xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision 972a253a57b6f144b0e4a3e2080a2a0076ec55a0)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 //===----------------------------------------------------------------------===//
46 // Helper Functions
47 //===----------------------------------------------------------------------===//
48 
49 static bool ignoreCallingConv(LibFunc Func) {
50   return Func == LibFunc_abs || Func == LibFunc_labs ||
51          Func == LibFunc_llabs || Func == LibFunc_strlen;
52 }
53 
54 /// Return true if it is only used in equality comparisons with With.
55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
56   for (User *U : V->users()) {
57     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
58       if (IC->isEquality() && IC->getOperand(1) == With)
59         continue;
60     // Unknown instruction.
61     return false;
62   }
63   return true;
64 }
65 
66 static bool callHasFloatingPointArgument(const CallInst *CI) {
67   return any_of(CI->operands(), [](const Use &OI) {
68     return OI->getType()->isFloatingPointTy();
69   });
70 }
71 
72 static bool callHasFP128Argument(const CallInst *CI) {
73   return any_of(CI->operands(), [](const Use &OI) {
74     return OI->getType()->isFP128Ty();
75   });
76 }
77 
78 // Convert the entire string Str representing an integer in Base, up to
79 // the terminating nul if present, to a constant according to the rules
80 // of strtoul[l] or, when AsSigned is set, of strtol[l].  On success
81 // return the result, otherwise null.
82 // The function assumes the string is encoded in ASCII and carefully
83 // avoids converting sequences (including "") that the corresponding
84 // library call might fail and set errno for.
85 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
86                               uint64_t Base, bool AsSigned, IRBuilderBase &B) {
87   if (Base < 2 || Base > 36)
88     if (Base != 0)
89       // Fail for an invalid base (required by POSIX).
90       return nullptr;
91 
92   // Strip leading whitespace.
93   for (unsigned i = 0; i != Str.size(); ++i)
94     if (!isSpace((unsigned char)Str[i])) {
95       Str = Str.substr(i);
96       break;
97     }
98 
99   if (Str.empty())
100     // Fail for empty subject sequences (POSIX allows but doesn't require
101     // strtol[l]/strtoul[l] to fail with EINVAL).
102     return nullptr;
103 
104   // Strip but remember the sign.
105   bool Negate = Str[0] == '-';
106   if (Str[0] == '-' || Str[0] == '+') {
107     Str = Str.drop_front();
108     if (Str.empty())
109       // Fail for a sign with nothing after it.
110       return nullptr;
111   }
112 
113   // Set Max to the absolute value of the minimum (for signed), or
114   // to the maximum (for unsigned) value representable in the type.
115   Type *RetTy = CI->getType();
116   unsigned NBits = RetTy->getPrimitiveSizeInBits();
117   uint64_t Max = AsSigned && Negate ? 1 : 0;
118   Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
119 
120   // Autodetect Base if it's zero and consume the "0x" prefix.
121   if (Str.size() > 1) {
122     if (Str[0] == '0') {
123       if (toUpper((unsigned char)Str[1]) == 'X') {
124         if (Str.size() == 2 || (Base && Base != 16))
125           // Fail if Base doesn't allow the "0x" prefix or for the prefix
126           // alone that implementations like BSD set errno to EINVAL for.
127           return nullptr;
128 
129         Str = Str.drop_front(2);
130         Base = 16;
131       }
132       else if (Base == 0)
133         Base = 8;
134     } else if (Base == 0)
135       Base = 10;
136   }
137   else if (Base == 0)
138     Base = 10;
139 
140   // Convert the rest of the subject sequence, not including the sign,
141   // to its uint64_t representation (this assumes the source character
142   // set is ASCII).
143   uint64_t Result = 0;
144   for (unsigned i = 0; i != Str.size(); ++i) {
145     unsigned char DigVal = Str[i];
146     if (isDigit(DigVal))
147       DigVal = DigVal - '0';
148     else {
149       DigVal = toUpper(DigVal);
150       if (isAlpha(DigVal))
151         DigVal = DigVal - 'A' + 10;
152       else
153         return nullptr;
154     }
155 
156     if (DigVal >= Base)
157       // Fail if the digit is not valid in the Base.
158       return nullptr;
159 
160     // Add the digit and fail if the result is not representable in
161     // the (unsigned form of the) destination type.
162     bool VFlow;
163     Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
164     if (VFlow || Result > Max)
165       return nullptr;
166   }
167 
168   if (EndPtr) {
169     // Store the pointer to the end.
170     Value *Off = B.getInt64(Str.size());
171     Value *StrBeg = CI->getArgOperand(0);
172     Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
173     B.CreateStore(StrEnd, EndPtr);
174   }
175 
176   if (Negate)
177     // Unsigned negation doesn't overflow.
178     Result = -Result;
179 
180   return ConstantInt::get(RetTy, Result);
181 }
182 
183 static bool isOnlyUsedInComparisonWithZero(Value *V) {
184   for (User *U : V->users()) {
185     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
186       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
187         if (C->isNullValue())
188           continue;
189     // Unknown instruction.
190     return false;
191   }
192   return true;
193 }
194 
195 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
196                                  const DataLayout &DL) {
197   if (!isOnlyUsedInComparisonWithZero(CI))
198     return false;
199 
200   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
201     return false;
202 
203   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
204     return false;
205 
206   return true;
207 }
208 
209 static void annotateDereferenceableBytes(CallInst *CI,
210                                          ArrayRef<unsigned> ArgNos,
211                                          uint64_t DereferenceableBytes) {
212   const Function *F = CI->getCaller();
213   if (!F)
214     return;
215   for (unsigned ArgNo : ArgNos) {
216     uint64_t DerefBytes = DereferenceableBytes;
217     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
218     if (!llvm::NullPointerIsDefined(F, AS) ||
219         CI->paramHasAttr(ArgNo, Attribute::NonNull))
220       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
221                             DereferenceableBytes);
222 
223     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
224       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
225       if (!llvm::NullPointerIsDefined(F, AS) ||
226           CI->paramHasAttr(ArgNo, Attribute::NonNull))
227         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
228       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
229                                   CI->getContext(), DerefBytes));
230     }
231   }
232 }
233 
234 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
235                                          ArrayRef<unsigned> ArgNos) {
236   Function *F = CI->getCaller();
237   if (!F)
238     return;
239 
240   for (unsigned ArgNo : ArgNos) {
241     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
242       CI->addParamAttr(ArgNo, Attribute::NoUndef);
243 
244     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
245       continue;
246     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
247     if (llvm::NullPointerIsDefined(F, AS))
248       continue;
249 
250     CI->addParamAttr(ArgNo, Attribute::NonNull);
251     annotateDereferenceableBytes(CI, ArgNo, 1);
252   }
253 }
254 
255 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
256                                Value *Size, const DataLayout &DL) {
257   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
258     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
259     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
260   } else if (isKnownNonZero(Size, DL)) {
261     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
262     const APInt *X, *Y;
263     uint64_t DerefMin = 1;
264     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
265       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
266       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
267     }
268   }
269 }
270 
271 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
272 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
273 // in this function when New is created to replace Old. Callers should take
274 // care to check Old.isMustTailCall() if they aren't replacing Old directly
275 // with New.
276 static Value *copyFlags(const CallInst &Old, Value *New) {
277   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
278   assert(!Old.isNoTailCall() && "do not copy notail call flags");
279   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
280     NewCI->setTailCallKind(Old.getTailCallKind());
281   return New;
282 }
283 
284 // Helper to avoid truncating the length if size_t is 32-bits.
285 static StringRef substr(StringRef Str, uint64_t Len) {
286   return Len >= Str.size() ? Str : Str.substr(0, Len);
287 }
288 
289 //===----------------------------------------------------------------------===//
290 // String and Memory Library Call Optimizations
291 //===----------------------------------------------------------------------===//
292 
293 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
294   // Extract some information from the instruction
295   Value *Dst = CI->getArgOperand(0);
296   Value *Src = CI->getArgOperand(1);
297   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
298 
299   // See if we can get the length of the input string.
300   uint64_t Len = GetStringLength(Src);
301   if (Len)
302     annotateDereferenceableBytes(CI, 1, Len);
303   else
304     return nullptr;
305   --Len; // Unbias length.
306 
307   // Handle the simple, do-nothing case: strcat(x, "") -> x
308   if (Len == 0)
309     return Dst;
310 
311   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
312 }
313 
314 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
315                                            IRBuilderBase &B) {
316   // We need to find the end of the destination string.  That's where the
317   // memory is to be moved to. We just generate a call to strlen.
318   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
319   if (!DstLen)
320     return nullptr;
321 
322   // Now that we have the destination's length, we must index into the
323   // destination's pointer to get the actual memcpy destination (end of
324   // the string .. we're concatenating).
325   Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
326 
327   // We have enough information to now generate the memcpy call to do the
328   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
329   B.CreateMemCpy(
330       CpyDst, Align(1), Src, Align(1),
331       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
332   return Dst;
333 }
334 
335 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
336   // Extract some information from the instruction.
337   Value *Dst = CI->getArgOperand(0);
338   Value *Src = CI->getArgOperand(1);
339   Value *Size = CI->getArgOperand(2);
340   uint64_t Len;
341   annotateNonNullNoUndefBasedOnAccess(CI, 0);
342   if (isKnownNonZero(Size, DL))
343     annotateNonNullNoUndefBasedOnAccess(CI, 1);
344 
345   // We don't do anything if length is not constant.
346   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
347   if (LengthArg) {
348     Len = LengthArg->getZExtValue();
349     // strncat(x, c, 0) -> x
350     if (!Len)
351       return Dst;
352   } else {
353     return nullptr;
354   }
355 
356   // See if we can get the length of the input string.
357   uint64_t SrcLen = GetStringLength(Src);
358   if (SrcLen) {
359     annotateDereferenceableBytes(CI, 1, SrcLen);
360     --SrcLen; // Unbias length.
361   } else {
362     return nullptr;
363   }
364 
365   // strncat(x, "", c) -> x
366   if (SrcLen == 0)
367     return Dst;
368 
369   // We don't optimize this case.
370   if (Len < SrcLen)
371     return nullptr;
372 
373   // strncat(x, s, c) -> strcat(x, s)
374   // s is constant so the strcat can be optimized further.
375   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
376 }
377 
378 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
379 // NBytes is null, strchr(S, C) to *S == C.  A precondition of the function
380 // is that either S is dereferenceable or the value of N is nonzero.
381 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
382                                   IRBuilderBase &B, const DataLayout &DL)
383 {
384   Value *Src = CI->getArgOperand(0);
385   Value *CharVal = CI->getArgOperand(1);
386 
387   // Fold memchr(A, C, N) == A to N && *A == C.
388   Type *CharTy = B.getInt8Ty();
389   Value *Char0 = B.CreateLoad(CharTy, Src);
390   CharVal = B.CreateTrunc(CharVal, CharTy);
391   Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
392 
393   if (NBytes) {
394     Value *Zero = ConstantInt::get(NBytes->getType(), 0);
395     Value *And = B.CreateICmpNE(NBytes, Zero);
396     Cmp = B.CreateLogicalAnd(And, Cmp);
397   }
398 
399   Value *NullPtr = Constant::getNullValue(CI->getType());
400   return B.CreateSelect(Cmp, Src, NullPtr);
401 }
402 
403 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
404   Value *SrcStr = CI->getArgOperand(0);
405   Value *CharVal = CI->getArgOperand(1);
406   annotateNonNullNoUndefBasedOnAccess(CI, 0);
407 
408   if (isOnlyUsedInEqualityComparison(CI, SrcStr))
409     return memChrToCharCompare(CI, nullptr, B, DL);
410 
411   // If the second operand is non-constant, see if we can compute the length
412   // of the input string and turn this into memchr.
413   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
414   if (!CharC) {
415     uint64_t Len = GetStringLength(SrcStr);
416     if (Len)
417       annotateDereferenceableBytes(CI, 0, Len);
418     else
419       return nullptr;
420 
421     Function *Callee = CI->getCalledFunction();
422     FunctionType *FT = Callee->getFunctionType();
423     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
424       return nullptr;
425 
426     return copyFlags(
427         *CI,
428         emitMemChr(SrcStr, CharVal, // include nul.
429                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
430                    DL, TLI));
431   }
432 
433   if (CharC->isZero()) {
434     Value *NullPtr = Constant::getNullValue(CI->getType());
435     if (isOnlyUsedInEqualityComparison(CI, NullPtr))
436       // Pre-empt the transformation to strlen below and fold
437       // strchr(A, '\0') == null to false.
438       return B.CreateIntToPtr(B.getTrue(), CI->getType());
439   }
440 
441   // Otherwise, the character is a constant, see if the first argument is
442   // a string literal.  If so, we can constant fold.
443   StringRef Str;
444   if (!getConstantStringInfo(SrcStr, Str)) {
445     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
446       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
447         return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
448     return nullptr;
449   }
450 
451   // Compute the offset, make sure to handle the case when we're searching for
452   // zero (a weird way to spell strlen).
453   size_t I = (0xFF & CharC->getSExtValue()) == 0
454                  ? Str.size()
455                  : Str.find(CharC->getSExtValue());
456   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
457     return Constant::getNullValue(CI->getType());
458 
459   // strchr(s+n,c)  -> gep(s+n+i,c)
460   return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
461 }
462 
463 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
464   Value *SrcStr = CI->getArgOperand(0);
465   Value *CharVal = CI->getArgOperand(1);
466   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
467   annotateNonNullNoUndefBasedOnAccess(CI, 0);
468 
469   StringRef Str;
470   if (!getConstantStringInfo(SrcStr, Str)) {
471     // strrchr(s, 0) -> strchr(s, 0)
472     if (CharC && CharC->isZero())
473       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
474     return nullptr;
475   }
476 
477   // Try to expand strrchr to the memrchr nonstandard extension if it's
478   // available, or simply fail otherwise.
479   uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
480   Type *IntPtrType = DL.getIntPtrType(CI->getContext());
481   Value *Size = ConstantInt::get(IntPtrType, NBytes);
482   return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
483 }
484 
485 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
486   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
487   if (Str1P == Str2P) // strcmp(x,x)  -> 0
488     return ConstantInt::get(CI->getType(), 0);
489 
490   StringRef Str1, Str2;
491   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
492   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
493 
494   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
495   if (HasStr1 && HasStr2)
496     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
497 
498   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
499     return B.CreateNeg(B.CreateZExt(
500         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
501 
502   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
503     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
504                         CI->getType());
505 
506   // strcmp(P, "x") -> memcmp(P, "x", 2)
507   uint64_t Len1 = GetStringLength(Str1P);
508   if (Len1)
509     annotateDereferenceableBytes(CI, 0, Len1);
510   uint64_t Len2 = GetStringLength(Str2P);
511   if (Len2)
512     annotateDereferenceableBytes(CI, 1, Len2);
513 
514   if (Len1 && Len2) {
515     return copyFlags(
516         *CI, emitMemCmp(Str1P, Str2P,
517                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
518                                          std::min(Len1, Len2)),
519                         B, DL, TLI));
520   }
521 
522   // strcmp to memcmp
523   if (!HasStr1 && HasStr2) {
524     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
525       return copyFlags(
526           *CI,
527           emitMemCmp(Str1P, Str2P,
528                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
529                      B, DL, TLI));
530   } else if (HasStr1 && !HasStr2) {
531     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
532       return copyFlags(
533           *CI,
534           emitMemCmp(Str1P, Str2P,
535                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
536                      B, DL, TLI));
537   }
538 
539   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
540   return nullptr;
541 }
542 
543 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
544 // arrays LHS and RHS and nonconstant Size.
545 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
546                                     Value *Size, bool StrNCmp,
547                                     IRBuilderBase &B, const DataLayout &DL);
548 
549 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
550   Value *Str1P = CI->getArgOperand(0);
551   Value *Str2P = CI->getArgOperand(1);
552   Value *Size = CI->getArgOperand(2);
553   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
554     return ConstantInt::get(CI->getType(), 0);
555 
556   if (isKnownNonZero(Size, DL))
557     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
558   // Get the length argument if it is constant.
559   uint64_t Length;
560   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
561     Length = LengthArg->getZExtValue();
562   else
563     return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
564 
565   if (Length == 0) // strncmp(x,y,0)   -> 0
566     return ConstantInt::get(CI->getType(), 0);
567 
568   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
569     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
570 
571   StringRef Str1, Str2;
572   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
573   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
574 
575   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
576   if (HasStr1 && HasStr2) {
577     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
578     StringRef SubStr1 = substr(Str1, Length);
579     StringRef SubStr2 = substr(Str2, Length);
580     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
581   }
582 
583   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
584     return B.CreateNeg(B.CreateZExt(
585         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
586 
587   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
588     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
589                         CI->getType());
590 
591   uint64_t Len1 = GetStringLength(Str1P);
592   if (Len1)
593     annotateDereferenceableBytes(CI, 0, Len1);
594   uint64_t Len2 = GetStringLength(Str2P);
595   if (Len2)
596     annotateDereferenceableBytes(CI, 1, Len2);
597 
598   // strncmp to memcmp
599   if (!HasStr1 && HasStr2) {
600     Len2 = std::min(Len2, Length);
601     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
602       return copyFlags(
603           *CI,
604           emitMemCmp(Str1P, Str2P,
605                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
606                      B, DL, TLI));
607   } else if (HasStr1 && !HasStr2) {
608     Len1 = std::min(Len1, Length);
609     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
610       return copyFlags(
611           *CI,
612           emitMemCmp(Str1P, Str2P,
613                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
614                      B, DL, TLI));
615   }
616 
617   return nullptr;
618 }
619 
620 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
621   Value *Src = CI->getArgOperand(0);
622   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
623   uint64_t SrcLen = GetStringLength(Src);
624   if (SrcLen && Size) {
625     annotateDereferenceableBytes(CI, 0, SrcLen);
626     if (SrcLen <= Size->getZExtValue() + 1)
627       return copyFlags(*CI, emitStrDup(Src, B, TLI));
628   }
629 
630   return nullptr;
631 }
632 
633 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
634   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
635   if (Dst == Src) // strcpy(x,x)  -> x
636     return Src;
637 
638   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
639   // See if we can get the length of the input string.
640   uint64_t Len = GetStringLength(Src);
641   if (Len)
642     annotateDereferenceableBytes(CI, 1, Len);
643   else
644     return nullptr;
645 
646   // We have enough information to now generate the memcpy call to do the
647   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
648   CallInst *NewCI =
649       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
650                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
651   NewCI->setAttributes(CI->getAttributes());
652   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
653   copyFlags(*CI, NewCI);
654   return Dst;
655 }
656 
657 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
658   Function *Callee = CI->getCalledFunction();
659   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
660 
661   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
662   if (CI->use_empty())
663     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
664 
665   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
666     Value *StrLen = emitStrLen(Src, B, DL, TLI);
667     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
668   }
669 
670   // See if we can get the length of the input string.
671   uint64_t Len = GetStringLength(Src);
672   if (Len)
673     annotateDereferenceableBytes(CI, 1, Len);
674   else
675     return nullptr;
676 
677   Type *PT = Callee->getFunctionType()->getParamType(0);
678   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
679   Value *DstEnd = B.CreateInBoundsGEP(
680       B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
681 
682   // We have enough information to now generate the memcpy call to do the
683   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
684   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
685   NewCI->setAttributes(CI->getAttributes());
686   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
687   copyFlags(*CI, NewCI);
688   return DstEnd;
689 }
690 
691 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
692   Function *Callee = CI->getCalledFunction();
693   Value *Dst = CI->getArgOperand(0);
694   Value *Src = CI->getArgOperand(1);
695   Value *Size = CI->getArgOperand(2);
696   annotateNonNullNoUndefBasedOnAccess(CI, 0);
697   if (isKnownNonZero(Size, DL))
698     annotateNonNullNoUndefBasedOnAccess(CI, 1);
699 
700   uint64_t Len;
701   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
702     Len = LengthArg->getZExtValue();
703   else
704     return nullptr;
705 
706   // strncpy(x, y, 0) -> x
707   if (Len == 0)
708     return Dst;
709 
710   // See if we can get the length of the input string.
711   uint64_t SrcLen = GetStringLength(Src);
712   if (SrcLen) {
713     annotateDereferenceableBytes(CI, 1, SrcLen);
714     --SrcLen; // Unbias length.
715   } else {
716     return nullptr;
717   }
718 
719   if (SrcLen == 0) {
720     // strncpy(x, "", y) -> memset(x, '\0', y)
721     Align MemSetAlign =
722         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
723     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
724     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
725     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
726         CI->getContext(), 0, ArgAttrs));
727     copyFlags(*CI, NewCI);
728     return Dst;
729   }
730 
731   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
732   if (Len > SrcLen + 1) {
733     if (Len <= 128) {
734       StringRef Str;
735       if (!getConstantStringInfo(Src, Str))
736         return nullptr;
737       std::string SrcStr = Str.str();
738       SrcStr.resize(Len, '\0');
739       Src = B.CreateGlobalString(SrcStr, "str");
740     } else {
741       return nullptr;
742     }
743   }
744 
745   Type *PT = Callee->getFunctionType()->getParamType(0);
746   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
747   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
748                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
749   NewCI->setAttributes(CI->getAttributes());
750   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
751   copyFlags(*CI, NewCI);
752   return Dst;
753 }
754 
755 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
756                                                unsigned CharSize,
757                                                Value *Bound) {
758   Value *Src = CI->getArgOperand(0);
759   Type *CharTy = B.getIntNTy(CharSize);
760 
761   if (isOnlyUsedInZeroEqualityComparison(CI) &&
762       (!Bound || isKnownNonZero(Bound, DL))) {
763     // Fold strlen:
764     //   strlen(x) != 0 --> *x != 0
765     //   strlen(x) == 0 --> *x == 0
766     // and likewise strnlen with constant N > 0:
767     //   strnlen(x, N) != 0 --> *x != 0
768     //   strnlen(x, N) == 0 --> *x == 0
769     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
770                         CI->getType());
771   }
772 
773   if (Bound) {
774     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
775       if (BoundCst->isZero())
776         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
777         return ConstantInt::get(CI->getType(), 0);
778 
779       if (BoundCst->isOne()) {
780         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
781         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
782         Value *ZeroChar = ConstantInt::get(CharTy, 0);
783         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
784         return B.CreateZExt(Cmp, CI->getType());
785       }
786     }
787   }
788 
789   if (uint64_t Len = GetStringLength(Src, CharSize)) {
790     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
791     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
792     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
793     if (Bound)
794       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
795     return LenC;
796   }
797 
798   if (Bound)
799     // Punt for strnlen for now.
800     return nullptr;
801 
802   // If s is a constant pointer pointing to a string literal, we can fold
803   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
804   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
805   // We only try to simplify strlen when the pointer s points to an array
806   // of i8. Otherwise, we would need to scale the offset x before doing the
807   // subtraction. This will make the optimization more complex, and it's not
808   // very useful because calling strlen for a pointer of other types is
809   // very uncommon.
810   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
811     // TODO: Handle subobjects.
812     if (!isGEPBasedOnPointerToString(GEP, CharSize))
813       return nullptr;
814 
815     ConstantDataArraySlice Slice;
816     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
817       uint64_t NullTermIdx;
818       if (Slice.Array == nullptr) {
819         NullTermIdx = 0;
820       } else {
821         NullTermIdx = ~((uint64_t)0);
822         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
823           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
824             NullTermIdx = I;
825             break;
826           }
827         }
828         // If the string does not have '\0', leave it to strlen to compute
829         // its length.
830         if (NullTermIdx == ~((uint64_t)0))
831           return nullptr;
832       }
833 
834       Value *Offset = GEP->getOperand(2);
835       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
836       uint64_t ArrSize =
837              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
838 
839       // If Offset is not provably in the range [0, NullTermIdx], we can still
840       // optimize if we can prove that the program has undefined behavior when
841       // Offset is outside that range. That is the case when GEP->getOperand(0)
842       // is a pointer to an object whose memory extent is NullTermIdx+1.
843       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
844           (isa<GlobalVariable>(GEP->getOperand(0)) &&
845            NullTermIdx == ArrSize - 1)) {
846         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
847         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
848                            Offset);
849       }
850     }
851   }
852 
853   // strlen(x?"foo":"bars") --> x ? 3 : 4
854   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
855     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
856     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
857     if (LenTrue && LenFalse) {
858       ORE.emit([&]() {
859         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
860                << "folded strlen(select) to select of constants";
861       });
862       return B.CreateSelect(SI->getCondition(),
863                             ConstantInt::get(CI->getType(), LenTrue - 1),
864                             ConstantInt::get(CI->getType(), LenFalse - 1));
865     }
866   }
867 
868   return nullptr;
869 }
870 
871 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
872   if (Value *V = optimizeStringLength(CI, B, 8))
873     return V;
874   annotateNonNullNoUndefBasedOnAccess(CI, 0);
875   return nullptr;
876 }
877 
878 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
879   Value *Bound = CI->getArgOperand(1);
880   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
881     return V;
882 
883   if (isKnownNonZero(Bound, DL))
884     annotateNonNullNoUndefBasedOnAccess(CI, 0);
885   return nullptr;
886 }
887 
888 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
889   Module &M = *CI->getModule();
890   unsigned WCharSize = TLI->getWCharSize(M) * 8;
891   // We cannot perform this optimization without wchar_size metadata.
892   if (WCharSize == 0)
893     return nullptr;
894 
895   return optimizeStringLength(CI, B, WCharSize);
896 }
897 
898 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
899   StringRef S1, S2;
900   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
901   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
902 
903   // strpbrk(s, "") -> nullptr
904   // strpbrk("", s) -> nullptr
905   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
906     return Constant::getNullValue(CI->getType());
907 
908   // Constant folding.
909   if (HasS1 && HasS2) {
910     size_t I = S1.find_first_of(S2);
911     if (I == StringRef::npos) // No match.
912       return Constant::getNullValue(CI->getType());
913 
914     return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
915                                B.getInt64(I), "strpbrk");
916   }
917 
918   // strpbrk(s, "a") -> strchr(s, 'a')
919   if (HasS2 && S2.size() == 1)
920     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
921 
922   return nullptr;
923 }
924 
925 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
926   Value *EndPtr = CI->getArgOperand(1);
927   if (isa<ConstantPointerNull>(EndPtr)) {
928     // With a null EndPtr, this function won't capture the main argument.
929     // It would be readonly too, except that it still may write to errno.
930     CI->addParamAttr(0, Attribute::NoCapture);
931   }
932 
933   return nullptr;
934 }
935 
936 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
937   StringRef S1, S2;
938   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
939   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
940 
941   // strspn(s, "") -> 0
942   // strspn("", s) -> 0
943   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
944     return Constant::getNullValue(CI->getType());
945 
946   // Constant folding.
947   if (HasS1 && HasS2) {
948     size_t Pos = S1.find_first_not_of(S2);
949     if (Pos == StringRef::npos)
950       Pos = S1.size();
951     return ConstantInt::get(CI->getType(), Pos);
952   }
953 
954   return nullptr;
955 }
956 
957 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
958   StringRef S1, S2;
959   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
960   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
961 
962   // strcspn("", s) -> 0
963   if (HasS1 && S1.empty())
964     return Constant::getNullValue(CI->getType());
965 
966   // Constant folding.
967   if (HasS1 && HasS2) {
968     size_t Pos = S1.find_first_of(S2);
969     if (Pos == StringRef::npos)
970       Pos = S1.size();
971     return ConstantInt::get(CI->getType(), Pos);
972   }
973 
974   // strcspn(s, "") -> strlen(s)
975   if (HasS2 && S2.empty())
976     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
977 
978   return nullptr;
979 }
980 
981 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
982   // fold strstr(x, x) -> x.
983   if (CI->getArgOperand(0) == CI->getArgOperand(1))
984     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
985 
986   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
987   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
988     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
989     if (!StrLen)
990       return nullptr;
991     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
992                                  StrLen, B, DL, TLI);
993     if (!StrNCmp)
994       return nullptr;
995     for (User *U : llvm::make_early_inc_range(CI->users())) {
996       ICmpInst *Old = cast<ICmpInst>(U);
997       Value *Cmp =
998           B.CreateICmp(Old->getPredicate(), StrNCmp,
999                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
1000       replaceAllUsesWith(Old, Cmp);
1001     }
1002     return CI;
1003   }
1004 
1005   // See if either input string is a constant string.
1006   StringRef SearchStr, ToFindStr;
1007   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
1008   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
1009 
1010   // fold strstr(x, "") -> x.
1011   if (HasStr2 && ToFindStr.empty())
1012     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
1013 
1014   // If both strings are known, constant fold it.
1015   if (HasStr1 && HasStr2) {
1016     size_t Offset = SearchStr.find(ToFindStr);
1017 
1018     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1019       return Constant::getNullValue(CI->getType());
1020 
1021     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1022     Value *Result = castToCStr(CI->getArgOperand(0), B);
1023     Result =
1024         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
1025     return B.CreateBitCast(Result, CI->getType());
1026   }
1027 
1028   // fold strstr(x, "y") -> strchr(x, 'y').
1029   if (HasStr2 && ToFindStr.size() == 1) {
1030     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
1031     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
1032   }
1033 
1034   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
1035   return nullptr;
1036 }
1037 
1038 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1039   Value *SrcStr = CI->getArgOperand(0);
1040   Value *Size = CI->getArgOperand(2);
1041   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1042   Value *CharVal = CI->getArgOperand(1);
1043   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1044   Value *NullPtr = Constant::getNullValue(CI->getType());
1045 
1046   if (LenC) {
1047     if (LenC->isZero())
1048       // Fold memrchr(x, y, 0) --> null.
1049       return NullPtr;
1050 
1051     if (LenC->isOne()) {
1052       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1053       // constant or otherwise.
1054       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1055       // Slice off the character's high end bits.
1056       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1057       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1058       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1059     }
1060   }
1061 
1062   StringRef Str;
1063   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
1064     return nullptr;
1065 
1066   if (Str.size() == 0)
1067     // If the array is empty fold memrchr(A, C, N) to null for any value
1068     // of C and N on the basis that the only valid value of N is zero
1069     // (otherwise the call is undefined).
1070     return NullPtr;
1071 
1072   uint64_t EndOff = UINT64_MAX;
1073   if (LenC) {
1074     EndOff = LenC->getZExtValue();
1075     if (Str.size() < EndOff)
1076       // Punt out-of-bounds accesses to sanitizers and/or libc.
1077       return nullptr;
1078   }
1079 
1080   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1081     // Fold memrchr(S, C, N) for a constant C.
1082     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1083     if (Pos == StringRef::npos)
1084       // When the character is not in the source array fold the result
1085       // to null regardless of Size.
1086       return NullPtr;
1087 
1088     if (LenC)
1089       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1090       return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1091 
1092     if (Str.find(Str[Pos]) == Pos) {
1093       // When there is just a single occurrence of C in S, i.e., the one
1094       // in Str[Pos], fold
1095       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1096       // for nonconstant N.
1097       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1098                                    "memrchr.cmp");
1099       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1100                                            B.getInt64(Pos), "memrchr.ptr_plus");
1101       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1102     }
1103   }
1104 
1105   // Truncate the string to search at most EndOff characters.
1106   Str = Str.substr(0, EndOff);
1107   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1108     return nullptr;
1109 
1110   // If the source array consists of all equal characters, then for any
1111   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1112   //   N != 0 && *S == C ? S + N - 1 : null
1113   Type *SizeTy = Size->getType();
1114   Type *Int8Ty = B.getInt8Ty();
1115   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1116   // Slice off the sought character's high end bits.
1117   CharVal = B.CreateTrunc(CharVal, Int8Ty);
1118   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1119   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1120   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1121   Value *SrcPlus =
1122       B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1123   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1124 }
1125 
1126 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1127   Value *SrcStr = CI->getArgOperand(0);
1128   Value *Size = CI->getArgOperand(2);
1129 
1130   if (isKnownNonZero(Size, DL)) {
1131     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1132     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1133       return memChrToCharCompare(CI, Size, B, DL);
1134   }
1135 
1136   Value *CharVal = CI->getArgOperand(1);
1137   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1138   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1139   Value *NullPtr = Constant::getNullValue(CI->getType());
1140 
1141   // memchr(x, y, 0) -> null
1142   if (LenC) {
1143     if (LenC->isZero())
1144       return NullPtr;
1145 
1146     if (LenC->isOne()) {
1147       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1148       // constant or otherwise.
1149       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1150       // Slice off the character's high end bits.
1151       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1152       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1153       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1154     }
1155   }
1156 
1157   StringRef Str;
1158   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
1159     return nullptr;
1160 
1161   if (CharC) {
1162     size_t Pos = Str.find(CharC->getZExtValue());
1163     if (Pos == StringRef::npos)
1164       // When the character is not in the source array fold the result
1165       // to null regardless of Size.
1166       return NullPtr;
1167 
1168     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1169     // When the constant Size is less than or equal to the character
1170     // position also fold the result to null.
1171     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1172                                  "memchr.cmp");
1173     Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1174                                          "memchr.ptr");
1175     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1176   }
1177 
1178   if (Str.size() == 0)
1179     // If the array is empty fold memchr(A, C, N) to null for any value
1180     // of C and N on the basis that the only valid value of N is zero
1181     // (otherwise the call is undefined).
1182     return NullPtr;
1183 
1184   if (LenC)
1185     Str = substr(Str, LenC->getZExtValue());
1186 
1187   size_t Pos = Str.find_first_not_of(Str[0]);
1188   if (Pos == StringRef::npos
1189       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1190     // If the source array consists of at most two consecutive sequences
1191     // of the same characters, then for any C and N (whether in bounds or
1192     // not), fold memchr(S, C, N) to
1193     //   N != 0 && *S == C ? S : null
1194     // or for the two sequences to:
1195     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1196     //   ^Sel2                   ^Sel1 are denoted above.
1197     // The latter makes it also possible to fold strchr() calls with strings
1198     // of the same characters.
1199     Type *SizeTy = Size->getType();
1200     Type *Int8Ty = B.getInt8Ty();
1201 
1202     // Slice off the sought character's high end bits.
1203     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1204 
1205     Value *Sel1 = NullPtr;
1206     if (Pos != StringRef::npos) {
1207       // Handle two consecutive sequences of the same characters.
1208       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1209       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1210       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1211       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1212       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1213       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1214       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1215     }
1216 
1217     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1218     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1219     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1220     Value *And = B.CreateAnd(NNeZ, CEqS0);
1221     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1222   }
1223 
1224   if (!LenC) {
1225     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1226       // S is dereferenceable so it's safe to load from it and fold
1227       //   memchr(S, C, N) == S to N && *S == C for any C and N.
1228       // TODO: This is safe even even for nonconstant S.
1229       return memChrToCharCompare(CI, Size, B, DL);
1230 
1231     // From now on we need a constant length and constant array.
1232     return nullptr;
1233   }
1234 
1235   // If the char is variable but the input str and length are not we can turn
1236   // this memchr call into a simple bit field test. Of course this only works
1237   // when the return value is only checked against null.
1238   //
1239   // It would be really nice to reuse switch lowering here but we can't change
1240   // the CFG at this point.
1241   //
1242   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1243   // != 0
1244   //   after bounds check.
1245   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1246     return nullptr;
1247 
1248   unsigned char Max =
1249       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1250                         reinterpret_cast<const unsigned char *>(Str.end()));
1251 
1252   // Make sure the bit field we're about to create fits in a register on the
1253   // target.
1254   // FIXME: On a 64 bit architecture this prevents us from using the
1255   // interesting range of alpha ascii chars. We could do better by emitting
1256   // two bitfields or shifting the range by 64 if no lower chars are used.
1257   if (!DL.fitsInLegalInteger(Max + 1))
1258     return nullptr;
1259 
1260   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1261   // creating unnecessary illegal types.
1262   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1263 
1264   // Now build the bit field.
1265   APInt Bitfield(Width, 0);
1266   for (char C : Str)
1267     Bitfield.setBit((unsigned char)C);
1268   Value *BitfieldC = B.getInt(Bitfield);
1269 
1270   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1271   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1272   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1273 
1274   // First check that the bit field access is within bounds.
1275   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1276                                "memchr.bounds");
1277 
1278   // Create code that checks if the given bit is set in the field.
1279   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1280   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1281 
1282   // Finally merge both checks and cast to pointer type. The inttoptr
1283   // implicitly zexts the i1 to intptr type.
1284   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1285                           CI->getType());
1286 }
1287 
1288 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1289 // arrays LHS and RHS and nonconstant Size.
1290 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1291                                     Value *Size, bool StrNCmp,
1292                                     IRBuilderBase &B, const DataLayout &DL) {
1293   if (LHS == RHS) // memcmp(s,s,x) -> 0
1294     return Constant::getNullValue(CI->getType());
1295 
1296   StringRef LStr, RStr;
1297   if (!getConstantStringInfo(LHS, LStr, 0, /*TrimAtNul=*/false) ||
1298       !getConstantStringInfo(RHS, RStr, 0, /*TrimAtNul=*/false))
1299     return nullptr;
1300 
1301   // If the contents of both constant arrays are known, fold a call to
1302   // memcmp(A, B, N) to
1303   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1304   // where Pos is the first mismatch between A and B, determined below.
1305 
1306   uint64_t Pos = 0;
1307   Value *Zero = ConstantInt::get(CI->getType(), 0);
1308   for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1309     if (Pos == MinSize ||
1310         (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1311       // One array is a leading part of the other of equal or greater
1312       // size, or for strncmp, the arrays are equal strings.
1313       // Fold the result to zero.  Size is assumed to be in bounds, since
1314       // otherwise the call would be undefined.
1315       return Zero;
1316     }
1317 
1318     if (LStr[Pos] != RStr[Pos])
1319       break;
1320   }
1321 
1322   // Normalize the result.
1323   typedef unsigned char UChar;
1324   int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1325   Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1326   Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1327   Value *Res = ConstantInt::get(CI->getType(), IRes);
1328   return B.CreateSelect(Cmp, Zero, Res);
1329 }
1330 
1331 // Optimize a memcmp call CI with constant size Len.
1332 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1333                                          uint64_t Len, IRBuilderBase &B,
1334                                          const DataLayout &DL) {
1335   if (Len == 0) // memcmp(s1,s2,0) -> 0
1336     return Constant::getNullValue(CI->getType());
1337 
1338   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1339   if (Len == 1) {
1340     Value *LHSV =
1341         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1342                      CI->getType(), "lhsv");
1343     Value *RHSV =
1344         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1345                      CI->getType(), "rhsv");
1346     return B.CreateSub(LHSV, RHSV, "chardiff");
1347   }
1348 
1349   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1350   // TODO: The case where both inputs are constants does not need to be limited
1351   // to legal integers or equality comparison. See block below this.
1352   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1353     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1354     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1355 
1356     // First, see if we can fold either argument to a constant.
1357     Value *LHSV = nullptr;
1358     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1359       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1360       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1361     }
1362     Value *RHSV = nullptr;
1363     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1364       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1365       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1366     }
1367 
1368     // Don't generate unaligned loads. If either source is constant data,
1369     // alignment doesn't matter for that source because there is no load.
1370     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1371         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1372       if (!LHSV) {
1373         Type *LHSPtrTy =
1374             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1375         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1376       }
1377       if (!RHSV) {
1378         Type *RHSPtrTy =
1379             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1380         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1381       }
1382       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1383     }
1384   }
1385 
1386   return nullptr;
1387 }
1388 
1389 // Most simplifications for memcmp also apply to bcmp.
1390 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1391                                                    IRBuilderBase &B) {
1392   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1393   Value *Size = CI->getArgOperand(2);
1394 
1395   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1396 
1397   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1398     return Res;
1399 
1400   // Handle constant Size.
1401   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1402   if (!LenC)
1403     return nullptr;
1404 
1405   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1406 }
1407 
1408 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1409   Module *M = CI->getModule();
1410   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1411     return V;
1412 
1413   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1414   // bcmp can be more efficient than memcmp because it only has to know that
1415   // there is a difference, not how different one is to the other.
1416   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1417       isOnlyUsedInZeroEqualityComparison(CI)) {
1418     Value *LHS = CI->getArgOperand(0);
1419     Value *RHS = CI->getArgOperand(1);
1420     Value *Size = CI->getArgOperand(2);
1421     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1422   }
1423 
1424   return nullptr;
1425 }
1426 
1427 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1428   return optimizeMemCmpBCmpCommon(CI, B);
1429 }
1430 
1431 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1432   Value *Size = CI->getArgOperand(2);
1433   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1434   if (isa<IntrinsicInst>(CI))
1435     return nullptr;
1436 
1437   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1438   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1439                                    CI->getArgOperand(1), Align(1), Size);
1440   NewCI->setAttributes(CI->getAttributes());
1441   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1442   copyFlags(*CI, NewCI);
1443   return CI->getArgOperand(0);
1444 }
1445 
1446 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1447   Value *Dst = CI->getArgOperand(0);
1448   Value *Src = CI->getArgOperand(1);
1449   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1450   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1451   StringRef SrcStr;
1452   if (CI->use_empty() && Dst == Src)
1453     return Dst;
1454   // memccpy(d, s, c, 0) -> nullptr
1455   if (N) {
1456     if (N->isNullValue())
1457       return Constant::getNullValue(CI->getType());
1458     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1459                                /*TrimAtNul=*/false) ||
1460         // TODO: Handle zeroinitializer.
1461         !StopChar)
1462       return nullptr;
1463   } else {
1464     return nullptr;
1465   }
1466 
1467   // Wrap arg 'c' of type int to char
1468   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1469   if (Pos == StringRef::npos) {
1470     if (N->getZExtValue() <= SrcStr.size()) {
1471       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1472                                     CI->getArgOperand(3)));
1473       return Constant::getNullValue(CI->getType());
1474     }
1475     return nullptr;
1476   }
1477 
1478   Value *NewN =
1479       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1480   // memccpy -> llvm.memcpy
1481   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1482   return Pos + 1 <= N->getZExtValue()
1483              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1484              : Constant::getNullValue(CI->getType());
1485 }
1486 
1487 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1488   Value *Dst = CI->getArgOperand(0);
1489   Value *N = CI->getArgOperand(2);
1490   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1491   CallInst *NewCI =
1492       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1493   // Propagate attributes, but memcpy has no return value, so make sure that
1494   // any return attributes are compliant.
1495   // TODO: Attach return value attributes to the 1st operand to preserve them?
1496   NewCI->setAttributes(CI->getAttributes());
1497   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1498   copyFlags(*CI, NewCI);
1499   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1500 }
1501 
1502 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1503   Value *Size = CI->getArgOperand(2);
1504   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1505   if (isa<IntrinsicInst>(CI))
1506     return nullptr;
1507 
1508   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1509   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1510                                     CI->getArgOperand(1), Align(1), Size);
1511   NewCI->setAttributes(CI->getAttributes());
1512   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1513   copyFlags(*CI, NewCI);
1514   return CI->getArgOperand(0);
1515 }
1516 
1517 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1518   Value *Size = CI->getArgOperand(2);
1519   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1520   if (isa<IntrinsicInst>(CI))
1521     return nullptr;
1522 
1523   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1524   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1525   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1526   NewCI->setAttributes(CI->getAttributes());
1527   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1528   copyFlags(*CI, NewCI);
1529   return CI->getArgOperand(0);
1530 }
1531 
1532 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1533   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1534     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1535 
1536   return nullptr;
1537 }
1538 
1539 //===----------------------------------------------------------------------===//
1540 // Math Library Optimizations
1541 //===----------------------------------------------------------------------===//
1542 
1543 // Replace a libcall \p CI with a call to intrinsic \p IID
1544 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1545                                Intrinsic::ID IID) {
1546   // Propagate fast-math flags from the existing call to the new call.
1547   IRBuilderBase::FastMathFlagGuard Guard(B);
1548   B.setFastMathFlags(CI->getFastMathFlags());
1549 
1550   Module *M = CI->getModule();
1551   Value *V = CI->getArgOperand(0);
1552   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1553   CallInst *NewCall = B.CreateCall(F, V);
1554   NewCall->takeName(CI);
1555   return copyFlags(*CI, NewCall);
1556 }
1557 
1558 /// Return a variant of Val with float type.
1559 /// Currently this works in two cases: If Val is an FPExtension of a float
1560 /// value to something bigger, simply return the operand.
1561 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1562 /// loss of precision do so.
1563 static Value *valueHasFloatPrecision(Value *Val) {
1564   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1565     Value *Op = Cast->getOperand(0);
1566     if (Op->getType()->isFloatTy())
1567       return Op;
1568   }
1569   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1570     APFloat F = Const->getValueAPF();
1571     bool losesInfo;
1572     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1573                     &losesInfo);
1574     if (!losesInfo)
1575       return ConstantFP::get(Const->getContext(), F);
1576   }
1577   return nullptr;
1578 }
1579 
1580 /// Shrink double -> float functions.
1581 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1582                                bool isBinary, const TargetLibraryInfo *TLI,
1583                                bool isPrecise = false) {
1584   Function *CalleeFn = CI->getCalledFunction();
1585   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1586     return nullptr;
1587 
1588   // If not all the uses of the function are converted to float, then bail out.
1589   // This matters if the precision of the result is more important than the
1590   // precision of the arguments.
1591   if (isPrecise)
1592     for (User *U : CI->users()) {
1593       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1594       if (!Cast || !Cast->getType()->isFloatTy())
1595         return nullptr;
1596     }
1597 
1598   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1599   Value *V[2];
1600   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1601   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1602   if (!V[0] || (isBinary && !V[1]))
1603     return nullptr;
1604 
1605   // If call isn't an intrinsic, check that it isn't within a function with the
1606   // same name as the float version of this call, otherwise the result is an
1607   // infinite loop.  For example, from MinGW-w64:
1608   //
1609   // float expf(float val) { return (float) exp((double) val); }
1610   StringRef CalleeName = CalleeFn->getName();
1611   bool IsIntrinsic = CalleeFn->isIntrinsic();
1612   if (!IsIntrinsic) {
1613     StringRef CallerName = CI->getFunction()->getName();
1614     if (!CallerName.empty() && CallerName.back() == 'f' &&
1615         CallerName.size() == (CalleeName.size() + 1) &&
1616         CallerName.startswith(CalleeName))
1617       return nullptr;
1618   }
1619 
1620   // Propagate the math semantics from the current function to the new function.
1621   IRBuilderBase::FastMathFlagGuard Guard(B);
1622   B.setFastMathFlags(CI->getFastMathFlags());
1623 
1624   // g((double) float) -> (double) gf(float)
1625   Value *R;
1626   if (IsIntrinsic) {
1627     Module *M = CI->getModule();
1628     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1629     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1630     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1631   } else {
1632     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1633     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1634                                          CalleeAttrs)
1635                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1636   }
1637   return B.CreateFPExt(R, B.getDoubleTy());
1638 }
1639 
1640 /// Shrink double -> float for unary functions.
1641 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1642                                     const TargetLibraryInfo *TLI,
1643                                     bool isPrecise = false) {
1644   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1645 }
1646 
1647 /// Shrink double -> float for binary functions.
1648 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1649                                      const TargetLibraryInfo *TLI,
1650                                      bool isPrecise = false) {
1651   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1652 }
1653 
1654 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1655 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1656   if (!CI->isFast())
1657     return nullptr;
1658 
1659   // Propagate fast-math flags from the existing call to new instructions.
1660   IRBuilderBase::FastMathFlagGuard Guard(B);
1661   B.setFastMathFlags(CI->getFastMathFlags());
1662 
1663   Value *Real, *Imag;
1664   if (CI->arg_size() == 1) {
1665     Value *Op = CI->getArgOperand(0);
1666     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1667     Real = B.CreateExtractValue(Op, 0, "real");
1668     Imag = B.CreateExtractValue(Op, 1, "imag");
1669   } else {
1670     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1671     Real = CI->getArgOperand(0);
1672     Imag = CI->getArgOperand(1);
1673   }
1674 
1675   Value *RealReal = B.CreateFMul(Real, Real);
1676   Value *ImagImag = B.CreateFMul(Imag, Imag);
1677 
1678   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1679                                               CI->getType());
1680   return copyFlags(
1681       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1682 }
1683 
1684 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1685                                       IRBuilderBase &B) {
1686   if (!isa<FPMathOperator>(Call))
1687     return nullptr;
1688 
1689   IRBuilderBase::FastMathFlagGuard Guard(B);
1690   B.setFastMathFlags(Call->getFastMathFlags());
1691 
1692   // TODO: Can this be shared to also handle LLVM intrinsics?
1693   Value *X;
1694   switch (Func) {
1695   case LibFunc_sin:
1696   case LibFunc_sinf:
1697   case LibFunc_sinl:
1698   case LibFunc_tan:
1699   case LibFunc_tanf:
1700   case LibFunc_tanl:
1701     // sin(-X) --> -sin(X)
1702     // tan(-X) --> -tan(X)
1703     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1704       return B.CreateFNeg(
1705           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1706     break;
1707   case LibFunc_cos:
1708   case LibFunc_cosf:
1709   case LibFunc_cosl:
1710     // cos(-X) --> cos(X)
1711     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1712       return copyFlags(*Call,
1713                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1714     break;
1715   default:
1716     break;
1717   }
1718   return nullptr;
1719 }
1720 
1721 // Return a properly extended integer (DstWidth bits wide) if the operation is
1722 // an itofp.
1723 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1724   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1725     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1726     // Make sure that the exponent fits inside an "int" of size DstWidth,
1727     // thus avoiding any range issues that FP has not.
1728     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1729     if (BitWidth < DstWidth ||
1730         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1731       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1732                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1733   }
1734 
1735   return nullptr;
1736 }
1737 
1738 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1739 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1740 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1741 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1742   Module *M = Pow->getModule();
1743   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1744   AttributeList Attrs; // Attributes are only meaningful on the original call
1745   Module *Mod = Pow->getModule();
1746   Type *Ty = Pow->getType();
1747   bool Ignored;
1748 
1749   // Evaluate special cases related to a nested function as the base.
1750 
1751   // pow(exp(x), y) -> exp(x * y)
1752   // pow(exp2(x), y) -> exp2(x * y)
1753   // If exp{,2}() is used only once, it is better to fold two transcendental
1754   // math functions into one.  If used again, exp{,2}() would still have to be
1755   // called with the original argument, then keep both original transcendental
1756   // functions.  However, this transformation is only safe with fully relaxed
1757   // math semantics, since, besides rounding differences, it changes overflow
1758   // and underflow behavior quite dramatically.  For example:
1759   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1760   // Whereas:
1761   //   exp(1000 * 0.001) = exp(1)
1762   // TODO: Loosen the requirement for fully relaxed math semantics.
1763   // TODO: Handle exp10() when more targets have it available.
1764   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1765   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1766     LibFunc LibFn;
1767 
1768     Function *CalleeFn = BaseFn->getCalledFunction();
1769     if (CalleeFn &&
1770         TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1771         isLibFuncEmittable(M, TLI, LibFn)) {
1772       StringRef ExpName;
1773       Intrinsic::ID ID;
1774       Value *ExpFn;
1775       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1776 
1777       switch (LibFn) {
1778       default:
1779         return nullptr;
1780       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1781         ExpName = TLI->getName(LibFunc_exp);
1782         ID = Intrinsic::exp;
1783         LibFnFloat = LibFunc_expf;
1784         LibFnDouble = LibFunc_exp;
1785         LibFnLongDouble = LibFunc_expl;
1786         break;
1787       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1788         ExpName = TLI->getName(LibFunc_exp2);
1789         ID = Intrinsic::exp2;
1790         LibFnFloat = LibFunc_exp2f;
1791         LibFnDouble = LibFunc_exp2;
1792         LibFnLongDouble = LibFunc_exp2l;
1793         break;
1794       }
1795 
1796       // Create new exp{,2}() with the product as its argument.
1797       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1798       ExpFn = BaseFn->doesNotAccessMemory()
1799               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1800                              FMul, ExpName)
1801               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1802                                      LibFnLongDouble, B,
1803                                      BaseFn->getAttributes());
1804 
1805       // Since the new exp{,2}() is different from the original one, dead code
1806       // elimination cannot be trusted to remove it, since it may have side
1807       // effects (e.g., errno).  When the only consumer for the original
1808       // exp{,2}() is pow(), then it has to be explicitly erased.
1809       substituteInParent(BaseFn, ExpFn);
1810       return ExpFn;
1811     }
1812   }
1813 
1814   // Evaluate special cases related to a constant base.
1815 
1816   const APFloat *BaseF;
1817   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1818     return nullptr;
1819 
1820   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1821   if (match(Base, m_SpecificFP(2.0)) &&
1822       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1823       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1824     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1825       return copyFlags(*Pow,
1826                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1827                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1828                                              LibFunc_ldexpl, B, Attrs));
1829   }
1830 
1831   // pow(2.0 ** n, x) -> exp2(n * x)
1832   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1833     APFloat BaseR = APFloat(1.0);
1834     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1835     BaseR = BaseR / *BaseF;
1836     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1837     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1838     APSInt NI(64, false);
1839     if ((IsInteger || IsReciprocal) &&
1840         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1841             APFloat::opOK &&
1842         NI > 1 && NI.isPowerOf2()) {
1843       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1844       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1845       if (Pow->doesNotAccessMemory())
1846         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1847                                                 Mod, Intrinsic::exp2, Ty),
1848                                             FMul, "exp2"));
1849       else
1850         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1851                                                     LibFunc_exp2f,
1852                                                     LibFunc_exp2l, B, Attrs));
1853     }
1854   }
1855 
1856   // pow(10.0, x) -> exp10(x)
1857   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1858   if (match(Base, m_SpecificFP(10.0)) &&
1859       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1860     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1861                                                 LibFunc_exp10f, LibFunc_exp10l,
1862                                                 B, Attrs));
1863 
1864   // pow(x, y) -> exp2(log2(x) * y)
1865   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1866       !BaseF->isNegative()) {
1867     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1868     // Luckily optimizePow has already handled the x == 1 case.
1869     assert(!match(Base, m_FPOne()) &&
1870            "pow(1.0, y) should have been simplified earlier!");
1871 
1872     Value *Log = nullptr;
1873     if (Ty->isFloatTy())
1874       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1875     else if (Ty->isDoubleTy())
1876       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1877 
1878     if (Log) {
1879       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1880       if (Pow->doesNotAccessMemory())
1881         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1882                                                 Mod, Intrinsic::exp2, Ty),
1883                                             FMul, "exp2"));
1884       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
1885                           LibFunc_exp2l))
1886         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1887                                                     LibFunc_exp2f,
1888                                                     LibFunc_exp2l, B, Attrs));
1889     }
1890   }
1891 
1892   return nullptr;
1893 }
1894 
1895 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1896                           Module *M, IRBuilderBase &B,
1897                           const TargetLibraryInfo *TLI) {
1898   // If errno is never set, then use the intrinsic for sqrt().
1899   if (NoErrno) {
1900     Function *SqrtFn =
1901         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1902     return B.CreateCall(SqrtFn, V, "sqrt");
1903   }
1904 
1905   // Otherwise, use the libcall for sqrt().
1906   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1907                  LibFunc_sqrtl))
1908     // TODO: We also should check that the target can in fact lower the sqrt()
1909     // libcall. We currently have no way to ask this question, so we ask if
1910     // the target has a sqrt() libcall, which is not exactly the same.
1911     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1912                                 LibFunc_sqrtl, B, Attrs);
1913 
1914   return nullptr;
1915 }
1916 
1917 /// Use square root in place of pow(x, +/-0.5).
1918 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1919   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1920   AttributeList Attrs; // Attributes are only meaningful on the original call
1921   Module *Mod = Pow->getModule();
1922   Type *Ty = Pow->getType();
1923 
1924   const APFloat *ExpoF;
1925   if (!match(Expo, m_APFloat(ExpoF)) ||
1926       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1927     return nullptr;
1928 
1929   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1930   // so that requires fast-math-flags (afn or reassoc).
1931   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1932     return nullptr;
1933 
1934   // If we have a pow() library call (accesses memory) and we can't guarantee
1935   // that the base is not an infinity, give up:
1936   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1937   // errno), but sqrt(-Inf) is required by various standards to set errno.
1938   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1939       !isKnownNeverInfinity(Base, TLI))
1940     return nullptr;
1941 
1942   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1943   if (!Sqrt)
1944     return nullptr;
1945 
1946   // Handle signed zero base by expanding to fabs(sqrt(x)).
1947   if (!Pow->hasNoSignedZeros()) {
1948     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1949     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1950   }
1951 
1952   Sqrt = copyFlags(*Pow, Sqrt);
1953 
1954   // Handle non finite base by expanding to
1955   // (x == -infinity ? +infinity : sqrt(x)).
1956   if (!Pow->hasNoInfs()) {
1957     Value *PosInf = ConstantFP::getInfinity(Ty),
1958           *NegInf = ConstantFP::getInfinity(Ty, true);
1959     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1960     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1961   }
1962 
1963   // If the exponent is negative, then get the reciprocal.
1964   if (ExpoF->isNegative())
1965     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1966 
1967   return Sqrt;
1968 }
1969 
1970 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1971                                            IRBuilderBase &B) {
1972   Value *Args[] = {Base, Expo};
1973   Type *Types[] = {Base->getType(), Expo->getType()};
1974   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1975   return B.CreateCall(F, Args);
1976 }
1977 
1978 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1979   Value *Base = Pow->getArgOperand(0);
1980   Value *Expo = Pow->getArgOperand(1);
1981   Function *Callee = Pow->getCalledFunction();
1982   StringRef Name = Callee->getName();
1983   Type *Ty = Pow->getType();
1984   Module *M = Pow->getModule();
1985   bool AllowApprox = Pow->hasApproxFunc();
1986   bool Ignored;
1987 
1988   // Propagate the math semantics from the call to any created instructions.
1989   IRBuilderBase::FastMathFlagGuard Guard(B);
1990   B.setFastMathFlags(Pow->getFastMathFlags());
1991   // Evaluate special cases related to the base.
1992 
1993   // pow(1.0, x) -> 1.0
1994   if (match(Base, m_FPOne()))
1995     return Base;
1996 
1997   if (Value *Exp = replacePowWithExp(Pow, B))
1998     return Exp;
1999 
2000   // Evaluate special cases related to the exponent.
2001 
2002   // pow(x, -1.0) -> 1.0 / x
2003   if (match(Expo, m_SpecificFP(-1.0)))
2004     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2005 
2006   // pow(x, +/-0.0) -> 1.0
2007   if (match(Expo, m_AnyZeroFP()))
2008     return ConstantFP::get(Ty, 1.0);
2009 
2010   // pow(x, 1.0) -> x
2011   if (match(Expo, m_FPOne()))
2012     return Base;
2013 
2014   // pow(x, 2.0) -> x * x
2015   if (match(Expo, m_SpecificFP(2.0)))
2016     return B.CreateFMul(Base, Base, "square");
2017 
2018   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2019     return Sqrt;
2020 
2021   // If we can approximate pow:
2022   // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2023   // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2024   const APFloat *ExpoF;
2025   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
2026       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
2027     APFloat ExpoA(abs(*ExpoF));
2028     APFloat ExpoI(*ExpoF);
2029     Value *Sqrt = nullptr;
2030     if (!ExpoA.isInteger()) {
2031       APFloat Expo2 = ExpoA;
2032       // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2033       // is no floating point exception and the result is an integer, then
2034       // ExpoA == integer + 0.5
2035       if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
2036         return nullptr;
2037 
2038       if (!Expo2.isInteger())
2039         return nullptr;
2040 
2041       if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
2042           APFloat::opInexact)
2043         return nullptr;
2044       if (!ExpoI.isInteger())
2045         return nullptr;
2046       ExpoF = &ExpoI;
2047 
2048       Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
2049                          Pow->doesNotAccessMemory(), M, B, TLI);
2050       if (!Sqrt)
2051         return nullptr;
2052     }
2053 
2054     // 0.5 fraction is now optionally handled.
2055     // Do pow -> powi for remaining integer exponent
2056     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2057     if (ExpoF->isInteger() &&
2058         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2059             APFloat::opOK) {
2060       Value *PowI = copyFlags(
2061           *Pow,
2062           createPowWithIntegerExponent(
2063               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2064               M, B));
2065 
2066       if (PowI && Sqrt)
2067         return B.CreateFMul(PowI, Sqrt);
2068 
2069       return PowI;
2070     }
2071   }
2072 
2073   // powf(x, itofp(y)) -> powi(x, y)
2074   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2075     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2076       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2077   }
2078 
2079   // Shrink pow() to powf() if the arguments are single precision,
2080   // unless the result is expected to be double precision.
2081   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2082       hasFloatVersion(M, Name)) {
2083     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2084       return Shrunk;
2085   }
2086 
2087   return nullptr;
2088 }
2089 
2090 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2091   Module *M = CI->getModule();
2092   Function *Callee = CI->getCalledFunction();
2093   AttributeList Attrs; // Attributes are only meaningful on the original call
2094   StringRef Name = Callee->getName();
2095   Value *Ret = nullptr;
2096   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2097       hasFloatVersion(M, Name))
2098     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2099 
2100   Type *Ty = CI->getType();
2101   Value *Op = CI->getArgOperand(0);
2102 
2103   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2104   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2105   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2106       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
2107     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
2108       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
2109                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
2110                                    B, Attrs);
2111   }
2112 
2113   return Ret;
2114 }
2115 
2116 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2117   Module *M = CI->getModule();
2118 
2119   // If we can shrink the call to a float function rather than a double
2120   // function, do that first.
2121   Function *Callee = CI->getCalledFunction();
2122   StringRef Name = Callee->getName();
2123   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2124     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2125       return Ret;
2126 
2127   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2128   // the intrinsics for improved optimization (for example, vectorization).
2129   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2130   // From the C standard draft WG14/N1256:
2131   // "Ideally, fmax would be sensitive to the sign of zero, for example
2132   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2133   // might be impractical."
2134   IRBuilderBase::FastMathFlagGuard Guard(B);
2135   FastMathFlags FMF = CI->getFastMathFlags();
2136   FMF.setNoSignedZeros();
2137   B.setFastMathFlags(FMF);
2138 
2139   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
2140                                                            : Intrinsic::maxnum;
2141   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
2142   return copyFlags(
2143       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
2144 }
2145 
2146 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2147   Function *LogFn = Log->getCalledFunction();
2148   AttributeList Attrs; // Attributes are only meaningful on the original call
2149   StringRef LogNm = LogFn->getName();
2150   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2151   Module *Mod = Log->getModule();
2152   Type *Ty = Log->getType();
2153   Value *Ret = nullptr;
2154 
2155   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2156     Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2157 
2158   // The earlier call must also be 'fast' in order to do these transforms.
2159   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2160   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2161     return Ret;
2162 
2163   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2164 
2165   // This is only applicable to log(), log2(), log10().
2166   if (TLI->getLibFunc(LogNm, LogLb))
2167     switch (LogLb) {
2168     case LibFunc_logf:
2169       LogID = Intrinsic::log;
2170       ExpLb = LibFunc_expf;
2171       Exp2Lb = LibFunc_exp2f;
2172       Exp10Lb = LibFunc_exp10f;
2173       PowLb = LibFunc_powf;
2174       break;
2175     case LibFunc_log:
2176       LogID = Intrinsic::log;
2177       ExpLb = LibFunc_exp;
2178       Exp2Lb = LibFunc_exp2;
2179       Exp10Lb = LibFunc_exp10;
2180       PowLb = LibFunc_pow;
2181       break;
2182     case LibFunc_logl:
2183       LogID = Intrinsic::log;
2184       ExpLb = LibFunc_expl;
2185       Exp2Lb = LibFunc_exp2l;
2186       Exp10Lb = LibFunc_exp10l;
2187       PowLb = LibFunc_powl;
2188       break;
2189     case LibFunc_log2f:
2190       LogID = Intrinsic::log2;
2191       ExpLb = LibFunc_expf;
2192       Exp2Lb = LibFunc_exp2f;
2193       Exp10Lb = LibFunc_exp10f;
2194       PowLb = LibFunc_powf;
2195       break;
2196     case LibFunc_log2:
2197       LogID = Intrinsic::log2;
2198       ExpLb = LibFunc_exp;
2199       Exp2Lb = LibFunc_exp2;
2200       Exp10Lb = LibFunc_exp10;
2201       PowLb = LibFunc_pow;
2202       break;
2203     case LibFunc_log2l:
2204       LogID = Intrinsic::log2;
2205       ExpLb = LibFunc_expl;
2206       Exp2Lb = LibFunc_exp2l;
2207       Exp10Lb = LibFunc_exp10l;
2208       PowLb = LibFunc_powl;
2209       break;
2210     case LibFunc_log10f:
2211       LogID = Intrinsic::log10;
2212       ExpLb = LibFunc_expf;
2213       Exp2Lb = LibFunc_exp2f;
2214       Exp10Lb = LibFunc_exp10f;
2215       PowLb = LibFunc_powf;
2216       break;
2217     case LibFunc_log10:
2218       LogID = Intrinsic::log10;
2219       ExpLb = LibFunc_exp;
2220       Exp2Lb = LibFunc_exp2;
2221       Exp10Lb = LibFunc_exp10;
2222       PowLb = LibFunc_pow;
2223       break;
2224     case LibFunc_log10l:
2225       LogID = Intrinsic::log10;
2226       ExpLb = LibFunc_expl;
2227       Exp2Lb = LibFunc_exp2l;
2228       Exp10Lb = LibFunc_exp10l;
2229       PowLb = LibFunc_powl;
2230       break;
2231     default:
2232       return Ret;
2233     }
2234   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2235            LogID == Intrinsic::log10) {
2236     if (Ty->getScalarType()->isFloatTy()) {
2237       ExpLb = LibFunc_expf;
2238       Exp2Lb = LibFunc_exp2f;
2239       Exp10Lb = LibFunc_exp10f;
2240       PowLb = LibFunc_powf;
2241     } else if (Ty->getScalarType()->isDoubleTy()) {
2242       ExpLb = LibFunc_exp;
2243       Exp2Lb = LibFunc_exp2;
2244       Exp10Lb = LibFunc_exp10;
2245       PowLb = LibFunc_pow;
2246     } else
2247       return Ret;
2248   } else
2249     return Ret;
2250 
2251   IRBuilderBase::FastMathFlagGuard Guard(B);
2252   B.setFastMathFlags(FastMathFlags::getFast());
2253 
2254   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2255   LibFunc ArgLb = NotLibFunc;
2256   TLI->getLibFunc(*Arg, ArgLb);
2257 
2258   // log(pow(x,y)) -> y*log(x)
2259   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
2260     Value *LogX =
2261         Log->doesNotAccessMemory()
2262             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2263                            Arg->getOperand(0), "log")
2264             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
2265     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2266     // Since pow() may have side effects, e.g. errno,
2267     // dead code elimination may not be trusted to remove it.
2268     substituteInParent(Arg, MulY);
2269     return MulY;
2270   }
2271 
2272   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2273   // TODO: There is no exp10() intrinsic yet.
2274   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2275            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2276     Constant *Eul;
2277     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2278       // FIXME: Add more precise value of e for long double.
2279       Eul = ConstantFP::get(Log->getType(), numbers::e);
2280     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2281       Eul = ConstantFP::get(Log->getType(), 2.0);
2282     else
2283       Eul = ConstantFP::get(Log->getType(), 10.0);
2284     Value *LogE = Log->doesNotAccessMemory()
2285                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2286                                      Eul, "log")
2287                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
2288     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2289     // Since exp() may have side effects, e.g. errno,
2290     // dead code elimination may not be trusted to remove it.
2291     substituteInParent(Arg, MulY);
2292     return MulY;
2293   }
2294 
2295   return Ret;
2296 }
2297 
2298 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2299   Module *M = CI->getModule();
2300   Function *Callee = CI->getCalledFunction();
2301   Value *Ret = nullptr;
2302   // TODO: Once we have a way (other than checking for the existince of the
2303   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2304   // condition below.
2305   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2306       (Callee->getName() == "sqrt" ||
2307        Callee->getIntrinsicID() == Intrinsic::sqrt))
2308     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2309 
2310   if (!CI->isFast())
2311     return Ret;
2312 
2313   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2314   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2315     return Ret;
2316 
2317   // We're looking for a repeated factor in a multiplication tree,
2318   // so we can do this fold: sqrt(x * x) -> fabs(x);
2319   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2320   Value *Op0 = I->getOperand(0);
2321   Value *Op1 = I->getOperand(1);
2322   Value *RepeatOp = nullptr;
2323   Value *OtherOp = nullptr;
2324   if (Op0 == Op1) {
2325     // Simple match: the operands of the multiply are identical.
2326     RepeatOp = Op0;
2327   } else {
2328     // Look for a more complicated pattern: one of the operands is itself
2329     // a multiply, so search for a common factor in that multiply.
2330     // Note: We don't bother looking any deeper than this first level or for
2331     // variations of this pattern because instcombine's visitFMUL and/or the
2332     // reassociation pass should give us this form.
2333     Value *OtherMul0, *OtherMul1;
2334     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2335       // Pattern: sqrt((x * y) * z)
2336       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2337         // Matched: sqrt((x * x) * z)
2338         RepeatOp = OtherMul0;
2339         OtherOp = Op1;
2340       }
2341     }
2342   }
2343   if (!RepeatOp)
2344     return Ret;
2345 
2346   // Fast math flags for any created instructions should match the sqrt
2347   // and multiply.
2348   IRBuilderBase::FastMathFlagGuard Guard(B);
2349   B.setFastMathFlags(I->getFastMathFlags());
2350 
2351   // If we found a repeated factor, hoist it out of the square root and
2352   // replace it with the fabs of that factor.
2353   Type *ArgType = I->getType();
2354   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2355   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2356   if (OtherOp) {
2357     // If we found a non-repeated factor, we still need to get its square
2358     // root. We then multiply that by the value that was simplified out
2359     // of the square root calculation.
2360     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2361     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2362     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2363   }
2364   return copyFlags(*CI, FabsCall);
2365 }
2366 
2367 // TODO: Generalize to handle any trig function and its inverse.
2368 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2369   Module *M = CI->getModule();
2370   Function *Callee = CI->getCalledFunction();
2371   Value *Ret = nullptr;
2372   StringRef Name = Callee->getName();
2373   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
2374     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2375 
2376   Value *Op1 = CI->getArgOperand(0);
2377   auto *OpC = dyn_cast<CallInst>(Op1);
2378   if (!OpC)
2379     return Ret;
2380 
2381   // Both calls must be 'fast' in order to remove them.
2382   if (!CI->isFast() || !OpC->isFast())
2383     return Ret;
2384 
2385   // tan(atan(x)) -> x
2386   // tanf(atanf(x)) -> x
2387   // tanl(atanl(x)) -> x
2388   LibFunc Func;
2389   Function *F = OpC->getCalledFunction();
2390   if (F && TLI->getLibFunc(F->getName(), Func) &&
2391       isLibFuncEmittable(M, TLI, Func) &&
2392       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2393        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2394        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2395     Ret = OpC->getArgOperand(0);
2396   return Ret;
2397 }
2398 
2399 static bool isTrigLibCall(CallInst *CI) {
2400   // We can only hope to do anything useful if we can ignore things like errno
2401   // and floating-point exceptions.
2402   // We already checked the prototype.
2403   return CI->hasFnAttr(Attribute::NoUnwind) &&
2404          CI->hasFnAttr(Attribute::ReadNone);
2405 }
2406 
2407 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2408                              bool UseFloat, Value *&Sin, Value *&Cos,
2409                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2410   Module *M = OrigCallee->getParent();
2411   Type *ArgTy = Arg->getType();
2412   Type *ResTy;
2413   StringRef Name;
2414 
2415   Triple T(OrigCallee->getParent()->getTargetTriple());
2416   if (UseFloat) {
2417     Name = "__sincospif_stret";
2418 
2419     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2420     // x86_64 can't use {float, float} since that would be returned in both
2421     // xmm0 and xmm1, which isn't what a real struct would do.
2422     ResTy = T.getArch() == Triple::x86_64
2423                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2424                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2425   } else {
2426     Name = "__sincospi_stret";
2427     ResTy = StructType::get(ArgTy, ArgTy);
2428   }
2429 
2430   if (!isLibFuncEmittable(M, TLI, Name))
2431     return false;
2432   LibFunc TheLibFunc;
2433   TLI->getLibFunc(Name, TheLibFunc);
2434   FunctionCallee Callee = getOrInsertLibFunc(
2435       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2436 
2437   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2438     // If the argument is an instruction, it must dominate all uses so put our
2439     // sincos call there.
2440     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2441   } else {
2442     // Otherwise (e.g. for a constant) the beginning of the function is as
2443     // good a place as any.
2444     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2445     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2446   }
2447 
2448   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2449 
2450   if (SinCos->getType()->isStructTy()) {
2451     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2452     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2453   } else {
2454     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2455                                  "sinpi");
2456     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2457                                  "cospi");
2458   }
2459 
2460   return true;
2461 }
2462 
2463 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2464   // Make sure the prototype is as expected, otherwise the rest of the
2465   // function is probably invalid and likely to abort.
2466   if (!isTrigLibCall(CI))
2467     return nullptr;
2468 
2469   Value *Arg = CI->getArgOperand(0);
2470   SmallVector<CallInst *, 1> SinCalls;
2471   SmallVector<CallInst *, 1> CosCalls;
2472   SmallVector<CallInst *, 1> SinCosCalls;
2473 
2474   bool IsFloat = Arg->getType()->isFloatTy();
2475 
2476   // Look for all compatible sinpi, cospi and sincospi calls with the same
2477   // argument. If there are enough (in some sense) we can make the
2478   // substitution.
2479   Function *F = CI->getFunction();
2480   for (User *U : Arg->users())
2481     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2482 
2483   // It's only worthwhile if both sinpi and cospi are actually used.
2484   if (SinCalls.empty() || CosCalls.empty())
2485     return nullptr;
2486 
2487   Value *Sin, *Cos, *SinCos;
2488   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2489                         SinCos, TLI))
2490     return nullptr;
2491 
2492   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2493                                  Value *Res) {
2494     for (CallInst *C : Calls)
2495       replaceAllUsesWith(C, Res);
2496   };
2497 
2498   replaceTrigInsts(SinCalls, Sin);
2499   replaceTrigInsts(CosCalls, Cos);
2500   replaceTrigInsts(SinCosCalls, SinCos);
2501 
2502   return nullptr;
2503 }
2504 
2505 void LibCallSimplifier::classifyArgUse(
2506     Value *Val, Function *F, bool IsFloat,
2507     SmallVectorImpl<CallInst *> &SinCalls,
2508     SmallVectorImpl<CallInst *> &CosCalls,
2509     SmallVectorImpl<CallInst *> &SinCosCalls) {
2510   CallInst *CI = dyn_cast<CallInst>(Val);
2511   Module *M = CI->getModule();
2512 
2513   if (!CI || CI->use_empty())
2514     return;
2515 
2516   // Don't consider calls in other functions.
2517   if (CI->getFunction() != F)
2518     return;
2519 
2520   Function *Callee = CI->getCalledFunction();
2521   LibFunc Func;
2522   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
2523       !isLibFuncEmittable(M, TLI, Func) ||
2524       !isTrigLibCall(CI))
2525     return;
2526 
2527   if (IsFloat) {
2528     if (Func == LibFunc_sinpif)
2529       SinCalls.push_back(CI);
2530     else if (Func == LibFunc_cospif)
2531       CosCalls.push_back(CI);
2532     else if (Func == LibFunc_sincospif_stret)
2533       SinCosCalls.push_back(CI);
2534   } else {
2535     if (Func == LibFunc_sinpi)
2536       SinCalls.push_back(CI);
2537     else if (Func == LibFunc_cospi)
2538       CosCalls.push_back(CI);
2539     else if (Func == LibFunc_sincospi_stret)
2540       SinCosCalls.push_back(CI);
2541   }
2542 }
2543 
2544 //===----------------------------------------------------------------------===//
2545 // Integer Library Call Optimizations
2546 //===----------------------------------------------------------------------===//
2547 
2548 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2549   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2550   Value *Op = CI->getArgOperand(0);
2551   Type *ArgType = Op->getType();
2552   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2553                                           Intrinsic::cttz, ArgType);
2554   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2555   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2556   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2557 
2558   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2559   return B.CreateSelect(Cond, V, B.getInt32(0));
2560 }
2561 
2562 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2563   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2564   Value *Op = CI->getArgOperand(0);
2565   Type *ArgType = Op->getType();
2566   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2567                                           Intrinsic::ctlz, ArgType);
2568   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2569   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2570                   V);
2571   return B.CreateIntCast(V, CI->getType(), false);
2572 }
2573 
2574 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2575   // abs(x) -> x <s 0 ? -x : x
2576   // The negation has 'nsw' because abs of INT_MIN is undefined.
2577   Value *X = CI->getArgOperand(0);
2578   Value *IsNeg = B.CreateIsNeg(X);
2579   Value *NegX = B.CreateNSWNeg(X, "neg");
2580   return B.CreateSelect(IsNeg, NegX, X);
2581 }
2582 
2583 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2584   // isdigit(c) -> (c-'0') <u 10
2585   Value *Op = CI->getArgOperand(0);
2586   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2587   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2588   return B.CreateZExt(Op, CI->getType());
2589 }
2590 
2591 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2592   // isascii(c) -> c <u 128
2593   Value *Op = CI->getArgOperand(0);
2594   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2595   return B.CreateZExt(Op, CI->getType());
2596 }
2597 
2598 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2599   // toascii(c) -> c & 0x7f
2600   return B.CreateAnd(CI->getArgOperand(0),
2601                      ConstantInt::get(CI->getType(), 0x7F));
2602 }
2603 
2604 // Fold calls to atoi, atol, and atoll.
2605 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2606   CI->addParamAttr(0, Attribute::NoCapture);
2607 
2608   StringRef Str;
2609   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2610     return nullptr;
2611 
2612   return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
2613 }
2614 
2615 // Fold calls to strtol, strtoll, strtoul, and strtoull.
2616 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
2617                                            bool AsSigned) {
2618   Value *EndPtr = CI->getArgOperand(1);
2619   if (isa<ConstantPointerNull>(EndPtr)) {
2620     // With a null EndPtr, this function won't capture the main argument.
2621     // It would be readonly too, except that it still may write to errno.
2622     CI->addParamAttr(0, Attribute::NoCapture);
2623     EndPtr = nullptr;
2624   } else if (!isKnownNonZero(EndPtr, DL))
2625     return nullptr;
2626 
2627   StringRef Str;
2628   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2629     return nullptr;
2630 
2631   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2632     return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
2633   }
2634 
2635   return nullptr;
2636 }
2637 
2638 //===----------------------------------------------------------------------===//
2639 // Formatting and IO Library Call Optimizations
2640 //===----------------------------------------------------------------------===//
2641 
2642 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2643 
2644 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2645                                                  int StreamArg) {
2646   Function *Callee = CI->getCalledFunction();
2647   // Error reporting calls should be cold, mark them as such.
2648   // This applies even to non-builtin calls: it is only a hint and applies to
2649   // functions that the frontend might not understand as builtins.
2650 
2651   // This heuristic was suggested in:
2652   // Improving Static Branch Prediction in a Compiler
2653   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2654   // Proceedings of PACT'98, Oct. 1998, IEEE
2655   if (!CI->hasFnAttr(Attribute::Cold) &&
2656       isReportingError(Callee, CI, StreamArg)) {
2657     CI->addFnAttr(Attribute::Cold);
2658   }
2659 
2660   return nullptr;
2661 }
2662 
2663 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2664   if (!Callee || !Callee->isDeclaration())
2665     return false;
2666 
2667   if (StreamArg < 0)
2668     return true;
2669 
2670   // These functions might be considered cold, but only if their stream
2671   // argument is stderr.
2672 
2673   if (StreamArg >= (int)CI->arg_size())
2674     return false;
2675   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2676   if (!LI)
2677     return false;
2678   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2679   if (!GV || !GV->isDeclaration())
2680     return false;
2681   return GV->getName() == "stderr";
2682 }
2683 
2684 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2685   // Check for a fixed format string.
2686   StringRef FormatStr;
2687   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2688     return nullptr;
2689 
2690   // Empty format string -> noop.
2691   if (FormatStr.empty()) // Tolerate printf's declared void.
2692     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2693 
2694   // Do not do any of the following transformations if the printf return value
2695   // is used, in general the printf return value is not compatible with either
2696   // putchar() or puts().
2697   if (!CI->use_empty())
2698     return nullptr;
2699 
2700   // printf("x") -> putchar('x'), even for "%" and "%%".
2701   if (FormatStr.size() == 1 || FormatStr == "%%")
2702     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2703 
2704   // Try to remove call or emit putchar/puts.
2705   if (FormatStr == "%s" && CI->arg_size() > 1) {
2706     StringRef OperandStr;
2707     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2708       return nullptr;
2709     // printf("%s", "") --> NOP
2710     if (OperandStr.empty())
2711       return (Value *)CI;
2712     // printf("%s", "a") --> putchar('a')
2713     if (OperandStr.size() == 1)
2714       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2715     // printf("%s", str"\n") --> puts(str)
2716     if (OperandStr.back() == '\n') {
2717       OperandStr = OperandStr.drop_back();
2718       Value *GV = B.CreateGlobalString(OperandStr, "str");
2719       return copyFlags(*CI, emitPutS(GV, B, TLI));
2720     }
2721     return nullptr;
2722   }
2723 
2724   // printf("foo\n") --> puts("foo")
2725   if (FormatStr.back() == '\n' &&
2726       !FormatStr.contains('%')) { // No format characters.
2727     // Create a string literal with no \n on it.  We expect the constant merge
2728     // pass to be run after this pass, to merge duplicate strings.
2729     FormatStr = FormatStr.drop_back();
2730     Value *GV = B.CreateGlobalString(FormatStr, "str");
2731     return copyFlags(*CI, emitPutS(GV, B, TLI));
2732   }
2733 
2734   // Optimize specific format strings.
2735   // printf("%c", chr) --> putchar(chr)
2736   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2737       CI->getArgOperand(1)->getType()->isIntegerTy())
2738     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2739 
2740   // printf("%s\n", str) --> puts(str)
2741   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2742       CI->getArgOperand(1)->getType()->isPointerTy())
2743     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2744   return nullptr;
2745 }
2746 
2747 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2748 
2749   Module *M = CI->getModule();
2750   Function *Callee = CI->getCalledFunction();
2751   FunctionType *FT = Callee->getFunctionType();
2752   if (Value *V = optimizePrintFString(CI, B)) {
2753     return V;
2754   }
2755 
2756   // printf(format, ...) -> iprintf(format, ...) if no floating point
2757   // arguments.
2758   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
2759       !callHasFloatingPointArgument(CI)) {
2760     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
2761                                                   Callee->getAttributes());
2762     CallInst *New = cast<CallInst>(CI->clone());
2763     New->setCalledFunction(IPrintFFn);
2764     B.Insert(New);
2765     return New;
2766   }
2767 
2768   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2769   // arguments.
2770   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
2771       !callHasFP128Argument(CI)) {
2772     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
2773                                             Callee->getAttributes());
2774     CallInst *New = cast<CallInst>(CI->clone());
2775     New->setCalledFunction(SmallPrintFFn);
2776     B.Insert(New);
2777     return New;
2778   }
2779 
2780   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2781   return nullptr;
2782 }
2783 
2784 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2785                                                 IRBuilderBase &B) {
2786   // Check for a fixed format string.
2787   StringRef FormatStr;
2788   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2789     return nullptr;
2790 
2791   // If we just have a format string (nothing else crazy) transform it.
2792   Value *Dest = CI->getArgOperand(0);
2793   if (CI->arg_size() == 2) {
2794     // Make sure there's no % in the constant array.  We could try to handle
2795     // %% -> % in the future if we cared.
2796     if (FormatStr.contains('%'))
2797       return nullptr; // we found a format specifier, bail out.
2798 
2799     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2800     B.CreateMemCpy(
2801         Dest, Align(1), CI->getArgOperand(1), Align(1),
2802         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2803                          FormatStr.size() + 1)); // Copy the null byte.
2804     return ConstantInt::get(CI->getType(), FormatStr.size());
2805   }
2806 
2807   // The remaining optimizations require the format string to be "%s" or "%c"
2808   // and have an extra operand.
2809   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2810     return nullptr;
2811 
2812   // Decode the second character of the format string.
2813   if (FormatStr[1] == 'c') {
2814     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2815     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2816       return nullptr;
2817     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2818     Value *Ptr = castToCStr(Dest, B);
2819     B.CreateStore(V, Ptr);
2820     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2821     B.CreateStore(B.getInt8(0), Ptr);
2822 
2823     return ConstantInt::get(CI->getType(), 1);
2824   }
2825 
2826   if (FormatStr[1] == 's') {
2827     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2828     // strlen(str)+1)
2829     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2830       return nullptr;
2831 
2832     if (CI->use_empty())
2833       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2834       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2835 
2836     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2837     if (SrcLen) {
2838       B.CreateMemCpy(
2839           Dest, Align(1), CI->getArgOperand(2), Align(1),
2840           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2841       // Returns total number of characters written without null-character.
2842       return ConstantInt::get(CI->getType(), SrcLen - 1);
2843     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2844       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2845       // Handle mismatched pointer types (goes away with typeless pointers?).
2846       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2847       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2848       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2849       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2850     }
2851 
2852     bool OptForSize = CI->getFunction()->hasOptSize() ||
2853                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2854                                                   PGSOQueryType::IRPass);
2855     if (OptForSize)
2856       return nullptr;
2857 
2858     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2859     if (!Len)
2860       return nullptr;
2861     Value *IncLen =
2862         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2863     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2864 
2865     // The sprintf result is the unincremented number of bytes in the string.
2866     return B.CreateIntCast(Len, CI->getType(), false);
2867   }
2868   return nullptr;
2869 }
2870 
2871 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2872   Module *M = CI->getModule();
2873   Function *Callee = CI->getCalledFunction();
2874   FunctionType *FT = Callee->getFunctionType();
2875   if (Value *V = optimizeSPrintFString(CI, B)) {
2876     return V;
2877   }
2878 
2879   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2880   // point arguments.
2881   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
2882       !callHasFloatingPointArgument(CI)) {
2883     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
2884                                                    FT, Callee->getAttributes());
2885     CallInst *New = cast<CallInst>(CI->clone());
2886     New->setCalledFunction(SIPrintFFn);
2887     B.Insert(New);
2888     return New;
2889   }
2890 
2891   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2892   // floating point arguments.
2893   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
2894       !callHasFP128Argument(CI)) {
2895     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
2896                                              Callee->getAttributes());
2897     CallInst *New = cast<CallInst>(CI->clone());
2898     New->setCalledFunction(SmallSPrintFFn);
2899     B.Insert(New);
2900     return New;
2901   }
2902 
2903   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2904   return nullptr;
2905 }
2906 
2907 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2908                                                  IRBuilderBase &B) {
2909   // Check for size
2910   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2911   if (!Size)
2912     return nullptr;
2913 
2914   uint64_t N = Size->getZExtValue();
2915   // Check for a fixed format string.
2916   StringRef FormatStr;
2917   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2918     return nullptr;
2919 
2920   // If we just have a format string (nothing else crazy) transform it.
2921   if (CI->arg_size() == 3) {
2922     // Make sure there's no % in the constant array.  We could try to handle
2923     // %% -> % in the future if we cared.
2924     if (FormatStr.contains('%'))
2925       return nullptr; // we found a format specifier, bail out.
2926 
2927     if (N == 0)
2928       return ConstantInt::get(CI->getType(), FormatStr.size());
2929     else if (N < FormatStr.size() + 1)
2930       return nullptr;
2931 
2932     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2933     // strlen(fmt)+1)
2934     copyFlags(
2935         *CI,
2936         B.CreateMemCpy(
2937             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2938             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2939                              FormatStr.size() + 1))); // Copy the null byte.
2940     return ConstantInt::get(CI->getType(), FormatStr.size());
2941   }
2942 
2943   // The remaining optimizations require the format string to be "%s" or "%c"
2944   // and have an extra operand.
2945   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2946 
2947     // Decode the second character of the format string.
2948     if (FormatStr[1] == 'c') {
2949       if (N == 0)
2950         return ConstantInt::get(CI->getType(), 1);
2951       else if (N == 1)
2952         return nullptr;
2953 
2954       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2955       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2956         return nullptr;
2957       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2958       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2959       B.CreateStore(V, Ptr);
2960       Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2961       B.CreateStore(B.getInt8(0), Ptr);
2962 
2963       return ConstantInt::get(CI->getType(), 1);
2964     }
2965 
2966     if (FormatStr[1] == 's') {
2967       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2968       StringRef Str;
2969       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2970         return nullptr;
2971 
2972       if (N == 0)
2973         return ConstantInt::get(CI->getType(), Str.size());
2974       else if (N < Str.size() + 1)
2975         return nullptr;
2976 
2977       copyFlags(
2978           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2979                               CI->getArgOperand(3), Align(1),
2980                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2981 
2982       // The snprintf result is the unincremented number of bytes in the string.
2983       return ConstantInt::get(CI->getType(), Str.size());
2984     }
2985   }
2986   return nullptr;
2987 }
2988 
2989 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2990   if (Value *V = optimizeSnPrintFString(CI, B)) {
2991     return V;
2992   }
2993 
2994   if (isKnownNonZero(CI->getOperand(1), DL))
2995     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2996   return nullptr;
2997 }
2998 
2999 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3000                                                 IRBuilderBase &B) {
3001   optimizeErrorReporting(CI, B, 0);
3002 
3003   // All the optimizations depend on the format string.
3004   StringRef FormatStr;
3005   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3006     return nullptr;
3007 
3008   // Do not do any of the following transformations if the fprintf return
3009   // value is used, in general the fprintf return value is not compatible
3010   // with fwrite(), fputc() or fputs().
3011   if (!CI->use_empty())
3012     return nullptr;
3013 
3014   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3015   if (CI->arg_size() == 2) {
3016     // Could handle %% -> % if we cared.
3017     if (FormatStr.contains('%'))
3018       return nullptr; // We found a format specifier.
3019 
3020     return copyFlags(
3021         *CI, emitFWrite(CI->getArgOperand(1),
3022                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
3023                                          FormatStr.size()),
3024                         CI->getArgOperand(0), B, DL, TLI));
3025   }
3026 
3027   // The remaining optimizations require the format string to be "%s" or "%c"
3028   // and have an extra operand.
3029   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3030     return nullptr;
3031 
3032   // Decode the second character of the format string.
3033   if (FormatStr[1] == 'c') {
3034     // fprintf(F, "%c", chr) --> fputc(chr, F)
3035     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3036       return nullptr;
3037     return copyFlags(
3038         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3039   }
3040 
3041   if (FormatStr[1] == 's') {
3042     // fprintf(F, "%s", str) --> fputs(str, F)
3043     if (!CI->getArgOperand(2)->getType()->isPointerTy())
3044       return nullptr;
3045     return copyFlags(
3046         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3047   }
3048   return nullptr;
3049 }
3050 
3051 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3052   Module *M = CI->getModule();
3053   Function *Callee = CI->getCalledFunction();
3054   FunctionType *FT = Callee->getFunctionType();
3055   if (Value *V = optimizeFPrintFString(CI, B)) {
3056     return V;
3057   }
3058 
3059   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3060   // floating point arguments.
3061   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3062       !callHasFloatingPointArgument(CI)) {
3063     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3064                                                    FT, Callee->getAttributes());
3065     CallInst *New = cast<CallInst>(CI->clone());
3066     New->setCalledFunction(FIPrintFFn);
3067     B.Insert(New);
3068     return New;
3069   }
3070 
3071   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3072   // 128-bit floating point arguments.
3073   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3074       !callHasFP128Argument(CI)) {
3075     auto SmallFPrintFFn =
3076         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3077                            Callee->getAttributes());
3078     CallInst *New = cast<CallInst>(CI->clone());
3079     New->setCalledFunction(SmallFPrintFFn);
3080     B.Insert(New);
3081     return New;
3082   }
3083 
3084   return nullptr;
3085 }
3086 
3087 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3088   optimizeErrorReporting(CI, B, 3);
3089 
3090   // Get the element size and count.
3091   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3092   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3093   if (SizeC && CountC) {
3094     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3095 
3096     // If this is writing zero records, remove the call (it's a noop).
3097     if (Bytes == 0)
3098       return ConstantInt::get(CI->getType(), 0);
3099 
3100     // If this is writing one byte, turn it into fputc.
3101     // This optimisation is only valid, if the return value is unused.
3102     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3103       Value *Char = B.CreateLoad(B.getInt8Ty(),
3104                                  castToCStr(CI->getArgOperand(0), B), "char");
3105       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
3106       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3107     }
3108   }
3109 
3110   return nullptr;
3111 }
3112 
3113 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3114   optimizeErrorReporting(CI, B, 1);
3115 
3116   // Don't rewrite fputs to fwrite when optimising for size because fwrite
3117   // requires more arguments and thus extra MOVs are required.
3118   bool OptForSize = CI->getFunction()->hasOptSize() ||
3119                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3120                                                 PGSOQueryType::IRPass);
3121   if (OptForSize)
3122     return nullptr;
3123 
3124   // We can't optimize if return value is used.
3125   if (!CI->use_empty())
3126     return nullptr;
3127 
3128   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3129   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3130   if (!Len)
3131     return nullptr;
3132 
3133   // Known to have no uses (see above).
3134   return copyFlags(
3135       *CI,
3136       emitFWrite(CI->getArgOperand(0),
3137                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
3138                  CI->getArgOperand(1), B, DL, TLI));
3139 }
3140 
3141 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3142   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3143   if (!CI->use_empty())
3144     return nullptr;
3145 
3146   // Check for a constant string.
3147   // puts("") -> putchar('\n')
3148   StringRef Str;
3149   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
3150     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
3151 
3152   return nullptr;
3153 }
3154 
3155 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3156   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3157   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3158                                         CI->getArgOperand(0), Align(1),
3159                                         CI->getArgOperand(2)));
3160 }
3161 
3162 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3163   SmallString<20> FloatFuncName = FuncName;
3164   FloatFuncName += 'f';
3165   return isLibFuncEmittable(M, TLI, FloatFuncName);
3166 }
3167 
3168 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3169                                                       IRBuilderBase &Builder) {
3170   Module *M = CI->getModule();
3171   LibFunc Func;
3172   Function *Callee = CI->getCalledFunction();
3173   // Check for string/memory library functions.
3174   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3175     // Make sure we never change the calling convention.
3176     assert(
3177         (ignoreCallingConv(Func) ||
3178          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3179         "Optimizing string/memory libcall would change the calling convention");
3180     switch (Func) {
3181     case LibFunc_strcat:
3182       return optimizeStrCat(CI, Builder);
3183     case LibFunc_strncat:
3184       return optimizeStrNCat(CI, Builder);
3185     case LibFunc_strchr:
3186       return optimizeStrChr(CI, Builder);
3187     case LibFunc_strrchr:
3188       return optimizeStrRChr(CI, Builder);
3189     case LibFunc_strcmp:
3190       return optimizeStrCmp(CI, Builder);
3191     case LibFunc_strncmp:
3192       return optimizeStrNCmp(CI, Builder);
3193     case LibFunc_strcpy:
3194       return optimizeStrCpy(CI, Builder);
3195     case LibFunc_stpcpy:
3196       return optimizeStpCpy(CI, Builder);
3197     case LibFunc_strncpy:
3198       return optimizeStrNCpy(CI, Builder);
3199     case LibFunc_strlen:
3200       return optimizeStrLen(CI, Builder);
3201     case LibFunc_strnlen:
3202       return optimizeStrNLen(CI, Builder);
3203     case LibFunc_strpbrk:
3204       return optimizeStrPBrk(CI, Builder);
3205     case LibFunc_strndup:
3206       return optimizeStrNDup(CI, Builder);
3207     case LibFunc_strtol:
3208     case LibFunc_strtod:
3209     case LibFunc_strtof:
3210     case LibFunc_strtoul:
3211     case LibFunc_strtoll:
3212     case LibFunc_strtold:
3213     case LibFunc_strtoull:
3214       return optimizeStrTo(CI, Builder);
3215     case LibFunc_strspn:
3216       return optimizeStrSpn(CI, Builder);
3217     case LibFunc_strcspn:
3218       return optimizeStrCSpn(CI, Builder);
3219     case LibFunc_strstr:
3220       return optimizeStrStr(CI, Builder);
3221     case LibFunc_memchr:
3222       return optimizeMemChr(CI, Builder);
3223     case LibFunc_memrchr:
3224       return optimizeMemRChr(CI, Builder);
3225     case LibFunc_bcmp:
3226       return optimizeBCmp(CI, Builder);
3227     case LibFunc_memcmp:
3228       return optimizeMemCmp(CI, Builder);
3229     case LibFunc_memcpy:
3230       return optimizeMemCpy(CI, Builder);
3231     case LibFunc_memccpy:
3232       return optimizeMemCCpy(CI, Builder);
3233     case LibFunc_mempcpy:
3234       return optimizeMemPCpy(CI, Builder);
3235     case LibFunc_memmove:
3236       return optimizeMemMove(CI, Builder);
3237     case LibFunc_memset:
3238       return optimizeMemSet(CI, Builder);
3239     case LibFunc_realloc:
3240       return optimizeRealloc(CI, Builder);
3241     case LibFunc_wcslen:
3242       return optimizeWcslen(CI, Builder);
3243     case LibFunc_bcopy:
3244       return optimizeBCopy(CI, Builder);
3245     default:
3246       break;
3247     }
3248   }
3249   return nullptr;
3250 }
3251 
3252 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3253                                                        LibFunc Func,
3254                                                        IRBuilderBase &Builder) {
3255   const Module *M = CI->getModule();
3256 
3257   // Don't optimize calls that require strict floating point semantics.
3258   if (CI->isStrictFP())
3259     return nullptr;
3260 
3261   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3262     return V;
3263 
3264   switch (Func) {
3265   case LibFunc_sinpif:
3266   case LibFunc_sinpi:
3267   case LibFunc_cospif:
3268   case LibFunc_cospi:
3269     return optimizeSinCosPi(CI, Builder);
3270   case LibFunc_powf:
3271   case LibFunc_pow:
3272   case LibFunc_powl:
3273     return optimizePow(CI, Builder);
3274   case LibFunc_exp2l:
3275   case LibFunc_exp2:
3276   case LibFunc_exp2f:
3277     return optimizeExp2(CI, Builder);
3278   case LibFunc_fabsf:
3279   case LibFunc_fabs:
3280   case LibFunc_fabsl:
3281     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3282   case LibFunc_sqrtf:
3283   case LibFunc_sqrt:
3284   case LibFunc_sqrtl:
3285     return optimizeSqrt(CI, Builder);
3286   case LibFunc_logf:
3287   case LibFunc_log:
3288   case LibFunc_logl:
3289   case LibFunc_log10f:
3290   case LibFunc_log10:
3291   case LibFunc_log10l:
3292   case LibFunc_log1pf:
3293   case LibFunc_log1p:
3294   case LibFunc_log1pl:
3295   case LibFunc_log2f:
3296   case LibFunc_log2:
3297   case LibFunc_log2l:
3298   case LibFunc_logbf:
3299   case LibFunc_logb:
3300   case LibFunc_logbl:
3301     return optimizeLog(CI, Builder);
3302   case LibFunc_tan:
3303   case LibFunc_tanf:
3304   case LibFunc_tanl:
3305     return optimizeTan(CI, Builder);
3306   case LibFunc_ceil:
3307     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3308   case LibFunc_floor:
3309     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3310   case LibFunc_round:
3311     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3312   case LibFunc_roundeven:
3313     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3314   case LibFunc_nearbyint:
3315     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3316   case LibFunc_rint:
3317     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3318   case LibFunc_trunc:
3319     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3320   case LibFunc_acos:
3321   case LibFunc_acosh:
3322   case LibFunc_asin:
3323   case LibFunc_asinh:
3324   case LibFunc_atan:
3325   case LibFunc_atanh:
3326   case LibFunc_cbrt:
3327   case LibFunc_cosh:
3328   case LibFunc_exp:
3329   case LibFunc_exp10:
3330   case LibFunc_expm1:
3331   case LibFunc_cos:
3332   case LibFunc_sin:
3333   case LibFunc_sinh:
3334   case LibFunc_tanh:
3335     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
3336       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
3337     return nullptr;
3338   case LibFunc_copysign:
3339     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
3340       return optimizeBinaryDoubleFP(CI, Builder, TLI);
3341     return nullptr;
3342   case LibFunc_fminf:
3343   case LibFunc_fmin:
3344   case LibFunc_fminl:
3345   case LibFunc_fmaxf:
3346   case LibFunc_fmax:
3347   case LibFunc_fmaxl:
3348     return optimizeFMinFMax(CI, Builder);
3349   case LibFunc_cabs:
3350   case LibFunc_cabsf:
3351   case LibFunc_cabsl:
3352     return optimizeCAbs(CI, Builder);
3353   default:
3354     return nullptr;
3355   }
3356 }
3357 
3358 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3359   Module *M = CI->getModule();
3360   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3361 
3362   // TODO: Split out the code below that operates on FP calls so that
3363   //       we can all non-FP calls with the StrictFP attribute to be
3364   //       optimized.
3365   if (CI->isNoBuiltin())
3366     return nullptr;
3367 
3368   LibFunc Func;
3369   Function *Callee = CI->getCalledFunction();
3370   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3371 
3372   SmallVector<OperandBundleDef, 2> OpBundles;
3373   CI->getOperandBundlesAsDefs(OpBundles);
3374 
3375   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3376   Builder.setDefaultOperandBundles(OpBundles);
3377 
3378   // Command-line parameter overrides instruction attribute.
3379   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3380   // used by the intrinsic optimizations.
3381   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3382     UnsafeFPShrink = EnableUnsafeFPShrink;
3383   else if (isa<FPMathOperator>(CI) && CI->isFast())
3384     UnsafeFPShrink = true;
3385 
3386   // First, check for intrinsics.
3387   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3388     if (!IsCallingConvC)
3389       return nullptr;
3390     // The FP intrinsics have corresponding constrained versions so we don't
3391     // need to check for the StrictFP attribute here.
3392     switch (II->getIntrinsicID()) {
3393     case Intrinsic::pow:
3394       return optimizePow(CI, Builder);
3395     case Intrinsic::exp2:
3396       return optimizeExp2(CI, Builder);
3397     case Intrinsic::log:
3398     case Intrinsic::log2:
3399     case Intrinsic::log10:
3400       return optimizeLog(CI, Builder);
3401     case Intrinsic::sqrt:
3402       return optimizeSqrt(CI, Builder);
3403     case Intrinsic::memset:
3404       return optimizeMemSet(CI, Builder);
3405     case Intrinsic::memcpy:
3406       return optimizeMemCpy(CI, Builder);
3407     case Intrinsic::memmove:
3408       return optimizeMemMove(CI, Builder);
3409     default:
3410       return nullptr;
3411     }
3412   }
3413 
3414   // Also try to simplify calls to fortified library functions.
3415   if (Value *SimplifiedFortifiedCI =
3416           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3417     // Try to further simplify the result.
3418     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3419     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3420       // Ensure that SimplifiedCI's uses are complete, since some calls have
3421       // their uses analyzed.
3422       replaceAllUsesWith(CI, SimplifiedCI);
3423 
3424       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3425       // we might replace later on.
3426       IRBuilderBase::InsertPointGuard Guard(Builder);
3427       Builder.SetInsertPoint(SimplifiedCI);
3428       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3429         // If we were able to further simplify, remove the now redundant call.
3430         substituteInParent(SimplifiedCI, V);
3431         return V;
3432       }
3433     }
3434     return SimplifiedFortifiedCI;
3435   }
3436 
3437   // Then check for known library functions.
3438   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3439     // We never change the calling convention.
3440     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3441       return nullptr;
3442     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3443       return V;
3444     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3445       return V;
3446     switch (Func) {
3447     case LibFunc_ffs:
3448     case LibFunc_ffsl:
3449     case LibFunc_ffsll:
3450       return optimizeFFS(CI, Builder);
3451     case LibFunc_fls:
3452     case LibFunc_flsl:
3453     case LibFunc_flsll:
3454       return optimizeFls(CI, Builder);
3455     case LibFunc_abs:
3456     case LibFunc_labs:
3457     case LibFunc_llabs:
3458       return optimizeAbs(CI, Builder);
3459     case LibFunc_isdigit:
3460       return optimizeIsDigit(CI, Builder);
3461     case LibFunc_isascii:
3462       return optimizeIsAscii(CI, Builder);
3463     case LibFunc_toascii:
3464       return optimizeToAscii(CI, Builder);
3465     case LibFunc_atoi:
3466     case LibFunc_atol:
3467     case LibFunc_atoll:
3468       return optimizeAtoi(CI, Builder);
3469     case LibFunc_strtol:
3470     case LibFunc_strtoll:
3471       return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
3472     case LibFunc_strtoul:
3473     case LibFunc_strtoull:
3474       return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
3475     case LibFunc_printf:
3476       return optimizePrintF(CI, Builder);
3477     case LibFunc_sprintf:
3478       return optimizeSPrintF(CI, Builder);
3479     case LibFunc_snprintf:
3480       return optimizeSnPrintF(CI, Builder);
3481     case LibFunc_fprintf:
3482       return optimizeFPrintF(CI, Builder);
3483     case LibFunc_fwrite:
3484       return optimizeFWrite(CI, Builder);
3485     case LibFunc_fputs:
3486       return optimizeFPuts(CI, Builder);
3487     case LibFunc_puts:
3488       return optimizePuts(CI, Builder);
3489     case LibFunc_perror:
3490       return optimizeErrorReporting(CI, Builder);
3491     case LibFunc_vfprintf:
3492     case LibFunc_fiprintf:
3493       return optimizeErrorReporting(CI, Builder, 0);
3494     default:
3495       return nullptr;
3496     }
3497   }
3498   return nullptr;
3499 }
3500 
3501 LibCallSimplifier::LibCallSimplifier(
3502     const DataLayout &DL, const TargetLibraryInfo *TLI,
3503     OptimizationRemarkEmitter &ORE,
3504     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3505     function_ref<void(Instruction *, Value *)> Replacer,
3506     function_ref<void(Instruction *)> Eraser)
3507     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3508       Replacer(Replacer), Eraser(Eraser) {}
3509 
3510 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3511   // Indirect through the replacer used in this instance.
3512   Replacer(I, With);
3513 }
3514 
3515 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3516   Eraser(I);
3517 }
3518 
3519 // TODO:
3520 //   Additional cases that we need to add to this file:
3521 //
3522 // cbrt:
3523 //   * cbrt(expN(X))  -> expN(x/3)
3524 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3525 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3526 //
3527 // exp, expf, expl:
3528 //   * exp(log(x))  -> x
3529 //
3530 // log, logf, logl:
3531 //   * log(exp(x))   -> x
3532 //   * log(exp(y))   -> y*log(e)
3533 //   * log(exp10(y)) -> y*log(10)
3534 //   * log(sqrt(x))  -> 0.5*log(x)
3535 //
3536 // pow, powf, powl:
3537 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3538 //   * pow(pow(x,y),z)-> pow(x,y*z)
3539 //
3540 // signbit:
3541 //   * signbit(cnst) -> cnst'
3542 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3543 //
3544 // sqrt, sqrtf, sqrtl:
3545 //   * sqrt(expN(x))  -> expN(x*0.5)
3546 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3547 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3548 //
3549 
3550 //===----------------------------------------------------------------------===//
3551 // Fortified Library Call Optimizations
3552 //===----------------------------------------------------------------------===//
3553 
3554 bool
3555 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3556                                                     unsigned ObjSizeOp,
3557                                                     Optional<unsigned> SizeOp,
3558                                                     Optional<unsigned> StrOp,
3559                                                     Optional<unsigned> FlagOp) {
3560   // If this function takes a flag argument, the implementation may use it to
3561   // perform extra checks. Don't fold into the non-checking variant.
3562   if (FlagOp) {
3563     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3564     if (!Flag || !Flag->isZero())
3565       return false;
3566   }
3567 
3568   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3569     return true;
3570 
3571   if (ConstantInt *ObjSizeCI =
3572           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3573     if (ObjSizeCI->isMinusOne())
3574       return true;
3575     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3576     if (OnlyLowerUnknownSize)
3577       return false;
3578     if (StrOp) {
3579       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3580       // If the length is 0 we don't know how long it is and so we can't
3581       // remove the check.
3582       if (Len)
3583         annotateDereferenceableBytes(CI, *StrOp, Len);
3584       else
3585         return false;
3586       return ObjSizeCI->getZExtValue() >= Len;
3587     }
3588 
3589     if (SizeOp) {
3590       if (ConstantInt *SizeCI =
3591               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3592         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3593     }
3594   }
3595   return false;
3596 }
3597 
3598 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3599                                                      IRBuilderBase &B) {
3600   if (isFortifiedCallFoldable(CI, 3, 2)) {
3601     CallInst *NewCI =
3602         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3603                        Align(1), CI->getArgOperand(2));
3604     NewCI->setAttributes(CI->getAttributes());
3605     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3606     copyFlags(*CI, NewCI);
3607     return CI->getArgOperand(0);
3608   }
3609   return nullptr;
3610 }
3611 
3612 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3613                                                       IRBuilderBase &B) {
3614   if (isFortifiedCallFoldable(CI, 3, 2)) {
3615     CallInst *NewCI =
3616         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3617                         Align(1), CI->getArgOperand(2));
3618     NewCI->setAttributes(CI->getAttributes());
3619     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3620     copyFlags(*CI, NewCI);
3621     return CI->getArgOperand(0);
3622   }
3623   return nullptr;
3624 }
3625 
3626 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3627                                                      IRBuilderBase &B) {
3628   if (isFortifiedCallFoldable(CI, 3, 2)) {
3629     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3630     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3631                                      CI->getArgOperand(2), Align(1));
3632     NewCI->setAttributes(CI->getAttributes());
3633     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3634     copyFlags(*CI, NewCI);
3635     return CI->getArgOperand(0);
3636   }
3637   return nullptr;
3638 }
3639 
3640 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3641                                                       IRBuilderBase &B) {
3642   const DataLayout &DL = CI->getModule()->getDataLayout();
3643   if (isFortifiedCallFoldable(CI, 3, 2))
3644     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3645                                   CI->getArgOperand(2), B, DL, TLI)) {
3646       CallInst *NewCI = cast<CallInst>(Call);
3647       NewCI->setAttributes(CI->getAttributes());
3648       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3649       return copyFlags(*CI, NewCI);
3650     }
3651   return nullptr;
3652 }
3653 
3654 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3655                                                       IRBuilderBase &B,
3656                                                       LibFunc Func) {
3657   const DataLayout &DL = CI->getModule()->getDataLayout();
3658   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3659         *ObjSize = CI->getArgOperand(2);
3660 
3661   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3662   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3663     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3664     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3665   }
3666 
3667   // If a) we don't have any length information, or b) we know this will
3668   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3669   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3670   // TODO: It might be nice to get a maximum length out of the possible
3671   // string lengths for varying.
3672   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3673     if (Func == LibFunc_strcpy_chk)
3674       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3675     else
3676       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3677   }
3678 
3679   if (OnlyLowerUnknownSize)
3680     return nullptr;
3681 
3682   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3683   uint64_t Len = GetStringLength(Src);
3684   if (Len)
3685     annotateDereferenceableBytes(CI, 1, Len);
3686   else
3687     return nullptr;
3688 
3689   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3690   // sizeof(int*) for every target. So the assumption used here to derive the
3691   // SizeTBits based on the size of an integer pointer in address space zero
3692   // isn't always valid.
3693   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3694   Value *LenV = ConstantInt::get(SizeTTy, Len);
3695   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3696   // If the function was an __stpcpy_chk, and we were able to fold it into
3697   // a __memcpy_chk, we still need to return the correct end pointer.
3698   if (Ret && Func == LibFunc_stpcpy_chk)
3699     return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
3700                                ConstantInt::get(SizeTTy, Len - 1));
3701   return copyFlags(*CI, cast<CallInst>(Ret));
3702 }
3703 
3704 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3705                                                      IRBuilderBase &B) {
3706   if (isFortifiedCallFoldable(CI, 1, None, 0))
3707     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3708                                      CI->getModule()->getDataLayout(), TLI));
3709   return nullptr;
3710 }
3711 
3712 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3713                                                        IRBuilderBase &B,
3714                                                        LibFunc Func) {
3715   if (isFortifiedCallFoldable(CI, 3, 2)) {
3716     if (Func == LibFunc_strncpy_chk)
3717       return copyFlags(*CI,
3718                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3719                                    CI->getArgOperand(2), B, TLI));
3720     else
3721       return copyFlags(*CI,
3722                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3723                                    CI->getArgOperand(2), B, TLI));
3724   }
3725 
3726   return nullptr;
3727 }
3728 
3729 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3730                                                       IRBuilderBase &B) {
3731   if (isFortifiedCallFoldable(CI, 4, 3))
3732     return copyFlags(
3733         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3734                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3735 
3736   return nullptr;
3737 }
3738 
3739 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3740                                                        IRBuilderBase &B) {
3741   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3742     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3743     return copyFlags(*CI,
3744                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3745                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3746   }
3747 
3748   return nullptr;
3749 }
3750 
3751 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3752                                                       IRBuilderBase &B) {
3753   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3754     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3755     return copyFlags(*CI,
3756                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3757                                  VariadicArgs, B, TLI));
3758   }
3759 
3760   return nullptr;
3761 }
3762 
3763 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3764                                                      IRBuilderBase &B) {
3765   if (isFortifiedCallFoldable(CI, 2))
3766     return copyFlags(
3767         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3768 
3769   return nullptr;
3770 }
3771 
3772 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3773                                                    IRBuilderBase &B) {
3774   if (isFortifiedCallFoldable(CI, 3))
3775     return copyFlags(*CI,
3776                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3777                                  CI->getArgOperand(2), B, TLI));
3778 
3779   return nullptr;
3780 }
3781 
3782 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3783                                                       IRBuilderBase &B) {
3784   if (isFortifiedCallFoldable(CI, 3))
3785     return copyFlags(*CI,
3786                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3787                                  CI->getArgOperand(2), B, TLI));
3788 
3789   return nullptr;
3790 }
3791 
3792 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3793                                                       IRBuilderBase &B) {
3794   if (isFortifiedCallFoldable(CI, 3))
3795     return copyFlags(*CI,
3796                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3797                                  CI->getArgOperand(2), B, TLI));
3798 
3799   return nullptr;
3800 }
3801 
3802 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3803                                                         IRBuilderBase &B) {
3804   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3805     return copyFlags(
3806         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3807                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3808 
3809   return nullptr;
3810 }
3811 
3812 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3813                                                        IRBuilderBase &B) {
3814   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3815     return copyFlags(*CI,
3816                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3817                                   CI->getArgOperand(4), B, TLI));
3818 
3819   return nullptr;
3820 }
3821 
3822 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3823                                                 IRBuilderBase &Builder) {
3824   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3825   // Some clang users checked for _chk libcall availability using:
3826   //   __has_builtin(__builtin___memcpy_chk)
3827   // When compiling with -fno-builtin, this is always true.
3828   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3829   // end up with fortified libcalls, which isn't acceptable in a freestanding
3830   // environment which only provides their non-fortified counterparts.
3831   //
3832   // Until we change clang and/or teach external users to check for availability
3833   // differently, disregard the "nobuiltin" attribute and TLI::has.
3834   //
3835   // PR23093.
3836 
3837   LibFunc Func;
3838   Function *Callee = CI->getCalledFunction();
3839   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3840 
3841   SmallVector<OperandBundleDef, 2> OpBundles;
3842   CI->getOperandBundlesAsDefs(OpBundles);
3843 
3844   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3845   Builder.setDefaultOperandBundles(OpBundles);
3846 
3847   // First, check that this is a known library functions and that the prototype
3848   // is correct.
3849   if (!TLI->getLibFunc(*Callee, Func))
3850     return nullptr;
3851 
3852   // We never change the calling convention.
3853   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3854     return nullptr;
3855 
3856   switch (Func) {
3857   case LibFunc_memcpy_chk:
3858     return optimizeMemCpyChk(CI, Builder);
3859   case LibFunc_mempcpy_chk:
3860     return optimizeMemPCpyChk(CI, Builder);
3861   case LibFunc_memmove_chk:
3862     return optimizeMemMoveChk(CI, Builder);
3863   case LibFunc_memset_chk:
3864     return optimizeMemSetChk(CI, Builder);
3865   case LibFunc_stpcpy_chk:
3866   case LibFunc_strcpy_chk:
3867     return optimizeStrpCpyChk(CI, Builder, Func);
3868   case LibFunc_strlen_chk:
3869     return optimizeStrLenChk(CI, Builder);
3870   case LibFunc_stpncpy_chk:
3871   case LibFunc_strncpy_chk:
3872     return optimizeStrpNCpyChk(CI, Builder, Func);
3873   case LibFunc_memccpy_chk:
3874     return optimizeMemCCpyChk(CI, Builder);
3875   case LibFunc_snprintf_chk:
3876     return optimizeSNPrintfChk(CI, Builder);
3877   case LibFunc_sprintf_chk:
3878     return optimizeSPrintfChk(CI, Builder);
3879   case LibFunc_strcat_chk:
3880     return optimizeStrCatChk(CI, Builder);
3881   case LibFunc_strlcat_chk:
3882     return optimizeStrLCat(CI, Builder);
3883   case LibFunc_strncat_chk:
3884     return optimizeStrNCatChk(CI, Builder);
3885   case LibFunc_strlcpy_chk:
3886     return optimizeStrLCpyChk(CI, Builder);
3887   case LibFunc_vsnprintf_chk:
3888     return optimizeVSNPrintfChk(CI, Builder);
3889   case LibFunc_vsprintf_chk:
3890     return optimizeVSPrintfChk(CI, Builder);
3891   default:
3892     break;
3893   }
3894   return nullptr;
3895 }
3896 
3897 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3898     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3899     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3900