 // instruction is uniform inwhich case generate only the first lane for each 7125 // of the UF parts. 7126 unsigned EndLane = IsUniform ? 1 : State.VF; 7127 for (unsigned Part = 0; Part < State.UF; ++Part) 7128 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7129 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7130 } 7131 7132 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7133 assert(State.Instance && "Branch on Mask works only on single instance."); 7134 7135 unsigned Part = State.Instance->Part; 7136 unsigned Lane = State.Instance->Lane; 7137 7138 Value *ConditionBit = nullptr; 7139 if (!User) // Block in mask is all-one. 7140 ConditionBit = State.Builder.getTrue(); 7141 else { 7142 VPValue *BlockInMask = User->getOperand(0); 7143 ConditionBit = State.get(BlockInMask, Part); 7144 if (ConditionBit->getType()->isVectorTy()) 7145 ConditionBit = State.Builder.CreateExtractElement( 7146 ConditionBit, State.Builder.getInt32(Lane)); 7147 } 7148 7149 // Replace the temporary unreachable terminator with a new conditional branch, 7150 // whose two destinations will be set later when they are created. 7151 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7152 assert(isa<UnreachableInst>(CurrentTerminator) && 7153 "Expected to replace unreachable terminator with conditional branch."); 7154 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7155 CondBr->setSuccessor(0, nullptr); 7156 ReplaceInstWithInst(CurrentTerminator, CondBr); 7157 } 7158 7159 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7160 assert(State.Instance && "Predicated instruction PHI works per instance."); 7161 Instruction *ScalarPredInst = cast<Instruction>( 7162 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7163 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7164 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7165 assert(PredicatingBB && "Predicated block has no single predecessor."); 7166 7167 // By current pack/unpack logic we need to generate only a single phi node: if 7168 // a vector value for the predicated instruction exists at this point it means 7169 // the instruction has vector users only, and a phi for the vector value is 7170 // needed. In this case the recipe of the predicated instruction is marked to 7171 // also do that packing, thereby "hoisting" the insert-element sequence. 7172 // Otherwise, a phi node for the scalar value is needed. 7173 unsigned Part = State.Instance->Part; 7174 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7175 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7176 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7177 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7178 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7179 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7180 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7181 } else { 7182 Type *PredInstType = PredInst->getType(); 7183 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7184 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7185 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7186 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7187 } 7188 } 7189 7190 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7191 if (!User) 7192 return State.ILV->vectorizeMemoryInstruction(&Instr); 7193 7194 // Last (and currently only) operand is a mask. 7195 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7196 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7197 for (unsigned Part = 0; Part < State.UF; ++Part) 7198 MaskValues[Part] = State.get(Mask, Part); 7199 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7200 } 7201 7202 // Process the loop in the VPlan-native vectorization path. This path builds 7203 // VPlan upfront in the vectorization pipeline, which allows to apply 7204 // VPlan-to-VPlan transformations from the very beginning without modifying the 7205 // input LLVM IR. 7206 static bool processLoopInVPlanNativePath( 7207 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7208 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7209 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7210 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7211 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7212 7213 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7214 Function *F = L->getHeader()->getParent(); 7215 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7216 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7217 &Hints, IAI); 7218 // Use the planner for outer loop vectorization. 7219 // TODO: CM is not used at this point inside the planner. Turn CM into an 7220 // optional argument if we don't need it in the future. 7221 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7222 7223 // Get user vectorization factor. 7224 const unsigned UserVF = Hints.getWidth(); 7225 7226 // Check the function attributes and profiles to find out if this function 7227 // should be optimized for size. 7228 bool OptForSize = 7229 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7230 (F->hasOptSize() || 7231 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7232 7233 // Plan how to best vectorize, return the best VF and its cost. 7234 const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7235 7236 // If we are stress testing VPlan builds, do not attempt to generate vector 7237 // code. Masked vector code generation support will follow soon. 7238 // Also, do not attempt to vectorize if no vector code will be produced. 7239 if (VPlanBuildStressTest || EnableVPlanPredication || 7240 VectorizationFactor::Disabled() == VF) 7241 return false; 7242 7243 LVP.setBestPlan(VF.Width, 1); 7244 7245 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7246 &CM); 7247 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7248 << L->getHeader()->getParent()->getName() << "\"\n"); 7249 LVP.executePlan(LB, DT); 7250 7251 // Mark the loop as already vectorized to avoid vectorizing again. 7252 Hints.setAlreadyVectorized(); 7253 7254 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7255 return true; 7256 } 7257 7258 bool LoopVectorizePass::processLoop(Loop *L) { 7259 assert((EnableVPlanNativePath || L->empty()) && 7260 "VPlan-native path is not enabled. Only process inner loops."); 7261 7262 #ifndef NDEBUG 7263 const std::string DebugLocStr = getDebugLocString(L); 7264 #endif /* NDEBUG */ 7265 7266 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7267 << L->getHeader()->getParent()->getName() << "\" from " 7268 << DebugLocStr << "\n"); 7269 7270 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7271 7272 LLVM_DEBUG( 7273 dbgs() << "LV: Loop hints:" 7274 << " force=" 7275 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7276 ? "disabled" 7277 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7278 ? "enabled" 7279 : "?")) 7280 << " width=" << Hints.getWidth() 7281 << " unroll=" << Hints.getInterleave() << "\n"); 7282 7283 // Function containing loop 7284 Function *F = L->getHeader()->getParent(); 7285 7286 // Looking at the diagnostic output is the only way to determine if a loop 7287 // was vectorized (other than looking at the IR or machine code), so it 7288 // is important to generate an optimization remark for each loop. Most of 7289 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7290 // generated as OptimizationRemark and OptimizationRemarkMissed are 7291 // less verbose reporting vectorized loops and unvectorized loops that may 7292 // benefit from vectorization, respectively. 7293 7294 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7295 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7296 return false; 7297 } 7298 7299 PredicatedScalarEvolution PSE(*SE, *L); 7300 7301 // Check if it is legal to vectorize the loop. 7302 LoopVectorizationRequirements Requirements(*ORE); 7303 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7304 &Requirements, &Hints, DB, AC); 7305 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7306 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7307 Hints.emitRemarkWithHints(); 7308 return false; 7309 } 7310 7311 // Check the function attributes and profiles to find out if this function 7312 // should be optimized for size. 7313 bool OptForSize = 7314 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7315 (F->hasOptSize() || 7316 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7317 7318 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7319 // here. They may require CFG and instruction level transformations before 7320 // even evaluating whether vectorization is profitable. Since we cannot modify 7321 // the incoming IR, we need to build VPlan upfront in the vectorization 7322 // pipeline. 7323 if (!L->empty()) 7324 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7325 ORE, BFI, PSI, Hints); 7326 7327 assert(L->empty() && "Inner loop expected."); 7328 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7329 // count by optimizing for size, to minimize overheads. 7330 // Prefer constant trip counts over profile data, over upper bound estimate. 7331 unsigned ExpectedTC = 0; 7332 bool HasExpectedTC = false; 7333 if (const SCEVConstant *ConstExits = 7334 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7335 const APInt &ExitsCount = ConstExits->getAPInt(); 7336 // We are interested in small values for ExpectedTC. Skip over those that 7337 // can't fit an unsigned. 7338 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7339 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7340 HasExpectedTC = true; 7341 } 7342 } 7343 // ExpectedTC may be large because it's bound by a variable. Check 7344 // profiling information to validate we should vectorize. 7345 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7346 auto EstimatedTC = getLoopEstimatedTripCount(L); 7347 if (EstimatedTC) { 7348 ExpectedTC = *EstimatedTC; 7349 HasExpectedTC = true; 7350 } 7351 } 7352 if (!HasExpectedTC) { 7353 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7354 HasExpectedTC = (ExpectedTC > 0); 7355 } 7356 7357 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7358 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7359 << "This loop is worth vectorizing only if no scalar " 7360 << "iteration overheads are incurred."); 7361 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7362 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7363 else { 7364 LLVM_DEBUG(dbgs() << "\n"); 7365 // Loops with a very small trip count are considered for vectorization 7366 // under OptForSize, thereby making sure the cost of their loop body is 7367 // dominant, free of runtime guards and scalar iteration overheads. 7368 OptForSize = true; 7369 } 7370 } 7371 7372 // Check the function attributes to see if implicit floats are allowed. 7373 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7374 // an integer loop and the vector instructions selected are purely integer 7375 // vector instructions? 7376 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7377 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7378 "attribute is used.\n"); 7379 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7380 "NoImplicitFloat", L) 7381 << "loop not vectorized due to NoImplicitFloat attribute"); 7382 Hints.emitRemarkWithHints(); 7383 return false; 7384 } 7385 7386 // Check if the target supports potentially unsafe FP vectorization. 7387 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7388 // for the target we're vectorizing for, to make sure none of the 7389 // additional fp-math flags can help. 7390 if (Hints.isPotentiallyUnsafe() && 7391 TTI->isFPVectorizationPotentiallyUnsafe()) { 7392 LLVM_DEBUG( 7393 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7394 ORE->emit( 7395 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7396 << "loop not vectorized due to unsafe FP support."); 7397 Hints.emitRemarkWithHints(); 7398 return false; 7399 } 7400 7401 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7402 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7403 7404 // If an override option has been passed in for interleaved accesses, use it. 7405 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7406 UseInterleaved = EnableInterleavedMemAccesses; 7407 7408 // Analyze interleaved memory accesses. 7409 if (UseInterleaved) { 7410 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7411 } 7412 7413 // Use the cost model. 7414 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7415 &Hints, IAI); 7416 CM.collectValuesToIgnore(); 7417 7418 // Use the planner for vectorization. 7419 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7420 7421 // Get user vectorization factor. 7422 unsigned UserVF = Hints.getWidth(); 7423 7424 // Plan how to best vectorize, return the best VF and its cost. 7425 Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); 7426 7427 VectorizationFactor VF = VectorizationFactor::Disabled(); 7428 unsigned IC = 1; 7429 unsigned UserIC = Hints.getInterleave(); 7430 7431 if (MaybeVF) { 7432 VF = *MaybeVF; 7433 // Select the interleave count. 7434 IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7435 } 7436 7437 // Identify the diagnostic messages that should be produced. 7438 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7439 bool VectorizeLoop = true, InterleaveLoop = true; 7440 if (Requirements.doesNotMeet(F, L, Hints)) { 7441 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7442 "requirements.\n"); 7443 Hints.emitRemarkWithHints(); 7444 return false; 7445 } 7446 7447 if (VF.Width == 1) { 7448 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7449 VecDiagMsg = std::make_pair( 7450 "VectorizationNotBeneficial", 7451 "the cost-model indicates that vectorization is not beneficial"); 7452 VectorizeLoop = false; 7453 } 7454 7455 if (!MaybeVF && UserIC > 1) { 7456 // Tell the user interleaving was avoided up-front, despite being explicitly 7457 // requested. 7458 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7459 "interleaving should be avoided up front\n"); 7460 IntDiagMsg = std::make_pair( 7461 "InterleavingAvoided", 7462 "Ignoring UserIC, because interleaving was avoided up front"); 7463 InterleaveLoop = false; 7464 } else if (IC == 1 && UserIC <= 1) { 7465 // Tell the user interleaving is not beneficial. 7466 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7467 IntDiagMsg = std::make_pair( 7468 "InterleavingNotBeneficial", 7469 "the cost-model indicates that interleaving is not beneficial"); 7470 InterleaveLoop = false; 7471 if (UserIC == 1) { 7472 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7473 IntDiagMsg.second += 7474 " and is explicitly disabled or interleave count is set to 1"; 7475 } 7476 } else if (IC > 1 && UserIC == 1) { 7477 // Tell the user interleaving is beneficial, but it explicitly disabled. 7478 LLVM_DEBUG( 7479 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7480 IntDiagMsg = std::make_pair( 7481 "InterleavingBeneficialButDisabled", 7482 "the cost-model indicates that interleaving is beneficial " 7483 "but is explicitly disabled or interleave count is set to 1"); 7484 InterleaveLoop = false; 7485 } 7486 7487 // Override IC if user provided an interleave count. 7488 IC = UserIC > 0 ? UserIC : IC; 7489 7490 // Emit diagnostic messages, if any. 7491 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7492 if (!VectorizeLoop && !InterleaveLoop) { 7493 // Do not vectorize or interleaving the loop. 7494 ORE->emit([&]() { 7495 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7496 L->getStartLoc(), L->getHeader()) 7497 << VecDiagMsg.second; 7498 }); 7499 ORE->emit([&]() { 7500 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7501 L->getStartLoc(), L->getHeader()) 7502 << IntDiagMsg.second; 7503 }); 7504 return false; 7505 } else if (!VectorizeLoop && InterleaveLoop) { 7506 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7507 ORE->emit([&]() { 7508 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7509 L->getStartLoc(), L->getHeader()) 7510 << VecDiagMsg.second; 7511 }); 7512 } else if (VectorizeLoop && !InterleaveLoop) { 7513 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7514 << ") in " << DebugLocStr << '\n'); 7515 ORE->emit([&]() { 7516 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7517 L->getStartLoc(), L->getHeader()) 7518 << IntDiagMsg.second; 7519 }); 7520 } else if (VectorizeLoop && InterleaveLoop) { 7521 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7522 << ") in " << DebugLocStr << '\n'); 7523 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7524 } 7525 7526 LVP.setBestPlan(VF.Width, IC); 7527 7528 using namespace ore; 7529 bool DisableRuntimeUnroll = false; 7530 MDNode *OrigLoopID = L->getLoopID(); 7531 7532 if (!VectorizeLoop) { 7533 assert(IC > 1 && "interleave count should not be 1 or 0"); 7534 // If we decided that it is not legal to vectorize the loop, then 7535 // interleave it. 7536 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7537 &CM); 7538 LVP.executePlan(Unroller, DT); 7539 7540 ORE->emit([&]() { 7541 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7542 L->getHeader()) 7543 << "interleaved loop (interleaved count: " 7544 << NV("InterleaveCount", IC) << ")"; 7545 }); 7546 } else { 7547 // If we decided that it is *legal* to vectorize the loop, then do it. 7548 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7549 &LVL, &CM); 7550 LVP.executePlan(LB, DT); 7551 ++LoopsVectorized; 7552 7553 // Add metadata to disable runtime unrolling a scalar loop when there are 7554 // no runtime checks about strides and memory. A scalar loop that is 7555 // rarely used is not worth unrolling. 7556 if (!LB.areSafetyChecksAdded()) 7557 DisableRuntimeUnroll = true; 7558 7559 // Report the vectorization decision. 7560 ORE->emit([&]() { 7561 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7562 L->getHeader()) 7563 << "vectorized loop (vectorization width: " 7564 << NV("VectorizationFactor", VF.Width) 7565 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7566 }); 7567 } 7568 7569 Optional<MDNode *> RemainderLoopID = 7570 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7571 LLVMLoopVectorizeFollowupEpilogue}); 7572 if (RemainderLoopID.hasValue()) { 7573 L->setLoopID(RemainderLoopID.getValue()); 7574 } else { 7575 if (DisableRuntimeUnroll) 7576 AddRuntimeUnrollDisableMetaData(L); 7577 7578 // Mark the loop as already vectorized to avoid vectorizing again. 7579 Hints.setAlreadyVectorized(); 7580 } 7581 7582 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7583 return true; 7584 } 7585 7586 bool LoopVectorizePass::runImpl( 7587 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7588 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7589 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7590 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7591 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7592 SE = &SE_; 7593 LI = &LI_; 7594 TTI = &TTI_; 7595 DT = &DT_; 7596 BFI = &BFI_; 7597 TLI = TLI_; 7598 AA = &AA_; 7599 AC = &AC_; 7600 GetLAA = &GetLAA_; 7601 DB = &DB_; 7602 ORE = &ORE_; 7603 PSI = PSI_; 7604 7605 // Don't attempt if 7606 // 1. the target claims to have no vector registers, and 7607 // 2. interleaving won't help ILP. 7608 // 7609 // The second condition is necessary because, even if the target has no 7610 // vector registers, loop vectorization may still enable scalar 7611 // interleaving. 7612 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7613 return false; 7614 7615 bool Changed = false; 7616 7617 // The vectorizer requires loops to be in simplified form. 7618 // Since simplification may add new inner loops, it has to run before the 7619 // legality and profitability checks. This means running the loop vectorizer 7620 // will simplify all loops, regardless of whether anything end up being 7621 // vectorized. 7622 for (auto &L : *LI) 7623 Changed |= 7624 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7625 7626 // Build up a worklist of inner-loops to vectorize. This is necessary as 7627 // the act of vectorizing or partially unrolling a loop creates new loops 7628 // and can invalidate iterators across the loops. 7629 SmallVector<Loop *, 8> Worklist; 7630 7631 for (Loop *L : *LI) 7632 collectSupportedLoops(*L, LI, ORE, Worklist); 7633 7634 LoopsAnalyzed += Worklist.size(); 7635 7636 // Now walk the identified inner loops. 7637 while (!Worklist.empty()) { 7638 Loop *L = Worklist.pop_back_val(); 7639 7640 // For the inner loops we actually process, form LCSSA to simplify the 7641 // transform. 7642 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7643 7644 Changed |= processLoop(L); 7645 } 7646 7647 // Process each loop nest in the function. 7648 return Changed; 7649 } 7650 7651 PreservedAnalyses LoopVectorizePass::run(Function &F, 7652 FunctionAnalysisManager &AM) { 7653 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7654 auto &LI = AM.getResult<LoopAnalysis>(F); 7655 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7656 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7657 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7658 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7659 auto &AA = AM.getResult<AAManager>(F); 7660 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7661 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7662 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7663 MemorySSA *MSSA = EnableMSSALoopDependency 7664 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7665 : nullptr; 7666 7667 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7668 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7669 [&](Loop &L) -> const LoopAccessInfo & { 7670 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7671 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7672 }; 7673 const ModuleAnalysisManager &MAM = 7674 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7675 ProfileSummaryInfo *PSI = 7676 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7677 bool Changed = 7678 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7679 if (!Changed) 7680 return PreservedAnalyses::all(); 7681 PreservedAnalyses PA; 7682 7683 // We currently do not preserve loopinfo/dominator analyses with outer loop 7684 // vectorization. Until this is addressed, mark these analyses as preserved 7685 // only for non-VPlan-native path. 7686 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7687 if (!EnableVPlanNativePath) { 7688 PA.preserve<LoopAnalysis>(); 7689 PA.preserve<DominatorTreeAnalysis>(); 7690 } 7691 PA.preserve<BasicAA>(); 7692 PA.preserve<GlobalsAA>(); 7693 return PA; 7694 } 7695