1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Transforms/Utils/SizeOpts.h" 26 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define LV_NAME "loop-vectorize" 32 #define DEBUG_TYPE LV_NAME 33 34 extern cl::opt<bool> EnableVPlanPredication; 35 36 static cl::opt<bool> 37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38 cl::desc("Enable if-conversion during vectorization.")); 39 40 namespace llvm { 41 cl::opt<bool> 42 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 43 cl::desc("Allow enabling loop hints to reorder " 44 "FP operations during vectorization.")); 45 } 46 47 // TODO: Move size-based thresholds out of legality checking, make cost based 48 // decisions instead of hard thresholds. 49 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 50 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 51 cl::desc("The maximum number of SCEV checks allowed.")); 52 53 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 54 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 55 cl::desc("The maximum number of SCEV checks allowed with a " 56 "vectorize(enable) pragma")); 57 58 static cl::opt<LoopVectorizeHints::ScalableForceKind> 59 ForceScalableVectorization( 60 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 61 cl::Hidden, 62 cl::desc("Control whether the compiler can use scalable vectors to " 63 "vectorize a loop"), 64 cl::values( 65 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 66 "Scalable vectorization is disabled."), 67 clEnumValN( 68 LoopVectorizeHints::SK_PreferScalable, "preferred", 69 "Scalable vectorization is available and favored when the " 70 "cost is inconclusive."), 71 clEnumValN( 72 LoopVectorizeHints::SK_PreferScalable, "on", 73 "Scalable vectorization is available and favored when the " 74 "cost is inconclusive."))); 75 76 /// Maximum vectorization interleave count. 77 static const unsigned MaxInterleaveFactor = 16; 78 79 namespace llvm { 80 81 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 82 switch (Kind) { 83 case HK_WIDTH: 84 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 85 case HK_INTERLEAVE: 86 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 87 case HK_FORCE: 88 return (Val <= 1); 89 case HK_ISVECTORIZED: 90 case HK_PREDICATE: 91 case HK_SCALABLE: 92 return (Val == 0 || Val == 1); 93 } 94 return false; 95 } 96 97 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 98 bool InterleaveOnlyWhenForced, 99 OptimizationRemarkEmitter &ORE, 100 const TargetTransformInfo *TTI) 101 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 102 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 103 Force("vectorize.enable", FK_Undefined, HK_FORCE), 104 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 105 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 106 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 107 TheLoop(L), ORE(ORE) { 108 // Populate values with existing loop metadata. 109 getHintsFromMetadata(); 110 111 // force-vector-interleave overrides DisableInterleaving. 112 if (VectorizerParams::isInterleaveForced()) 113 Interleave.Value = VectorizerParams::VectorizationInterleave; 114 115 // If the metadata doesn't explicitly specify whether to enable scalable 116 // vectorization, then decide based on the following criteria (increasing 117 // level of priority): 118 // - Target default 119 // - Metadata width 120 // - Force option (always overrides) 121 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 122 if (TTI) 123 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 124 : SK_FixedWidthOnly; 125 126 if (Width.Value) 127 // If the width is set, but the metadata says nothing about the scalable 128 // property, then assume it concerns only a fixed-width UserVF. 129 // If width is not set, the flag takes precedence. 130 Scalable.Value = SK_FixedWidthOnly; 131 } 132 133 // If the flag is set to force any use of scalable vectors, override the loop 134 // hints. 135 if (ForceScalableVectorization.getValue() != 136 LoopVectorizeHints::SK_Unspecified) 137 Scalable.Value = ForceScalableVectorization.getValue(); 138 139 // Scalable vectorization is disabled if no preference is specified. 140 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 141 Scalable.Value = SK_FixedWidthOnly; 142 143 if (IsVectorized.Value != 1) 144 // If the vectorization width and interleaving count are both 1 then 145 // consider the loop to have been already vectorized because there's 146 // nothing more that we can do. 147 IsVectorized.Value = 148 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 149 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 150 << "LV: Interleaving disabled by the pass manager\n"); 151 } 152 153 void LoopVectorizeHints::setAlreadyVectorized() { 154 LLVMContext &Context = TheLoop->getHeader()->getContext(); 155 156 MDNode *IsVectorizedMD = MDNode::get( 157 Context, 158 {MDString::get(Context, "llvm.loop.isvectorized"), 159 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 160 MDNode *LoopID = TheLoop->getLoopID(); 161 MDNode *NewLoopID = 162 makePostTransformationMetadata(Context, LoopID, 163 {Twine(Prefix(), "vectorize.").str(), 164 Twine(Prefix(), "interleave.").str()}, 165 {IsVectorizedMD}); 166 TheLoop->setLoopID(NewLoopID); 167 168 // Update internal cache. 169 IsVectorized.Value = 1; 170 } 171 172 bool LoopVectorizeHints::allowVectorization( 173 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 174 if (getForce() == LoopVectorizeHints::FK_Disabled) { 175 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 176 emitRemarkWithHints(); 177 return false; 178 } 179 180 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 181 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 182 emitRemarkWithHints(); 183 return false; 184 } 185 186 if (getIsVectorized() == 1) { 187 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 188 // FIXME: Add interleave.disable metadata. This will allow 189 // vectorize.disable to be used without disabling the pass and errors 190 // to differentiate between disabled vectorization and a width of 1. 191 ORE.emit([&]() { 192 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 193 "AllDisabled", L->getStartLoc(), 194 L->getHeader()) 195 << "loop not vectorized: vectorization and interleaving are " 196 "explicitly disabled, or the loop has already been " 197 "vectorized"; 198 }); 199 return false; 200 } 201 202 return true; 203 } 204 205 void LoopVectorizeHints::emitRemarkWithHints() const { 206 using namespace ore; 207 208 ORE.emit([&]() { 209 if (Force.Value == LoopVectorizeHints::FK_Disabled) 210 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 211 TheLoop->getStartLoc(), 212 TheLoop->getHeader()) 213 << "loop not vectorized: vectorization is explicitly disabled"; 214 else { 215 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 216 TheLoop->getStartLoc(), TheLoop->getHeader()); 217 R << "loop not vectorized"; 218 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 219 R << " (Force=" << NV("Force", true); 220 if (Width.Value != 0) 221 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 222 if (getInterleave() != 0) 223 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 224 R << ")"; 225 } 226 return R; 227 } 228 }); 229 } 230 231 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 232 if (getWidth() == ElementCount::getFixed(1)) 233 return LV_NAME; 234 if (getForce() == LoopVectorizeHints::FK_Disabled) 235 return LV_NAME; 236 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 237 return LV_NAME; 238 return OptimizationRemarkAnalysis::AlwaysPrint; 239 } 240 241 bool LoopVectorizeHints::allowReordering() const { 242 // Allow the vectorizer to change the order of operations if enabling 243 // loop hints are provided 244 ElementCount EC = getWidth(); 245 return HintsAllowReordering && 246 (getForce() == LoopVectorizeHints::FK_Enabled || 247 EC.getKnownMinValue() > 1); 248 } 249 250 void LoopVectorizeHints::getHintsFromMetadata() { 251 MDNode *LoopID = TheLoop->getLoopID(); 252 if (!LoopID) 253 return; 254 255 // First operand should refer to the loop id itself. 256 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 257 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 258 259 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 260 const MDString *S = nullptr; 261 SmallVector<Metadata *, 4> Args; 262 263 // The expected hint is either a MDString or a MDNode with the first 264 // operand a MDString. 265 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 266 if (!MD || MD->getNumOperands() == 0) 267 continue; 268 S = dyn_cast<MDString>(MD->getOperand(0)); 269 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 270 Args.push_back(MD->getOperand(i)); 271 } else { 272 S = dyn_cast<MDString>(LoopID->getOperand(i)); 273 assert(Args.size() == 0 && "too many arguments for MDString"); 274 } 275 276 if (!S) 277 continue; 278 279 // Check if the hint starts with the loop metadata prefix. 280 StringRef Name = S->getString(); 281 if (Args.size() == 1) 282 setHint(Name, Args[0]); 283 } 284 } 285 286 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 287 if (!Name.startswith(Prefix())) 288 return; 289 Name = Name.substr(Prefix().size(), StringRef::npos); 290 291 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 292 if (!C) 293 return; 294 unsigned Val = C->getZExtValue(); 295 296 Hint *Hints[] = {&Width, &Interleave, &Force, 297 &IsVectorized, &Predicate, &Scalable}; 298 for (auto H : Hints) { 299 if (Name == H->Name) { 300 if (H->validate(Val)) 301 H->Value = Val; 302 else 303 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 304 break; 305 } 306 } 307 } 308 309 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 310 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 311 // executing the inner loop will execute the same iterations). This check is 312 // very constrained for now but it will be relaxed in the future. \p Lp is 313 // considered uniform if it meets all the following conditions: 314 // 1) it has a canonical IV (starting from 0 and with stride 1), 315 // 2) its latch terminator is a conditional branch and, 316 // 3) its latch condition is a compare instruction whose operands are the 317 // canonical IV and an OuterLp invariant. 318 // This check doesn't take into account the uniformity of other conditions not 319 // related to the loop latch because they don't affect the loop uniformity. 320 // 321 // NOTE: We decided to keep all these checks and its associated documentation 322 // together so that we can easily have a picture of the current supported loop 323 // nests. However, some of the current checks don't depend on \p OuterLp and 324 // would be redundantly executed for each \p Lp if we invoked this function for 325 // different candidate outer loops. This is not the case for now because we 326 // don't currently have the infrastructure to evaluate multiple candidate outer 327 // loops and \p OuterLp will be a fixed parameter while we only support explicit 328 // outer loop vectorization. It's also very likely that these checks go away 329 // before introducing the aforementioned infrastructure. However, if this is not 330 // the case, we should move the \p OuterLp independent checks to a separate 331 // function that is only executed once for each \p Lp. 332 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 333 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 334 335 // If Lp is the outer loop, it's uniform by definition. 336 if (Lp == OuterLp) 337 return true; 338 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 339 340 // 1. 341 PHINode *IV = Lp->getCanonicalInductionVariable(); 342 if (!IV) { 343 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 344 return false; 345 } 346 347 // 2. 348 BasicBlock *Latch = Lp->getLoopLatch(); 349 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 350 if (!LatchBr || LatchBr->isUnconditional()) { 351 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 352 return false; 353 } 354 355 // 3. 356 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 357 if (!LatchCmp) { 358 LLVM_DEBUG( 359 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 360 return false; 361 } 362 363 Value *CondOp0 = LatchCmp->getOperand(0); 364 Value *CondOp1 = LatchCmp->getOperand(1); 365 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 366 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 367 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 368 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 369 return false; 370 } 371 372 return true; 373 } 374 375 // Return true if \p Lp and all its nested loops are uniform with regard to \p 376 // OuterLp. 377 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 378 if (!isUniformLoop(Lp, OuterLp)) 379 return false; 380 381 // Check if nested loops are uniform. 382 for (Loop *SubLp : *Lp) 383 if (!isUniformLoopNest(SubLp, OuterLp)) 384 return false; 385 386 return true; 387 } 388 389 /// Check whether it is safe to if-convert this phi node. 390 /// 391 /// Phi nodes with constant expressions that can trap are not safe to if 392 /// convert. 393 static bool canIfConvertPHINodes(BasicBlock *BB) { 394 for (PHINode &Phi : BB->phis()) { 395 for (Value *V : Phi.incoming_values()) 396 if (auto *C = dyn_cast<Constant>(V)) 397 if (C->canTrap()) 398 return false; 399 } 400 return true; 401 } 402 403 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 404 if (Ty->isPointerTy()) 405 return DL.getIntPtrType(Ty); 406 407 // It is possible that char's or short's overflow when we ask for the loop's 408 // trip count, work around this by changing the type size. 409 if (Ty->getScalarSizeInBits() < 32) 410 return Type::getInt32Ty(Ty->getContext()); 411 412 return Ty; 413 } 414 415 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 416 Ty0 = convertPointerToIntegerType(DL, Ty0); 417 Ty1 = convertPointerToIntegerType(DL, Ty1); 418 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 419 return Ty0; 420 return Ty1; 421 } 422 423 /// Check that the instruction has outside loop users and is not an 424 /// identified reduction variable. 425 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 426 SmallPtrSetImpl<Value *> &AllowedExit) { 427 // Reductions, Inductions and non-header phis are allowed to have exit users. All 428 // other instructions must not have external users. 429 if (!AllowedExit.count(Inst)) 430 // Check that all of the users of the loop are inside the BB. 431 for (User *U : Inst->users()) { 432 Instruction *UI = cast<Instruction>(U); 433 // This user may be a reduction exit value. 434 if (!TheLoop->contains(UI)) { 435 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 436 return true; 437 } 438 } 439 return false; 440 } 441 442 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 443 Value *Ptr) const { 444 const ValueToValueMap &Strides = 445 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 446 447 Function *F = TheLoop->getHeader()->getParent(); 448 bool OptForSize = F->hasOptSize() || 449 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 450 PGSOQueryType::IRPass); 451 bool CanAddPredicate = !OptForSize; 452 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 453 CanAddPredicate, false); 454 if (Stride == 1 || Stride == -1) 455 return Stride; 456 return 0; 457 } 458 459 bool LoopVectorizationLegality::isUniform(Value *V) { 460 return LAI->isUniform(V); 461 } 462 463 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 464 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 465 // Store the result and return it at the end instead of exiting early, in case 466 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 467 bool Result = true; 468 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 469 470 for (BasicBlock *BB : TheLoop->blocks()) { 471 // Check whether the BB terminator is a BranchInst. Any other terminator is 472 // not supported yet. 473 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 474 if (!Br) { 475 reportVectorizationFailure("Unsupported basic block terminator", 476 "loop control flow is not understood by vectorizer", 477 "CFGNotUnderstood", ORE, TheLoop); 478 if (DoExtraAnalysis) 479 Result = false; 480 else 481 return false; 482 } 483 484 // Check whether the BranchInst is a supported one. Only unconditional 485 // branches, conditional branches with an outer loop invariant condition or 486 // backedges are supported. 487 // FIXME: We skip these checks when VPlan predication is enabled as we 488 // want to allow divergent branches. This whole check will be removed 489 // once VPlan predication is on by default. 490 if (!EnableVPlanPredication && Br && Br->isConditional() && 491 !TheLoop->isLoopInvariant(Br->getCondition()) && 492 !LI->isLoopHeader(Br->getSuccessor(0)) && 493 !LI->isLoopHeader(Br->getSuccessor(1))) { 494 reportVectorizationFailure("Unsupported conditional branch", 495 "loop control flow is not understood by vectorizer", 496 "CFGNotUnderstood", ORE, TheLoop); 497 if (DoExtraAnalysis) 498 Result = false; 499 else 500 return false; 501 } 502 } 503 504 // Check whether inner loops are uniform. At this point, we only support 505 // simple outer loops scenarios with uniform nested loops. 506 if (!isUniformLoopNest(TheLoop /*loop nest*/, 507 TheLoop /*context outer loop*/)) { 508 reportVectorizationFailure("Outer loop contains divergent loops", 509 "loop control flow is not understood by vectorizer", 510 "CFGNotUnderstood", ORE, TheLoop); 511 if (DoExtraAnalysis) 512 Result = false; 513 else 514 return false; 515 } 516 517 // Check whether we are able to set up outer loop induction. 518 if (!setupOuterLoopInductions()) { 519 reportVectorizationFailure("Unsupported outer loop Phi(s)", 520 "Unsupported outer loop Phi(s)", 521 "UnsupportedPhi", ORE, TheLoop); 522 if (DoExtraAnalysis) 523 Result = false; 524 else 525 return false; 526 } 527 528 return Result; 529 } 530 531 void LoopVectorizationLegality::addInductionPhi( 532 PHINode *Phi, const InductionDescriptor &ID, 533 SmallPtrSetImpl<Value *> &AllowedExit) { 534 Inductions[Phi] = ID; 535 536 // In case this induction also comes with casts that we know we can ignore 537 // in the vectorized loop body, record them here. All casts could be recorded 538 // here for ignoring, but suffices to record only the first (as it is the 539 // only one that may bw used outside the cast sequence). 540 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 541 if (!Casts.empty()) 542 InductionCastsToIgnore.insert(*Casts.begin()); 543 544 Type *PhiTy = Phi->getType(); 545 const DataLayout &DL = Phi->getModule()->getDataLayout(); 546 547 // Get the widest type. 548 if (!PhiTy->isFloatingPointTy()) { 549 if (!WidestIndTy) 550 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 551 else 552 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 553 } 554 555 // Int inductions are special because we only allow one IV. 556 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 557 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 558 isa<Constant>(ID.getStartValue()) && 559 cast<Constant>(ID.getStartValue())->isNullValue()) { 560 561 // Use the phi node with the widest type as induction. Use the last 562 // one if there are multiple (no good reason for doing this other 563 // than it is expedient). We've checked that it begins at zero and 564 // steps by one, so this is a canonical induction variable. 565 if (!PrimaryInduction || PhiTy == WidestIndTy) 566 PrimaryInduction = Phi; 567 } 568 569 // Both the PHI node itself, and the "post-increment" value feeding 570 // back into the PHI node may have external users. 571 // We can allow those uses, except if the SCEVs we have for them rely 572 // on predicates that only hold within the loop, since allowing the exit 573 // currently means re-using this SCEV outside the loop (see PR33706 for more 574 // details). 575 if (PSE.getUnionPredicate().isAlwaysTrue()) { 576 AllowedExit.insert(Phi); 577 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 578 } 579 580 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 581 } 582 583 bool LoopVectorizationLegality::setupOuterLoopInductions() { 584 BasicBlock *Header = TheLoop->getHeader(); 585 586 // Returns true if a given Phi is a supported induction. 587 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 588 InductionDescriptor ID; 589 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 590 ID.getKind() == InductionDescriptor::IK_IntInduction) { 591 addInductionPhi(&Phi, ID, AllowedExit); 592 return true; 593 } else { 594 // Bail out for any Phi in the outer loop header that is not a supported 595 // induction. 596 LLVM_DEBUG( 597 dbgs() 598 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 599 return false; 600 } 601 }; 602 603 if (llvm::all_of(Header->phis(), isSupportedPhi)) 604 return true; 605 else 606 return false; 607 } 608 609 /// Checks if a function is scalarizable according to the TLI, in 610 /// the sense that it should be vectorized and then expanded in 611 /// multiple scalar calls. This is represented in the 612 /// TLI via mappings that do not specify a vector name, as in the 613 /// following example: 614 /// 615 /// const VecDesc VecIntrinsics[] = { 616 /// {"llvm.phx.abs.i32", "", 4} 617 /// }; 618 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 619 const StringRef ScalarName = CI.getCalledFunction()->getName(); 620 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 621 // Check that all known VFs are not associated to a vector 622 // function, i.e. the vector name is emty. 623 if (Scalarize) { 624 ElementCount WidestFixedVF, WidestScalableVF; 625 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 626 for (ElementCount VF = ElementCount::getFixed(2); 627 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 628 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 629 for (ElementCount VF = ElementCount::getScalable(1); 630 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 631 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 632 assert((WidestScalableVF.isZero() || !Scalarize) && 633 "Caller may decide to scalarize a variant using a scalable VF"); 634 } 635 return Scalarize; 636 } 637 638 bool LoopVectorizationLegality::canVectorizeInstrs() { 639 BasicBlock *Header = TheLoop->getHeader(); 640 641 // For each block in the loop. 642 for (BasicBlock *BB : TheLoop->blocks()) { 643 // Scan the instructions in the block and look for hazards. 644 for (Instruction &I : *BB) { 645 if (auto *Phi = dyn_cast<PHINode>(&I)) { 646 Type *PhiTy = Phi->getType(); 647 // Check that this PHI type is allowed. 648 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 649 !PhiTy->isPointerTy()) { 650 reportVectorizationFailure("Found a non-int non-pointer PHI", 651 "loop control flow is not understood by vectorizer", 652 "CFGNotUnderstood", ORE, TheLoop); 653 return false; 654 } 655 656 // If this PHINode is not in the header block, then we know that we 657 // can convert it to select during if-conversion. No need to check if 658 // the PHIs in this block are induction or reduction variables. 659 if (BB != Header) { 660 // Non-header phi nodes that have outside uses can be vectorized. Add 661 // them to the list of allowed exits. 662 // Unsafe cyclic dependencies with header phis are identified during 663 // legalization for reduction, induction and first order 664 // recurrences. 665 AllowedExit.insert(&I); 666 continue; 667 } 668 669 // We only allow if-converted PHIs with exactly two incoming values. 670 if (Phi->getNumIncomingValues() != 2) { 671 reportVectorizationFailure("Found an invalid PHI", 672 "loop control flow is not understood by vectorizer", 673 "CFGNotUnderstood", ORE, TheLoop, Phi); 674 return false; 675 } 676 677 RecurrenceDescriptor RedDes; 678 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 679 DT)) { 680 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 681 AllowedExit.insert(RedDes.getLoopExitInstr()); 682 Reductions[Phi] = RedDes; 683 continue; 684 } 685 686 // TODO: Instead of recording the AllowedExit, it would be good to record the 687 // complementary set: NotAllowedExit. These include (but may not be 688 // limited to): 689 // 1. Reduction phis as they represent the one-before-last value, which 690 // is not available when vectorized 691 // 2. Induction phis and increment when SCEV predicates cannot be used 692 // outside the loop - see addInductionPhi 693 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 694 // outside the loop - see call to hasOutsideLoopUser in the non-phi 695 // handling below 696 // 4. FirstOrderRecurrence phis that can possibly be handled by 697 // extraction. 698 // By recording these, we can then reason about ways to vectorize each 699 // of these NotAllowedExit. 700 InductionDescriptor ID; 701 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 702 addInductionPhi(Phi, ID, AllowedExit); 703 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 704 continue; 705 } 706 707 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 708 SinkAfter, DT)) { 709 AllowedExit.insert(Phi); 710 FirstOrderRecurrences.insert(Phi); 711 continue; 712 } 713 714 // As a last resort, coerce the PHI to a AddRec expression 715 // and re-try classifying it a an induction PHI. 716 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 717 addInductionPhi(Phi, ID, AllowedExit); 718 continue; 719 } 720 721 reportVectorizationFailure("Found an unidentified PHI", 722 "value that could not be identified as " 723 "reduction is used outside the loop", 724 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 725 return false; 726 } // end of PHI handling 727 728 // We handle calls that: 729 // * Are debug info intrinsics. 730 // * Have a mapping to an IR intrinsic. 731 // * Have a vector version available. 732 auto *CI = dyn_cast<CallInst>(&I); 733 734 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 735 !isa<DbgInfoIntrinsic>(CI) && 736 !(CI->getCalledFunction() && TLI && 737 (!VFDatabase::getMappings(*CI).empty() || 738 isTLIScalarize(*TLI, *CI)))) { 739 // If the call is a recognized math libary call, it is likely that 740 // we can vectorize it given loosened floating-point constraints. 741 LibFunc Func; 742 bool IsMathLibCall = 743 TLI && CI->getCalledFunction() && 744 CI->getType()->isFloatingPointTy() && 745 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 746 TLI->hasOptimizedCodeGen(Func); 747 748 if (IsMathLibCall) { 749 // TODO: Ideally, we should not use clang-specific language here, 750 // but it's hard to provide meaningful yet generic advice. 751 // Also, should this be guarded by allowExtraAnalysis() and/or be part 752 // of the returned info from isFunctionVectorizable()? 753 reportVectorizationFailure( 754 "Found a non-intrinsic callsite", 755 "library call cannot be vectorized. " 756 "Try compiling with -fno-math-errno, -ffast-math, " 757 "or similar flags", 758 "CantVectorizeLibcall", ORE, TheLoop, CI); 759 } else { 760 reportVectorizationFailure("Found a non-intrinsic callsite", 761 "call instruction cannot be vectorized", 762 "CantVectorizeLibcall", ORE, TheLoop, CI); 763 } 764 return false; 765 } 766 767 // Some intrinsics have scalar arguments and should be same in order for 768 // them to be vectorized (i.e. loop invariant). 769 if (CI) { 770 auto *SE = PSE.getSE(); 771 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 772 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) 773 if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { 774 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 775 reportVectorizationFailure("Found unvectorizable intrinsic", 776 "intrinsic instruction cannot be vectorized", 777 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 778 return false; 779 } 780 } 781 } 782 783 // Check that the instruction return type is vectorizable. 784 // Also, we can't vectorize extractelement instructions. 785 if ((!VectorType::isValidElementType(I.getType()) && 786 !I.getType()->isVoidTy()) || 787 isa<ExtractElementInst>(I)) { 788 reportVectorizationFailure("Found unvectorizable type", 789 "instruction return type cannot be vectorized", 790 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 791 return false; 792 } 793 794 // Check that the stored type is vectorizable. 795 if (auto *ST = dyn_cast<StoreInst>(&I)) { 796 Type *T = ST->getValueOperand()->getType(); 797 if (!VectorType::isValidElementType(T)) { 798 reportVectorizationFailure("Store instruction cannot be vectorized", 799 "store instruction cannot be vectorized", 800 "CantVectorizeStore", ORE, TheLoop, ST); 801 return false; 802 } 803 804 // For nontemporal stores, check that a nontemporal vector version is 805 // supported on the target. 806 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 807 // Arbitrarily try a vector of 2 elements. 808 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 809 assert(VecTy && "did not find vectorized version of stored type"); 810 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 811 reportVectorizationFailure( 812 "nontemporal store instruction cannot be vectorized", 813 "nontemporal store instruction cannot be vectorized", 814 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 815 return false; 816 } 817 } 818 819 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 820 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 821 // For nontemporal loads, check that a nontemporal vector version is 822 // supported on the target (arbitrarily try a vector of 2 elements). 823 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 824 assert(VecTy && "did not find vectorized version of load type"); 825 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 826 reportVectorizationFailure( 827 "nontemporal load instruction cannot be vectorized", 828 "nontemporal load instruction cannot be vectorized", 829 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 830 return false; 831 } 832 } 833 834 // FP instructions can allow unsafe algebra, thus vectorizable by 835 // non-IEEE-754 compliant SIMD units. 836 // This applies to floating-point math operations and calls, not memory 837 // operations, shuffles, or casts, as they don't change precision or 838 // semantics. 839 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 840 !I.isFast()) { 841 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 842 Hints->setPotentiallyUnsafe(); 843 } 844 845 // Reduction instructions are allowed to have exit users. 846 // All other instructions must not have external users. 847 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 848 // We can safely vectorize loops where instructions within the loop are 849 // used outside the loop only if the SCEV predicates within the loop is 850 // same as outside the loop. Allowing the exit means reusing the SCEV 851 // outside the loop. 852 if (PSE.getUnionPredicate().isAlwaysTrue()) { 853 AllowedExit.insert(&I); 854 continue; 855 } 856 reportVectorizationFailure("Value cannot be used outside the loop", 857 "value cannot be used outside the loop", 858 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 859 return false; 860 } 861 } // next instr. 862 } 863 864 if (!PrimaryInduction) { 865 if (Inductions.empty()) { 866 reportVectorizationFailure("Did not find one integer induction var", 867 "loop induction variable could not be identified", 868 "NoInductionVariable", ORE, TheLoop); 869 return false; 870 } else if (!WidestIndTy) { 871 reportVectorizationFailure("Did not find one integer induction var", 872 "integer loop induction variable could not be identified", 873 "NoIntegerInductionVariable", ORE, TheLoop); 874 return false; 875 } else { 876 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 877 } 878 } 879 880 // For first order recurrences, we use the previous value (incoming value from 881 // the latch) to check if it dominates all users of the recurrence. Bail out 882 // if we have to sink such an instruction for another recurrence, as the 883 // dominance requirement may not hold after sinking. 884 BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 885 if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 886 Instruction *V = 887 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 888 return SinkAfter.find(V) != SinkAfter.end(); 889 })) 890 return false; 891 892 // Now we know the widest induction type, check if our found induction 893 // is the same size. If it's not, unset it here and InnerLoopVectorizer 894 // will create another. 895 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 896 PrimaryInduction = nullptr; 897 898 return true; 899 } 900 901 bool LoopVectorizationLegality::canVectorizeMemory() { 902 LAI = &(*GetLAA)(*TheLoop); 903 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 904 if (LAR) { 905 ORE->emit([&]() { 906 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 907 "loop not vectorized: ", *LAR); 908 }); 909 } 910 911 if (!LAI->canVectorizeMemory()) 912 return false; 913 914 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 915 reportVectorizationFailure("Stores to a uniform address", 916 "write to a loop invariant address could not be vectorized", 917 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 918 return false; 919 } 920 921 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 922 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 923 return true; 924 } 925 926 bool LoopVectorizationLegality::canVectorizeFPMath( 927 bool EnableStrictReductions) { 928 929 // First check if there is any ExactFP math or if we allow reassociations 930 if (!Requirements->getExactFPInst() || Hints->allowReordering()) 931 return true; 932 933 // If the above is false, we have ExactFPMath & do not allow reordering. 934 // If the EnableStrictReductions flag is set, first check if we have any 935 // Exact FP induction vars, which we cannot vectorize. 936 if (!EnableStrictReductions || 937 any_of(getInductionVars(), [&](auto &Induction) -> bool { 938 InductionDescriptor IndDesc = Induction.second; 939 return IndDesc.getExactFPMathInst(); 940 })) 941 return false; 942 943 // We can now only vectorize if all reductions with Exact FP math also 944 // have the isOrdered flag set, which indicates that we can move the 945 // reduction operations in-loop. 946 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 947 const RecurrenceDescriptor &RdxDesc = Reduction.second; 948 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); 949 })); 950 } 951 952 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 953 Value *In0 = const_cast<Value *>(V); 954 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 955 if (!PN) 956 return false; 957 958 return Inductions.count(PN); 959 } 960 961 const InductionDescriptor * 962 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 963 if (!isInductionPhi(Phi)) 964 return nullptr; 965 auto &ID = getInductionVars().find(Phi)->second; 966 if (ID.getKind() == InductionDescriptor::IK_IntInduction || 967 ID.getKind() == InductionDescriptor::IK_FpInduction) 968 return &ID; 969 return nullptr; 970 } 971 972 bool LoopVectorizationLegality::isCastedInductionVariable( 973 const Value *V) const { 974 auto *Inst = dyn_cast<Instruction>(V); 975 return (Inst && InductionCastsToIgnore.count(Inst)); 976 } 977 978 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 979 return isInductionPhi(V) || isCastedInductionVariable(V); 980 } 981 982 bool LoopVectorizationLegality::isFirstOrderRecurrence( 983 const PHINode *Phi) const { 984 return FirstOrderRecurrences.count(Phi); 985 } 986 987 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 988 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 989 } 990 991 bool LoopVectorizationLegality::blockCanBePredicated( 992 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 993 SmallPtrSetImpl<const Instruction *> &MaskedOp, 994 SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const { 995 for (Instruction &I : *BB) { 996 // Check that we don't have a constant expression that can trap as operand. 997 for (Value *Operand : I.operands()) { 998 if (auto *C = dyn_cast<Constant>(Operand)) 999 if (C->canTrap()) 1000 return false; 1001 } 1002 1003 // We can predicate blocks with calls to assume, as long as we drop them in 1004 // case we flatten the CFG via predication. 1005 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 1006 ConditionalAssumes.insert(&I); 1007 continue; 1008 } 1009 1010 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1011 // TODO: there might be cases that it should block the vectorization. Let's 1012 // ignore those for now. 1013 if (isa<NoAliasScopeDeclInst>(&I)) 1014 continue; 1015 1016 // We might be able to hoist the load. 1017 if (I.mayReadFromMemory()) { 1018 auto *LI = dyn_cast<LoadInst>(&I); 1019 if (!LI) 1020 return false; 1021 if (!SafePtrs.count(LI->getPointerOperand())) { 1022 MaskedOp.insert(LI); 1023 continue; 1024 } 1025 } 1026 1027 if (I.mayWriteToMemory()) { 1028 auto *SI = dyn_cast<StoreInst>(&I); 1029 if (!SI) 1030 return false; 1031 // Predicated store requires some form of masking: 1032 // 1) masked store HW instruction, 1033 // 2) emulation via load-blend-store (only if safe and legal to do so, 1034 // be aware on the race conditions), or 1035 // 3) element-by-element predicate check and scalar store. 1036 MaskedOp.insert(SI); 1037 continue; 1038 } 1039 if (I.mayThrow()) 1040 return false; 1041 } 1042 1043 return true; 1044 } 1045 1046 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1047 if (!EnableIfConversion) { 1048 reportVectorizationFailure("If-conversion is disabled", 1049 "if-conversion is disabled", 1050 "IfConversionDisabled", 1051 ORE, TheLoop); 1052 return false; 1053 } 1054 1055 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1056 1057 // A list of pointers which are known to be dereferenceable within scope of 1058 // the loop body for each iteration of the loop which executes. That is, 1059 // the memory pointed to can be dereferenced (with the access size implied by 1060 // the value's type) unconditionally within the loop header without 1061 // introducing a new fault. 1062 SmallPtrSet<Value *, 8> SafePointers; 1063 1064 // Collect safe addresses. 1065 for (BasicBlock *BB : TheLoop->blocks()) { 1066 if (!blockNeedsPredication(BB)) { 1067 for (Instruction &I : *BB) 1068 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1069 SafePointers.insert(Ptr); 1070 continue; 1071 } 1072 1073 // For a block which requires predication, a address may be safe to access 1074 // in the loop w/o predication if we can prove dereferenceability facts 1075 // sufficient to ensure it'll never fault within the loop. For the moment, 1076 // we restrict this to loads; stores are more complicated due to 1077 // concurrency restrictions. 1078 ScalarEvolution &SE = *PSE.getSE(); 1079 for (Instruction &I : *BB) { 1080 LoadInst *LI = dyn_cast<LoadInst>(&I); 1081 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1082 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 1083 SafePointers.insert(LI->getPointerOperand()); 1084 } 1085 } 1086 1087 // Collect the blocks that need predication. 1088 BasicBlock *Header = TheLoop->getHeader(); 1089 for (BasicBlock *BB : TheLoop->blocks()) { 1090 // We don't support switch statements inside loops. 1091 if (!isa<BranchInst>(BB->getTerminator())) { 1092 reportVectorizationFailure("Loop contains a switch statement", 1093 "loop contains a switch statement", 1094 "LoopContainsSwitch", ORE, TheLoop, 1095 BB->getTerminator()); 1096 return false; 1097 } 1098 1099 // We must be able to predicate all blocks that need to be predicated. 1100 if (blockNeedsPredication(BB)) { 1101 if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1102 ConditionalAssumes)) { 1103 reportVectorizationFailure( 1104 "Control flow cannot be substituted for a select", 1105 "control flow cannot be substituted for a select", 1106 "NoCFGForSelect", ORE, TheLoop, 1107 BB->getTerminator()); 1108 return false; 1109 } 1110 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 1111 reportVectorizationFailure( 1112 "Control flow cannot be substituted for a select", 1113 "control flow cannot be substituted for a select", 1114 "NoCFGForSelect", ORE, TheLoop, 1115 BB->getTerminator()); 1116 return false; 1117 } 1118 } 1119 1120 // We can if-convert this loop. 1121 return true; 1122 } 1123 1124 // Helper function to canVectorizeLoopNestCFG. 1125 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1126 bool UseVPlanNativePath) { 1127 assert((UseVPlanNativePath || Lp->isInnermost()) && 1128 "VPlan-native path is not enabled."); 1129 1130 // TODO: ORE should be improved to show more accurate information when an 1131 // outer loop can't be vectorized because a nested loop is not understood or 1132 // legal. Something like: "outer_loop_location: loop not vectorized: 1133 // (inner_loop_location) loop control flow is not understood by vectorizer". 1134 1135 // Store the result and return it at the end instead of exiting early, in case 1136 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1137 bool Result = true; 1138 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1139 1140 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1141 // be canonicalized. 1142 if (!Lp->getLoopPreheader()) { 1143 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1144 "loop control flow is not understood by vectorizer", 1145 "CFGNotUnderstood", ORE, TheLoop); 1146 if (DoExtraAnalysis) 1147 Result = false; 1148 else 1149 return false; 1150 } 1151 1152 // We must have a single backedge. 1153 if (Lp->getNumBackEdges() != 1) { 1154 reportVectorizationFailure("The loop must have a single backedge", 1155 "loop control flow is not understood by vectorizer", 1156 "CFGNotUnderstood", ORE, TheLoop); 1157 if (DoExtraAnalysis) 1158 Result = false; 1159 else 1160 return false; 1161 } 1162 1163 return Result; 1164 } 1165 1166 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1167 Loop *Lp, bool UseVPlanNativePath) { 1168 // Store the result and return it at the end instead of exiting early, in case 1169 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1170 bool Result = true; 1171 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1172 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1173 if (DoExtraAnalysis) 1174 Result = false; 1175 else 1176 return false; 1177 } 1178 1179 // Recursively check whether the loop control flow of nested loops is 1180 // understood. 1181 for (Loop *SubLp : *Lp) 1182 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1183 if (DoExtraAnalysis) 1184 Result = false; 1185 else 1186 return false; 1187 } 1188 1189 return Result; 1190 } 1191 1192 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1193 // Store the result and return it at the end instead of exiting early, in case 1194 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1195 bool Result = true; 1196 1197 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1198 // Check whether the loop-related control flow in the loop nest is expected by 1199 // vectorizer. 1200 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1201 if (DoExtraAnalysis) 1202 Result = false; 1203 else 1204 return false; 1205 } 1206 1207 // We need to have a loop header. 1208 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1209 << '\n'); 1210 1211 // Specific checks for outer loops. We skip the remaining legal checks at this 1212 // point because they don't support outer loops. 1213 if (!TheLoop->isInnermost()) { 1214 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1215 1216 if (!canVectorizeOuterLoop()) { 1217 reportVectorizationFailure("Unsupported outer loop", 1218 "unsupported outer loop", 1219 "UnsupportedOuterLoop", 1220 ORE, TheLoop); 1221 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1222 // outer loops. 1223 return false; 1224 } 1225 1226 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1227 return Result; 1228 } 1229 1230 assert(TheLoop->isInnermost() && "Inner loop expected."); 1231 // Check if we can if-convert non-single-bb loops. 1232 unsigned NumBlocks = TheLoop->getNumBlocks(); 1233 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1234 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1235 if (DoExtraAnalysis) 1236 Result = false; 1237 else 1238 return false; 1239 } 1240 1241 // Check if we can vectorize the instructions and CFG in this loop. 1242 if (!canVectorizeInstrs()) { 1243 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1244 if (DoExtraAnalysis) 1245 Result = false; 1246 else 1247 return false; 1248 } 1249 1250 // Go over each instruction and look at memory deps. 1251 if (!canVectorizeMemory()) { 1252 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1253 if (DoExtraAnalysis) 1254 Result = false; 1255 else 1256 return false; 1257 } 1258 1259 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1260 << (LAI->getRuntimePointerChecking()->Need 1261 ? " (with a runtime bound check)" 1262 : "") 1263 << "!\n"); 1264 1265 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1266 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1267 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1268 1269 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1270 reportVectorizationFailure("Too many SCEV checks needed", 1271 "Too many SCEV assumptions need to be made and checked at runtime", 1272 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1273 if (DoExtraAnalysis) 1274 Result = false; 1275 else 1276 return false; 1277 } 1278 1279 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1280 // we can vectorize, and at this point we don't have any other mem analysis 1281 // which may limit our maximum vectorization factor, so just return true with 1282 // no restrictions. 1283 return Result; 1284 } 1285 1286 bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1287 1288 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1289 1290 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1291 1292 for (auto &Reduction : getReductionVars()) 1293 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1294 1295 // TODO: handle non-reduction outside users when tail is folded by masking. 1296 for (auto *AE : AllowedExit) { 1297 // Check that all users of allowed exit values are inside the loop or 1298 // are the live-out of a reduction. 1299 if (ReductionLiveOuts.count(AE)) 1300 continue; 1301 for (User *U : AE->users()) { 1302 Instruction *UI = cast<Instruction>(U); 1303 if (TheLoop->contains(UI)) 1304 continue; 1305 LLVM_DEBUG( 1306 dbgs() 1307 << "LV: Cannot fold tail by masking, loop has an outside user for " 1308 << *UI << "\n"); 1309 return false; 1310 } 1311 } 1312 1313 // The list of pointers that we can safely read and write to remains empty. 1314 SmallPtrSet<Value *, 8> SafePointers; 1315 1316 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1317 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1318 1319 // Check and mark all blocks for predication, including those that ordinarily 1320 // do not need predication such as the header block. 1321 for (BasicBlock *BB : TheLoop->blocks()) { 1322 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 1323 TmpConditionalAssumes)) { 1324 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1325 return false; 1326 } 1327 } 1328 1329 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1330 1331 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1332 ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1333 TmpConditionalAssumes.end()); 1334 1335 return true; 1336 } 1337 1338 } // namespace llvm 1339