1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 29 namespace llvm { 30 31 class LoopInfo; 32 class LoopVectorizationLegality; 33 class LoopVectorizationCostModel; 34 class PredicatedScalarEvolution; 35 class LoopVectorizationRequirements; 36 class LoopVectorizeHints; 37 class OptimizationRemarkEmitter; 38 class TargetTransformInfo; 39 class TargetLibraryInfo; 40 class VPRecipeBuilder; 41 42 /// VPlan-based builder utility analogous to IRBuilder. 43 class VPBuilder { 44 VPBasicBlock *BB = nullptr; 45 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 46 47 VPInstruction *createInstruction(unsigned Opcode, 48 ArrayRef<VPValue *> Operands, DebugLoc DL) { 49 VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL); 50 if (BB) 51 BB->insert(Instr, InsertPt); 52 return Instr; 53 } 54 55 VPInstruction *createInstruction(unsigned Opcode, 56 std::initializer_list<VPValue *> Operands, 57 DebugLoc DL) { 58 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL); 59 } 60 61 public: 62 VPBuilder() {} 63 64 /// Clear the insertion point: created instructions will not be inserted into 65 /// a block. 66 void clearInsertionPoint() { 67 BB = nullptr; 68 InsertPt = VPBasicBlock::iterator(); 69 } 70 71 VPBasicBlock *getInsertBlock() const { return BB; } 72 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 73 74 /// InsertPoint - A saved insertion point. 75 class VPInsertPoint { 76 VPBasicBlock *Block = nullptr; 77 VPBasicBlock::iterator Point; 78 79 public: 80 /// Creates a new insertion point which doesn't point to anything. 81 VPInsertPoint() = default; 82 83 /// Creates a new insertion point at the given location. 84 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 85 : Block(InsertBlock), Point(InsertPoint) {} 86 87 /// Returns true if this insert point is set. 88 bool isSet() const { return Block != nullptr; } 89 90 VPBasicBlock *getBlock() const { return Block; } 91 VPBasicBlock::iterator getPoint() const { return Point; } 92 }; 93 94 /// Sets the current insert point to a previously-saved location. 95 void restoreIP(VPInsertPoint IP) { 96 if (IP.isSet()) 97 setInsertPoint(IP.getBlock(), IP.getPoint()); 98 else 99 clearInsertionPoint(); 100 } 101 102 /// This specifies that created VPInstructions should be appended to the end 103 /// of the specified block. 104 void setInsertPoint(VPBasicBlock *TheBB) { 105 assert(TheBB && "Attempting to set a null insert point"); 106 BB = TheBB; 107 InsertPt = BB->end(); 108 } 109 110 /// This specifies that created instructions should be inserted at the 111 /// specified point. 112 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 113 BB = TheBB; 114 InsertPt = IP; 115 } 116 117 /// Insert and return the specified instruction. 118 VPInstruction *insert(VPInstruction *I) const { 119 BB->insert(I, InsertPt); 120 return I; 121 } 122 123 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 124 /// its underlying Instruction. 125 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 126 Instruction *Inst = nullptr) { 127 DebugLoc DL; 128 if (Inst) 129 DL = Inst->getDebugLoc(); 130 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL); 131 NewVPInst->setUnderlyingValue(Inst); 132 return NewVPInst; 133 } 134 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 135 DebugLoc DL) { 136 return createInstruction(Opcode, Operands, DL); 137 } 138 139 VPValue *createNot(VPValue *Operand, DebugLoc DL) { 140 return createInstruction(VPInstruction::Not, {Operand}, DL); 141 } 142 143 VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL) { 144 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL); 145 } 146 147 VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL) { 148 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL); 149 } 150 151 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, 152 DebugLoc DL) { 153 return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL); 154 } 155 156 //===--------------------------------------------------------------------===// 157 // RAII helpers. 158 //===--------------------------------------------------------------------===// 159 160 /// RAII object that stores the current insertion point and restores it when 161 /// the object is destroyed. 162 class InsertPointGuard { 163 VPBuilder &Builder; 164 VPBasicBlock *Block; 165 VPBasicBlock::iterator Point; 166 167 public: 168 InsertPointGuard(VPBuilder &B) 169 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 170 171 InsertPointGuard(const InsertPointGuard &) = delete; 172 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 173 174 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 175 }; 176 }; 177 178 /// TODO: The following VectorizationFactor was pulled out of 179 /// LoopVectorizationCostModel class. LV also deals with 180 /// VectorizerParams::VectorizationFactor and VectorizationCostTy. 181 /// We need to streamline them. 182 183 /// Information about vectorization costs. 184 struct VectorizationFactor { 185 /// Vector width with best cost. 186 ElementCount Width; 187 /// Cost of the loop with that width. 188 InstructionCost Cost; 189 190 VectorizationFactor(ElementCount Width, InstructionCost Cost) 191 : Width(Width), Cost(Cost) {} 192 193 /// Width 1 means no vectorization, cost 0 means uncomputed cost. 194 static VectorizationFactor Disabled() { 195 return {ElementCount::getFixed(1), 0}; 196 } 197 198 bool operator==(const VectorizationFactor &rhs) const { 199 return Width == rhs.Width && Cost == rhs.Cost; 200 } 201 202 bool operator!=(const VectorizationFactor &rhs) const { 203 return !(*this == rhs); 204 } 205 }; 206 207 /// A class that represents two vectorization factors (initialized with 0 by 208 /// default). One for fixed-width vectorization and one for scalable 209 /// vectorization. This can be used by the vectorizer to choose from a range of 210 /// fixed and/or scalable VFs in order to find the most cost-effective VF to 211 /// vectorize with. 212 struct FixedScalableVFPair { 213 ElementCount FixedVF; 214 ElementCount ScalableVF; 215 216 FixedScalableVFPair() 217 : FixedVF(ElementCount::getFixed(0)), 218 ScalableVF(ElementCount::getScalable(0)) {} 219 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { 220 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; 221 } 222 FixedScalableVFPair(const ElementCount &FixedVF, 223 const ElementCount &ScalableVF) 224 : FixedVF(FixedVF), ScalableVF(ScalableVF) { 225 assert(!FixedVF.isScalable() && ScalableVF.isScalable() && 226 "Invalid scalable properties"); 227 } 228 229 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } 230 231 /// \return true if either fixed- or scalable VF is non-zero. 232 explicit operator bool() const { return FixedVF || ScalableVF; } 233 234 /// \return true if either fixed- or scalable VF is a valid vector VF. 235 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } 236 }; 237 238 /// Planner drives the vectorization process after having passed 239 /// Legality checks. 240 class LoopVectorizationPlanner { 241 /// The loop that we evaluate. 242 Loop *OrigLoop; 243 244 /// Loop Info analysis. 245 LoopInfo *LI; 246 247 /// Target Library Info. 248 const TargetLibraryInfo *TLI; 249 250 /// Target Transform Info. 251 const TargetTransformInfo *TTI; 252 253 /// The legality analysis. 254 LoopVectorizationLegality *Legal; 255 256 /// The profitability analysis. 257 LoopVectorizationCostModel &CM; 258 259 /// The interleaved access analysis. 260 InterleavedAccessInfo &IAI; 261 262 PredicatedScalarEvolution &PSE; 263 264 const LoopVectorizeHints &Hints; 265 266 LoopVectorizationRequirements &Requirements; 267 268 OptimizationRemarkEmitter *ORE; 269 270 SmallVector<VPlanPtr, 4> VPlans; 271 272 /// A builder used to construct the current plan. 273 VPBuilder Builder; 274 275 public: 276 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 277 const TargetTransformInfo *TTI, 278 LoopVectorizationLegality *Legal, 279 LoopVectorizationCostModel &CM, 280 InterleavedAccessInfo &IAI, 281 PredicatedScalarEvolution &PSE, 282 const LoopVectorizeHints &Hints, 283 LoopVectorizationRequirements &Requirements, 284 OptimizationRemarkEmitter *ORE) 285 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), 286 PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {} 287 288 /// Plan how to best vectorize, return the best VF and its cost, or None if 289 /// vectorization and interleaving should be avoided up front. 290 Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); 291 292 /// Use the VPlan-native path to plan how to best vectorize, return the best 293 /// VF and its cost. 294 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 295 296 /// Return the best VPlan for \p VF. 297 VPlan &getBestPlanFor(ElementCount VF) const; 298 299 /// Generate the IR code for the body of the vectorized loop according to the 300 /// best selected \p VF, \p UF and VPlan \p BestPlan. 301 void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, 302 InnerLoopVectorizer &LB, DominatorTree *DT); 303 304 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 305 void printPlans(raw_ostream &O); 306 #endif 307 308 /// Look through the existing plans and return true if we have one with all 309 /// the vectorization factors in question. 310 bool hasPlanWithVF(ElementCount VF) const { 311 return any_of(VPlans, 312 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); 313 } 314 315 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 316 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 317 /// returned value holds for the entire \p Range. 318 static bool 319 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 320 VFRange &Range); 321 322 protected: 323 /// Collect the instructions from the original loop that would be trivially 324 /// dead in the vectorized loop if generated. 325 void collectTriviallyDeadInstructions( 326 SmallPtrSetImpl<Instruction *> &DeadInstructions); 327 328 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 329 /// according to the information gathered by Legal when it checked if it is 330 /// legal to vectorize the loop. 331 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 332 333 private: 334 /// Build a VPlan according to the information gathered by Legal. \return a 335 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 336 /// exclusive, possibly decreasing \p Range.End. 337 VPlanPtr buildVPlan(VFRange &Range); 338 339 /// Build a VPlan using VPRecipes according to the information gather by 340 /// Legal. This method is only used for the legacy inner loop vectorizer. 341 VPlanPtr buildVPlanWithVPRecipes( 342 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 343 const MapVector<Instruction *, Instruction *> &SinkAfter); 344 345 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 346 /// according to the information gathered by Legal when it checked if it is 347 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 348 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 349 350 // Adjust the recipes for reductions. For in-loop reductions the chain of 351 // instructions leading from the loop exit instr to the phi need to be 352 // converted to reductions, with one operand being vector and the other being 353 // the scalar reduction chain. For other reductions, a select is introduced 354 // between the phi and live-out recipes when folding the tail. 355 void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan, 356 VPRecipeBuilder &RecipeBuilder, 357 ElementCount MinVF); 358 }; 359 360 } // namespace llvm 361 362 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 363