xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
514                              VPTransformState &State, Value *CanonicalIV);
515 
516   /// Construct the vector value of a scalarized value \p V one lane at a time.
517   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
518                                  VPTransformState &State);
519 
520   /// Try to vectorize interleaved access group \p Group with the base address
521   /// given in \p Addr, optionally masking the vector operations if \p
522   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
523   /// values in the vectorized loop.
524   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
525                                 ArrayRef<VPValue *> VPDefs,
526                                 VPTransformState &State, VPValue *Addr,
527                                 ArrayRef<VPValue *> StoredValues,
528                                 VPValue *BlockInMask = nullptr);
529 
530   /// Set the debug location in the builder \p Ptr using the debug location in
531   /// \p V. If \p Ptr is None then it uses the class member's Builder.
532   void setDebugLocFromInst(const Value *V,
533                            Optional<IRBuilder<> *> CustomBuilder = None);
534 
535   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
536   void fixNonInductionPHIs(VPTransformState &State);
537 
538   /// Returns true if the reordering of FP operations is not allowed, but we are
539   /// able to vectorize with strict in-order reductions for the given RdxDesc.
540   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
541 
542   /// Create a broadcast instruction. This method generates a broadcast
543   /// instruction (shuffle) for loop invariant values and for the induction
544   /// value. If this is the induction variable then we extend it to N, N+1, ...
545   /// this is needed because each iteration in the loop corresponds to a SIMD
546   /// element.
547   virtual Value *getBroadcastInstrs(Value *V);
548 
549   /// Add metadata from one instruction to another.
550   ///
551   /// This includes both the original MDs from \p From and additional ones (\see
552   /// addNewMetadata).  Use this for *newly created* instructions in the vector
553   /// loop.
554   void addMetadata(Instruction *To, Instruction *From);
555 
556   /// Similar to the previous function but it adds the metadata to a
557   /// vector of instructions.
558   void addMetadata(ArrayRef<Value *> To, Instruction *From);
559 
560   // Returns the resume value (bc.merge.rdx) for a reduction as
561   // generated by fixReduction.
562   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
563 
564 protected:
565   friend class LoopVectorizationPlanner;
566 
567   /// A small list of PHINodes.
568   using PhiVector = SmallVector<PHINode *, 4>;
569 
570   /// A type for scalarized values in the new loop. Each value from the
571   /// original loop, when scalarized, is represented by UF x VF scalar values
572   /// in the new unrolled loop, where UF is the unroll factor and VF is the
573   /// vectorization factor.
574   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
575 
576   /// Set up the values of the IVs correctly when exiting the vector loop.
577   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
578                     Value *CountRoundDown, Value *EndValue,
579                     BasicBlock *MiddleBlock);
580 
581   /// Introduce a conditional branch (on true, condition to be set later) at the
582   /// end of the header=latch connecting it to itself (across the backedge) and
583   /// to the exit block of \p L.
584   void createHeaderBranch(Loop *L);
585 
586   /// Handle all cross-iteration phis in the header.
587   void fixCrossIterationPHIs(VPTransformState &State);
588 
589   /// Create the exit value of first order recurrences in the middle block and
590   /// update their users.
591   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
592                                VPTransformState &State);
593 
594   /// Create code for the loop exit value of the reduction.
595   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
596 
597   /// Clear NSW/NUW flags from reduction instructions if necessary.
598   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
599                                VPTransformState &State);
600 
601   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
602   /// means we need to add the appropriate incoming value from the middle
603   /// block as exiting edges from the scalar epilogue loop (if present) are
604   /// already in place, and we exit the vector loop exclusively to the middle
605   /// block.
606   void fixLCSSAPHIs(VPTransformState &State);
607 
608   /// Iteratively sink the scalarized operands of a predicated instruction into
609   /// the block that was created for it.
610   void sinkScalarOperands(Instruction *PredInst);
611 
612   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
613   /// represented as.
614   void truncateToMinimalBitwidths(VPTransformState &State);
615 
616   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
617   /// variable on which to base the steps, \p Step is the size of the step, and
618   /// \p EntryVal is the value from the original loop that maps to the steps.
619   /// Note that \p EntryVal doesn't have to be an induction variable - it
620   /// can also be a truncate instruction.
621   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
622                         const InductionDescriptor &ID, VPValue *Def,
623                         VPTransformState &State);
624 
625   /// Create a vector induction phi node based on an existing scalar one. \p
626   /// EntryVal is the value from the original loop that maps to the vector phi
627   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
628   /// truncate instruction, instead of widening the original IV, we widen a
629   /// version of the IV truncated to \p EntryVal's type.
630   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
631                                        Value *Step, Value *Start,
632                                        Instruction *EntryVal, VPValue *Def,
633                                        VPTransformState &State);
634 
635   /// Returns true if an instruction \p I should be scalarized instead of
636   /// vectorized for the chosen vectorization factor.
637   bool shouldScalarizeInstruction(Instruction *I) const;
638 
639   /// Returns true if we should generate a scalar version of \p IV.
640   bool needsScalarInduction(Instruction *IV) const;
641 
642   /// Returns (and creates if needed) the original loop trip count.
643   Value *getOrCreateTripCount(Loop *NewLoop);
644 
645   /// Returns (and creates if needed) the trip count of the widened loop.
646   Value *getOrCreateVectorTripCount(Loop *NewLoop);
647 
648   /// Returns a bitcasted value to the requested vector type.
649   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
650   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
651                                 const DataLayout &DL);
652 
653   /// Emit a bypass check to see if the vector trip count is zero, including if
654   /// it overflows.
655   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
656 
657   /// Emit a bypass check to see if all of the SCEV assumptions we've
658   /// had to make are correct. Returns the block containing the checks or
659   /// nullptr if no checks have been added.
660   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
661 
662   /// Emit bypass checks to check any memory assumptions we may have made.
663   /// Returns the block containing the checks or nullptr if no checks have been
664   /// added.
665   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
666 
667   /// Compute the transformed value of Index at offset StartValue using step
668   /// StepValue.
669   /// For integer induction, returns StartValue + Index * StepValue.
670   /// For pointer induction, returns StartValue[Index * StepValue].
671   /// FIXME: The newly created binary instructions should contain nsw/nuw
672   /// flags, which can be found from the original scalar operations.
673   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
674                               const DataLayout &DL,
675                               const InductionDescriptor &ID,
676                               BasicBlock *VectorHeader) const;
677 
678   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
679   /// vector loop preheader, middle block and scalar preheader. Also
680   /// allocate a loop object for the new vector loop and return it.
681   Loop *createVectorLoopSkeleton(StringRef Prefix);
682 
683   /// Create new phi nodes for the induction variables to resume iteration count
684   /// in the scalar epilogue, from where the vectorized loop left off.
685   /// In cases where the loop skeleton is more complicated (eg. epilogue
686   /// vectorization) and the resume values can come from an additional bypass
687   /// block, the \p AdditionalBypass pair provides information about the bypass
688   /// block and the end value on the edge from bypass to this loop.
689   void createInductionResumeValues(
690       Loop *L,
691       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
692 
693   /// Complete the loop skeleton by adding debug MDs, creating appropriate
694   /// conditional branches in the middle block, preparing the builder and
695   /// running the verifier. Take in the vector loop \p L as argument, and return
696   /// the preheader of the completed vector loop.
697   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
698 
699   /// Add additional metadata to \p To that was not present on \p Orig.
700   ///
701   /// Currently this is used to add the noalias annotations based on the
702   /// inserted memchecks.  Use this for instructions that are *cloned* into the
703   /// vector loop.
704   void addNewMetadata(Instruction *To, const Instruction *Orig);
705 
706   /// Collect poison-generating recipes that may generate a poison value that is
707   /// used after vectorization, even when their operands are not poison. Those
708   /// recipes meet the following conditions:
709   ///  * Contribute to the address computation of a recipe generating a widen
710   ///    memory load/store (VPWidenMemoryInstructionRecipe or
711   ///    VPInterleaveRecipe).
712   ///  * Such a widen memory load/store has at least one underlying Instruction
713   ///    that is in a basic block that needs predication and after vectorization
714   ///    the generated instruction won't be predicated.
715   void collectPoisonGeneratingRecipes(VPTransformState &State);
716 
717   /// Allow subclasses to override and print debug traces before/after vplan
718   /// execution, when trace information is requested.
719   virtual void printDebugTracesAtStart(){};
720   virtual void printDebugTracesAtEnd(){};
721 
722   /// The original loop.
723   Loop *OrigLoop;
724 
725   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
726   /// dynamic knowledge to simplify SCEV expressions and converts them to a
727   /// more usable form.
728   PredicatedScalarEvolution &PSE;
729 
730   /// Loop Info.
731   LoopInfo *LI;
732 
733   /// Dominator Tree.
734   DominatorTree *DT;
735 
736   /// Alias Analysis.
737   AAResults *AA;
738 
739   /// Target Library Info.
740   const TargetLibraryInfo *TLI;
741 
742   /// Target Transform Info.
743   const TargetTransformInfo *TTI;
744 
745   /// Assumption Cache.
746   AssumptionCache *AC;
747 
748   /// Interface to emit optimization remarks.
749   OptimizationRemarkEmitter *ORE;
750 
751   /// LoopVersioning.  It's only set up (non-null) if memchecks were
752   /// used.
753   ///
754   /// This is currently only used to add no-alias metadata based on the
755   /// memchecks.  The actually versioning is performed manually.
756   std::unique_ptr<LoopVersioning> LVer;
757 
758   /// The vectorization SIMD factor to use. Each vector will have this many
759   /// vector elements.
760   ElementCount VF;
761 
762   /// The vectorization unroll factor to use. Each scalar is vectorized to this
763   /// many different vector instructions.
764   unsigned UF;
765 
766   /// The builder that we use
767   IRBuilder<> Builder;
768 
769   // --- Vectorization state ---
770 
771   /// The vector-loop preheader.
772   BasicBlock *LoopVectorPreHeader;
773 
774   /// The scalar-loop preheader.
775   BasicBlock *LoopScalarPreHeader;
776 
777   /// Middle Block between the vector and the scalar.
778   BasicBlock *LoopMiddleBlock;
779 
780   /// The unique ExitBlock of the scalar loop if one exists.  Note that
781   /// there can be multiple exiting edges reaching this block.
782   BasicBlock *LoopExitBlock;
783 
784   /// The vector loop body.
785   BasicBlock *LoopVectorBody;
786 
787   /// The scalar loop body.
788   BasicBlock *LoopScalarBody;
789 
790   /// A list of all bypass blocks. The first block is the entry of the loop.
791   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
792 
793   /// Store instructions that were predicated.
794   SmallVector<Instruction *, 4> PredicatedInstructions;
795 
796   /// Trip count of the original loop.
797   Value *TripCount = nullptr;
798 
799   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
800   Value *VectorTripCount = nullptr;
801 
802   /// The legality analysis.
803   LoopVectorizationLegality *Legal;
804 
805   /// The profitablity analysis.
806   LoopVectorizationCostModel *Cost;
807 
808   // Record whether runtime checks are added.
809   bool AddedSafetyChecks = false;
810 
811   // Holds the end values for each induction variable. We save the end values
812   // so we can later fix-up the external users of the induction variables.
813   DenseMap<PHINode *, Value *> IVEndValues;
814 
815   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
816   // fixed up at the end of vector code generation.
817   SmallVector<PHINode *, 8> OrigPHIsToFix;
818 
819   /// BFI and PSI are used to check for profile guided size optimizations.
820   BlockFrequencyInfo *BFI;
821   ProfileSummaryInfo *PSI;
822 
823   // Whether this loop should be optimized for size based on profile guided size
824   // optimizatios.
825   bool OptForSizeBasedOnProfile;
826 
827   /// Structure to hold information about generated runtime checks, responsible
828   /// for cleaning the checks, if vectorization turns out unprofitable.
829   GeneratedRTChecks &RTChecks;
830 
831   // Holds the resume values for reductions in the loops, used to set the
832   // correct start value of reduction PHIs when vectorizing the epilogue.
833   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
834       ReductionResumeValues;
835 };
836 
837 class InnerLoopUnroller : public InnerLoopVectorizer {
838 public:
839   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
840                     LoopInfo *LI, DominatorTree *DT,
841                     const TargetLibraryInfo *TLI,
842                     const TargetTransformInfo *TTI, AssumptionCache *AC,
843                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
844                     LoopVectorizationLegality *LVL,
845                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
846                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
847       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
848                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
849                             BFI, PSI, Check) {}
850 
851 private:
852   Value *getBroadcastInstrs(Value *V) override;
853 };
854 
855 /// Encapsulate information regarding vectorization of a loop and its epilogue.
856 /// This information is meant to be updated and used across two stages of
857 /// epilogue vectorization.
858 struct EpilogueLoopVectorizationInfo {
859   ElementCount MainLoopVF = ElementCount::getFixed(0);
860   unsigned MainLoopUF = 0;
861   ElementCount EpilogueVF = ElementCount::getFixed(0);
862   unsigned EpilogueUF = 0;
863   BasicBlock *MainLoopIterationCountCheck = nullptr;
864   BasicBlock *EpilogueIterationCountCheck = nullptr;
865   BasicBlock *SCEVSafetyCheck = nullptr;
866   BasicBlock *MemSafetyCheck = nullptr;
867   Value *TripCount = nullptr;
868   Value *VectorTripCount = nullptr;
869 
870   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
871                                 ElementCount EVF, unsigned EUF)
872       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
873     assert(EUF == 1 &&
874            "A high UF for the epilogue loop is likely not beneficial.");
875   }
876 };
877 
878 /// An extension of the inner loop vectorizer that creates a skeleton for a
879 /// vectorized loop that has its epilogue (residual) also vectorized.
880 /// The idea is to run the vplan on a given loop twice, firstly to setup the
881 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
882 /// from the first step and vectorize the epilogue.  This is achieved by
883 /// deriving two concrete strategy classes from this base class and invoking
884 /// them in succession from the loop vectorizer planner.
885 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
886 public:
887   InnerLoopAndEpilogueVectorizer(
888       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
889       DominatorTree *DT, const TargetLibraryInfo *TLI,
890       const TargetTransformInfo *TTI, AssumptionCache *AC,
891       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
892       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
893       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
894       GeneratedRTChecks &Checks)
895       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
896                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
897                             Checks),
898         EPI(EPI) {}
899 
900   // Override this function to handle the more complex control flow around the
901   // three loops.
902   std::pair<BasicBlock *, Value *>
903   createVectorizedLoopSkeleton() final override {
904     return createEpilogueVectorizedLoopSkeleton();
905   }
906 
907   /// The interface for creating a vectorized skeleton using one of two
908   /// different strategies, each corresponding to one execution of the vplan
909   /// as described above.
910   virtual std::pair<BasicBlock *, Value *>
911   createEpilogueVectorizedLoopSkeleton() = 0;
912 
913   /// Holds and updates state information required to vectorize the main loop
914   /// and its epilogue in two separate passes. This setup helps us avoid
915   /// regenerating and recomputing runtime safety checks. It also helps us to
916   /// shorten the iteration-count-check path length for the cases where the
917   /// iteration count of the loop is so small that the main vector loop is
918   /// completely skipped.
919   EpilogueLoopVectorizationInfo &EPI;
920 };
921 
922 /// A specialized derived class of inner loop vectorizer that performs
923 /// vectorization of *main* loops in the process of vectorizing loops and their
924 /// epilogues.
925 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
926 public:
927   EpilogueVectorizerMainLoop(
928       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
929       DominatorTree *DT, const TargetLibraryInfo *TLI,
930       const TargetTransformInfo *TTI, AssumptionCache *AC,
931       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
932       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
933       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
934       GeneratedRTChecks &Check)
935       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
936                                        EPI, LVL, CM, BFI, PSI, Check) {}
937   /// Implements the interface for creating a vectorized skeleton using the
938   /// *main loop* strategy (ie the first pass of vplan execution).
939   std::pair<BasicBlock *, Value *>
940   createEpilogueVectorizedLoopSkeleton() final override;
941 
942 protected:
943   /// Emits an iteration count bypass check once for the main loop (when \p
944   /// ForEpilogue is false) and once for the epilogue loop (when \p
945   /// ForEpilogue is true).
946   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
947                                              bool ForEpilogue);
948   void printDebugTracesAtStart() override;
949   void printDebugTracesAtEnd() override;
950 };
951 
952 // A specialized derived class of inner loop vectorizer that performs
953 // vectorization of *epilogue* loops in the process of vectorizing loops and
954 // their epilogues.
955 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
956 public:
957   EpilogueVectorizerEpilogueLoop(
958       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
959       DominatorTree *DT, const TargetLibraryInfo *TLI,
960       const TargetTransformInfo *TTI, AssumptionCache *AC,
961       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
962       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
963       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
964       GeneratedRTChecks &Checks)
965       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
966                                        EPI, LVL, CM, BFI, PSI, Checks) {}
967   /// Implements the interface for creating a vectorized skeleton using the
968   /// *epilogue loop* strategy (ie the second pass of vplan execution).
969   std::pair<BasicBlock *, Value *>
970   createEpilogueVectorizedLoopSkeleton() final override;
971 
972 protected:
973   /// Emits an iteration count bypass check after the main vector loop has
974   /// finished to see if there are any iterations left to execute by either
975   /// the vector epilogue or the scalar epilogue.
976   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
977                                                       BasicBlock *Bypass,
978                                                       BasicBlock *Insert);
979   void printDebugTracesAtStart() override;
980   void printDebugTracesAtEnd() override;
981 };
982 } // end namespace llvm
983 
984 /// Look for a meaningful debug location on the instruction or it's
985 /// operands.
986 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
987   if (!I)
988     return I;
989 
990   DebugLoc Empty;
991   if (I->getDebugLoc() != Empty)
992     return I;
993 
994   for (Use &Op : I->operands()) {
995     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
996       if (OpInst->getDebugLoc() != Empty)
997         return OpInst;
998   }
999 
1000   return I;
1001 }
1002 
1003 void InnerLoopVectorizer::setDebugLocFromInst(
1004     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1005   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1006   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1007     const DILocation *DIL = Inst->getDebugLoc();
1008 
1009     // When a FSDiscriminator is enabled, we don't need to add the multiply
1010     // factors to the discriminators.
1011     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1012         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1013       // FIXME: For scalable vectors, assume vscale=1.
1014       auto NewDIL =
1015           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1016       if (NewDIL)
1017         B->SetCurrentDebugLocation(NewDIL.getValue());
1018       else
1019         LLVM_DEBUG(dbgs()
1020                    << "Failed to create new discriminator: "
1021                    << DIL->getFilename() << " Line: " << DIL->getLine());
1022     } else
1023       B->SetCurrentDebugLocation(DIL);
1024   } else
1025     B->SetCurrentDebugLocation(DebugLoc());
1026 }
1027 
1028 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1029 /// is passed, the message relates to that particular instruction.
1030 #ifndef NDEBUG
1031 static void debugVectorizationMessage(const StringRef Prefix,
1032                                       const StringRef DebugMsg,
1033                                       Instruction *I) {
1034   dbgs() << "LV: " << Prefix << DebugMsg;
1035   if (I != nullptr)
1036     dbgs() << " " << *I;
1037   else
1038     dbgs() << '.';
1039   dbgs() << '\n';
1040 }
1041 #endif
1042 
1043 /// Create an analysis remark that explains why vectorization failed
1044 ///
1045 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1046 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1047 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1048 /// the location of the remark.  \return the remark object that can be
1049 /// streamed to.
1050 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1051     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1052   Value *CodeRegion = TheLoop->getHeader();
1053   DebugLoc DL = TheLoop->getStartLoc();
1054 
1055   if (I) {
1056     CodeRegion = I->getParent();
1057     // If there is no debug location attached to the instruction, revert back to
1058     // using the loop's.
1059     if (I->getDebugLoc())
1060       DL = I->getDebugLoc();
1061   }
1062 
1063   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1064 }
1065 
1066 namespace llvm {
1067 
1068 /// Return a value for Step multiplied by VF.
1069 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1070                        int64_t Step) {
1071   assert(Ty->isIntegerTy() && "Expected an integer step");
1072   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1073   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1074 }
1075 
1076 /// Return the runtime value for VF.
1077 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1078   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1079   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1080 }
1081 
1082 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1083   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1084   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1085   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1086   return B.CreateUIToFP(RuntimeVF, FTy);
1087 }
1088 
1089 void reportVectorizationFailure(const StringRef DebugMsg,
1090                                 const StringRef OREMsg, const StringRef ORETag,
1091                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1092                                 Instruction *I) {
1093   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1094   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1095   ORE->emit(
1096       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1097       << "loop not vectorized: " << OREMsg);
1098 }
1099 
1100 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1101                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1102                              Instruction *I) {
1103   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1104   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1105   ORE->emit(
1106       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1107       << Msg);
1108 }
1109 
1110 } // end namespace llvm
1111 
1112 #ifndef NDEBUG
1113 /// \return string containing a file name and a line # for the given loop.
1114 static std::string getDebugLocString(const Loop *L) {
1115   std::string Result;
1116   if (L) {
1117     raw_string_ostream OS(Result);
1118     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1119       LoopDbgLoc.print(OS);
1120     else
1121       // Just print the module name.
1122       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1123     OS.flush();
1124   }
1125   return Result;
1126 }
1127 #endif
1128 
1129 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1130                                          const Instruction *Orig) {
1131   // If the loop was versioned with memchecks, add the corresponding no-alias
1132   // metadata.
1133   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1134     LVer->annotateInstWithNoAlias(To, Orig);
1135 }
1136 
1137 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1138     VPTransformState &State) {
1139 
1140   // Collect recipes in the backward slice of `Root` that may generate a poison
1141   // value that is used after vectorization.
1142   SmallPtrSet<VPRecipeBase *, 16> Visited;
1143   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1144     SmallVector<VPRecipeBase *, 16> Worklist;
1145     Worklist.push_back(Root);
1146 
1147     // Traverse the backward slice of Root through its use-def chain.
1148     while (!Worklist.empty()) {
1149       VPRecipeBase *CurRec = Worklist.back();
1150       Worklist.pop_back();
1151 
1152       if (!Visited.insert(CurRec).second)
1153         continue;
1154 
1155       // Prune search if we find another recipe generating a widen memory
1156       // instruction. Widen memory instructions involved in address computation
1157       // will lead to gather/scatter instructions, which don't need to be
1158       // handled.
1159       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1160           isa<VPInterleaveRecipe>(CurRec) ||
1161           isa<VPCanonicalIVPHIRecipe>(CurRec))
1162         continue;
1163 
1164       // This recipe contributes to the address computation of a widen
1165       // load/store. Collect recipe if its underlying instruction has
1166       // poison-generating flags.
1167       Instruction *Instr = CurRec->getUnderlyingInstr();
1168       if (Instr && Instr->hasPoisonGeneratingFlags())
1169         State.MayGeneratePoisonRecipes.insert(CurRec);
1170 
1171       // Add new definitions to the worklist.
1172       for (VPValue *operand : CurRec->operands())
1173         if (VPDef *OpDef = operand->getDef())
1174           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1175     }
1176   });
1177 
1178   // Traverse all the recipes in the VPlan and collect the poison-generating
1179   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1180   // VPInterleaveRecipe.
1181   auto Iter = depth_first(
1182       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1183   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1184     for (VPRecipeBase &Recipe : *VPBB) {
1185       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1186         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1187         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1188         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1189             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1190           collectPoisonGeneratingInstrsInBackwardSlice(
1191               cast<VPRecipeBase>(AddrDef));
1192       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1193         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1194         if (AddrDef) {
1195           // Check if any member of the interleave group needs predication.
1196           const InterleaveGroup<Instruction> *InterGroup =
1197               InterleaveRec->getInterleaveGroup();
1198           bool NeedPredication = false;
1199           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1200                I < NumMembers; ++I) {
1201             Instruction *Member = InterGroup->getMember(I);
1202             if (Member)
1203               NeedPredication |=
1204                   Legal->blockNeedsPredication(Member->getParent());
1205           }
1206 
1207           if (NeedPredication)
1208             collectPoisonGeneratingInstrsInBackwardSlice(
1209                 cast<VPRecipeBase>(AddrDef));
1210         }
1211       }
1212     }
1213   }
1214 }
1215 
1216 void InnerLoopVectorizer::addMetadata(Instruction *To,
1217                                       Instruction *From) {
1218   propagateMetadata(To, From);
1219   addNewMetadata(To, From);
1220 }
1221 
1222 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1223                                       Instruction *From) {
1224   for (Value *V : To) {
1225     if (Instruction *I = dyn_cast<Instruction>(V))
1226       addMetadata(I, From);
1227   }
1228 }
1229 
1230 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1231     const RecurrenceDescriptor &RdxDesc) {
1232   auto It = ReductionResumeValues.find(&RdxDesc);
1233   assert(It != ReductionResumeValues.end() &&
1234          "Expected to find a resume value for the reduction.");
1235   return It->second;
1236 }
1237 
1238 namespace llvm {
1239 
1240 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1241 // lowered.
1242 enum ScalarEpilogueLowering {
1243 
1244   // The default: allowing scalar epilogues.
1245   CM_ScalarEpilogueAllowed,
1246 
1247   // Vectorization with OptForSize: don't allow epilogues.
1248   CM_ScalarEpilogueNotAllowedOptSize,
1249 
1250   // A special case of vectorisation with OptForSize: loops with a very small
1251   // trip count are considered for vectorization under OptForSize, thereby
1252   // making sure the cost of their loop body is dominant, free of runtime
1253   // guards and scalar iteration overheads.
1254   CM_ScalarEpilogueNotAllowedLowTripLoop,
1255 
1256   // Loop hint predicate indicating an epilogue is undesired.
1257   CM_ScalarEpilogueNotNeededUsePredicate,
1258 
1259   // Directive indicating we must either tail fold or not vectorize
1260   CM_ScalarEpilogueNotAllowedUsePredicate
1261 };
1262 
1263 /// ElementCountComparator creates a total ordering for ElementCount
1264 /// for the purposes of using it in a set structure.
1265 struct ElementCountComparator {
1266   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1267     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1268            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1269   }
1270 };
1271 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1272 
1273 /// LoopVectorizationCostModel - estimates the expected speedups due to
1274 /// vectorization.
1275 /// In many cases vectorization is not profitable. This can happen because of
1276 /// a number of reasons. In this class we mainly attempt to predict the
1277 /// expected speedup/slowdowns due to the supported instruction set. We use the
1278 /// TargetTransformInfo to query the different backends for the cost of
1279 /// different operations.
1280 class LoopVectorizationCostModel {
1281 public:
1282   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1283                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1284                              LoopVectorizationLegality *Legal,
1285                              const TargetTransformInfo &TTI,
1286                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1287                              AssumptionCache *AC,
1288                              OptimizationRemarkEmitter *ORE, const Function *F,
1289                              const LoopVectorizeHints *Hints,
1290                              InterleavedAccessInfo &IAI)
1291       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1292         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1293         Hints(Hints), InterleaveInfo(IAI) {}
1294 
1295   /// \return An upper bound for the vectorization factors (both fixed and
1296   /// scalable). If the factors are 0, vectorization and interleaving should be
1297   /// avoided up front.
1298   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1299 
1300   /// \return True if runtime checks are required for vectorization, and false
1301   /// otherwise.
1302   bool runtimeChecksRequired();
1303 
1304   /// \return The most profitable vectorization factor and the cost of that VF.
1305   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1306   /// then this vectorization factor will be selected if vectorization is
1307   /// possible.
1308   VectorizationFactor
1309   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1310 
1311   VectorizationFactor
1312   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1313                                     const LoopVectorizationPlanner &LVP);
1314 
1315   /// Setup cost-based decisions for user vectorization factor.
1316   /// \return true if the UserVF is a feasible VF to be chosen.
1317   bool selectUserVectorizationFactor(ElementCount UserVF) {
1318     collectUniformsAndScalars(UserVF);
1319     collectInstsToScalarize(UserVF);
1320     return expectedCost(UserVF).first.isValid();
1321   }
1322 
1323   /// \return The size (in bits) of the smallest and widest types in the code
1324   /// that needs to be vectorized. We ignore values that remain scalar such as
1325   /// 64 bit loop indices.
1326   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1327 
1328   /// \return The desired interleave count.
1329   /// If interleave count has been specified by metadata it will be returned.
1330   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1331   /// are the selected vectorization factor and the cost of the selected VF.
1332   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1333 
1334   /// Memory access instruction may be vectorized in more than one way.
1335   /// Form of instruction after vectorization depends on cost.
1336   /// This function takes cost-based decisions for Load/Store instructions
1337   /// and collects them in a map. This decisions map is used for building
1338   /// the lists of loop-uniform and loop-scalar instructions.
1339   /// The calculated cost is saved with widening decision in order to
1340   /// avoid redundant calculations.
1341   void setCostBasedWideningDecision(ElementCount VF);
1342 
1343   /// A struct that represents some properties of the register usage
1344   /// of a loop.
1345   struct RegisterUsage {
1346     /// Holds the number of loop invariant values that are used in the loop.
1347     /// The key is ClassID of target-provided register class.
1348     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1349     /// Holds the maximum number of concurrent live intervals in the loop.
1350     /// The key is ClassID of target-provided register class.
1351     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1352   };
1353 
1354   /// \return Returns information about the register usages of the loop for the
1355   /// given vectorization factors.
1356   SmallVector<RegisterUsage, 8>
1357   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1358 
1359   /// Collect values we want to ignore in the cost model.
1360   void collectValuesToIgnore();
1361 
1362   /// Collect all element types in the loop for which widening is needed.
1363   void collectElementTypesForWidening();
1364 
1365   /// Split reductions into those that happen in the loop, and those that happen
1366   /// outside. In loop reductions are collected into InLoopReductionChains.
1367   void collectInLoopReductions();
1368 
1369   /// Returns true if we should use strict in-order reductions for the given
1370   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1371   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1372   /// of FP operations.
1373   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1374     return !Hints->allowReordering() && RdxDesc.isOrdered();
1375   }
1376 
1377   /// \returns The smallest bitwidth each instruction can be represented with.
1378   /// The vector equivalents of these instructions should be truncated to this
1379   /// type.
1380   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1381     return MinBWs;
1382   }
1383 
1384   /// \returns True if it is more profitable to scalarize instruction \p I for
1385   /// vectorization factor \p VF.
1386   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1387     assert(VF.isVector() &&
1388            "Profitable to scalarize relevant only for VF > 1.");
1389 
1390     // Cost model is not run in the VPlan-native path - return conservative
1391     // result until this changes.
1392     if (EnableVPlanNativePath)
1393       return false;
1394 
1395     auto Scalars = InstsToScalarize.find(VF);
1396     assert(Scalars != InstsToScalarize.end() &&
1397            "VF not yet analyzed for scalarization profitability");
1398     return Scalars->second.find(I) != Scalars->second.end();
1399   }
1400 
1401   /// Returns true if \p I is known to be uniform after vectorization.
1402   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1403     if (VF.isScalar())
1404       return true;
1405 
1406     // Cost model is not run in the VPlan-native path - return conservative
1407     // result until this changes.
1408     if (EnableVPlanNativePath)
1409       return false;
1410 
1411     auto UniformsPerVF = Uniforms.find(VF);
1412     assert(UniformsPerVF != Uniforms.end() &&
1413            "VF not yet analyzed for uniformity");
1414     return UniformsPerVF->second.count(I);
1415   }
1416 
1417   /// Returns true if \p I is known to be scalar after vectorization.
1418   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1419     if (VF.isScalar())
1420       return true;
1421 
1422     // Cost model is not run in the VPlan-native path - return conservative
1423     // result until this changes.
1424     if (EnableVPlanNativePath)
1425       return false;
1426 
1427     auto ScalarsPerVF = Scalars.find(VF);
1428     assert(ScalarsPerVF != Scalars.end() &&
1429            "Scalar values are not calculated for VF");
1430     return ScalarsPerVF->second.count(I);
1431   }
1432 
1433   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1434   /// for vectorization factor \p VF.
1435   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1436     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1437            !isProfitableToScalarize(I, VF) &&
1438            !isScalarAfterVectorization(I, VF);
1439   }
1440 
1441   /// Decision that was taken during cost calculation for memory instruction.
1442   enum InstWidening {
1443     CM_Unknown,
1444     CM_Widen,         // For consecutive accesses with stride +1.
1445     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1446     CM_Interleave,
1447     CM_GatherScatter,
1448     CM_Scalarize
1449   };
1450 
1451   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1452   /// instruction \p I and vector width \p VF.
1453   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1454                            InstructionCost Cost) {
1455     assert(VF.isVector() && "Expected VF >=2");
1456     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1457   }
1458 
1459   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1460   /// interleaving group \p Grp and vector width \p VF.
1461   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1462                            ElementCount VF, InstWidening W,
1463                            InstructionCost Cost) {
1464     assert(VF.isVector() && "Expected VF >=2");
1465     /// Broadcast this decicion to all instructions inside the group.
1466     /// But the cost will be assigned to one instruction only.
1467     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1468       if (auto *I = Grp->getMember(i)) {
1469         if (Grp->getInsertPos() == I)
1470           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1471         else
1472           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1473       }
1474     }
1475   }
1476 
1477   /// Return the cost model decision for the given instruction \p I and vector
1478   /// width \p VF. Return CM_Unknown if this instruction did not pass
1479   /// through the cost modeling.
1480   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1481     assert(VF.isVector() && "Expected VF to be a vector VF");
1482     // Cost model is not run in the VPlan-native path - return conservative
1483     // result until this changes.
1484     if (EnableVPlanNativePath)
1485       return CM_GatherScatter;
1486 
1487     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1488     auto Itr = WideningDecisions.find(InstOnVF);
1489     if (Itr == WideningDecisions.end())
1490       return CM_Unknown;
1491     return Itr->second.first;
1492   }
1493 
1494   /// Return the vectorization cost for the given instruction \p I and vector
1495   /// width \p VF.
1496   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1497     assert(VF.isVector() && "Expected VF >=2");
1498     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1499     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1500            "The cost is not calculated");
1501     return WideningDecisions[InstOnVF].second;
1502   }
1503 
1504   /// Return True if instruction \p I is an optimizable truncate whose operand
1505   /// is an induction variable. Such a truncate will be removed by adding a new
1506   /// induction variable with the destination type.
1507   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1508     // If the instruction is not a truncate, return false.
1509     auto *Trunc = dyn_cast<TruncInst>(I);
1510     if (!Trunc)
1511       return false;
1512 
1513     // Get the source and destination types of the truncate.
1514     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1515     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1516 
1517     // If the truncate is free for the given types, return false. Replacing a
1518     // free truncate with an induction variable would add an induction variable
1519     // update instruction to each iteration of the loop. We exclude from this
1520     // check the primary induction variable since it will need an update
1521     // instruction regardless.
1522     Value *Op = Trunc->getOperand(0);
1523     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1524       return false;
1525 
1526     // If the truncated value is not an induction variable, return false.
1527     return Legal->isInductionPhi(Op);
1528   }
1529 
1530   /// Collects the instructions to scalarize for each predicated instruction in
1531   /// the loop.
1532   void collectInstsToScalarize(ElementCount VF);
1533 
1534   /// Collect Uniform and Scalar values for the given \p VF.
1535   /// The sets depend on CM decision for Load/Store instructions
1536   /// that may be vectorized as interleave, gather-scatter or scalarized.
1537   void collectUniformsAndScalars(ElementCount VF) {
1538     // Do the analysis once.
1539     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1540       return;
1541     setCostBasedWideningDecision(VF);
1542     collectLoopUniforms(VF);
1543     collectLoopScalars(VF);
1544   }
1545 
1546   /// Returns true if the target machine supports masked store operation
1547   /// for the given \p DataType and kind of access to \p Ptr.
1548   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1549     return Legal->isConsecutivePtr(DataType, Ptr) &&
1550            TTI.isLegalMaskedStore(DataType, Alignment);
1551   }
1552 
1553   /// Returns true if the target machine supports masked load operation
1554   /// for the given \p DataType and kind of access to \p Ptr.
1555   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1556     return Legal->isConsecutivePtr(DataType, Ptr) &&
1557            TTI.isLegalMaskedLoad(DataType, Alignment);
1558   }
1559 
1560   /// Returns true if the target machine can represent \p V as a masked gather
1561   /// or scatter operation.
1562   bool isLegalGatherOrScatter(Value *V,
1563                               ElementCount VF = ElementCount::getFixed(1)) {
1564     bool LI = isa<LoadInst>(V);
1565     bool SI = isa<StoreInst>(V);
1566     if (!LI && !SI)
1567       return false;
1568     auto *Ty = getLoadStoreType(V);
1569     Align Align = getLoadStoreAlignment(V);
1570     if (VF.isVector())
1571       Ty = VectorType::get(Ty, VF);
1572     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1573            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1574   }
1575 
1576   /// Returns true if the target machine supports all of the reduction
1577   /// variables found for the given VF.
1578   bool canVectorizeReductions(ElementCount VF) const {
1579     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1580       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1581       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1582     }));
1583   }
1584 
1585   /// Returns true if \p I is an instruction that will be scalarized with
1586   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1587   /// instructions include conditional stores and instructions that may divide
1588   /// by zero.
1589   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1590 
1591   // Returns true if \p I is an instruction that will be predicated either
1592   // through scalar predication or masked load/store or masked gather/scatter.
1593   // \p VF is the vectorization factor that will be used to vectorize \p I.
1594   // Superset of instructions that return true for isScalarWithPredication.
1595   bool isPredicatedInst(Instruction *I, ElementCount VF,
1596                         bool IsKnownUniform = false) {
1597     // When we know the load is uniform and the original scalar loop was not
1598     // predicated we don't need to mark it as a predicated instruction. Any
1599     // vectorised blocks created when tail-folding are something artificial we
1600     // have introduced and we know there is always at least one active lane.
1601     // That's why we call Legal->blockNeedsPredication here because it doesn't
1602     // query tail-folding.
1603     if (IsKnownUniform && isa<LoadInst>(I) &&
1604         !Legal->blockNeedsPredication(I->getParent()))
1605       return false;
1606     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1607       return false;
1608     // Loads and stores that need some form of masked operation are predicated
1609     // instructions.
1610     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1611       return Legal->isMaskRequired(I);
1612     return isScalarWithPredication(I, VF);
1613   }
1614 
1615   /// Returns true if \p I is a memory instruction with consecutive memory
1616   /// access that can be widened.
1617   bool
1618   memoryInstructionCanBeWidened(Instruction *I,
1619                                 ElementCount VF = ElementCount::getFixed(1));
1620 
1621   /// Returns true if \p I is a memory instruction in an interleaved-group
1622   /// of memory accesses that can be vectorized with wide vector loads/stores
1623   /// and shuffles.
1624   bool
1625   interleavedAccessCanBeWidened(Instruction *I,
1626                                 ElementCount VF = ElementCount::getFixed(1));
1627 
1628   /// Check if \p Instr belongs to any interleaved access group.
1629   bool isAccessInterleaved(Instruction *Instr) {
1630     return InterleaveInfo.isInterleaved(Instr);
1631   }
1632 
1633   /// Get the interleaved access group that \p Instr belongs to.
1634   const InterleaveGroup<Instruction> *
1635   getInterleavedAccessGroup(Instruction *Instr) {
1636     return InterleaveInfo.getInterleaveGroup(Instr);
1637   }
1638 
1639   /// Returns true if we're required to use a scalar epilogue for at least
1640   /// the final iteration of the original loop.
1641   bool requiresScalarEpilogue(ElementCount VF) const {
1642     if (!isScalarEpilogueAllowed())
1643       return false;
1644     // If we might exit from anywhere but the latch, must run the exiting
1645     // iteration in scalar form.
1646     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1647       return true;
1648     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1649   }
1650 
1651   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1652   /// loop hint annotation.
1653   bool isScalarEpilogueAllowed() const {
1654     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1655   }
1656 
1657   /// Returns true if all loop blocks should be masked to fold tail loop.
1658   bool foldTailByMasking() const { return FoldTailByMasking; }
1659 
1660   /// Returns true if the instructions in this block requires predication
1661   /// for any reason, e.g. because tail folding now requires a predicate
1662   /// or because the block in the original loop was predicated.
1663   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1664     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1665   }
1666 
1667   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1668   /// nodes to the chain of instructions representing the reductions. Uses a
1669   /// MapVector to ensure deterministic iteration order.
1670   using ReductionChainMap =
1671       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1672 
1673   /// Return the chain of instructions representing an inloop reduction.
1674   const ReductionChainMap &getInLoopReductionChains() const {
1675     return InLoopReductionChains;
1676   }
1677 
1678   /// Returns true if the Phi is part of an inloop reduction.
1679   bool isInLoopReduction(PHINode *Phi) const {
1680     return InLoopReductionChains.count(Phi);
1681   }
1682 
1683   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1684   /// with factor VF.  Return the cost of the instruction, including
1685   /// scalarization overhead if it's needed.
1686   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1687 
1688   /// Estimate cost of a call instruction CI if it were vectorized with factor
1689   /// VF. Return the cost of the instruction, including scalarization overhead
1690   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1691   /// scalarized -
1692   /// i.e. either vector version isn't available, or is too expensive.
1693   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1694                                     bool &NeedToScalarize) const;
1695 
1696   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1697   /// that of B.
1698   bool isMoreProfitable(const VectorizationFactor &A,
1699                         const VectorizationFactor &B) const;
1700 
1701   /// Invalidates decisions already taken by the cost model.
1702   void invalidateCostModelingDecisions() {
1703     WideningDecisions.clear();
1704     Uniforms.clear();
1705     Scalars.clear();
1706   }
1707 
1708 private:
1709   unsigned NumPredStores = 0;
1710 
1711   /// \return An upper bound for the vectorization factors for both
1712   /// fixed and scalable vectorization, where the minimum-known number of
1713   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1714   /// disabled or unsupported, then the scalable part will be equal to
1715   /// ElementCount::getScalable(0).
1716   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1717                                            ElementCount UserVF,
1718                                            bool FoldTailByMasking);
1719 
1720   /// \return the maximized element count based on the targets vector
1721   /// registers and the loop trip-count, but limited to a maximum safe VF.
1722   /// This is a helper function of computeFeasibleMaxVF.
1723   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1724   /// issue that occurred on one of the buildbots which cannot be reproduced
1725   /// without having access to the properietary compiler (see comments on
1726   /// D98509). The issue is currently under investigation and this workaround
1727   /// will be removed as soon as possible.
1728   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1729                                        unsigned SmallestType,
1730                                        unsigned WidestType,
1731                                        const ElementCount &MaxSafeVF,
1732                                        bool FoldTailByMasking);
1733 
1734   /// \return the maximum legal scalable VF, based on the safe max number
1735   /// of elements.
1736   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1737 
1738   /// The vectorization cost is a combination of the cost itself and a boolean
1739   /// indicating whether any of the contributing operations will actually
1740   /// operate on vector values after type legalization in the backend. If this
1741   /// latter value is false, then all operations will be scalarized (i.e. no
1742   /// vectorization has actually taken place).
1743   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1744 
1745   /// Returns the expected execution cost. The unit of the cost does
1746   /// not matter because we use the 'cost' units to compare different
1747   /// vector widths. The cost that is returned is *not* normalized by
1748   /// the factor width. If \p Invalid is not nullptr, this function
1749   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1750   /// each instruction that has an Invalid cost for the given VF.
1751   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1752   VectorizationCostTy
1753   expectedCost(ElementCount VF,
1754                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1755 
1756   /// Returns the execution time cost of an instruction for a given vector
1757   /// width. Vector width of one means scalar.
1758   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1759 
1760   /// The cost-computation logic from getInstructionCost which provides
1761   /// the vector type as an output parameter.
1762   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1763                                      Type *&VectorTy);
1764 
1765   /// Return the cost of instructions in an inloop reduction pattern, if I is
1766   /// part of that pattern.
1767   Optional<InstructionCost>
1768   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1769                           TTI::TargetCostKind CostKind);
1770 
1771   /// Calculate vectorization cost of memory instruction \p I.
1772   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1773 
1774   /// The cost computation for scalarized memory instruction.
1775   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1776 
1777   /// The cost computation for interleaving group of memory instructions.
1778   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1779 
1780   /// The cost computation for Gather/Scatter instruction.
1781   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1782 
1783   /// The cost computation for widening instruction \p I with consecutive
1784   /// memory access.
1785   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1786 
1787   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1788   /// Load: scalar load + broadcast.
1789   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1790   /// element)
1791   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1792 
1793   /// Estimate the overhead of scalarizing an instruction. This is a
1794   /// convenience wrapper for the type-based getScalarizationOverhead API.
1795   InstructionCost getScalarizationOverhead(Instruction *I,
1796                                            ElementCount VF) const;
1797 
1798   /// Returns whether the instruction is a load or store and will be a emitted
1799   /// as a vector operation.
1800   bool isConsecutiveLoadOrStore(Instruction *I);
1801 
1802   /// Returns true if an artificially high cost for emulated masked memrefs
1803   /// should be used.
1804   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1805 
1806   /// Map of scalar integer values to the smallest bitwidth they can be legally
1807   /// represented as. The vector equivalents of these values should be truncated
1808   /// to this type.
1809   MapVector<Instruction *, uint64_t> MinBWs;
1810 
1811   /// A type representing the costs for instructions if they were to be
1812   /// scalarized rather than vectorized. The entries are Instruction-Cost
1813   /// pairs.
1814   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1815 
1816   /// A set containing all BasicBlocks that are known to present after
1817   /// vectorization as a predicated block.
1818   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1819 
1820   /// Records whether it is allowed to have the original scalar loop execute at
1821   /// least once. This may be needed as a fallback loop in case runtime
1822   /// aliasing/dependence checks fail, or to handle the tail/remainder
1823   /// iterations when the trip count is unknown or doesn't divide by the VF,
1824   /// or as a peel-loop to handle gaps in interleave-groups.
1825   /// Under optsize and when the trip count is very small we don't allow any
1826   /// iterations to execute in the scalar loop.
1827   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1828 
1829   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1830   bool FoldTailByMasking = false;
1831 
1832   /// A map holding scalar costs for different vectorization factors. The
1833   /// presence of a cost for an instruction in the mapping indicates that the
1834   /// instruction will be scalarized when vectorizing with the associated
1835   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1836   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1837 
1838   /// Holds the instructions known to be uniform after vectorization.
1839   /// The data is collected per VF.
1840   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1841 
1842   /// Holds the instructions known to be scalar after vectorization.
1843   /// The data is collected per VF.
1844   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1845 
1846   /// Holds the instructions (address computations) that are forced to be
1847   /// scalarized.
1848   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1849 
1850   /// PHINodes of the reductions that should be expanded in-loop along with
1851   /// their associated chains of reduction operations, in program order from top
1852   /// (PHI) to bottom
1853   ReductionChainMap InLoopReductionChains;
1854 
1855   /// A Map of inloop reduction operations and their immediate chain operand.
1856   /// FIXME: This can be removed once reductions can be costed correctly in
1857   /// vplan. This was added to allow quick lookup to the inloop operations,
1858   /// without having to loop through InLoopReductionChains.
1859   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1860 
1861   /// Returns the expected difference in cost from scalarizing the expression
1862   /// feeding a predicated instruction \p PredInst. The instructions to
1863   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1864   /// non-negative return value implies the expression will be scalarized.
1865   /// Currently, only single-use chains are considered for scalarization.
1866   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1867                               ElementCount VF);
1868 
1869   /// Collect the instructions that are uniform after vectorization. An
1870   /// instruction is uniform if we represent it with a single scalar value in
1871   /// the vectorized loop corresponding to each vector iteration. Examples of
1872   /// uniform instructions include pointer operands of consecutive or
1873   /// interleaved memory accesses. Note that although uniformity implies an
1874   /// instruction will be scalar, the reverse is not true. In general, a
1875   /// scalarized instruction will be represented by VF scalar values in the
1876   /// vectorized loop, each corresponding to an iteration of the original
1877   /// scalar loop.
1878   void collectLoopUniforms(ElementCount VF);
1879 
1880   /// Collect the instructions that are scalar after vectorization. An
1881   /// instruction is scalar if it is known to be uniform or will be scalarized
1882   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1883   /// to the list if they are used by a load/store instruction that is marked as
1884   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1885   /// VF values in the vectorized loop, each corresponding to an iteration of
1886   /// the original scalar loop.
1887   void collectLoopScalars(ElementCount VF);
1888 
1889   /// Keeps cost model vectorization decision and cost for instructions.
1890   /// Right now it is used for memory instructions only.
1891   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1892                                 std::pair<InstWidening, InstructionCost>>;
1893 
1894   DecisionList WideningDecisions;
1895 
1896   /// Returns true if \p V is expected to be vectorized and it needs to be
1897   /// extracted.
1898   bool needsExtract(Value *V, ElementCount VF) const {
1899     Instruction *I = dyn_cast<Instruction>(V);
1900     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1901         TheLoop->isLoopInvariant(I))
1902       return false;
1903 
1904     // Assume we can vectorize V (and hence we need extraction) if the
1905     // scalars are not computed yet. This can happen, because it is called
1906     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1907     // the scalars are collected. That should be a safe assumption in most
1908     // cases, because we check if the operands have vectorizable types
1909     // beforehand in LoopVectorizationLegality.
1910     return Scalars.find(VF) == Scalars.end() ||
1911            !isScalarAfterVectorization(I, VF);
1912   };
1913 
1914   /// Returns a range containing only operands needing to be extracted.
1915   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1916                                                    ElementCount VF) const {
1917     return SmallVector<Value *, 4>(make_filter_range(
1918         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1919   }
1920 
1921   /// Determines if we have the infrastructure to vectorize loop \p L and its
1922   /// epilogue, assuming the main loop is vectorized by \p VF.
1923   bool isCandidateForEpilogueVectorization(const Loop &L,
1924                                            const ElementCount VF) const;
1925 
1926   /// Returns true if epilogue vectorization is considered profitable, and
1927   /// false otherwise.
1928   /// \p VF is the vectorization factor chosen for the original loop.
1929   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1930 
1931 public:
1932   /// The loop that we evaluate.
1933   Loop *TheLoop;
1934 
1935   /// Predicated scalar evolution analysis.
1936   PredicatedScalarEvolution &PSE;
1937 
1938   /// Loop Info analysis.
1939   LoopInfo *LI;
1940 
1941   /// Vectorization legality.
1942   LoopVectorizationLegality *Legal;
1943 
1944   /// Vector target information.
1945   const TargetTransformInfo &TTI;
1946 
1947   /// Target Library Info.
1948   const TargetLibraryInfo *TLI;
1949 
1950   /// Demanded bits analysis.
1951   DemandedBits *DB;
1952 
1953   /// Assumption cache.
1954   AssumptionCache *AC;
1955 
1956   /// Interface to emit optimization remarks.
1957   OptimizationRemarkEmitter *ORE;
1958 
1959   const Function *TheFunction;
1960 
1961   /// Loop Vectorize Hint.
1962   const LoopVectorizeHints *Hints;
1963 
1964   /// The interleave access information contains groups of interleaved accesses
1965   /// with the same stride and close to each other.
1966   InterleavedAccessInfo &InterleaveInfo;
1967 
1968   /// Values to ignore in the cost model.
1969   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1970 
1971   /// Values to ignore in the cost model when VF > 1.
1972   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1973 
1974   /// All element types found in the loop.
1975   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1976 
1977   /// Profitable vector factors.
1978   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1979 };
1980 } // end namespace llvm
1981 
1982 /// Helper struct to manage generating runtime checks for vectorization.
1983 ///
1984 /// The runtime checks are created up-front in temporary blocks to allow better
1985 /// estimating the cost and un-linked from the existing IR. After deciding to
1986 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1987 /// temporary blocks are completely removed.
1988 class GeneratedRTChecks {
1989   /// Basic block which contains the generated SCEV checks, if any.
1990   BasicBlock *SCEVCheckBlock = nullptr;
1991 
1992   /// The value representing the result of the generated SCEV checks. If it is
1993   /// nullptr, either no SCEV checks have been generated or they have been used.
1994   Value *SCEVCheckCond = nullptr;
1995 
1996   /// Basic block which contains the generated memory runtime checks, if any.
1997   BasicBlock *MemCheckBlock = nullptr;
1998 
1999   /// The value representing the result of the generated memory runtime checks.
2000   /// If it is nullptr, either no memory runtime checks have been generated or
2001   /// they have been used.
2002   Value *MemRuntimeCheckCond = nullptr;
2003 
2004   DominatorTree *DT;
2005   LoopInfo *LI;
2006 
2007   SCEVExpander SCEVExp;
2008   SCEVExpander MemCheckExp;
2009 
2010 public:
2011   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
2012                     const DataLayout &DL)
2013       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
2014         MemCheckExp(SE, DL, "scev.check") {}
2015 
2016   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
2017   /// accurately estimate the cost of the runtime checks. The blocks are
2018   /// un-linked from the IR and is added back during vector code generation. If
2019   /// there is no vector code generation, the check blocks are removed
2020   /// completely.
2021   void Create(Loop *L, const LoopAccessInfo &LAI,
2022               const SCEVUnionPredicate &UnionPred) {
2023 
2024     BasicBlock *LoopHeader = L->getHeader();
2025     BasicBlock *Preheader = L->getLoopPreheader();
2026 
2027     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2028     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2029     // may be used by SCEVExpander. The blocks will be un-linked from their
2030     // predecessors and removed from LI & DT at the end of the function.
2031     if (!UnionPred.isAlwaysTrue()) {
2032       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2033                                   nullptr, "vector.scevcheck");
2034 
2035       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2036           &UnionPred, SCEVCheckBlock->getTerminator());
2037     }
2038 
2039     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2040     if (RtPtrChecking.Need) {
2041       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2042       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2043                                  "vector.memcheck");
2044 
2045       MemRuntimeCheckCond =
2046           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2047                            RtPtrChecking.getChecks(), MemCheckExp);
2048       assert(MemRuntimeCheckCond &&
2049              "no RT checks generated although RtPtrChecking "
2050              "claimed checks are required");
2051     }
2052 
2053     if (!MemCheckBlock && !SCEVCheckBlock)
2054       return;
2055 
2056     // Unhook the temporary block with the checks, update various places
2057     // accordingly.
2058     if (SCEVCheckBlock)
2059       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2060     if (MemCheckBlock)
2061       MemCheckBlock->replaceAllUsesWith(Preheader);
2062 
2063     if (SCEVCheckBlock) {
2064       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2065       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2066       Preheader->getTerminator()->eraseFromParent();
2067     }
2068     if (MemCheckBlock) {
2069       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2070       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2071       Preheader->getTerminator()->eraseFromParent();
2072     }
2073 
2074     DT->changeImmediateDominator(LoopHeader, Preheader);
2075     if (MemCheckBlock) {
2076       DT->eraseNode(MemCheckBlock);
2077       LI->removeBlock(MemCheckBlock);
2078     }
2079     if (SCEVCheckBlock) {
2080       DT->eraseNode(SCEVCheckBlock);
2081       LI->removeBlock(SCEVCheckBlock);
2082     }
2083   }
2084 
2085   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2086   /// unused.
2087   ~GeneratedRTChecks() {
2088     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2089     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2090     if (!SCEVCheckCond)
2091       SCEVCleaner.markResultUsed();
2092 
2093     if (!MemRuntimeCheckCond)
2094       MemCheckCleaner.markResultUsed();
2095 
2096     if (MemRuntimeCheckCond) {
2097       auto &SE = *MemCheckExp.getSE();
2098       // Memory runtime check generation creates compares that use expanded
2099       // values. Remove them before running the SCEVExpanderCleaners.
2100       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2101         if (MemCheckExp.isInsertedInstruction(&I))
2102           continue;
2103         SE.forgetValue(&I);
2104         I.eraseFromParent();
2105       }
2106     }
2107     MemCheckCleaner.cleanup();
2108     SCEVCleaner.cleanup();
2109 
2110     if (SCEVCheckCond)
2111       SCEVCheckBlock->eraseFromParent();
2112     if (MemRuntimeCheckCond)
2113       MemCheckBlock->eraseFromParent();
2114   }
2115 
2116   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2117   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2118   /// depending on the generated condition.
2119   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2120                              BasicBlock *LoopVectorPreHeader,
2121                              BasicBlock *LoopExitBlock) {
2122     if (!SCEVCheckCond)
2123       return nullptr;
2124     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2125       if (C->isZero())
2126         return nullptr;
2127 
2128     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2129 
2130     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2131     // Create new preheader for vector loop.
2132     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2133       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2134 
2135     SCEVCheckBlock->getTerminator()->eraseFromParent();
2136     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2137     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2138                                                 SCEVCheckBlock);
2139 
2140     DT->addNewBlock(SCEVCheckBlock, Pred);
2141     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2142 
2143     ReplaceInstWithInst(
2144         SCEVCheckBlock->getTerminator(),
2145         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2146     // Mark the check as used, to prevent it from being removed during cleanup.
2147     SCEVCheckCond = nullptr;
2148     return SCEVCheckBlock;
2149   }
2150 
2151   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2152   /// the branches to branch to the vector preheader or \p Bypass, depending on
2153   /// the generated condition.
2154   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2155                                    BasicBlock *LoopVectorPreHeader) {
2156     // Check if we generated code that checks in runtime if arrays overlap.
2157     if (!MemRuntimeCheckCond)
2158       return nullptr;
2159 
2160     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2161     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2162                                                 MemCheckBlock);
2163 
2164     DT->addNewBlock(MemCheckBlock, Pred);
2165     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2166     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2167 
2168     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2169       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2170 
2171     ReplaceInstWithInst(
2172         MemCheckBlock->getTerminator(),
2173         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2174     MemCheckBlock->getTerminator()->setDebugLoc(
2175         Pred->getTerminator()->getDebugLoc());
2176 
2177     // Mark the check as used, to prevent it from being removed during cleanup.
2178     MemRuntimeCheckCond = nullptr;
2179     return MemCheckBlock;
2180   }
2181 };
2182 
2183 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2184 // vectorization. The loop needs to be annotated with #pragma omp simd
2185 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2186 // vector length information is not provided, vectorization is not considered
2187 // explicit. Interleave hints are not allowed either. These limitations will be
2188 // relaxed in the future.
2189 // Please, note that we are currently forced to abuse the pragma 'clang
2190 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2191 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2192 // provides *explicit vectorization hints* (LV can bypass legal checks and
2193 // assume that vectorization is legal). However, both hints are implemented
2194 // using the same metadata (llvm.loop.vectorize, processed by
2195 // LoopVectorizeHints). This will be fixed in the future when the native IR
2196 // representation for pragma 'omp simd' is introduced.
2197 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2198                                    OptimizationRemarkEmitter *ORE) {
2199   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2200   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2201 
2202   // Only outer loops with an explicit vectorization hint are supported.
2203   // Unannotated outer loops are ignored.
2204   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2205     return false;
2206 
2207   Function *Fn = OuterLp->getHeader()->getParent();
2208   if (!Hints.allowVectorization(Fn, OuterLp,
2209                                 true /*VectorizeOnlyWhenForced*/)) {
2210     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2211     return false;
2212   }
2213 
2214   if (Hints.getInterleave() > 1) {
2215     // TODO: Interleave support is future work.
2216     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2217                          "outer loops.\n");
2218     Hints.emitRemarkWithHints();
2219     return false;
2220   }
2221 
2222   return true;
2223 }
2224 
2225 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2226                                   OptimizationRemarkEmitter *ORE,
2227                                   SmallVectorImpl<Loop *> &V) {
2228   // Collect inner loops and outer loops without irreducible control flow. For
2229   // now, only collect outer loops that have explicit vectorization hints. If we
2230   // are stress testing the VPlan H-CFG construction, we collect the outermost
2231   // loop of every loop nest.
2232   if (L.isInnermost() || VPlanBuildStressTest ||
2233       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2234     LoopBlocksRPO RPOT(&L);
2235     RPOT.perform(LI);
2236     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2237       V.push_back(&L);
2238       // TODO: Collect inner loops inside marked outer loops in case
2239       // vectorization fails for the outer loop. Do not invoke
2240       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2241       // already known to be reducible. We can use an inherited attribute for
2242       // that.
2243       return;
2244     }
2245   }
2246   for (Loop *InnerL : L)
2247     collectSupportedLoops(*InnerL, LI, ORE, V);
2248 }
2249 
2250 namespace {
2251 
2252 /// The LoopVectorize Pass.
2253 struct LoopVectorize : public FunctionPass {
2254   /// Pass identification, replacement for typeid
2255   static char ID;
2256 
2257   LoopVectorizePass Impl;
2258 
2259   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2260                          bool VectorizeOnlyWhenForced = false)
2261       : FunctionPass(ID),
2262         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2263     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2264   }
2265 
2266   bool runOnFunction(Function &F) override {
2267     if (skipFunction(F))
2268       return false;
2269 
2270     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2271     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2272     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2273     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2274     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2275     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2276     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2277     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2278     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2279     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2280     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2281     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2282     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2283 
2284     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2285         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2286 
2287     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2288                         GetLAA, *ORE, PSI).MadeAnyChange;
2289   }
2290 
2291   void getAnalysisUsage(AnalysisUsage &AU) const override {
2292     AU.addRequired<AssumptionCacheTracker>();
2293     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2294     AU.addRequired<DominatorTreeWrapperPass>();
2295     AU.addRequired<LoopInfoWrapperPass>();
2296     AU.addRequired<ScalarEvolutionWrapperPass>();
2297     AU.addRequired<TargetTransformInfoWrapperPass>();
2298     AU.addRequired<AAResultsWrapperPass>();
2299     AU.addRequired<LoopAccessLegacyAnalysis>();
2300     AU.addRequired<DemandedBitsWrapperPass>();
2301     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2302     AU.addRequired<InjectTLIMappingsLegacy>();
2303 
2304     // We currently do not preserve loopinfo/dominator analyses with outer loop
2305     // vectorization. Until this is addressed, mark these analyses as preserved
2306     // only for non-VPlan-native path.
2307     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2308     if (!EnableVPlanNativePath) {
2309       AU.addPreserved<LoopInfoWrapperPass>();
2310       AU.addPreserved<DominatorTreeWrapperPass>();
2311     }
2312 
2313     AU.addPreserved<BasicAAWrapperPass>();
2314     AU.addPreserved<GlobalsAAWrapperPass>();
2315     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2316   }
2317 };
2318 
2319 } // end anonymous namespace
2320 
2321 //===----------------------------------------------------------------------===//
2322 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2323 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2324 //===----------------------------------------------------------------------===//
2325 
2326 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2327   // We need to place the broadcast of invariant variables outside the loop,
2328   // but only if it's proven safe to do so. Else, broadcast will be inside
2329   // vector loop body.
2330   Instruction *Instr = dyn_cast<Instruction>(V);
2331   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2332                      (!Instr ||
2333                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2334   // Place the code for broadcasting invariant variables in the new preheader.
2335   IRBuilder<>::InsertPointGuard Guard(Builder);
2336   if (SafeToHoist)
2337     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2338 
2339   // Broadcast the scalar into all locations in the vector.
2340   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2341 
2342   return Shuf;
2343 }
2344 
2345 /// This function adds
2346 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2347 /// to each vector element of Val. The sequence starts at StartIndex.
2348 /// \p Opcode is relevant for FP induction variable.
2349 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2350                             Instruction::BinaryOps BinOp, ElementCount VF,
2351                             IRBuilder<> &Builder) {
2352   assert(VF.isVector() && "only vector VFs are supported");
2353 
2354   // Create and check the types.
2355   auto *ValVTy = cast<VectorType>(Val->getType());
2356   ElementCount VLen = ValVTy->getElementCount();
2357 
2358   Type *STy = Val->getType()->getScalarType();
2359   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2360          "Induction Step must be an integer or FP");
2361   assert(Step->getType() == STy && "Step has wrong type");
2362 
2363   SmallVector<Constant *, 8> Indices;
2364 
2365   // Create a vector of consecutive numbers from zero to VF.
2366   VectorType *InitVecValVTy = ValVTy;
2367   Type *InitVecValSTy = STy;
2368   if (STy->isFloatingPointTy()) {
2369     InitVecValSTy =
2370         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2371     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2372   }
2373   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2374 
2375   // Splat the StartIdx
2376   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2377 
2378   if (STy->isIntegerTy()) {
2379     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2380     Step = Builder.CreateVectorSplat(VLen, Step);
2381     assert(Step->getType() == Val->getType() && "Invalid step vec");
2382     // FIXME: The newly created binary instructions should contain nsw/nuw
2383     // flags, which can be found from the original scalar operations.
2384     Step = Builder.CreateMul(InitVec, Step);
2385     return Builder.CreateAdd(Val, Step, "induction");
2386   }
2387 
2388   // Floating point induction.
2389   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2390          "Binary Opcode should be specified for FP induction");
2391   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2392   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2393 
2394   Step = Builder.CreateVectorSplat(VLen, Step);
2395   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2396   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2397 }
2398 
2399 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2400     const InductionDescriptor &II, Value *Step, Value *Start,
2401     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2402   IRBuilder<> &Builder = State.Builder;
2403   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2404          "Expected either an induction phi-node or a truncate of it!");
2405 
2406   // Construct the initial value of the vector IV in the vector loop preheader
2407   auto CurrIP = Builder.saveIP();
2408   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2409   if (isa<TruncInst>(EntryVal)) {
2410     assert(Start->getType()->isIntegerTy() &&
2411            "Truncation requires an integer type");
2412     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2413     Step = Builder.CreateTrunc(Step, TruncType);
2414     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2415   }
2416 
2417   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2418   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2419   Value *SteppedStart = getStepVector(
2420       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2421 
2422   // We create vector phi nodes for both integer and floating-point induction
2423   // variables. Here, we determine the kind of arithmetic we will perform.
2424   Instruction::BinaryOps AddOp;
2425   Instruction::BinaryOps MulOp;
2426   if (Step->getType()->isIntegerTy()) {
2427     AddOp = Instruction::Add;
2428     MulOp = Instruction::Mul;
2429   } else {
2430     AddOp = II.getInductionOpcode();
2431     MulOp = Instruction::FMul;
2432   }
2433 
2434   // Multiply the vectorization factor by the step using integer or
2435   // floating-point arithmetic as appropriate.
2436   Type *StepType = Step->getType();
2437   Value *RuntimeVF;
2438   if (Step->getType()->isFloatingPointTy())
2439     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2440   else
2441     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2442   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2443 
2444   // Create a vector splat to use in the induction update.
2445   //
2446   // FIXME: If the step is non-constant, we create the vector splat with
2447   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2448   //        handle a constant vector splat.
2449   Value *SplatVF = isa<Constant>(Mul)
2450                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2451                        : Builder.CreateVectorSplat(State.VF, Mul);
2452   Builder.restoreIP(CurrIP);
2453 
2454   // We may need to add the step a number of times, depending on the unroll
2455   // factor. The last of those goes into the PHI.
2456   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2457                                     &*LoopVectorBody->getFirstInsertionPt());
2458   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2459   Instruction *LastInduction = VecInd;
2460   for (unsigned Part = 0; Part < UF; ++Part) {
2461     State.set(Def, LastInduction, Part);
2462 
2463     if (isa<TruncInst>(EntryVal))
2464       addMetadata(LastInduction, EntryVal);
2465 
2466     LastInduction = cast<Instruction>(
2467         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2468     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2469   }
2470 
2471   // Move the last step to the end of the latch block. This ensures consistent
2472   // placement of all induction updates.
2473   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2474   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2475   LastInduction->moveBefore(Br);
2476   LastInduction->setName("vec.ind.next");
2477 
2478   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2479   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2480 }
2481 
2482 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2483   return Cost->isScalarAfterVectorization(I, VF) ||
2484          Cost->isProfitableToScalarize(I, VF);
2485 }
2486 
2487 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2488   if (shouldScalarizeInstruction(IV))
2489     return true;
2490   auto isScalarInst = [&](User *U) -> bool {
2491     auto *I = cast<Instruction>(U);
2492     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2493   };
2494   return llvm::any_of(IV->users(), isScalarInst);
2495 }
2496 
2497 void InnerLoopVectorizer::widenIntOrFpInduction(
2498     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2499     Value *CanonicalIV) {
2500   Value *Start = Def->getStartValue()->getLiveInIRValue();
2501   const InductionDescriptor &ID = Def->getInductionDescriptor();
2502   TruncInst *Trunc = Def->getTruncInst();
2503   IRBuilder<> &Builder = State.Builder;
2504   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2505   assert(!State.VF.isZero() && "VF must be non-zero");
2506 
2507   // The value from the original loop to which we are mapping the new induction
2508   // variable.
2509   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2510 
2511   auto &DL = EntryVal->getModule()->getDataLayout();
2512 
2513   // Generate code for the induction step. Note that induction steps are
2514   // required to be loop-invariant
2515   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2516     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2517            "Induction step should be loop invariant");
2518     if (PSE.getSE()->isSCEVable(IV->getType())) {
2519       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2520       return Exp.expandCodeFor(Step, Step->getType(),
2521                                State.CFG.VectorPreHeader->getTerminator());
2522     }
2523     return cast<SCEVUnknown>(Step)->getValue();
2524   };
2525 
2526   // The scalar value to broadcast. This is derived from the canonical
2527   // induction variable. If a truncation type is given, truncate the canonical
2528   // induction variable and step. Otherwise, derive these values from the
2529   // induction descriptor.
2530   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2531     Value *ScalarIV = CanonicalIV;
2532     Type *NeededType = IV->getType();
2533     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2534       ScalarIV =
2535           NeededType->isIntegerTy()
2536               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2537               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2538       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID,
2539                                       State.CFG.PrevBB);
2540       ScalarIV->setName("offset.idx");
2541     }
2542     if (Trunc) {
2543       auto *TruncType = cast<IntegerType>(Trunc->getType());
2544       assert(Step->getType()->isIntegerTy() &&
2545              "Truncation requires an integer step");
2546       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2547       Step = Builder.CreateTrunc(Step, TruncType);
2548     }
2549     return ScalarIV;
2550   };
2551 
2552   // Create the vector values from the scalar IV, in the absence of creating a
2553   // vector IV.
2554   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2555     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2556     for (unsigned Part = 0; Part < UF; ++Part) {
2557       Value *StartIdx;
2558       if (Step->getType()->isFloatingPointTy())
2559         StartIdx =
2560             getRuntimeVFAsFloat(Builder, Step->getType(), State.VF * Part);
2561       else
2562         StartIdx = getRuntimeVF(Builder, Step->getType(), State.VF * Part);
2563 
2564       Value *EntryPart =
2565           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode(),
2566                         State.VF, State.Builder);
2567       State.set(Def, EntryPart, Part);
2568       if (Trunc)
2569         addMetadata(EntryPart, Trunc);
2570     }
2571   };
2572 
2573   // Fast-math-flags propagate from the original induction instruction.
2574   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2575   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2576     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2577 
2578   // Now do the actual transformations, and start with creating the step value.
2579   Value *Step = CreateStepValue(ID.getStep());
2580   if (State.VF.isScalar()) {
2581     Value *ScalarIV = CreateScalarIV(Step);
2582     Type *ScalarTy = IntegerType::get(ScalarIV->getContext(),
2583                                       Step->getType()->getScalarSizeInBits());
2584 
2585     Instruction::BinaryOps IncOp = ID.getInductionOpcode();
2586     if (IncOp == Instruction::BinaryOpsEnd)
2587       IncOp = Instruction::Add;
2588     for (unsigned Part = 0; Part < UF; ++Part) {
2589       Value *StartIdx = ConstantInt::get(ScalarTy, Part);
2590       Instruction::BinaryOps MulOp = Instruction::Mul;
2591       if (Step->getType()->isFloatingPointTy()) {
2592         StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType());
2593         MulOp = Instruction::FMul;
2594       }
2595 
2596       Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2597       Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction");
2598       State.set(Def, EntryPart, Part);
2599       if (Trunc) {
2600         assert(!Step->getType()->isFloatingPointTy() &&
2601                "fp inductions shouldn't be truncated");
2602         addMetadata(EntryPart, Trunc);
2603       }
2604     }
2605     return;
2606   }
2607 
2608   // Determine if we want a scalar version of the induction variable. This is
2609   // true if the induction variable itself is not widened, or if it has at
2610   // least one user in the loop that is not widened.
2611   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2612   if (!NeedsScalarIV) {
2613     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2614     return;
2615   }
2616 
2617   // Try to create a new independent vector induction variable. If we can't
2618   // create the phi node, we will splat the scalar induction variable in each
2619   // loop iteration.
2620   if (!shouldScalarizeInstruction(EntryVal)) {
2621     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2622     Value *ScalarIV = CreateScalarIV(Step);
2623     // Create scalar steps that can be used by instructions we will later
2624     // scalarize. Note that the addition of the scalar steps will not increase
2625     // the number of instructions in the loop in the common case prior to
2626     // InstCombine. We will be trading one vector extract for each scalar step.
2627     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2628     return;
2629   }
2630 
2631   // All IV users are scalar instructions, so only emit a scalar IV, not a
2632   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2633   // predicate used by the masked loads/stores.
2634   Value *ScalarIV = CreateScalarIV(Step);
2635   if (!Cost->isScalarEpilogueAllowed())
2636     CreateSplatIV(ScalarIV, Step);
2637   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2638 }
2639 
2640 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2641                                            Instruction *EntryVal,
2642                                            const InductionDescriptor &ID,
2643                                            VPValue *Def,
2644                                            VPTransformState &State) {
2645   IRBuilder<> &Builder = State.Builder;
2646   // We shouldn't have to build scalar steps if we aren't vectorizing.
2647   assert(State.VF.isVector() && "VF should be greater than one");
2648   // Get the value type and ensure it and the step have the same integer type.
2649   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2650   assert(ScalarIVTy == Step->getType() &&
2651          "Val and Step should have the same type");
2652 
2653   // We build scalar steps for both integer and floating-point induction
2654   // variables. Here, we determine the kind of arithmetic we will perform.
2655   Instruction::BinaryOps AddOp;
2656   Instruction::BinaryOps MulOp;
2657   if (ScalarIVTy->isIntegerTy()) {
2658     AddOp = Instruction::Add;
2659     MulOp = Instruction::Mul;
2660   } else {
2661     AddOp = ID.getInductionOpcode();
2662     MulOp = Instruction::FMul;
2663   }
2664 
2665   // Determine the number of scalars we need to generate for each unroll
2666   // iteration. If EntryVal is uniform, we only need to generate the first
2667   // lane. Otherwise, we generate all VF values.
2668   bool IsUniform =
2669       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), State.VF);
2670   unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
2671   // Compute the scalar steps and save the results in State.
2672   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2673                                      ScalarIVTy->getScalarSizeInBits());
2674   Type *VecIVTy = nullptr;
2675   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2676   if (!IsUniform && State.VF.isScalable()) {
2677     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2678     UnitStepVec =
2679         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2680     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2681     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2682   }
2683 
2684   for (unsigned Part = 0; Part < State.UF; ++Part) {
2685     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2686 
2687     if (!IsUniform && State.VF.isScalable()) {
2688       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2689       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2690       if (ScalarIVTy->isFloatingPointTy())
2691         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2692       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2693       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2694       State.set(Def, Add, Part);
2695       // It's useful to record the lane values too for the known minimum number
2696       // of elements so we do those below. This improves the code quality when
2697       // trying to extract the first element, for example.
2698     }
2699 
2700     if (ScalarIVTy->isFloatingPointTy())
2701       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2702 
2703     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2704       Value *StartIdx = Builder.CreateBinOp(
2705           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2706       // The step returned by `createStepForVF` is a runtime-evaluated value
2707       // when VF is scalable. Otherwise, it should be folded into a Constant.
2708       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2709              "Expected StartIdx to be folded to a constant when VF is not "
2710              "scalable");
2711       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2712       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2713       State.set(Def, Add, VPIteration(Part, Lane));
2714     }
2715   }
2716 }
2717 
2718 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2719                                                     const VPIteration &Instance,
2720                                                     VPTransformState &State) {
2721   Value *ScalarInst = State.get(Def, Instance);
2722   Value *VectorValue = State.get(Def, Instance.Part);
2723   VectorValue = Builder.CreateInsertElement(
2724       VectorValue, ScalarInst,
2725       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2726   State.set(Def, VectorValue, Instance.Part);
2727 }
2728 
2729 // Return whether we allow using masked interleave-groups (for dealing with
2730 // strided loads/stores that reside in predicated blocks, or for dealing
2731 // with gaps).
2732 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2733   // If an override option has been passed in for interleaved accesses, use it.
2734   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2735     return EnableMaskedInterleavedMemAccesses;
2736 
2737   return TTI.enableMaskedInterleavedAccessVectorization();
2738 }
2739 
2740 // Try to vectorize the interleave group that \p Instr belongs to.
2741 //
2742 // E.g. Translate following interleaved load group (factor = 3):
2743 //   for (i = 0; i < N; i+=3) {
2744 //     R = Pic[i];             // Member of index 0
2745 //     G = Pic[i+1];           // Member of index 1
2746 //     B = Pic[i+2];           // Member of index 2
2747 //     ... // do something to R, G, B
2748 //   }
2749 // To:
2750 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2751 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2752 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2753 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2754 //
2755 // Or translate following interleaved store group (factor = 3):
2756 //   for (i = 0; i < N; i+=3) {
2757 //     ... do something to R, G, B
2758 //     Pic[i]   = R;           // Member of index 0
2759 //     Pic[i+1] = G;           // Member of index 1
2760 //     Pic[i+2] = B;           // Member of index 2
2761 //   }
2762 // To:
2763 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2764 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2765 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2766 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2767 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2768 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2769     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2770     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2771     VPValue *BlockInMask) {
2772   Instruction *Instr = Group->getInsertPos();
2773   const DataLayout &DL = Instr->getModule()->getDataLayout();
2774 
2775   // Prepare for the vector type of the interleaved load/store.
2776   Type *ScalarTy = getLoadStoreType(Instr);
2777   unsigned InterleaveFactor = Group->getFactor();
2778   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2779   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2780 
2781   // Prepare for the new pointers.
2782   SmallVector<Value *, 2> AddrParts;
2783   unsigned Index = Group->getIndex(Instr);
2784 
2785   // TODO: extend the masked interleaved-group support to reversed access.
2786   assert((!BlockInMask || !Group->isReverse()) &&
2787          "Reversed masked interleave-group not supported.");
2788 
2789   // If the group is reverse, adjust the index to refer to the last vector lane
2790   // instead of the first. We adjust the index from the first vector lane,
2791   // rather than directly getting the pointer for lane VF - 1, because the
2792   // pointer operand of the interleaved access is supposed to be uniform. For
2793   // uniform instructions, we're only required to generate a value for the
2794   // first vector lane in each unroll iteration.
2795   if (Group->isReverse())
2796     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2797 
2798   for (unsigned Part = 0; Part < UF; Part++) {
2799     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2800     setDebugLocFromInst(AddrPart);
2801 
2802     // Notice current instruction could be any index. Need to adjust the address
2803     // to the member of index 0.
2804     //
2805     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2806     //       b = A[i];       // Member of index 0
2807     // Current pointer is pointed to A[i+1], adjust it to A[i].
2808     //
2809     // E.g.  A[i+1] = a;     // Member of index 1
2810     //       A[i]   = b;     // Member of index 0
2811     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2812     // Current pointer is pointed to A[i+2], adjust it to A[i].
2813 
2814     bool InBounds = false;
2815     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2816       InBounds = gep->isInBounds();
2817     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2818     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2819 
2820     // Cast to the vector pointer type.
2821     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2822     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2823     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2824   }
2825 
2826   setDebugLocFromInst(Instr);
2827   Value *PoisonVec = PoisonValue::get(VecTy);
2828 
2829   Value *MaskForGaps = nullptr;
2830   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2831     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2832     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2833   }
2834 
2835   // Vectorize the interleaved load group.
2836   if (isa<LoadInst>(Instr)) {
2837     // For each unroll part, create a wide load for the group.
2838     SmallVector<Value *, 2> NewLoads;
2839     for (unsigned Part = 0; Part < UF; Part++) {
2840       Instruction *NewLoad;
2841       if (BlockInMask || MaskForGaps) {
2842         assert(useMaskedInterleavedAccesses(*TTI) &&
2843                "masked interleaved groups are not allowed.");
2844         Value *GroupMask = MaskForGaps;
2845         if (BlockInMask) {
2846           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2847           Value *ShuffledMask = Builder.CreateShuffleVector(
2848               BlockInMaskPart,
2849               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2850               "interleaved.mask");
2851           GroupMask = MaskForGaps
2852                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2853                                                 MaskForGaps)
2854                           : ShuffledMask;
2855         }
2856         NewLoad =
2857             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2858                                      GroupMask, PoisonVec, "wide.masked.vec");
2859       }
2860       else
2861         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2862                                             Group->getAlign(), "wide.vec");
2863       Group->addMetadata(NewLoad);
2864       NewLoads.push_back(NewLoad);
2865     }
2866 
2867     // For each member in the group, shuffle out the appropriate data from the
2868     // wide loads.
2869     unsigned J = 0;
2870     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2871       Instruction *Member = Group->getMember(I);
2872 
2873       // Skip the gaps in the group.
2874       if (!Member)
2875         continue;
2876 
2877       auto StrideMask =
2878           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2879       for (unsigned Part = 0; Part < UF; Part++) {
2880         Value *StridedVec = Builder.CreateShuffleVector(
2881             NewLoads[Part], StrideMask, "strided.vec");
2882 
2883         // If this member has different type, cast the result type.
2884         if (Member->getType() != ScalarTy) {
2885           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2886           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2887           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2888         }
2889 
2890         if (Group->isReverse())
2891           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2892 
2893         State.set(VPDefs[J], StridedVec, Part);
2894       }
2895       ++J;
2896     }
2897     return;
2898   }
2899 
2900   // The sub vector type for current instruction.
2901   auto *SubVT = VectorType::get(ScalarTy, VF);
2902 
2903   // Vectorize the interleaved store group.
2904   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2905   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2906          "masked interleaved groups are not allowed.");
2907   assert((!MaskForGaps || !VF.isScalable()) &&
2908          "masking gaps for scalable vectors is not yet supported.");
2909   for (unsigned Part = 0; Part < UF; Part++) {
2910     // Collect the stored vector from each member.
2911     SmallVector<Value *, 4> StoredVecs;
2912     for (unsigned i = 0; i < InterleaveFactor; i++) {
2913       assert((Group->getMember(i) || MaskForGaps) &&
2914              "Fail to get a member from an interleaved store group");
2915       Instruction *Member = Group->getMember(i);
2916 
2917       // Skip the gaps in the group.
2918       if (!Member) {
2919         Value *Undef = PoisonValue::get(SubVT);
2920         StoredVecs.push_back(Undef);
2921         continue;
2922       }
2923 
2924       Value *StoredVec = State.get(StoredValues[i], Part);
2925 
2926       if (Group->isReverse())
2927         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2928 
2929       // If this member has different type, cast it to a unified type.
2930 
2931       if (StoredVec->getType() != SubVT)
2932         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2933 
2934       StoredVecs.push_back(StoredVec);
2935     }
2936 
2937     // Concatenate all vectors into a wide vector.
2938     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2939 
2940     // Interleave the elements in the wide vector.
2941     Value *IVec = Builder.CreateShuffleVector(
2942         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2943         "interleaved.vec");
2944 
2945     Instruction *NewStoreInstr;
2946     if (BlockInMask || MaskForGaps) {
2947       Value *GroupMask = MaskForGaps;
2948       if (BlockInMask) {
2949         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2950         Value *ShuffledMask = Builder.CreateShuffleVector(
2951             BlockInMaskPart,
2952             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2953             "interleaved.mask");
2954         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2955                                                       ShuffledMask, MaskForGaps)
2956                                 : ShuffledMask;
2957       }
2958       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2959                                                 Group->getAlign(), GroupMask);
2960     } else
2961       NewStoreInstr =
2962           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2963 
2964     Group->addMetadata(NewStoreInstr);
2965   }
2966 }
2967 
2968 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2969                                                VPReplicateRecipe *RepRecipe,
2970                                                const VPIteration &Instance,
2971                                                bool IfPredicateInstr,
2972                                                VPTransformState &State) {
2973   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2974 
2975   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2976   // the first lane and part.
2977   if (isa<NoAliasScopeDeclInst>(Instr))
2978     if (!Instance.isFirstIteration())
2979       return;
2980 
2981   setDebugLocFromInst(Instr);
2982 
2983   // Does this instruction return a value ?
2984   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2985 
2986   Instruction *Cloned = Instr->clone();
2987   if (!IsVoidRetTy)
2988     Cloned->setName(Instr->getName() + ".cloned");
2989 
2990   // If the scalarized instruction contributes to the address computation of a
2991   // widen masked load/store which was in a basic block that needed predication
2992   // and is not predicated after vectorization, we can't propagate
2993   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2994   // instruction could feed a poison value to the base address of the widen
2995   // load/store.
2996   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2997     Cloned->dropPoisonGeneratingFlags();
2998 
2999   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3000                                Builder.GetInsertPoint());
3001   // Replace the operands of the cloned instructions with their scalar
3002   // equivalents in the new loop.
3003   for (auto &I : enumerate(RepRecipe->operands())) {
3004     auto InputInstance = Instance;
3005     VPValue *Operand = I.value();
3006     if (State.Plan->isUniformAfterVectorization(Operand))
3007       InputInstance.Lane = VPLane::getFirstLane();
3008     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
3009   }
3010   addNewMetadata(Cloned, Instr);
3011 
3012   // Place the cloned scalar in the new loop.
3013   Builder.Insert(Cloned);
3014 
3015   State.set(RepRecipe, Cloned, Instance);
3016 
3017   // If we just cloned a new assumption, add it the assumption cache.
3018   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3019     AC->registerAssumption(II);
3020 
3021   // End if-block.
3022   if (IfPredicateInstr)
3023     PredicatedInstructions.push_back(Cloned);
3024 }
3025 
3026 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
3027   BasicBlock *Header = L->getHeader();
3028   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
3029 
3030   IRBuilder<> B(Header->getTerminator());
3031   Instruction *OldInst =
3032       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
3033   setDebugLocFromInst(OldInst, &B);
3034 
3035   // Connect the header to the exit and header blocks and replace the old
3036   // terminator.
3037   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
3038 
3039   // Now we have two terminators. Remove the old one from the block.
3040   Header->getTerminator()->eraseFromParent();
3041 }
3042 
3043 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3044   if (TripCount)
3045     return TripCount;
3046 
3047   assert(L && "Create Trip Count for null loop.");
3048   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3049   // Find the loop boundaries.
3050   ScalarEvolution *SE = PSE.getSE();
3051   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3052   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3053          "Invalid loop count");
3054 
3055   Type *IdxTy = Legal->getWidestInductionType();
3056   assert(IdxTy && "No type for induction");
3057 
3058   // The exit count might have the type of i64 while the phi is i32. This can
3059   // happen if we have an induction variable that is sign extended before the
3060   // compare. The only way that we get a backedge taken count is that the
3061   // induction variable was signed and as such will not overflow. In such a case
3062   // truncation is legal.
3063   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3064       IdxTy->getPrimitiveSizeInBits())
3065     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3066   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3067 
3068   // Get the total trip count from the count by adding 1.
3069   const SCEV *ExitCount = SE->getAddExpr(
3070       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3071 
3072   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3073 
3074   // Expand the trip count and place the new instructions in the preheader.
3075   // Notice that the pre-header does not change, only the loop body.
3076   SCEVExpander Exp(*SE, DL, "induction");
3077 
3078   // Count holds the overall loop count (N).
3079   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3080                                 L->getLoopPreheader()->getTerminator());
3081 
3082   if (TripCount->getType()->isPointerTy())
3083     TripCount =
3084         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3085                                     L->getLoopPreheader()->getTerminator());
3086 
3087   return TripCount;
3088 }
3089 
3090 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3091   if (VectorTripCount)
3092     return VectorTripCount;
3093 
3094   Value *TC = getOrCreateTripCount(L);
3095   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3096 
3097   Type *Ty = TC->getType();
3098   // This is where we can make the step a runtime constant.
3099   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3100 
3101   // If the tail is to be folded by masking, round the number of iterations N
3102   // up to a multiple of Step instead of rounding down. This is done by first
3103   // adding Step-1 and then rounding down. Note that it's ok if this addition
3104   // overflows: the vector induction variable will eventually wrap to zero given
3105   // that it starts at zero and its Step is a power of two; the loop will then
3106   // exit, with the last early-exit vector comparison also producing all-true.
3107   if (Cost->foldTailByMasking()) {
3108     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3109            "VF*UF must be a power of 2 when folding tail by masking");
3110     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3111     TC = Builder.CreateAdd(
3112         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3113   }
3114 
3115   // Now we need to generate the expression for the part of the loop that the
3116   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3117   // iterations are not required for correctness, or N - Step, otherwise. Step
3118   // is equal to the vectorization factor (number of SIMD elements) times the
3119   // unroll factor (number of SIMD instructions).
3120   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3121 
3122   // There are cases where we *must* run at least one iteration in the remainder
3123   // loop.  See the cost model for when this can happen.  If the step evenly
3124   // divides the trip count, we set the remainder to be equal to the step. If
3125   // the step does not evenly divide the trip count, no adjustment is necessary
3126   // since there will already be scalar iterations. Note that the minimum
3127   // iterations check ensures that N >= Step.
3128   if (Cost->requiresScalarEpilogue(VF)) {
3129     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3130     R = Builder.CreateSelect(IsZero, Step, R);
3131   }
3132 
3133   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3134 
3135   return VectorTripCount;
3136 }
3137 
3138 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3139                                                    const DataLayout &DL) {
3140   // Verify that V is a vector type with same number of elements as DstVTy.
3141   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3142   unsigned VF = DstFVTy->getNumElements();
3143   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3144   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3145   Type *SrcElemTy = SrcVecTy->getElementType();
3146   Type *DstElemTy = DstFVTy->getElementType();
3147   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3148          "Vector elements must have same size");
3149 
3150   // Do a direct cast if element types are castable.
3151   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3152     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3153   }
3154   // V cannot be directly casted to desired vector type.
3155   // May happen when V is a floating point vector but DstVTy is a vector of
3156   // pointers or vice-versa. Handle this using a two-step bitcast using an
3157   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3158   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3159          "Only one type should be a pointer type");
3160   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3161          "Only one type should be a floating point type");
3162   Type *IntTy =
3163       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3164   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3165   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3166   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3167 }
3168 
3169 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3170                                                          BasicBlock *Bypass) {
3171   Value *Count = getOrCreateTripCount(L);
3172   // Reuse existing vector loop preheader for TC checks.
3173   // Note that new preheader block is generated for vector loop.
3174   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3175   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3176 
3177   // Generate code to check if the loop's trip count is less than VF * UF, or
3178   // equal to it in case a scalar epilogue is required; this implies that the
3179   // vector trip count is zero. This check also covers the case where adding one
3180   // to the backedge-taken count overflowed leading to an incorrect trip count
3181   // of zero. In this case we will also jump to the scalar loop.
3182   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3183                                             : ICmpInst::ICMP_ULT;
3184 
3185   // If tail is to be folded, vector loop takes care of all iterations.
3186   Value *CheckMinIters = Builder.getFalse();
3187   if (!Cost->foldTailByMasking()) {
3188     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3189     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3190   }
3191   // Create new preheader for vector loop.
3192   LoopVectorPreHeader =
3193       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3194                  "vector.ph");
3195 
3196   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3197                                DT->getNode(Bypass)->getIDom()) &&
3198          "TC check is expected to dominate Bypass");
3199 
3200   // Update dominator for Bypass & LoopExit (if needed).
3201   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3202   if (!Cost->requiresScalarEpilogue(VF))
3203     // If there is an epilogue which must run, there's no edge from the
3204     // middle block to exit blocks  and thus no need to update the immediate
3205     // dominator of the exit blocks.
3206     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3207 
3208   ReplaceInstWithInst(
3209       TCCheckBlock->getTerminator(),
3210       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3211   LoopBypassBlocks.push_back(TCCheckBlock);
3212 }
3213 
3214 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3215 
3216   BasicBlock *const SCEVCheckBlock =
3217       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3218   if (!SCEVCheckBlock)
3219     return nullptr;
3220 
3221   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3222            (OptForSizeBasedOnProfile &&
3223             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3224          "Cannot SCEV check stride or overflow when optimizing for size");
3225 
3226 
3227   // Update dominator only if this is first RT check.
3228   if (LoopBypassBlocks.empty()) {
3229     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3230     if (!Cost->requiresScalarEpilogue(VF))
3231       // If there is an epilogue which must run, there's no edge from the
3232       // middle block to exit blocks  and thus no need to update the immediate
3233       // dominator of the exit blocks.
3234       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3235   }
3236 
3237   LoopBypassBlocks.push_back(SCEVCheckBlock);
3238   AddedSafetyChecks = true;
3239   return SCEVCheckBlock;
3240 }
3241 
3242 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3243                                                       BasicBlock *Bypass) {
3244   // VPlan-native path does not do any analysis for runtime checks currently.
3245   if (EnableVPlanNativePath)
3246     return nullptr;
3247 
3248   BasicBlock *const MemCheckBlock =
3249       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3250 
3251   // Check if we generated code that checks in runtime if arrays overlap. We put
3252   // the checks into a separate block to make the more common case of few
3253   // elements faster.
3254   if (!MemCheckBlock)
3255     return nullptr;
3256 
3257   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3258     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3259            "Cannot emit memory checks when optimizing for size, unless forced "
3260            "to vectorize.");
3261     ORE->emit([&]() {
3262       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3263                                         L->getStartLoc(), L->getHeader())
3264              << "Code-size may be reduced by not forcing "
3265                 "vectorization, or by source-code modifications "
3266                 "eliminating the need for runtime checks "
3267                 "(e.g., adding 'restrict').";
3268     });
3269   }
3270 
3271   LoopBypassBlocks.push_back(MemCheckBlock);
3272 
3273   AddedSafetyChecks = true;
3274 
3275   // We currently don't use LoopVersioning for the actual loop cloning but we
3276   // still use it to add the noalias metadata.
3277   LVer = std::make_unique<LoopVersioning>(
3278       *Legal->getLAI(),
3279       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3280       DT, PSE.getSE());
3281   LVer->prepareNoAliasMetadata();
3282   return MemCheckBlock;
3283 }
3284 
3285 Value *InnerLoopVectorizer::emitTransformedIndex(
3286     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3287     const InductionDescriptor &ID, BasicBlock *VectorHeader) const {
3288 
3289   SCEVExpander Exp(*SE, DL, "induction");
3290   auto Step = ID.getStep();
3291   auto StartValue = ID.getStartValue();
3292   assert(Index->getType()->getScalarType() == Step->getType() &&
3293          "Index scalar type does not match StepValue type");
3294 
3295   // Note: the IR at this point is broken. We cannot use SE to create any new
3296   // SCEV and then expand it, hoping that SCEV's simplification will give us
3297   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3298   // lead to various SCEV crashes. So all we can do is to use builder and rely
3299   // on InstCombine for future simplifications. Here we handle some trivial
3300   // cases only.
3301   auto CreateAdd = [&B](Value *X, Value *Y) {
3302     assert(X->getType() == Y->getType() && "Types don't match!");
3303     if (auto *CX = dyn_cast<ConstantInt>(X))
3304       if (CX->isZero())
3305         return Y;
3306     if (auto *CY = dyn_cast<ConstantInt>(Y))
3307       if (CY->isZero())
3308         return X;
3309     return B.CreateAdd(X, Y);
3310   };
3311 
3312   // We allow X to be a vector type, in which case Y will potentially be
3313   // splatted into a vector with the same element count.
3314   auto CreateMul = [&B](Value *X, Value *Y) {
3315     assert(X->getType()->getScalarType() == Y->getType() &&
3316            "Types don't match!");
3317     if (auto *CX = dyn_cast<ConstantInt>(X))
3318       if (CX->isOne())
3319         return Y;
3320     if (auto *CY = dyn_cast<ConstantInt>(Y))
3321       if (CY->isOne())
3322         return X;
3323     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3324     if (XVTy && !isa<VectorType>(Y->getType()))
3325       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3326     return B.CreateMul(X, Y);
3327   };
3328 
3329   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3330   // loop, choose the end of the vector loop header (=VectorHeader), because
3331   // the DomTree is not kept up-to-date for additional blocks generated in the
3332   // vector loop. By using the header as insertion point, we guarantee that the
3333   // expanded instructions dominate all their uses.
3334   auto GetInsertPoint = [this, &B, VectorHeader]() {
3335     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3336     if (InsertBB != LoopVectorBody &&
3337         LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB))
3338       return VectorHeader->getTerminator();
3339     return &*B.GetInsertPoint();
3340   };
3341 
3342   switch (ID.getKind()) {
3343   case InductionDescriptor::IK_IntInduction: {
3344     assert(!isa<VectorType>(Index->getType()) &&
3345            "Vector indices not supported for integer inductions yet");
3346     assert(Index->getType() == StartValue->getType() &&
3347            "Index type does not match StartValue type");
3348     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3349       return B.CreateSub(StartValue, Index);
3350     auto *Offset = CreateMul(
3351         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3352     return CreateAdd(StartValue, Offset);
3353   }
3354   case InductionDescriptor::IK_PtrInduction: {
3355     assert(isa<SCEVConstant>(Step) &&
3356            "Expected constant step for pointer induction");
3357     return B.CreateGEP(
3358         ID.getElementType(), StartValue,
3359         CreateMul(Index,
3360                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3361                                     GetInsertPoint())));
3362   }
3363   case InductionDescriptor::IK_FpInduction: {
3364     assert(!isa<VectorType>(Index->getType()) &&
3365            "Vector indices not supported for FP inductions yet");
3366     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3367     auto InductionBinOp = ID.getInductionBinOp();
3368     assert(InductionBinOp &&
3369            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3370             InductionBinOp->getOpcode() == Instruction::FSub) &&
3371            "Original bin op should be defined for FP induction");
3372 
3373     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3374     Value *MulExp = B.CreateFMul(StepValue, Index);
3375     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3376                          "induction");
3377   }
3378   case InductionDescriptor::IK_NoInduction:
3379     return nullptr;
3380   }
3381   llvm_unreachable("invalid enum");
3382 }
3383 
3384 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3385   LoopScalarBody = OrigLoop->getHeader();
3386   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3387   assert(LoopVectorPreHeader && "Invalid loop structure");
3388   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3389   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3390          "multiple exit loop without required epilogue?");
3391 
3392   LoopMiddleBlock =
3393       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3394                  LI, nullptr, Twine(Prefix) + "middle.block");
3395   LoopScalarPreHeader =
3396       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3397                  nullptr, Twine(Prefix) + "scalar.ph");
3398 
3399   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3400 
3401   // Set up the middle block terminator.  Two cases:
3402   // 1) If we know that we must execute the scalar epilogue, emit an
3403   //    unconditional branch.
3404   // 2) Otherwise, we must have a single unique exit block (due to how we
3405   //    implement the multiple exit case).  In this case, set up a conditonal
3406   //    branch from the middle block to the loop scalar preheader, and the
3407   //    exit block.  completeLoopSkeleton will update the condition to use an
3408   //    iteration check, if required to decide whether to execute the remainder.
3409   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3410     BranchInst::Create(LoopScalarPreHeader) :
3411     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3412                        Builder.getTrue());
3413   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3414   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3415 
3416   // We intentionally don't let SplitBlock to update LoopInfo since
3417   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3418   // LoopVectorBody is explicitly added to the correct place few lines later.
3419   LoopVectorBody =
3420       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3421                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3422 
3423   // Update dominator for loop exit.
3424   if (!Cost->requiresScalarEpilogue(VF))
3425     // If there is an epilogue which must run, there's no edge from the
3426     // middle block to exit blocks  and thus no need to update the immediate
3427     // dominator of the exit blocks.
3428     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3429 
3430   // Create and register the new vector loop.
3431   Loop *Lp = LI->AllocateLoop();
3432   Loop *ParentLoop = OrigLoop->getParentLoop();
3433 
3434   // Insert the new loop into the loop nest and register the new basic blocks
3435   // before calling any utilities such as SCEV that require valid LoopInfo.
3436   if (ParentLoop) {
3437     ParentLoop->addChildLoop(Lp);
3438   } else {
3439     LI->addTopLevelLoop(Lp);
3440   }
3441   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3442   return Lp;
3443 }
3444 
3445 void InnerLoopVectorizer::createInductionResumeValues(
3446     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3447   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3448           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3449          "Inconsistent information about additional bypass.");
3450 
3451   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3452   assert(VectorTripCount && L && "Expected valid arguments");
3453   // We are going to resume the execution of the scalar loop.
3454   // Go over all of the induction variables that we found and fix the
3455   // PHIs that are left in the scalar version of the loop.
3456   // The starting values of PHI nodes depend on the counter of the last
3457   // iteration in the vectorized loop.
3458   // If we come from a bypass edge then we need to start from the original
3459   // start value.
3460   Instruction *OldInduction = Legal->getPrimaryInduction();
3461   for (auto &InductionEntry : Legal->getInductionVars()) {
3462     PHINode *OrigPhi = InductionEntry.first;
3463     InductionDescriptor II = InductionEntry.second;
3464 
3465     // Create phi nodes to merge from the  backedge-taken check block.
3466     PHINode *BCResumeVal =
3467         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3468                         LoopScalarPreHeader->getTerminator());
3469     // Copy original phi DL over to the new one.
3470     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3471     Value *&EndValue = IVEndValues[OrigPhi];
3472     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3473     if (OrigPhi == OldInduction) {
3474       // We know what the end value is.
3475       EndValue = VectorTripCount;
3476     } else {
3477       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3478 
3479       // Fast-math-flags propagate from the original induction instruction.
3480       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3481         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3482 
3483       Type *StepType = II.getStep()->getType();
3484       Instruction::CastOps CastOp =
3485           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3486       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3487       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3488       EndValue =
3489           emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3490       EndValue->setName("ind.end");
3491 
3492       // Compute the end value for the additional bypass (if applicable).
3493       if (AdditionalBypass.first) {
3494         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3495         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3496                                          StepType, true);
3497         CRD =
3498             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3499         EndValueFromAdditionalBypass =
3500             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3501         EndValueFromAdditionalBypass->setName("ind.end");
3502       }
3503     }
3504     // The new PHI merges the original incoming value, in case of a bypass,
3505     // or the value at the end of the vectorized loop.
3506     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3507 
3508     // Fix the scalar body counter (PHI node).
3509     // The old induction's phi node in the scalar body needs the truncated
3510     // value.
3511     for (BasicBlock *BB : LoopBypassBlocks)
3512       BCResumeVal->addIncoming(II.getStartValue(), BB);
3513 
3514     if (AdditionalBypass.first)
3515       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3516                                             EndValueFromAdditionalBypass);
3517 
3518     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3519   }
3520 }
3521 
3522 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3523                                                       MDNode *OrigLoopID) {
3524   assert(L && "Expected valid loop.");
3525 
3526   // The trip counts should be cached by now.
3527   Value *Count = getOrCreateTripCount(L);
3528   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3529 
3530   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3531 
3532   // Add a check in the middle block to see if we have completed
3533   // all of the iterations in the first vector loop.  Three cases:
3534   // 1) If we require a scalar epilogue, there is no conditional branch as
3535   //    we unconditionally branch to the scalar preheader.  Do nothing.
3536   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3537   //    Thus if tail is to be folded, we know we don't need to run the
3538   //    remainder and we can use the previous value for the condition (true).
3539   // 3) Otherwise, construct a runtime check.
3540   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3541     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3542                                         Count, VectorTripCount, "cmp.n",
3543                                         LoopMiddleBlock->getTerminator());
3544 
3545     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3546     // of the corresponding compare because they may have ended up with
3547     // different line numbers and we want to avoid awkward line stepping while
3548     // debugging. Eg. if the compare has got a line number inside the loop.
3549     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3550     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3551   }
3552 
3553   // Get ready to start creating new instructions into the vectorized body.
3554   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3555          "Inconsistent vector loop preheader");
3556   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3557 
3558 #ifdef EXPENSIVE_CHECKS
3559   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3560   LI->verify(*DT);
3561 #endif
3562 
3563   return LoopVectorPreHeader;
3564 }
3565 
3566 std::pair<BasicBlock *, Value *>
3567 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3568   /*
3569    In this function we generate a new loop. The new loop will contain
3570    the vectorized instructions while the old loop will continue to run the
3571    scalar remainder.
3572 
3573        [ ] <-- loop iteration number check.
3574     /   |
3575    /    v
3576   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3577   |  /  |
3578   | /   v
3579   ||   [ ]     <-- vector pre header.
3580   |/    |
3581   |     v
3582   |    [  ] \
3583   |    [  ]_|   <-- vector loop.
3584   |     |
3585   |     v
3586   \   -[ ]   <--- middle-block.
3587    \/   |
3588    /\   v
3589    | ->[ ]     <--- new preheader.
3590    |    |
3591  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3592    |   [ ] \
3593    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3594     \   |
3595      \  v
3596       >[ ]     <-- exit block(s).
3597    ...
3598    */
3599 
3600   // Get the metadata of the original loop before it gets modified.
3601   MDNode *OrigLoopID = OrigLoop->getLoopID();
3602 
3603   // Workaround!  Compute the trip count of the original loop and cache it
3604   // before we start modifying the CFG.  This code has a systemic problem
3605   // wherein it tries to run analysis over partially constructed IR; this is
3606   // wrong, and not simply for SCEV.  The trip count of the original loop
3607   // simply happens to be prone to hitting this in practice.  In theory, we
3608   // can hit the same issue for any SCEV, or ValueTracking query done during
3609   // mutation.  See PR49900.
3610   getOrCreateTripCount(OrigLoop);
3611 
3612   // Create an empty vector loop, and prepare basic blocks for the runtime
3613   // checks.
3614   Loop *Lp = createVectorLoopSkeleton("");
3615 
3616   // Now, compare the new count to zero. If it is zero skip the vector loop and
3617   // jump to the scalar loop. This check also covers the case where the
3618   // backedge-taken count is uint##_max: adding one to it will overflow leading
3619   // to an incorrect trip count of zero. In this (rare) case we will also jump
3620   // to the scalar loop.
3621   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3622 
3623   // Generate the code to check any assumptions that we've made for SCEV
3624   // expressions.
3625   emitSCEVChecks(Lp, LoopScalarPreHeader);
3626 
3627   // Generate the code that checks in runtime if arrays overlap. We put the
3628   // checks into a separate block to make the more common case of few elements
3629   // faster.
3630   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3631 
3632   createHeaderBranch(Lp);
3633 
3634   // Emit phis for the new starting index of the scalar loop.
3635   createInductionResumeValues(Lp);
3636 
3637   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3638 }
3639 
3640 // Fix up external users of the induction variable. At this point, we are
3641 // in LCSSA form, with all external PHIs that use the IV having one input value,
3642 // coming from the remainder loop. We need those PHIs to also have a correct
3643 // value for the IV when arriving directly from the middle block.
3644 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3645                                        const InductionDescriptor &II,
3646                                        Value *CountRoundDown, Value *EndValue,
3647                                        BasicBlock *MiddleBlock) {
3648   // There are two kinds of external IV usages - those that use the value
3649   // computed in the last iteration (the PHI) and those that use the penultimate
3650   // value (the value that feeds into the phi from the loop latch).
3651   // We allow both, but they, obviously, have different values.
3652 
3653   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3654 
3655   DenseMap<Value *, Value *> MissingVals;
3656 
3657   // An external user of the last iteration's value should see the value that
3658   // the remainder loop uses to initialize its own IV.
3659   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3660   for (User *U : PostInc->users()) {
3661     Instruction *UI = cast<Instruction>(U);
3662     if (!OrigLoop->contains(UI)) {
3663       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3664       MissingVals[UI] = EndValue;
3665     }
3666   }
3667 
3668   // An external user of the penultimate value need to see EndValue - Step.
3669   // The simplest way to get this is to recompute it from the constituent SCEVs,
3670   // that is Start + (Step * (CRD - 1)).
3671   for (User *U : OrigPhi->users()) {
3672     auto *UI = cast<Instruction>(U);
3673     if (!OrigLoop->contains(UI)) {
3674       const DataLayout &DL =
3675           OrigLoop->getHeader()->getModule()->getDataLayout();
3676       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3677 
3678       IRBuilder<> B(MiddleBlock->getTerminator());
3679 
3680       // Fast-math-flags propagate from the original induction instruction.
3681       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3682         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3683 
3684       Value *CountMinusOne = B.CreateSub(
3685           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3686       Value *CMO =
3687           !II.getStep()->getType()->isIntegerTy()
3688               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3689                              II.getStep()->getType())
3690               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3691       CMO->setName("cast.cmo");
3692       Value *Escape =
3693           emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody);
3694       Escape->setName("ind.escape");
3695       MissingVals[UI] = Escape;
3696     }
3697   }
3698 
3699   for (auto &I : MissingVals) {
3700     PHINode *PHI = cast<PHINode>(I.first);
3701     // One corner case we have to handle is two IVs "chasing" each-other,
3702     // that is %IV2 = phi [...], [ %IV1, %latch ]
3703     // In this case, if IV1 has an external use, we need to avoid adding both
3704     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3705     // don't already have an incoming value for the middle block.
3706     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3707       PHI->addIncoming(I.second, MiddleBlock);
3708   }
3709 }
3710 
3711 namespace {
3712 
3713 struct CSEDenseMapInfo {
3714   static bool canHandle(const Instruction *I) {
3715     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3716            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3717   }
3718 
3719   static inline Instruction *getEmptyKey() {
3720     return DenseMapInfo<Instruction *>::getEmptyKey();
3721   }
3722 
3723   static inline Instruction *getTombstoneKey() {
3724     return DenseMapInfo<Instruction *>::getTombstoneKey();
3725   }
3726 
3727   static unsigned getHashValue(const Instruction *I) {
3728     assert(canHandle(I) && "Unknown instruction!");
3729     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3730                                                            I->value_op_end()));
3731   }
3732 
3733   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3734     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3735         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3736       return LHS == RHS;
3737     return LHS->isIdenticalTo(RHS);
3738   }
3739 };
3740 
3741 } // end anonymous namespace
3742 
3743 ///Perform cse of induction variable instructions.
3744 static void cse(BasicBlock *BB) {
3745   // Perform simple cse.
3746   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3747   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3748     if (!CSEDenseMapInfo::canHandle(&In))
3749       continue;
3750 
3751     // Check if we can replace this instruction with any of the
3752     // visited instructions.
3753     if (Instruction *V = CSEMap.lookup(&In)) {
3754       In.replaceAllUsesWith(V);
3755       In.eraseFromParent();
3756       continue;
3757     }
3758 
3759     CSEMap[&In] = &In;
3760   }
3761 }
3762 
3763 InstructionCost
3764 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3765                                               bool &NeedToScalarize) const {
3766   Function *F = CI->getCalledFunction();
3767   Type *ScalarRetTy = CI->getType();
3768   SmallVector<Type *, 4> Tys, ScalarTys;
3769   for (auto &ArgOp : CI->args())
3770     ScalarTys.push_back(ArgOp->getType());
3771 
3772   // Estimate cost of scalarized vector call. The source operands are assumed
3773   // to be vectors, so we need to extract individual elements from there,
3774   // execute VF scalar calls, and then gather the result into the vector return
3775   // value.
3776   InstructionCost ScalarCallCost =
3777       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3778   if (VF.isScalar())
3779     return ScalarCallCost;
3780 
3781   // Compute corresponding vector type for return value and arguments.
3782   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3783   for (Type *ScalarTy : ScalarTys)
3784     Tys.push_back(ToVectorTy(ScalarTy, VF));
3785 
3786   // Compute costs of unpacking argument values for the scalar calls and
3787   // packing the return values to a vector.
3788   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3789 
3790   InstructionCost Cost =
3791       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3792 
3793   // If we can't emit a vector call for this function, then the currently found
3794   // cost is the cost we need to return.
3795   NeedToScalarize = true;
3796   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3797   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3798 
3799   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3800     return Cost;
3801 
3802   // If the corresponding vector cost is cheaper, return its cost.
3803   InstructionCost VectorCallCost =
3804       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3805   if (VectorCallCost < Cost) {
3806     NeedToScalarize = false;
3807     Cost = VectorCallCost;
3808   }
3809   return Cost;
3810 }
3811 
3812 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3813   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3814     return Elt;
3815   return VectorType::get(Elt, VF);
3816 }
3817 
3818 InstructionCost
3819 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3820                                                    ElementCount VF) const {
3821   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3822   assert(ID && "Expected intrinsic call!");
3823   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3824   FastMathFlags FMF;
3825   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3826     FMF = FPMO->getFastMathFlags();
3827 
3828   SmallVector<const Value *> Arguments(CI->args());
3829   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3830   SmallVector<Type *> ParamTys;
3831   std::transform(FTy->param_begin(), FTy->param_end(),
3832                  std::back_inserter(ParamTys),
3833                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3834 
3835   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3836                                     dyn_cast<IntrinsicInst>(CI));
3837   return TTI.getIntrinsicInstrCost(CostAttrs,
3838                                    TargetTransformInfo::TCK_RecipThroughput);
3839 }
3840 
3841 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3842   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3843   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3844   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3845 }
3846 
3847 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3848   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3849   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3850   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3851 }
3852 
3853 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3854   // For every instruction `I` in MinBWs, truncate the operands, create a
3855   // truncated version of `I` and reextend its result. InstCombine runs
3856   // later and will remove any ext/trunc pairs.
3857   SmallPtrSet<Value *, 4> Erased;
3858   for (const auto &KV : Cost->getMinimalBitwidths()) {
3859     // If the value wasn't vectorized, we must maintain the original scalar
3860     // type. The absence of the value from State indicates that it
3861     // wasn't vectorized.
3862     // FIXME: Should not rely on getVPValue at this point.
3863     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3864     if (!State.hasAnyVectorValue(Def))
3865       continue;
3866     for (unsigned Part = 0; Part < UF; ++Part) {
3867       Value *I = State.get(Def, Part);
3868       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3869         continue;
3870       Type *OriginalTy = I->getType();
3871       Type *ScalarTruncatedTy =
3872           IntegerType::get(OriginalTy->getContext(), KV.second);
3873       auto *TruncatedTy = VectorType::get(
3874           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3875       if (TruncatedTy == OriginalTy)
3876         continue;
3877 
3878       IRBuilder<> B(cast<Instruction>(I));
3879       auto ShrinkOperand = [&](Value *V) -> Value * {
3880         if (auto *ZI = dyn_cast<ZExtInst>(V))
3881           if (ZI->getSrcTy() == TruncatedTy)
3882             return ZI->getOperand(0);
3883         return B.CreateZExtOrTrunc(V, TruncatedTy);
3884       };
3885 
3886       // The actual instruction modification depends on the instruction type,
3887       // unfortunately.
3888       Value *NewI = nullptr;
3889       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3890         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3891                              ShrinkOperand(BO->getOperand(1)));
3892 
3893         // Any wrapping introduced by shrinking this operation shouldn't be
3894         // considered undefined behavior. So, we can't unconditionally copy
3895         // arithmetic wrapping flags to NewI.
3896         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3897       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3898         NewI =
3899             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3900                          ShrinkOperand(CI->getOperand(1)));
3901       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3902         NewI = B.CreateSelect(SI->getCondition(),
3903                               ShrinkOperand(SI->getTrueValue()),
3904                               ShrinkOperand(SI->getFalseValue()));
3905       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3906         switch (CI->getOpcode()) {
3907         default:
3908           llvm_unreachable("Unhandled cast!");
3909         case Instruction::Trunc:
3910           NewI = ShrinkOperand(CI->getOperand(0));
3911           break;
3912         case Instruction::SExt:
3913           NewI = B.CreateSExtOrTrunc(
3914               CI->getOperand(0),
3915               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3916           break;
3917         case Instruction::ZExt:
3918           NewI = B.CreateZExtOrTrunc(
3919               CI->getOperand(0),
3920               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3921           break;
3922         }
3923       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3924         auto Elements0 =
3925             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3926         auto *O0 = B.CreateZExtOrTrunc(
3927             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3928         auto Elements1 =
3929             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3930         auto *O1 = B.CreateZExtOrTrunc(
3931             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3932 
3933         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3934       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3935         // Don't do anything with the operands, just extend the result.
3936         continue;
3937       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3938         auto Elements =
3939             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3940         auto *O0 = B.CreateZExtOrTrunc(
3941             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3942         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3943         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3944       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3945         auto Elements =
3946             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3947         auto *O0 = B.CreateZExtOrTrunc(
3948             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3949         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3950       } else {
3951         // If we don't know what to do, be conservative and don't do anything.
3952         continue;
3953       }
3954 
3955       // Lastly, extend the result.
3956       NewI->takeName(cast<Instruction>(I));
3957       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3958       I->replaceAllUsesWith(Res);
3959       cast<Instruction>(I)->eraseFromParent();
3960       Erased.insert(I);
3961       State.reset(Def, Res, Part);
3962     }
3963   }
3964 
3965   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3966   for (const auto &KV : Cost->getMinimalBitwidths()) {
3967     // If the value wasn't vectorized, we must maintain the original scalar
3968     // type. The absence of the value from State indicates that it
3969     // wasn't vectorized.
3970     // FIXME: Should not rely on getVPValue at this point.
3971     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3972     if (!State.hasAnyVectorValue(Def))
3973       continue;
3974     for (unsigned Part = 0; Part < UF; ++Part) {
3975       Value *I = State.get(Def, Part);
3976       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3977       if (Inst && Inst->use_empty()) {
3978         Value *NewI = Inst->getOperand(0);
3979         Inst->eraseFromParent();
3980         State.reset(Def, NewI, Part);
3981       }
3982     }
3983   }
3984 }
3985 
3986 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3987   // Insert truncates and extends for any truncated instructions as hints to
3988   // InstCombine.
3989   if (VF.isVector())
3990     truncateToMinimalBitwidths(State);
3991 
3992   // Fix widened non-induction PHIs by setting up the PHI operands.
3993   if (OrigPHIsToFix.size()) {
3994     assert(EnableVPlanNativePath &&
3995            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3996     fixNonInductionPHIs(State);
3997   }
3998 
3999   // At this point every instruction in the original loop is widened to a
4000   // vector form. Now we need to fix the recurrences in the loop. These PHI
4001   // nodes are currently empty because we did not want to introduce cycles.
4002   // This is the second stage of vectorizing recurrences.
4003   fixCrossIterationPHIs(State);
4004 
4005   // Forget the original basic block.
4006   PSE.getSE()->forgetLoop(OrigLoop);
4007 
4008   // If we inserted an edge from the middle block to the unique exit block,
4009   // update uses outside the loop (phis) to account for the newly inserted
4010   // edge.
4011   if (!Cost->requiresScalarEpilogue(VF)) {
4012     // Fix-up external users of the induction variables.
4013     for (auto &Entry : Legal->getInductionVars())
4014       fixupIVUsers(Entry.first, Entry.second,
4015                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4016                    IVEndValues[Entry.first], LoopMiddleBlock);
4017 
4018     fixLCSSAPHIs(State);
4019   }
4020 
4021   for (Instruction *PI : PredicatedInstructions)
4022     sinkScalarOperands(&*PI);
4023 
4024   // Remove redundant induction instructions.
4025   cse(LoopVectorBody);
4026 
4027   // Set/update profile weights for the vector and remainder loops as original
4028   // loop iterations are now distributed among them. Note that original loop
4029   // represented by LoopScalarBody becomes remainder loop after vectorization.
4030   //
4031   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4032   // end up getting slightly roughened result but that should be OK since
4033   // profile is not inherently precise anyway. Note also possible bypass of
4034   // vector code caused by legality checks is ignored, assigning all the weight
4035   // to the vector loop, optimistically.
4036   //
4037   // For scalable vectorization we can't know at compile time how many iterations
4038   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4039   // vscale of '1'.
4040   setProfileInfoAfterUnrolling(
4041       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4042       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4043 }
4044 
4045 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4046   // In order to support recurrences we need to be able to vectorize Phi nodes.
4047   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4048   // stage #2: We now need to fix the recurrences by adding incoming edges to
4049   // the currently empty PHI nodes. At this point every instruction in the
4050   // original loop is widened to a vector form so we can use them to construct
4051   // the incoming edges.
4052   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4053   for (VPRecipeBase &R : Header->phis()) {
4054     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4055       fixReduction(ReductionPhi, State);
4056     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4057       fixFirstOrderRecurrence(FOR, State);
4058   }
4059 }
4060 
4061 void InnerLoopVectorizer::fixFirstOrderRecurrence(
4062     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
4063   // This is the second phase of vectorizing first-order recurrences. An
4064   // overview of the transformation is described below. Suppose we have the
4065   // following loop.
4066   //
4067   //   for (int i = 0; i < n; ++i)
4068   //     b[i] = a[i] - a[i - 1];
4069   //
4070   // There is a first-order recurrence on "a". For this loop, the shorthand
4071   // scalar IR looks like:
4072   //
4073   //   scalar.ph:
4074   //     s_init = a[-1]
4075   //     br scalar.body
4076   //
4077   //   scalar.body:
4078   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4079   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4080   //     s2 = a[i]
4081   //     b[i] = s2 - s1
4082   //     br cond, scalar.body, ...
4083   //
4084   // In this example, s1 is a recurrence because it's value depends on the
4085   // previous iteration. In the first phase of vectorization, we created a
4086   // vector phi v1 for s1. We now complete the vectorization and produce the
4087   // shorthand vector IR shown below (for VF = 4, UF = 1).
4088   //
4089   //   vector.ph:
4090   //     v_init = vector(..., ..., ..., a[-1])
4091   //     br vector.body
4092   //
4093   //   vector.body
4094   //     i = phi [0, vector.ph], [i+4, vector.body]
4095   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4096   //     v2 = a[i, i+1, i+2, i+3];
4097   //     v3 = vector(v1(3), v2(0, 1, 2))
4098   //     b[i, i+1, i+2, i+3] = v2 - v3
4099   //     br cond, vector.body, middle.block
4100   //
4101   //   middle.block:
4102   //     x = v2(3)
4103   //     br scalar.ph
4104   //
4105   //   scalar.ph:
4106   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4107   //     br scalar.body
4108   //
4109   // After execution completes the vector loop, we extract the next value of
4110   // the recurrence (x) to use as the initial value in the scalar loop.
4111 
4112   // Extract the last vector element in the middle block. This will be the
4113   // initial value for the recurrence when jumping to the scalar loop.
4114   VPValue *PreviousDef = PhiR->getBackedgeValue();
4115   Value *Incoming = State.get(PreviousDef, UF - 1);
4116   auto *ExtractForScalar = Incoming;
4117   auto *IdxTy = Builder.getInt32Ty();
4118   if (VF.isVector()) {
4119     auto *One = ConstantInt::get(IdxTy, 1);
4120     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4121     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4122     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4123     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4124                                                     "vector.recur.extract");
4125   }
4126   // Extract the second last element in the middle block if the
4127   // Phi is used outside the loop. We need to extract the phi itself
4128   // and not the last element (the phi update in the current iteration). This
4129   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4130   // when the scalar loop is not run at all.
4131   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4132   if (VF.isVector()) {
4133     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4134     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4135     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4136         Incoming, Idx, "vector.recur.extract.for.phi");
4137   } else if (UF > 1)
4138     // When loop is unrolled without vectorizing, initialize
4139     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4140     // of `Incoming`. This is analogous to the vectorized case above: extracting
4141     // the second last element when VF > 1.
4142     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4143 
4144   // Fix the initial value of the original recurrence in the scalar loop.
4145   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4146   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4147   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4148   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4149   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4150     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4151     Start->addIncoming(Incoming, BB);
4152   }
4153 
4154   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4155   Phi->setName("scalar.recur");
4156 
4157   // Finally, fix users of the recurrence outside the loop. The users will need
4158   // either the last value of the scalar recurrence or the last value of the
4159   // vector recurrence we extracted in the middle block. Since the loop is in
4160   // LCSSA form, we just need to find all the phi nodes for the original scalar
4161   // recurrence in the exit block, and then add an edge for the middle block.
4162   // Note that LCSSA does not imply single entry when the original scalar loop
4163   // had multiple exiting edges (as we always run the last iteration in the
4164   // scalar epilogue); in that case, there is no edge from middle to exit and
4165   // and thus no phis which needed updated.
4166   if (!Cost->requiresScalarEpilogue(VF))
4167     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4168       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4169         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4170 }
4171 
4172 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4173                                        VPTransformState &State) {
4174   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4175   // Get it's reduction variable descriptor.
4176   assert(Legal->isReductionVariable(OrigPhi) &&
4177          "Unable to find the reduction variable");
4178   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4179 
4180   RecurKind RK = RdxDesc.getRecurrenceKind();
4181   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4182   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4183   setDebugLocFromInst(ReductionStartValue);
4184 
4185   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4186   // This is the vector-clone of the value that leaves the loop.
4187   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4188 
4189   // Wrap flags are in general invalid after vectorization, clear them.
4190   clearReductionWrapFlags(RdxDesc, State);
4191 
4192   // Before each round, move the insertion point right between
4193   // the PHIs and the values we are going to write.
4194   // This allows us to write both PHINodes and the extractelement
4195   // instructions.
4196   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4197 
4198   setDebugLocFromInst(LoopExitInst);
4199 
4200   Type *PhiTy = OrigPhi->getType();
4201   // If tail is folded by masking, the vector value to leave the loop should be
4202   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4203   // instead of the former. For an inloop reduction the reduction will already
4204   // be predicated, and does not need to be handled here.
4205   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4206     for (unsigned Part = 0; Part < UF; ++Part) {
4207       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4208       Value *Sel = nullptr;
4209       for (User *U : VecLoopExitInst->users()) {
4210         if (isa<SelectInst>(U)) {
4211           assert(!Sel && "Reduction exit feeding two selects");
4212           Sel = U;
4213         } else
4214           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4215       }
4216       assert(Sel && "Reduction exit feeds no select");
4217       State.reset(LoopExitInstDef, Sel, Part);
4218 
4219       // If the target can create a predicated operator for the reduction at no
4220       // extra cost in the loop (for example a predicated vadd), it can be
4221       // cheaper for the select to remain in the loop than be sunk out of it,
4222       // and so use the select value for the phi instead of the old
4223       // LoopExitValue.
4224       if (PreferPredicatedReductionSelect ||
4225           TTI->preferPredicatedReductionSelect(
4226               RdxDesc.getOpcode(), PhiTy,
4227               TargetTransformInfo::ReductionFlags())) {
4228         auto *VecRdxPhi =
4229             cast<PHINode>(State.get(PhiR, Part));
4230         VecRdxPhi->setIncomingValueForBlock(
4231             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4232       }
4233     }
4234   }
4235 
4236   // If the vector reduction can be performed in a smaller type, we truncate
4237   // then extend the loop exit value to enable InstCombine to evaluate the
4238   // entire expression in the smaller type.
4239   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4240     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4241     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4242     Builder.SetInsertPoint(
4243         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4244     VectorParts RdxParts(UF);
4245     for (unsigned Part = 0; Part < UF; ++Part) {
4246       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4247       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4248       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4249                                         : Builder.CreateZExt(Trunc, VecTy);
4250       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4251         if (U != Trunc) {
4252           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4253           RdxParts[Part] = Extnd;
4254         }
4255     }
4256     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4257     for (unsigned Part = 0; Part < UF; ++Part) {
4258       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4259       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4260     }
4261   }
4262 
4263   // Reduce all of the unrolled parts into a single vector.
4264   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4265   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4266 
4267   // The middle block terminator has already been assigned a DebugLoc here (the
4268   // OrigLoop's single latch terminator). We want the whole middle block to
4269   // appear to execute on this line because: (a) it is all compiler generated,
4270   // (b) these instructions are always executed after evaluating the latch
4271   // conditional branch, and (c) other passes may add new predecessors which
4272   // terminate on this line. This is the easiest way to ensure we don't
4273   // accidentally cause an extra step back into the loop while debugging.
4274   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4275   if (PhiR->isOrdered())
4276     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4277   else {
4278     // Floating-point operations should have some FMF to enable the reduction.
4279     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4280     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4281     for (unsigned Part = 1; Part < UF; ++Part) {
4282       Value *RdxPart = State.get(LoopExitInstDef, Part);
4283       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4284         ReducedPartRdx = Builder.CreateBinOp(
4285             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4286       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4287         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4288                                            ReducedPartRdx, RdxPart);
4289       else
4290         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4291     }
4292   }
4293 
4294   // Create the reduction after the loop. Note that inloop reductions create the
4295   // target reduction in the loop using a Reduction recipe.
4296   if (VF.isVector() && !PhiR->isInLoop()) {
4297     ReducedPartRdx =
4298         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4299     // If the reduction can be performed in a smaller type, we need to extend
4300     // the reduction to the wider type before we branch to the original loop.
4301     if (PhiTy != RdxDesc.getRecurrenceType())
4302       ReducedPartRdx = RdxDesc.isSigned()
4303                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4304                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4305   }
4306 
4307   PHINode *ResumePhi =
4308       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4309 
4310   // Create a phi node that merges control-flow from the backedge-taken check
4311   // block and the middle block.
4312   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4313                                         LoopScalarPreHeader->getTerminator());
4314 
4315   // If we are fixing reductions in the epilogue loop then we should already
4316   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4317   // we carry over the incoming values correctly.
4318   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4319     if (Incoming == LoopMiddleBlock)
4320       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4321     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4322       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4323                               Incoming);
4324     else
4325       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4326   }
4327 
4328   // Set the resume value for this reduction
4329   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4330 
4331   // Now, we need to fix the users of the reduction variable
4332   // inside and outside of the scalar remainder loop.
4333 
4334   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4335   // in the exit blocks.  See comment on analogous loop in
4336   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4337   if (!Cost->requiresScalarEpilogue(VF))
4338     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4339       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4340         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4341 
4342   // Fix the scalar loop reduction variable with the incoming reduction sum
4343   // from the vector body and from the backedge value.
4344   int IncomingEdgeBlockIdx =
4345       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4346   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4347   // Pick the other block.
4348   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4349   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4350   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4351 }
4352 
4353 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4354                                                   VPTransformState &State) {
4355   RecurKind RK = RdxDesc.getRecurrenceKind();
4356   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4357     return;
4358 
4359   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4360   assert(LoopExitInstr && "null loop exit instruction");
4361   SmallVector<Instruction *, 8> Worklist;
4362   SmallPtrSet<Instruction *, 8> Visited;
4363   Worklist.push_back(LoopExitInstr);
4364   Visited.insert(LoopExitInstr);
4365 
4366   while (!Worklist.empty()) {
4367     Instruction *Cur = Worklist.pop_back_val();
4368     if (isa<OverflowingBinaryOperator>(Cur))
4369       for (unsigned Part = 0; Part < UF; ++Part) {
4370         // FIXME: Should not rely on getVPValue at this point.
4371         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4372         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4373       }
4374 
4375     for (User *U : Cur->users()) {
4376       Instruction *UI = cast<Instruction>(U);
4377       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4378           Visited.insert(UI).second)
4379         Worklist.push_back(UI);
4380     }
4381   }
4382 }
4383 
4384 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4385   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4386     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4387       // Some phis were already hand updated by the reduction and recurrence
4388       // code above, leave them alone.
4389       continue;
4390 
4391     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4392     // Non-instruction incoming values will have only one value.
4393 
4394     VPLane Lane = VPLane::getFirstLane();
4395     if (isa<Instruction>(IncomingValue) &&
4396         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4397                                            VF))
4398       Lane = VPLane::getLastLaneForVF(VF);
4399 
4400     // Can be a loop invariant incoming value or the last scalar value to be
4401     // extracted from the vectorized loop.
4402     // FIXME: Should not rely on getVPValue at this point.
4403     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4404     Value *lastIncomingValue =
4405         OrigLoop->isLoopInvariant(IncomingValue)
4406             ? IncomingValue
4407             : State.get(State.Plan->getVPValue(IncomingValue, true),
4408                         VPIteration(UF - 1, Lane));
4409     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4410   }
4411 }
4412 
4413 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4414   // The basic block and loop containing the predicated instruction.
4415   auto *PredBB = PredInst->getParent();
4416   auto *VectorLoop = LI->getLoopFor(PredBB);
4417 
4418   // Initialize a worklist with the operands of the predicated instruction.
4419   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4420 
4421   // Holds instructions that we need to analyze again. An instruction may be
4422   // reanalyzed if we don't yet know if we can sink it or not.
4423   SmallVector<Instruction *, 8> InstsToReanalyze;
4424 
4425   // Returns true if a given use occurs in the predicated block. Phi nodes use
4426   // their operands in their corresponding predecessor blocks.
4427   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4428     auto *I = cast<Instruction>(U.getUser());
4429     BasicBlock *BB = I->getParent();
4430     if (auto *Phi = dyn_cast<PHINode>(I))
4431       BB = Phi->getIncomingBlock(
4432           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4433     return BB == PredBB;
4434   };
4435 
4436   // Iteratively sink the scalarized operands of the predicated instruction
4437   // into the block we created for it. When an instruction is sunk, it's
4438   // operands are then added to the worklist. The algorithm ends after one pass
4439   // through the worklist doesn't sink a single instruction.
4440   bool Changed;
4441   do {
4442     // Add the instructions that need to be reanalyzed to the worklist, and
4443     // reset the changed indicator.
4444     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4445     InstsToReanalyze.clear();
4446     Changed = false;
4447 
4448     while (!Worklist.empty()) {
4449       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4450 
4451       // We can't sink an instruction if it is a phi node, is not in the loop,
4452       // or may have side effects.
4453       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4454           I->mayHaveSideEffects())
4455         continue;
4456 
4457       // If the instruction is already in PredBB, check if we can sink its
4458       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4459       // sinking the scalar instruction I, hence it appears in PredBB; but it
4460       // may have failed to sink I's operands (recursively), which we try
4461       // (again) here.
4462       if (I->getParent() == PredBB) {
4463         Worklist.insert(I->op_begin(), I->op_end());
4464         continue;
4465       }
4466 
4467       // It's legal to sink the instruction if all its uses occur in the
4468       // predicated block. Otherwise, there's nothing to do yet, and we may
4469       // need to reanalyze the instruction.
4470       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4471         InstsToReanalyze.push_back(I);
4472         continue;
4473       }
4474 
4475       // Move the instruction to the beginning of the predicated block, and add
4476       // it's operands to the worklist.
4477       I->moveBefore(&*PredBB->getFirstInsertionPt());
4478       Worklist.insert(I->op_begin(), I->op_end());
4479 
4480       // The sinking may have enabled other instructions to be sunk, so we will
4481       // need to iterate.
4482       Changed = true;
4483     }
4484   } while (Changed);
4485 }
4486 
4487 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4488   for (PHINode *OrigPhi : OrigPHIsToFix) {
4489     VPWidenPHIRecipe *VPPhi =
4490         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4491     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4492     // Make sure the builder has a valid insert point.
4493     Builder.SetInsertPoint(NewPhi);
4494     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4495       VPValue *Inc = VPPhi->getIncomingValue(i);
4496       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4497       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4498     }
4499   }
4500 }
4501 
4502 bool InnerLoopVectorizer::useOrderedReductions(
4503     const RecurrenceDescriptor &RdxDesc) {
4504   return Cost->useOrderedReductions(RdxDesc);
4505 }
4506 
4507 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4508                                               VPWidenPHIRecipe *PhiR,
4509                                               VPTransformState &State) {
4510   PHINode *P = cast<PHINode>(PN);
4511   if (EnableVPlanNativePath) {
4512     // Currently we enter here in the VPlan-native path for non-induction
4513     // PHIs where all control flow is uniform. We simply widen these PHIs.
4514     // Create a vector phi with no operands - the vector phi operands will be
4515     // set at the end of vector code generation.
4516     Type *VecTy = (State.VF.isScalar())
4517                       ? PN->getType()
4518                       : VectorType::get(PN->getType(), State.VF);
4519     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4520     State.set(PhiR, VecPhi, 0);
4521     OrigPHIsToFix.push_back(P);
4522 
4523     return;
4524   }
4525 
4526   assert(PN->getParent() == OrigLoop->getHeader() &&
4527          "Non-header phis should have been handled elsewhere");
4528 
4529   // In order to support recurrences we need to be able to vectorize Phi nodes.
4530   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4531   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4532   // this value when we vectorize all of the instructions that use the PHI.
4533 
4534   assert(!Legal->isReductionVariable(P) &&
4535          "reductions should be handled elsewhere");
4536 
4537   setDebugLocFromInst(P);
4538 
4539   // This PHINode must be an induction variable.
4540   // Make sure that we know about it.
4541   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4542 
4543   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4544   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4545 
4546   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4547   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4548 
4549   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4550   // which can be found from the original scalar operations.
4551   switch (II.getKind()) {
4552   case InductionDescriptor::IK_NoInduction:
4553     llvm_unreachable("Unknown induction");
4554   case InductionDescriptor::IK_IntInduction:
4555   case InductionDescriptor::IK_FpInduction:
4556     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4557   case InductionDescriptor::IK_PtrInduction: {
4558     // Handle the pointer induction variable case.
4559     assert(P->getType()->isPointerTy() && "Unexpected type.");
4560 
4561     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4562       // This is the normalized GEP that starts counting at zero.
4563       Value *PtrInd =
4564           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4565       // Determine the number of scalars we need to generate for each unroll
4566       // iteration. If the instruction is uniform, we only need to generate the
4567       // first lane. Otherwise, we generate all VF values.
4568       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4569       assert((IsUniform || !State.VF.isScalable()) &&
4570              "Cannot scalarize a scalable VF");
4571       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4572 
4573       for (unsigned Part = 0; Part < UF; ++Part) {
4574         Value *PartStart =
4575             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4576 
4577         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4578           Value *Idx = Builder.CreateAdd(
4579               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4580           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4581           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(),
4582                                                 DL, II, State.CFG.PrevBB);
4583           SclrGep->setName("next.gep");
4584           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4585         }
4586       }
4587       return;
4588     }
4589     assert(isa<SCEVConstant>(II.getStep()) &&
4590            "Induction step not a SCEV constant!");
4591     Type *PhiType = II.getStep()->getType();
4592 
4593     // Build a pointer phi
4594     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4595     Type *ScStValueType = ScalarStartValue->getType();
4596     PHINode *NewPointerPhi =
4597         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4598     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4599 
4600     // A pointer induction, performed by using a gep
4601     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4602     Instruction *InductionLoc = LoopLatch->getTerminator();
4603     const SCEV *ScalarStep = II.getStep();
4604     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4605     Value *ScalarStepValue =
4606         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4607     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4608     Value *NumUnrolledElems =
4609         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4610     Value *InductionGEP = GetElementPtrInst::Create(
4611         II.getElementType(), NewPointerPhi,
4612         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4613         InductionLoc);
4614     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4615 
4616     // Create UF many actual address geps that use the pointer
4617     // phi as base and a vectorized version of the step value
4618     // (<step*0, ..., step*N>) as offset.
4619     for (unsigned Part = 0; Part < State.UF; ++Part) {
4620       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4621       Value *StartOffsetScalar =
4622           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4623       Value *StartOffset =
4624           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4625       // Create a vector of consecutive numbers from zero to VF.
4626       StartOffset =
4627           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4628 
4629       Value *GEP = Builder.CreateGEP(
4630           II.getElementType(), NewPointerPhi,
4631           Builder.CreateMul(
4632               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4633               "vector.gep"));
4634       State.set(PhiR, GEP, Part);
4635     }
4636   }
4637   }
4638 }
4639 
4640 /// A helper function for checking whether an integer division-related
4641 /// instruction may divide by zero (in which case it must be predicated if
4642 /// executed conditionally in the scalar code).
4643 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4644 /// Non-zero divisors that are non compile-time constants will not be
4645 /// converted into multiplication, so we will still end up scalarizing
4646 /// the division, but can do so w/o predication.
4647 static bool mayDivideByZero(Instruction &I) {
4648   assert((I.getOpcode() == Instruction::UDiv ||
4649           I.getOpcode() == Instruction::SDiv ||
4650           I.getOpcode() == Instruction::URem ||
4651           I.getOpcode() == Instruction::SRem) &&
4652          "Unexpected instruction");
4653   Value *Divisor = I.getOperand(1);
4654   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4655   return !CInt || CInt->isZero();
4656 }
4657 
4658 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4659                                                VPUser &ArgOperands,
4660                                                VPTransformState &State) {
4661   assert(!isa<DbgInfoIntrinsic>(I) &&
4662          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4663   setDebugLocFromInst(&I);
4664 
4665   Module *M = I.getParent()->getParent()->getParent();
4666   auto *CI = cast<CallInst>(&I);
4667 
4668   SmallVector<Type *, 4> Tys;
4669   for (Value *ArgOperand : CI->args())
4670     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4671 
4672   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4673 
4674   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4675   // version of the instruction.
4676   // Is it beneficial to perform intrinsic call compared to lib call?
4677   bool NeedToScalarize = false;
4678   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4679   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4680   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4681   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4682          "Instruction should be scalarized elsewhere.");
4683   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4684          "Either the intrinsic cost or vector call cost must be valid");
4685 
4686   for (unsigned Part = 0; Part < UF; ++Part) {
4687     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4688     SmallVector<Value *, 4> Args;
4689     for (auto &I : enumerate(ArgOperands.operands())) {
4690       // Some intrinsics have a scalar argument - don't replace it with a
4691       // vector.
4692       Value *Arg;
4693       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4694         Arg = State.get(I.value(), Part);
4695       else {
4696         Arg = State.get(I.value(), VPIteration(0, 0));
4697         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4698           TysForDecl.push_back(Arg->getType());
4699       }
4700       Args.push_back(Arg);
4701     }
4702 
4703     Function *VectorF;
4704     if (UseVectorIntrinsic) {
4705       // Use vector version of the intrinsic.
4706       if (VF.isVector())
4707         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4708       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4709       assert(VectorF && "Can't retrieve vector intrinsic.");
4710     } else {
4711       // Use vector version of the function call.
4712       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4713 #ifndef NDEBUG
4714       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4715              "Can't create vector function.");
4716 #endif
4717         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4718     }
4719       SmallVector<OperandBundleDef, 1> OpBundles;
4720       CI->getOperandBundlesAsDefs(OpBundles);
4721       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4722 
4723       if (isa<FPMathOperator>(V))
4724         V->copyFastMathFlags(CI);
4725 
4726       State.set(Def, V, Part);
4727       addMetadata(V, &I);
4728   }
4729 }
4730 
4731 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4732   // We should not collect Scalars more than once per VF. Right now, this
4733   // function is called from collectUniformsAndScalars(), which already does
4734   // this check. Collecting Scalars for VF=1 does not make any sense.
4735   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4736          "This function should not be visited twice for the same VF");
4737 
4738   SmallSetVector<Instruction *, 8> Worklist;
4739 
4740   // These sets are used to seed the analysis with pointers used by memory
4741   // accesses that will remain scalar.
4742   SmallSetVector<Instruction *, 8> ScalarPtrs;
4743   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4744   auto *Latch = TheLoop->getLoopLatch();
4745 
4746   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4747   // The pointer operands of loads and stores will be scalar as long as the
4748   // memory access is not a gather or scatter operation. The value operand of a
4749   // store will remain scalar if the store is scalarized.
4750   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4751     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4752     assert(WideningDecision != CM_Unknown &&
4753            "Widening decision should be ready at this moment");
4754     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4755       if (Ptr == Store->getValueOperand())
4756         return WideningDecision == CM_Scalarize;
4757     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4758            "Ptr is neither a value or pointer operand");
4759     return WideningDecision != CM_GatherScatter;
4760   };
4761 
4762   // A helper that returns true if the given value is a bitcast or
4763   // getelementptr instruction contained in the loop.
4764   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4765     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4766             isa<GetElementPtrInst>(V)) &&
4767            !TheLoop->isLoopInvariant(V);
4768   };
4769 
4770   // A helper that evaluates a memory access's use of a pointer. If the use will
4771   // be a scalar use and the pointer is only used by memory accesses, we place
4772   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4773   // PossibleNonScalarPtrs.
4774   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4775     // We only care about bitcast and getelementptr instructions contained in
4776     // the loop.
4777     if (!isLoopVaryingBitCastOrGEP(Ptr))
4778       return;
4779 
4780     // If the pointer has already been identified as scalar (e.g., if it was
4781     // also identified as uniform), there's nothing to do.
4782     auto *I = cast<Instruction>(Ptr);
4783     if (Worklist.count(I))
4784       return;
4785 
4786     // If the use of the pointer will be a scalar use, and all users of the
4787     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4788     // place the pointer in PossibleNonScalarPtrs.
4789     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4790           return isa<LoadInst>(U) || isa<StoreInst>(U);
4791         }))
4792       ScalarPtrs.insert(I);
4793     else
4794       PossibleNonScalarPtrs.insert(I);
4795   };
4796 
4797   // We seed the scalars analysis with three classes of instructions: (1)
4798   // instructions marked uniform-after-vectorization and (2) bitcast,
4799   // getelementptr and (pointer) phi instructions used by memory accesses
4800   // requiring a scalar use.
4801   //
4802   // (1) Add to the worklist all instructions that have been identified as
4803   // uniform-after-vectorization.
4804   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4805 
4806   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4807   // memory accesses requiring a scalar use. The pointer operands of loads and
4808   // stores will be scalar as long as the memory accesses is not a gather or
4809   // scatter operation. The value operand of a store will remain scalar if the
4810   // store is scalarized.
4811   for (auto *BB : TheLoop->blocks())
4812     for (auto &I : *BB) {
4813       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4814         evaluatePtrUse(Load, Load->getPointerOperand());
4815       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4816         evaluatePtrUse(Store, Store->getPointerOperand());
4817         evaluatePtrUse(Store, Store->getValueOperand());
4818       }
4819     }
4820   for (auto *I : ScalarPtrs)
4821     if (!PossibleNonScalarPtrs.count(I)) {
4822       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4823       Worklist.insert(I);
4824     }
4825 
4826   // Insert the forced scalars.
4827   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4828   // induction variable when the PHI user is scalarized.
4829   auto ForcedScalar = ForcedScalars.find(VF);
4830   if (ForcedScalar != ForcedScalars.end())
4831     for (auto *I : ForcedScalar->second)
4832       Worklist.insert(I);
4833 
4834   // Expand the worklist by looking through any bitcasts and getelementptr
4835   // instructions we've already identified as scalar. This is similar to the
4836   // expansion step in collectLoopUniforms(); however, here we're only
4837   // expanding to include additional bitcasts and getelementptr instructions.
4838   unsigned Idx = 0;
4839   while (Idx != Worklist.size()) {
4840     Instruction *Dst = Worklist[Idx++];
4841     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4842       continue;
4843     auto *Src = cast<Instruction>(Dst->getOperand(0));
4844     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4845           auto *J = cast<Instruction>(U);
4846           return !TheLoop->contains(J) || Worklist.count(J) ||
4847                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4848                   isScalarUse(J, Src));
4849         })) {
4850       Worklist.insert(Src);
4851       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4852     }
4853   }
4854 
4855   // An induction variable will remain scalar if all users of the induction
4856   // variable and induction variable update remain scalar.
4857   for (auto &Induction : Legal->getInductionVars()) {
4858     auto *Ind = Induction.first;
4859     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4860 
4861     // If tail-folding is applied, the primary induction variable will be used
4862     // to feed a vector compare.
4863     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4864       continue;
4865 
4866     // Returns true if \p Indvar is a pointer induction that is used directly by
4867     // load/store instruction \p I.
4868     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4869                                               Instruction *I) {
4870       return Induction.second.getKind() ==
4871                  InductionDescriptor::IK_PtrInduction &&
4872              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4873              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4874     };
4875 
4876     // Determine if all users of the induction variable are scalar after
4877     // vectorization.
4878     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4879       auto *I = cast<Instruction>(U);
4880       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4881              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4882     });
4883     if (!ScalarInd)
4884       continue;
4885 
4886     // Determine if all users of the induction variable update instruction are
4887     // scalar after vectorization.
4888     auto ScalarIndUpdate =
4889         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4890           auto *I = cast<Instruction>(U);
4891           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4892                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4893         });
4894     if (!ScalarIndUpdate)
4895       continue;
4896 
4897     // The induction variable and its update instruction will remain scalar.
4898     Worklist.insert(Ind);
4899     Worklist.insert(IndUpdate);
4900     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4901     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4902                       << "\n");
4903   }
4904 
4905   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4906 }
4907 
4908 bool LoopVectorizationCostModel::isScalarWithPredication(
4909     Instruction *I, ElementCount VF) const {
4910   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4911     return false;
4912   switch(I->getOpcode()) {
4913   default:
4914     break;
4915   case Instruction::Load:
4916   case Instruction::Store: {
4917     if (!Legal->isMaskRequired(I))
4918       return false;
4919     auto *Ptr = getLoadStorePointerOperand(I);
4920     auto *Ty = getLoadStoreType(I);
4921     Type *VTy = Ty;
4922     if (VF.isVector())
4923       VTy = VectorType::get(Ty, VF);
4924     const Align Alignment = getLoadStoreAlignment(I);
4925     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4926                                 TTI.isLegalMaskedGather(VTy, Alignment))
4927                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4928                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4929   }
4930   case Instruction::UDiv:
4931   case Instruction::SDiv:
4932   case Instruction::SRem:
4933   case Instruction::URem:
4934     return mayDivideByZero(*I);
4935   }
4936   return false;
4937 }
4938 
4939 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4940     Instruction *I, ElementCount VF) {
4941   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4942   assert(getWideningDecision(I, VF) == CM_Unknown &&
4943          "Decision should not be set yet.");
4944   auto *Group = getInterleavedAccessGroup(I);
4945   assert(Group && "Must have a group.");
4946 
4947   // If the instruction's allocated size doesn't equal it's type size, it
4948   // requires padding and will be scalarized.
4949   auto &DL = I->getModule()->getDataLayout();
4950   auto *ScalarTy = getLoadStoreType(I);
4951   if (hasIrregularType(ScalarTy, DL))
4952     return false;
4953 
4954   // Check if masking is required.
4955   // A Group may need masking for one of two reasons: it resides in a block that
4956   // needs predication, or it was decided to use masking to deal with gaps
4957   // (either a gap at the end of a load-access that may result in a speculative
4958   // load, or any gaps in a store-access).
4959   bool PredicatedAccessRequiresMasking =
4960       blockNeedsPredicationForAnyReason(I->getParent()) &&
4961       Legal->isMaskRequired(I);
4962   bool LoadAccessWithGapsRequiresEpilogMasking =
4963       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4964       !isScalarEpilogueAllowed();
4965   bool StoreAccessWithGapsRequiresMasking =
4966       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4967   if (!PredicatedAccessRequiresMasking &&
4968       !LoadAccessWithGapsRequiresEpilogMasking &&
4969       !StoreAccessWithGapsRequiresMasking)
4970     return true;
4971 
4972   // If masked interleaving is required, we expect that the user/target had
4973   // enabled it, because otherwise it either wouldn't have been created or
4974   // it should have been invalidated by the CostModel.
4975   assert(useMaskedInterleavedAccesses(TTI) &&
4976          "Masked interleave-groups for predicated accesses are not enabled.");
4977 
4978   if (Group->isReverse())
4979     return false;
4980 
4981   auto *Ty = getLoadStoreType(I);
4982   const Align Alignment = getLoadStoreAlignment(I);
4983   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4984                           : TTI.isLegalMaskedStore(Ty, Alignment);
4985 }
4986 
4987 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4988     Instruction *I, ElementCount VF) {
4989   // Get and ensure we have a valid memory instruction.
4990   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4991 
4992   auto *Ptr = getLoadStorePointerOperand(I);
4993   auto *ScalarTy = getLoadStoreType(I);
4994 
4995   // In order to be widened, the pointer should be consecutive, first of all.
4996   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4997     return false;
4998 
4999   // If the instruction is a store located in a predicated block, it will be
5000   // scalarized.
5001   if (isScalarWithPredication(I, VF))
5002     return false;
5003 
5004   // If the instruction's allocated size doesn't equal it's type size, it
5005   // requires padding and will be scalarized.
5006   auto &DL = I->getModule()->getDataLayout();
5007   if (hasIrregularType(ScalarTy, DL))
5008     return false;
5009 
5010   return true;
5011 }
5012 
5013 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5014   // We should not collect Uniforms more than once per VF. Right now,
5015   // this function is called from collectUniformsAndScalars(), which
5016   // already does this check. Collecting Uniforms for VF=1 does not make any
5017   // sense.
5018 
5019   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5020          "This function should not be visited twice for the same VF");
5021 
5022   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5023   // not analyze again.  Uniforms.count(VF) will return 1.
5024   Uniforms[VF].clear();
5025 
5026   // We now know that the loop is vectorizable!
5027   // Collect instructions inside the loop that will remain uniform after
5028   // vectorization.
5029 
5030   // Global values, params and instructions outside of current loop are out of
5031   // scope.
5032   auto isOutOfScope = [&](Value *V) -> bool {
5033     Instruction *I = dyn_cast<Instruction>(V);
5034     return (!I || !TheLoop->contains(I));
5035   };
5036 
5037   // Worklist containing uniform instructions demanding lane 0.
5038   SetVector<Instruction *> Worklist;
5039   BasicBlock *Latch = TheLoop->getLoopLatch();
5040 
5041   // Add uniform instructions demanding lane 0 to the worklist. Instructions
5042   // that are scalar with predication must not be considered uniform after
5043   // vectorization, because that would create an erroneous replicating region
5044   // where only a single instance out of VF should be formed.
5045   // TODO: optimize such seldom cases if found important, see PR40816.
5046   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5047     if (isOutOfScope(I)) {
5048       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5049                         << *I << "\n");
5050       return;
5051     }
5052     if (isScalarWithPredication(I, VF)) {
5053       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5054                         << *I << "\n");
5055       return;
5056     }
5057     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5058     Worklist.insert(I);
5059   };
5060 
5061   // Start with the conditional branch. If the branch condition is an
5062   // instruction contained in the loop that is only used by the branch, it is
5063   // uniform.
5064   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5065   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5066     addToWorklistIfAllowed(Cmp);
5067 
5068   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5069     InstWidening WideningDecision = getWideningDecision(I, VF);
5070     assert(WideningDecision != CM_Unknown &&
5071            "Widening decision should be ready at this moment");
5072 
5073     // A uniform memory op is itself uniform.  We exclude uniform stores
5074     // here as they demand the last lane, not the first one.
5075     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5076       assert(WideningDecision == CM_Scalarize);
5077       return true;
5078     }
5079 
5080     return (WideningDecision == CM_Widen ||
5081             WideningDecision == CM_Widen_Reverse ||
5082             WideningDecision == CM_Interleave);
5083   };
5084 
5085 
5086   // Returns true if Ptr is the pointer operand of a memory access instruction
5087   // I, and I is known to not require scalarization.
5088   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5089     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5090   };
5091 
5092   // Holds a list of values which are known to have at least one uniform use.
5093   // Note that there may be other uses which aren't uniform.  A "uniform use"
5094   // here is something which only demands lane 0 of the unrolled iterations;
5095   // it does not imply that all lanes produce the same value (e.g. this is not
5096   // the usual meaning of uniform)
5097   SetVector<Value *> HasUniformUse;
5098 
5099   // Scan the loop for instructions which are either a) known to have only
5100   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5101   for (auto *BB : TheLoop->blocks())
5102     for (auto &I : *BB) {
5103       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5104         switch (II->getIntrinsicID()) {
5105         case Intrinsic::sideeffect:
5106         case Intrinsic::experimental_noalias_scope_decl:
5107         case Intrinsic::assume:
5108         case Intrinsic::lifetime_start:
5109         case Intrinsic::lifetime_end:
5110           if (TheLoop->hasLoopInvariantOperands(&I))
5111             addToWorklistIfAllowed(&I);
5112           break;
5113         default:
5114           break;
5115         }
5116       }
5117 
5118       // ExtractValue instructions must be uniform, because the operands are
5119       // known to be loop-invariant.
5120       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5121         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5122                "Expected aggregate value to be loop invariant");
5123         addToWorklistIfAllowed(EVI);
5124         continue;
5125       }
5126 
5127       // If there's no pointer operand, there's nothing to do.
5128       auto *Ptr = getLoadStorePointerOperand(&I);
5129       if (!Ptr)
5130         continue;
5131 
5132       // A uniform memory op is itself uniform.  We exclude uniform stores
5133       // here as they demand the last lane, not the first one.
5134       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5135         addToWorklistIfAllowed(&I);
5136 
5137       if (isUniformDecision(&I, VF)) {
5138         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5139         HasUniformUse.insert(Ptr);
5140       }
5141     }
5142 
5143   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5144   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5145   // disallows uses outside the loop as well.
5146   for (auto *V : HasUniformUse) {
5147     if (isOutOfScope(V))
5148       continue;
5149     auto *I = cast<Instruction>(V);
5150     auto UsersAreMemAccesses =
5151       llvm::all_of(I->users(), [&](User *U) -> bool {
5152         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5153       });
5154     if (UsersAreMemAccesses)
5155       addToWorklistIfAllowed(I);
5156   }
5157 
5158   // Expand Worklist in topological order: whenever a new instruction
5159   // is added , its users should be already inside Worklist.  It ensures
5160   // a uniform instruction will only be used by uniform instructions.
5161   unsigned idx = 0;
5162   while (idx != Worklist.size()) {
5163     Instruction *I = Worklist[idx++];
5164 
5165     for (auto OV : I->operand_values()) {
5166       // isOutOfScope operands cannot be uniform instructions.
5167       if (isOutOfScope(OV))
5168         continue;
5169       // First order recurrence Phi's should typically be considered
5170       // non-uniform.
5171       auto *OP = dyn_cast<PHINode>(OV);
5172       if (OP && Legal->isFirstOrderRecurrence(OP))
5173         continue;
5174       // If all the users of the operand are uniform, then add the
5175       // operand into the uniform worklist.
5176       auto *OI = cast<Instruction>(OV);
5177       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5178             auto *J = cast<Instruction>(U);
5179             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5180           }))
5181         addToWorklistIfAllowed(OI);
5182     }
5183   }
5184 
5185   // For an instruction to be added into Worklist above, all its users inside
5186   // the loop should also be in Worklist. However, this condition cannot be
5187   // true for phi nodes that form a cyclic dependence. We must process phi
5188   // nodes separately. An induction variable will remain uniform if all users
5189   // of the induction variable and induction variable update remain uniform.
5190   // The code below handles both pointer and non-pointer induction variables.
5191   for (auto &Induction : Legal->getInductionVars()) {
5192     auto *Ind = Induction.first;
5193     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5194 
5195     // Determine if all users of the induction variable are uniform after
5196     // vectorization.
5197     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5198       auto *I = cast<Instruction>(U);
5199       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5200              isVectorizedMemAccessUse(I, Ind);
5201     });
5202     if (!UniformInd)
5203       continue;
5204 
5205     // Determine if all users of the induction variable update instruction are
5206     // uniform after vectorization.
5207     auto UniformIndUpdate =
5208         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5209           auto *I = cast<Instruction>(U);
5210           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5211                  isVectorizedMemAccessUse(I, IndUpdate);
5212         });
5213     if (!UniformIndUpdate)
5214       continue;
5215 
5216     // The induction variable and its update instruction will remain uniform.
5217     addToWorklistIfAllowed(Ind);
5218     addToWorklistIfAllowed(IndUpdate);
5219   }
5220 
5221   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5222 }
5223 
5224 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5225   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5226 
5227   if (Legal->getRuntimePointerChecking()->Need) {
5228     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5229         "runtime pointer checks needed. Enable vectorization of this "
5230         "loop with '#pragma clang loop vectorize(enable)' when "
5231         "compiling with -Os/-Oz",
5232         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5233     return true;
5234   }
5235 
5236   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5237     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5238         "runtime SCEV checks needed. Enable vectorization of this "
5239         "loop with '#pragma clang loop vectorize(enable)' when "
5240         "compiling with -Os/-Oz",
5241         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5242     return true;
5243   }
5244 
5245   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5246   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5247     reportVectorizationFailure("Runtime stride check for small trip count",
5248         "runtime stride == 1 checks needed. Enable vectorization of "
5249         "this loop without such check by compiling with -Os/-Oz",
5250         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5251     return true;
5252   }
5253 
5254   return false;
5255 }
5256 
5257 ElementCount
5258 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5259   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5260     return ElementCount::getScalable(0);
5261 
5262   if (Hints->isScalableVectorizationDisabled()) {
5263     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5264                             "ScalableVectorizationDisabled", ORE, TheLoop);
5265     return ElementCount::getScalable(0);
5266   }
5267 
5268   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5269 
5270   auto MaxScalableVF = ElementCount::getScalable(
5271       std::numeric_limits<ElementCount::ScalarTy>::max());
5272 
5273   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5274   // FIXME: While for scalable vectors this is currently sufficient, this should
5275   // be replaced by a more detailed mechanism that filters out specific VFs,
5276   // instead of invalidating vectorization for a whole set of VFs based on the
5277   // MaxVF.
5278 
5279   // Disable scalable vectorization if the loop contains unsupported reductions.
5280   if (!canVectorizeReductions(MaxScalableVF)) {
5281     reportVectorizationInfo(
5282         "Scalable vectorization not supported for the reduction "
5283         "operations found in this loop.",
5284         "ScalableVFUnfeasible", ORE, TheLoop);
5285     return ElementCount::getScalable(0);
5286   }
5287 
5288   // Disable scalable vectorization if the loop contains any instructions
5289   // with element types not supported for scalable vectors.
5290   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5291         return !Ty->isVoidTy() &&
5292                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5293       })) {
5294     reportVectorizationInfo("Scalable vectorization is not supported "
5295                             "for all element types found in this loop.",
5296                             "ScalableVFUnfeasible", ORE, TheLoop);
5297     return ElementCount::getScalable(0);
5298   }
5299 
5300   if (Legal->isSafeForAnyVectorWidth())
5301     return MaxScalableVF;
5302 
5303   // Limit MaxScalableVF by the maximum safe dependence distance.
5304   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5305   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5306     MaxVScale =
5307         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5308   MaxScalableVF = ElementCount::getScalable(
5309       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5310   if (!MaxScalableVF)
5311     reportVectorizationInfo(
5312         "Max legal vector width too small, scalable vectorization "
5313         "unfeasible.",
5314         "ScalableVFUnfeasible", ORE, TheLoop);
5315 
5316   return MaxScalableVF;
5317 }
5318 
5319 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5320     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5321   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5322   unsigned SmallestType, WidestType;
5323   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5324 
5325   // Get the maximum safe dependence distance in bits computed by LAA.
5326   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5327   // the memory accesses that is most restrictive (involved in the smallest
5328   // dependence distance).
5329   unsigned MaxSafeElements =
5330       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5331 
5332   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5333   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5334 
5335   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5336                     << ".\n");
5337   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5338                     << ".\n");
5339 
5340   // First analyze the UserVF, fall back if the UserVF should be ignored.
5341   if (UserVF) {
5342     auto MaxSafeUserVF =
5343         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5344 
5345     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5346       // If `VF=vscale x N` is safe, then so is `VF=N`
5347       if (UserVF.isScalable())
5348         return FixedScalableVFPair(
5349             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5350       else
5351         return UserVF;
5352     }
5353 
5354     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5355 
5356     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5357     // is better to ignore the hint and let the compiler choose a suitable VF.
5358     if (!UserVF.isScalable()) {
5359       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5360                         << " is unsafe, clamping to max safe VF="
5361                         << MaxSafeFixedVF << ".\n");
5362       ORE->emit([&]() {
5363         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5364                                           TheLoop->getStartLoc(),
5365                                           TheLoop->getHeader())
5366                << "User-specified vectorization factor "
5367                << ore::NV("UserVectorizationFactor", UserVF)
5368                << " is unsafe, clamping to maximum safe vectorization factor "
5369                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5370       });
5371       return MaxSafeFixedVF;
5372     }
5373 
5374     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5375       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5376                         << " is ignored because scalable vectors are not "
5377                            "available.\n");
5378       ORE->emit([&]() {
5379         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5380                                           TheLoop->getStartLoc(),
5381                                           TheLoop->getHeader())
5382                << "User-specified vectorization factor "
5383                << ore::NV("UserVectorizationFactor", UserVF)
5384                << " is ignored because the target does not support scalable "
5385                   "vectors. The compiler will pick a more suitable value.";
5386       });
5387     } else {
5388       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5389                         << " is unsafe. Ignoring scalable UserVF.\n");
5390       ORE->emit([&]() {
5391         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5392                                           TheLoop->getStartLoc(),
5393                                           TheLoop->getHeader())
5394                << "User-specified vectorization factor "
5395                << ore::NV("UserVectorizationFactor", UserVF)
5396                << " is unsafe. Ignoring the hint to let the compiler pick a "
5397                   "more suitable value.";
5398       });
5399     }
5400   }
5401 
5402   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5403                     << " / " << WidestType << " bits.\n");
5404 
5405   FixedScalableVFPair Result(ElementCount::getFixed(1),
5406                              ElementCount::getScalable(0));
5407   if (auto MaxVF =
5408           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5409                                   MaxSafeFixedVF, FoldTailByMasking))
5410     Result.FixedVF = MaxVF;
5411 
5412   if (auto MaxVF =
5413           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5414                                   MaxSafeScalableVF, FoldTailByMasking))
5415     if (MaxVF.isScalable()) {
5416       Result.ScalableVF = MaxVF;
5417       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5418                         << "\n");
5419     }
5420 
5421   return Result;
5422 }
5423 
5424 FixedScalableVFPair
5425 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5426   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5427     // TODO: It may by useful to do since it's still likely to be dynamically
5428     // uniform if the target can skip.
5429     reportVectorizationFailure(
5430         "Not inserting runtime ptr check for divergent target",
5431         "runtime pointer checks needed. Not enabled for divergent target",
5432         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5433     return FixedScalableVFPair::getNone();
5434   }
5435 
5436   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5437   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5438   if (TC == 1) {
5439     reportVectorizationFailure("Single iteration (non) loop",
5440         "loop trip count is one, irrelevant for vectorization",
5441         "SingleIterationLoop", ORE, TheLoop);
5442     return FixedScalableVFPair::getNone();
5443   }
5444 
5445   switch (ScalarEpilogueStatus) {
5446   case CM_ScalarEpilogueAllowed:
5447     return computeFeasibleMaxVF(TC, UserVF, false);
5448   case CM_ScalarEpilogueNotAllowedUsePredicate:
5449     LLVM_FALLTHROUGH;
5450   case CM_ScalarEpilogueNotNeededUsePredicate:
5451     LLVM_DEBUG(
5452         dbgs() << "LV: vector predicate hint/switch found.\n"
5453                << "LV: Not allowing scalar epilogue, creating predicated "
5454                << "vector loop.\n");
5455     break;
5456   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5457     // fallthrough as a special case of OptForSize
5458   case CM_ScalarEpilogueNotAllowedOptSize:
5459     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5460       LLVM_DEBUG(
5461           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5462     else
5463       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5464                         << "count.\n");
5465 
5466     // Bail if runtime checks are required, which are not good when optimising
5467     // for size.
5468     if (runtimeChecksRequired())
5469       return FixedScalableVFPair::getNone();
5470 
5471     break;
5472   }
5473 
5474   // The only loops we can vectorize without a scalar epilogue, are loops with
5475   // a bottom-test and a single exiting block. We'd have to handle the fact
5476   // that not every instruction executes on the last iteration.  This will
5477   // require a lane mask which varies through the vector loop body.  (TODO)
5478   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5479     // If there was a tail-folding hint/switch, but we can't fold the tail by
5480     // masking, fallback to a vectorization with a scalar epilogue.
5481     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5482       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5483                            "scalar epilogue instead.\n");
5484       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5485       return computeFeasibleMaxVF(TC, UserVF, false);
5486     }
5487     return FixedScalableVFPair::getNone();
5488   }
5489 
5490   // Now try the tail folding
5491 
5492   // Invalidate interleave groups that require an epilogue if we can't mask
5493   // the interleave-group.
5494   if (!useMaskedInterleavedAccesses(TTI)) {
5495     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5496            "No decisions should have been taken at this point");
5497     // Note: There is no need to invalidate any cost modeling decisions here, as
5498     // non where taken so far.
5499     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5500   }
5501 
5502   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5503   // Avoid tail folding if the trip count is known to be a multiple of any VF
5504   // we chose.
5505   // FIXME: The condition below pessimises the case for fixed-width vectors,
5506   // when scalable VFs are also candidates for vectorization.
5507   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5508     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5509     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5510            "MaxFixedVF must be a power of 2");
5511     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5512                                    : MaxFixedVF.getFixedValue();
5513     ScalarEvolution *SE = PSE.getSE();
5514     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5515     const SCEV *ExitCount = SE->getAddExpr(
5516         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5517     const SCEV *Rem = SE->getURemExpr(
5518         SE->applyLoopGuards(ExitCount, TheLoop),
5519         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5520     if (Rem->isZero()) {
5521       // Accept MaxFixedVF if we do not have a tail.
5522       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5523       return MaxFactors;
5524     }
5525   }
5526 
5527   // For scalable vectors don't use tail folding for low trip counts or
5528   // optimizing for code size. We only permit this if the user has explicitly
5529   // requested it.
5530   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5531       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5532       MaxFactors.ScalableVF.isVector())
5533     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5534 
5535   // If we don't know the precise trip count, or if the trip count that we
5536   // found modulo the vectorization factor is not zero, try to fold the tail
5537   // by masking.
5538   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5539   if (Legal->prepareToFoldTailByMasking()) {
5540     FoldTailByMasking = true;
5541     return MaxFactors;
5542   }
5543 
5544   // If there was a tail-folding hint/switch, but we can't fold the tail by
5545   // masking, fallback to a vectorization with a scalar epilogue.
5546   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5547     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5548                          "scalar epilogue instead.\n");
5549     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5550     return MaxFactors;
5551   }
5552 
5553   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5554     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5555     return FixedScalableVFPair::getNone();
5556   }
5557 
5558   if (TC == 0) {
5559     reportVectorizationFailure(
5560         "Unable to calculate the loop count due to complex control flow",
5561         "unable to calculate the loop count due to complex control flow",
5562         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5563     return FixedScalableVFPair::getNone();
5564   }
5565 
5566   reportVectorizationFailure(
5567       "Cannot optimize for size and vectorize at the same time.",
5568       "cannot optimize for size and vectorize at the same time. "
5569       "Enable vectorization of this loop with '#pragma clang loop "
5570       "vectorize(enable)' when compiling with -Os/-Oz",
5571       "NoTailLoopWithOptForSize", ORE, TheLoop);
5572   return FixedScalableVFPair::getNone();
5573 }
5574 
5575 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5576     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5577     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5578   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5579   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5580       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5581                            : TargetTransformInfo::RGK_FixedWidthVector);
5582 
5583   // Convenience function to return the minimum of two ElementCounts.
5584   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5585     assert((LHS.isScalable() == RHS.isScalable()) &&
5586            "Scalable flags must match");
5587     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5588   };
5589 
5590   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5591   // Note that both WidestRegister and WidestType may not be a powers of 2.
5592   auto MaxVectorElementCount = ElementCount::get(
5593       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5594       ComputeScalableMaxVF);
5595   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5596   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5597                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5598 
5599   if (!MaxVectorElementCount) {
5600     LLVM_DEBUG(dbgs() << "LV: The target has no "
5601                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5602                       << " vector registers.\n");
5603     return ElementCount::getFixed(1);
5604   }
5605 
5606   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5607   if (ConstTripCount &&
5608       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5609       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5610     // If loop trip count (TC) is known at compile time there is no point in
5611     // choosing VF greater than TC (as done in the loop below). Select maximum
5612     // power of two which doesn't exceed TC.
5613     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5614     // when the TC is less than or equal to the known number of lanes.
5615     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5616     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5617                          "exceeding the constant trip count: "
5618                       << ClampedConstTripCount << "\n");
5619     return ElementCount::getFixed(ClampedConstTripCount);
5620   }
5621 
5622   ElementCount MaxVF = MaxVectorElementCount;
5623   if (TTI.shouldMaximizeVectorBandwidth() ||
5624       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5625     auto MaxVectorElementCountMaxBW = ElementCount::get(
5626         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5627         ComputeScalableMaxVF);
5628     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5629 
5630     // Collect all viable vectorization factors larger than the default MaxVF
5631     // (i.e. MaxVectorElementCount).
5632     SmallVector<ElementCount, 8> VFs;
5633     for (ElementCount VS = MaxVectorElementCount * 2;
5634          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5635       VFs.push_back(VS);
5636 
5637     // For each VF calculate its register usage.
5638     auto RUs = calculateRegisterUsage(VFs);
5639 
5640     // Select the largest VF which doesn't require more registers than existing
5641     // ones.
5642     for (int i = RUs.size() - 1; i >= 0; --i) {
5643       bool Selected = true;
5644       for (auto &pair : RUs[i].MaxLocalUsers) {
5645         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5646         if (pair.second > TargetNumRegisters)
5647           Selected = false;
5648       }
5649       if (Selected) {
5650         MaxVF = VFs[i];
5651         break;
5652       }
5653     }
5654     if (ElementCount MinVF =
5655             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5656       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5657         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5658                           << ") with target's minimum: " << MinVF << '\n');
5659         MaxVF = MinVF;
5660       }
5661     }
5662   }
5663   return MaxVF;
5664 }
5665 
5666 bool LoopVectorizationCostModel::isMoreProfitable(
5667     const VectorizationFactor &A, const VectorizationFactor &B) const {
5668   InstructionCost CostA = A.Cost;
5669   InstructionCost CostB = B.Cost;
5670 
5671   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5672 
5673   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5674       MaxTripCount) {
5675     // If we are folding the tail and the trip count is a known (possibly small)
5676     // constant, the trip count will be rounded up to an integer number of
5677     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5678     // which we compare directly. When not folding the tail, the total cost will
5679     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5680     // approximated with the per-lane cost below instead of using the tripcount
5681     // as here.
5682     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5683     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5684     return RTCostA < RTCostB;
5685   }
5686 
5687   // Improve estimate for the vector width if it is scalable.
5688   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5689   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5690   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
5691     if (A.Width.isScalable())
5692       EstimatedWidthA *= VScale.getValue();
5693     if (B.Width.isScalable())
5694       EstimatedWidthB *= VScale.getValue();
5695   }
5696 
5697   // Assume vscale may be larger than 1 (or the value being tuned for),
5698   // so that scalable vectorization is slightly favorable over fixed-width
5699   // vectorization.
5700   if (A.Width.isScalable() && !B.Width.isScalable())
5701     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5702 
5703   // To avoid the need for FP division:
5704   //      (CostA / A.Width) < (CostB / B.Width)
5705   // <=>  (CostA * B.Width) < (CostB * A.Width)
5706   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5707 }
5708 
5709 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5710     const ElementCountSet &VFCandidates) {
5711   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5712   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5713   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5714   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5715          "Expected Scalar VF to be a candidate");
5716 
5717   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5718   VectorizationFactor ChosenFactor = ScalarCost;
5719 
5720   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5721   if (ForceVectorization && VFCandidates.size() > 1) {
5722     // Ignore scalar width, because the user explicitly wants vectorization.
5723     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5724     // evaluation.
5725     ChosenFactor.Cost = InstructionCost::getMax();
5726   }
5727 
5728   SmallVector<InstructionVFPair> InvalidCosts;
5729   for (const auto &i : VFCandidates) {
5730     // The cost for scalar VF=1 is already calculated, so ignore it.
5731     if (i.isScalar())
5732       continue;
5733 
5734     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5735     VectorizationFactor Candidate(i, C.first);
5736 
5737 #ifndef NDEBUG
5738     unsigned AssumedMinimumVscale = 1;
5739     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
5740       AssumedMinimumVscale = VScale.getValue();
5741     unsigned Width =
5742         Candidate.Width.isScalable()
5743             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5744             : Candidate.Width.getFixedValue();
5745     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5746                       << " costs: " << (Candidate.Cost / Width));
5747     if (i.isScalable())
5748       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5749                         << AssumedMinimumVscale << ")");
5750     LLVM_DEBUG(dbgs() << ".\n");
5751 #endif
5752 
5753     if (!C.second && !ForceVectorization) {
5754       LLVM_DEBUG(
5755           dbgs() << "LV: Not considering vector loop of width " << i
5756                  << " because it will not generate any vector instructions.\n");
5757       continue;
5758     }
5759 
5760     // If profitable add it to ProfitableVF list.
5761     if (isMoreProfitable(Candidate, ScalarCost))
5762       ProfitableVFs.push_back(Candidate);
5763 
5764     if (isMoreProfitable(Candidate, ChosenFactor))
5765       ChosenFactor = Candidate;
5766   }
5767 
5768   // Emit a report of VFs with invalid costs in the loop.
5769   if (!InvalidCosts.empty()) {
5770     // Group the remarks per instruction, keeping the instruction order from
5771     // InvalidCosts.
5772     std::map<Instruction *, unsigned> Numbering;
5773     unsigned I = 0;
5774     for (auto &Pair : InvalidCosts)
5775       if (!Numbering.count(Pair.first))
5776         Numbering[Pair.first] = I++;
5777 
5778     // Sort the list, first on instruction(number) then on VF.
5779     llvm::sort(InvalidCosts,
5780                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5781                  if (Numbering[A.first] != Numbering[B.first])
5782                    return Numbering[A.first] < Numbering[B.first];
5783                  ElementCountComparator ECC;
5784                  return ECC(A.second, B.second);
5785                });
5786 
5787     // For a list of ordered instruction-vf pairs:
5788     //   [(load, vf1), (load, vf2), (store, vf1)]
5789     // Group the instructions together to emit separate remarks for:
5790     //   load  (vf1, vf2)
5791     //   store (vf1)
5792     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5793     auto Subset = ArrayRef<InstructionVFPair>();
5794     do {
5795       if (Subset.empty())
5796         Subset = Tail.take_front(1);
5797 
5798       Instruction *I = Subset.front().first;
5799 
5800       // If the next instruction is different, or if there are no other pairs,
5801       // emit a remark for the collated subset. e.g.
5802       //   [(load, vf1), (load, vf2))]
5803       // to emit:
5804       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5805       if (Subset == Tail || Tail[Subset.size()].first != I) {
5806         std::string OutString;
5807         raw_string_ostream OS(OutString);
5808         assert(!Subset.empty() && "Unexpected empty range");
5809         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5810         for (auto &Pair : Subset)
5811           OS << (Pair.second == Subset.front().second ? "" : ", ")
5812              << Pair.second;
5813         OS << "):";
5814         if (auto *CI = dyn_cast<CallInst>(I))
5815           OS << " call to " << CI->getCalledFunction()->getName();
5816         else
5817           OS << " " << I->getOpcodeName();
5818         OS.flush();
5819         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5820         Tail = Tail.drop_front(Subset.size());
5821         Subset = {};
5822       } else
5823         // Grow the subset by one element
5824         Subset = Tail.take_front(Subset.size() + 1);
5825     } while (!Tail.empty());
5826   }
5827 
5828   if (!EnableCondStoresVectorization && NumPredStores) {
5829     reportVectorizationFailure("There are conditional stores.",
5830         "store that is conditionally executed prevents vectorization",
5831         "ConditionalStore", ORE, TheLoop);
5832     ChosenFactor = ScalarCost;
5833   }
5834 
5835   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5836                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5837              << "LV: Vectorization seems to be not beneficial, "
5838              << "but was forced by a user.\n");
5839   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5840   return ChosenFactor;
5841 }
5842 
5843 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5844     const Loop &L, ElementCount VF) const {
5845   // Cross iteration phis such as reductions need special handling and are
5846   // currently unsupported.
5847   if (any_of(L.getHeader()->phis(),
5848              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5849     return false;
5850 
5851   // Phis with uses outside of the loop require special handling and are
5852   // currently unsupported.
5853   for (auto &Entry : Legal->getInductionVars()) {
5854     // Look for uses of the value of the induction at the last iteration.
5855     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5856     for (User *U : PostInc->users())
5857       if (!L.contains(cast<Instruction>(U)))
5858         return false;
5859     // Look for uses of penultimate value of the induction.
5860     for (User *U : Entry.first->users())
5861       if (!L.contains(cast<Instruction>(U)))
5862         return false;
5863   }
5864 
5865   // Induction variables that are widened require special handling that is
5866   // currently not supported.
5867   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5868         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5869                  this->isProfitableToScalarize(Entry.first, VF));
5870       }))
5871     return false;
5872 
5873   // Epilogue vectorization code has not been auditted to ensure it handles
5874   // non-latch exits properly.  It may be fine, but it needs auditted and
5875   // tested.
5876   if (L.getExitingBlock() != L.getLoopLatch())
5877     return false;
5878 
5879   return true;
5880 }
5881 
5882 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5883     const ElementCount VF) const {
5884   // FIXME: We need a much better cost-model to take different parameters such
5885   // as register pressure, code size increase and cost of extra branches into
5886   // account. For now we apply a very crude heuristic and only consider loops
5887   // with vectorization factors larger than a certain value.
5888   // We also consider epilogue vectorization unprofitable for targets that don't
5889   // consider interleaving beneficial (eg. MVE).
5890   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5891     return false;
5892   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
5893     return true;
5894   return false;
5895 }
5896 
5897 VectorizationFactor
5898 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5899     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5900   VectorizationFactor Result = VectorizationFactor::Disabled();
5901   if (!EnableEpilogueVectorization) {
5902     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5903     return Result;
5904   }
5905 
5906   if (!isScalarEpilogueAllowed()) {
5907     LLVM_DEBUG(
5908         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5909                   "allowed.\n";);
5910     return Result;
5911   }
5912 
5913   // Not really a cost consideration, but check for unsupported cases here to
5914   // simplify the logic.
5915   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5916     LLVM_DEBUG(
5917         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5918                   "not a supported candidate.\n";);
5919     return Result;
5920   }
5921 
5922   if (EpilogueVectorizationForceVF > 1) {
5923     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5924     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5925     if (LVP.hasPlanWithVF(ForcedEC))
5926       return {ForcedEC, 0};
5927     else {
5928       LLVM_DEBUG(
5929           dbgs()
5930               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5931       return Result;
5932     }
5933   }
5934 
5935   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5936       TheLoop->getHeader()->getParent()->hasMinSize()) {
5937     LLVM_DEBUG(
5938         dbgs()
5939             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5940     return Result;
5941   }
5942 
5943   auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5944   if (MainLoopVF.isScalable())
5945     LLVM_DEBUG(
5946         dbgs() << "LEV: Epilogue vectorization using scalable vectors not "
5947                   "yet supported. Converting to fixed-width (VF="
5948                << FixedMainLoopVF << ") instead\n");
5949 
5950   if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) {
5951     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5952                          "this loop\n");
5953     return Result;
5954   }
5955 
5956   for (auto &NextVF : ProfitableVFs)
5957     if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) &&
5958         (Result.Width.getFixedValue() == 1 ||
5959          isMoreProfitable(NextVF, Result)) &&
5960         LVP.hasPlanWithVF(NextVF.Width))
5961       Result = NextVF;
5962 
5963   if (Result != VectorizationFactor::Disabled())
5964     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5965                       << Result.Width.getFixedValue() << "\n";);
5966   return Result;
5967 }
5968 
5969 std::pair<unsigned, unsigned>
5970 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5971   unsigned MinWidth = -1U;
5972   unsigned MaxWidth = 8;
5973   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5974   // For in-loop reductions, no element types are added to ElementTypesInLoop
5975   // if there are no loads/stores in the loop. In this case, check through the
5976   // reduction variables to determine the maximum width.
5977   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5978     // Reset MaxWidth so that we can find the smallest type used by recurrences
5979     // in the loop.
5980     MaxWidth = -1U;
5981     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5982       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5983       // When finding the min width used by the recurrence we need to account
5984       // for casts on the input operands of the recurrence.
5985       MaxWidth = std::min<unsigned>(
5986           MaxWidth, std::min<unsigned>(
5987                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5988                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5989     }
5990   } else {
5991     for (Type *T : ElementTypesInLoop) {
5992       MinWidth = std::min<unsigned>(
5993           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5994       MaxWidth = std::max<unsigned>(
5995           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5996     }
5997   }
5998   return {MinWidth, MaxWidth};
5999 }
6000 
6001 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6002   ElementTypesInLoop.clear();
6003   // For each block.
6004   for (BasicBlock *BB : TheLoop->blocks()) {
6005     // For each instruction in the loop.
6006     for (Instruction &I : BB->instructionsWithoutDebug()) {
6007       Type *T = I.getType();
6008 
6009       // Skip ignored values.
6010       if (ValuesToIgnore.count(&I))
6011         continue;
6012 
6013       // Only examine Loads, Stores and PHINodes.
6014       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6015         continue;
6016 
6017       // Examine PHI nodes that are reduction variables. Update the type to
6018       // account for the recurrence type.
6019       if (auto *PN = dyn_cast<PHINode>(&I)) {
6020         if (!Legal->isReductionVariable(PN))
6021           continue;
6022         const RecurrenceDescriptor &RdxDesc =
6023             Legal->getReductionVars().find(PN)->second;
6024         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6025             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6026                                       RdxDesc.getRecurrenceType(),
6027                                       TargetTransformInfo::ReductionFlags()))
6028           continue;
6029         T = RdxDesc.getRecurrenceType();
6030       }
6031 
6032       // Examine the stored values.
6033       if (auto *ST = dyn_cast<StoreInst>(&I))
6034         T = ST->getValueOperand()->getType();
6035 
6036       assert(T->isSized() &&
6037              "Expected the load/store/recurrence type to be sized");
6038 
6039       ElementTypesInLoop.insert(T);
6040     }
6041   }
6042 }
6043 
6044 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6045                                                            unsigned LoopCost) {
6046   // -- The interleave heuristics --
6047   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6048   // There are many micro-architectural considerations that we can't predict
6049   // at this level. For example, frontend pressure (on decode or fetch) due to
6050   // code size, or the number and capabilities of the execution ports.
6051   //
6052   // We use the following heuristics to select the interleave count:
6053   // 1. If the code has reductions, then we interleave to break the cross
6054   // iteration dependency.
6055   // 2. If the loop is really small, then we interleave to reduce the loop
6056   // overhead.
6057   // 3. We don't interleave if we think that we will spill registers to memory
6058   // due to the increased register pressure.
6059 
6060   if (!isScalarEpilogueAllowed())
6061     return 1;
6062 
6063   // We used the distance for the interleave count.
6064   if (Legal->getMaxSafeDepDistBytes() != -1U)
6065     return 1;
6066 
6067   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6068   const bool HasReductions = !Legal->getReductionVars().empty();
6069   // Do not interleave loops with a relatively small known or estimated trip
6070   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6071   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6072   // because with the above conditions interleaving can expose ILP and break
6073   // cross iteration dependences for reductions.
6074   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6075       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6076     return 1;
6077 
6078   RegisterUsage R = calculateRegisterUsage({VF})[0];
6079   // We divide by these constants so assume that we have at least one
6080   // instruction that uses at least one register.
6081   for (auto& pair : R.MaxLocalUsers) {
6082     pair.second = std::max(pair.second, 1U);
6083   }
6084 
6085   // We calculate the interleave count using the following formula.
6086   // Subtract the number of loop invariants from the number of available
6087   // registers. These registers are used by all of the interleaved instances.
6088   // Next, divide the remaining registers by the number of registers that is
6089   // required by the loop, in order to estimate how many parallel instances
6090   // fit without causing spills. All of this is rounded down if necessary to be
6091   // a power of two. We want power of two interleave count to simplify any
6092   // addressing operations or alignment considerations.
6093   // We also want power of two interleave counts to ensure that the induction
6094   // variable of the vector loop wraps to zero, when tail is folded by masking;
6095   // this currently happens when OptForSize, in which case IC is set to 1 above.
6096   unsigned IC = UINT_MAX;
6097 
6098   for (auto& pair : R.MaxLocalUsers) {
6099     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6100     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6101                       << " registers of "
6102                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6103     if (VF.isScalar()) {
6104       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6105         TargetNumRegisters = ForceTargetNumScalarRegs;
6106     } else {
6107       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6108         TargetNumRegisters = ForceTargetNumVectorRegs;
6109     }
6110     unsigned MaxLocalUsers = pair.second;
6111     unsigned LoopInvariantRegs = 0;
6112     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6113       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6114 
6115     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6116     // Don't count the induction variable as interleaved.
6117     if (EnableIndVarRegisterHeur) {
6118       TmpIC =
6119           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6120                         std::max(1U, (MaxLocalUsers - 1)));
6121     }
6122 
6123     IC = std::min(IC, TmpIC);
6124   }
6125 
6126   // Clamp the interleave ranges to reasonable counts.
6127   unsigned MaxInterleaveCount =
6128       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6129 
6130   // Check if the user has overridden the max.
6131   if (VF.isScalar()) {
6132     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6133       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6134   } else {
6135     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6136       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6137   }
6138 
6139   // If trip count is known or estimated compile time constant, limit the
6140   // interleave count to be less than the trip count divided by VF, provided it
6141   // is at least 1.
6142   //
6143   // For scalable vectors we can't know if interleaving is beneficial. It may
6144   // not be beneficial for small loops if none of the lanes in the second vector
6145   // iterations is enabled. However, for larger loops, there is likely to be a
6146   // similar benefit as for fixed-width vectors. For now, we choose to leave
6147   // the InterleaveCount as if vscale is '1', although if some information about
6148   // the vector is known (e.g. min vector size), we can make a better decision.
6149   if (BestKnownTC) {
6150     MaxInterleaveCount =
6151         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6152     // Make sure MaxInterleaveCount is greater than 0.
6153     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6154   }
6155 
6156   assert(MaxInterleaveCount > 0 &&
6157          "Maximum interleave count must be greater than 0");
6158 
6159   // Clamp the calculated IC to be between the 1 and the max interleave count
6160   // that the target and trip count allows.
6161   if (IC > MaxInterleaveCount)
6162     IC = MaxInterleaveCount;
6163   else
6164     // Make sure IC is greater than 0.
6165     IC = std::max(1u, IC);
6166 
6167   assert(IC > 0 && "Interleave count must be greater than 0.");
6168 
6169   // If we did not calculate the cost for VF (because the user selected the VF)
6170   // then we calculate the cost of VF here.
6171   if (LoopCost == 0) {
6172     InstructionCost C = expectedCost(VF).first;
6173     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6174     LoopCost = *C.getValue();
6175   }
6176 
6177   assert(LoopCost && "Non-zero loop cost expected");
6178 
6179   // Interleave if we vectorized this loop and there is a reduction that could
6180   // benefit from interleaving.
6181   if (VF.isVector() && HasReductions) {
6182     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6183     return IC;
6184   }
6185 
6186   // Note that if we've already vectorized the loop we will have done the
6187   // runtime check and so interleaving won't require further checks.
6188   bool InterleavingRequiresRuntimePointerCheck =
6189       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6190 
6191   // We want to interleave small loops in order to reduce the loop overhead and
6192   // potentially expose ILP opportunities.
6193   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6194                     << "LV: IC is " << IC << '\n'
6195                     << "LV: VF is " << VF << '\n');
6196   const bool AggressivelyInterleaveReductions =
6197       TTI.enableAggressiveInterleaving(HasReductions);
6198   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6199     // We assume that the cost overhead is 1 and we use the cost model
6200     // to estimate the cost of the loop and interleave until the cost of the
6201     // loop overhead is about 5% of the cost of the loop.
6202     unsigned SmallIC =
6203         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6204 
6205     // Interleave until store/load ports (estimated by max interleave count) are
6206     // saturated.
6207     unsigned NumStores = Legal->getNumStores();
6208     unsigned NumLoads = Legal->getNumLoads();
6209     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6210     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6211 
6212     // There is little point in interleaving for reductions containing selects
6213     // and compares when VF=1 since it may just create more overhead than it's
6214     // worth for loops with small trip counts. This is because we still have to
6215     // do the final reduction after the loop.
6216     bool HasSelectCmpReductions =
6217         HasReductions &&
6218         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6219           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6220           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6221               RdxDesc.getRecurrenceKind());
6222         });
6223     if (HasSelectCmpReductions) {
6224       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6225       return 1;
6226     }
6227 
6228     // If we have a scalar reduction (vector reductions are already dealt with
6229     // by this point), we can increase the critical path length if the loop
6230     // we're interleaving is inside another loop. For tree-wise reductions
6231     // set the limit to 2, and for ordered reductions it's best to disable
6232     // interleaving entirely.
6233     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6234       bool HasOrderedReductions =
6235           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6236             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6237             return RdxDesc.isOrdered();
6238           });
6239       if (HasOrderedReductions) {
6240         LLVM_DEBUG(
6241             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6242         return 1;
6243       }
6244 
6245       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6246       SmallIC = std::min(SmallIC, F);
6247       StoresIC = std::min(StoresIC, F);
6248       LoadsIC = std::min(LoadsIC, F);
6249     }
6250 
6251     if (EnableLoadStoreRuntimeInterleave &&
6252         std::max(StoresIC, LoadsIC) > SmallIC) {
6253       LLVM_DEBUG(
6254           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6255       return std::max(StoresIC, LoadsIC);
6256     }
6257 
6258     // If there are scalar reductions and TTI has enabled aggressive
6259     // interleaving for reductions, we will interleave to expose ILP.
6260     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6261         AggressivelyInterleaveReductions) {
6262       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6263       // Interleave no less than SmallIC but not as aggressive as the normal IC
6264       // to satisfy the rare situation when resources are too limited.
6265       return std::max(IC / 2, SmallIC);
6266     } else {
6267       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6268       return SmallIC;
6269     }
6270   }
6271 
6272   // Interleave if this is a large loop (small loops are already dealt with by
6273   // this point) that could benefit from interleaving.
6274   if (AggressivelyInterleaveReductions) {
6275     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6276     return IC;
6277   }
6278 
6279   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6280   return 1;
6281 }
6282 
6283 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6284 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6285   // This function calculates the register usage by measuring the highest number
6286   // of values that are alive at a single location. Obviously, this is a very
6287   // rough estimation. We scan the loop in a topological order in order and
6288   // assign a number to each instruction. We use RPO to ensure that defs are
6289   // met before their users. We assume that each instruction that has in-loop
6290   // users starts an interval. We record every time that an in-loop value is
6291   // used, so we have a list of the first and last occurrences of each
6292   // instruction. Next, we transpose this data structure into a multi map that
6293   // holds the list of intervals that *end* at a specific location. This multi
6294   // map allows us to perform a linear search. We scan the instructions linearly
6295   // and record each time that a new interval starts, by placing it in a set.
6296   // If we find this value in the multi-map then we remove it from the set.
6297   // The max register usage is the maximum size of the set.
6298   // We also search for instructions that are defined outside the loop, but are
6299   // used inside the loop. We need this number separately from the max-interval
6300   // usage number because when we unroll, loop-invariant values do not take
6301   // more register.
6302   LoopBlocksDFS DFS(TheLoop);
6303   DFS.perform(LI);
6304 
6305   RegisterUsage RU;
6306 
6307   // Each 'key' in the map opens a new interval. The values
6308   // of the map are the index of the 'last seen' usage of the
6309   // instruction that is the key.
6310   using IntervalMap = DenseMap<Instruction *, unsigned>;
6311 
6312   // Maps instruction to its index.
6313   SmallVector<Instruction *, 64> IdxToInstr;
6314   // Marks the end of each interval.
6315   IntervalMap EndPoint;
6316   // Saves the list of instruction indices that are used in the loop.
6317   SmallPtrSet<Instruction *, 8> Ends;
6318   // Saves the list of values that are used in the loop but are
6319   // defined outside the loop, such as arguments and constants.
6320   SmallPtrSet<Value *, 8> LoopInvariants;
6321 
6322   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6323     for (Instruction &I : BB->instructionsWithoutDebug()) {
6324       IdxToInstr.push_back(&I);
6325 
6326       // Save the end location of each USE.
6327       for (Value *U : I.operands()) {
6328         auto *Instr = dyn_cast<Instruction>(U);
6329 
6330         // Ignore non-instruction values such as arguments, constants, etc.
6331         if (!Instr)
6332           continue;
6333 
6334         // If this instruction is outside the loop then record it and continue.
6335         if (!TheLoop->contains(Instr)) {
6336           LoopInvariants.insert(Instr);
6337           continue;
6338         }
6339 
6340         // Overwrite previous end points.
6341         EndPoint[Instr] = IdxToInstr.size();
6342         Ends.insert(Instr);
6343       }
6344     }
6345   }
6346 
6347   // Saves the list of intervals that end with the index in 'key'.
6348   using InstrList = SmallVector<Instruction *, 2>;
6349   DenseMap<unsigned, InstrList> TransposeEnds;
6350 
6351   // Transpose the EndPoints to a list of values that end at each index.
6352   for (auto &Interval : EndPoint)
6353     TransposeEnds[Interval.second].push_back(Interval.first);
6354 
6355   SmallPtrSet<Instruction *, 8> OpenIntervals;
6356   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6357   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6358 
6359   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6360 
6361   // A lambda that gets the register usage for the given type and VF.
6362   const auto &TTICapture = TTI;
6363   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6364     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6365       return 0;
6366     InstructionCost::CostType RegUsage =
6367         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6368     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6369            "Nonsensical values for register usage.");
6370     return RegUsage;
6371   };
6372 
6373   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6374     Instruction *I = IdxToInstr[i];
6375 
6376     // Remove all of the instructions that end at this location.
6377     InstrList &List = TransposeEnds[i];
6378     for (Instruction *ToRemove : List)
6379       OpenIntervals.erase(ToRemove);
6380 
6381     // Ignore instructions that are never used within the loop.
6382     if (!Ends.count(I))
6383       continue;
6384 
6385     // Skip ignored values.
6386     if (ValuesToIgnore.count(I))
6387       continue;
6388 
6389     // For each VF find the maximum usage of registers.
6390     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6391       // Count the number of live intervals.
6392       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6393 
6394       if (VFs[j].isScalar()) {
6395         for (auto Inst : OpenIntervals) {
6396           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6397           if (RegUsage.find(ClassID) == RegUsage.end())
6398             RegUsage[ClassID] = 1;
6399           else
6400             RegUsage[ClassID] += 1;
6401         }
6402       } else {
6403         collectUniformsAndScalars(VFs[j]);
6404         for (auto Inst : OpenIntervals) {
6405           // Skip ignored values for VF > 1.
6406           if (VecValuesToIgnore.count(Inst))
6407             continue;
6408           if (isScalarAfterVectorization(Inst, VFs[j])) {
6409             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6410             if (RegUsage.find(ClassID) == RegUsage.end())
6411               RegUsage[ClassID] = 1;
6412             else
6413               RegUsage[ClassID] += 1;
6414           } else {
6415             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6416             if (RegUsage.find(ClassID) == RegUsage.end())
6417               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6418             else
6419               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6420           }
6421         }
6422       }
6423 
6424       for (auto& pair : RegUsage) {
6425         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6426           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6427         else
6428           MaxUsages[j][pair.first] = pair.second;
6429       }
6430     }
6431 
6432     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6433                       << OpenIntervals.size() << '\n');
6434 
6435     // Add the current instruction to the list of open intervals.
6436     OpenIntervals.insert(I);
6437   }
6438 
6439   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6440     SmallMapVector<unsigned, unsigned, 4> Invariant;
6441 
6442     for (auto Inst : LoopInvariants) {
6443       unsigned Usage =
6444           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6445       unsigned ClassID =
6446           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6447       if (Invariant.find(ClassID) == Invariant.end())
6448         Invariant[ClassID] = Usage;
6449       else
6450         Invariant[ClassID] += Usage;
6451     }
6452 
6453     LLVM_DEBUG({
6454       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6455       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6456              << " item\n";
6457       for (const auto &pair : MaxUsages[i]) {
6458         dbgs() << "LV(REG): RegisterClass: "
6459                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6460                << " registers\n";
6461       }
6462       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6463              << " item\n";
6464       for (const auto &pair : Invariant) {
6465         dbgs() << "LV(REG): RegisterClass: "
6466                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6467                << " registers\n";
6468       }
6469     });
6470 
6471     RU.LoopInvariantRegs = Invariant;
6472     RU.MaxLocalUsers = MaxUsages[i];
6473     RUs[i] = RU;
6474   }
6475 
6476   return RUs;
6477 }
6478 
6479 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6480                                                            ElementCount VF) {
6481   // TODO: Cost model for emulated masked load/store is completely
6482   // broken. This hack guides the cost model to use an artificially
6483   // high enough value to practically disable vectorization with such
6484   // operations, except where previously deployed legality hack allowed
6485   // using very low cost values. This is to avoid regressions coming simply
6486   // from moving "masked load/store" check from legality to cost model.
6487   // Masked Load/Gather emulation was previously never allowed.
6488   // Limited number of Masked Store/Scatter emulation was allowed.
6489   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6490   return isa<LoadInst>(I) ||
6491          (isa<StoreInst>(I) &&
6492           NumPredStores > NumberOfStoresToPredicate);
6493 }
6494 
6495 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6496   // If we aren't vectorizing the loop, or if we've already collected the
6497   // instructions to scalarize, there's nothing to do. Collection may already
6498   // have occurred if we have a user-selected VF and are now computing the
6499   // expected cost for interleaving.
6500   if (VF.isScalar() || VF.isZero() ||
6501       InstsToScalarize.find(VF) != InstsToScalarize.end())
6502     return;
6503 
6504   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6505   // not profitable to scalarize any instructions, the presence of VF in the
6506   // map will indicate that we've analyzed it already.
6507   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6508 
6509   // Find all the instructions that are scalar with predication in the loop and
6510   // determine if it would be better to not if-convert the blocks they are in.
6511   // If so, we also record the instructions to scalarize.
6512   for (BasicBlock *BB : TheLoop->blocks()) {
6513     if (!blockNeedsPredicationForAnyReason(BB))
6514       continue;
6515     for (Instruction &I : *BB)
6516       if (isScalarWithPredication(&I, VF)) {
6517         ScalarCostsTy ScalarCosts;
6518         // Do not apply discount if scalable, because that would lead to
6519         // invalid scalarization costs.
6520         // Do not apply discount logic if hacked cost is needed
6521         // for emulated masked memrefs.
6522         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6523             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6524           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6525         // Remember that BB will remain after vectorization.
6526         PredicatedBBsAfterVectorization.insert(BB);
6527       }
6528   }
6529 }
6530 
6531 int LoopVectorizationCostModel::computePredInstDiscount(
6532     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6533   assert(!isUniformAfterVectorization(PredInst, VF) &&
6534          "Instruction marked uniform-after-vectorization will be predicated");
6535 
6536   // Initialize the discount to zero, meaning that the scalar version and the
6537   // vector version cost the same.
6538   InstructionCost Discount = 0;
6539 
6540   // Holds instructions to analyze. The instructions we visit are mapped in
6541   // ScalarCosts. Those instructions are the ones that would be scalarized if
6542   // we find that the scalar version costs less.
6543   SmallVector<Instruction *, 8> Worklist;
6544 
6545   // Returns true if the given instruction can be scalarized.
6546   auto canBeScalarized = [&](Instruction *I) -> bool {
6547     // We only attempt to scalarize instructions forming a single-use chain
6548     // from the original predicated block that would otherwise be vectorized.
6549     // Although not strictly necessary, we give up on instructions we know will
6550     // already be scalar to avoid traversing chains that are unlikely to be
6551     // beneficial.
6552     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6553         isScalarAfterVectorization(I, VF))
6554       return false;
6555 
6556     // If the instruction is scalar with predication, it will be analyzed
6557     // separately. We ignore it within the context of PredInst.
6558     if (isScalarWithPredication(I, VF))
6559       return false;
6560 
6561     // If any of the instruction's operands are uniform after vectorization,
6562     // the instruction cannot be scalarized. This prevents, for example, a
6563     // masked load from being scalarized.
6564     //
6565     // We assume we will only emit a value for lane zero of an instruction
6566     // marked uniform after vectorization, rather than VF identical values.
6567     // Thus, if we scalarize an instruction that uses a uniform, we would
6568     // create uses of values corresponding to the lanes we aren't emitting code
6569     // for. This behavior can be changed by allowing getScalarValue to clone
6570     // the lane zero values for uniforms rather than asserting.
6571     for (Use &U : I->operands())
6572       if (auto *J = dyn_cast<Instruction>(U.get()))
6573         if (isUniformAfterVectorization(J, VF))
6574           return false;
6575 
6576     // Otherwise, we can scalarize the instruction.
6577     return true;
6578   };
6579 
6580   // Compute the expected cost discount from scalarizing the entire expression
6581   // feeding the predicated instruction. We currently only consider expressions
6582   // that are single-use instruction chains.
6583   Worklist.push_back(PredInst);
6584   while (!Worklist.empty()) {
6585     Instruction *I = Worklist.pop_back_val();
6586 
6587     // If we've already analyzed the instruction, there's nothing to do.
6588     if (ScalarCosts.find(I) != ScalarCosts.end())
6589       continue;
6590 
6591     // Compute the cost of the vector instruction. Note that this cost already
6592     // includes the scalarization overhead of the predicated instruction.
6593     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6594 
6595     // Compute the cost of the scalarized instruction. This cost is the cost of
6596     // the instruction as if it wasn't if-converted and instead remained in the
6597     // predicated block. We will scale this cost by block probability after
6598     // computing the scalarization overhead.
6599     InstructionCost ScalarCost =
6600         VF.getFixedValue() *
6601         getInstructionCost(I, ElementCount::getFixed(1)).first;
6602 
6603     // Compute the scalarization overhead of needed insertelement instructions
6604     // and phi nodes.
6605     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6606       ScalarCost += TTI.getScalarizationOverhead(
6607           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6608           APInt::getAllOnes(VF.getFixedValue()), true, false);
6609       ScalarCost +=
6610           VF.getFixedValue() *
6611           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6612     }
6613 
6614     // Compute the scalarization overhead of needed extractelement
6615     // instructions. For each of the instruction's operands, if the operand can
6616     // be scalarized, add it to the worklist; otherwise, account for the
6617     // overhead.
6618     for (Use &U : I->operands())
6619       if (auto *J = dyn_cast<Instruction>(U.get())) {
6620         assert(VectorType::isValidElementType(J->getType()) &&
6621                "Instruction has non-scalar type");
6622         if (canBeScalarized(J))
6623           Worklist.push_back(J);
6624         else if (needsExtract(J, VF)) {
6625           ScalarCost += TTI.getScalarizationOverhead(
6626               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6627               APInt::getAllOnes(VF.getFixedValue()), false, true);
6628         }
6629       }
6630 
6631     // Scale the total scalar cost by block probability.
6632     ScalarCost /= getReciprocalPredBlockProb();
6633 
6634     // Compute the discount. A non-negative discount means the vector version
6635     // of the instruction costs more, and scalarizing would be beneficial.
6636     Discount += VectorCost - ScalarCost;
6637     ScalarCosts[I] = ScalarCost;
6638   }
6639 
6640   return *Discount.getValue();
6641 }
6642 
6643 LoopVectorizationCostModel::VectorizationCostTy
6644 LoopVectorizationCostModel::expectedCost(
6645     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6646   VectorizationCostTy Cost;
6647 
6648   // For each block.
6649   for (BasicBlock *BB : TheLoop->blocks()) {
6650     VectorizationCostTy BlockCost;
6651 
6652     // For each instruction in the old loop.
6653     for (Instruction &I : BB->instructionsWithoutDebug()) {
6654       // Skip ignored values.
6655       if (ValuesToIgnore.count(&I) ||
6656           (VF.isVector() && VecValuesToIgnore.count(&I)))
6657         continue;
6658 
6659       VectorizationCostTy C = getInstructionCost(&I, VF);
6660 
6661       // Check if we should override the cost.
6662       if (C.first.isValid() &&
6663           ForceTargetInstructionCost.getNumOccurrences() > 0)
6664         C.first = InstructionCost(ForceTargetInstructionCost);
6665 
6666       // Keep a list of instructions with invalid costs.
6667       if (Invalid && !C.first.isValid())
6668         Invalid->emplace_back(&I, VF);
6669 
6670       BlockCost.first += C.first;
6671       BlockCost.second |= C.second;
6672       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6673                         << " for VF " << VF << " For instruction: " << I
6674                         << '\n');
6675     }
6676 
6677     // If we are vectorizing a predicated block, it will have been
6678     // if-converted. This means that the block's instructions (aside from
6679     // stores and instructions that may divide by zero) will now be
6680     // unconditionally executed. For the scalar case, we may not always execute
6681     // the predicated block, if it is an if-else block. Thus, scale the block's
6682     // cost by the probability of executing it. blockNeedsPredication from
6683     // Legal is used so as to not include all blocks in tail folded loops.
6684     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6685       BlockCost.first /= getReciprocalPredBlockProb();
6686 
6687     Cost.first += BlockCost.first;
6688     Cost.second |= BlockCost.second;
6689   }
6690 
6691   return Cost;
6692 }
6693 
6694 /// Gets Address Access SCEV after verifying that the access pattern
6695 /// is loop invariant except the induction variable dependence.
6696 ///
6697 /// This SCEV can be sent to the Target in order to estimate the address
6698 /// calculation cost.
6699 static const SCEV *getAddressAccessSCEV(
6700               Value *Ptr,
6701               LoopVectorizationLegality *Legal,
6702               PredicatedScalarEvolution &PSE,
6703               const Loop *TheLoop) {
6704 
6705   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6706   if (!Gep)
6707     return nullptr;
6708 
6709   // We are looking for a gep with all loop invariant indices except for one
6710   // which should be an induction variable.
6711   auto SE = PSE.getSE();
6712   unsigned NumOperands = Gep->getNumOperands();
6713   for (unsigned i = 1; i < NumOperands; ++i) {
6714     Value *Opd = Gep->getOperand(i);
6715     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6716         !Legal->isInductionVariable(Opd))
6717       return nullptr;
6718   }
6719 
6720   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6721   return PSE.getSCEV(Ptr);
6722 }
6723 
6724 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6725   return Legal->hasStride(I->getOperand(0)) ||
6726          Legal->hasStride(I->getOperand(1));
6727 }
6728 
6729 InstructionCost
6730 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6731                                                         ElementCount VF) {
6732   assert(VF.isVector() &&
6733          "Scalarization cost of instruction implies vectorization.");
6734   if (VF.isScalable())
6735     return InstructionCost::getInvalid();
6736 
6737   Type *ValTy = getLoadStoreType(I);
6738   auto SE = PSE.getSE();
6739 
6740   unsigned AS = getLoadStoreAddressSpace(I);
6741   Value *Ptr = getLoadStorePointerOperand(I);
6742   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6743   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6744   //       that it is being called from this specific place.
6745 
6746   // Figure out whether the access is strided and get the stride value
6747   // if it's known in compile time
6748   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6749 
6750   // Get the cost of the scalar memory instruction and address computation.
6751   InstructionCost Cost =
6752       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6753 
6754   // Don't pass *I here, since it is scalar but will actually be part of a
6755   // vectorized loop where the user of it is a vectorized instruction.
6756   const Align Alignment = getLoadStoreAlignment(I);
6757   Cost += VF.getKnownMinValue() *
6758           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6759                               AS, TTI::TCK_RecipThroughput);
6760 
6761   // Get the overhead of the extractelement and insertelement instructions
6762   // we might create due to scalarization.
6763   Cost += getScalarizationOverhead(I, VF);
6764 
6765   // If we have a predicated load/store, it will need extra i1 extracts and
6766   // conditional branches, but may not be executed for each vector lane. Scale
6767   // the cost by the probability of executing the predicated block.
6768   if (isPredicatedInst(I, VF)) {
6769     Cost /= getReciprocalPredBlockProb();
6770 
6771     // Add the cost of an i1 extract and a branch
6772     auto *Vec_i1Ty =
6773         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6774     Cost += TTI.getScalarizationOverhead(
6775         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6776         /*Insert=*/false, /*Extract=*/true);
6777     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6778 
6779     if (useEmulatedMaskMemRefHack(I, VF))
6780       // Artificially setting to a high enough value to practically disable
6781       // vectorization with such operations.
6782       Cost = 3000000;
6783   }
6784 
6785   return Cost;
6786 }
6787 
6788 InstructionCost
6789 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6790                                                     ElementCount VF) {
6791   Type *ValTy = getLoadStoreType(I);
6792   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6793   Value *Ptr = getLoadStorePointerOperand(I);
6794   unsigned AS = getLoadStoreAddressSpace(I);
6795   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6796   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6797 
6798   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6799          "Stride should be 1 or -1 for consecutive memory access");
6800   const Align Alignment = getLoadStoreAlignment(I);
6801   InstructionCost Cost = 0;
6802   if (Legal->isMaskRequired(I))
6803     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6804                                       CostKind);
6805   else
6806     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6807                                 CostKind, I);
6808 
6809   bool Reverse = ConsecutiveStride < 0;
6810   if (Reverse)
6811     Cost +=
6812         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6813   return Cost;
6814 }
6815 
6816 InstructionCost
6817 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6818                                                 ElementCount VF) {
6819   assert(Legal->isUniformMemOp(*I));
6820 
6821   Type *ValTy = getLoadStoreType(I);
6822   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6823   const Align Alignment = getLoadStoreAlignment(I);
6824   unsigned AS = getLoadStoreAddressSpace(I);
6825   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6826   if (isa<LoadInst>(I)) {
6827     return TTI.getAddressComputationCost(ValTy) +
6828            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6829                                CostKind) +
6830            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6831   }
6832   StoreInst *SI = cast<StoreInst>(I);
6833 
6834   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6835   return TTI.getAddressComputationCost(ValTy) +
6836          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6837                              CostKind) +
6838          (isLoopInvariantStoreValue
6839               ? 0
6840               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6841                                        VF.getKnownMinValue() - 1));
6842 }
6843 
6844 InstructionCost
6845 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6846                                                  ElementCount VF) {
6847   Type *ValTy = getLoadStoreType(I);
6848   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6849   const Align Alignment = getLoadStoreAlignment(I);
6850   const Value *Ptr = getLoadStorePointerOperand(I);
6851 
6852   return TTI.getAddressComputationCost(VectorTy) +
6853          TTI.getGatherScatterOpCost(
6854              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6855              TargetTransformInfo::TCK_RecipThroughput, I);
6856 }
6857 
6858 InstructionCost
6859 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6860                                                    ElementCount VF) {
6861   // TODO: Once we have support for interleaving with scalable vectors
6862   // we can calculate the cost properly here.
6863   if (VF.isScalable())
6864     return InstructionCost::getInvalid();
6865 
6866   Type *ValTy = getLoadStoreType(I);
6867   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6868   unsigned AS = getLoadStoreAddressSpace(I);
6869 
6870   auto Group = getInterleavedAccessGroup(I);
6871   assert(Group && "Fail to get an interleaved access group.");
6872 
6873   unsigned InterleaveFactor = Group->getFactor();
6874   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6875 
6876   // Holds the indices of existing members in the interleaved group.
6877   SmallVector<unsigned, 4> Indices;
6878   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6879     if (Group->getMember(IF))
6880       Indices.push_back(IF);
6881 
6882   // Calculate the cost of the whole interleaved group.
6883   bool UseMaskForGaps =
6884       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6885       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6886   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6887       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6888       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6889 
6890   if (Group->isReverse()) {
6891     // TODO: Add support for reversed masked interleaved access.
6892     assert(!Legal->isMaskRequired(I) &&
6893            "Reverse masked interleaved access not supported.");
6894     Cost +=
6895         Group->getNumMembers() *
6896         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6897   }
6898   return Cost;
6899 }
6900 
6901 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6902     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6903   using namespace llvm::PatternMatch;
6904   // Early exit for no inloop reductions
6905   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6906     return None;
6907   auto *VectorTy = cast<VectorType>(Ty);
6908 
6909   // We are looking for a pattern of, and finding the minimal acceptable cost:
6910   //  reduce(mul(ext(A), ext(B))) or
6911   //  reduce(mul(A, B)) or
6912   //  reduce(ext(A)) or
6913   //  reduce(A).
6914   // The basic idea is that we walk down the tree to do that, finding the root
6915   // reduction instruction in InLoopReductionImmediateChains. From there we find
6916   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6917   // of the components. If the reduction cost is lower then we return it for the
6918   // reduction instruction and 0 for the other instructions in the pattern. If
6919   // it is not we return an invalid cost specifying the orignal cost method
6920   // should be used.
6921   Instruction *RetI = I;
6922   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6923     if (!RetI->hasOneUser())
6924       return None;
6925     RetI = RetI->user_back();
6926   }
6927   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6928       RetI->user_back()->getOpcode() == Instruction::Add) {
6929     if (!RetI->hasOneUser())
6930       return None;
6931     RetI = RetI->user_back();
6932   }
6933 
6934   // Test if the found instruction is a reduction, and if not return an invalid
6935   // cost specifying the parent to use the original cost modelling.
6936   if (!InLoopReductionImmediateChains.count(RetI))
6937     return None;
6938 
6939   // Find the reduction this chain is a part of and calculate the basic cost of
6940   // the reduction on its own.
6941   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6942   Instruction *ReductionPhi = LastChain;
6943   while (!isa<PHINode>(ReductionPhi))
6944     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6945 
6946   const RecurrenceDescriptor &RdxDesc =
6947       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6948 
6949   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6950       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6951 
6952   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6953   // normal fmul instruction to the cost of the fadd reduction.
6954   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6955     BaseCost +=
6956         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6957 
6958   // If we're using ordered reductions then we can just return the base cost
6959   // here, since getArithmeticReductionCost calculates the full ordered
6960   // reduction cost when FP reassociation is not allowed.
6961   if (useOrderedReductions(RdxDesc))
6962     return BaseCost;
6963 
6964   // Get the operand that was not the reduction chain and match it to one of the
6965   // patterns, returning the better cost if it is found.
6966   Instruction *RedOp = RetI->getOperand(1) == LastChain
6967                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6968                            : dyn_cast<Instruction>(RetI->getOperand(1));
6969 
6970   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6971 
6972   Instruction *Op0, *Op1;
6973   if (RedOp &&
6974       match(RedOp,
6975             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6976       match(Op0, m_ZExtOrSExt(m_Value())) &&
6977       Op0->getOpcode() == Op1->getOpcode() &&
6978       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6979       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6980       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6981 
6982     // Matched reduce(ext(mul(ext(A), ext(B)))
6983     // Note that the extend opcodes need to all match, or if A==B they will have
6984     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6985     // which is equally fine.
6986     bool IsUnsigned = isa<ZExtInst>(Op0);
6987     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6988     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6989 
6990     InstructionCost ExtCost =
6991         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6992                              TTI::CastContextHint::None, CostKind, Op0);
6993     InstructionCost MulCost =
6994         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6995     InstructionCost Ext2Cost =
6996         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6997                              TTI::CastContextHint::None, CostKind, RedOp);
6998 
6999     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7000         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7001         CostKind);
7002 
7003     if (RedCost.isValid() &&
7004         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7005       return I == RetI ? RedCost : 0;
7006   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7007              !TheLoop->isLoopInvariant(RedOp)) {
7008     // Matched reduce(ext(A))
7009     bool IsUnsigned = isa<ZExtInst>(RedOp);
7010     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7011     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7012         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7013         CostKind);
7014 
7015     InstructionCost ExtCost =
7016         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7017                              TTI::CastContextHint::None, CostKind, RedOp);
7018     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7019       return I == RetI ? RedCost : 0;
7020   } else if (RedOp &&
7021              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7022     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7023         Op0->getOpcode() == Op1->getOpcode() &&
7024         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7025       bool IsUnsigned = isa<ZExtInst>(Op0);
7026       Type *Op0Ty = Op0->getOperand(0)->getType();
7027       Type *Op1Ty = Op1->getOperand(0)->getType();
7028       Type *LargestOpTy =
7029           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
7030                                                                     : Op0Ty;
7031       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
7032 
7033       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
7034       // different sizes. We take the largest type as the ext to reduce, and add
7035       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
7036       InstructionCost ExtCost0 = TTI.getCastInstrCost(
7037           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
7038           TTI::CastContextHint::None, CostKind, Op0);
7039       InstructionCost ExtCost1 = TTI.getCastInstrCost(
7040           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
7041           TTI::CastContextHint::None, CostKind, Op1);
7042       InstructionCost MulCost =
7043           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7044 
7045       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7046           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7047           CostKind);
7048       InstructionCost ExtraExtCost = 0;
7049       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
7050         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
7051         ExtraExtCost = TTI.getCastInstrCost(
7052             ExtraExtOp->getOpcode(), ExtType,
7053             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
7054             TTI::CastContextHint::None, CostKind, ExtraExtOp);
7055       }
7056 
7057       if (RedCost.isValid() &&
7058           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
7059         return I == RetI ? RedCost : 0;
7060     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7061       // Matched reduce(mul())
7062       InstructionCost MulCost =
7063           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7064 
7065       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7066           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7067           CostKind);
7068 
7069       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7070         return I == RetI ? RedCost : 0;
7071     }
7072   }
7073 
7074   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7075 }
7076 
7077 InstructionCost
7078 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7079                                                      ElementCount VF) {
7080   // Calculate scalar cost only. Vectorization cost should be ready at this
7081   // moment.
7082   if (VF.isScalar()) {
7083     Type *ValTy = getLoadStoreType(I);
7084     const Align Alignment = getLoadStoreAlignment(I);
7085     unsigned AS = getLoadStoreAddressSpace(I);
7086 
7087     return TTI.getAddressComputationCost(ValTy) +
7088            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7089                                TTI::TCK_RecipThroughput, I);
7090   }
7091   return getWideningCost(I, VF);
7092 }
7093 
7094 LoopVectorizationCostModel::VectorizationCostTy
7095 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7096                                                ElementCount VF) {
7097   // If we know that this instruction will remain uniform, check the cost of
7098   // the scalar version.
7099   if (isUniformAfterVectorization(I, VF))
7100     VF = ElementCount::getFixed(1);
7101 
7102   if (VF.isVector() && isProfitableToScalarize(I, VF))
7103     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7104 
7105   // Forced scalars do not have any scalarization overhead.
7106   auto ForcedScalar = ForcedScalars.find(VF);
7107   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7108     auto InstSet = ForcedScalar->second;
7109     if (InstSet.count(I))
7110       return VectorizationCostTy(
7111           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7112            VF.getKnownMinValue()),
7113           false);
7114   }
7115 
7116   Type *VectorTy;
7117   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7118 
7119   bool TypeNotScalarized = false;
7120   if (VF.isVector() && VectorTy->isVectorTy()) {
7121     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7122     if (NumParts)
7123       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7124     else
7125       C = InstructionCost::getInvalid();
7126   }
7127   return VectorizationCostTy(C, TypeNotScalarized);
7128 }
7129 
7130 InstructionCost
7131 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7132                                                      ElementCount VF) const {
7133 
7134   // There is no mechanism yet to create a scalable scalarization loop,
7135   // so this is currently Invalid.
7136   if (VF.isScalable())
7137     return InstructionCost::getInvalid();
7138 
7139   if (VF.isScalar())
7140     return 0;
7141 
7142   InstructionCost Cost = 0;
7143   Type *RetTy = ToVectorTy(I->getType(), VF);
7144   if (!RetTy->isVoidTy() &&
7145       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7146     Cost += TTI.getScalarizationOverhead(
7147         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7148         false);
7149 
7150   // Some targets keep addresses scalar.
7151   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7152     return Cost;
7153 
7154   // Some targets support efficient element stores.
7155   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7156     return Cost;
7157 
7158   // Collect operands to consider.
7159   CallInst *CI = dyn_cast<CallInst>(I);
7160   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7161 
7162   // Skip operands that do not require extraction/scalarization and do not incur
7163   // any overhead.
7164   SmallVector<Type *> Tys;
7165   for (auto *V : filterExtractingOperands(Ops, VF))
7166     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7167   return Cost + TTI.getOperandsScalarizationOverhead(
7168                     filterExtractingOperands(Ops, VF), Tys);
7169 }
7170 
7171 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7172   if (VF.isScalar())
7173     return;
7174   NumPredStores = 0;
7175   for (BasicBlock *BB : TheLoop->blocks()) {
7176     // For each instruction in the old loop.
7177     for (Instruction &I : *BB) {
7178       Value *Ptr =  getLoadStorePointerOperand(&I);
7179       if (!Ptr)
7180         continue;
7181 
7182       // TODO: We should generate better code and update the cost model for
7183       // predicated uniform stores. Today they are treated as any other
7184       // predicated store (see added test cases in
7185       // invariant-store-vectorization.ll).
7186       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7187         NumPredStores++;
7188 
7189       if (Legal->isUniformMemOp(I)) {
7190         // TODO: Avoid replicating loads and stores instead of
7191         // relying on instcombine to remove them.
7192         // Load: Scalar load + broadcast
7193         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7194         InstructionCost Cost;
7195         if (isa<StoreInst>(&I) && VF.isScalable() &&
7196             isLegalGatherOrScatter(&I, VF)) {
7197           Cost = getGatherScatterCost(&I, VF);
7198           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7199         } else {
7200           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7201                  "Cannot yet scalarize uniform stores");
7202           Cost = getUniformMemOpCost(&I, VF);
7203           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7204         }
7205         continue;
7206       }
7207 
7208       // We assume that widening is the best solution when possible.
7209       if (memoryInstructionCanBeWidened(&I, VF)) {
7210         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7211         int ConsecutiveStride = Legal->isConsecutivePtr(
7212             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7213         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7214                "Expected consecutive stride.");
7215         InstWidening Decision =
7216             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7217         setWideningDecision(&I, VF, Decision, Cost);
7218         continue;
7219       }
7220 
7221       // Choose between Interleaving, Gather/Scatter or Scalarization.
7222       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7223       unsigned NumAccesses = 1;
7224       if (isAccessInterleaved(&I)) {
7225         auto Group = getInterleavedAccessGroup(&I);
7226         assert(Group && "Fail to get an interleaved access group.");
7227 
7228         // Make one decision for the whole group.
7229         if (getWideningDecision(&I, VF) != CM_Unknown)
7230           continue;
7231 
7232         NumAccesses = Group->getNumMembers();
7233         if (interleavedAccessCanBeWidened(&I, VF))
7234           InterleaveCost = getInterleaveGroupCost(&I, VF);
7235       }
7236 
7237       InstructionCost GatherScatterCost =
7238           isLegalGatherOrScatter(&I, VF)
7239               ? getGatherScatterCost(&I, VF) * NumAccesses
7240               : InstructionCost::getInvalid();
7241 
7242       InstructionCost ScalarizationCost =
7243           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7244 
7245       // Choose better solution for the current VF,
7246       // write down this decision and use it during vectorization.
7247       InstructionCost Cost;
7248       InstWidening Decision;
7249       if (InterleaveCost <= GatherScatterCost &&
7250           InterleaveCost < ScalarizationCost) {
7251         Decision = CM_Interleave;
7252         Cost = InterleaveCost;
7253       } else if (GatherScatterCost < ScalarizationCost) {
7254         Decision = CM_GatherScatter;
7255         Cost = GatherScatterCost;
7256       } else {
7257         Decision = CM_Scalarize;
7258         Cost = ScalarizationCost;
7259       }
7260       // If the instructions belongs to an interleave group, the whole group
7261       // receives the same decision. The whole group receives the cost, but
7262       // the cost will actually be assigned to one instruction.
7263       if (auto Group = getInterleavedAccessGroup(&I))
7264         setWideningDecision(Group, VF, Decision, Cost);
7265       else
7266         setWideningDecision(&I, VF, Decision, Cost);
7267     }
7268   }
7269 
7270   // Make sure that any load of address and any other address computation
7271   // remains scalar unless there is gather/scatter support. This avoids
7272   // inevitable extracts into address registers, and also has the benefit of
7273   // activating LSR more, since that pass can't optimize vectorized
7274   // addresses.
7275   if (TTI.prefersVectorizedAddressing())
7276     return;
7277 
7278   // Start with all scalar pointer uses.
7279   SmallPtrSet<Instruction *, 8> AddrDefs;
7280   for (BasicBlock *BB : TheLoop->blocks())
7281     for (Instruction &I : *BB) {
7282       Instruction *PtrDef =
7283         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7284       if (PtrDef && TheLoop->contains(PtrDef) &&
7285           getWideningDecision(&I, VF) != CM_GatherScatter)
7286         AddrDefs.insert(PtrDef);
7287     }
7288 
7289   // Add all instructions used to generate the addresses.
7290   SmallVector<Instruction *, 4> Worklist;
7291   append_range(Worklist, AddrDefs);
7292   while (!Worklist.empty()) {
7293     Instruction *I = Worklist.pop_back_val();
7294     for (auto &Op : I->operands())
7295       if (auto *InstOp = dyn_cast<Instruction>(Op))
7296         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7297             AddrDefs.insert(InstOp).second)
7298           Worklist.push_back(InstOp);
7299   }
7300 
7301   for (auto *I : AddrDefs) {
7302     if (isa<LoadInst>(I)) {
7303       // Setting the desired widening decision should ideally be handled in
7304       // by cost functions, but since this involves the task of finding out
7305       // if the loaded register is involved in an address computation, it is
7306       // instead changed here when we know this is the case.
7307       InstWidening Decision = getWideningDecision(I, VF);
7308       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7309         // Scalarize a widened load of address.
7310         setWideningDecision(
7311             I, VF, CM_Scalarize,
7312             (VF.getKnownMinValue() *
7313              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7314       else if (auto Group = getInterleavedAccessGroup(I)) {
7315         // Scalarize an interleave group of address loads.
7316         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7317           if (Instruction *Member = Group->getMember(I))
7318             setWideningDecision(
7319                 Member, VF, CM_Scalarize,
7320                 (VF.getKnownMinValue() *
7321                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7322         }
7323       }
7324     } else
7325       // Make sure I gets scalarized and a cost estimate without
7326       // scalarization overhead.
7327       ForcedScalars[VF].insert(I);
7328   }
7329 }
7330 
7331 InstructionCost
7332 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7333                                                Type *&VectorTy) {
7334   Type *RetTy = I->getType();
7335   if (canTruncateToMinimalBitwidth(I, VF))
7336     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7337   auto SE = PSE.getSE();
7338   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7339 
7340   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7341                                                 ElementCount VF) -> bool {
7342     if (VF.isScalar())
7343       return true;
7344 
7345     auto Scalarized = InstsToScalarize.find(VF);
7346     assert(Scalarized != InstsToScalarize.end() &&
7347            "VF not yet analyzed for scalarization profitability");
7348     return !Scalarized->second.count(I) &&
7349            llvm::all_of(I->users(), [&](User *U) {
7350              auto *UI = cast<Instruction>(U);
7351              return !Scalarized->second.count(UI);
7352            });
7353   };
7354   (void) hasSingleCopyAfterVectorization;
7355 
7356   if (isScalarAfterVectorization(I, VF)) {
7357     // With the exception of GEPs and PHIs, after scalarization there should
7358     // only be one copy of the instruction generated in the loop. This is
7359     // because the VF is either 1, or any instructions that need scalarizing
7360     // have already been dealt with by the the time we get here. As a result,
7361     // it means we don't have to multiply the instruction cost by VF.
7362     assert(I->getOpcode() == Instruction::GetElementPtr ||
7363            I->getOpcode() == Instruction::PHI ||
7364            (I->getOpcode() == Instruction::BitCast &&
7365             I->getType()->isPointerTy()) ||
7366            hasSingleCopyAfterVectorization(I, VF));
7367     VectorTy = RetTy;
7368   } else
7369     VectorTy = ToVectorTy(RetTy, VF);
7370 
7371   // TODO: We need to estimate the cost of intrinsic calls.
7372   switch (I->getOpcode()) {
7373   case Instruction::GetElementPtr:
7374     // We mark this instruction as zero-cost because the cost of GEPs in
7375     // vectorized code depends on whether the corresponding memory instruction
7376     // is scalarized or not. Therefore, we handle GEPs with the memory
7377     // instruction cost.
7378     return 0;
7379   case Instruction::Br: {
7380     // In cases of scalarized and predicated instructions, there will be VF
7381     // predicated blocks in the vectorized loop. Each branch around these
7382     // blocks requires also an extract of its vector compare i1 element.
7383     bool ScalarPredicatedBB = false;
7384     BranchInst *BI = cast<BranchInst>(I);
7385     if (VF.isVector() && BI->isConditional() &&
7386         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7387          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7388       ScalarPredicatedBB = true;
7389 
7390     if (ScalarPredicatedBB) {
7391       // Not possible to scalarize scalable vector with predicated instructions.
7392       if (VF.isScalable())
7393         return InstructionCost::getInvalid();
7394       // Return cost for branches around scalarized and predicated blocks.
7395       auto *Vec_i1Ty =
7396           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7397       return (
7398           TTI.getScalarizationOverhead(
7399               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7400           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7401     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7402       // The back-edge branch will remain, as will all scalar branches.
7403       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7404     else
7405       // This branch will be eliminated by if-conversion.
7406       return 0;
7407     // Note: We currently assume zero cost for an unconditional branch inside
7408     // a predicated block since it will become a fall-through, although we
7409     // may decide in the future to call TTI for all branches.
7410   }
7411   case Instruction::PHI: {
7412     auto *Phi = cast<PHINode>(I);
7413 
7414     // First-order recurrences are replaced by vector shuffles inside the loop.
7415     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7416     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7417       return TTI.getShuffleCost(
7418           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7419           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7420 
7421     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7422     // converted into select instructions. We require N - 1 selects per phi
7423     // node, where N is the number of incoming values.
7424     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7425       return (Phi->getNumIncomingValues() - 1) *
7426              TTI.getCmpSelInstrCost(
7427                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7428                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7429                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7430 
7431     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7432   }
7433   case Instruction::UDiv:
7434   case Instruction::SDiv:
7435   case Instruction::URem:
7436   case Instruction::SRem:
7437     // If we have a predicated instruction, it may not be executed for each
7438     // vector lane. Get the scalarization cost and scale this amount by the
7439     // probability of executing the predicated block. If the instruction is not
7440     // predicated, we fall through to the next case.
7441     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7442       InstructionCost Cost = 0;
7443 
7444       // These instructions have a non-void type, so account for the phi nodes
7445       // that we will create. This cost is likely to be zero. The phi node
7446       // cost, if any, should be scaled by the block probability because it
7447       // models a copy at the end of each predicated block.
7448       Cost += VF.getKnownMinValue() *
7449               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7450 
7451       // The cost of the non-predicated instruction.
7452       Cost += VF.getKnownMinValue() *
7453               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7454 
7455       // The cost of insertelement and extractelement instructions needed for
7456       // scalarization.
7457       Cost += getScalarizationOverhead(I, VF);
7458 
7459       // Scale the cost by the probability of executing the predicated blocks.
7460       // This assumes the predicated block for each vector lane is equally
7461       // likely.
7462       return Cost / getReciprocalPredBlockProb();
7463     }
7464     LLVM_FALLTHROUGH;
7465   case Instruction::Add:
7466   case Instruction::FAdd:
7467   case Instruction::Sub:
7468   case Instruction::FSub:
7469   case Instruction::Mul:
7470   case Instruction::FMul:
7471   case Instruction::FDiv:
7472   case Instruction::FRem:
7473   case Instruction::Shl:
7474   case Instruction::LShr:
7475   case Instruction::AShr:
7476   case Instruction::And:
7477   case Instruction::Or:
7478   case Instruction::Xor: {
7479     // Since we will replace the stride by 1 the multiplication should go away.
7480     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7481       return 0;
7482 
7483     // Detect reduction patterns
7484     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7485       return *RedCost;
7486 
7487     // Certain instructions can be cheaper to vectorize if they have a constant
7488     // second vector operand. One example of this are shifts on x86.
7489     Value *Op2 = I->getOperand(1);
7490     TargetTransformInfo::OperandValueProperties Op2VP;
7491     TargetTransformInfo::OperandValueKind Op2VK =
7492         TTI.getOperandInfo(Op2, Op2VP);
7493     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7494       Op2VK = TargetTransformInfo::OK_UniformValue;
7495 
7496     SmallVector<const Value *, 4> Operands(I->operand_values());
7497     return TTI.getArithmeticInstrCost(
7498         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7499         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7500   }
7501   case Instruction::FNeg: {
7502     return TTI.getArithmeticInstrCost(
7503         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7504         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7505         TargetTransformInfo::OP_None, I->getOperand(0), I);
7506   }
7507   case Instruction::Select: {
7508     SelectInst *SI = cast<SelectInst>(I);
7509     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7510     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7511 
7512     const Value *Op0, *Op1;
7513     using namespace llvm::PatternMatch;
7514     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7515                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7516       // select x, y, false --> x & y
7517       // select x, true, y --> x | y
7518       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7519       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7520       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7521       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7522       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7523               Op1->getType()->getScalarSizeInBits() == 1);
7524 
7525       SmallVector<const Value *, 2> Operands{Op0, Op1};
7526       return TTI.getArithmeticInstrCost(
7527           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7528           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7529     }
7530 
7531     Type *CondTy = SI->getCondition()->getType();
7532     if (!ScalarCond)
7533       CondTy = VectorType::get(CondTy, VF);
7534 
7535     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7536     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7537       Pred = Cmp->getPredicate();
7538     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7539                                   CostKind, I);
7540   }
7541   case Instruction::ICmp:
7542   case Instruction::FCmp: {
7543     Type *ValTy = I->getOperand(0)->getType();
7544     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7545     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7546       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7547     VectorTy = ToVectorTy(ValTy, VF);
7548     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7549                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7550                                   I);
7551   }
7552   case Instruction::Store:
7553   case Instruction::Load: {
7554     ElementCount Width = VF;
7555     if (Width.isVector()) {
7556       InstWidening Decision = getWideningDecision(I, Width);
7557       assert(Decision != CM_Unknown &&
7558              "CM decision should be taken at this point");
7559       if (Decision == CM_Scalarize)
7560         Width = ElementCount::getFixed(1);
7561     }
7562     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7563     return getMemoryInstructionCost(I, VF);
7564   }
7565   case Instruction::BitCast:
7566     if (I->getType()->isPointerTy())
7567       return 0;
7568     LLVM_FALLTHROUGH;
7569   case Instruction::ZExt:
7570   case Instruction::SExt:
7571   case Instruction::FPToUI:
7572   case Instruction::FPToSI:
7573   case Instruction::FPExt:
7574   case Instruction::PtrToInt:
7575   case Instruction::IntToPtr:
7576   case Instruction::SIToFP:
7577   case Instruction::UIToFP:
7578   case Instruction::Trunc:
7579   case Instruction::FPTrunc: {
7580     // Computes the CastContextHint from a Load/Store instruction.
7581     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7582       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7583              "Expected a load or a store!");
7584 
7585       if (VF.isScalar() || !TheLoop->contains(I))
7586         return TTI::CastContextHint::Normal;
7587 
7588       switch (getWideningDecision(I, VF)) {
7589       case LoopVectorizationCostModel::CM_GatherScatter:
7590         return TTI::CastContextHint::GatherScatter;
7591       case LoopVectorizationCostModel::CM_Interleave:
7592         return TTI::CastContextHint::Interleave;
7593       case LoopVectorizationCostModel::CM_Scalarize:
7594       case LoopVectorizationCostModel::CM_Widen:
7595         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7596                                         : TTI::CastContextHint::Normal;
7597       case LoopVectorizationCostModel::CM_Widen_Reverse:
7598         return TTI::CastContextHint::Reversed;
7599       case LoopVectorizationCostModel::CM_Unknown:
7600         llvm_unreachable("Instr did not go through cost modelling?");
7601       }
7602 
7603       llvm_unreachable("Unhandled case!");
7604     };
7605 
7606     unsigned Opcode = I->getOpcode();
7607     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7608     // For Trunc, the context is the only user, which must be a StoreInst.
7609     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7610       if (I->hasOneUse())
7611         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7612           CCH = ComputeCCH(Store);
7613     }
7614     // For Z/Sext, the context is the operand, which must be a LoadInst.
7615     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7616              Opcode == Instruction::FPExt) {
7617       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7618         CCH = ComputeCCH(Load);
7619     }
7620 
7621     // We optimize the truncation of induction variables having constant
7622     // integer steps. The cost of these truncations is the same as the scalar
7623     // operation.
7624     if (isOptimizableIVTruncate(I, VF)) {
7625       auto *Trunc = cast<TruncInst>(I);
7626       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7627                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7628     }
7629 
7630     // Detect reduction patterns
7631     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7632       return *RedCost;
7633 
7634     Type *SrcScalarTy = I->getOperand(0)->getType();
7635     Type *SrcVecTy =
7636         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7637     if (canTruncateToMinimalBitwidth(I, VF)) {
7638       // This cast is going to be shrunk. This may remove the cast or it might
7639       // turn it into slightly different cast. For example, if MinBW == 16,
7640       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7641       //
7642       // Calculate the modified src and dest types.
7643       Type *MinVecTy = VectorTy;
7644       if (Opcode == Instruction::Trunc) {
7645         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7646         VectorTy =
7647             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7648       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7649         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7650         VectorTy =
7651             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7652       }
7653     }
7654 
7655     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7656   }
7657   case Instruction::Call: {
7658     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7659       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7660         return *RedCost;
7661     bool NeedToScalarize;
7662     CallInst *CI = cast<CallInst>(I);
7663     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7664     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7665       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7666       return std::min(CallCost, IntrinsicCost);
7667     }
7668     return CallCost;
7669   }
7670   case Instruction::ExtractValue:
7671     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7672   case Instruction::Alloca:
7673     // We cannot easily widen alloca to a scalable alloca, as
7674     // the result would need to be a vector of pointers.
7675     if (VF.isScalable())
7676       return InstructionCost::getInvalid();
7677     LLVM_FALLTHROUGH;
7678   default:
7679     // This opcode is unknown. Assume that it is the same as 'mul'.
7680     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7681   } // end of switch.
7682 }
7683 
7684 char LoopVectorize::ID = 0;
7685 
7686 static const char lv_name[] = "Loop Vectorization";
7687 
7688 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7689 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7690 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7691 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7692 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7693 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7694 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7695 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7696 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7697 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7698 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7699 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7700 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7701 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7702 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7703 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7704 
7705 namespace llvm {
7706 
7707 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7708 
7709 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7710                               bool VectorizeOnlyWhenForced) {
7711   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7712 }
7713 
7714 } // end namespace llvm
7715 
7716 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7717   // Check if the pointer operand of a load or store instruction is
7718   // consecutive.
7719   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7720     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7721   return false;
7722 }
7723 
7724 void LoopVectorizationCostModel::collectValuesToIgnore() {
7725   // Ignore ephemeral values.
7726   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7727 
7728   // Ignore type-promoting instructions we identified during reduction
7729   // detection.
7730   for (auto &Reduction : Legal->getReductionVars()) {
7731     const RecurrenceDescriptor &RedDes = Reduction.second;
7732     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7733     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7734   }
7735   // Ignore type-casting instructions we identified during induction
7736   // detection.
7737   for (auto &Induction : Legal->getInductionVars()) {
7738     const InductionDescriptor &IndDes = Induction.second;
7739     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7740     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7741   }
7742 }
7743 
7744 void LoopVectorizationCostModel::collectInLoopReductions() {
7745   for (auto &Reduction : Legal->getReductionVars()) {
7746     PHINode *Phi = Reduction.first;
7747     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7748 
7749     // We don't collect reductions that are type promoted (yet).
7750     if (RdxDesc.getRecurrenceType() != Phi->getType())
7751       continue;
7752 
7753     // If the target would prefer this reduction to happen "in-loop", then we
7754     // want to record it as such.
7755     unsigned Opcode = RdxDesc.getOpcode();
7756     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7757         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7758                                    TargetTransformInfo::ReductionFlags()))
7759       continue;
7760 
7761     // Check that we can correctly put the reductions into the loop, by
7762     // finding the chain of operations that leads from the phi to the loop
7763     // exit value.
7764     SmallVector<Instruction *, 4> ReductionOperations =
7765         RdxDesc.getReductionOpChain(Phi, TheLoop);
7766     bool InLoop = !ReductionOperations.empty();
7767     if (InLoop) {
7768       InLoopReductionChains[Phi] = ReductionOperations;
7769       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7770       Instruction *LastChain = Phi;
7771       for (auto *I : ReductionOperations) {
7772         InLoopReductionImmediateChains[I] = LastChain;
7773         LastChain = I;
7774       }
7775     }
7776     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7777                       << " reduction for phi: " << *Phi << "\n");
7778   }
7779 }
7780 
7781 // TODO: we could return a pair of values that specify the max VF and
7782 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7783 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7784 // doesn't have a cost model that can choose which plan to execute if
7785 // more than one is generated.
7786 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7787                                  LoopVectorizationCostModel &CM) {
7788   unsigned WidestType;
7789   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7790   return WidestVectorRegBits / WidestType;
7791 }
7792 
7793 VectorizationFactor
7794 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7795   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7796   ElementCount VF = UserVF;
7797   // Outer loop handling: They may require CFG and instruction level
7798   // transformations before even evaluating whether vectorization is profitable.
7799   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7800   // the vectorization pipeline.
7801   if (!OrigLoop->isInnermost()) {
7802     // If the user doesn't provide a vectorization factor, determine a
7803     // reasonable one.
7804     if (UserVF.isZero()) {
7805       VF = ElementCount::getFixed(determineVPlanVF(
7806           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7807               .getFixedSize(),
7808           CM));
7809       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7810 
7811       // Make sure we have a VF > 1 for stress testing.
7812       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7813         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7814                           << "overriding computed VF.\n");
7815         VF = ElementCount::getFixed(4);
7816       }
7817     }
7818     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7819     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7820            "VF needs to be a power of two");
7821     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7822                       << "VF " << VF << " to build VPlans.\n");
7823     buildVPlans(VF, VF);
7824 
7825     // For VPlan build stress testing, we bail out after VPlan construction.
7826     if (VPlanBuildStressTest)
7827       return VectorizationFactor::Disabled();
7828 
7829     return {VF, 0 /*Cost*/};
7830   }
7831 
7832   LLVM_DEBUG(
7833       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7834                 "VPlan-native path.\n");
7835   return VectorizationFactor::Disabled();
7836 }
7837 
7838 Optional<VectorizationFactor>
7839 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7840   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7841   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7842   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7843     return None;
7844 
7845   // Invalidate interleave groups if all blocks of loop will be predicated.
7846   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7847       !useMaskedInterleavedAccesses(*TTI)) {
7848     LLVM_DEBUG(
7849         dbgs()
7850         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7851            "which requires masked-interleaved support.\n");
7852     if (CM.InterleaveInfo.invalidateGroups())
7853       // Invalidating interleave groups also requires invalidating all decisions
7854       // based on them, which includes widening decisions and uniform and scalar
7855       // values.
7856       CM.invalidateCostModelingDecisions();
7857   }
7858 
7859   ElementCount MaxUserVF =
7860       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7861   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7862   if (!UserVF.isZero() && UserVFIsLegal) {
7863     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7864            "VF needs to be a power of two");
7865     // Collect the instructions (and their associated costs) that will be more
7866     // profitable to scalarize.
7867     if (CM.selectUserVectorizationFactor(UserVF)) {
7868       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7869       CM.collectInLoopReductions();
7870       buildVPlansWithVPRecipes(UserVF, UserVF);
7871       LLVM_DEBUG(printPlans(dbgs()));
7872       return {{UserVF, 0}};
7873     } else
7874       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7875                               "InvalidCost", ORE, OrigLoop);
7876   }
7877 
7878   // Populate the set of Vectorization Factor Candidates.
7879   ElementCountSet VFCandidates;
7880   for (auto VF = ElementCount::getFixed(1);
7881        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7882     VFCandidates.insert(VF);
7883   for (auto VF = ElementCount::getScalable(1);
7884        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7885     VFCandidates.insert(VF);
7886 
7887   for (const auto &VF : VFCandidates) {
7888     // Collect Uniform and Scalar instructions after vectorization with VF.
7889     CM.collectUniformsAndScalars(VF);
7890 
7891     // Collect the instructions (and their associated costs) that will be more
7892     // profitable to scalarize.
7893     if (VF.isVector())
7894       CM.collectInstsToScalarize(VF);
7895   }
7896 
7897   CM.collectInLoopReductions();
7898   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7899   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7900 
7901   LLVM_DEBUG(printPlans(dbgs()));
7902   if (!MaxFactors.hasVector())
7903     return VectorizationFactor::Disabled();
7904 
7905   // Select the optimal vectorization factor.
7906   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7907 
7908   // Check if it is profitable to vectorize with runtime checks.
7909   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7910   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7911     bool PragmaThresholdReached =
7912         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7913     bool ThresholdReached =
7914         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7915     if ((ThresholdReached && !Hints.allowReordering()) ||
7916         PragmaThresholdReached) {
7917       ORE->emit([&]() {
7918         return OptimizationRemarkAnalysisAliasing(
7919                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7920                    OrigLoop->getHeader())
7921                << "loop not vectorized: cannot prove it is safe to reorder "
7922                   "memory operations";
7923       });
7924       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7925       Hints.emitRemarkWithHints();
7926       return VectorizationFactor::Disabled();
7927     }
7928   }
7929   return SelectedVF;
7930 }
7931 
7932 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7933   assert(count_if(VPlans,
7934                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7935              1 &&
7936          "Best VF has not a single VPlan.");
7937 
7938   for (const VPlanPtr &Plan : VPlans) {
7939     if (Plan->hasVF(VF))
7940       return *Plan.get();
7941   }
7942   llvm_unreachable("No plan found!");
7943 }
7944 
7945 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7946   SmallVector<Metadata *, 4> MDs;
7947   // Reserve first location for self reference to the LoopID metadata node.
7948   MDs.push_back(nullptr);
7949   bool IsUnrollMetadata = false;
7950   MDNode *LoopID = L->getLoopID();
7951   if (LoopID) {
7952     // First find existing loop unrolling disable metadata.
7953     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7954       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7955       if (MD) {
7956         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7957         IsUnrollMetadata =
7958             S && S->getString().startswith("llvm.loop.unroll.disable");
7959       }
7960       MDs.push_back(LoopID->getOperand(i));
7961     }
7962   }
7963 
7964   if (!IsUnrollMetadata) {
7965     // Add runtime unroll disable metadata.
7966     LLVMContext &Context = L->getHeader()->getContext();
7967     SmallVector<Metadata *, 1> DisableOperands;
7968     DisableOperands.push_back(
7969         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7970     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7971     MDs.push_back(DisableNode);
7972     MDNode *NewLoopID = MDNode::get(Context, MDs);
7973     // Set operand 0 to refer to the loop id itself.
7974     NewLoopID->replaceOperandWith(0, NewLoopID);
7975     L->setLoopID(NewLoopID);
7976   }
7977 }
7978 
7979 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7980                                            VPlan &BestVPlan,
7981                                            InnerLoopVectorizer &ILV,
7982                                            DominatorTree *DT) {
7983   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7984                     << '\n');
7985 
7986   // Perform the actual loop transformation.
7987 
7988   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7989   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7990   Value *CanonicalIVStartValue;
7991   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7992       ILV.createVectorizedLoopSkeleton();
7993   ILV.collectPoisonGeneratingRecipes(State);
7994 
7995   ILV.printDebugTracesAtStart();
7996 
7997   //===------------------------------------------------===//
7998   //
7999   // Notice: any optimization or new instruction that go
8000   // into the code below should also be implemented in
8001   // the cost-model.
8002   //
8003   //===------------------------------------------------===//
8004 
8005   // 2. Copy and widen instructions from the old loop into the new loop.
8006   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
8007                              ILV.getOrCreateVectorTripCount(nullptr),
8008                              CanonicalIVStartValue, State);
8009   BestVPlan.execute(&State);
8010 
8011   // Keep all loop hints from the original loop on the vector loop (we'll
8012   // replace the vectorizer-specific hints below).
8013   MDNode *OrigLoopID = OrigLoop->getLoopID();
8014 
8015   Optional<MDNode *> VectorizedLoopID =
8016       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
8017                                       LLVMLoopVectorizeFollowupVectorized});
8018 
8019   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
8020   if (VectorizedLoopID.hasValue())
8021     L->setLoopID(VectorizedLoopID.getValue());
8022   else {
8023     // Keep all loop hints from the original loop on the vector loop (we'll
8024     // replace the vectorizer-specific hints below).
8025     if (MDNode *LID = OrigLoop->getLoopID())
8026       L->setLoopID(LID);
8027 
8028     LoopVectorizeHints Hints(L, true, *ORE);
8029     Hints.setAlreadyVectorized();
8030   }
8031   // Disable runtime unrolling when vectorizing the epilogue loop.
8032   if (CanonicalIVStartValue)
8033     AddRuntimeUnrollDisableMetaData(L);
8034 
8035   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8036   //    predication, updating analyses.
8037   ILV.fixVectorizedLoop(State);
8038 
8039   ILV.printDebugTracesAtEnd();
8040 }
8041 
8042 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8043 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8044   for (const auto &Plan : VPlans)
8045     if (PrintVPlansInDotFormat)
8046       Plan->printDOT(O);
8047     else
8048       Plan->print(O);
8049 }
8050 #endif
8051 
8052 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8053     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8054 
8055   // We create new control-flow for the vectorized loop, so the original exit
8056   // conditions will be dead after vectorization if it's only used by the
8057   // terminator
8058   SmallVector<BasicBlock*> ExitingBlocks;
8059   OrigLoop->getExitingBlocks(ExitingBlocks);
8060   for (auto *BB : ExitingBlocks) {
8061     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8062     if (!Cmp || !Cmp->hasOneUse())
8063       continue;
8064 
8065     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8066     if (!DeadInstructions.insert(Cmp).second)
8067       continue;
8068 
8069     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8070     // TODO: can recurse through operands in general
8071     for (Value *Op : Cmp->operands()) {
8072       if (isa<TruncInst>(Op) && Op->hasOneUse())
8073           DeadInstructions.insert(cast<Instruction>(Op));
8074     }
8075   }
8076 
8077   // We create new "steps" for induction variable updates to which the original
8078   // induction variables map. An original update instruction will be dead if
8079   // all its users except the induction variable are dead.
8080   auto *Latch = OrigLoop->getLoopLatch();
8081   for (auto &Induction : Legal->getInductionVars()) {
8082     PHINode *Ind = Induction.first;
8083     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8084 
8085     // If the tail is to be folded by masking, the primary induction variable,
8086     // if exists, isn't dead: it will be used for masking. Don't kill it.
8087     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8088       continue;
8089 
8090     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8091           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8092         }))
8093       DeadInstructions.insert(IndUpdate);
8094   }
8095 }
8096 
8097 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8098 
8099 //===--------------------------------------------------------------------===//
8100 // EpilogueVectorizerMainLoop
8101 //===--------------------------------------------------------------------===//
8102 
8103 /// This function is partially responsible for generating the control flow
8104 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8105 std::pair<BasicBlock *, Value *>
8106 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8107   MDNode *OrigLoopID = OrigLoop->getLoopID();
8108   Loop *Lp = createVectorLoopSkeleton("");
8109 
8110   // Generate the code to check the minimum iteration count of the vector
8111   // epilogue (see below).
8112   EPI.EpilogueIterationCountCheck =
8113       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8114   EPI.EpilogueIterationCountCheck->setName("iter.check");
8115 
8116   // Generate the code to check any assumptions that we've made for SCEV
8117   // expressions.
8118   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8119 
8120   // Generate the code that checks at runtime if arrays overlap. We put the
8121   // checks into a separate block to make the more common case of few elements
8122   // faster.
8123   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8124 
8125   // Generate the iteration count check for the main loop, *after* the check
8126   // for the epilogue loop, so that the path-length is shorter for the case
8127   // that goes directly through the vector epilogue. The longer-path length for
8128   // the main loop is compensated for, by the gain from vectorizing the larger
8129   // trip count. Note: the branch will get updated later on when we vectorize
8130   // the epilogue.
8131   EPI.MainLoopIterationCountCheck =
8132       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8133 
8134   // Generate the induction variable.
8135   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8136   EPI.VectorTripCount = CountRoundDown;
8137   createHeaderBranch(Lp);
8138 
8139   // Skip induction resume value creation here because they will be created in
8140   // the second pass. If we created them here, they wouldn't be used anyway,
8141   // because the vplan in the second pass still contains the inductions from the
8142   // original loop.
8143 
8144   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8145 }
8146 
8147 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8148   LLVM_DEBUG({
8149     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8150            << "Main Loop VF:" << EPI.MainLoopVF
8151            << ", Main Loop UF:" << EPI.MainLoopUF
8152            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8153            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8154   });
8155 }
8156 
8157 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8158   DEBUG_WITH_TYPE(VerboseDebug, {
8159     dbgs() << "intermediate fn:\n"
8160            << *OrigLoop->getHeader()->getParent() << "\n";
8161   });
8162 }
8163 
8164 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8165     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8166   assert(L && "Expected valid Loop.");
8167   assert(Bypass && "Expected valid bypass basic block.");
8168   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8169   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8170   Value *Count = getOrCreateTripCount(L);
8171   // Reuse existing vector loop preheader for TC checks.
8172   // Note that new preheader block is generated for vector loop.
8173   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8174   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8175 
8176   // Generate code to check if the loop's trip count is less than VF * UF of the
8177   // main vector loop.
8178   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8179       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8180 
8181   Value *CheckMinIters = Builder.CreateICmp(
8182       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8183       "min.iters.check");
8184 
8185   if (!ForEpilogue)
8186     TCCheckBlock->setName("vector.main.loop.iter.check");
8187 
8188   // Create new preheader for vector loop.
8189   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8190                                    DT, LI, nullptr, "vector.ph");
8191 
8192   if (ForEpilogue) {
8193     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8194                                  DT->getNode(Bypass)->getIDom()) &&
8195            "TC check is expected to dominate Bypass");
8196 
8197     // Update dominator for Bypass & LoopExit.
8198     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8199     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8200       // For loops with multiple exits, there's no edge from the middle block
8201       // to exit blocks (as the epilogue must run) and thus no need to update
8202       // the immediate dominator of the exit blocks.
8203       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8204 
8205     LoopBypassBlocks.push_back(TCCheckBlock);
8206 
8207     // Save the trip count so we don't have to regenerate it in the
8208     // vec.epilog.iter.check. This is safe to do because the trip count
8209     // generated here dominates the vector epilog iter check.
8210     EPI.TripCount = Count;
8211   }
8212 
8213   ReplaceInstWithInst(
8214       TCCheckBlock->getTerminator(),
8215       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8216 
8217   return TCCheckBlock;
8218 }
8219 
8220 //===--------------------------------------------------------------------===//
8221 // EpilogueVectorizerEpilogueLoop
8222 //===--------------------------------------------------------------------===//
8223 
8224 /// This function is partially responsible for generating the control flow
8225 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8226 std::pair<BasicBlock *, Value *>
8227 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8228   MDNode *OrigLoopID = OrigLoop->getLoopID();
8229   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8230 
8231   // Now, compare the remaining count and if there aren't enough iterations to
8232   // execute the vectorized epilogue skip to the scalar part.
8233   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8234   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8235   LoopVectorPreHeader =
8236       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8237                  LI, nullptr, "vec.epilog.ph");
8238   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8239                                           VecEpilogueIterationCountCheck);
8240 
8241   // Adjust the control flow taking the state info from the main loop
8242   // vectorization into account.
8243   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8244          "expected this to be saved from the previous pass.");
8245   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8246       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8247 
8248   DT->changeImmediateDominator(LoopVectorPreHeader,
8249                                EPI.MainLoopIterationCountCheck);
8250 
8251   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8252       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8253 
8254   if (EPI.SCEVSafetyCheck)
8255     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8256         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8257   if (EPI.MemSafetyCheck)
8258     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8259         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8260 
8261   DT->changeImmediateDominator(
8262       VecEpilogueIterationCountCheck,
8263       VecEpilogueIterationCountCheck->getSinglePredecessor());
8264 
8265   DT->changeImmediateDominator(LoopScalarPreHeader,
8266                                EPI.EpilogueIterationCountCheck);
8267   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8268     // If there is an epilogue which must run, there's no edge from the
8269     // middle block to exit blocks  and thus no need to update the immediate
8270     // dominator of the exit blocks.
8271     DT->changeImmediateDominator(LoopExitBlock,
8272                                  EPI.EpilogueIterationCountCheck);
8273 
8274   // Keep track of bypass blocks, as they feed start values to the induction
8275   // phis in the scalar loop preheader.
8276   if (EPI.SCEVSafetyCheck)
8277     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8278   if (EPI.MemSafetyCheck)
8279     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8280   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8281 
8282   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8283   // merge control-flow from the latch block and the middle block. Update the
8284   // incoming values here and move the Phi into the preheader.
8285   SmallVector<PHINode *, 4> PhisInBlock;
8286   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8287     PhisInBlock.push_back(&Phi);
8288 
8289   for (PHINode *Phi : PhisInBlock) {
8290     Phi->replaceIncomingBlockWith(
8291         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8292         VecEpilogueIterationCountCheck);
8293     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8294     if (EPI.SCEVSafetyCheck)
8295       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8296     if (EPI.MemSafetyCheck)
8297       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8298     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8299   }
8300 
8301   // Generate a resume induction for the vector epilogue and put it in the
8302   // vector epilogue preheader
8303   Type *IdxTy = Legal->getWidestInductionType();
8304   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8305                                          LoopVectorPreHeader->getFirstNonPHI());
8306   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8307   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8308                            EPI.MainLoopIterationCountCheck);
8309 
8310   // Generate the induction variable.
8311   createHeaderBranch(Lp);
8312 
8313   // Generate induction resume values. These variables save the new starting
8314   // indexes for the scalar loop. They are used to test if there are any tail
8315   // iterations left once the vector loop has completed.
8316   // Note that when the vectorized epilogue is skipped due to iteration count
8317   // check, then the resume value for the induction variable comes from
8318   // the trip count of the main vector loop, hence passing the AdditionalBypass
8319   // argument.
8320   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8321                                    EPI.VectorTripCount} /* AdditionalBypass */);
8322 
8323   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8324 }
8325 
8326 BasicBlock *
8327 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8328     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8329 
8330   assert(EPI.TripCount &&
8331          "Expected trip count to have been safed in the first pass.");
8332   assert(
8333       (!isa<Instruction>(EPI.TripCount) ||
8334        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8335       "saved trip count does not dominate insertion point.");
8336   Value *TC = EPI.TripCount;
8337   IRBuilder<> Builder(Insert->getTerminator());
8338   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8339 
8340   // Generate code to check if the loop's trip count is less than VF * UF of the
8341   // vector epilogue loop.
8342   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8343       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8344 
8345   Value *CheckMinIters =
8346       Builder.CreateICmp(P, Count,
8347                          createStepForVF(Builder, Count->getType(),
8348                                          EPI.EpilogueVF, EPI.EpilogueUF),
8349                          "min.epilog.iters.check");
8350 
8351   ReplaceInstWithInst(
8352       Insert->getTerminator(),
8353       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8354 
8355   LoopBypassBlocks.push_back(Insert);
8356   return Insert;
8357 }
8358 
8359 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8360   LLVM_DEBUG({
8361     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8362            << "Epilogue Loop VF:" << EPI.EpilogueVF
8363            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8364   });
8365 }
8366 
8367 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8368   DEBUG_WITH_TYPE(VerboseDebug, {
8369     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8370   });
8371 }
8372 
8373 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8374     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8375   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8376   bool PredicateAtRangeStart = Predicate(Range.Start);
8377 
8378   for (ElementCount TmpVF = Range.Start * 2;
8379        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8380     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8381       Range.End = TmpVF;
8382       break;
8383     }
8384 
8385   return PredicateAtRangeStart;
8386 }
8387 
8388 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8389 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8390 /// of VF's starting at a given VF and extending it as much as possible. Each
8391 /// vectorization decision can potentially shorten this sub-range during
8392 /// buildVPlan().
8393 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8394                                            ElementCount MaxVF) {
8395   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8396   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8397     VFRange SubRange = {VF, MaxVFPlusOne};
8398     VPlans.push_back(buildVPlan(SubRange));
8399     VF = SubRange.End;
8400   }
8401 }
8402 
8403 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8404                                          VPlanPtr &Plan) {
8405   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8406 
8407   // Look for cached value.
8408   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8409   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8410   if (ECEntryIt != EdgeMaskCache.end())
8411     return ECEntryIt->second;
8412 
8413   VPValue *SrcMask = createBlockInMask(Src, Plan);
8414 
8415   // The terminator has to be a branch inst!
8416   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8417   assert(BI && "Unexpected terminator found");
8418 
8419   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8420     return EdgeMaskCache[Edge] = SrcMask;
8421 
8422   // If source is an exiting block, we know the exit edge is dynamically dead
8423   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8424   // adding uses of an otherwise potentially dead instruction.
8425   if (OrigLoop->isLoopExiting(Src))
8426     return EdgeMaskCache[Edge] = SrcMask;
8427 
8428   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8429   assert(EdgeMask && "No Edge Mask found for condition");
8430 
8431   if (BI->getSuccessor(0) != Dst)
8432     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8433 
8434   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8435     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8436     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8437     // The select version does not introduce new UB if SrcMask is false and
8438     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8439     VPValue *False = Plan->getOrAddVPValue(
8440         ConstantInt::getFalse(BI->getCondition()->getType()));
8441     EdgeMask =
8442         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8443   }
8444 
8445   return EdgeMaskCache[Edge] = EdgeMask;
8446 }
8447 
8448 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8449   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8450 
8451   // Look for cached value.
8452   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8453   if (BCEntryIt != BlockMaskCache.end())
8454     return BCEntryIt->second;
8455 
8456   // All-one mask is modelled as no-mask following the convention for masked
8457   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8458   VPValue *BlockMask = nullptr;
8459 
8460   if (OrigLoop->getHeader() == BB) {
8461     if (!CM.blockNeedsPredicationForAnyReason(BB))
8462       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8463 
8464     // Introduce the early-exit compare IV <= BTC to form header block mask.
8465     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8466     // constructing the desired canonical IV in the header block as its first
8467     // non-phi instructions.
8468     assert(CM.foldTailByMasking() && "must fold the tail");
8469     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8470     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8471     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8472     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8473 
8474     VPBuilder::InsertPointGuard Guard(Builder);
8475     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8476     if (CM.TTI.emitGetActiveLaneMask()) {
8477       VPValue *TC = Plan->getOrCreateTripCount();
8478       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8479     } else {
8480       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8481       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8482     }
8483     return BlockMaskCache[BB] = BlockMask;
8484   }
8485 
8486   // This is the block mask. We OR all incoming edges.
8487   for (auto *Predecessor : predecessors(BB)) {
8488     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8489     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8490       return BlockMaskCache[BB] = EdgeMask;
8491 
8492     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8493       BlockMask = EdgeMask;
8494       continue;
8495     }
8496 
8497     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8498   }
8499 
8500   return BlockMaskCache[BB] = BlockMask;
8501 }
8502 
8503 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8504                                                 ArrayRef<VPValue *> Operands,
8505                                                 VFRange &Range,
8506                                                 VPlanPtr &Plan) {
8507   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8508          "Must be called with either a load or store");
8509 
8510   auto willWiden = [&](ElementCount VF) -> bool {
8511     if (VF.isScalar())
8512       return false;
8513     LoopVectorizationCostModel::InstWidening Decision =
8514         CM.getWideningDecision(I, VF);
8515     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8516            "CM decision should be taken at this point.");
8517     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8518       return true;
8519     if (CM.isScalarAfterVectorization(I, VF) ||
8520         CM.isProfitableToScalarize(I, VF))
8521       return false;
8522     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8523   };
8524 
8525   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8526     return nullptr;
8527 
8528   VPValue *Mask = nullptr;
8529   if (Legal->isMaskRequired(I))
8530     Mask = createBlockInMask(I->getParent(), Plan);
8531 
8532   // Determine if the pointer operand of the access is either consecutive or
8533   // reverse consecutive.
8534   LoopVectorizationCostModel::InstWidening Decision =
8535       CM.getWideningDecision(I, Range.Start);
8536   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8537   bool Consecutive =
8538       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8539 
8540   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8541     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8542                                               Consecutive, Reverse);
8543 
8544   StoreInst *Store = cast<StoreInst>(I);
8545   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8546                                             Mask, Consecutive, Reverse);
8547 }
8548 
8549 VPWidenIntOrFpInductionRecipe *
8550 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8551                                            ArrayRef<VPValue *> Operands) const {
8552   // Check if this is an integer or fp induction. If so, build the recipe that
8553   // produces its scalar and vector values.
8554   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) {
8555     assert(II->getStartValue() ==
8556            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8557     return new VPWidenIntOrFpInductionRecipe(Phi, Operands[0], *II);
8558   }
8559 
8560   return nullptr;
8561 }
8562 
8563 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8564     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8565     VPlan &Plan) const {
8566   // Optimize the special case where the source is a constant integer
8567   // induction variable. Notice that we can only optimize the 'trunc' case
8568   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8569   // (c) other casts depend on pointer size.
8570 
8571   // Determine whether \p K is a truncation based on an induction variable that
8572   // can be optimized.
8573   auto isOptimizableIVTruncate =
8574       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8575     return [=](ElementCount VF) -> bool {
8576       return CM.isOptimizableIVTruncate(K, VF);
8577     };
8578   };
8579 
8580   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8581           isOptimizableIVTruncate(I), Range)) {
8582 
8583     auto *Phi = cast<PHINode>(I->getOperand(0));
8584     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8585     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8586     return new VPWidenIntOrFpInductionRecipe(Phi, Start, II, I);
8587   }
8588   return nullptr;
8589 }
8590 
8591 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8592                                                 ArrayRef<VPValue *> Operands,
8593                                                 VPlanPtr &Plan) {
8594   // If all incoming values are equal, the incoming VPValue can be used directly
8595   // instead of creating a new VPBlendRecipe.
8596   VPValue *FirstIncoming = Operands[0];
8597   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8598         return FirstIncoming == Inc;
8599       })) {
8600     return Operands[0];
8601   }
8602 
8603   // We know that all PHIs in non-header blocks are converted into selects, so
8604   // we don't have to worry about the insertion order and we can just use the
8605   // builder. At this point we generate the predication tree. There may be
8606   // duplications since this is a simple recursive scan, but future
8607   // optimizations will clean it up.
8608   SmallVector<VPValue *, 2> OperandsWithMask;
8609   unsigned NumIncoming = Phi->getNumIncomingValues();
8610 
8611   for (unsigned In = 0; In < NumIncoming; In++) {
8612     VPValue *EdgeMask =
8613       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8614     assert((EdgeMask || NumIncoming == 1) &&
8615            "Multiple predecessors with one having a full mask");
8616     OperandsWithMask.push_back(Operands[In]);
8617     if (EdgeMask)
8618       OperandsWithMask.push_back(EdgeMask);
8619   }
8620   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8621 }
8622 
8623 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8624                                                    ArrayRef<VPValue *> Operands,
8625                                                    VFRange &Range) const {
8626 
8627   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8628       [this, CI](ElementCount VF) {
8629         return CM.isScalarWithPredication(CI, VF);
8630       },
8631       Range);
8632 
8633   if (IsPredicated)
8634     return nullptr;
8635 
8636   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8637   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8638              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8639              ID == Intrinsic::pseudoprobe ||
8640              ID == Intrinsic::experimental_noalias_scope_decl))
8641     return nullptr;
8642 
8643   auto willWiden = [&](ElementCount VF) -> bool {
8644     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8645     // The following case may be scalarized depending on the VF.
8646     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8647     // version of the instruction.
8648     // Is it beneficial to perform intrinsic call compared to lib call?
8649     bool NeedToScalarize = false;
8650     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8651     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8652     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8653     return UseVectorIntrinsic || !NeedToScalarize;
8654   };
8655 
8656   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8657     return nullptr;
8658 
8659   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8660   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8661 }
8662 
8663 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8664   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8665          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8666   // Instruction should be widened, unless it is scalar after vectorization,
8667   // scalarization is profitable or it is predicated.
8668   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8669     return CM.isScalarAfterVectorization(I, VF) ||
8670            CM.isProfitableToScalarize(I, VF) ||
8671            CM.isScalarWithPredication(I, VF);
8672   };
8673   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8674                                                              Range);
8675 }
8676 
8677 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8678                                            ArrayRef<VPValue *> Operands) const {
8679   auto IsVectorizableOpcode = [](unsigned Opcode) {
8680     switch (Opcode) {
8681     case Instruction::Add:
8682     case Instruction::And:
8683     case Instruction::AShr:
8684     case Instruction::BitCast:
8685     case Instruction::FAdd:
8686     case Instruction::FCmp:
8687     case Instruction::FDiv:
8688     case Instruction::FMul:
8689     case Instruction::FNeg:
8690     case Instruction::FPExt:
8691     case Instruction::FPToSI:
8692     case Instruction::FPToUI:
8693     case Instruction::FPTrunc:
8694     case Instruction::FRem:
8695     case Instruction::FSub:
8696     case Instruction::ICmp:
8697     case Instruction::IntToPtr:
8698     case Instruction::LShr:
8699     case Instruction::Mul:
8700     case Instruction::Or:
8701     case Instruction::PtrToInt:
8702     case Instruction::SDiv:
8703     case Instruction::Select:
8704     case Instruction::SExt:
8705     case Instruction::Shl:
8706     case Instruction::SIToFP:
8707     case Instruction::SRem:
8708     case Instruction::Sub:
8709     case Instruction::Trunc:
8710     case Instruction::UDiv:
8711     case Instruction::UIToFP:
8712     case Instruction::URem:
8713     case Instruction::Xor:
8714     case Instruction::ZExt:
8715       return true;
8716     }
8717     return false;
8718   };
8719 
8720   if (!IsVectorizableOpcode(I->getOpcode()))
8721     return nullptr;
8722 
8723   // Success: widen this instruction.
8724   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8725 }
8726 
8727 void VPRecipeBuilder::fixHeaderPhis() {
8728   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8729   for (VPHeaderPHIRecipe *R : PhisToFix) {
8730     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8731     VPRecipeBase *IncR =
8732         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8733     R->addOperand(IncR->getVPSingleValue());
8734   }
8735 }
8736 
8737 VPBasicBlock *VPRecipeBuilder::handleReplication(
8738     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8739     VPlanPtr &Plan) {
8740   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8741       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8742       Range);
8743 
8744   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8745       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8746       Range);
8747 
8748   // Even if the instruction is not marked as uniform, there are certain
8749   // intrinsic calls that can be effectively treated as such, so we check for
8750   // them here. Conservatively, we only do this for scalable vectors, since
8751   // for fixed-width VFs we can always fall back on full scalarization.
8752   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8753     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8754     case Intrinsic::assume:
8755     case Intrinsic::lifetime_start:
8756     case Intrinsic::lifetime_end:
8757       // For scalable vectors if one of the operands is variant then we still
8758       // want to mark as uniform, which will generate one instruction for just
8759       // the first lane of the vector. We can't scalarize the call in the same
8760       // way as for fixed-width vectors because we don't know how many lanes
8761       // there are.
8762       //
8763       // The reasons for doing it this way for scalable vectors are:
8764       //   1. For the assume intrinsic generating the instruction for the first
8765       //      lane is still be better than not generating any at all. For
8766       //      example, the input may be a splat across all lanes.
8767       //   2. For the lifetime start/end intrinsics the pointer operand only
8768       //      does anything useful when the input comes from a stack object,
8769       //      which suggests it should always be uniform. For non-stack objects
8770       //      the effect is to poison the object, which still allows us to
8771       //      remove the call.
8772       IsUniform = true;
8773       break;
8774     default:
8775       break;
8776     }
8777   }
8778 
8779   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8780                                        IsUniform, IsPredicated);
8781   setRecipe(I, Recipe);
8782   Plan->addVPValue(I, Recipe);
8783 
8784   // Find if I uses a predicated instruction. If so, it will use its scalar
8785   // value. Avoid hoisting the insert-element which packs the scalar value into
8786   // a vector value, as that happens iff all users use the vector value.
8787   for (VPValue *Op : Recipe->operands()) {
8788     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8789     if (!PredR)
8790       continue;
8791     auto *RepR =
8792         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8793     assert(RepR->isPredicated() &&
8794            "expected Replicate recipe to be predicated");
8795     RepR->setAlsoPack(false);
8796   }
8797 
8798   // Finalize the recipe for Instr, first if it is not predicated.
8799   if (!IsPredicated) {
8800     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8801     VPBB->appendRecipe(Recipe);
8802     return VPBB;
8803   }
8804   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8805 
8806   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8807   assert(SingleSucc && "VPBB must have a single successor when handling "
8808                        "predicated replication.");
8809   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8810   // Record predicated instructions for above packing optimizations.
8811   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8812   VPBlockUtils::insertBlockAfter(Region, VPBB);
8813   auto *RegSucc = new VPBasicBlock();
8814   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8815   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8816   return RegSucc;
8817 }
8818 
8819 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8820                                                       VPRecipeBase *PredRecipe,
8821                                                       VPlanPtr &Plan) {
8822   // Instructions marked for predication are replicated and placed under an
8823   // if-then construct to prevent side-effects.
8824 
8825   // Generate recipes to compute the block mask for this region.
8826   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8827 
8828   // Build the triangular if-then region.
8829   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8830   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8831   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8832   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8833   auto *PHIRecipe = Instr->getType()->isVoidTy()
8834                         ? nullptr
8835                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8836   if (PHIRecipe) {
8837     Plan->removeVPValueFor(Instr);
8838     Plan->addVPValue(Instr, PHIRecipe);
8839   }
8840   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8841   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8842   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8843 
8844   // Note: first set Entry as region entry and then connect successors starting
8845   // from it in order, to propagate the "parent" of each VPBasicBlock.
8846   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8847   VPBlockUtils::connectBlocks(Pred, Exit);
8848 
8849   return Region;
8850 }
8851 
8852 VPRecipeOrVPValueTy
8853 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8854                                         ArrayRef<VPValue *> Operands,
8855                                         VFRange &Range, VPlanPtr &Plan) {
8856   // First, check for specific widening recipes that deal with calls, memory
8857   // operations, inductions and Phi nodes.
8858   if (auto *CI = dyn_cast<CallInst>(Instr))
8859     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8860 
8861   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8862     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8863 
8864   VPRecipeBase *Recipe;
8865   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8866     if (Phi->getParent() != OrigLoop->getHeader())
8867       return tryToBlend(Phi, Operands, Plan);
8868     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8869       return toVPRecipeResult(Recipe);
8870 
8871     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8872     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8873       VPValue *StartV = Operands[0];
8874       if (Legal->isReductionVariable(Phi)) {
8875         const RecurrenceDescriptor &RdxDesc =
8876             Legal->getReductionVars().find(Phi)->second;
8877         assert(RdxDesc.getRecurrenceStartValue() ==
8878                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8879         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8880                                              CM.isInLoopReduction(Phi),
8881                                              CM.useOrderedReductions(RdxDesc));
8882       } else {
8883         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8884       }
8885 
8886       // Record the incoming value from the backedge, so we can add the incoming
8887       // value from the backedge after all recipes have been created.
8888       recordRecipeOf(cast<Instruction>(
8889           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8890       PhisToFix.push_back(PhiRecipe);
8891     } else {
8892       // TODO: record backedge value for remaining pointer induction phis.
8893       assert(Phi->getType()->isPointerTy() &&
8894              "only pointer phis should be handled here");
8895       assert(Legal->getInductionVars().count(Phi) &&
8896              "Not an induction variable");
8897       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8898       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8899       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8900     }
8901 
8902     return toVPRecipeResult(PhiRecipe);
8903   }
8904 
8905   if (isa<TruncInst>(Instr) &&
8906       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8907                                                Range, *Plan)))
8908     return toVPRecipeResult(Recipe);
8909 
8910   if (!shouldWiden(Instr, Range))
8911     return nullptr;
8912 
8913   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8914     return toVPRecipeResult(new VPWidenGEPRecipe(
8915         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8916 
8917   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8918     bool InvariantCond =
8919         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8920     return toVPRecipeResult(new VPWidenSelectRecipe(
8921         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8922   }
8923 
8924   return toVPRecipeResult(tryToWiden(Instr, Operands));
8925 }
8926 
8927 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8928                                                         ElementCount MaxVF) {
8929   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8930 
8931   // Collect instructions from the original loop that will become trivially dead
8932   // in the vectorized loop. We don't need to vectorize these instructions. For
8933   // example, original induction update instructions can become dead because we
8934   // separately emit induction "steps" when generating code for the new loop.
8935   // Similarly, we create a new latch condition when setting up the structure
8936   // of the new loop, so the old one can become dead.
8937   SmallPtrSet<Instruction *, 4> DeadInstructions;
8938   collectTriviallyDeadInstructions(DeadInstructions);
8939 
8940   // Add assume instructions we need to drop to DeadInstructions, to prevent
8941   // them from being added to the VPlan.
8942   // TODO: We only need to drop assumes in blocks that get flattend. If the
8943   // control flow is preserved, we should keep them.
8944   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8945   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8946 
8947   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8948   // Dead instructions do not need sinking. Remove them from SinkAfter.
8949   for (Instruction *I : DeadInstructions)
8950     SinkAfter.erase(I);
8951 
8952   // Cannot sink instructions after dead instructions (there won't be any
8953   // recipes for them). Instead, find the first non-dead previous instruction.
8954   for (auto &P : Legal->getSinkAfter()) {
8955     Instruction *SinkTarget = P.second;
8956     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8957     (void)FirstInst;
8958     while (DeadInstructions.contains(SinkTarget)) {
8959       assert(
8960           SinkTarget != FirstInst &&
8961           "Must find a live instruction (at least the one feeding the "
8962           "first-order recurrence PHI) before reaching beginning of the block");
8963       SinkTarget = SinkTarget->getPrevNode();
8964       assert(SinkTarget != P.first &&
8965              "sink source equals target, no sinking required");
8966     }
8967     P.second = SinkTarget;
8968   }
8969 
8970   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8971   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8972     VFRange SubRange = {VF, MaxVFPlusOne};
8973     VPlans.push_back(
8974         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8975     VF = SubRange.End;
8976   }
8977 }
8978 
8979 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8980 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8981 // BranchOnCount VPInstruction to the latch.
8982 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8983                                   bool HasNUW, bool IsVPlanNative) {
8984   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8985   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8986 
8987   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8988   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8989   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8990   if (IsVPlanNative)
8991     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8992   Header->insert(CanonicalIVPHI, Header->begin());
8993 
8994   auto *CanonicalIVIncrement =
8995       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8996                                : VPInstruction::CanonicalIVIncrement,
8997                         {CanonicalIVPHI}, DL);
8998   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8999 
9000   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
9001   if (IsVPlanNative) {
9002     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
9003     EB->setCondBit(nullptr);
9004   }
9005   EB->appendRecipe(CanonicalIVIncrement);
9006 
9007   auto *BranchOnCount =
9008       new VPInstruction(VPInstruction::BranchOnCount,
9009                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
9010   EB->appendRecipe(BranchOnCount);
9011 }
9012 
9013 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9014     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9015     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9016 
9017   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9018 
9019   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9020 
9021   // ---------------------------------------------------------------------------
9022   // Pre-construction: record ingredients whose recipes we'll need to further
9023   // process after constructing the initial VPlan.
9024   // ---------------------------------------------------------------------------
9025 
9026   // Mark instructions we'll need to sink later and their targets as
9027   // ingredients whose recipe we'll need to record.
9028   for (auto &Entry : SinkAfter) {
9029     RecipeBuilder.recordRecipeOf(Entry.first);
9030     RecipeBuilder.recordRecipeOf(Entry.second);
9031   }
9032   for (auto &Reduction : CM.getInLoopReductionChains()) {
9033     PHINode *Phi = Reduction.first;
9034     RecurKind Kind =
9035         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
9036     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9037 
9038     RecipeBuilder.recordRecipeOf(Phi);
9039     for (auto &R : ReductionOperations) {
9040       RecipeBuilder.recordRecipeOf(R);
9041       // For min/max reducitons, where we have a pair of icmp/select, we also
9042       // need to record the ICmp recipe, so it can be removed later.
9043       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9044              "Only min/max recurrences allowed for inloop reductions");
9045       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9046         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9047     }
9048   }
9049 
9050   // For each interleave group which is relevant for this (possibly trimmed)
9051   // Range, add it to the set of groups to be later applied to the VPlan and add
9052   // placeholders for its members' Recipes which we'll be replacing with a
9053   // single VPInterleaveRecipe.
9054   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9055     auto applyIG = [IG, this](ElementCount VF) -> bool {
9056       return (VF.isVector() && // Query is illegal for VF == 1
9057               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9058                   LoopVectorizationCostModel::CM_Interleave);
9059     };
9060     if (!getDecisionAndClampRange(applyIG, Range))
9061       continue;
9062     InterleaveGroups.insert(IG);
9063     for (unsigned i = 0; i < IG->getFactor(); i++)
9064       if (Instruction *Member = IG->getMember(i))
9065         RecipeBuilder.recordRecipeOf(Member);
9066   };
9067 
9068   // ---------------------------------------------------------------------------
9069   // Build initial VPlan: Scan the body of the loop in a topological order to
9070   // visit each basic block after having visited its predecessor basic blocks.
9071   // ---------------------------------------------------------------------------
9072 
9073   // Create initial VPlan skeleton, with separate header and latch blocks.
9074   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9075   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9076   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9077   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9078   auto Plan = std::make_unique<VPlan>(TopRegion);
9079 
9080   Instruction *DLInst =
9081       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9082   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9083                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9084                         !CM.foldTailByMasking(), false);
9085 
9086   // Scan the body of the loop in a topological order to visit each basic block
9087   // after having visited its predecessor basic blocks.
9088   LoopBlocksDFS DFS(OrigLoop);
9089   DFS.perform(LI);
9090 
9091   VPBasicBlock *VPBB = HeaderVPBB;
9092   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9093   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9094     // Relevant instructions from basic block BB will be grouped into VPRecipe
9095     // ingredients and fill a new VPBasicBlock.
9096     unsigned VPBBsForBB = 0;
9097     VPBB->setName(BB->getName());
9098     Builder.setInsertPoint(VPBB);
9099 
9100     // Introduce each ingredient into VPlan.
9101     // TODO: Model and preserve debug instrinsics in VPlan.
9102     for (Instruction &I : BB->instructionsWithoutDebug()) {
9103       Instruction *Instr = &I;
9104 
9105       // First filter out irrelevant instructions, to ensure no recipes are
9106       // built for them.
9107       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9108         continue;
9109 
9110       SmallVector<VPValue *, 4> Operands;
9111       auto *Phi = dyn_cast<PHINode>(Instr);
9112       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9113         Operands.push_back(Plan->getOrAddVPValue(
9114             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9115       } else {
9116         auto OpRange = Plan->mapToVPValues(Instr->operands());
9117         Operands = {OpRange.begin(), OpRange.end()};
9118       }
9119       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9120               Instr, Operands, Range, Plan)) {
9121         // If Instr can be simplified to an existing VPValue, use it.
9122         if (RecipeOrValue.is<VPValue *>()) {
9123           auto *VPV = RecipeOrValue.get<VPValue *>();
9124           Plan->addVPValue(Instr, VPV);
9125           // If the re-used value is a recipe, register the recipe for the
9126           // instruction, in case the recipe for Instr needs to be recorded.
9127           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9128             RecipeBuilder.setRecipe(Instr, R);
9129           continue;
9130         }
9131         // Otherwise, add the new recipe.
9132         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9133         for (auto *Def : Recipe->definedValues()) {
9134           auto *UV = Def->getUnderlyingValue();
9135           Plan->addVPValue(UV, Def);
9136         }
9137 
9138         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9139             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9140           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9141           // of the header block. That can happen for truncates of induction
9142           // variables. Those recipes are moved to the phi section of the header
9143           // block after applying SinkAfter, which relies on the original
9144           // position of the trunc.
9145           assert(isa<TruncInst>(Instr));
9146           InductionsToMove.push_back(
9147               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9148         }
9149         RecipeBuilder.setRecipe(Instr, Recipe);
9150         VPBB->appendRecipe(Recipe);
9151         continue;
9152       }
9153 
9154       // Otherwise, if all widening options failed, Instruction is to be
9155       // replicated. This may create a successor for VPBB.
9156       VPBasicBlock *NextVPBB =
9157           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9158       if (NextVPBB != VPBB) {
9159         VPBB = NextVPBB;
9160         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9161                                     : "");
9162       }
9163     }
9164 
9165     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9166     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9167   }
9168 
9169   // Fold the last, empty block into its predecessor.
9170   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9171   assert(VPBB && "expected to fold last (empty) block");
9172   // After here, VPBB should not be used.
9173   VPBB = nullptr;
9174 
9175   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9176          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9177          "entry block must be set to a VPRegionBlock having a non-empty entry "
9178          "VPBasicBlock");
9179   RecipeBuilder.fixHeaderPhis();
9180 
9181   // ---------------------------------------------------------------------------
9182   // Transform initial VPlan: Apply previously taken decisions, in order, to
9183   // bring the VPlan to its final state.
9184   // ---------------------------------------------------------------------------
9185 
9186   // Apply Sink-After legal constraints.
9187   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9188     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9189     if (Region && Region->isReplicator()) {
9190       assert(Region->getNumSuccessors() == 1 &&
9191              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9192       assert(R->getParent()->size() == 1 &&
9193              "A recipe in an original replicator region must be the only "
9194              "recipe in its block");
9195       return Region;
9196     }
9197     return nullptr;
9198   };
9199   for (auto &Entry : SinkAfter) {
9200     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9201     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9202 
9203     auto *TargetRegion = GetReplicateRegion(Target);
9204     auto *SinkRegion = GetReplicateRegion(Sink);
9205     if (!SinkRegion) {
9206       // If the sink source is not a replicate region, sink the recipe directly.
9207       if (TargetRegion) {
9208         // The target is in a replication region, make sure to move Sink to
9209         // the block after it, not into the replication region itself.
9210         VPBasicBlock *NextBlock =
9211             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9212         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9213       } else
9214         Sink->moveAfter(Target);
9215       continue;
9216     }
9217 
9218     // The sink source is in a replicate region. Unhook the region from the CFG.
9219     auto *SinkPred = SinkRegion->getSinglePredecessor();
9220     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9221     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9222     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9223     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9224 
9225     if (TargetRegion) {
9226       // The target recipe is also in a replicate region, move the sink region
9227       // after the target region.
9228       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9229       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9230       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9231       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9232     } else {
9233       // The sink source is in a replicate region, we need to move the whole
9234       // replicate region, which should only contain a single recipe in the
9235       // main block.
9236       auto *SplitBlock =
9237           Target->getParent()->splitAt(std::next(Target->getIterator()));
9238 
9239       auto *SplitPred = SplitBlock->getSinglePredecessor();
9240 
9241       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9242       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9243       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9244     }
9245   }
9246 
9247   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9248   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9249 
9250   // Now that sink-after is done, move induction recipes for optimized truncates
9251   // to the phi section of the header block.
9252   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9253     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9254 
9255   // Adjust the recipes for any inloop reductions.
9256   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9257                              RecipeBuilder, Range.Start);
9258 
9259   // Introduce a recipe to combine the incoming and previous values of a
9260   // first-order recurrence.
9261   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9262     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9263     if (!RecurPhi)
9264       continue;
9265 
9266     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9267     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9268     auto *Region = GetReplicateRegion(PrevRecipe);
9269     if (Region)
9270       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9271     if (Region || PrevRecipe->isPhi())
9272       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9273     else
9274       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9275 
9276     auto *RecurSplice = cast<VPInstruction>(
9277         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9278                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9279 
9280     RecurPhi->replaceAllUsesWith(RecurSplice);
9281     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9282     // all users.
9283     RecurSplice->setOperand(0, RecurPhi);
9284   }
9285 
9286   // Interleave memory: for each Interleave Group we marked earlier as relevant
9287   // for this VPlan, replace the Recipes widening its memory instructions with a
9288   // single VPInterleaveRecipe at its insertion point.
9289   for (auto IG : InterleaveGroups) {
9290     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9291         RecipeBuilder.getRecipe(IG->getInsertPos()));
9292     SmallVector<VPValue *, 4> StoredValues;
9293     for (unsigned i = 0; i < IG->getFactor(); ++i)
9294       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9295         auto *StoreR =
9296             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9297         StoredValues.push_back(StoreR->getStoredValue());
9298       }
9299 
9300     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9301                                         Recipe->getMask());
9302     VPIG->insertBefore(Recipe);
9303     unsigned J = 0;
9304     for (unsigned i = 0; i < IG->getFactor(); ++i)
9305       if (Instruction *Member = IG->getMember(i)) {
9306         if (!Member->getType()->isVoidTy()) {
9307           VPValue *OriginalV = Plan->getVPValue(Member);
9308           Plan->removeVPValueFor(Member);
9309           Plan->addVPValue(Member, VPIG->getVPValue(J));
9310           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9311           J++;
9312         }
9313         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9314       }
9315   }
9316 
9317   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9318   // in ways that accessing values using original IR values is incorrect.
9319   Plan->disableValue2VPValue();
9320 
9321   VPlanTransforms::sinkScalarOperands(*Plan);
9322   VPlanTransforms::mergeReplicateRegions(*Plan);
9323 
9324   std::string PlanName;
9325   raw_string_ostream RSO(PlanName);
9326   ElementCount VF = Range.Start;
9327   Plan->addVF(VF);
9328   RSO << "Initial VPlan for VF={" << VF;
9329   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9330     Plan->addVF(VF);
9331     RSO << "," << VF;
9332   }
9333   RSO << "},UF>=1";
9334   RSO.flush();
9335   Plan->setName(PlanName);
9336 
9337   // Fold Exit block into its predecessor if possible.
9338   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9339   // VPBasicBlock as exit.
9340   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9341 
9342   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9343   return Plan;
9344 }
9345 
9346 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9347   // Outer loop handling: They may require CFG and instruction level
9348   // transformations before even evaluating whether vectorization is profitable.
9349   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9350   // the vectorization pipeline.
9351   assert(!OrigLoop->isInnermost());
9352   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9353 
9354   // Create new empty VPlan
9355   auto Plan = std::make_unique<VPlan>();
9356 
9357   // Build hierarchical CFG
9358   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9359   HCFGBuilder.buildHierarchicalCFG();
9360 
9361   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9362        VF *= 2)
9363     Plan->addVF(VF);
9364 
9365   if (EnableVPlanPredication) {
9366     VPlanPredicator VPP(*Plan);
9367     VPP.predicate();
9368 
9369     // Avoid running transformation to recipes until masked code generation in
9370     // VPlan-native path is in place.
9371     return Plan;
9372   }
9373 
9374   SmallPtrSet<Instruction *, 1> DeadInstructions;
9375   VPlanTransforms::VPInstructionsToVPRecipes(
9376       OrigLoop, Plan,
9377       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9378       DeadInstructions, *PSE.getSE());
9379 
9380   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9381                         true, true);
9382   return Plan;
9383 }
9384 
9385 // Adjust the recipes for reductions. For in-loop reductions the chain of
9386 // instructions leading from the loop exit instr to the phi need to be converted
9387 // to reductions, with one operand being vector and the other being the scalar
9388 // reduction chain. For other reductions, a select is introduced between the phi
9389 // and live-out recipes when folding the tail.
9390 void LoopVectorizationPlanner::adjustRecipesForReductions(
9391     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9392     ElementCount MinVF) {
9393   for (auto &Reduction : CM.getInLoopReductionChains()) {
9394     PHINode *Phi = Reduction.first;
9395     const RecurrenceDescriptor &RdxDesc =
9396         Legal->getReductionVars().find(Phi)->second;
9397     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9398 
9399     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9400       continue;
9401 
9402     // ReductionOperations are orders top-down from the phi's use to the
9403     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9404     // which of the two operands will remain scalar and which will be reduced.
9405     // For minmax the chain will be the select instructions.
9406     Instruction *Chain = Phi;
9407     for (Instruction *R : ReductionOperations) {
9408       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9409       RecurKind Kind = RdxDesc.getRecurrenceKind();
9410 
9411       VPValue *ChainOp = Plan->getVPValue(Chain);
9412       unsigned FirstOpId;
9413       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9414              "Only min/max recurrences allowed for inloop reductions");
9415       // Recognize a call to the llvm.fmuladd intrinsic.
9416       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9417       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9418              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9419       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9420         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9421                "Expected to replace a VPWidenSelectSC");
9422         FirstOpId = 1;
9423       } else {
9424         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9425                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9426                "Expected to replace a VPWidenSC");
9427         FirstOpId = 0;
9428       }
9429       unsigned VecOpId =
9430           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9431       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9432 
9433       auto *CondOp = CM.foldTailByMasking()
9434                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9435                          : nullptr;
9436 
9437       if (IsFMulAdd) {
9438         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9439         // need to create an fmul recipe to use as the vector operand for the
9440         // fadd reduction.
9441         VPInstruction *FMulRecipe = new VPInstruction(
9442             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9443         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9444         WidenRecipe->getParent()->insert(FMulRecipe,
9445                                          WidenRecipe->getIterator());
9446         VecOp = FMulRecipe;
9447       }
9448       VPReductionRecipe *RedRecipe =
9449           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9450       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9451       Plan->removeVPValueFor(R);
9452       Plan->addVPValue(R, RedRecipe);
9453       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9454       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9455       WidenRecipe->eraseFromParent();
9456 
9457       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9458         VPRecipeBase *CompareRecipe =
9459             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9460         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9461                "Expected to replace a VPWidenSC");
9462         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9463                "Expected no remaining users");
9464         CompareRecipe->eraseFromParent();
9465       }
9466       Chain = R;
9467     }
9468   }
9469 
9470   // If tail is folded by masking, introduce selects between the phi
9471   // and the live-out instruction of each reduction, at the beginning of the
9472   // dedicated latch block.
9473   if (CM.foldTailByMasking()) {
9474     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9475     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9476       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9477       if (!PhiR || PhiR->isInLoop())
9478         continue;
9479       VPValue *Cond =
9480           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9481       VPValue *Red = PhiR->getBackedgeValue();
9482       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9483              "reduction recipe must be defined before latch");
9484       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9485     }
9486   }
9487 }
9488 
9489 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9490 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9491                                VPSlotTracker &SlotTracker) const {
9492   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9493   IG->getInsertPos()->printAsOperand(O, false);
9494   O << ", ";
9495   getAddr()->printAsOperand(O, SlotTracker);
9496   VPValue *Mask = getMask();
9497   if (Mask) {
9498     O << ", ";
9499     Mask->printAsOperand(O, SlotTracker);
9500   }
9501 
9502   unsigned OpIdx = 0;
9503   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9504     if (!IG->getMember(i))
9505       continue;
9506     if (getNumStoreOperands() > 0) {
9507       O << "\n" << Indent << "  store ";
9508       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9509       O << " to index " << i;
9510     } else {
9511       O << "\n" << Indent << "  ";
9512       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9513       O << " = load from index " << i;
9514     }
9515     ++OpIdx;
9516   }
9517 }
9518 #endif
9519 
9520 void VPWidenCallRecipe::execute(VPTransformState &State) {
9521   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9522                                   *this, State);
9523 }
9524 
9525 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9526   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9527   State.ILV->setDebugLocFromInst(&I);
9528 
9529   // The condition can be loop invariant  but still defined inside the
9530   // loop. This means that we can't just use the original 'cond' value.
9531   // We have to take the 'vectorized' value and pick the first lane.
9532   // Instcombine will make this a no-op.
9533   auto *InvarCond =
9534       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9535 
9536   for (unsigned Part = 0; Part < State.UF; ++Part) {
9537     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9538     Value *Op0 = State.get(getOperand(1), Part);
9539     Value *Op1 = State.get(getOperand(2), Part);
9540     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9541     State.set(this, Sel, Part);
9542     State.ILV->addMetadata(Sel, &I);
9543   }
9544 }
9545 
9546 void VPWidenRecipe::execute(VPTransformState &State) {
9547   auto &I = *cast<Instruction>(getUnderlyingValue());
9548   auto &Builder = State.Builder;
9549   switch (I.getOpcode()) {
9550   case Instruction::Call:
9551   case Instruction::Br:
9552   case Instruction::PHI:
9553   case Instruction::GetElementPtr:
9554   case Instruction::Select:
9555     llvm_unreachable("This instruction is handled by a different recipe.");
9556   case Instruction::UDiv:
9557   case Instruction::SDiv:
9558   case Instruction::SRem:
9559   case Instruction::URem:
9560   case Instruction::Add:
9561   case Instruction::FAdd:
9562   case Instruction::Sub:
9563   case Instruction::FSub:
9564   case Instruction::FNeg:
9565   case Instruction::Mul:
9566   case Instruction::FMul:
9567   case Instruction::FDiv:
9568   case Instruction::FRem:
9569   case Instruction::Shl:
9570   case Instruction::LShr:
9571   case Instruction::AShr:
9572   case Instruction::And:
9573   case Instruction::Or:
9574   case Instruction::Xor: {
9575     // Just widen unops and binops.
9576     State.ILV->setDebugLocFromInst(&I);
9577 
9578     for (unsigned Part = 0; Part < State.UF; ++Part) {
9579       SmallVector<Value *, 2> Ops;
9580       for (VPValue *VPOp : operands())
9581         Ops.push_back(State.get(VPOp, Part));
9582 
9583       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9584 
9585       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9586         VecOp->copyIRFlags(&I);
9587 
9588         // If the instruction is vectorized and was in a basic block that needed
9589         // predication, we can't propagate poison-generating flags (nuw/nsw,
9590         // exact, etc.). The control flow has been linearized and the
9591         // instruction is no longer guarded by the predicate, which could make
9592         // the flag properties to no longer hold.
9593         if (State.MayGeneratePoisonRecipes.contains(this))
9594           VecOp->dropPoisonGeneratingFlags();
9595       }
9596 
9597       // Use this vector value for all users of the original instruction.
9598       State.set(this, V, Part);
9599       State.ILV->addMetadata(V, &I);
9600     }
9601 
9602     break;
9603   }
9604   case Instruction::ICmp:
9605   case Instruction::FCmp: {
9606     // Widen compares. Generate vector compares.
9607     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9608     auto *Cmp = cast<CmpInst>(&I);
9609     State.ILV->setDebugLocFromInst(Cmp);
9610     for (unsigned Part = 0; Part < State.UF; ++Part) {
9611       Value *A = State.get(getOperand(0), Part);
9612       Value *B = State.get(getOperand(1), Part);
9613       Value *C = nullptr;
9614       if (FCmp) {
9615         // Propagate fast math flags.
9616         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9617         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9618         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9619       } else {
9620         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9621       }
9622       State.set(this, C, Part);
9623       State.ILV->addMetadata(C, &I);
9624     }
9625 
9626     break;
9627   }
9628 
9629   case Instruction::ZExt:
9630   case Instruction::SExt:
9631   case Instruction::FPToUI:
9632   case Instruction::FPToSI:
9633   case Instruction::FPExt:
9634   case Instruction::PtrToInt:
9635   case Instruction::IntToPtr:
9636   case Instruction::SIToFP:
9637   case Instruction::UIToFP:
9638   case Instruction::Trunc:
9639   case Instruction::FPTrunc:
9640   case Instruction::BitCast: {
9641     auto *CI = cast<CastInst>(&I);
9642     State.ILV->setDebugLocFromInst(CI);
9643 
9644     /// Vectorize casts.
9645     Type *DestTy = (State.VF.isScalar())
9646                        ? CI->getType()
9647                        : VectorType::get(CI->getType(), State.VF);
9648 
9649     for (unsigned Part = 0; Part < State.UF; ++Part) {
9650       Value *A = State.get(getOperand(0), Part);
9651       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9652       State.set(this, Cast, Part);
9653       State.ILV->addMetadata(Cast, &I);
9654     }
9655     break;
9656   }
9657   default:
9658     // This instruction is not vectorized by simple widening.
9659     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9660     llvm_unreachable("Unhandled instruction!");
9661   } // end of switch.
9662 }
9663 
9664 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9665   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9666   // Construct a vector GEP by widening the operands of the scalar GEP as
9667   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9668   // results in a vector of pointers when at least one operand of the GEP
9669   // is vector-typed. Thus, to keep the representation compact, we only use
9670   // vector-typed operands for loop-varying values.
9671 
9672   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9673     // If we are vectorizing, but the GEP has only loop-invariant operands,
9674     // the GEP we build (by only using vector-typed operands for
9675     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9676     // produce a vector of pointers, we need to either arbitrarily pick an
9677     // operand to broadcast, or broadcast a clone of the original GEP.
9678     // Here, we broadcast a clone of the original.
9679     //
9680     // TODO: If at some point we decide to scalarize instructions having
9681     //       loop-invariant operands, this special case will no longer be
9682     //       required. We would add the scalarization decision to
9683     //       collectLoopScalars() and teach getVectorValue() to broadcast
9684     //       the lane-zero scalar value.
9685     auto *Clone = State.Builder.Insert(GEP->clone());
9686     for (unsigned Part = 0; Part < State.UF; ++Part) {
9687       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9688       State.set(this, EntryPart, Part);
9689       State.ILV->addMetadata(EntryPart, GEP);
9690     }
9691   } else {
9692     // If the GEP has at least one loop-varying operand, we are sure to
9693     // produce a vector of pointers. But if we are only unrolling, we want
9694     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9695     // produce with the code below will be scalar (if VF == 1) or vector
9696     // (otherwise). Note that for the unroll-only case, we still maintain
9697     // values in the vector mapping with initVector, as we do for other
9698     // instructions.
9699     for (unsigned Part = 0; Part < State.UF; ++Part) {
9700       // The pointer operand of the new GEP. If it's loop-invariant, we
9701       // won't broadcast it.
9702       auto *Ptr = IsPtrLoopInvariant
9703                       ? State.get(getOperand(0), VPIteration(0, 0))
9704                       : State.get(getOperand(0), Part);
9705 
9706       // Collect all the indices for the new GEP. If any index is
9707       // loop-invariant, we won't broadcast it.
9708       SmallVector<Value *, 4> Indices;
9709       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9710         VPValue *Operand = getOperand(I);
9711         if (IsIndexLoopInvariant[I - 1])
9712           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9713         else
9714           Indices.push_back(State.get(Operand, Part));
9715       }
9716 
9717       // If the GEP instruction is vectorized and was in a basic block that
9718       // needed predication, we can't propagate the poison-generating 'inbounds'
9719       // flag. The control flow has been linearized and the GEP is no longer
9720       // guarded by the predicate, which could make the 'inbounds' properties to
9721       // no longer hold.
9722       bool IsInBounds =
9723           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9724 
9725       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9726       // but it should be a vector, otherwise.
9727       auto *NewGEP = IsInBounds
9728                          ? State.Builder.CreateInBoundsGEP(
9729                                GEP->getSourceElementType(), Ptr, Indices)
9730                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9731                                                    Ptr, Indices);
9732       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9733              "NewGEP is not a pointer vector");
9734       State.set(this, NewGEP, Part);
9735       State.ILV->addMetadata(NewGEP, GEP);
9736     }
9737   }
9738 }
9739 
9740 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9741   assert(!State.Instance && "Int or FP induction being replicated.");
9742   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9743   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9744 }
9745 
9746 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9747   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9748                                  State);
9749 }
9750 
9751 void VPBlendRecipe::execute(VPTransformState &State) {
9752   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9753   // We know that all PHIs in non-header blocks are converted into
9754   // selects, so we don't have to worry about the insertion order and we
9755   // can just use the builder.
9756   // At this point we generate the predication tree. There may be
9757   // duplications since this is a simple recursive scan, but future
9758   // optimizations will clean it up.
9759 
9760   unsigned NumIncoming = getNumIncomingValues();
9761 
9762   // Generate a sequence of selects of the form:
9763   // SELECT(Mask3, In3,
9764   //        SELECT(Mask2, In2,
9765   //               SELECT(Mask1, In1,
9766   //                      In0)))
9767   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9768   // are essentially undef are taken from In0.
9769   InnerLoopVectorizer::VectorParts Entry(State.UF);
9770   for (unsigned In = 0; In < NumIncoming; ++In) {
9771     for (unsigned Part = 0; Part < State.UF; ++Part) {
9772       // We might have single edge PHIs (blocks) - use an identity
9773       // 'select' for the first PHI operand.
9774       Value *In0 = State.get(getIncomingValue(In), Part);
9775       if (In == 0)
9776         Entry[Part] = In0; // Initialize with the first incoming value.
9777       else {
9778         // Select between the current value and the previous incoming edge
9779         // based on the incoming mask.
9780         Value *Cond = State.get(getMask(In), Part);
9781         Entry[Part] =
9782             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9783       }
9784     }
9785   }
9786   for (unsigned Part = 0; Part < State.UF; ++Part)
9787     State.set(this, Entry[Part], Part);
9788 }
9789 
9790 void VPInterleaveRecipe::execute(VPTransformState &State) {
9791   assert(!State.Instance && "Interleave group being replicated.");
9792   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9793                                       getStoredValues(), getMask());
9794 }
9795 
9796 void VPReductionRecipe::execute(VPTransformState &State) {
9797   assert(!State.Instance && "Reduction being replicated.");
9798   Value *PrevInChain = State.get(getChainOp(), 0);
9799   RecurKind Kind = RdxDesc->getRecurrenceKind();
9800   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9801   // Propagate the fast-math flags carried by the underlying instruction.
9802   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9803   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9804   for (unsigned Part = 0; Part < State.UF; ++Part) {
9805     Value *NewVecOp = State.get(getVecOp(), Part);
9806     if (VPValue *Cond = getCondOp()) {
9807       Value *NewCond = State.get(Cond, Part);
9808       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9809       Value *Iden = RdxDesc->getRecurrenceIdentity(
9810           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9811       Value *IdenVec =
9812           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9813       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9814       NewVecOp = Select;
9815     }
9816     Value *NewRed;
9817     Value *NextInChain;
9818     if (IsOrdered) {
9819       if (State.VF.isVector())
9820         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9821                                         PrevInChain);
9822       else
9823         NewRed = State.Builder.CreateBinOp(
9824             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9825             NewVecOp);
9826       PrevInChain = NewRed;
9827     } else {
9828       PrevInChain = State.get(getChainOp(), Part);
9829       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9830     }
9831     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9832       NextInChain =
9833           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9834                          NewRed, PrevInChain);
9835     } else if (IsOrdered)
9836       NextInChain = NewRed;
9837     else
9838       NextInChain = State.Builder.CreateBinOp(
9839           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9840           PrevInChain);
9841     State.set(this, NextInChain, Part);
9842   }
9843 }
9844 
9845 void VPReplicateRecipe::execute(VPTransformState &State) {
9846   if (State.Instance) { // Generate a single instance.
9847     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9848     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9849                                     IsPredicated, State);
9850     // Insert scalar instance packing it into a vector.
9851     if (AlsoPack && State.VF.isVector()) {
9852       // If we're constructing lane 0, initialize to start from poison.
9853       if (State.Instance->Lane.isFirstLane()) {
9854         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9855         Value *Poison = PoisonValue::get(
9856             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9857         State.set(this, Poison, State.Instance->Part);
9858       }
9859       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9860     }
9861     return;
9862   }
9863 
9864   // Generate scalar instances for all VF lanes of all UF parts, unless the
9865   // instruction is uniform inwhich case generate only the first lane for each
9866   // of the UF parts.
9867   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9868   assert((!State.VF.isScalable() || IsUniform) &&
9869          "Can't scalarize a scalable vector");
9870   for (unsigned Part = 0; Part < State.UF; ++Part)
9871     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9872       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9873                                       VPIteration(Part, Lane), IsPredicated,
9874                                       State);
9875 }
9876 
9877 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9878   assert(State.Instance && "Branch on Mask works only on single instance.");
9879 
9880   unsigned Part = State.Instance->Part;
9881   unsigned Lane = State.Instance->Lane.getKnownLane();
9882 
9883   Value *ConditionBit = nullptr;
9884   VPValue *BlockInMask = getMask();
9885   if (BlockInMask) {
9886     ConditionBit = State.get(BlockInMask, Part);
9887     if (ConditionBit->getType()->isVectorTy())
9888       ConditionBit = State.Builder.CreateExtractElement(
9889           ConditionBit, State.Builder.getInt32(Lane));
9890   } else // Block in mask is all-one.
9891     ConditionBit = State.Builder.getTrue();
9892 
9893   // Replace the temporary unreachable terminator with a new conditional branch,
9894   // whose two destinations will be set later when they are created.
9895   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9896   assert(isa<UnreachableInst>(CurrentTerminator) &&
9897          "Expected to replace unreachable terminator with conditional branch.");
9898   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9899   CondBr->setSuccessor(0, nullptr);
9900   ReplaceInstWithInst(CurrentTerminator, CondBr);
9901 }
9902 
9903 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9904   assert(State.Instance && "Predicated instruction PHI works per instance.");
9905   Instruction *ScalarPredInst =
9906       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9907   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9908   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9909   assert(PredicatingBB && "Predicated block has no single predecessor.");
9910   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9911          "operand must be VPReplicateRecipe");
9912 
9913   // By current pack/unpack logic we need to generate only a single phi node: if
9914   // a vector value for the predicated instruction exists at this point it means
9915   // the instruction has vector users only, and a phi for the vector value is
9916   // needed. In this case the recipe of the predicated instruction is marked to
9917   // also do that packing, thereby "hoisting" the insert-element sequence.
9918   // Otherwise, a phi node for the scalar value is needed.
9919   unsigned Part = State.Instance->Part;
9920   if (State.hasVectorValue(getOperand(0), Part)) {
9921     Value *VectorValue = State.get(getOperand(0), Part);
9922     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9923     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9924     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9925     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9926     if (State.hasVectorValue(this, Part))
9927       State.reset(this, VPhi, Part);
9928     else
9929       State.set(this, VPhi, Part);
9930     // NOTE: Currently we need to update the value of the operand, so the next
9931     // predicated iteration inserts its generated value in the correct vector.
9932     State.reset(getOperand(0), VPhi, Part);
9933   } else {
9934     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9935     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9936     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9937                      PredicatingBB);
9938     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9939     if (State.hasScalarValue(this, *State.Instance))
9940       State.reset(this, Phi, *State.Instance);
9941     else
9942       State.set(this, Phi, *State.Instance);
9943     // NOTE: Currently we need to update the value of the operand, so the next
9944     // predicated iteration inserts its generated value in the correct vector.
9945     State.reset(getOperand(0), Phi, *State.Instance);
9946   }
9947 }
9948 
9949 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9950   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9951 
9952   // Attempt to issue a wide load.
9953   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9954   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9955 
9956   assert((LI || SI) && "Invalid Load/Store instruction");
9957   assert((!SI || StoredValue) && "No stored value provided for widened store");
9958   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9959 
9960   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9961 
9962   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9963   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9964   bool CreateGatherScatter = !Consecutive;
9965 
9966   auto &Builder = State.Builder;
9967   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9968   bool isMaskRequired = getMask();
9969   if (isMaskRequired)
9970     for (unsigned Part = 0; Part < State.UF; ++Part)
9971       BlockInMaskParts[Part] = State.get(getMask(), Part);
9972 
9973   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9974     // Calculate the pointer for the specific unroll-part.
9975     GetElementPtrInst *PartPtr = nullptr;
9976 
9977     bool InBounds = false;
9978     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9979       InBounds = gep->isInBounds();
9980     if (Reverse) {
9981       // If the address is consecutive but reversed, then the
9982       // wide store needs to start at the last vector element.
9983       // RunTimeVF =  VScale * VF.getKnownMinValue()
9984       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9985       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9986       // NumElt = -Part * RunTimeVF
9987       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9988       // LastLane = 1 - RunTimeVF
9989       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9990       PartPtr =
9991           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9992       PartPtr->setIsInBounds(InBounds);
9993       PartPtr = cast<GetElementPtrInst>(
9994           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9995       PartPtr->setIsInBounds(InBounds);
9996       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9997         BlockInMaskParts[Part] =
9998             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9999     } else {
10000       Value *Increment =
10001           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
10002       PartPtr = cast<GetElementPtrInst>(
10003           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
10004       PartPtr->setIsInBounds(InBounds);
10005     }
10006 
10007     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
10008     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
10009   };
10010 
10011   // Handle Stores:
10012   if (SI) {
10013     State.ILV->setDebugLocFromInst(SI);
10014 
10015     for (unsigned Part = 0; Part < State.UF; ++Part) {
10016       Instruction *NewSI = nullptr;
10017       Value *StoredVal = State.get(StoredValue, Part);
10018       if (CreateGatherScatter) {
10019         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10020         Value *VectorGep = State.get(getAddr(), Part);
10021         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10022                                             MaskPart);
10023       } else {
10024         if (Reverse) {
10025           // If we store to reverse consecutive memory locations, then we need
10026           // to reverse the order of elements in the stored value.
10027           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10028           // We don't want to update the value in the map as it might be used in
10029           // another expression. So don't call resetVectorValue(StoredVal).
10030         }
10031         auto *VecPtr =
10032             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10033         if (isMaskRequired)
10034           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10035                                             BlockInMaskParts[Part]);
10036         else
10037           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10038       }
10039       State.ILV->addMetadata(NewSI, SI);
10040     }
10041     return;
10042   }
10043 
10044   // Handle loads.
10045   assert(LI && "Must have a load instruction");
10046   State.ILV->setDebugLocFromInst(LI);
10047   for (unsigned Part = 0; Part < State.UF; ++Part) {
10048     Value *NewLI;
10049     if (CreateGatherScatter) {
10050       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10051       Value *VectorGep = State.get(getAddr(), Part);
10052       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10053                                          nullptr, "wide.masked.gather");
10054       State.ILV->addMetadata(NewLI, LI);
10055     } else {
10056       auto *VecPtr =
10057           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10058       if (isMaskRequired)
10059         NewLI = Builder.CreateMaskedLoad(
10060             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10061             PoisonValue::get(DataTy), "wide.masked.load");
10062       else
10063         NewLI =
10064             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10065 
10066       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10067       State.ILV->addMetadata(NewLI, LI);
10068       if (Reverse)
10069         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10070     }
10071 
10072     State.set(this, NewLI, Part);
10073   }
10074 }
10075 
10076 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10077 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10078 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10079 // for predication.
10080 static ScalarEpilogueLowering getScalarEpilogueLowering(
10081     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10082     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10083     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10084     LoopVectorizationLegality &LVL) {
10085   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10086   // don't look at hints or options, and don't request a scalar epilogue.
10087   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10088   // LoopAccessInfo (due to code dependency and not being able to reliably get
10089   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10090   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10091   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10092   // back to the old way and vectorize with versioning when forced. See D81345.)
10093   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10094                                                       PGSOQueryType::IRPass) &&
10095                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10096     return CM_ScalarEpilogueNotAllowedOptSize;
10097 
10098   // 2) If set, obey the directives
10099   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10100     switch (PreferPredicateOverEpilogue) {
10101     case PreferPredicateTy::ScalarEpilogue:
10102       return CM_ScalarEpilogueAllowed;
10103     case PreferPredicateTy::PredicateElseScalarEpilogue:
10104       return CM_ScalarEpilogueNotNeededUsePredicate;
10105     case PreferPredicateTy::PredicateOrDontVectorize:
10106       return CM_ScalarEpilogueNotAllowedUsePredicate;
10107     };
10108   }
10109 
10110   // 3) If set, obey the hints
10111   switch (Hints.getPredicate()) {
10112   case LoopVectorizeHints::FK_Enabled:
10113     return CM_ScalarEpilogueNotNeededUsePredicate;
10114   case LoopVectorizeHints::FK_Disabled:
10115     return CM_ScalarEpilogueAllowed;
10116   };
10117 
10118   // 4) if the TTI hook indicates this is profitable, request predication.
10119   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10120                                        LVL.getLAI()))
10121     return CM_ScalarEpilogueNotNeededUsePredicate;
10122 
10123   return CM_ScalarEpilogueAllowed;
10124 }
10125 
10126 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10127   // If Values have been set for this Def return the one relevant for \p Part.
10128   if (hasVectorValue(Def, Part))
10129     return Data.PerPartOutput[Def][Part];
10130 
10131   if (!hasScalarValue(Def, {Part, 0})) {
10132     Value *IRV = Def->getLiveInIRValue();
10133     Value *B = ILV->getBroadcastInstrs(IRV);
10134     set(Def, B, Part);
10135     return B;
10136   }
10137 
10138   Value *ScalarValue = get(Def, {Part, 0});
10139   // If we aren't vectorizing, we can just copy the scalar map values over
10140   // to the vector map.
10141   if (VF.isScalar()) {
10142     set(Def, ScalarValue, Part);
10143     return ScalarValue;
10144   }
10145 
10146   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10147   bool IsUniform = RepR && RepR->isUniform();
10148 
10149   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10150   // Check if there is a scalar value for the selected lane.
10151   if (!hasScalarValue(Def, {Part, LastLane})) {
10152     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10153     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10154            "unexpected recipe found to be invariant");
10155     IsUniform = true;
10156     LastLane = 0;
10157   }
10158 
10159   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10160   // Set the insert point after the last scalarized instruction or after the
10161   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10162   // will directly follow the scalar definitions.
10163   auto OldIP = Builder.saveIP();
10164   auto NewIP =
10165       isa<PHINode>(LastInst)
10166           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10167           : std::next(BasicBlock::iterator(LastInst));
10168   Builder.SetInsertPoint(&*NewIP);
10169 
10170   // However, if we are vectorizing, we need to construct the vector values.
10171   // If the value is known to be uniform after vectorization, we can just
10172   // broadcast the scalar value corresponding to lane zero for each unroll
10173   // iteration. Otherwise, we construct the vector values using
10174   // insertelement instructions. Since the resulting vectors are stored in
10175   // State, we will only generate the insertelements once.
10176   Value *VectorValue = nullptr;
10177   if (IsUniform) {
10178     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10179     set(Def, VectorValue, Part);
10180   } else {
10181     // Initialize packing with insertelements to start from undef.
10182     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10183     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10184     set(Def, Undef, Part);
10185     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10186       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10187     VectorValue = get(Def, Part);
10188   }
10189   Builder.restoreIP(OldIP);
10190   return VectorValue;
10191 }
10192 
10193 // Process the loop in the VPlan-native vectorization path. This path builds
10194 // VPlan upfront in the vectorization pipeline, which allows to apply
10195 // VPlan-to-VPlan transformations from the very beginning without modifying the
10196 // input LLVM IR.
10197 static bool processLoopInVPlanNativePath(
10198     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10199     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10200     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10201     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10202     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10203     LoopVectorizationRequirements &Requirements) {
10204 
10205   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10206     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10207     return false;
10208   }
10209   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10210   Function *F = L->getHeader()->getParent();
10211   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10212 
10213   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10214       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10215 
10216   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10217                                 &Hints, IAI);
10218   // Use the planner for outer loop vectorization.
10219   // TODO: CM is not used at this point inside the planner. Turn CM into an
10220   // optional argument if we don't need it in the future.
10221   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10222                                Requirements, ORE);
10223 
10224   // Get user vectorization factor.
10225   ElementCount UserVF = Hints.getWidth();
10226 
10227   CM.collectElementTypesForWidening();
10228 
10229   // Plan how to best vectorize, return the best VF and its cost.
10230   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10231 
10232   // If we are stress testing VPlan builds, do not attempt to generate vector
10233   // code. Masked vector code generation support will follow soon.
10234   // Also, do not attempt to vectorize if no vector code will be produced.
10235   if (VPlanBuildStressTest || EnableVPlanPredication ||
10236       VectorizationFactor::Disabled() == VF)
10237     return false;
10238 
10239   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10240 
10241   {
10242     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10243                              F->getParent()->getDataLayout());
10244     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10245                            &CM, BFI, PSI, Checks);
10246     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10247                       << L->getHeader()->getParent()->getName() << "\"\n");
10248     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10249   }
10250 
10251   // Mark the loop as already vectorized to avoid vectorizing again.
10252   Hints.setAlreadyVectorized();
10253   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10254   return true;
10255 }
10256 
10257 // Emit a remark if there are stores to floats that required a floating point
10258 // extension. If the vectorized loop was generated with floating point there
10259 // will be a performance penalty from the conversion overhead and the change in
10260 // the vector width.
10261 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10262   SmallVector<Instruction *, 4> Worklist;
10263   for (BasicBlock *BB : L->getBlocks()) {
10264     for (Instruction &Inst : *BB) {
10265       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10266         if (S->getValueOperand()->getType()->isFloatTy())
10267           Worklist.push_back(S);
10268       }
10269     }
10270   }
10271 
10272   // Traverse the floating point stores upwards searching, for floating point
10273   // conversions.
10274   SmallPtrSet<const Instruction *, 4> Visited;
10275   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10276   while (!Worklist.empty()) {
10277     auto *I = Worklist.pop_back_val();
10278     if (!L->contains(I))
10279       continue;
10280     if (!Visited.insert(I).second)
10281       continue;
10282 
10283     // Emit a remark if the floating point store required a floating
10284     // point conversion.
10285     // TODO: More work could be done to identify the root cause such as a
10286     // constant or a function return type and point the user to it.
10287     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10288       ORE->emit([&]() {
10289         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10290                                           I->getDebugLoc(), L->getHeader())
10291                << "floating point conversion changes vector width. "
10292                << "Mixed floating point precision requires an up/down "
10293                << "cast that will negatively impact performance.";
10294       });
10295 
10296     for (Use &Op : I->operands())
10297       if (auto *OpI = dyn_cast<Instruction>(Op))
10298         Worklist.push_back(OpI);
10299   }
10300 }
10301 
10302 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10303     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10304                                !EnableLoopInterleaving),
10305       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10306                               !EnableLoopVectorization) {}
10307 
10308 bool LoopVectorizePass::processLoop(Loop *L) {
10309   assert((EnableVPlanNativePath || L->isInnermost()) &&
10310          "VPlan-native path is not enabled. Only process inner loops.");
10311 
10312 #ifndef NDEBUG
10313   const std::string DebugLocStr = getDebugLocString(L);
10314 #endif /* NDEBUG */
10315 
10316   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10317                     << L->getHeader()->getParent()->getName() << "\" from "
10318                     << DebugLocStr << "\n");
10319 
10320   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10321 
10322   LLVM_DEBUG(
10323       dbgs() << "LV: Loop hints:"
10324              << " force="
10325              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10326                      ? "disabled"
10327                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10328                             ? "enabled"
10329                             : "?"))
10330              << " width=" << Hints.getWidth()
10331              << " interleave=" << Hints.getInterleave() << "\n");
10332 
10333   // Function containing loop
10334   Function *F = L->getHeader()->getParent();
10335 
10336   // Looking at the diagnostic output is the only way to determine if a loop
10337   // was vectorized (other than looking at the IR or machine code), so it
10338   // is important to generate an optimization remark for each loop. Most of
10339   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10340   // generated as OptimizationRemark and OptimizationRemarkMissed are
10341   // less verbose reporting vectorized loops and unvectorized loops that may
10342   // benefit from vectorization, respectively.
10343 
10344   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10345     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10346     return false;
10347   }
10348 
10349   PredicatedScalarEvolution PSE(*SE, *L);
10350 
10351   // Check if it is legal to vectorize the loop.
10352   LoopVectorizationRequirements Requirements;
10353   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10354                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10355   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10356     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10357     Hints.emitRemarkWithHints();
10358     return false;
10359   }
10360 
10361   // Check the function attributes and profiles to find out if this function
10362   // should be optimized for size.
10363   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10364       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10365 
10366   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10367   // here. They may require CFG and instruction level transformations before
10368   // even evaluating whether vectorization is profitable. Since we cannot modify
10369   // the incoming IR, we need to build VPlan upfront in the vectorization
10370   // pipeline.
10371   if (!L->isInnermost())
10372     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10373                                         ORE, BFI, PSI, Hints, Requirements);
10374 
10375   assert(L->isInnermost() && "Inner loop expected.");
10376 
10377   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10378   // count by optimizing for size, to minimize overheads.
10379   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10380   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10381     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10382                       << "This loop is worth vectorizing only if no scalar "
10383                       << "iteration overheads are incurred.");
10384     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10385       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10386     else {
10387       LLVM_DEBUG(dbgs() << "\n");
10388       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10389     }
10390   }
10391 
10392   // Check the function attributes to see if implicit floats are allowed.
10393   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10394   // an integer loop and the vector instructions selected are purely integer
10395   // vector instructions?
10396   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10397     reportVectorizationFailure(
10398         "Can't vectorize when the NoImplicitFloat attribute is used",
10399         "loop not vectorized due to NoImplicitFloat attribute",
10400         "NoImplicitFloat", ORE, L);
10401     Hints.emitRemarkWithHints();
10402     return false;
10403   }
10404 
10405   // Check if the target supports potentially unsafe FP vectorization.
10406   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10407   // for the target we're vectorizing for, to make sure none of the
10408   // additional fp-math flags can help.
10409   if (Hints.isPotentiallyUnsafe() &&
10410       TTI->isFPVectorizationPotentiallyUnsafe()) {
10411     reportVectorizationFailure(
10412         "Potentially unsafe FP op prevents vectorization",
10413         "loop not vectorized due to unsafe FP support.",
10414         "UnsafeFP", ORE, L);
10415     Hints.emitRemarkWithHints();
10416     return false;
10417   }
10418 
10419   bool AllowOrderedReductions;
10420   // If the flag is set, use that instead and override the TTI behaviour.
10421   if (ForceOrderedReductions.getNumOccurrences() > 0)
10422     AllowOrderedReductions = ForceOrderedReductions;
10423   else
10424     AllowOrderedReductions = TTI->enableOrderedReductions();
10425   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10426     ORE->emit([&]() {
10427       auto *ExactFPMathInst = Requirements.getExactFPInst();
10428       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10429                                                  ExactFPMathInst->getDebugLoc(),
10430                                                  ExactFPMathInst->getParent())
10431              << "loop not vectorized: cannot prove it is safe to reorder "
10432                 "floating-point operations";
10433     });
10434     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10435                          "reorder floating-point operations\n");
10436     Hints.emitRemarkWithHints();
10437     return false;
10438   }
10439 
10440   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10441   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10442 
10443   // If an override option has been passed in for interleaved accesses, use it.
10444   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10445     UseInterleaved = EnableInterleavedMemAccesses;
10446 
10447   // Analyze interleaved memory accesses.
10448   if (UseInterleaved) {
10449     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10450   }
10451 
10452   // Use the cost model.
10453   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10454                                 F, &Hints, IAI);
10455   CM.collectValuesToIgnore();
10456   CM.collectElementTypesForWidening();
10457 
10458   // Use the planner for vectorization.
10459   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10460                                Requirements, ORE);
10461 
10462   // Get user vectorization factor and interleave count.
10463   ElementCount UserVF = Hints.getWidth();
10464   unsigned UserIC = Hints.getInterleave();
10465 
10466   // Plan how to best vectorize, return the best VF and its cost.
10467   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10468 
10469   VectorizationFactor VF = VectorizationFactor::Disabled();
10470   unsigned IC = 1;
10471 
10472   if (MaybeVF) {
10473     VF = *MaybeVF;
10474     // Select the interleave count.
10475     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10476   }
10477 
10478   // Identify the diagnostic messages that should be produced.
10479   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10480   bool VectorizeLoop = true, InterleaveLoop = true;
10481   if (VF.Width.isScalar()) {
10482     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10483     VecDiagMsg = std::make_pair(
10484         "VectorizationNotBeneficial",
10485         "the cost-model indicates that vectorization is not beneficial");
10486     VectorizeLoop = false;
10487   }
10488 
10489   if (!MaybeVF && UserIC > 1) {
10490     // Tell the user interleaving was avoided up-front, despite being explicitly
10491     // requested.
10492     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10493                          "interleaving should be avoided up front\n");
10494     IntDiagMsg = std::make_pair(
10495         "InterleavingAvoided",
10496         "Ignoring UserIC, because interleaving was avoided up front");
10497     InterleaveLoop = false;
10498   } else if (IC == 1 && UserIC <= 1) {
10499     // Tell the user interleaving is not beneficial.
10500     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10501     IntDiagMsg = std::make_pair(
10502         "InterleavingNotBeneficial",
10503         "the cost-model indicates that interleaving is not beneficial");
10504     InterleaveLoop = false;
10505     if (UserIC == 1) {
10506       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10507       IntDiagMsg.second +=
10508           " and is explicitly disabled or interleave count is set to 1";
10509     }
10510   } else if (IC > 1 && UserIC == 1) {
10511     // Tell the user interleaving is beneficial, but it explicitly disabled.
10512     LLVM_DEBUG(
10513         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10514     IntDiagMsg = std::make_pair(
10515         "InterleavingBeneficialButDisabled",
10516         "the cost-model indicates that interleaving is beneficial "
10517         "but is explicitly disabled or interleave count is set to 1");
10518     InterleaveLoop = false;
10519   }
10520 
10521   // Override IC if user provided an interleave count.
10522   IC = UserIC > 0 ? UserIC : IC;
10523 
10524   // Emit diagnostic messages, if any.
10525   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10526   if (!VectorizeLoop && !InterleaveLoop) {
10527     // Do not vectorize or interleaving the loop.
10528     ORE->emit([&]() {
10529       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10530                                       L->getStartLoc(), L->getHeader())
10531              << VecDiagMsg.second;
10532     });
10533     ORE->emit([&]() {
10534       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10535                                       L->getStartLoc(), L->getHeader())
10536              << IntDiagMsg.second;
10537     });
10538     return false;
10539   } else if (!VectorizeLoop && InterleaveLoop) {
10540     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10541     ORE->emit([&]() {
10542       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10543                                         L->getStartLoc(), L->getHeader())
10544              << VecDiagMsg.second;
10545     });
10546   } else if (VectorizeLoop && !InterleaveLoop) {
10547     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10548                       << ") in " << DebugLocStr << '\n');
10549     ORE->emit([&]() {
10550       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10551                                         L->getStartLoc(), L->getHeader())
10552              << IntDiagMsg.second;
10553     });
10554   } else if (VectorizeLoop && InterleaveLoop) {
10555     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10556                       << ") in " << DebugLocStr << '\n');
10557     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10558   }
10559 
10560   bool DisableRuntimeUnroll = false;
10561   MDNode *OrigLoopID = L->getLoopID();
10562   {
10563     // Optimistically generate runtime checks. Drop them if they turn out to not
10564     // be profitable. Limit the scope of Checks, so the cleanup happens
10565     // immediately after vector codegeneration is done.
10566     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10567                              F->getParent()->getDataLayout());
10568     if (!VF.Width.isScalar() || IC > 1)
10569       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10570 
10571     using namespace ore;
10572     if (!VectorizeLoop) {
10573       assert(IC > 1 && "interleave count should not be 1 or 0");
10574       // If we decided that it is not legal to vectorize the loop, then
10575       // interleave it.
10576       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10577                                  &CM, BFI, PSI, Checks);
10578 
10579       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10580       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10581 
10582       ORE->emit([&]() {
10583         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10584                                   L->getHeader())
10585                << "interleaved loop (interleaved count: "
10586                << NV("InterleaveCount", IC) << ")";
10587       });
10588     } else {
10589       // If we decided that it is *legal* to vectorize the loop, then do it.
10590 
10591       // Consider vectorizing the epilogue too if it's profitable.
10592       VectorizationFactor EpilogueVF =
10593           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10594       if (EpilogueVF.Width.isVector()) {
10595 
10596         // The first pass vectorizes the main loop and creates a scalar epilogue
10597         // to be vectorized by executing the plan (potentially with a different
10598         // factor) again shortly afterwards.
10599         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10600         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10601                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10602 
10603         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10604         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10605                         DT);
10606         ++LoopsVectorized;
10607 
10608         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10609         formLCSSARecursively(*L, *DT, LI, SE);
10610 
10611         // Second pass vectorizes the epilogue and adjusts the control flow
10612         // edges from the first pass.
10613         EPI.MainLoopVF = EPI.EpilogueVF;
10614         EPI.MainLoopUF = EPI.EpilogueUF;
10615         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10616                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10617                                                  Checks);
10618 
10619         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10620 
10621         // Ensure that the start values for any VPReductionPHIRecipes are
10622         // updated before vectorising the epilogue loop.
10623         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10624         for (VPRecipeBase &R : Header->phis()) {
10625           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10626             if (auto *Resume = MainILV.getReductionResumeValue(
10627                     ReductionPhi->getRecurrenceDescriptor())) {
10628               VPValue *StartVal = new VPValue(Resume);
10629               BestEpiPlan.addExternalDef(StartVal);
10630               ReductionPhi->setOperand(0, StartVal);
10631             }
10632           }
10633         }
10634 
10635         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10636                         DT);
10637         ++LoopsEpilogueVectorized;
10638 
10639         if (!MainILV.areSafetyChecksAdded())
10640           DisableRuntimeUnroll = true;
10641       } else {
10642         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10643                                &LVL, &CM, BFI, PSI, Checks);
10644 
10645         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10646         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10647         ++LoopsVectorized;
10648 
10649         // Add metadata to disable runtime unrolling a scalar loop when there
10650         // are no runtime checks about strides and memory. A scalar loop that is
10651         // rarely used is not worth unrolling.
10652         if (!LB.areSafetyChecksAdded())
10653           DisableRuntimeUnroll = true;
10654       }
10655       // Report the vectorization decision.
10656       ORE->emit([&]() {
10657         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10658                                   L->getHeader())
10659                << "vectorized loop (vectorization width: "
10660                << NV("VectorizationFactor", VF.Width)
10661                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10662       });
10663     }
10664 
10665     if (ORE->allowExtraAnalysis(LV_NAME))
10666       checkMixedPrecision(L, ORE);
10667   }
10668 
10669   Optional<MDNode *> RemainderLoopID =
10670       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10671                                       LLVMLoopVectorizeFollowupEpilogue});
10672   if (RemainderLoopID.hasValue()) {
10673     L->setLoopID(RemainderLoopID.getValue());
10674   } else {
10675     if (DisableRuntimeUnroll)
10676       AddRuntimeUnrollDisableMetaData(L);
10677 
10678     // Mark the loop as already vectorized to avoid vectorizing again.
10679     Hints.setAlreadyVectorized();
10680   }
10681 
10682   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10683   return true;
10684 }
10685 
10686 LoopVectorizeResult LoopVectorizePass::runImpl(
10687     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10688     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10689     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10690     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10691     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10692   SE = &SE_;
10693   LI = &LI_;
10694   TTI = &TTI_;
10695   DT = &DT_;
10696   BFI = &BFI_;
10697   TLI = TLI_;
10698   AA = &AA_;
10699   AC = &AC_;
10700   GetLAA = &GetLAA_;
10701   DB = &DB_;
10702   ORE = &ORE_;
10703   PSI = PSI_;
10704 
10705   // Don't attempt if
10706   // 1. the target claims to have no vector registers, and
10707   // 2. interleaving won't help ILP.
10708   //
10709   // The second condition is necessary because, even if the target has no
10710   // vector registers, loop vectorization may still enable scalar
10711   // interleaving.
10712   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10713       TTI->getMaxInterleaveFactor(1) < 2)
10714     return LoopVectorizeResult(false, false);
10715 
10716   bool Changed = false, CFGChanged = false;
10717 
10718   // The vectorizer requires loops to be in simplified form.
10719   // Since simplification may add new inner loops, it has to run before the
10720   // legality and profitability checks. This means running the loop vectorizer
10721   // will simplify all loops, regardless of whether anything end up being
10722   // vectorized.
10723   for (auto &L : *LI)
10724     Changed |= CFGChanged |=
10725         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10726 
10727   // Build up a worklist of inner-loops to vectorize. This is necessary as
10728   // the act of vectorizing or partially unrolling a loop creates new loops
10729   // and can invalidate iterators across the loops.
10730   SmallVector<Loop *, 8> Worklist;
10731 
10732   for (Loop *L : *LI)
10733     collectSupportedLoops(*L, LI, ORE, Worklist);
10734 
10735   LoopsAnalyzed += Worklist.size();
10736 
10737   // Now walk the identified inner loops.
10738   while (!Worklist.empty()) {
10739     Loop *L = Worklist.pop_back_val();
10740 
10741     // For the inner loops we actually process, form LCSSA to simplify the
10742     // transform.
10743     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10744 
10745     Changed |= CFGChanged |= processLoop(L);
10746   }
10747 
10748   // Process each loop nest in the function.
10749   return LoopVectorizeResult(Changed, CFGChanged);
10750 }
10751 
10752 PreservedAnalyses LoopVectorizePass::run(Function &F,
10753                                          FunctionAnalysisManager &AM) {
10754     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10755     auto &LI = AM.getResult<LoopAnalysis>(F);
10756     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10757     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10758     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10759     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10760     auto &AA = AM.getResult<AAManager>(F);
10761     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10762     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10763     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10764 
10765     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10766     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10767         [&](Loop &L) -> const LoopAccessInfo & {
10768       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10769                                         TLI, TTI, nullptr, nullptr, nullptr};
10770       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10771     };
10772     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10773     ProfileSummaryInfo *PSI =
10774         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10775     LoopVectorizeResult Result =
10776         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10777     if (!Result.MadeAnyChange)
10778       return PreservedAnalyses::all();
10779     PreservedAnalyses PA;
10780 
10781     // We currently do not preserve loopinfo/dominator analyses with outer loop
10782     // vectorization. Until this is addressed, mark these analyses as preserved
10783     // only for non-VPlan-native path.
10784     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10785     if (!EnableVPlanNativePath) {
10786       PA.preserve<LoopAnalysis>();
10787       PA.preserve<DominatorTreeAnalysis>();
10788     }
10789 
10790     if (Result.MadeCFGChange) {
10791       // Making CFG changes likely means a loop got vectorized. Indicate that
10792       // extra simplification passes should be run.
10793       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10794       // be run if runtime checks have been added.
10795       AM.getResult<ShouldRunExtraVectorPasses>(F);
10796       PA.preserve<ShouldRunExtraVectorPasses>();
10797     } else {
10798       PA.preserveSet<CFGAnalyses>();
10799     }
10800     return PA;
10801 }
10802 
10803 void LoopVectorizePass::printPipeline(
10804     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10805   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10806       OS, MapClassName2PassName);
10807 
10808   OS << "<";
10809   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10810   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10811   OS << ">";
10812 }
10813