xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/ConstantFolding.h"
3 #include "llvm/Analysis/ValueTracking.h"
4 #include "llvm/IR/IRBuilder.h"
5 #include "llvm/Support/Debug.h"
6 
7 #define DEBUG_TYPE "vncoerce"
8 
9 namespace llvm {
10 namespace VNCoercion {
11 
12 static bool isFirstClassAggregateOrScalableType(Type *Ty) {
13   return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
14 }
15 
16 /// Return true if coerceAvailableValueToLoadType will succeed.
17 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
18                                      const DataLayout &DL) {
19   Type *StoredTy = StoredVal->getType();
20 
21   if (StoredTy == LoadTy)
22     return true;
23 
24   // If the loaded/stored value is a first class array/struct, or scalable type,
25   // don't try to transform them. We need to be able to bitcast to integer.
26   if (isFirstClassAggregateOrScalableType(LoadTy) ||
27       isFirstClassAggregateOrScalableType(StoredTy))
28     return false;
29 
30   uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize();
31 
32   // The store size must be byte-aligned to support future type casts.
33   if (llvm::alignTo(StoreSize, 8) != StoreSize)
34     return false;
35 
36   // The store has to be at least as big as the load.
37   if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize())
38     return false;
39 
40   bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
41   bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
42   // Don't coerce non-integral pointers to integers or vice versa.
43   if (StoredNI != LoadNI) {
44     // As a special case, allow coercion of memset used to initialize
45     // an array w/null.  Despite non-integral pointers not generally having a
46     // specific bit pattern, we do assume null is zero.
47     if (auto *CI = dyn_cast<Constant>(StoredVal))
48       return CI->isNullValue();
49     return false;
50   } else if (StoredNI && LoadNI &&
51              StoredTy->getPointerAddressSpace() !=
52                  LoadTy->getPointerAddressSpace()) {
53     return false;
54   }
55 
56 
57   // The implementation below uses inttoptr for vectors of unequal size; we
58   // can't allow this for non integral pointers. We could teach it to extract
59   // exact subvectors if desired.
60   if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize())
61     return false;
62 
63   return true;
64 }
65 
66 template <class T, class HelperClass>
67 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
68                                                HelperClass &Helper,
69                                                const DataLayout &DL) {
70   assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
71          "precondition violation - materialization can't fail");
72   if (auto *C = dyn_cast<Constant>(StoredVal))
73     StoredVal = ConstantFoldConstant(C, DL);
74 
75   // If this is already the right type, just return it.
76   Type *StoredValTy = StoredVal->getType();
77 
78   uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize();
79   uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize();
80 
81   // If the store and reload are the same size, we can always reuse it.
82   if (StoredValSize == LoadedValSize) {
83     // Pointer to Pointer -> use bitcast.
84     if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
85       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
86     } else {
87       // Convert source pointers to integers, which can be bitcast.
88       if (StoredValTy->isPtrOrPtrVectorTy()) {
89         StoredValTy = DL.getIntPtrType(StoredValTy);
90         StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
91       }
92 
93       Type *TypeToCastTo = LoadedTy;
94       if (TypeToCastTo->isPtrOrPtrVectorTy())
95         TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
96 
97       if (StoredValTy != TypeToCastTo)
98         StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
99 
100       // Cast to pointer if the load needs a pointer type.
101       if (LoadedTy->isPtrOrPtrVectorTy())
102         StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
103     }
104 
105     if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
106       StoredVal = ConstantFoldConstant(C, DL);
107 
108     return StoredVal;
109   }
110   // If the loaded value is smaller than the available value, then we can
111   // extract out a piece from it.  If the available value is too small, then we
112   // can't do anything.
113   assert(StoredValSize >= LoadedValSize &&
114          "canCoerceMustAliasedValueToLoad fail");
115 
116   // Convert source pointers to integers, which can be manipulated.
117   if (StoredValTy->isPtrOrPtrVectorTy()) {
118     StoredValTy = DL.getIntPtrType(StoredValTy);
119     StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
120   }
121 
122   // Convert vectors and fp to integer, which can be manipulated.
123   if (!StoredValTy->isIntegerTy()) {
124     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
125     StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
126   }
127 
128   // If this is a big-endian system, we need to shift the value down to the low
129   // bits so that a truncate will work.
130   if (DL.isBigEndian()) {
131     uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() -
132                         DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize();
133     StoredVal = Helper.CreateLShr(
134         StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
135   }
136 
137   // Truncate the integer to the right size now.
138   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
139   StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
140 
141   if (LoadedTy != NewIntTy) {
142     // If the result is a pointer, inttoptr.
143     if (LoadedTy->isPtrOrPtrVectorTy())
144       StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
145     else
146       // Otherwise, bitcast.
147       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
148   }
149 
150   if (auto *C = dyn_cast<Constant>(StoredVal))
151     StoredVal = ConstantFoldConstant(C, DL);
152 
153   return StoredVal;
154 }
155 
156 /// If we saw a store of a value to memory, and
157 /// then a load from a must-aliased pointer of a different type, try to coerce
158 /// the stored value.  LoadedTy is the type of the load we want to replace.
159 /// IRB is IRBuilder used to insert new instructions.
160 ///
161 /// If we can't do it, return null.
162 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
163                                       IRBuilderBase &IRB,
164                                       const DataLayout &DL) {
165   return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
166 }
167 
168 /// This function is called when we have a memdep query of a load that ends up
169 /// being a clobbering memory write (store, memset, memcpy, memmove).  This
170 /// means that the write *may* provide bits used by the load but we can't be
171 /// sure because the pointers don't must-alias.
172 ///
173 /// Check this case to see if there is anything more we can do before we give
174 /// up.  This returns -1 if we have to give up, or a byte number in the stored
175 /// value of the piece that feeds the load.
176 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
177                                           Value *WritePtr,
178                                           uint64_t WriteSizeInBits,
179                                           const DataLayout &DL) {
180   // If the loaded/stored value is a first class array/struct, or scalable type,
181   // don't try to transform them. We need to be able to bitcast to integer.
182   if (isFirstClassAggregateOrScalableType(LoadTy))
183     return -1;
184 
185   int64_t StoreOffset = 0, LoadOffset = 0;
186   Value *StoreBase =
187       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
188   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
189   if (StoreBase != LoadBase)
190     return -1;
191 
192   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize();
193 
194   if ((WriteSizeInBits & 7) | (LoadSize & 7))
195     return -1;
196   uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
197   LoadSize /= 8;
198 
199   // If the Load isn't completely contained within the stored bits, we don't
200   // have all the bits to feed it.  We could do something crazy in the future
201   // (issue a smaller load then merge the bits in) but this seems unlikely to be
202   // valuable.
203   if (StoreOffset > LoadOffset ||
204       StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
205     return -1;
206 
207   // Okay, we can do this transformation.  Return the number of bytes into the
208   // store that the load is.
209   return LoadOffset - StoreOffset;
210 }
211 
212 /// This function is called when we have a
213 /// memdep query of a load that ends up being a clobbering store.
214 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
215                                    StoreInst *DepSI, const DataLayout &DL) {
216   auto *StoredVal = DepSI->getValueOperand();
217 
218   // Cannot handle reading from store of first-class aggregate or scalable type.
219   if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
220     return -1;
221 
222   if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
223     return -1;
224 
225   Value *StorePtr = DepSI->getPointerOperand();
226   uint64_t StoreSize =
227       DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize();
228   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
229                                         DL);
230 }
231 
232 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and
233 /// Size) and compares it against a load.
234 ///
235 /// If the specified load could be safely widened to a larger integer load
236 /// that is 1) still efficient, 2) safe for the target, and 3) would provide
237 /// the specified memory location value, then this function returns the size
238 /// in bytes of the load width to use.  If not, this returns zero.
239 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
240                                                 int64_t MemLocOffs,
241                                                 unsigned MemLocSize,
242                                                 const LoadInst *LI) {
243   // We can only extend simple integer loads.
244   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
245     return 0;
246 
247   // Load widening is hostile to ThreadSanitizer: it may cause false positives
248   // or make the reports more cryptic (access sizes are wrong).
249   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
250     return 0;
251 
252   const DataLayout &DL = LI->getModule()->getDataLayout();
253 
254   // Get the base of this load.
255   int64_t LIOffs = 0;
256   const Value *LIBase =
257       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
258 
259   // If the two pointers are not based on the same pointer, we can't tell that
260   // they are related.
261   if (LIBase != MemLocBase)
262     return 0;
263 
264   // Okay, the two values are based on the same pointer, but returned as
265   // no-alias.  This happens when we have things like two byte loads at "P+1"
266   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
267   // alignment (or the largest native integer type) will allow us to load all
268   // the bits required by MemLoc.
269 
270   // If MemLoc is before LI, then no widening of LI will help us out.
271   if (MemLocOffs < LIOffs)
272     return 0;
273 
274   // Get the alignment of the load in bytes.  We assume that it is safe to load
275   // any legal integer up to this size without a problem.  For example, if we're
276   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
277   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
278   // to i16.
279   unsigned LoadAlign = LI->getAlignment();
280 
281   int64_t MemLocEnd = MemLocOffs + MemLocSize;
282 
283   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
284   if (LIOffs + LoadAlign < MemLocEnd)
285     return 0;
286 
287   // This is the size of the load to try.  Start with the next larger power of
288   // two.
289   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
290   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
291 
292   while (true) {
293     // If this load size is bigger than our known alignment or would not fit
294     // into a native integer register, then we fail.
295     if (NewLoadByteSize > LoadAlign ||
296         !DL.fitsInLegalInteger(NewLoadByteSize * 8))
297       return 0;
298 
299     if (LIOffs + NewLoadByteSize > MemLocEnd &&
300         (LI->getParent()->getParent()->hasFnAttribute(
301              Attribute::SanitizeAddress) ||
302          LI->getParent()->getParent()->hasFnAttribute(
303              Attribute::SanitizeHWAddress)))
304       // We will be reading past the location accessed by the original program.
305       // While this is safe in a regular build, Address Safety analysis tools
306       // may start reporting false warnings. So, don't do widening.
307       return 0;
308 
309     // If a load of this width would include all of MemLoc, then we succeed.
310     if (LIOffs + NewLoadByteSize >= MemLocEnd)
311       return NewLoadByteSize;
312 
313     NewLoadByteSize <<= 1;
314   }
315 }
316 
317 /// This function is called when we have a
318 /// memdep query of a load that ends up being clobbered by another load.  See if
319 /// the other load can feed into the second load.
320 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
321                                   const DataLayout &DL) {
322   // Cannot handle reading from store of first-class aggregate yet.
323   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
324     return -1;
325 
326   if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
327     return -1;
328 
329   Value *DepPtr = DepLI->getPointerOperand();
330   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize();
331   int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
332   if (R != -1)
333     return R;
334 
335   // If we have a load/load clobber an DepLI can be widened to cover this load,
336   // then we should widen it!
337   int64_t LoadOffs = 0;
338   const Value *LoadBase =
339       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
340   unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
341 
342   unsigned Size =
343       getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI);
344   if (Size == 0)
345     return -1;
346 
347   // Check non-obvious conditions enforced by MDA which we rely on for being
348   // able to materialize this potentially available value
349   assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
350   assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
351 
352   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
353 }
354 
355 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
356                                      MemIntrinsic *MI, const DataLayout &DL) {
357   // If the mem operation is a non-constant size, we can't handle it.
358   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
359   if (!SizeCst)
360     return -1;
361   uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
362 
363   // If this is memset, we just need to see if the offset is valid in the size
364   // of the memset..
365   if (MI->getIntrinsicID() == Intrinsic::memset) {
366     if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
367       auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
368       if (!CI || !CI->isZero())
369         return -1;
370     }
371     return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
372                                           MemSizeInBits, DL);
373   }
374 
375   // If we have a memcpy/memmove, the only case we can handle is if this is a
376   // copy from constant memory.  In that case, we can read directly from the
377   // constant memory.
378   MemTransferInst *MTI = cast<MemTransferInst>(MI);
379 
380   Constant *Src = dyn_cast<Constant>(MTI->getSource());
381   if (!Src)
382     return -1;
383 
384   GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
385   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
386     return -1;
387 
388   // See if the access is within the bounds of the transfer.
389   int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
390                                               MemSizeInBits, DL);
391   if (Offset == -1)
392     return Offset;
393 
394   // Otherwise, see if we can constant fold a load from the constant with the
395   // offset applied as appropriate.
396   unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
397   if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
398     return Offset;
399   return -1;
400 }
401 
402 template <class T, class HelperClass>
403 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
404                                      HelperClass &Helper,
405                                      const DataLayout &DL) {
406   LLVMContext &Ctx = SrcVal->getType()->getContext();
407 
408   // If two pointers are in the same address space, they have the same size,
409   // so we don't need to do any truncation, etc. This avoids introducing
410   // ptrtoint instructions for pointers that may be non-integral.
411   if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
412       cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
413           cast<PointerType>(LoadTy)->getAddressSpace()) {
414     return SrcVal;
415   }
416 
417   uint64_t StoreSize =
418       (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8;
419   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8;
420   // Compute which bits of the stored value are being used by the load.  Convert
421   // to an integer type to start with.
422   if (SrcVal->getType()->isPtrOrPtrVectorTy())
423     SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
424   if (!SrcVal->getType()->isIntegerTy())
425     SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
426 
427   // Shift the bits to the least significant depending on endianness.
428   unsigned ShiftAmt;
429   if (DL.isLittleEndian())
430     ShiftAmt = Offset * 8;
431   else
432     ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
433   if (ShiftAmt)
434     SrcVal = Helper.CreateLShr(SrcVal,
435                                ConstantInt::get(SrcVal->getType(), ShiftAmt));
436 
437   if (LoadSize != StoreSize)
438     SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
439                                          IntegerType::get(Ctx, LoadSize * 8));
440   return SrcVal;
441 }
442 
443 /// This function is called when we have a memdep query of a load that ends up
444 /// being a clobbering store.  This means that the store provides bits used by
445 /// the load but the pointers don't must-alias.  Check this case to see if
446 /// there is anything more we can do before we give up.
447 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
448                             Instruction *InsertPt, const DataLayout &DL) {
449 
450   IRBuilder<> Builder(InsertPt);
451   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
452   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
453 }
454 
455 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
456                                        Type *LoadTy, const DataLayout &DL) {
457   ConstantFolder F;
458   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
459   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
460 }
461 
462 /// This function is called when we have a memdep query of a load that ends up
463 /// being a clobbering load.  This means that the load *may* provide bits used
464 /// by the load but we can't be sure because the pointers don't must-alias.
465 /// Check this case to see if there is anything more we can do before we give
466 /// up.
467 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
468                            Instruction *InsertPt, const DataLayout &DL) {
469   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
470   // widen SrcVal out to a larger load.
471   unsigned SrcValStoreSize =
472       DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
473   unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
474   if (Offset + LoadSize > SrcValStoreSize) {
475     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
476     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
477     // If we have a load/load clobber an DepLI can be widened to cover this
478     // load, then we should widen it to the next power of 2 size big enough!
479     unsigned NewLoadSize = Offset + LoadSize;
480     if (!isPowerOf2_32(NewLoadSize))
481       NewLoadSize = NextPowerOf2(NewLoadSize);
482 
483     Value *PtrVal = SrcVal->getPointerOperand();
484     // Insert the new load after the old load.  This ensures that subsequent
485     // memdep queries will find the new load.  We can't easily remove the old
486     // load completely because it is already in the value numbering table.
487     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
488     Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
489     Type *DestPTy =
490         PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
491     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
492     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
493     LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
494     NewLoad->takeName(SrcVal);
495     NewLoad->setAlignment(SrcVal->getAlign());
496 
497     LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
498     LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
499 
500     // Replace uses of the original load with the wider load.  On a big endian
501     // system, we need to shift down to get the relevant bits.
502     Value *RV = NewLoad;
503     if (DL.isBigEndian())
504       RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
505     RV = Builder.CreateTrunc(RV, SrcVal->getType());
506     SrcVal->replaceAllUsesWith(RV);
507 
508     SrcVal = NewLoad;
509   }
510 
511   return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
512 }
513 
514 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
515                                       Type *LoadTy, const DataLayout &DL) {
516   unsigned SrcValStoreSize =
517       DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
518   unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
519   if (Offset + LoadSize > SrcValStoreSize)
520     return nullptr;
521   return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
522 }
523 
524 template <class T, class HelperClass>
525 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
526                                 Type *LoadTy, HelperClass &Helper,
527                                 const DataLayout &DL) {
528   LLVMContext &Ctx = LoadTy->getContext();
529   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
530 
531   // We know that this method is only called when the mem transfer fully
532   // provides the bits for the load.
533   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
534     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
535     // independently of what the offset is.
536     T *Val = cast<T>(MSI->getValue());
537     if (LoadSize != 1)
538       Val =
539           Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
540     T *OneElt = Val;
541 
542     // Splat the value out to the right number of bits.
543     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
544       // If we can double the number of bytes set, do it.
545       if (NumBytesSet * 2 <= LoadSize) {
546         T *ShVal = Helper.CreateShl(
547             Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
548         Val = Helper.CreateOr(Val, ShVal);
549         NumBytesSet <<= 1;
550         continue;
551       }
552 
553       // Otherwise insert one byte at a time.
554       T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
555       Val = Helper.CreateOr(OneElt, ShVal);
556       ++NumBytesSet;
557     }
558 
559     return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
560   }
561 
562   // Otherwise, this is a memcpy/memmove from a constant global.
563   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
564   Constant *Src = cast<Constant>(MTI->getSource());
565 
566   // Otherwise, see if we can constant fold a load from the constant with the
567   // offset applied as appropriate.
568   unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
569   return ConstantFoldLoadFromConstPtr(
570       Src, LoadTy, APInt(IndexSize, Offset), DL);
571 }
572 
573 /// This function is called when we have a
574 /// memdep query of a load that ends up being a clobbering mem intrinsic.
575 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
576                               Type *LoadTy, Instruction *InsertPt,
577                               const DataLayout &DL) {
578   IRBuilder<> Builder(InsertPt);
579   return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
580                                                           LoadTy, Builder, DL);
581 }
582 
583 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
584                                          Type *LoadTy, const DataLayout &DL) {
585   // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
586   // constant is when it's a memset of a non-constant.
587   if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
588     if (!isa<Constant>(MSI->getValue()))
589       return nullptr;
590   ConstantFolder F;
591   return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
592                                                                 LoadTy, F, DL);
593 }
594 } // namespace VNCoercion
595 } // namespace llvm
596