xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h (revision c9ccf3a32da427475985b85d7df023ccfb138c27)
1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26 
27 #include "VPlan.h"
28 
29 namespace llvm {
30 
31 class LoopInfo;
32 class LoopVectorizationLegality;
33 class LoopVectorizationCostModel;
34 class PredicatedScalarEvolution;
35 class LoopVectorizationRequirements;
36 class LoopVectorizeHints;
37 class OptimizationRemarkEmitter;
38 class TargetTransformInfo;
39 class TargetLibraryInfo;
40 class VPRecipeBuilder;
41 
42 /// VPlan-based builder utility analogous to IRBuilder.
43 class VPBuilder {
44   VPBasicBlock *BB = nullptr;
45   VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
46 
47   VPInstruction *createInstruction(unsigned Opcode,
48                                    ArrayRef<VPValue *> Operands, DebugLoc DL) {
49     VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL);
50     if (BB)
51       BB->insert(Instr, InsertPt);
52     return Instr;
53   }
54 
55   VPInstruction *createInstruction(unsigned Opcode,
56                                    std::initializer_list<VPValue *> Operands,
57                                    DebugLoc DL) {
58     return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL);
59   }
60 
61 public:
62   VPBuilder() {}
63 
64   /// Clear the insertion point: created instructions will not be inserted into
65   /// a block.
66   void clearInsertionPoint() {
67     BB = nullptr;
68     InsertPt = VPBasicBlock::iterator();
69   }
70 
71   VPBasicBlock *getInsertBlock() const { return BB; }
72   VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
73 
74   /// InsertPoint - A saved insertion point.
75   class VPInsertPoint {
76     VPBasicBlock *Block = nullptr;
77     VPBasicBlock::iterator Point;
78 
79   public:
80     /// Creates a new insertion point which doesn't point to anything.
81     VPInsertPoint() = default;
82 
83     /// Creates a new insertion point at the given location.
84     VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
85         : Block(InsertBlock), Point(InsertPoint) {}
86 
87     /// Returns true if this insert point is set.
88     bool isSet() const { return Block != nullptr; }
89 
90     VPBasicBlock *getBlock() const { return Block; }
91     VPBasicBlock::iterator getPoint() const { return Point; }
92   };
93 
94   /// Sets the current insert point to a previously-saved location.
95   void restoreIP(VPInsertPoint IP) {
96     if (IP.isSet())
97       setInsertPoint(IP.getBlock(), IP.getPoint());
98     else
99       clearInsertionPoint();
100   }
101 
102   /// This specifies that created VPInstructions should be appended to the end
103   /// of the specified block.
104   void setInsertPoint(VPBasicBlock *TheBB) {
105     assert(TheBB && "Attempting to set a null insert point");
106     BB = TheBB;
107     InsertPt = BB->end();
108   }
109 
110   /// This specifies that created instructions should be inserted at the
111   /// specified point.
112   void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
113     BB = TheBB;
114     InsertPt = IP;
115   }
116 
117   /// Insert and return the specified instruction.
118   VPInstruction *insert(VPInstruction *I) const {
119     BB->insert(I, InsertPt);
120     return I;
121   }
122 
123   /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
124   /// its underlying Instruction.
125   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
126                         Instruction *Inst = nullptr) {
127     DebugLoc DL;
128     if (Inst)
129       DL = Inst->getDebugLoc();
130     VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL);
131     NewVPInst->setUnderlyingValue(Inst);
132     return NewVPInst;
133   }
134   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
135                         DebugLoc DL) {
136     return createInstruction(Opcode, Operands, DL);
137   }
138 
139   VPValue *createNot(VPValue *Operand, DebugLoc DL) {
140     return createInstruction(VPInstruction::Not, {Operand}, DL);
141   }
142 
143   VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
144     return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL);
145   }
146 
147   VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
148     return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL);
149   }
150 
151   VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
152                         DebugLoc DL) {
153     return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL);
154   }
155 
156   //===--------------------------------------------------------------------===//
157   // RAII helpers.
158   //===--------------------------------------------------------------------===//
159 
160   /// RAII object that stores the current insertion point and restores it when
161   /// the object is destroyed.
162   class InsertPointGuard {
163     VPBuilder &Builder;
164     VPBasicBlock *Block;
165     VPBasicBlock::iterator Point;
166 
167   public:
168     InsertPointGuard(VPBuilder &B)
169         : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
170 
171     InsertPointGuard(const InsertPointGuard &) = delete;
172     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
173 
174     ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
175   };
176 };
177 
178 /// TODO: The following VectorizationFactor was pulled out of
179 /// LoopVectorizationCostModel class. LV also deals with
180 /// VectorizerParams::VectorizationFactor and VectorizationCostTy.
181 /// We need to streamline them.
182 
183 /// Information about vectorization costs.
184 struct VectorizationFactor {
185   /// Vector width with best cost.
186   ElementCount Width;
187   /// Cost of the loop with that width.
188   InstructionCost Cost;
189 
190   VectorizationFactor(ElementCount Width, InstructionCost Cost)
191       : Width(Width), Cost(Cost) {}
192 
193   /// Width 1 means no vectorization, cost 0 means uncomputed cost.
194   static VectorizationFactor Disabled() {
195     return {ElementCount::getFixed(1), 0};
196   }
197 
198   bool operator==(const VectorizationFactor &rhs) const {
199     return Width == rhs.Width && Cost == rhs.Cost;
200   }
201 
202   bool operator!=(const VectorizationFactor &rhs) const {
203     return !(*this == rhs);
204   }
205 };
206 
207 /// A class that represents two vectorization factors (initialized with 0 by
208 /// default). One for fixed-width vectorization and one for scalable
209 /// vectorization. This can be used by the vectorizer to choose from a range of
210 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
211 /// vectorize with.
212 struct FixedScalableVFPair {
213   ElementCount FixedVF;
214   ElementCount ScalableVF;
215 
216   FixedScalableVFPair()
217       : FixedVF(ElementCount::getFixed(0)),
218         ScalableVF(ElementCount::getScalable(0)) {}
219   FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
220     *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
221   }
222   FixedScalableVFPair(const ElementCount &FixedVF,
223                       const ElementCount &ScalableVF)
224       : FixedVF(FixedVF), ScalableVF(ScalableVF) {
225     assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
226            "Invalid scalable properties");
227   }
228 
229   static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
230 
231   /// \return true if either fixed- or scalable VF is non-zero.
232   explicit operator bool() const { return FixedVF || ScalableVF; }
233 
234   /// \return true if either fixed- or scalable VF is a valid vector VF.
235   bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
236 };
237 
238 /// Planner drives the vectorization process after having passed
239 /// Legality checks.
240 class LoopVectorizationPlanner {
241   /// The loop that we evaluate.
242   Loop *OrigLoop;
243 
244   /// Loop Info analysis.
245   LoopInfo *LI;
246 
247   /// Target Library Info.
248   const TargetLibraryInfo *TLI;
249 
250   /// Target Transform Info.
251   const TargetTransformInfo *TTI;
252 
253   /// The legality analysis.
254   LoopVectorizationLegality *Legal;
255 
256   /// The profitability analysis.
257   LoopVectorizationCostModel &CM;
258 
259   /// The interleaved access analysis.
260   InterleavedAccessInfo &IAI;
261 
262   PredicatedScalarEvolution &PSE;
263 
264   const LoopVectorizeHints &Hints;
265 
266   LoopVectorizationRequirements &Requirements;
267 
268   OptimizationRemarkEmitter *ORE;
269 
270   SmallVector<VPlanPtr, 4> VPlans;
271 
272   /// A builder used to construct the current plan.
273   VPBuilder Builder;
274 
275 public:
276   LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
277                            const TargetTransformInfo *TTI,
278                            LoopVectorizationLegality *Legal,
279                            LoopVectorizationCostModel &CM,
280                            InterleavedAccessInfo &IAI,
281                            PredicatedScalarEvolution &PSE,
282                            const LoopVectorizeHints &Hints,
283                            LoopVectorizationRequirements &Requirements,
284                            OptimizationRemarkEmitter *ORE)
285       : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
286         PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {}
287 
288   /// Plan how to best vectorize, return the best VF and its cost, or None if
289   /// vectorization and interleaving should be avoided up front.
290   Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
291 
292   /// Use the VPlan-native path to plan how to best vectorize, return the best
293   /// VF and its cost.
294   VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
295 
296   /// Return the best VPlan for \p VF.
297   VPlan &getBestPlanFor(ElementCount VF) const;
298 
299   /// Generate the IR code for the body of the vectorized loop according to the
300   /// best selected \p VF, \p UF and VPlan \p BestPlan.
301   void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
302                    InnerLoopVectorizer &LB, DominatorTree *DT);
303 
304 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
305   void printPlans(raw_ostream &O);
306 #endif
307 
308   /// Look through the existing plans and return true if we have one with all
309   /// the vectorization factors in question.
310   bool hasPlanWithVF(ElementCount VF) const {
311     return any_of(VPlans,
312                   [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
313   }
314 
315   /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
316   /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
317   /// returned value holds for the entire \p Range.
318   static bool
319   getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
320                            VFRange &Range);
321 
322 protected:
323   /// Collect the instructions from the original loop that would be trivially
324   /// dead in the vectorized loop if generated.
325   void collectTriviallyDeadInstructions(
326       SmallPtrSetImpl<Instruction *> &DeadInstructions);
327 
328   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
329   /// according to the information gathered by Legal when it checked if it is
330   /// legal to vectorize the loop.
331   void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
332 
333 private:
334   /// Build a VPlan according to the information gathered by Legal. \return a
335   /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
336   /// exclusive, possibly decreasing \p Range.End.
337   VPlanPtr buildVPlan(VFRange &Range);
338 
339   /// Build a VPlan using VPRecipes according to the information gather by
340   /// Legal. This method is only used for the legacy inner loop vectorizer.
341   VPlanPtr buildVPlanWithVPRecipes(
342       VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
343       const MapVector<Instruction *, Instruction *> &SinkAfter);
344 
345   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
346   /// according to the information gathered by Legal when it checked if it is
347   /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
348   void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
349 
350   // Adjust the recipes for reductions. For in-loop reductions the chain of
351   // instructions leading from the loop exit instr to the phi need to be
352   // converted to reductions, with one operand being vector and the other being
353   // the scalar reduction chain. For other reductions, a select is introduced
354   // between the phi and live-out recipes when folding the tail.
355   void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
356                                   VPRecipeBuilder &RecipeBuilder,
357                                   ElementCount MinVF);
358 };
359 
360 } // namespace llvm
361 
362 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
363