1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/Support/InstructionCost.h" 30 31 namespace llvm { 32 33 class LoopInfo; 34 class DominatorTree; 35 class LoopVectorizationLegality; 36 class LoopVectorizationCostModel; 37 class PredicatedScalarEvolution; 38 class LoopVectorizeHints; 39 class OptimizationRemarkEmitter; 40 class TargetTransformInfo; 41 class TargetLibraryInfo; 42 class VPRecipeBuilder; 43 44 /// VPlan-based builder utility analogous to IRBuilder. 45 class VPBuilder { 46 VPBasicBlock *BB = nullptr; 47 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 48 49 /// Insert \p VPI in BB at InsertPt if BB is set. 50 VPInstruction *tryInsertInstruction(VPInstruction *VPI) { 51 if (BB) 52 BB->insert(VPI, InsertPt); 53 return VPI; 54 } 55 56 VPInstruction *createInstruction(unsigned Opcode, 57 ArrayRef<VPValue *> Operands, DebugLoc DL, 58 const Twine &Name = "") { 59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name)); 60 } 61 62 VPInstruction *createInstruction(unsigned Opcode, 63 std::initializer_list<VPValue *> Operands, 64 DebugLoc DL, const Twine &Name = "") { 65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name); 66 } 67 68 public: 69 VPBuilder() = default; 70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); } 71 72 /// Clear the insertion point: created instructions will not be inserted into 73 /// a block. 74 void clearInsertionPoint() { 75 BB = nullptr; 76 InsertPt = VPBasicBlock::iterator(); 77 } 78 79 VPBasicBlock *getInsertBlock() const { return BB; } 80 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 81 82 /// InsertPoint - A saved insertion point. 83 class VPInsertPoint { 84 VPBasicBlock *Block = nullptr; 85 VPBasicBlock::iterator Point; 86 87 public: 88 /// Creates a new insertion point which doesn't point to anything. 89 VPInsertPoint() = default; 90 91 /// Creates a new insertion point at the given location. 92 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 93 : Block(InsertBlock), Point(InsertPoint) {} 94 95 /// Returns true if this insert point is set. 96 bool isSet() const { return Block != nullptr; } 97 98 VPBasicBlock *getBlock() const { return Block; } 99 VPBasicBlock::iterator getPoint() const { return Point; } 100 }; 101 102 /// Sets the current insert point to a previously-saved location. 103 void restoreIP(VPInsertPoint IP) { 104 if (IP.isSet()) 105 setInsertPoint(IP.getBlock(), IP.getPoint()); 106 else 107 clearInsertionPoint(); 108 } 109 110 /// This specifies that created VPInstructions should be appended to the end 111 /// of the specified block. 112 void setInsertPoint(VPBasicBlock *TheBB) { 113 assert(TheBB && "Attempting to set a null insert point"); 114 BB = TheBB; 115 InsertPt = BB->end(); 116 } 117 118 /// This specifies that created instructions should be inserted at the 119 /// specified point. 120 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 121 BB = TheBB; 122 InsertPt = IP; 123 } 124 125 /// This specifies that created instructions should be inserted at the 126 /// specified point. 127 void setInsertPoint(VPRecipeBase *IP) { 128 BB = IP->getParent(); 129 InsertPt = IP->getIterator(); 130 } 131 132 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 133 /// its underlying Instruction. 134 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 135 Instruction *Inst = nullptr, const Twine &Name = "") { 136 DebugLoc DL; 137 if (Inst) 138 DL = Inst->getDebugLoc(); 139 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name); 140 NewVPInst->setUnderlyingValue(Inst); 141 return NewVPInst; 142 } 143 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 144 DebugLoc DL, const Twine &Name = "") { 145 return createInstruction(Opcode, Operands, DL, Name); 146 } 147 148 VPInstruction *createOverflowingOp(unsigned Opcode, 149 std::initializer_list<VPValue *> Operands, 150 VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, 151 DebugLoc DL = {}, const Twine &Name = "") { 152 return tryInsertInstruction( 153 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name)); 154 } 155 VPValue *createNot(VPValue *Operand, DebugLoc DL = {}, 156 const Twine &Name = "") { 157 return createInstruction(VPInstruction::Not, {Operand}, DL, Name); 158 } 159 160 VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 161 const Twine &Name = "") { 162 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name); 163 } 164 165 VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 166 const Twine &Name = "") { 167 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL, Name); 168 } 169 170 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, 171 DebugLoc DL = {}, const Twine &Name = "", 172 std::optional<FastMathFlags> FMFs = std::nullopt) { 173 auto *Select = 174 FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, 175 *FMFs, DL, Name) 176 : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, 177 DL, Name); 178 return tryInsertInstruction(Select); 179 } 180 181 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A 182 /// and \p B. 183 /// TODO: add createFCmp when needed. 184 VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, 185 DebugLoc DL = {}, const Twine &Name = ""); 186 187 //===--------------------------------------------------------------------===// 188 // RAII helpers. 189 //===--------------------------------------------------------------------===// 190 191 /// RAII object that stores the current insertion point and restores it when 192 /// the object is destroyed. 193 class InsertPointGuard { 194 VPBuilder &Builder; 195 VPBasicBlock *Block; 196 VPBasicBlock::iterator Point; 197 198 public: 199 InsertPointGuard(VPBuilder &B) 200 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 201 202 InsertPointGuard(const InsertPointGuard &) = delete; 203 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 204 205 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 206 }; 207 }; 208 209 /// TODO: The following VectorizationFactor was pulled out of 210 /// LoopVectorizationCostModel class. LV also deals with 211 /// VectorizerParams::VectorizationFactor and VectorizationCostTy. 212 /// We need to streamline them. 213 214 /// Information about vectorization costs. 215 struct VectorizationFactor { 216 /// Vector width with best cost. 217 ElementCount Width; 218 219 /// Cost of the loop with that width. 220 InstructionCost Cost; 221 222 /// Cost of the scalar loop. 223 InstructionCost ScalarCost; 224 225 /// The minimum trip count required to make vectorization profitable, e.g. due 226 /// to runtime checks. 227 ElementCount MinProfitableTripCount; 228 229 VectorizationFactor(ElementCount Width, InstructionCost Cost, 230 InstructionCost ScalarCost) 231 : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {} 232 233 /// Width 1 means no vectorization, cost 0 means uncomputed cost. 234 static VectorizationFactor Disabled() { 235 return {ElementCount::getFixed(1), 0, 0}; 236 } 237 238 bool operator==(const VectorizationFactor &rhs) const { 239 return Width == rhs.Width && Cost == rhs.Cost; 240 } 241 242 bool operator!=(const VectorizationFactor &rhs) const { 243 return !(*this == rhs); 244 } 245 }; 246 247 /// ElementCountComparator creates a total ordering for ElementCount 248 /// for the purposes of using it in a set structure. 249 struct ElementCountComparator { 250 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 251 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 252 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 253 } 254 }; 255 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 256 257 /// A class that represents two vectorization factors (initialized with 0 by 258 /// default). One for fixed-width vectorization and one for scalable 259 /// vectorization. This can be used by the vectorizer to choose from a range of 260 /// fixed and/or scalable VFs in order to find the most cost-effective VF to 261 /// vectorize with. 262 struct FixedScalableVFPair { 263 ElementCount FixedVF; 264 ElementCount ScalableVF; 265 266 FixedScalableVFPair() 267 : FixedVF(ElementCount::getFixed(0)), 268 ScalableVF(ElementCount::getScalable(0)) {} 269 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { 270 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; 271 } 272 FixedScalableVFPair(const ElementCount &FixedVF, 273 const ElementCount &ScalableVF) 274 : FixedVF(FixedVF), ScalableVF(ScalableVF) { 275 assert(!FixedVF.isScalable() && ScalableVF.isScalable() && 276 "Invalid scalable properties"); 277 } 278 279 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } 280 281 /// \return true if either fixed- or scalable VF is non-zero. 282 explicit operator bool() const { return FixedVF || ScalableVF; } 283 284 /// \return true if either fixed- or scalable VF is a valid vector VF. 285 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } 286 }; 287 288 /// Planner drives the vectorization process after having passed 289 /// Legality checks. 290 class LoopVectorizationPlanner { 291 /// The loop that we evaluate. 292 Loop *OrigLoop; 293 294 /// Loop Info analysis. 295 LoopInfo *LI; 296 297 /// The dominator tree. 298 DominatorTree *DT; 299 300 /// Target Library Info. 301 const TargetLibraryInfo *TLI; 302 303 /// Target Transform Info. 304 const TargetTransformInfo &TTI; 305 306 /// The legality analysis. 307 LoopVectorizationLegality *Legal; 308 309 /// The profitability analysis. 310 LoopVectorizationCostModel &CM; 311 312 /// The interleaved access analysis. 313 InterleavedAccessInfo &IAI; 314 315 PredicatedScalarEvolution &PSE; 316 317 const LoopVectorizeHints &Hints; 318 319 OptimizationRemarkEmitter *ORE; 320 321 SmallVector<VPlanPtr, 4> VPlans; 322 323 /// Profitable vector factors. 324 SmallVector<VectorizationFactor, 8> ProfitableVFs; 325 326 /// A builder used to construct the current plan. 327 VPBuilder Builder; 328 329 public: 330 LoopVectorizationPlanner( 331 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 332 const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, 333 LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, 334 PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, 335 OptimizationRemarkEmitter *ORE) 336 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), 337 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {} 338 339 /// Plan how to best vectorize, return the best VF and its cost, or 340 /// std::nullopt if vectorization and interleaving should be avoided up front. 341 std::optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); 342 343 /// Use the VPlan-native path to plan how to best vectorize, return the best 344 /// VF and its cost. 345 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 346 347 /// Return the best VPlan for \p VF. 348 VPlan &getBestPlanFor(ElementCount VF) const; 349 350 /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan 351 /// according to the best selected \p VF and \p UF. 352 /// 353 /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue 354 /// vectorization re-using plans for both the main and epilogue vector loops. 355 /// It should be removed once the re-use issue has been fixed. 356 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop 357 /// to re-use expansion results generated during main plan execution. 358 /// 359 /// Returns a mapping of SCEVs to their expanded IR values and a mapping for 360 /// the reduction resume values. Note that this is a temporary workaround 361 /// needed due to the current epilogue handling. 362 std::pair<DenseMap<const SCEV *, Value *>, 363 DenseMap<const RecurrenceDescriptor *, Value *>> 364 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, 365 InnerLoopVectorizer &LB, DominatorTree *DT, 366 bool IsEpilogueVectorization, 367 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr); 368 369 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 370 void printPlans(raw_ostream &O); 371 #endif 372 373 /// Look through the existing plans and return true if we have one with 374 /// vectorization factor \p VF. 375 bool hasPlanWithVF(ElementCount VF) const { 376 return any_of(VPlans, 377 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); 378 } 379 380 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 381 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 382 /// returned value holds for the entire \p Range. 383 static bool 384 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 385 VFRange &Range); 386 387 /// \return The most profitable vectorization factor and the cost of that VF 388 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if 389 /// epilogue vectorization is not supported for the loop. 390 VectorizationFactor 391 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC); 392 393 protected: 394 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 395 /// according to the information gathered by Legal when it checked if it is 396 /// legal to vectorize the loop. 397 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 398 399 private: 400 /// Build a VPlan according to the information gathered by Legal. \return a 401 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 402 /// exclusive, possibly decreasing \p Range.End. 403 VPlanPtr buildVPlan(VFRange &Range); 404 405 /// Build a VPlan using VPRecipes according to the information gather by 406 /// Legal. This method is only used for the legacy inner loop vectorizer. 407 /// \p Range's largest included VF is restricted to the maximum VF the 408 /// returned VPlan is valid for. If no VPlan can be built for the input range, 409 /// set the largest included VF to the maximum VF for which no plan could be 410 /// built. 411 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range); 412 413 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 414 /// according to the information gathered by Legal when it checked if it is 415 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 416 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 417 418 // Adjust the recipes for reductions. For in-loop reductions the chain of 419 // instructions leading from the loop exit instr to the phi need to be 420 // converted to reductions, with one operand being vector and the other being 421 // the scalar reduction chain. For other reductions, a select is introduced 422 // between the phi and live-out recipes when folding the tail. 423 void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan, 424 VPRecipeBuilder &RecipeBuilder, 425 ElementCount MinVF); 426 427 /// \return The most profitable vectorization factor and the cost of that VF. 428 /// This method checks every VF in \p CandidateVFs. 429 VectorizationFactor 430 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 431 432 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 433 /// that of B. 434 bool isMoreProfitable(const VectorizationFactor &A, 435 const VectorizationFactor &B) const; 436 437 /// Determines if we have the infrastructure to vectorize the loop and its 438 /// epilogue, assuming the main loop is vectorized by \p VF. 439 bool isCandidateForEpilogueVectorization(const ElementCount VF) const; 440 }; 441 442 } // namespace llvm 443 444 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 445