1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 32 namespace llvm { 33 34 class LoopVectorizationLegality; 35 class LoopVectorizationCostModel; 36 class PredicatedScalarEvolution; 37 class VPRecipeBuilder; 38 39 /// VPlan-based builder utility analogous to IRBuilder. 40 class VPBuilder { 41 VPBasicBlock *BB = nullptr; 42 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 43 44 VPInstruction *createInstruction(unsigned Opcode, 45 ArrayRef<VPValue *> Operands) { 46 VPInstruction *Instr = new VPInstruction(Opcode, Operands); 47 if (BB) 48 BB->insert(Instr, InsertPt); 49 return Instr; 50 } 51 52 VPInstruction *createInstruction(unsigned Opcode, 53 std::initializer_list<VPValue *> Operands) { 54 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands)); 55 } 56 57 public: 58 VPBuilder() {} 59 60 /// Clear the insertion point: created instructions will not be inserted into 61 /// a block. 62 void clearInsertionPoint() { 63 BB = nullptr; 64 InsertPt = VPBasicBlock::iterator(); 65 } 66 67 VPBasicBlock *getInsertBlock() const { return BB; } 68 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 69 70 /// InsertPoint - A saved insertion point. 71 class VPInsertPoint { 72 VPBasicBlock *Block = nullptr; 73 VPBasicBlock::iterator Point; 74 75 public: 76 /// Creates a new insertion point which doesn't point to anything. 77 VPInsertPoint() = default; 78 79 /// Creates a new insertion point at the given location. 80 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 81 : Block(InsertBlock), Point(InsertPoint) {} 82 83 /// Returns true if this insert point is set. 84 bool isSet() const { return Block != nullptr; } 85 86 VPBasicBlock *getBlock() const { return Block; } 87 VPBasicBlock::iterator getPoint() const { return Point; } 88 }; 89 90 /// Sets the current insert point to a previously-saved location. 91 void restoreIP(VPInsertPoint IP) { 92 if (IP.isSet()) 93 setInsertPoint(IP.getBlock(), IP.getPoint()); 94 else 95 clearInsertionPoint(); 96 } 97 98 /// This specifies that created VPInstructions should be appended to the end 99 /// of the specified block. 100 void setInsertPoint(VPBasicBlock *TheBB) { 101 assert(TheBB && "Attempting to set a null insert point"); 102 BB = TheBB; 103 InsertPt = BB->end(); 104 } 105 106 /// This specifies that created instructions should be inserted at the 107 /// specified point. 108 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 109 BB = TheBB; 110 InsertPt = IP; 111 } 112 113 /// Insert and return the specified instruction. 114 VPInstruction *insert(VPInstruction *I) const { 115 BB->insert(I, InsertPt); 116 return I; 117 } 118 119 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 120 /// its underlying Instruction. 121 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 122 Instruction *Inst = nullptr) { 123 VPInstruction *NewVPInst = createInstruction(Opcode, Operands); 124 NewVPInst->setUnderlyingValue(Inst); 125 return NewVPInst; 126 } 127 VPValue *createNaryOp(unsigned Opcode, 128 std::initializer_list<VPValue *> Operands, 129 Instruction *Inst = nullptr) { 130 return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst); 131 } 132 133 VPValue *createNot(VPValue *Operand) { 134 return createInstruction(VPInstruction::Not, {Operand}); 135 } 136 137 VPValue *createAnd(VPValue *LHS, VPValue *RHS) { 138 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}); 139 } 140 141 VPValue *createOr(VPValue *LHS, VPValue *RHS) { 142 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}); 143 } 144 145 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal) { 146 return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}); 147 } 148 149 //===--------------------------------------------------------------------===// 150 // RAII helpers. 151 //===--------------------------------------------------------------------===// 152 153 /// RAII object that stores the current insertion point and restores it when 154 /// the object is destroyed. 155 class InsertPointGuard { 156 VPBuilder &Builder; 157 VPBasicBlock *Block; 158 VPBasicBlock::iterator Point; 159 160 public: 161 InsertPointGuard(VPBuilder &B) 162 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 163 164 InsertPointGuard(const InsertPointGuard &) = delete; 165 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 166 167 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 168 }; 169 }; 170 171 /// TODO: The following VectorizationFactor was pulled out of 172 /// LoopVectorizationCostModel class. LV also deals with 173 /// VectorizerParams::VectorizationFactor and VectorizationCostTy. 174 /// We need to streamline them. 175 176 /// Information about vectorization costs 177 struct VectorizationFactor { 178 // Vector width with best cost 179 ElementCount Width; 180 // Cost of the loop with that width 181 unsigned Cost; 182 183 // Width 1 means no vectorization, cost 0 means uncomputed cost. 184 static VectorizationFactor Disabled() { 185 return {ElementCount::getFixed(1), 0}; 186 } 187 188 bool operator==(const VectorizationFactor &rhs) const { 189 return Width == rhs.Width && Cost == rhs.Cost; 190 } 191 192 bool operator!=(const VectorizationFactor &rhs) const { 193 return !(*this == rhs); 194 } 195 }; 196 197 /// Planner drives the vectorization process after having passed 198 /// Legality checks. 199 class LoopVectorizationPlanner { 200 /// The loop that we evaluate. 201 Loop *OrigLoop; 202 203 /// Loop Info analysis. 204 LoopInfo *LI; 205 206 /// Target Library Info. 207 const TargetLibraryInfo *TLI; 208 209 /// Target Transform Info. 210 const TargetTransformInfo *TTI; 211 212 /// The legality analysis. 213 LoopVectorizationLegality *Legal; 214 215 /// The profitability analysis. 216 LoopVectorizationCostModel &CM; 217 218 /// The interleaved access analysis. 219 InterleavedAccessInfo &IAI; 220 221 PredicatedScalarEvolution &PSE; 222 223 SmallVector<VPlanPtr, 4> VPlans; 224 225 /// This class is used to enable the VPlan to invoke a method of ILV. This is 226 /// needed until the method is refactored out of ILV and becomes reusable. 227 struct VPCallbackILV : public VPCallback { 228 InnerLoopVectorizer &ILV; 229 230 VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} 231 232 Value *getOrCreateVectorValues(Value *V, unsigned Part) override; 233 Value *getOrCreateScalarValue(Value *V, 234 const VPIteration &Instance) override; 235 }; 236 237 /// A builder used to construct the current plan. 238 VPBuilder Builder; 239 240 /// The best number of elements of the vector types used in the 241 /// transformed loop. BestVF = None means that vectorization is 242 /// disabled. 243 Optional<ElementCount> BestVF = None; 244 unsigned BestUF = 0; 245 246 public: 247 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 248 const TargetTransformInfo *TTI, 249 LoopVectorizationLegality *Legal, 250 LoopVectorizationCostModel &CM, 251 InterleavedAccessInfo &IAI, 252 PredicatedScalarEvolution &PSE) 253 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), 254 PSE(PSE) {} 255 256 /// Plan how to best vectorize, return the best VF and its cost, or None if 257 /// vectorization and interleaving should be avoided up front. 258 Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); 259 260 /// Use the VPlan-native path to plan how to best vectorize, return the best 261 /// VF and its cost. 262 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 263 264 /// Finalize the best decision and dispose of all other VPlans. 265 void setBestPlan(ElementCount VF, unsigned UF); 266 267 /// Generate the IR code for the body of the vectorized loop according to the 268 /// best selected VPlan. 269 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 270 271 void printPlans(raw_ostream &O) { 272 for (const auto &Plan : VPlans) 273 O << *Plan; 274 } 275 276 /// Look through the existing plans and return true if we have one with all 277 /// the vectorization factors in question. 278 bool hasPlanWithVFs(const ArrayRef<ElementCount> VFs) const { 279 return any_of(VPlans, [&](const VPlanPtr &Plan) { 280 return all_of(VFs, [&](const ElementCount &VF) { 281 return Plan->hasVF(VF); 282 }); 283 }); 284 } 285 286 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 287 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 288 /// returned value holds for the entire \p Range. 289 static bool 290 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 291 VFRange &Range); 292 293 protected: 294 /// Collect the instructions from the original loop that would be trivially 295 /// dead in the vectorized loop if generated. 296 void collectTriviallyDeadInstructions( 297 SmallPtrSetImpl<Instruction *> &DeadInstructions); 298 299 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 300 /// according to the information gathered by Legal when it checked if it is 301 /// legal to vectorize the loop. 302 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 303 304 private: 305 /// Build a VPlan according to the information gathered by Legal. \return a 306 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 307 /// exclusive, possibly decreasing \p Range.End. 308 VPlanPtr buildVPlan(VFRange &Range); 309 310 /// Build a VPlan using VPRecipes according to the information gather by 311 /// Legal. This method is only used for the legacy inner loop vectorizer. 312 VPlanPtr buildVPlanWithVPRecipes( 313 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 314 const DenseMap<Instruction *, Instruction *> &SinkAfter); 315 316 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 317 /// according to the information gathered by Legal when it checked if it is 318 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 319 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 320 321 /// Adjust the recipes for any inloop reductions. The chain of instructions 322 /// leading from the loop exit instr to the phi need to be converted to 323 /// reductions, with one operand being vector and the other being the scalar 324 /// reduction chain. 325 void adjustRecipesForInLoopReductions(VPlanPtr &Plan, 326 VPRecipeBuilder &RecipeBuilder); 327 }; 328 329 } // namespace llvm 330 331 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 332