1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 32 namespace llvm { 33 34 class LoopVectorizationLegality; 35 class LoopVectorizationCostModel; 36 class PredicatedScalarEvolution; 37 class VPRecipeBuilder; 38 39 /// VPlan-based builder utility analogous to IRBuilder. 40 class VPBuilder { 41 VPBasicBlock *BB = nullptr; 42 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 43 44 VPInstruction *createInstruction(unsigned Opcode, 45 ArrayRef<VPValue *> Operands) { 46 VPInstruction *Instr = new VPInstruction(Opcode, Operands); 47 if (BB) 48 BB->insert(Instr, InsertPt); 49 return Instr; 50 } 51 52 VPInstruction *createInstruction(unsigned Opcode, 53 std::initializer_list<VPValue *> Operands) { 54 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands)); 55 } 56 57 public: 58 VPBuilder() {} 59 60 /// Clear the insertion point: created instructions will not be inserted into 61 /// a block. 62 void clearInsertionPoint() { 63 BB = nullptr; 64 InsertPt = VPBasicBlock::iterator(); 65 } 66 67 VPBasicBlock *getInsertBlock() const { return BB; } 68 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 69 70 /// InsertPoint - A saved insertion point. 71 class VPInsertPoint { 72 VPBasicBlock *Block = nullptr; 73 VPBasicBlock::iterator Point; 74 75 public: 76 /// Creates a new insertion point which doesn't point to anything. 77 VPInsertPoint() = default; 78 79 /// Creates a new insertion point at the given location. 80 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 81 : Block(InsertBlock), Point(InsertPoint) {} 82 83 /// Returns true if this insert point is set. 84 bool isSet() const { return Block != nullptr; } 85 86 VPBasicBlock *getBlock() const { return Block; } 87 VPBasicBlock::iterator getPoint() const { return Point; } 88 }; 89 90 /// Sets the current insert point to a previously-saved location. 91 void restoreIP(VPInsertPoint IP) { 92 if (IP.isSet()) 93 setInsertPoint(IP.getBlock(), IP.getPoint()); 94 else 95 clearInsertionPoint(); 96 } 97 98 /// This specifies that created VPInstructions should be appended to the end 99 /// of the specified block. 100 void setInsertPoint(VPBasicBlock *TheBB) { 101 assert(TheBB && "Attempting to set a null insert point"); 102 BB = TheBB; 103 InsertPt = BB->end(); 104 } 105 106 /// This specifies that created instructions should be inserted at the 107 /// specified point. 108 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 109 BB = TheBB; 110 InsertPt = IP; 111 } 112 113 /// Insert and return the specified instruction. 114 VPInstruction *insert(VPInstruction *I) const { 115 BB->insert(I, InsertPt); 116 return I; 117 } 118 119 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 120 /// its underlying Instruction. 121 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 122 Instruction *Inst = nullptr) { 123 VPInstruction *NewVPInst = createInstruction(Opcode, Operands); 124 NewVPInst->setUnderlyingValue(Inst); 125 return NewVPInst; 126 } 127 VPValue *createNaryOp(unsigned Opcode, 128 std::initializer_list<VPValue *> Operands, 129 Instruction *Inst = nullptr) { 130 return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst); 131 } 132 133 VPValue *createNot(VPValue *Operand) { 134 return createInstruction(VPInstruction::Not, {Operand}); 135 } 136 137 VPValue *createAnd(VPValue *LHS, VPValue *RHS) { 138 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}); 139 } 140 141 VPValue *createOr(VPValue *LHS, VPValue *RHS) { 142 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}); 143 } 144 145 //===--------------------------------------------------------------------===// 146 // RAII helpers. 147 //===--------------------------------------------------------------------===// 148 149 /// RAII object that stores the current insertion point and restores it when 150 /// the object is destroyed. 151 class InsertPointGuard { 152 VPBuilder &Builder; 153 VPBasicBlock *Block; 154 VPBasicBlock::iterator Point; 155 156 public: 157 InsertPointGuard(VPBuilder &B) 158 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 159 160 InsertPointGuard(const InsertPointGuard &) = delete; 161 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 162 163 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 164 }; 165 }; 166 167 /// TODO: The following VectorizationFactor was pulled out of 168 /// LoopVectorizationCostModel class. LV also deals with 169 /// VectorizerParams::VectorizationFactor and VectorizationCostTy. 170 /// We need to streamline them. 171 172 /// Information about vectorization costs 173 struct VectorizationFactor { 174 // Vector width with best cost 175 ElementCount Width; 176 // Cost of the loop with that width 177 unsigned Cost; 178 179 // Width 1 means no vectorization, cost 0 means uncomputed cost. 180 static VectorizationFactor Disabled() { 181 return {ElementCount::getFixed(1), 0}; 182 } 183 184 bool operator==(const VectorizationFactor &rhs) const { 185 return Width == rhs.Width && Cost == rhs.Cost; 186 } 187 188 bool operator!=(const VectorizationFactor &rhs) const { 189 return !(*this == rhs); 190 } 191 }; 192 193 /// Planner drives the vectorization process after having passed 194 /// Legality checks. 195 class LoopVectorizationPlanner { 196 /// The loop that we evaluate. 197 Loop *OrigLoop; 198 199 /// Loop Info analysis. 200 LoopInfo *LI; 201 202 /// Target Library Info. 203 const TargetLibraryInfo *TLI; 204 205 /// Target Transform Info. 206 const TargetTransformInfo *TTI; 207 208 /// The legality analysis. 209 LoopVectorizationLegality *Legal; 210 211 /// The profitability analysis. 212 LoopVectorizationCostModel &CM; 213 214 /// The interleaved access analysis. 215 InterleavedAccessInfo &IAI; 216 217 PredicatedScalarEvolution &PSE; 218 219 SmallVector<VPlanPtr, 4> VPlans; 220 221 /// This class is used to enable the VPlan to invoke a method of ILV. This is 222 /// needed until the method is refactored out of ILV and becomes reusable. 223 struct VPCallbackILV : public VPCallback { 224 InnerLoopVectorizer &ILV; 225 226 VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} 227 228 Value *getOrCreateVectorValues(Value *V, unsigned Part) override; 229 Value *getOrCreateScalarValue(Value *V, 230 const VPIteration &Instance) override; 231 }; 232 233 /// A builder used to construct the current plan. 234 VPBuilder Builder; 235 236 /// The best number of elements of the vector types used in the 237 /// transformed loop. BestVF = None means that vectorization is 238 /// disabled. 239 Optional<ElementCount> BestVF = None; 240 unsigned BestUF = 0; 241 242 public: 243 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 244 const TargetTransformInfo *TTI, 245 LoopVectorizationLegality *Legal, 246 LoopVectorizationCostModel &CM, 247 InterleavedAccessInfo &IAI, 248 PredicatedScalarEvolution &PSE) 249 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), 250 PSE(PSE) {} 251 252 /// Plan how to best vectorize, return the best VF and its cost, or None if 253 /// vectorization and interleaving should be avoided up front. 254 Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); 255 256 /// Use the VPlan-native path to plan how to best vectorize, return the best 257 /// VF and its cost. 258 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 259 260 /// Finalize the best decision and dispose of all other VPlans. 261 void setBestPlan(ElementCount VF, unsigned UF); 262 263 /// Generate the IR code for the body of the vectorized loop according to the 264 /// best selected VPlan. 265 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 266 267 void printPlans(raw_ostream &O) { 268 for (const auto &Plan : VPlans) 269 O << *Plan; 270 } 271 272 /// Look through the existing plans and return true if we have one with all 273 /// the vectorization factors in question. 274 bool hasPlanWithVFs(const ArrayRef<ElementCount> VFs) const { 275 return any_of(VPlans, [&](const VPlanPtr &Plan) { 276 return all_of(VFs, [&](const ElementCount &VF) { 277 return Plan->hasVF(VF); 278 }); 279 }); 280 } 281 282 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 283 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 284 /// returned value holds for the entire \p Range. 285 static bool 286 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 287 VFRange &Range); 288 289 protected: 290 /// Collect the instructions from the original loop that would be trivially 291 /// dead in the vectorized loop if generated. 292 void collectTriviallyDeadInstructions( 293 SmallPtrSetImpl<Instruction *> &DeadInstructions); 294 295 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 296 /// according to the information gathered by Legal when it checked if it is 297 /// legal to vectorize the loop. 298 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 299 300 private: 301 /// Build a VPlan according to the information gathered by Legal. \return a 302 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 303 /// exclusive, possibly decreasing \p Range.End. 304 VPlanPtr buildVPlan(VFRange &Range); 305 306 /// Build a VPlan using VPRecipes according to the information gather by 307 /// Legal. This method is only used for the legacy inner loop vectorizer. 308 VPlanPtr buildVPlanWithVPRecipes( 309 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 310 const DenseMap<Instruction *, Instruction *> &SinkAfter); 311 312 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 313 /// according to the information gathered by Legal when it checked if it is 314 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 315 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 316 317 /// Adjust the recipes for any inloop reductions. The chain of instructions 318 /// leading from the loop exit instr to the phi need to be converted to 319 /// reductions, with one operand being vector and the other being the scalar 320 /// reduction chain. 321 void adjustRecipesForInLoopReductions(VPlanPtr &Plan, 322 VPRecipeBuilder &RecipeBuilder); 323 }; 324 325 } // namespace llvm 326 327 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 328