xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/PseudoProbe.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
98     cl::init(false),
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool>
122     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
123                cl::desc("Sink common instructions down to the end block"));
124 
125 static cl::opt<bool> HoistCondStores(
126     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
127     cl::desc("Hoist conditional stores if an unconditional store precedes"));
128 
129 static cl::opt<bool> MergeCondStores(
130     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores even if an unconditional store does not "
132              "precede - hoist multiple conditional stores into a single "
133              "predicated store"));
134 
135 static cl::opt<bool> MergeCondStoresAggressively(
136     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
137     cl::desc("When merging conditional stores, do so even if the resultant "
138              "basic blocks are unlikely to be if-converted as a result"));
139 
140 static cl::opt<bool> SpeculateOneExpensiveInst(
141     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
142     cl::desc("Allow exactly one expensive instruction to be speculatively "
143              "executed"));
144 
145 static cl::opt<unsigned> MaxSpeculationDepth(
146     "max-speculation-depth", cl::Hidden, cl::init(10),
147     cl::desc("Limit maximum recursion depth when calculating costs of "
148              "speculatively executed instructions"));
149 
150 static cl::opt<int>
151     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
152                       cl::init(10),
153                       cl::desc("Max size of a block which is still considered "
154                                "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
164     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
165     cl::init(2),
166     cl::desc("Multiplier to apply to threshold when determining whether or not "
167              "to fold branch to common destination when vector operations are "
168              "present"));
169 
170 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
171 STATISTIC(NumLinearMaps,
172           "Number of switch instructions turned into linear mapping");
173 STATISTIC(NumLookupTables,
174           "Number of switch instructions turned into lookup tables");
175 STATISTIC(
176     NumLookupTablesHoles,
177     "Number of switch instructions turned into lookup tables (holes checked)");
178 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
179 STATISTIC(NumFoldValueComparisonIntoPredecessors,
180           "Number of value comparisons folded into predecessor basic blocks");
181 STATISTIC(NumFoldBranchToCommonDest,
182           "Number of branches folded into predecessor basic block");
183 STATISTIC(
184     NumHoistCommonCode,
185     "Number of common instruction 'blocks' hoisted up to the begin block");
186 STATISTIC(NumHoistCommonInstrs,
187           "Number of common instructions hoisted up to the begin block");
188 STATISTIC(NumSinkCommonCode,
189           "Number of common instruction 'blocks' sunk down to the end block");
190 STATISTIC(NumSinkCommonInstrs,
191           "Number of common instructions sunk down to the end block");
192 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
193 STATISTIC(NumInvokes,
194           "Number of invokes with empty resume blocks simplified into calls");
195 
196 namespace {
197 
198 // The first field contains the value that the switch produces when a certain
199 // case group is selected, and the second field is a vector containing the
200 // cases composing the case group.
201 using SwitchCaseResultVectorTy =
202     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
203 
204 // The first field contains the phi node that generates a result of the switch
205 // and the second field contains the value generated for a certain case in the
206 // switch for that PHI.
207 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
208 
209 /// ValueEqualityComparisonCase - Represents a case of a switch.
210 struct ValueEqualityComparisonCase {
211   ConstantInt *Value;
212   BasicBlock *Dest;
213 
214   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
215       : Value(Value), Dest(Dest) {}
216 
217   bool operator<(ValueEqualityComparisonCase RHS) const {
218     // Comparing pointers is ok as we only rely on the order for uniquing.
219     return Value < RHS.Value;
220   }
221 
222   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
223 };
224 
225 class SimplifyCFGOpt {
226   const TargetTransformInfo &TTI;
227   DomTreeUpdater *DTU;
228   const DataLayout &DL;
229   ArrayRef<WeakVH> LoopHeaders;
230   const SimplifyCFGOptions &Options;
231   bool Resimplify;
232 
233   Value *isValueEqualityComparison(Instruction *TI);
234   BasicBlock *GetValueEqualityComparisonCases(
235       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
236   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
237                                                      BasicBlock *Pred,
238                                                      IRBuilder<> &Builder);
239   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
240                                                     Instruction *PTI,
241                                                     IRBuilder<> &Builder);
242   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
243                                            IRBuilder<> &Builder);
244 
245   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
246   bool simplifySingleResume(ResumeInst *RI);
247   bool simplifyCommonResume(ResumeInst *RI);
248   bool simplifyCleanupReturn(CleanupReturnInst *RI);
249   bool simplifyUnreachable(UnreachableInst *UI);
250   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
251   bool simplifyIndirectBr(IndirectBrInst *IBI);
252   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
253   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
254   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
255 
256   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
257                                              IRBuilder<> &Builder);
258 
259   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
260                              bool EqTermsOnly);
261   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
262                               const TargetTransformInfo &TTI);
263   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
264                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
265                                   uint32_t TrueWeight, uint32_t FalseWeight);
266   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
267                                  const DataLayout &DL);
268   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
269   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
270   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
271 
272 public:
273   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
274                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
275                  const SimplifyCFGOptions &Opts)
276       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
277     assert((!DTU || !DTU->hasPostDomTree()) &&
278            "SimplifyCFG is not yet capable of maintaining validity of a "
279            "PostDomTree, so don't ask for it.");
280   }
281 
282   bool simplifyOnce(BasicBlock *BB);
283   bool run(BasicBlock *BB);
284 
285   // Helper to set Resimplify and return change indication.
286   bool requestResimplify() {
287     Resimplify = true;
288     return true;
289   }
290 };
291 
292 } // end anonymous namespace
293 
294 /// Return true if it is safe to merge these two
295 /// terminator instructions together.
296 static bool
297 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
298                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
299   if (SI1 == SI2)
300     return false; // Can't merge with self!
301 
302   // It is not safe to merge these two switch instructions if they have a common
303   // successor, and if that successor has a PHI node, and if *that* PHI node has
304   // conflicting incoming values from the two switch blocks.
305   BasicBlock *SI1BB = SI1->getParent();
306   BasicBlock *SI2BB = SI2->getParent();
307 
308   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
309   bool Fail = false;
310   for (BasicBlock *Succ : successors(SI2BB))
311     if (SI1Succs.count(Succ))
312       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
313         PHINode *PN = cast<PHINode>(BBI);
314         if (PN->getIncomingValueForBlock(SI1BB) !=
315             PN->getIncomingValueForBlock(SI2BB)) {
316           if (FailBlocks)
317             FailBlocks->insert(Succ);
318           Fail = true;
319         }
320       }
321 
322   return !Fail;
323 }
324 
325 /// Update PHI nodes in Succ to indicate that there will now be entries in it
326 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
327 /// will be the same as those coming in from ExistPred, an existing predecessor
328 /// of Succ.
329 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
330                                   BasicBlock *ExistPred,
331                                   MemorySSAUpdater *MSSAU = nullptr) {
332   for (PHINode &PN : Succ->phis())
333     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
334   if (MSSAU)
335     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
336       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
337 }
338 
339 /// Compute an abstract "cost" of speculating the given instruction,
340 /// which is assumed to be safe to speculate. TCC_Free means cheap,
341 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
342 /// expensive.
343 static InstructionCost computeSpeculationCost(const User *I,
344                                               const TargetTransformInfo &TTI) {
345   assert(isSafeToSpeculativelyExecute(I) &&
346          "Instruction is not safe to speculatively execute!");
347   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
348 }
349 
350 /// If we have a merge point of an "if condition" as accepted above,
351 /// return true if the specified value dominates the block.  We
352 /// don't handle the true generality of domination here, just a special case
353 /// which works well enough for us.
354 ///
355 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
356 /// see if V (which must be an instruction) and its recursive operands
357 /// that do not dominate BB have a combined cost lower than Budget and
358 /// are non-trapping.  If both are true, the instruction is inserted into the
359 /// set and true is returned.
360 ///
361 /// The cost for most non-trapping instructions is defined as 1 except for
362 /// Select whose cost is 2.
363 ///
364 /// After this function returns, Cost is increased by the cost of
365 /// V plus its non-dominating operands.  If that cost is greater than
366 /// Budget, false is returned and Cost is undefined.
367 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
368                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
369                                 InstructionCost &Cost,
370                                 InstructionCost Budget,
371                                 const TargetTransformInfo &TTI,
372                                 unsigned Depth = 0) {
373   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
374   // so limit the recursion depth.
375   // TODO: While this recursion limit does prevent pathological behavior, it
376   // would be better to track visited instructions to avoid cycles.
377   if (Depth == MaxSpeculationDepth)
378     return false;
379 
380   Instruction *I = dyn_cast<Instruction>(V);
381   if (!I) {
382     // Non-instructions all dominate instructions, but not all constantexprs
383     // can be executed unconditionally.
384     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
385       if (C->canTrap())
386         return false;
387     return true;
388   }
389   BasicBlock *PBB = I->getParent();
390 
391   // We don't want to allow weird loops that might have the "if condition" in
392   // the bottom of this block.
393   if (PBB == BB)
394     return false;
395 
396   // If this instruction is defined in a block that contains an unconditional
397   // branch to BB, then it must be in the 'conditional' part of the "if
398   // statement".  If not, it definitely dominates the region.
399   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
400   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
401     return true;
402 
403   // If we have seen this instruction before, don't count it again.
404   if (AggressiveInsts.count(I))
405     return true;
406 
407   // Okay, it looks like the instruction IS in the "condition".  Check to
408   // see if it's a cheap instruction to unconditionally compute, and if it
409   // only uses stuff defined outside of the condition.  If so, hoist it out.
410   if (!isSafeToSpeculativelyExecute(I))
411     return false;
412 
413   Cost += computeSpeculationCost(I, TTI);
414 
415   // Allow exactly one instruction to be speculated regardless of its cost
416   // (as long as it is safe to do so).
417   // This is intended to flatten the CFG even if the instruction is a division
418   // or other expensive operation. The speculation of an expensive instruction
419   // is expected to be undone in CodeGenPrepare if the speculation has not
420   // enabled further IR optimizations.
421   if (Cost > Budget &&
422       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
423        !Cost.isValid()))
424     return false;
425 
426   // Okay, we can only really hoist these out if their operands do
427   // not take us over the cost threshold.
428   for (Use &Op : I->operands())
429     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
430                              Depth + 1))
431       return false;
432   // Okay, it's safe to do this!  Remember this instruction.
433   AggressiveInsts.insert(I);
434   return true;
435 }
436 
437 /// Extract ConstantInt from value, looking through IntToPtr
438 /// and PointerNullValue. Return NULL if value is not a constant int.
439 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
440   // Normal constant int.
441   ConstantInt *CI = dyn_cast<ConstantInt>(V);
442   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
443     return CI;
444 
445   // This is some kind of pointer constant. Turn it into a pointer-sized
446   // ConstantInt if possible.
447   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
448 
449   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
450   if (isa<ConstantPointerNull>(V))
451     return ConstantInt::get(PtrTy, 0);
452 
453   // IntToPtr const int.
454   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
455     if (CE->getOpcode() == Instruction::IntToPtr)
456       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
457         // The constant is very likely to have the right type already.
458         if (CI->getType() == PtrTy)
459           return CI;
460         else
461           return cast<ConstantInt>(
462               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
463       }
464   return nullptr;
465 }
466 
467 namespace {
468 
469 /// Given a chain of or (||) or and (&&) comparison of a value against a
470 /// constant, this will try to recover the information required for a switch
471 /// structure.
472 /// It will depth-first traverse the chain of comparison, seeking for patterns
473 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
474 /// representing the different cases for the switch.
475 /// Note that if the chain is composed of '||' it will build the set of elements
476 /// that matches the comparisons (i.e. any of this value validate the chain)
477 /// while for a chain of '&&' it will build the set elements that make the test
478 /// fail.
479 struct ConstantComparesGatherer {
480   const DataLayout &DL;
481 
482   /// Value found for the switch comparison
483   Value *CompValue = nullptr;
484 
485   /// Extra clause to be checked before the switch
486   Value *Extra = nullptr;
487 
488   /// Set of integers to match in switch
489   SmallVector<ConstantInt *, 8> Vals;
490 
491   /// Number of comparisons matched in the and/or chain
492   unsigned UsedICmps = 0;
493 
494   /// Construct and compute the result for the comparison instruction Cond
495   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
496     gather(Cond);
497   }
498 
499   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
500   ConstantComparesGatherer &
501   operator=(const ConstantComparesGatherer &) = delete;
502 
503 private:
504   /// Try to set the current value used for the comparison, it succeeds only if
505   /// it wasn't set before or if the new value is the same as the old one
506   bool setValueOnce(Value *NewVal) {
507     if (CompValue && CompValue != NewVal)
508       return false;
509     CompValue = NewVal;
510     return (CompValue != nullptr);
511   }
512 
513   /// Try to match Instruction "I" as a comparison against a constant and
514   /// populates the array Vals with the set of values that match (or do not
515   /// match depending on isEQ).
516   /// Return false on failure. On success, the Value the comparison matched
517   /// against is placed in CompValue.
518   /// If CompValue is already set, the function is expected to fail if a match
519   /// is found but the value compared to is different.
520   bool matchInstruction(Instruction *I, bool isEQ) {
521     // If this is an icmp against a constant, handle this as one of the cases.
522     ICmpInst *ICI;
523     ConstantInt *C;
524     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
525           (C = GetConstantInt(I->getOperand(1), DL)))) {
526       return false;
527     }
528 
529     Value *RHSVal;
530     const APInt *RHSC;
531 
532     // Pattern match a special case
533     // (x & ~2^z) == y --> x == y || x == y|2^z
534     // This undoes a transformation done by instcombine to fuse 2 compares.
535     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
536       // It's a little bit hard to see why the following transformations are
537       // correct. Here is a CVC3 program to verify them for 64-bit values:
538 
539       /*
540          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
541          x    : BITVECTOR(64);
542          y    : BITVECTOR(64);
543          z    : BITVECTOR(64);
544          mask : BITVECTOR(64) = BVSHL(ONE, z);
545          QUERY( (y & ~mask = y) =>
546                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
547          );
548          QUERY( (y |  mask = y) =>
549                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
550          );
551       */
552 
553       // Please note that each pattern must be a dual implication (<--> or
554       // iff). One directional implication can create spurious matches. If the
555       // implication is only one-way, an unsatisfiable condition on the left
556       // side can imply a satisfiable condition on the right side. Dual
557       // implication ensures that satisfiable conditions are transformed to
558       // other satisfiable conditions and unsatisfiable conditions are
559       // transformed to other unsatisfiable conditions.
560 
561       // Here is a concrete example of a unsatisfiable condition on the left
562       // implying a satisfiable condition on the right:
563       //
564       // mask = (1 << z)
565       // (x & ~mask) == y  --> (x == y || x == (y | mask))
566       //
567       // Substituting y = 3, z = 0 yields:
568       // (x & -2) == 3 --> (x == 3 || x == 2)
569 
570       // Pattern match a special case:
571       /*
572         QUERY( (y & ~mask = y) =>
573                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
574         );
575       */
576       if (match(ICI->getOperand(0),
577                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
578         APInt Mask = ~*RHSC;
579         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
580           // If we already have a value for the switch, it has to match!
581           if (!setValueOnce(RHSVal))
582             return false;
583 
584           Vals.push_back(C);
585           Vals.push_back(
586               ConstantInt::get(C->getContext(),
587                                C->getValue() | Mask));
588           UsedICmps++;
589           return true;
590         }
591       }
592 
593       // Pattern match a special case:
594       /*
595         QUERY( (y |  mask = y) =>
596                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
597         );
598       */
599       if (match(ICI->getOperand(0),
600                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
601         APInt Mask = *RHSC;
602         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
603           // If we already have a value for the switch, it has to match!
604           if (!setValueOnce(RHSVal))
605             return false;
606 
607           Vals.push_back(C);
608           Vals.push_back(ConstantInt::get(C->getContext(),
609                                           C->getValue() & ~Mask));
610           UsedICmps++;
611           return true;
612         }
613       }
614 
615       // If we already have a value for the switch, it has to match!
616       if (!setValueOnce(ICI->getOperand(0)))
617         return false;
618 
619       UsedICmps++;
620       Vals.push_back(C);
621       return ICI->getOperand(0);
622     }
623 
624     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
625     ConstantRange Span =
626         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
627 
628     // Shift the range if the compare is fed by an add. This is the range
629     // compare idiom as emitted by instcombine.
630     Value *CandidateVal = I->getOperand(0);
631     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
632       Span = Span.subtract(*RHSC);
633       CandidateVal = RHSVal;
634     }
635 
636     // If this is an and/!= check, then we are looking to build the set of
637     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
638     // x != 0 && x != 1.
639     if (!isEQ)
640       Span = Span.inverse();
641 
642     // If there are a ton of values, we don't want to make a ginormous switch.
643     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
644       return false;
645     }
646 
647     // If we already have a value for the switch, it has to match!
648     if (!setValueOnce(CandidateVal))
649       return false;
650 
651     // Add all values from the range to the set
652     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
653       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
654 
655     UsedICmps++;
656     return true;
657   }
658 
659   /// Given a potentially 'or'd or 'and'd together collection of icmp
660   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
661   /// the value being compared, and stick the list constants into the Vals
662   /// vector.
663   /// One "Extra" case is allowed to differ from the other.
664   void gather(Value *V) {
665     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
666 
667     // Keep a stack (SmallVector for efficiency) for depth-first traversal
668     SmallVector<Value *, 8> DFT;
669     SmallPtrSet<Value *, 8> Visited;
670 
671     // Initialize
672     Visited.insert(V);
673     DFT.push_back(V);
674 
675     while (!DFT.empty()) {
676       V = DFT.pop_back_val();
677 
678       if (Instruction *I = dyn_cast<Instruction>(V)) {
679         // If it is a || (or && depending on isEQ), process the operands.
680         Value *Op0, *Op1;
681         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
682                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
683           if (Visited.insert(Op1).second)
684             DFT.push_back(Op1);
685           if (Visited.insert(Op0).second)
686             DFT.push_back(Op0);
687 
688           continue;
689         }
690 
691         // Try to match the current instruction
692         if (matchInstruction(I, isEQ))
693           // Match succeed, continue the loop
694           continue;
695       }
696 
697       // One element of the sequence of || (or &&) could not be match as a
698       // comparison against the same value as the others.
699       // We allow only one "Extra" case to be checked before the switch
700       if (!Extra) {
701         Extra = V;
702         continue;
703       }
704       // Failed to parse a proper sequence, abort now
705       CompValue = nullptr;
706       break;
707     }
708   }
709 };
710 
711 } // end anonymous namespace
712 
713 static void EraseTerminatorAndDCECond(Instruction *TI,
714                                       MemorySSAUpdater *MSSAU = nullptr) {
715   Instruction *Cond = nullptr;
716   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
717     Cond = dyn_cast<Instruction>(SI->getCondition());
718   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
719     if (BI->isConditional())
720       Cond = dyn_cast<Instruction>(BI->getCondition());
721   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
722     Cond = dyn_cast<Instruction>(IBI->getAddress());
723   }
724 
725   TI->eraseFromParent();
726   if (Cond)
727     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
728 }
729 
730 /// Return true if the specified terminator checks
731 /// to see if a value is equal to constant integer value.
732 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
733   Value *CV = nullptr;
734   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
735     // Do not permit merging of large switch instructions into their
736     // predecessors unless there is only one predecessor.
737     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
738       CV = SI->getCondition();
739   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
740     if (BI->isConditional() && BI->getCondition()->hasOneUse())
741       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
742         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
743           CV = ICI->getOperand(0);
744       }
745 
746   // Unwrap any lossless ptrtoint cast.
747   if (CV) {
748     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
749       Value *Ptr = PTII->getPointerOperand();
750       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
751         CV = Ptr;
752     }
753   }
754   return CV;
755 }
756 
757 /// Given a value comparison instruction,
758 /// decode all of the 'cases' that it represents and return the 'default' block.
759 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
760     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
761   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
762     Cases.reserve(SI->getNumCases());
763     for (auto Case : SI->cases())
764       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
765                                                   Case.getCaseSuccessor()));
766     return SI->getDefaultDest();
767   }
768 
769   BranchInst *BI = cast<BranchInst>(TI);
770   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
771   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
772   Cases.push_back(ValueEqualityComparisonCase(
773       GetConstantInt(ICI->getOperand(1), DL), Succ));
774   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
775 }
776 
777 /// Given a vector of bb/value pairs, remove any entries
778 /// in the list that match the specified block.
779 static void
780 EliminateBlockCases(BasicBlock *BB,
781                     std::vector<ValueEqualityComparisonCase> &Cases) {
782   llvm::erase_value(Cases, BB);
783 }
784 
785 /// Return true if there are any keys in C1 that exist in C2 as well.
786 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
787                           std::vector<ValueEqualityComparisonCase> &C2) {
788   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
789 
790   // Make V1 be smaller than V2.
791   if (V1->size() > V2->size())
792     std::swap(V1, V2);
793 
794   if (V1->empty())
795     return false;
796   if (V1->size() == 1) {
797     // Just scan V2.
798     ConstantInt *TheVal = (*V1)[0].Value;
799     for (unsigned i = 0, e = V2->size(); i != e; ++i)
800       if (TheVal == (*V2)[i].Value)
801         return true;
802   }
803 
804   // Otherwise, just sort both lists and compare element by element.
805   array_pod_sort(V1->begin(), V1->end());
806   array_pod_sort(V2->begin(), V2->end());
807   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
808   while (i1 != e1 && i2 != e2) {
809     if ((*V1)[i1].Value == (*V2)[i2].Value)
810       return true;
811     if ((*V1)[i1].Value < (*V2)[i2].Value)
812       ++i1;
813     else
814       ++i2;
815   }
816   return false;
817 }
818 
819 // Set branch weights on SwitchInst. This sets the metadata if there is at
820 // least one non-zero weight.
821 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
822   // Check that there is at least one non-zero weight. Otherwise, pass
823   // nullptr to setMetadata which will erase the existing metadata.
824   MDNode *N = nullptr;
825   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
826     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
827   SI->setMetadata(LLVMContext::MD_prof, N);
828 }
829 
830 // Similar to the above, but for branch and select instructions that take
831 // exactly 2 weights.
832 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
833                              uint32_t FalseWeight) {
834   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
835   // Check that there is at least one non-zero weight. Otherwise, pass
836   // nullptr to setMetadata which will erase the existing metadata.
837   MDNode *N = nullptr;
838   if (TrueWeight || FalseWeight)
839     N = MDBuilder(I->getParent()->getContext())
840             .createBranchWeights(TrueWeight, FalseWeight);
841   I->setMetadata(LLVMContext::MD_prof, N);
842 }
843 
844 /// If TI is known to be a terminator instruction and its block is known to
845 /// only have a single predecessor block, check to see if that predecessor is
846 /// also a value comparison with the same value, and if that comparison
847 /// determines the outcome of this comparison. If so, simplify TI. This does a
848 /// very limited form of jump threading.
849 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
850     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
851   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
852   if (!PredVal)
853     return false; // Not a value comparison in predecessor.
854 
855   Value *ThisVal = isValueEqualityComparison(TI);
856   assert(ThisVal && "This isn't a value comparison!!");
857   if (ThisVal != PredVal)
858     return false; // Different predicates.
859 
860   // TODO: Preserve branch weight metadata, similarly to how
861   // FoldValueComparisonIntoPredecessors preserves it.
862 
863   // Find out information about when control will move from Pred to TI's block.
864   std::vector<ValueEqualityComparisonCase> PredCases;
865   BasicBlock *PredDef =
866       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
867   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
868 
869   // Find information about how control leaves this block.
870   std::vector<ValueEqualityComparisonCase> ThisCases;
871   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
872   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
873 
874   // If TI's block is the default block from Pred's comparison, potentially
875   // simplify TI based on this knowledge.
876   if (PredDef == TI->getParent()) {
877     // If we are here, we know that the value is none of those cases listed in
878     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
879     // can simplify TI.
880     if (!ValuesOverlap(PredCases, ThisCases))
881       return false;
882 
883     if (isa<BranchInst>(TI)) {
884       // Okay, one of the successors of this condbr is dead.  Convert it to a
885       // uncond br.
886       assert(ThisCases.size() == 1 && "Branch can only have one case!");
887       // Insert the new branch.
888       Instruction *NI = Builder.CreateBr(ThisDef);
889       (void)NI;
890 
891       // Remove PHI node entries for the dead edge.
892       ThisCases[0].Dest->removePredecessor(PredDef);
893 
894       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
895                         << "Through successor TI: " << *TI << "Leaving: " << *NI
896                         << "\n");
897 
898       EraseTerminatorAndDCECond(TI);
899 
900       if (DTU)
901         DTU->applyUpdates(
902             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
903 
904       return true;
905     }
906 
907     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
908     // Okay, TI has cases that are statically dead, prune them away.
909     SmallPtrSet<Constant *, 16> DeadCases;
910     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
911       DeadCases.insert(PredCases[i].Value);
912 
913     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
914                       << "Through successor TI: " << *TI);
915 
916     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
917     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
918       --i;
919       auto *Successor = i->getCaseSuccessor();
920       if (DTU)
921         ++NumPerSuccessorCases[Successor];
922       if (DeadCases.count(i->getCaseValue())) {
923         Successor->removePredecessor(PredDef);
924         SI.removeCase(i);
925         if (DTU)
926           --NumPerSuccessorCases[Successor];
927       }
928     }
929 
930     if (DTU) {
931       std::vector<DominatorTree::UpdateType> Updates;
932       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
933         if (I.second == 0)
934           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
935       DTU->applyUpdates(Updates);
936     }
937 
938     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
939     return true;
940   }
941 
942   // Otherwise, TI's block must correspond to some matched value.  Find out
943   // which value (or set of values) this is.
944   ConstantInt *TIV = nullptr;
945   BasicBlock *TIBB = TI->getParent();
946   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
947     if (PredCases[i].Dest == TIBB) {
948       if (TIV)
949         return false; // Cannot handle multiple values coming to this block.
950       TIV = PredCases[i].Value;
951     }
952   assert(TIV && "No edge from pred to succ?");
953 
954   // Okay, we found the one constant that our value can be if we get into TI's
955   // BB.  Find out which successor will unconditionally be branched to.
956   BasicBlock *TheRealDest = nullptr;
957   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
958     if (ThisCases[i].Value == TIV) {
959       TheRealDest = ThisCases[i].Dest;
960       break;
961     }
962 
963   // If not handled by any explicit cases, it is handled by the default case.
964   if (!TheRealDest)
965     TheRealDest = ThisDef;
966 
967   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
968 
969   // Remove PHI node entries for dead edges.
970   BasicBlock *CheckEdge = TheRealDest;
971   for (BasicBlock *Succ : successors(TIBB))
972     if (Succ != CheckEdge) {
973       if (Succ != TheRealDest)
974         RemovedSuccs.insert(Succ);
975       Succ->removePredecessor(TIBB);
976     } else
977       CheckEdge = nullptr;
978 
979   // Insert the new branch.
980   Instruction *NI = Builder.CreateBr(TheRealDest);
981   (void)NI;
982 
983   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
984                     << "Through successor TI: " << *TI << "Leaving: " << *NI
985                     << "\n");
986 
987   EraseTerminatorAndDCECond(TI);
988   if (DTU) {
989     SmallVector<DominatorTree::UpdateType, 2> Updates;
990     Updates.reserve(RemovedSuccs.size());
991     for (auto *RemovedSucc : RemovedSuccs)
992       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
993     DTU->applyUpdates(Updates);
994   }
995   return true;
996 }
997 
998 namespace {
999 
1000 /// This class implements a stable ordering of constant
1001 /// integers that does not depend on their address.  This is important for
1002 /// applications that sort ConstantInt's to ensure uniqueness.
1003 struct ConstantIntOrdering {
1004   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1005     return LHS->getValue().ult(RHS->getValue());
1006   }
1007 };
1008 
1009 } // end anonymous namespace
1010 
1011 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1012                                     ConstantInt *const *P2) {
1013   const ConstantInt *LHS = *P1;
1014   const ConstantInt *RHS = *P2;
1015   if (LHS == RHS)
1016     return 0;
1017   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1018 }
1019 
1020 static inline bool HasBranchWeights(const Instruction *I) {
1021   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1022   if (ProfMD && ProfMD->getOperand(0))
1023     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1024       return MDS->getString().equals("branch_weights");
1025 
1026   return false;
1027 }
1028 
1029 /// Get Weights of a given terminator, the default weight is at the front
1030 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1031 /// metadata.
1032 static void GetBranchWeights(Instruction *TI,
1033                              SmallVectorImpl<uint64_t> &Weights) {
1034   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1035   assert(MD);
1036   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1037     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1038     Weights.push_back(CI->getValue().getZExtValue());
1039   }
1040 
1041   // If TI is a conditional eq, the default case is the false case,
1042   // and the corresponding branch-weight data is at index 2. We swap the
1043   // default weight to be the first entry.
1044   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1045     assert(Weights.size() == 2);
1046     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1047     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1048       std::swap(Weights.front(), Weights.back());
1049   }
1050 }
1051 
1052 /// Keep halving the weights until all can fit in uint32_t.
1053 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1054   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1055   if (Max > UINT_MAX) {
1056     unsigned Offset = 32 - countLeadingZeros(Max);
1057     for (uint64_t &I : Weights)
1058       I >>= Offset;
1059   }
1060 }
1061 
1062 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1063     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1064   Instruction *PTI = PredBlock->getTerminator();
1065 
1066   // If we have bonus instructions, clone them into the predecessor block.
1067   // Note that there may be multiple predecessor blocks, so we cannot move
1068   // bonus instructions to a predecessor block.
1069   for (Instruction &BonusInst : *BB) {
1070     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1071       continue;
1072 
1073     Instruction *NewBonusInst = BonusInst.clone();
1074 
1075     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1076       // Unless the instruction has the same !dbg location as the original
1077       // branch, drop it. When we fold the bonus instructions we want to make
1078       // sure we reset their debug locations in order to avoid stepping on
1079       // dead code caused by folding dead branches.
1080       NewBonusInst->setDebugLoc(DebugLoc());
1081     }
1082 
1083     RemapInstruction(NewBonusInst, VMap,
1084                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1085     VMap[&BonusInst] = NewBonusInst;
1086 
1087     // If we moved a load, we cannot any longer claim any knowledge about
1088     // its potential value. The previous information might have been valid
1089     // only given the branch precondition.
1090     // For an analogous reason, we must also drop all the metadata whose
1091     // semantics we don't understand. We *can* preserve !annotation, because
1092     // it is tied to the instruction itself, not the value or position.
1093     // Similarly strip attributes on call parameters that may cause UB in
1094     // location the call is moved to.
1095     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1096         LLVMContext::MD_annotation);
1097 
1098     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1099     NewBonusInst->takeName(&BonusInst);
1100     BonusInst.setName(NewBonusInst->getName() + ".old");
1101 
1102     // Update (liveout) uses of bonus instructions,
1103     // now that the bonus instruction has been cloned into predecessor.
1104     // Note that we expect to be in a block-closed SSA form for this to work!
1105     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1106       auto *UI = cast<Instruction>(U.getUser());
1107       auto *PN = dyn_cast<PHINode>(UI);
1108       if (!PN) {
1109         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1110                "If the user is not a PHI node, then it should be in the same "
1111                "block as, and come after, the original bonus instruction.");
1112         continue; // Keep using the original bonus instruction.
1113       }
1114       // Is this the block-closed SSA form PHI node?
1115       if (PN->getIncomingBlock(U) == BB)
1116         continue; // Great, keep using the original bonus instruction.
1117       // The only other alternative is an "use" when coming from
1118       // the predecessor block - here we should refer to the cloned bonus instr.
1119       assert(PN->getIncomingBlock(U) == PredBlock &&
1120              "Not in block-closed SSA form?");
1121       U.set(NewBonusInst);
1122     }
1123   }
1124 }
1125 
1126 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1127     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1128   BasicBlock *BB = TI->getParent();
1129   BasicBlock *Pred = PTI->getParent();
1130 
1131   SmallVector<DominatorTree::UpdateType, 32> Updates;
1132 
1133   // Figure out which 'cases' to copy from SI to PSI.
1134   std::vector<ValueEqualityComparisonCase> BBCases;
1135   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1136 
1137   std::vector<ValueEqualityComparisonCase> PredCases;
1138   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1139 
1140   // Based on whether the default edge from PTI goes to BB or not, fill in
1141   // PredCases and PredDefault with the new switch cases we would like to
1142   // build.
1143   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1144 
1145   // Update the branch weight metadata along the way
1146   SmallVector<uint64_t, 8> Weights;
1147   bool PredHasWeights = HasBranchWeights(PTI);
1148   bool SuccHasWeights = HasBranchWeights(TI);
1149 
1150   if (PredHasWeights) {
1151     GetBranchWeights(PTI, Weights);
1152     // branch-weight metadata is inconsistent here.
1153     if (Weights.size() != 1 + PredCases.size())
1154       PredHasWeights = SuccHasWeights = false;
1155   } else if (SuccHasWeights)
1156     // If there are no predecessor weights but there are successor weights,
1157     // populate Weights with 1, which will later be scaled to the sum of
1158     // successor's weights
1159     Weights.assign(1 + PredCases.size(), 1);
1160 
1161   SmallVector<uint64_t, 8> SuccWeights;
1162   if (SuccHasWeights) {
1163     GetBranchWeights(TI, SuccWeights);
1164     // branch-weight metadata is inconsistent here.
1165     if (SuccWeights.size() != 1 + BBCases.size())
1166       PredHasWeights = SuccHasWeights = false;
1167   } else if (PredHasWeights)
1168     SuccWeights.assign(1 + BBCases.size(), 1);
1169 
1170   if (PredDefault == BB) {
1171     // If this is the default destination from PTI, only the edges in TI
1172     // that don't occur in PTI, or that branch to BB will be activated.
1173     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1174     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1175       if (PredCases[i].Dest != BB)
1176         PTIHandled.insert(PredCases[i].Value);
1177       else {
1178         // The default destination is BB, we don't need explicit targets.
1179         std::swap(PredCases[i], PredCases.back());
1180 
1181         if (PredHasWeights || SuccHasWeights) {
1182           // Increase weight for the default case.
1183           Weights[0] += Weights[i + 1];
1184           std::swap(Weights[i + 1], Weights.back());
1185           Weights.pop_back();
1186         }
1187 
1188         PredCases.pop_back();
1189         --i;
1190         --e;
1191       }
1192 
1193     // Reconstruct the new switch statement we will be building.
1194     if (PredDefault != BBDefault) {
1195       PredDefault->removePredecessor(Pred);
1196       if (DTU && PredDefault != BB)
1197         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1198       PredDefault = BBDefault;
1199       ++NewSuccessors[BBDefault];
1200     }
1201 
1202     unsigned CasesFromPred = Weights.size();
1203     uint64_t ValidTotalSuccWeight = 0;
1204     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1205       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1206         PredCases.push_back(BBCases[i]);
1207         ++NewSuccessors[BBCases[i].Dest];
1208         if (SuccHasWeights || PredHasWeights) {
1209           // The default weight is at index 0, so weight for the ith case
1210           // should be at index i+1. Scale the cases from successor by
1211           // PredDefaultWeight (Weights[0]).
1212           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1213           ValidTotalSuccWeight += SuccWeights[i + 1];
1214         }
1215       }
1216 
1217     if (SuccHasWeights || PredHasWeights) {
1218       ValidTotalSuccWeight += SuccWeights[0];
1219       // Scale the cases from predecessor by ValidTotalSuccWeight.
1220       for (unsigned i = 1; i < CasesFromPred; ++i)
1221         Weights[i] *= ValidTotalSuccWeight;
1222       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1223       Weights[0] *= SuccWeights[0];
1224     }
1225   } else {
1226     // If this is not the default destination from PSI, only the edges
1227     // in SI that occur in PSI with a destination of BB will be
1228     // activated.
1229     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1230     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1231     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1232       if (PredCases[i].Dest == BB) {
1233         PTIHandled.insert(PredCases[i].Value);
1234 
1235         if (PredHasWeights || SuccHasWeights) {
1236           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1237           std::swap(Weights[i + 1], Weights.back());
1238           Weights.pop_back();
1239         }
1240 
1241         std::swap(PredCases[i], PredCases.back());
1242         PredCases.pop_back();
1243         --i;
1244         --e;
1245       }
1246 
1247     // Okay, now we know which constants were sent to BB from the
1248     // predecessor.  Figure out where they will all go now.
1249     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1250       if (PTIHandled.count(BBCases[i].Value)) {
1251         // If this is one we are capable of getting...
1252         if (PredHasWeights || SuccHasWeights)
1253           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1254         PredCases.push_back(BBCases[i]);
1255         ++NewSuccessors[BBCases[i].Dest];
1256         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1257       }
1258 
1259     // If there are any constants vectored to BB that TI doesn't handle,
1260     // they must go to the default destination of TI.
1261     for (ConstantInt *I : PTIHandled) {
1262       if (PredHasWeights || SuccHasWeights)
1263         Weights.push_back(WeightsForHandled[I]);
1264       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1265       ++NewSuccessors[BBDefault];
1266     }
1267   }
1268 
1269   // Okay, at this point, we know which new successor Pred will get.  Make
1270   // sure we update the number of entries in the PHI nodes for these
1271   // successors.
1272   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1273   if (DTU) {
1274     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1275     Updates.reserve(Updates.size() + NewSuccessors.size());
1276   }
1277   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1278        NewSuccessors) {
1279     for (auto I : seq(0, NewSuccessor.second)) {
1280       (void)I;
1281       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1282     }
1283     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1284       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1285   }
1286 
1287   Builder.SetInsertPoint(PTI);
1288   // Convert pointer to int before we switch.
1289   if (CV->getType()->isPointerTy()) {
1290     CV =
1291         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1292   }
1293 
1294   // Now that the successors are updated, create the new Switch instruction.
1295   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1296   NewSI->setDebugLoc(PTI->getDebugLoc());
1297   for (ValueEqualityComparisonCase &V : PredCases)
1298     NewSI->addCase(V.Value, V.Dest);
1299 
1300   if (PredHasWeights || SuccHasWeights) {
1301     // Halve the weights if any of them cannot fit in an uint32_t
1302     FitWeights(Weights);
1303 
1304     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1305 
1306     setBranchWeights(NewSI, MDWeights);
1307   }
1308 
1309   EraseTerminatorAndDCECond(PTI);
1310 
1311   // Okay, last check.  If BB is still a successor of PSI, then we must
1312   // have an infinite loop case.  If so, add an infinitely looping block
1313   // to handle the case to preserve the behavior of the code.
1314   BasicBlock *InfLoopBlock = nullptr;
1315   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1316     if (NewSI->getSuccessor(i) == BB) {
1317       if (!InfLoopBlock) {
1318         // Insert it at the end of the function, because it's either code,
1319         // or it won't matter if it's hot. :)
1320         InfLoopBlock =
1321             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1322         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1323         if (DTU)
1324           Updates.push_back(
1325               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1326       }
1327       NewSI->setSuccessor(i, InfLoopBlock);
1328     }
1329 
1330   if (DTU) {
1331     if (InfLoopBlock)
1332       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1333 
1334     Updates.push_back({DominatorTree::Delete, Pred, BB});
1335 
1336     DTU->applyUpdates(Updates);
1337   }
1338 
1339   ++NumFoldValueComparisonIntoPredecessors;
1340   return true;
1341 }
1342 
1343 /// The specified terminator is a value equality comparison instruction
1344 /// (either a switch or a branch on "X == c").
1345 /// See if any of the predecessors of the terminator block are value comparisons
1346 /// on the same value.  If so, and if safe to do so, fold them together.
1347 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1348                                                          IRBuilder<> &Builder) {
1349   BasicBlock *BB = TI->getParent();
1350   Value *CV = isValueEqualityComparison(TI); // CondVal
1351   assert(CV && "Not a comparison?");
1352 
1353   bool Changed = false;
1354 
1355   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1356   while (!Preds.empty()) {
1357     BasicBlock *Pred = Preds.pop_back_val();
1358     Instruction *PTI = Pred->getTerminator();
1359 
1360     // Don't try to fold into itself.
1361     if (Pred == BB)
1362       continue;
1363 
1364     // See if the predecessor is a comparison with the same value.
1365     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1366     if (PCV != CV)
1367       continue;
1368 
1369     SmallSetVector<BasicBlock *, 4> FailBlocks;
1370     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1371       for (auto *Succ : FailBlocks) {
1372         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1373           return false;
1374       }
1375     }
1376 
1377     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1378     Changed = true;
1379   }
1380   return Changed;
1381 }
1382 
1383 // If we would need to insert a select that uses the value of this invoke
1384 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1385 // can't hoist the invoke, as there is nowhere to put the select in this case.
1386 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1387                                 Instruction *I1, Instruction *I2) {
1388   for (BasicBlock *Succ : successors(BB1)) {
1389     for (const PHINode &PN : Succ->phis()) {
1390       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1391       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1392       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1393         return false;
1394       }
1395     }
1396   }
1397   return true;
1398 }
1399 
1400 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1401 
1402 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1403 /// in the two blocks up into the branch block. The caller of this function
1404 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1405 /// only perform hoisting in case both blocks only contain a terminator. In that
1406 /// case, only the original BI will be replaced and selects for PHIs are added.
1407 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1408                                            const TargetTransformInfo &TTI,
1409                                            bool EqTermsOnly) {
1410   // This does very trivial matching, with limited scanning, to find identical
1411   // instructions in the two blocks.  In particular, we don't want to get into
1412   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1413   // such, we currently just scan for obviously identical instructions in an
1414   // identical order.
1415   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1416   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1417 
1418   // If either of the blocks has it's address taken, then we can't do this fold,
1419   // because the code we'd hoist would no longer run when we jump into the block
1420   // by it's address.
1421   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1422     return false;
1423 
1424   BasicBlock::iterator BB1_Itr = BB1->begin();
1425   BasicBlock::iterator BB2_Itr = BB2->begin();
1426 
1427   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1428   // Skip debug info if it is not identical.
1429   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1430   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1431   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1432     while (isa<DbgInfoIntrinsic>(I1))
1433       I1 = &*BB1_Itr++;
1434     while (isa<DbgInfoIntrinsic>(I2))
1435       I2 = &*BB2_Itr++;
1436   }
1437   // FIXME: Can we define a safety predicate for CallBr?
1438   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1439       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1440       isa<CallBrInst>(I1))
1441     return false;
1442 
1443   BasicBlock *BIParent = BI->getParent();
1444 
1445   bool Changed = false;
1446 
1447   auto _ = make_scope_exit([&]() {
1448     if (Changed)
1449       ++NumHoistCommonCode;
1450   });
1451 
1452   // Check if only hoisting terminators is allowed. This does not add new
1453   // instructions to the hoist location.
1454   if (EqTermsOnly) {
1455     // Skip any debug intrinsics, as they are free to hoist.
1456     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1457     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1458     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1459       return false;
1460     if (!I1NonDbg->isTerminator())
1461       return false;
1462     // Now we know that we only need to hoist debug instrinsics and the
1463     // terminator. Let the loop below handle those 2 cases.
1464   }
1465 
1466   do {
1467     // If we are hoisting the terminator instruction, don't move one (making a
1468     // broken BB), instead clone it, and remove BI.
1469     if (I1->isTerminator())
1470       goto HoistTerminator;
1471 
1472     // If we're going to hoist a call, make sure that the two instructions we're
1473     // commoning/hoisting are both marked with musttail, or neither of them is
1474     // marked as such. Otherwise, we might end up in a situation where we hoist
1475     // from a block where the terminator is a `ret` to a block where the terminator
1476     // is a `br`, and `musttail` calls expect to be followed by a return.
1477     auto *C1 = dyn_cast<CallInst>(I1);
1478     auto *C2 = dyn_cast<CallInst>(I2);
1479     if (C1 && C2)
1480       if (C1->isMustTailCall() != C2->isMustTailCall())
1481         return Changed;
1482 
1483     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1484       return Changed;
1485 
1486     // If any of the two call sites has nomerge attribute, stop hoisting.
1487     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1488       if (CB1->cannotMerge())
1489         return Changed;
1490     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1491       if (CB2->cannotMerge())
1492         return Changed;
1493 
1494     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1495       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1496       // The debug location is an integral part of a debug info intrinsic
1497       // and can't be separated from it or replaced.  Instead of attempting
1498       // to merge locations, simply hoist both copies of the intrinsic.
1499       BIParent->getInstList().splice(BI->getIterator(),
1500                                      BB1->getInstList(), I1);
1501       BIParent->getInstList().splice(BI->getIterator(),
1502                                      BB2->getInstList(), I2);
1503       Changed = true;
1504     } else {
1505       // For a normal instruction, we just move one to right before the branch,
1506       // then replace all uses of the other with the first.  Finally, we remove
1507       // the now redundant second instruction.
1508       BIParent->getInstList().splice(BI->getIterator(),
1509                                      BB1->getInstList(), I1);
1510       if (!I2->use_empty())
1511         I2->replaceAllUsesWith(I1);
1512       I1->andIRFlags(I2);
1513       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1514                              LLVMContext::MD_range,
1515                              LLVMContext::MD_fpmath,
1516                              LLVMContext::MD_invariant_load,
1517                              LLVMContext::MD_nonnull,
1518                              LLVMContext::MD_invariant_group,
1519                              LLVMContext::MD_align,
1520                              LLVMContext::MD_dereferenceable,
1521                              LLVMContext::MD_dereferenceable_or_null,
1522                              LLVMContext::MD_mem_parallel_loop_access,
1523                              LLVMContext::MD_access_group,
1524                              LLVMContext::MD_preserve_access_index};
1525       combineMetadata(I1, I2, KnownIDs, true);
1526 
1527       // I1 and I2 are being combined into a single instruction.  Its debug
1528       // location is the merged locations of the original instructions.
1529       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1530 
1531       I2->eraseFromParent();
1532       Changed = true;
1533     }
1534     ++NumHoistCommonInstrs;
1535 
1536     I1 = &*BB1_Itr++;
1537     I2 = &*BB2_Itr++;
1538     // Skip debug info if it is not identical.
1539     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1540     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1541     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1542       while (isa<DbgInfoIntrinsic>(I1))
1543         I1 = &*BB1_Itr++;
1544       while (isa<DbgInfoIntrinsic>(I2))
1545         I2 = &*BB2_Itr++;
1546     }
1547   } while (I1->isIdenticalToWhenDefined(I2));
1548 
1549   return true;
1550 
1551 HoistTerminator:
1552   // It may not be possible to hoist an invoke.
1553   // FIXME: Can we define a safety predicate for CallBr?
1554   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1555     return Changed;
1556 
1557   // TODO: callbr hoisting currently disabled pending further study.
1558   if (isa<CallBrInst>(I1))
1559     return Changed;
1560 
1561   for (BasicBlock *Succ : successors(BB1)) {
1562     for (PHINode &PN : Succ->phis()) {
1563       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1564       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1565       if (BB1V == BB2V)
1566         continue;
1567 
1568       // Check for passingValueIsAlwaysUndefined here because we would rather
1569       // eliminate undefined control flow then converting it to a select.
1570       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1571           passingValueIsAlwaysUndefined(BB2V, &PN))
1572         return Changed;
1573 
1574       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1575         return Changed;
1576       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1577         return Changed;
1578     }
1579   }
1580 
1581   // Okay, it is safe to hoist the terminator.
1582   Instruction *NT = I1->clone();
1583   BIParent->getInstList().insert(BI->getIterator(), NT);
1584   if (!NT->getType()->isVoidTy()) {
1585     I1->replaceAllUsesWith(NT);
1586     I2->replaceAllUsesWith(NT);
1587     NT->takeName(I1);
1588   }
1589   Changed = true;
1590   ++NumHoistCommonInstrs;
1591 
1592   // Ensure terminator gets a debug location, even an unknown one, in case
1593   // it involves inlinable calls.
1594   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1595 
1596   // PHIs created below will adopt NT's merged DebugLoc.
1597   IRBuilder<NoFolder> Builder(NT);
1598 
1599   // Hoisting one of the terminators from our successor is a great thing.
1600   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1601   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1602   // nodes, so we insert select instruction to compute the final result.
1603   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1604   for (BasicBlock *Succ : successors(BB1)) {
1605     for (PHINode &PN : Succ->phis()) {
1606       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1607       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1608       if (BB1V == BB2V)
1609         continue;
1610 
1611       // These values do not agree.  Insert a select instruction before NT
1612       // that determines the right value.
1613       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1614       if (!SI) {
1615         // Propagate fast-math-flags from phi node to its replacement select.
1616         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1617         if (isa<FPMathOperator>(PN))
1618           Builder.setFastMathFlags(PN.getFastMathFlags());
1619 
1620         SI = cast<SelectInst>(
1621             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1622                                  BB1V->getName() + "." + BB2V->getName(), BI));
1623       }
1624 
1625       // Make the PHI node use the select for all incoming values for BB1/BB2
1626       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1627         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1628           PN.setIncomingValue(i, SI);
1629     }
1630   }
1631 
1632   SmallVector<DominatorTree::UpdateType, 4> Updates;
1633 
1634   // Update any PHI nodes in our new successors.
1635   for (BasicBlock *Succ : successors(BB1)) {
1636     AddPredecessorToBlock(Succ, BIParent, BB1);
1637     if (DTU)
1638       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1639   }
1640 
1641   if (DTU)
1642     for (BasicBlock *Succ : successors(BI))
1643       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1644 
1645   EraseTerminatorAndDCECond(BI);
1646   if (DTU)
1647     DTU->applyUpdates(Updates);
1648   return Changed;
1649 }
1650 
1651 // Check lifetime markers.
1652 static bool isLifeTimeMarker(const Instruction *I) {
1653   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1654     switch (II->getIntrinsicID()) {
1655     default:
1656       break;
1657     case Intrinsic::lifetime_start:
1658     case Intrinsic::lifetime_end:
1659       return true;
1660     }
1661   }
1662   return false;
1663 }
1664 
1665 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1666 // into variables.
1667 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1668                                                 int OpIdx) {
1669   return !isa<IntrinsicInst>(I);
1670 }
1671 
1672 // All instructions in Insts belong to different blocks that all unconditionally
1673 // branch to a common successor. Analyze each instruction and return true if it
1674 // would be possible to sink them into their successor, creating one common
1675 // instruction instead. For every value that would be required to be provided by
1676 // PHI node (because an operand varies in each input block), add to PHIOperands.
1677 static bool canSinkInstructions(
1678     ArrayRef<Instruction *> Insts,
1679     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1680   // Prune out obviously bad instructions to move. Each instruction must have
1681   // exactly zero or one use, and we check later that use is by a single, common
1682   // PHI instruction in the successor.
1683   bool HasUse = !Insts.front()->user_empty();
1684   for (auto *I : Insts) {
1685     // These instructions may change or break semantics if moved.
1686     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1687         I->getType()->isTokenTy())
1688       return false;
1689 
1690     // Do not try to sink an instruction in an infinite loop - it can cause
1691     // this algorithm to infinite loop.
1692     if (I->getParent()->getSingleSuccessor() == I->getParent())
1693       return false;
1694 
1695     // Conservatively return false if I is an inline-asm instruction. Sinking
1696     // and merging inline-asm instructions can potentially create arguments
1697     // that cannot satisfy the inline-asm constraints.
1698     // If the instruction has nomerge attribute, return false.
1699     if (const auto *C = dyn_cast<CallBase>(I))
1700       if (C->isInlineAsm() || C->cannotMerge())
1701         return false;
1702 
1703     // Each instruction must have zero or one use.
1704     if (HasUse && !I->hasOneUse())
1705       return false;
1706     if (!HasUse && !I->user_empty())
1707       return false;
1708   }
1709 
1710   const Instruction *I0 = Insts.front();
1711   for (auto *I : Insts)
1712     if (!I->isSameOperationAs(I0))
1713       return false;
1714 
1715   // All instructions in Insts are known to be the same opcode. If they have a
1716   // use, check that the only user is a PHI or in the same block as the
1717   // instruction, because if a user is in the same block as an instruction we're
1718   // contemplating sinking, it must already be determined to be sinkable.
1719   if (HasUse) {
1720     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1721     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1722     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1723           auto *U = cast<Instruction>(*I->user_begin());
1724           return (PNUse &&
1725                   PNUse->getParent() == Succ &&
1726                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1727                  U->getParent() == I->getParent();
1728         }))
1729       return false;
1730   }
1731 
1732   // Because SROA can't handle speculating stores of selects, try not to sink
1733   // loads, stores or lifetime markers of allocas when we'd have to create a
1734   // PHI for the address operand. Also, because it is likely that loads or
1735   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1736   // them.
1737   // This can cause code churn which can have unintended consequences down
1738   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1739   // FIXME: This is a workaround for a deficiency in SROA - see
1740   // https://llvm.org/bugs/show_bug.cgi?id=30188
1741   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1742         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1743       }))
1744     return false;
1745   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1746         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1747       }))
1748     return false;
1749   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1750         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1751       }))
1752     return false;
1753 
1754   // For calls to be sinkable, they must all be indirect, or have same callee.
1755   // I.e. if we have two direct calls to different callees, we don't want to
1756   // turn that into an indirect call. Likewise, if we have an indirect call,
1757   // and a direct call, we don't actually want to have a single indirect call.
1758   if (isa<CallBase>(I0)) {
1759     auto IsIndirectCall = [](const Instruction *I) {
1760       return cast<CallBase>(I)->isIndirectCall();
1761     };
1762     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1763     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1764     if (HaveIndirectCalls) {
1765       if (!AllCallsAreIndirect)
1766         return false;
1767     } else {
1768       // All callees must be identical.
1769       Value *Callee = nullptr;
1770       for (const Instruction *I : Insts) {
1771         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1772         if (!Callee)
1773           Callee = CurrCallee;
1774         else if (Callee != CurrCallee)
1775           return false;
1776       }
1777     }
1778   }
1779 
1780   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1781     Value *Op = I0->getOperand(OI);
1782     if (Op->getType()->isTokenTy())
1783       // Don't touch any operand of token type.
1784       return false;
1785 
1786     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1787       assert(I->getNumOperands() == I0->getNumOperands());
1788       return I->getOperand(OI) == I0->getOperand(OI);
1789     };
1790     if (!all_of(Insts, SameAsI0)) {
1791       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1792           !canReplaceOperandWithVariable(I0, OI))
1793         // We can't create a PHI from this GEP.
1794         return false;
1795       for (auto *I : Insts)
1796         PHIOperands[I].push_back(I->getOperand(OI));
1797     }
1798   }
1799   return true;
1800 }
1801 
1802 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1803 // instruction of every block in Blocks to their common successor, commoning
1804 // into one instruction.
1805 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1806   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1807 
1808   // canSinkInstructions returning true guarantees that every block has at
1809   // least one non-terminator instruction.
1810   SmallVector<Instruction*,4> Insts;
1811   for (auto *BB : Blocks) {
1812     Instruction *I = BB->getTerminator();
1813     do {
1814       I = I->getPrevNode();
1815     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1816     if (!isa<DbgInfoIntrinsic>(I))
1817       Insts.push_back(I);
1818   }
1819 
1820   // The only checking we need to do now is that all users of all instructions
1821   // are the same PHI node. canSinkInstructions should have checked this but
1822   // it is slightly over-aggressive - it gets confused by commutative
1823   // instructions so double-check it here.
1824   Instruction *I0 = Insts.front();
1825   if (!I0->user_empty()) {
1826     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1827     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1828           auto *U = cast<Instruction>(*I->user_begin());
1829           return U == PNUse;
1830         }))
1831       return false;
1832   }
1833 
1834   // We don't need to do any more checking here; canSinkInstructions should
1835   // have done it all for us.
1836   SmallVector<Value*, 4> NewOperands;
1837   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1838     // This check is different to that in canSinkInstructions. There, we
1839     // cared about the global view once simplifycfg (and instcombine) have
1840     // completed - it takes into account PHIs that become trivially
1841     // simplifiable.  However here we need a more local view; if an operand
1842     // differs we create a PHI and rely on instcombine to clean up the very
1843     // small mess we may make.
1844     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1845       return I->getOperand(O) != I0->getOperand(O);
1846     });
1847     if (!NeedPHI) {
1848       NewOperands.push_back(I0->getOperand(O));
1849       continue;
1850     }
1851 
1852     // Create a new PHI in the successor block and populate it.
1853     auto *Op = I0->getOperand(O);
1854     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1855     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1856                                Op->getName() + ".sink", &BBEnd->front());
1857     for (auto *I : Insts)
1858       PN->addIncoming(I->getOperand(O), I->getParent());
1859     NewOperands.push_back(PN);
1860   }
1861 
1862   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1863   // and move it to the start of the successor block.
1864   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1865     I0->getOperandUse(O).set(NewOperands[O]);
1866   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1867 
1868   // Update metadata and IR flags, and merge debug locations.
1869   for (auto *I : Insts)
1870     if (I != I0) {
1871       // The debug location for the "common" instruction is the merged locations
1872       // of all the commoned instructions.  We start with the original location
1873       // of the "common" instruction and iteratively merge each location in the
1874       // loop below.
1875       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1876       // However, as N-way merge for CallInst is rare, so we use simplified API
1877       // instead of using complex API for N-way merge.
1878       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1879       combineMetadataForCSE(I0, I, true);
1880       I0->andIRFlags(I);
1881     }
1882 
1883   if (!I0->user_empty()) {
1884     // canSinkLastInstruction checked that all instructions were used by
1885     // one and only one PHI node. Find that now, RAUW it to our common
1886     // instruction and nuke it.
1887     auto *PN = cast<PHINode>(*I0->user_begin());
1888     PN->replaceAllUsesWith(I0);
1889     PN->eraseFromParent();
1890   }
1891 
1892   // Finally nuke all instructions apart from the common instruction.
1893   for (auto *I : Insts)
1894     if (I != I0)
1895       I->eraseFromParent();
1896 
1897   return true;
1898 }
1899 
1900 namespace {
1901 
1902   // LockstepReverseIterator - Iterates through instructions
1903   // in a set of blocks in reverse order from the first non-terminator.
1904   // For example (assume all blocks have size n):
1905   //   LockstepReverseIterator I([B1, B2, B3]);
1906   //   *I-- = [B1[n], B2[n], B3[n]];
1907   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1908   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1909   //   ...
1910   class LockstepReverseIterator {
1911     ArrayRef<BasicBlock*> Blocks;
1912     SmallVector<Instruction*,4> Insts;
1913     bool Fail;
1914 
1915   public:
1916     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1917       reset();
1918     }
1919 
1920     void reset() {
1921       Fail = false;
1922       Insts.clear();
1923       for (auto *BB : Blocks) {
1924         Instruction *Inst = BB->getTerminator();
1925         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1926           Inst = Inst->getPrevNode();
1927         if (!Inst) {
1928           // Block wasn't big enough.
1929           Fail = true;
1930           return;
1931         }
1932         Insts.push_back(Inst);
1933       }
1934     }
1935 
1936     bool isValid() const {
1937       return !Fail;
1938     }
1939 
1940     void operator--() {
1941       if (Fail)
1942         return;
1943       for (auto *&Inst : Insts) {
1944         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1945           Inst = Inst->getPrevNode();
1946         // Already at beginning of block.
1947         if (!Inst) {
1948           Fail = true;
1949           return;
1950         }
1951       }
1952     }
1953 
1954     void operator++() {
1955       if (Fail)
1956         return;
1957       for (auto *&Inst : Insts) {
1958         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1959           Inst = Inst->getNextNode();
1960         // Already at end of block.
1961         if (!Inst) {
1962           Fail = true;
1963           return;
1964         }
1965       }
1966     }
1967 
1968     ArrayRef<Instruction*> operator * () const {
1969       return Insts;
1970     }
1971   };
1972 
1973 } // end anonymous namespace
1974 
1975 /// Check whether BB's predecessors end with unconditional branches. If it is
1976 /// true, sink any common code from the predecessors to BB.
1977 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1978                                            DomTreeUpdater *DTU) {
1979   // We support two situations:
1980   //   (1) all incoming arcs are unconditional
1981   //   (2) there are non-unconditional incoming arcs
1982   //
1983   // (2) is very common in switch defaults and
1984   // else-if patterns;
1985   //
1986   //   if (a) f(1);
1987   //   else if (b) f(2);
1988   //
1989   // produces:
1990   //
1991   //       [if]
1992   //      /    \
1993   //    [f(1)] [if]
1994   //      |     | \
1995   //      |     |  |
1996   //      |  [f(2)]|
1997   //       \    | /
1998   //        [ end ]
1999   //
2000   // [end] has two unconditional predecessor arcs and one conditional. The
2001   // conditional refers to the implicit empty 'else' arc. This conditional
2002   // arc can also be caused by an empty default block in a switch.
2003   //
2004   // In this case, we attempt to sink code from all *unconditional* arcs.
2005   // If we can sink instructions from these arcs (determined during the scan
2006   // phase below) we insert a common successor for all unconditional arcs and
2007   // connect that to [end], to enable sinking:
2008   //
2009   //       [if]
2010   //      /    \
2011   //    [x(1)] [if]
2012   //      |     | \
2013   //      |     |  \
2014   //      |  [x(2)] |
2015   //       \   /    |
2016   //   [sink.split] |
2017   //         \     /
2018   //         [ end ]
2019   //
2020   SmallVector<BasicBlock*,4> UnconditionalPreds;
2021   bool HaveNonUnconditionalPredecessors = false;
2022   for (auto *PredBB : predecessors(BB)) {
2023     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2024     if (PredBr && PredBr->isUnconditional())
2025       UnconditionalPreds.push_back(PredBB);
2026     else
2027       HaveNonUnconditionalPredecessors = true;
2028   }
2029   if (UnconditionalPreds.size() < 2)
2030     return false;
2031 
2032   // We take a two-step approach to tail sinking. First we scan from the end of
2033   // each block upwards in lockstep. If the n'th instruction from the end of each
2034   // block can be sunk, those instructions are added to ValuesToSink and we
2035   // carry on. If we can sink an instruction but need to PHI-merge some operands
2036   // (because they're not identical in each instruction) we add these to
2037   // PHIOperands.
2038   int ScanIdx = 0;
2039   SmallPtrSet<Value*,4> InstructionsToSink;
2040   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2041   LockstepReverseIterator LRI(UnconditionalPreds);
2042   while (LRI.isValid() &&
2043          canSinkInstructions(*LRI, PHIOperands)) {
2044     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2045                       << "\n");
2046     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2047     ++ScanIdx;
2048     --LRI;
2049   }
2050 
2051   // If no instructions can be sunk, early-return.
2052   if (ScanIdx == 0)
2053     return false;
2054 
2055   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2056   // actually sink before encountering instruction that is unprofitable to sink?
2057   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2058     unsigned NumPHIdValues = 0;
2059     for (auto *I : *LRI)
2060       for (auto *V : PHIOperands[I]) {
2061         if (!InstructionsToSink.contains(V))
2062           ++NumPHIdValues;
2063         // FIXME: this check is overly optimistic. We may end up not sinking
2064         // said instruction, due to the very same profitability check.
2065         // See @creating_too_many_phis in sink-common-code.ll.
2066       }
2067     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2068     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2069     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2070         NumPHIInsts++;
2071 
2072     return NumPHIInsts <= 1;
2073   };
2074 
2075   // We've determined that we are going to sink last ScanIdx instructions,
2076   // and recorded them in InstructionsToSink. Now, some instructions may be
2077   // unprofitable to sink. But that determination depends on the instructions
2078   // that we are going to sink.
2079 
2080   // First, forward scan: find the first instruction unprofitable to sink,
2081   // recording all the ones that are profitable to sink.
2082   // FIXME: would it be better, after we detect that not all are profitable.
2083   // to either record the profitable ones, or erase the unprofitable ones?
2084   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2085   LRI.reset();
2086   int Idx = 0;
2087   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2088   while (Idx < ScanIdx) {
2089     if (!ProfitableToSinkInstruction(LRI)) {
2090       // Too many PHIs would be created.
2091       LLVM_DEBUG(
2092           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2093       break;
2094     }
2095     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2096     --LRI;
2097     ++Idx;
2098   }
2099 
2100   // If no instructions can be sunk, early-return.
2101   if (Idx == 0)
2102     return false;
2103 
2104   // Did we determine that (only) some instructions are unprofitable to sink?
2105   if (Idx < ScanIdx) {
2106     // Okay, some instructions are unprofitable.
2107     ScanIdx = Idx;
2108     InstructionsToSink = InstructionsProfitableToSink;
2109 
2110     // But, that may make other instructions unprofitable, too.
2111     // So, do a backward scan, do any earlier instructions become unprofitable?
2112     assert(!ProfitableToSinkInstruction(LRI) &&
2113            "We already know that the last instruction is unprofitable to sink");
2114     ++LRI;
2115     --Idx;
2116     while (Idx >= 0) {
2117       // If we detect that an instruction becomes unprofitable to sink,
2118       // all earlier instructions won't be sunk either,
2119       // so preemptively keep InstructionsProfitableToSink in sync.
2120       // FIXME: is this the most performant approach?
2121       for (auto *I : *LRI)
2122         InstructionsProfitableToSink.erase(I);
2123       if (!ProfitableToSinkInstruction(LRI)) {
2124         // Everything starting with this instruction won't be sunk.
2125         ScanIdx = Idx;
2126         InstructionsToSink = InstructionsProfitableToSink;
2127       }
2128       ++LRI;
2129       --Idx;
2130     }
2131   }
2132 
2133   // If no instructions can be sunk, early-return.
2134   if (ScanIdx == 0)
2135     return false;
2136 
2137   bool Changed = false;
2138 
2139   if (HaveNonUnconditionalPredecessors) {
2140     // It is always legal to sink common instructions from unconditional
2141     // predecessors. However, if not all predecessors are unconditional,
2142     // this transformation might be pessimizing. So as a rule of thumb,
2143     // don't do it unless we'd sink at least one non-speculatable instruction.
2144     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2145     LRI.reset();
2146     int Idx = 0;
2147     bool Profitable = false;
2148     while (Idx < ScanIdx) {
2149       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2150         Profitable = true;
2151         break;
2152       }
2153       --LRI;
2154       ++Idx;
2155     }
2156     if (!Profitable)
2157       return false;
2158 
2159     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2160     // We have a conditional edge and we're going to sink some instructions.
2161     // Insert a new block postdominating all blocks we're going to sink from.
2162     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2163       // Edges couldn't be split.
2164       return false;
2165     Changed = true;
2166   }
2167 
2168   // Now that we've analyzed all potential sinking candidates, perform the
2169   // actual sink. We iteratively sink the last non-terminator of the source
2170   // blocks into their common successor unless doing so would require too
2171   // many PHI instructions to be generated (currently only one PHI is allowed
2172   // per sunk instruction).
2173   //
2174   // We can use InstructionsToSink to discount values needing PHI-merging that will
2175   // actually be sunk in a later iteration. This allows us to be more
2176   // aggressive in what we sink. This does allow a false positive where we
2177   // sink presuming a later value will also be sunk, but stop half way through
2178   // and never actually sink it which means we produce more PHIs than intended.
2179   // This is unlikely in practice though.
2180   int SinkIdx = 0;
2181   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2182     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2183                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2184                       << "\n");
2185 
2186     // Because we've sunk every instruction in turn, the current instruction to
2187     // sink is always at index 0.
2188     LRI.reset();
2189 
2190     if (!sinkLastInstruction(UnconditionalPreds)) {
2191       LLVM_DEBUG(
2192           dbgs()
2193           << "SINK: stopping here, failed to actually sink instruction!\n");
2194       break;
2195     }
2196 
2197     NumSinkCommonInstrs++;
2198     Changed = true;
2199   }
2200   if (SinkIdx != 0)
2201     ++NumSinkCommonCode;
2202   return Changed;
2203 }
2204 
2205 /// Determine if we can hoist sink a sole store instruction out of a
2206 /// conditional block.
2207 ///
2208 /// We are looking for code like the following:
2209 ///   BrBB:
2210 ///     store i32 %add, i32* %arrayidx2
2211 ///     ... // No other stores or function calls (we could be calling a memory
2212 ///     ... // function).
2213 ///     %cmp = icmp ult %x, %y
2214 ///     br i1 %cmp, label %EndBB, label %ThenBB
2215 ///   ThenBB:
2216 ///     store i32 %add5, i32* %arrayidx2
2217 ///     br label EndBB
2218 ///   EndBB:
2219 ///     ...
2220 ///   We are going to transform this into:
2221 ///   BrBB:
2222 ///     store i32 %add, i32* %arrayidx2
2223 ///     ... //
2224 ///     %cmp = icmp ult %x, %y
2225 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2226 ///     store i32 %add.add5, i32* %arrayidx2
2227 ///     ...
2228 ///
2229 /// \return The pointer to the value of the previous store if the store can be
2230 ///         hoisted into the predecessor block. 0 otherwise.
2231 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2232                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2233   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2234   if (!StoreToHoist)
2235     return nullptr;
2236 
2237   // Volatile or atomic.
2238   if (!StoreToHoist->isSimple())
2239     return nullptr;
2240 
2241   Value *StorePtr = StoreToHoist->getPointerOperand();
2242   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2243 
2244   // Look for a store to the same pointer in BrBB.
2245   unsigned MaxNumInstToLookAt = 9;
2246   // Skip pseudo probe intrinsic calls which are not really killing any memory
2247   // accesses.
2248   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2249     if (!MaxNumInstToLookAt)
2250       break;
2251     --MaxNumInstToLookAt;
2252 
2253     // Could be calling an instruction that affects memory like free().
2254     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2255       return nullptr;
2256 
2257     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2258       // Found the previous store to same location and type. Make sure it is
2259       // simple, to avoid introducing a spurious non-atomic write after an
2260       // atomic write.
2261       if (SI->getPointerOperand() == StorePtr &&
2262           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2263         // Found the previous store, return its value operand.
2264         return SI->getValueOperand();
2265       return nullptr; // Unknown store.
2266     }
2267 
2268     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2269       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2270           LI->isSimple()) {
2271         // Local objects (created by an `alloca` instruction) are always
2272         // writable, so once we are past a read from a location it is valid to
2273         // also write to that same location.
2274         // If the address of the local object never escapes the function, that
2275         // means it's never concurrently read or written, hence moving the store
2276         // from under the condition will not introduce a data race.
2277         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2278         if (AI && !PointerMayBeCaptured(AI, false, true))
2279           // Found a previous load, return it.
2280           return LI;
2281       }
2282       // The load didn't work out, but we may still find a store.
2283     }
2284   }
2285 
2286   return nullptr;
2287 }
2288 
2289 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2290 /// converted to selects.
2291 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2292                                            BasicBlock *EndBB,
2293                                            unsigned &SpeculatedInstructions,
2294                                            InstructionCost &Cost,
2295                                            const TargetTransformInfo &TTI) {
2296   TargetTransformInfo::TargetCostKind CostKind =
2297     BB->getParent()->hasMinSize()
2298     ? TargetTransformInfo::TCK_CodeSize
2299     : TargetTransformInfo::TCK_SizeAndLatency;
2300 
2301   bool HaveRewritablePHIs = false;
2302   for (PHINode &PN : EndBB->phis()) {
2303     Value *OrigV = PN.getIncomingValueForBlock(BB);
2304     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2305 
2306     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2307     // Skip PHIs which are trivial.
2308     if (ThenV == OrigV)
2309       continue;
2310 
2311     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2312                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2313 
2314     // Don't convert to selects if we could remove undefined behavior instead.
2315     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2316         passingValueIsAlwaysUndefined(ThenV, &PN))
2317       return false;
2318 
2319     HaveRewritablePHIs = true;
2320     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2321     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2322     if (!OrigCE && !ThenCE)
2323       continue; // Known safe and cheap.
2324 
2325     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2326         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2327       return false;
2328     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2329     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2330     InstructionCost MaxCost =
2331         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2332     if (OrigCost + ThenCost > MaxCost)
2333       return false;
2334 
2335     // Account for the cost of an unfolded ConstantExpr which could end up
2336     // getting expanded into Instructions.
2337     // FIXME: This doesn't account for how many operations are combined in the
2338     // constant expression.
2339     ++SpeculatedInstructions;
2340     if (SpeculatedInstructions > 1)
2341       return false;
2342   }
2343 
2344   return HaveRewritablePHIs;
2345 }
2346 
2347 /// Speculate a conditional basic block flattening the CFG.
2348 ///
2349 /// Note that this is a very risky transform currently. Speculating
2350 /// instructions like this is most often not desirable. Instead, there is an MI
2351 /// pass which can do it with full awareness of the resource constraints.
2352 /// However, some cases are "obvious" and we should do directly. An example of
2353 /// this is speculating a single, reasonably cheap instruction.
2354 ///
2355 /// There is only one distinct advantage to flattening the CFG at the IR level:
2356 /// it makes very common but simplistic optimizations such as are common in
2357 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2358 /// modeling their effects with easier to reason about SSA value graphs.
2359 ///
2360 ///
2361 /// An illustration of this transform is turning this IR:
2362 /// \code
2363 ///   BB:
2364 ///     %cmp = icmp ult %x, %y
2365 ///     br i1 %cmp, label %EndBB, label %ThenBB
2366 ///   ThenBB:
2367 ///     %sub = sub %x, %y
2368 ///     br label BB2
2369 ///   EndBB:
2370 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2371 ///     ...
2372 /// \endcode
2373 ///
2374 /// Into this IR:
2375 /// \code
2376 ///   BB:
2377 ///     %cmp = icmp ult %x, %y
2378 ///     %sub = sub %x, %y
2379 ///     %cond = select i1 %cmp, 0, %sub
2380 ///     ...
2381 /// \endcode
2382 ///
2383 /// \returns true if the conditional block is removed.
2384 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2385                                             const TargetTransformInfo &TTI) {
2386   // Be conservative for now. FP select instruction can often be expensive.
2387   Value *BrCond = BI->getCondition();
2388   if (isa<FCmpInst>(BrCond))
2389     return false;
2390 
2391   BasicBlock *BB = BI->getParent();
2392   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2393   InstructionCost Budget =
2394       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2395 
2396   // If ThenBB is actually on the false edge of the conditional branch, remember
2397   // to swap the select operands later.
2398   bool Invert = false;
2399   if (ThenBB != BI->getSuccessor(0)) {
2400     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2401     Invert = true;
2402   }
2403   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2404 
2405   // If the branch is non-unpredictable, and is predicted to *not* branch to
2406   // the `then` block, then avoid speculating it.
2407   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2408     uint64_t TWeight, FWeight;
2409     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2410       uint64_t EndWeight = Invert ? TWeight : FWeight;
2411       BranchProbability BIEndProb =
2412           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2413       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2414       if (BIEndProb >= Likely)
2415         return false;
2416     }
2417   }
2418 
2419   // Keep a count of how many times instructions are used within ThenBB when
2420   // they are candidates for sinking into ThenBB. Specifically:
2421   // - They are defined in BB, and
2422   // - They have no side effects, and
2423   // - All of their uses are in ThenBB.
2424   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2425 
2426   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2427 
2428   unsigned SpeculatedInstructions = 0;
2429   Value *SpeculatedStoreValue = nullptr;
2430   StoreInst *SpeculatedStore = nullptr;
2431   for (BasicBlock::iterator BBI = ThenBB->begin(),
2432                             BBE = std::prev(ThenBB->end());
2433        BBI != BBE; ++BBI) {
2434     Instruction *I = &*BBI;
2435     // Skip debug info.
2436     if (isa<DbgInfoIntrinsic>(I)) {
2437       SpeculatedDbgIntrinsics.push_back(I);
2438       continue;
2439     }
2440 
2441     // Skip pseudo probes. The consequence is we lose track of the branch
2442     // probability for ThenBB, which is fine since the optimization here takes
2443     // place regardless of the branch probability.
2444     if (isa<PseudoProbeInst>(I)) {
2445       // The probe should be deleted so that it will not be over-counted when
2446       // the samples collected on the non-conditional path are counted towards
2447       // the conditional path. We leave it for the counts inference algorithm to
2448       // figure out a proper count for an unknown probe.
2449       SpeculatedDbgIntrinsics.push_back(I);
2450       continue;
2451     }
2452 
2453     // Only speculatively execute a single instruction (not counting the
2454     // terminator) for now.
2455     ++SpeculatedInstructions;
2456     if (SpeculatedInstructions > 1)
2457       return false;
2458 
2459     // Don't hoist the instruction if it's unsafe or expensive.
2460     if (!isSafeToSpeculativelyExecute(I) &&
2461         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2462                                   I, BB, ThenBB, EndBB))))
2463       return false;
2464     if (!SpeculatedStoreValue &&
2465         computeSpeculationCost(I, TTI) >
2466             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2467       return false;
2468 
2469     // Store the store speculation candidate.
2470     if (SpeculatedStoreValue)
2471       SpeculatedStore = cast<StoreInst>(I);
2472 
2473     // Do not hoist the instruction if any of its operands are defined but not
2474     // used in BB. The transformation will prevent the operand from
2475     // being sunk into the use block.
2476     for (Use &Op : I->operands()) {
2477       Instruction *OpI = dyn_cast<Instruction>(Op);
2478       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2479         continue; // Not a candidate for sinking.
2480 
2481       ++SinkCandidateUseCounts[OpI];
2482     }
2483   }
2484 
2485   // Consider any sink candidates which are only used in ThenBB as costs for
2486   // speculation. Note, while we iterate over a DenseMap here, we are summing
2487   // and so iteration order isn't significant.
2488   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2489            I = SinkCandidateUseCounts.begin(),
2490            E = SinkCandidateUseCounts.end();
2491        I != E; ++I)
2492     if (I->first->hasNUses(I->second)) {
2493       ++SpeculatedInstructions;
2494       if (SpeculatedInstructions > 1)
2495         return false;
2496     }
2497 
2498   // Check that we can insert the selects and that it's not too expensive to do
2499   // so.
2500   bool Convert = SpeculatedStore != nullptr;
2501   InstructionCost Cost = 0;
2502   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2503                                             SpeculatedInstructions,
2504                                             Cost, TTI);
2505   if (!Convert || Cost > Budget)
2506     return false;
2507 
2508   // If we get here, we can hoist the instruction and if-convert.
2509   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2510 
2511   // Insert a select of the value of the speculated store.
2512   if (SpeculatedStoreValue) {
2513     IRBuilder<NoFolder> Builder(BI);
2514     Value *TrueV = SpeculatedStore->getValueOperand();
2515     Value *FalseV = SpeculatedStoreValue;
2516     if (Invert)
2517       std::swap(TrueV, FalseV);
2518     Value *S = Builder.CreateSelect(
2519         BrCond, TrueV, FalseV, "spec.store.select", BI);
2520     SpeculatedStore->setOperand(0, S);
2521     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2522                                          SpeculatedStore->getDebugLoc());
2523   }
2524 
2525   // Metadata can be dependent on the condition we are hoisting above.
2526   // Conservatively strip all metadata on the instruction. Drop the debug loc
2527   // to avoid making it appear as if the condition is a constant, which would
2528   // be misleading while debugging.
2529   // Similarly strip attributes that maybe dependent on condition we are
2530   // hoisting above.
2531   for (auto &I : *ThenBB) {
2532     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2533       I.setDebugLoc(DebugLoc());
2534     I.dropUndefImplyingAttrsAndUnknownMetadata();
2535   }
2536 
2537   // Hoist the instructions.
2538   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2539                            ThenBB->begin(), std::prev(ThenBB->end()));
2540 
2541   // Insert selects and rewrite the PHI operands.
2542   IRBuilder<NoFolder> Builder(BI);
2543   for (PHINode &PN : EndBB->phis()) {
2544     unsigned OrigI = PN.getBasicBlockIndex(BB);
2545     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2546     Value *OrigV = PN.getIncomingValue(OrigI);
2547     Value *ThenV = PN.getIncomingValue(ThenI);
2548 
2549     // Skip PHIs which are trivial.
2550     if (OrigV == ThenV)
2551       continue;
2552 
2553     // Create a select whose true value is the speculatively executed value and
2554     // false value is the pre-existing value. Swap them if the branch
2555     // destinations were inverted.
2556     Value *TrueV = ThenV, *FalseV = OrigV;
2557     if (Invert)
2558       std::swap(TrueV, FalseV);
2559     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2560     PN.setIncomingValue(OrigI, V);
2561     PN.setIncomingValue(ThenI, V);
2562   }
2563 
2564   // Remove speculated dbg intrinsics.
2565   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2566   // dbg value for the different flows and inserting it after the select.
2567   for (Instruction *I : SpeculatedDbgIntrinsics)
2568     I->eraseFromParent();
2569 
2570   ++NumSpeculations;
2571   return true;
2572 }
2573 
2574 /// Return true if we can thread a branch across this block.
2575 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2576   int Size = 0;
2577 
2578   SmallPtrSet<const Value *, 32> EphValues;
2579   auto IsEphemeral = [&](const Instruction *I) {
2580     if (isa<AssumeInst>(I))
2581       return true;
2582     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2583            all_of(I->users(),
2584                   [&](const User *U) { return EphValues.count(U); });
2585   };
2586 
2587   // Walk the loop in reverse so that we can identify ephemeral values properly
2588   // (values only feeding assumes).
2589   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2590     // Can't fold blocks that contain noduplicate or convergent calls.
2591     if (CallInst *CI = dyn_cast<CallInst>(&I))
2592       if (CI->cannotDuplicate() || CI->isConvergent())
2593         return false;
2594 
2595     // Ignore ephemeral values which are deleted during codegen.
2596     if (IsEphemeral(&I))
2597       EphValues.insert(&I);
2598     // We will delete Phis while threading, so Phis should not be accounted in
2599     // block's size.
2600     else if (!isa<PHINode>(I)) {
2601       if (Size++ > MaxSmallBlockSize)
2602         return false; // Don't clone large BB's.
2603     }
2604 
2605     // We can only support instructions that do not define values that are
2606     // live outside of the current basic block.
2607     for (User *U : I.users()) {
2608       Instruction *UI = cast<Instruction>(U);
2609       if (UI->getParent() != BB || isa<PHINode>(UI))
2610         return false;
2611     }
2612 
2613     // Looks ok, continue checking.
2614   }
2615 
2616   return true;
2617 }
2618 
2619 /// If we have a conditional branch on a PHI node value that is defined in the
2620 /// same block as the branch and if any PHI entries are constants, thread edges
2621 /// corresponding to that entry to be branches to their ultimate destination.
2622 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI,
2623                                               DomTreeUpdater *DTU,
2624                                               const DataLayout &DL,
2625                                               AssumptionCache *AC) {
2626   BasicBlock *BB = BI->getParent();
2627   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2628   // NOTE: we currently cannot transform this case if the PHI node is used
2629   // outside of the block.
2630   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2631     return false;
2632 
2633   // Degenerate case of a single entry PHI.
2634   if (PN->getNumIncomingValues() == 1) {
2635     FoldSingleEntryPHINodes(PN->getParent());
2636     return true;
2637   }
2638 
2639   // Now we know that this block has multiple preds and two succs.
2640   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2641     return false;
2642 
2643   // Okay, this is a simple enough basic block.  See if any phi values are
2644   // constants.
2645   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2646     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2647     if (!CB || !CB->getType()->isIntegerTy(1))
2648       continue;
2649 
2650     // Okay, we now know that all edges from PredBB should be revectored to
2651     // branch to RealDest.
2652     BasicBlock *PredBB = PN->getIncomingBlock(i);
2653     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2654 
2655     if (RealDest == BB)
2656       continue; // Skip self loops.
2657     // Skip if the predecessor's terminator is an indirect branch.
2658     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2659       continue;
2660 
2661     SmallVector<DominatorTree::UpdateType, 3> Updates;
2662 
2663     // The dest block might have PHI nodes, other predecessors and other
2664     // difficult cases.  Instead of being smart about this, just insert a new
2665     // block that jumps to the destination block, effectively splitting
2666     // the edge we are about to create.
2667     BasicBlock *EdgeBB =
2668         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2669                            RealDest->getParent(), RealDest);
2670     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2671     if (DTU)
2672       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2673     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2674 
2675     // Update PHI nodes.
2676     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2677 
2678     // BB may have instructions that are being threaded over.  Clone these
2679     // instructions into EdgeBB.  We know that there will be no uses of the
2680     // cloned instructions outside of EdgeBB.
2681     BasicBlock::iterator InsertPt = EdgeBB->begin();
2682     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2683     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2684       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2685         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2686         continue;
2687       }
2688       // Clone the instruction.
2689       Instruction *N = BBI->clone();
2690       if (BBI->hasName())
2691         N->setName(BBI->getName() + ".c");
2692 
2693       // Update operands due to translation.
2694       for (Use &Op : N->operands()) {
2695         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2696         if (PI != TranslateMap.end())
2697           Op = PI->second;
2698       }
2699 
2700       // Check for trivial simplification.
2701       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2702         if (!BBI->use_empty())
2703           TranslateMap[&*BBI] = V;
2704         if (!N->mayHaveSideEffects()) {
2705           N->deleteValue(); // Instruction folded away, don't need actual inst
2706           N = nullptr;
2707         }
2708       } else {
2709         if (!BBI->use_empty())
2710           TranslateMap[&*BBI] = N;
2711       }
2712       if (N) {
2713         // Insert the new instruction into its new home.
2714         EdgeBB->getInstList().insert(InsertPt, N);
2715 
2716         // Register the new instruction with the assumption cache if necessary.
2717         if (auto *Assume = dyn_cast<AssumeInst>(N))
2718           if (AC)
2719             AC->registerAssumption(Assume);
2720       }
2721     }
2722 
2723     // Loop over all of the edges from PredBB to BB, changing them to branch
2724     // to EdgeBB instead.
2725     Instruction *PredBBTI = PredBB->getTerminator();
2726     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2727       if (PredBBTI->getSuccessor(i) == BB) {
2728         BB->removePredecessor(PredBB);
2729         PredBBTI->setSuccessor(i, EdgeBB);
2730       }
2731 
2732     if (DTU) {
2733       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2734       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2735 
2736       DTU->applyUpdates(Updates);
2737     }
2738 
2739     // Signal repeat, simplifying any other constants.
2740     return None;
2741   }
2742 
2743   return false;
2744 }
2745 
2746 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2747                                 const DataLayout &DL, AssumptionCache *AC) {
2748   Optional<bool> Result;
2749   bool EverChanged = false;
2750   do {
2751     // Note that None means "we changed things, but recurse further."
2752     Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC);
2753     EverChanged |= Result == None || *Result;
2754   } while (Result == None);
2755   return EverChanged;
2756 }
2757 
2758 /// Given a BB that starts with the specified two-entry PHI node,
2759 /// see if we can eliminate it.
2760 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2761                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2762   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2763   // statement", which has a very simple dominance structure.  Basically, we
2764   // are trying to find the condition that is being branched on, which
2765   // subsequently causes this merge to happen.  We really want control
2766   // dependence information for this check, but simplifycfg can't keep it up
2767   // to date, and this catches most of the cases we care about anyway.
2768   BasicBlock *BB = PN->getParent();
2769 
2770   BasicBlock *IfTrue, *IfFalse;
2771   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
2772   if (!DomBI)
2773     return false;
2774   Value *IfCond = DomBI->getCondition();
2775   // Don't bother if the branch will be constant folded trivially.
2776   if (isa<ConstantInt>(IfCond))
2777     return false;
2778 
2779   BasicBlock *DomBlock = DomBI->getParent();
2780   SmallVector<BasicBlock *, 2> IfBlocks;
2781   llvm::copy_if(
2782       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
2783         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
2784       });
2785   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
2786          "Will have either one or two blocks to speculate.");
2787 
2788   // If the branch is non-unpredictable, see if we either predictably jump to
2789   // the merge bb (if we have only a single 'then' block), or if we predictably
2790   // jump to one specific 'then' block (if we have two of them).
2791   // It isn't beneficial to speculatively execute the code
2792   // from the block that we know is predictably not entered.
2793   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
2794     uint64_t TWeight, FWeight;
2795     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
2796         (TWeight + FWeight) != 0) {
2797       BranchProbability BITrueProb =
2798           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
2799       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2800       BranchProbability BIFalseProb = BITrueProb.getCompl();
2801       if (IfBlocks.size() == 1) {
2802         BranchProbability BIBBProb =
2803             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
2804         if (BIBBProb >= Likely)
2805           return false;
2806       } else {
2807         if (BITrueProb >= Likely || BIFalseProb >= Likely)
2808           return false;
2809       }
2810     }
2811   }
2812 
2813   // Don't try to fold an unreachable block. For example, the phi node itself
2814   // can't be the candidate if-condition for a select that we want to form.
2815   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
2816     if (IfCondPhiInst->getParent() == BB)
2817       return false;
2818 
2819   // Okay, we found that we can merge this two-entry phi node into a select.
2820   // Doing so would require us to fold *all* two entry phi nodes in this block.
2821   // At some point this becomes non-profitable (particularly if the target
2822   // doesn't support cmov's).  Only do this transformation if there are two or
2823   // fewer PHI nodes in this block.
2824   unsigned NumPhis = 0;
2825   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2826     if (NumPhis > 2)
2827       return false;
2828 
2829   // Loop over the PHI's seeing if we can promote them all to select
2830   // instructions.  While we are at it, keep track of the instructions
2831   // that need to be moved to the dominating block.
2832   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2833   InstructionCost Cost = 0;
2834   InstructionCost Budget =
2835       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2836 
2837   bool Changed = false;
2838   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2839     PHINode *PN = cast<PHINode>(II++);
2840     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2841       PN->replaceAllUsesWith(V);
2842       PN->eraseFromParent();
2843       Changed = true;
2844       continue;
2845     }
2846 
2847     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2848                              Cost, Budget, TTI) ||
2849         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2850                              Cost, Budget, TTI))
2851       return Changed;
2852   }
2853 
2854   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2855   // we ran out of PHIs then we simplified them all.
2856   PN = dyn_cast<PHINode>(BB->begin());
2857   if (!PN)
2858     return true;
2859 
2860   // Return true if at least one of these is a 'not', and another is either
2861   // a 'not' too, or a constant.
2862   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2863     if (!match(V0, m_Not(m_Value())))
2864       std::swap(V0, V1);
2865     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2866     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2867   };
2868 
2869   // Don't fold i1 branches on PHIs which contain binary operators or
2870   // (possibly inverted) select form of or/ands,  unless one of
2871   // the incoming values is an 'not' and another one is freely invertible.
2872   // These can often be turned into switches and other things.
2873   auto IsBinOpOrAnd = [](Value *V) {
2874     return match(
2875         V, m_CombineOr(
2876                m_BinOp(),
2877                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2878                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2879   };
2880   if (PN->getType()->isIntegerTy(1) &&
2881       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2882        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2883       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2884                                  PN->getIncomingValue(1)))
2885     return Changed;
2886 
2887   // If all PHI nodes are promotable, check to make sure that all instructions
2888   // in the predecessor blocks can be promoted as well. If not, we won't be able
2889   // to get rid of the control flow, so it's not worth promoting to select
2890   // instructions.
2891   for (BasicBlock *IfBlock : IfBlocks)
2892     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
2893       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
2894         // This is not an aggressive instruction that we can promote.
2895         // Because of this, we won't be able to get rid of the control flow, so
2896         // the xform is not worth it.
2897         return Changed;
2898       }
2899 
2900   // If either of the blocks has it's address taken, we can't do this fold.
2901   if (any_of(IfBlocks,
2902              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
2903     return Changed;
2904 
2905   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2906                     << "  T: " << IfTrue->getName()
2907                     << "  F: " << IfFalse->getName() << "\n");
2908 
2909   // If we can still promote the PHI nodes after this gauntlet of tests,
2910   // do all of the PHI's now.
2911 
2912   // Move all 'aggressive' instructions, which are defined in the
2913   // conditional parts of the if's up to the dominating block.
2914   for (BasicBlock *IfBlock : IfBlocks)
2915       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
2916 
2917   IRBuilder<NoFolder> Builder(DomBI);
2918   // Propagate fast-math-flags from phi nodes to replacement selects.
2919   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2920   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2921     if (isa<FPMathOperator>(PN))
2922       Builder.setFastMathFlags(PN->getFastMathFlags());
2923 
2924     // Change the PHI node into a select instruction.
2925     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
2926     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
2927 
2928     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
2929     PN->replaceAllUsesWith(Sel);
2930     Sel->takeName(PN);
2931     PN->eraseFromParent();
2932   }
2933 
2934   // At this point, all IfBlocks are empty, so our if statement
2935   // has been flattened.  Change DomBlock to jump directly to our new block to
2936   // avoid other simplifycfg's kicking in on the diamond.
2937   Builder.CreateBr(BB);
2938 
2939   SmallVector<DominatorTree::UpdateType, 3> Updates;
2940   if (DTU) {
2941     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2942     for (auto *Successor : successors(DomBlock))
2943       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2944   }
2945 
2946   DomBI->eraseFromParent();
2947   if (DTU)
2948     DTU->applyUpdates(Updates);
2949 
2950   return true;
2951 }
2952 
2953 static Value *createLogicalOp(IRBuilderBase &Builder,
2954                               Instruction::BinaryOps Opc, Value *LHS,
2955                               Value *RHS, const Twine &Name = "") {
2956   // Try to relax logical op to binary op.
2957   if (impliesPoison(RHS, LHS))
2958     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2959   if (Opc == Instruction::And)
2960     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2961   if (Opc == Instruction::Or)
2962     return Builder.CreateLogicalOr(LHS, RHS, Name);
2963   llvm_unreachable("Invalid logical opcode");
2964 }
2965 
2966 /// Return true if either PBI or BI has branch weight available, and store
2967 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2968 /// not have branch weight, use 1:1 as its weight.
2969 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2970                                    uint64_t &PredTrueWeight,
2971                                    uint64_t &PredFalseWeight,
2972                                    uint64_t &SuccTrueWeight,
2973                                    uint64_t &SuccFalseWeight) {
2974   bool PredHasWeights =
2975       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2976   bool SuccHasWeights =
2977       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2978   if (PredHasWeights || SuccHasWeights) {
2979     if (!PredHasWeights)
2980       PredTrueWeight = PredFalseWeight = 1;
2981     if (!SuccHasWeights)
2982       SuccTrueWeight = SuccFalseWeight = 1;
2983     return true;
2984   } else {
2985     return false;
2986   }
2987 }
2988 
2989 /// Determine if the two branches share a common destination and deduce a glue
2990 /// that joins the branches' conditions to arrive at the common destination if
2991 /// that would be profitable.
2992 static Optional<std::pair<Instruction::BinaryOps, bool>>
2993 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2994                                           const TargetTransformInfo *TTI) {
2995   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2996          "Both blocks must end with a conditional branches.");
2997   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2998          "PredBB must be a predecessor of BB.");
2999 
3000   // We have the potential to fold the conditions together, but if the
3001   // predecessor branch is predictable, we may not want to merge them.
3002   uint64_t PTWeight, PFWeight;
3003   BranchProbability PBITrueProb, Likely;
3004   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3005       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3006       (PTWeight + PFWeight) != 0) {
3007     PBITrueProb =
3008         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3009     Likely = TTI->getPredictableBranchThreshold();
3010   }
3011 
3012   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3013     // Speculate the 2nd condition unless the 1st is probably true.
3014     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3015       return {{Instruction::Or, false}};
3016   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3017     // Speculate the 2nd condition unless the 1st is probably false.
3018     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3019       return {{Instruction::And, false}};
3020   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3021     // Speculate the 2nd condition unless the 1st is probably true.
3022     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3023       return {{Instruction::And, true}};
3024   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3025     // Speculate the 2nd condition unless the 1st is probably false.
3026     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3027       return {{Instruction::Or, true}};
3028   }
3029   return None;
3030 }
3031 
3032 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3033                                              DomTreeUpdater *DTU,
3034                                              MemorySSAUpdater *MSSAU,
3035                                              const TargetTransformInfo *TTI) {
3036   BasicBlock *BB = BI->getParent();
3037   BasicBlock *PredBlock = PBI->getParent();
3038 
3039   // Determine if the two branches share a common destination.
3040   Instruction::BinaryOps Opc;
3041   bool InvertPredCond;
3042   std::tie(Opc, InvertPredCond) =
3043       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3044 
3045   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3046 
3047   IRBuilder<> Builder(PBI);
3048   // The builder is used to create instructions to eliminate the branch in BB.
3049   // If BB's terminator has !annotation metadata, add it to the new
3050   // instructions.
3051   Builder.CollectMetadataToCopy(BB->getTerminator(),
3052                                 {LLVMContext::MD_annotation});
3053 
3054   // If we need to invert the condition in the pred block to match, do so now.
3055   if (InvertPredCond) {
3056     Value *NewCond = PBI->getCondition();
3057     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3058       CmpInst *CI = cast<CmpInst>(NewCond);
3059       CI->setPredicate(CI->getInversePredicate());
3060     } else {
3061       NewCond =
3062           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3063     }
3064 
3065     PBI->setCondition(NewCond);
3066     PBI->swapSuccessors();
3067   }
3068 
3069   BasicBlock *UniqueSucc =
3070       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3071 
3072   // Before cloning instructions, notify the successor basic block that it
3073   // is about to have a new predecessor. This will update PHI nodes,
3074   // which will allow us to update live-out uses of bonus instructions.
3075   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3076 
3077   // Try to update branch weights.
3078   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3079   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3080                              SuccTrueWeight, SuccFalseWeight)) {
3081     SmallVector<uint64_t, 8> NewWeights;
3082 
3083     if (PBI->getSuccessor(0) == BB) {
3084       // PBI: br i1 %x, BB, FalseDest
3085       // BI:  br i1 %y, UniqueSucc, FalseDest
3086       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3087       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3088       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3089       //               TrueWeight for PBI * FalseWeight for BI.
3090       // We assume that total weights of a BranchInst can fit into 32 bits.
3091       // Therefore, we will not have overflow using 64-bit arithmetic.
3092       NewWeights.push_back(PredFalseWeight *
3093                                (SuccFalseWeight + SuccTrueWeight) +
3094                            PredTrueWeight * SuccFalseWeight);
3095     } else {
3096       // PBI: br i1 %x, TrueDest, BB
3097       // BI:  br i1 %y, TrueDest, UniqueSucc
3098       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3099       //              FalseWeight for PBI * TrueWeight for BI.
3100       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3101                            PredFalseWeight * SuccTrueWeight);
3102       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3103       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3104     }
3105 
3106     // Halve the weights if any of them cannot fit in an uint32_t
3107     FitWeights(NewWeights);
3108 
3109     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3110     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3111 
3112     // TODO: If BB is reachable from all paths through PredBlock, then we
3113     // could replace PBI's branch probabilities with BI's.
3114   } else
3115     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3116 
3117   // Now, update the CFG.
3118   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3119 
3120   if (DTU)
3121     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3122                        {DominatorTree::Delete, PredBlock, BB}});
3123 
3124   // If BI was a loop latch, it may have had associated loop metadata.
3125   // We need to copy it to the new latch, that is, PBI.
3126   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3127     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3128 
3129   ValueToValueMapTy VMap; // maps original values to cloned values
3130   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3131 
3132   // Now that the Cond was cloned into the predecessor basic block,
3133   // or/and the two conditions together.
3134   Value *BICond = VMap[BI->getCondition()];
3135   PBI->setCondition(
3136       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3137 
3138   // Copy any debug value intrinsics into the end of PredBlock.
3139   for (Instruction &I : *BB) {
3140     if (isa<DbgInfoIntrinsic>(I)) {
3141       Instruction *NewI = I.clone();
3142       RemapInstruction(NewI, VMap,
3143                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3144       NewI->insertBefore(PBI);
3145     }
3146   }
3147 
3148   ++NumFoldBranchToCommonDest;
3149   return true;
3150 }
3151 
3152 /// Return if an instruction's type or any of its operands' types are a vector
3153 /// type.
3154 static bool isVectorOp(Instruction &I) {
3155   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3156            return U->getType()->isVectorTy();
3157          });
3158 }
3159 
3160 /// If this basic block is simple enough, and if a predecessor branches to us
3161 /// and one of our successors, fold the block into the predecessor and use
3162 /// logical operations to pick the right destination.
3163 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3164                                   MemorySSAUpdater *MSSAU,
3165                                   const TargetTransformInfo *TTI,
3166                                   unsigned BonusInstThreshold) {
3167   // If this block ends with an unconditional branch,
3168   // let SpeculativelyExecuteBB() deal with it.
3169   if (!BI->isConditional())
3170     return false;
3171 
3172   BasicBlock *BB = BI->getParent();
3173   TargetTransformInfo::TargetCostKind CostKind =
3174     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3175                                   : TargetTransformInfo::TCK_SizeAndLatency;
3176 
3177   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3178 
3179   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3180       Cond->getParent() != BB || !Cond->hasOneUse())
3181     return false;
3182 
3183   // Cond is known to be a compare or binary operator.  Check to make sure that
3184   // neither operand is a potentially-trapping constant expression.
3185   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3186     if (CE->canTrap())
3187       return false;
3188   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3189     if (CE->canTrap())
3190       return false;
3191 
3192   // Finally, don't infinitely unroll conditional loops.
3193   if (is_contained(successors(BB), BB))
3194     return false;
3195 
3196   // With which predecessors will we want to deal with?
3197   SmallVector<BasicBlock *, 8> Preds;
3198   for (BasicBlock *PredBlock : predecessors(BB)) {
3199     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3200 
3201     // Check that we have two conditional branches.  If there is a PHI node in
3202     // the common successor, verify that the same value flows in from both
3203     // blocks.
3204     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3205       continue;
3206 
3207     // Determine if the two branches share a common destination.
3208     Instruction::BinaryOps Opc;
3209     bool InvertPredCond;
3210     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3211       std::tie(Opc, InvertPredCond) = *Recipe;
3212     else
3213       continue;
3214 
3215     // Check the cost of inserting the necessary logic before performing the
3216     // transformation.
3217     if (TTI) {
3218       Type *Ty = BI->getCondition()->getType();
3219       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3220       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3221           !isa<CmpInst>(PBI->getCondition())))
3222         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3223 
3224       if (Cost > BranchFoldThreshold)
3225         continue;
3226     }
3227 
3228     // Ok, we do want to deal with this predecessor. Record it.
3229     Preds.emplace_back(PredBlock);
3230   }
3231 
3232   // If there aren't any predecessors into which we can fold,
3233   // don't bother checking the cost.
3234   if (Preds.empty())
3235     return false;
3236 
3237   // Only allow this transformation if computing the condition doesn't involve
3238   // too many instructions and these involved instructions can be executed
3239   // unconditionally. We denote all involved instructions except the condition
3240   // as "bonus instructions", and only allow this transformation when the
3241   // number of the bonus instructions we'll need to create when cloning into
3242   // each predecessor does not exceed a certain threshold.
3243   unsigned NumBonusInsts = 0;
3244   bool SawVectorOp = false;
3245   const unsigned PredCount = Preds.size();
3246   for (Instruction &I : *BB) {
3247     // Don't check the branch condition comparison itself.
3248     if (&I == Cond)
3249       continue;
3250     // Ignore dbg intrinsics, and the terminator.
3251     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3252       continue;
3253     // I must be safe to execute unconditionally.
3254     if (!isSafeToSpeculativelyExecute(&I))
3255       return false;
3256     SawVectorOp |= isVectorOp(I);
3257 
3258     // Account for the cost of duplicating this instruction into each
3259     // predecessor. Ignore free instructions.
3260     if (!TTI ||
3261         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3262       NumBonusInsts += PredCount;
3263 
3264       // Early exits once we reach the limit.
3265       if (NumBonusInsts >
3266           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3267         return false;
3268     }
3269 
3270     auto IsBCSSAUse = [BB, &I](Use &U) {
3271       auto *UI = cast<Instruction>(U.getUser());
3272       if (auto *PN = dyn_cast<PHINode>(UI))
3273         return PN->getIncomingBlock(U) == BB;
3274       return UI->getParent() == BB && I.comesBefore(UI);
3275     };
3276 
3277     // Does this instruction require rewriting of uses?
3278     if (!all_of(I.uses(), IsBCSSAUse))
3279       return false;
3280   }
3281   if (NumBonusInsts >
3282       BonusInstThreshold *
3283           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3284     return false;
3285 
3286   // Ok, we have the budget. Perform the transformation.
3287   for (BasicBlock *PredBlock : Preds) {
3288     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3289     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3290   }
3291   return false;
3292 }
3293 
3294 // If there is only one store in BB1 and BB2, return it, otherwise return
3295 // nullptr.
3296 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3297   StoreInst *S = nullptr;
3298   for (auto *BB : {BB1, BB2}) {
3299     if (!BB)
3300       continue;
3301     for (auto &I : *BB)
3302       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3303         if (S)
3304           // Multiple stores seen.
3305           return nullptr;
3306         else
3307           S = SI;
3308       }
3309   }
3310   return S;
3311 }
3312 
3313 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3314                                               Value *AlternativeV = nullptr) {
3315   // PHI is going to be a PHI node that allows the value V that is defined in
3316   // BB to be referenced in BB's only successor.
3317   //
3318   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3319   // doesn't matter to us what the other operand is (it'll never get used). We
3320   // could just create a new PHI with an undef incoming value, but that could
3321   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3322   // other PHI. So here we directly look for some PHI in BB's successor with V
3323   // as an incoming operand. If we find one, we use it, else we create a new
3324   // one.
3325   //
3326   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3327   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3328   // where OtherBB is the single other predecessor of BB's only successor.
3329   PHINode *PHI = nullptr;
3330   BasicBlock *Succ = BB->getSingleSuccessor();
3331 
3332   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3333     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3334       PHI = cast<PHINode>(I);
3335       if (!AlternativeV)
3336         break;
3337 
3338       assert(Succ->hasNPredecessors(2));
3339       auto PredI = pred_begin(Succ);
3340       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3341       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3342         break;
3343       PHI = nullptr;
3344     }
3345   if (PHI)
3346     return PHI;
3347 
3348   // If V is not an instruction defined in BB, just return it.
3349   if (!AlternativeV &&
3350       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3351     return V;
3352 
3353   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3354   PHI->addIncoming(V, BB);
3355   for (BasicBlock *PredBB : predecessors(Succ))
3356     if (PredBB != BB)
3357       PHI->addIncoming(
3358           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3359   return PHI;
3360 }
3361 
3362 static bool mergeConditionalStoreToAddress(
3363     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3364     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3365     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3366   // For every pointer, there must be exactly two stores, one coming from
3367   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3368   // store (to any address) in PTB,PFB or QTB,QFB.
3369   // FIXME: We could relax this restriction with a bit more work and performance
3370   // testing.
3371   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3372   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3373   if (!PStore || !QStore)
3374     return false;
3375 
3376   // Now check the stores are compatible.
3377   if (!QStore->isUnordered() || !PStore->isUnordered())
3378     return false;
3379 
3380   // Check that sinking the store won't cause program behavior changes. Sinking
3381   // the store out of the Q blocks won't change any behavior as we're sinking
3382   // from a block to its unconditional successor. But we're moving a store from
3383   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3384   // So we need to check that there are no aliasing loads or stores in
3385   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3386   // operations between PStore and the end of its parent block.
3387   //
3388   // The ideal way to do this is to query AliasAnalysis, but we don't
3389   // preserve AA currently so that is dangerous. Be super safe and just
3390   // check there are no other memory operations at all.
3391   for (auto &I : *QFB->getSinglePredecessor())
3392     if (I.mayReadOrWriteMemory())
3393       return false;
3394   for (auto &I : *QFB)
3395     if (&I != QStore && I.mayReadOrWriteMemory())
3396       return false;
3397   if (QTB)
3398     for (auto &I : *QTB)
3399       if (&I != QStore && I.mayReadOrWriteMemory())
3400         return false;
3401   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3402        I != E; ++I)
3403     if (&*I != PStore && I->mayReadOrWriteMemory())
3404       return false;
3405 
3406   // If we're not in aggressive mode, we only optimize if we have some
3407   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3408   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3409     if (!BB)
3410       return true;
3411     // Heuristic: if the block can be if-converted/phi-folded and the
3412     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3413     // thread this store.
3414     InstructionCost Cost = 0;
3415     InstructionCost Budget =
3416         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3417     for (auto &I : BB->instructionsWithoutDebug(false)) {
3418       // Consider terminator instruction to be free.
3419       if (I.isTerminator())
3420         continue;
3421       // If this is one the stores that we want to speculate out of this BB,
3422       // then don't count it's cost, consider it to be free.
3423       if (auto *S = dyn_cast<StoreInst>(&I))
3424         if (llvm::find(FreeStores, S))
3425           continue;
3426       // Else, we have a white-list of instructions that we are ak speculating.
3427       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3428         return false; // Not in white-list - not worthwhile folding.
3429       // And finally, if this is a non-free instruction that we are okay
3430       // speculating, ensure that we consider the speculation budget.
3431       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3432       if (Cost > Budget)
3433         return false; // Eagerly refuse to fold as soon as we're out of budget.
3434     }
3435     assert(Cost <= Budget &&
3436            "When we run out of budget we will eagerly return from within the "
3437            "per-instruction loop.");
3438     return true;
3439   };
3440 
3441   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3442   if (!MergeCondStoresAggressively &&
3443       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3444        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3445     return false;
3446 
3447   // If PostBB has more than two predecessors, we need to split it so we can
3448   // sink the store.
3449   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3450     // We know that QFB's only successor is PostBB. And QFB has a single
3451     // predecessor. If QTB exists, then its only successor is also PostBB.
3452     // If QTB does not exist, then QFB's only predecessor has a conditional
3453     // branch to QFB and PostBB.
3454     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3455     BasicBlock *NewBB =
3456         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3457     if (!NewBB)
3458       return false;
3459     PostBB = NewBB;
3460   }
3461 
3462   // OK, we're going to sink the stores to PostBB. The store has to be
3463   // conditional though, so first create the predicate.
3464   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3465                      ->getCondition();
3466   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3467                      ->getCondition();
3468 
3469   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3470                                                 PStore->getParent());
3471   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3472                                                 QStore->getParent(), PPHI);
3473 
3474   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3475 
3476   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3477   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3478 
3479   if (InvertPCond)
3480     PPred = QB.CreateNot(PPred);
3481   if (InvertQCond)
3482     QPred = QB.CreateNot(QPred);
3483   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3484 
3485   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3486                                       /*Unreachable=*/false,
3487                                       /*BranchWeights=*/nullptr, DTU);
3488   QB.SetInsertPoint(T);
3489   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3490   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3491   // Choose the minimum alignment. If we could prove both stores execute, we
3492   // could use biggest one.  In this case, though, we only know that one of the
3493   // stores executes.  And we don't know it's safe to take the alignment from a
3494   // store that doesn't execute.
3495   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3496 
3497   QStore->eraseFromParent();
3498   PStore->eraseFromParent();
3499 
3500   return true;
3501 }
3502 
3503 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3504                                    DomTreeUpdater *DTU, const DataLayout &DL,
3505                                    const TargetTransformInfo &TTI) {
3506   // The intention here is to find diamonds or triangles (see below) where each
3507   // conditional block contains a store to the same address. Both of these
3508   // stores are conditional, so they can't be unconditionally sunk. But it may
3509   // be profitable to speculatively sink the stores into one merged store at the
3510   // end, and predicate the merged store on the union of the two conditions of
3511   // PBI and QBI.
3512   //
3513   // This can reduce the number of stores executed if both of the conditions are
3514   // true, and can allow the blocks to become small enough to be if-converted.
3515   // This optimization will also chain, so that ladders of test-and-set
3516   // sequences can be if-converted away.
3517   //
3518   // We only deal with simple diamonds or triangles:
3519   //
3520   //     PBI       or      PBI        or a combination of the two
3521   //    /   \               | \
3522   //   PTB  PFB             |  PFB
3523   //    \   /               | /
3524   //     QBI                QBI
3525   //    /  \                | \
3526   //   QTB  QFB             |  QFB
3527   //    \  /                | /
3528   //    PostBB            PostBB
3529   //
3530   // We model triangles as a type of diamond with a nullptr "true" block.
3531   // Triangles are canonicalized so that the fallthrough edge is represented by
3532   // a true condition, as in the diagram above.
3533   BasicBlock *PTB = PBI->getSuccessor(0);
3534   BasicBlock *PFB = PBI->getSuccessor(1);
3535   BasicBlock *QTB = QBI->getSuccessor(0);
3536   BasicBlock *QFB = QBI->getSuccessor(1);
3537   BasicBlock *PostBB = QFB->getSingleSuccessor();
3538 
3539   // Make sure we have a good guess for PostBB. If QTB's only successor is
3540   // QFB, then QFB is a better PostBB.
3541   if (QTB->getSingleSuccessor() == QFB)
3542     PostBB = QFB;
3543 
3544   // If we couldn't find a good PostBB, stop.
3545   if (!PostBB)
3546     return false;
3547 
3548   bool InvertPCond = false, InvertQCond = false;
3549   // Canonicalize fallthroughs to the true branches.
3550   if (PFB == QBI->getParent()) {
3551     std::swap(PFB, PTB);
3552     InvertPCond = true;
3553   }
3554   if (QFB == PostBB) {
3555     std::swap(QFB, QTB);
3556     InvertQCond = true;
3557   }
3558 
3559   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3560   // and QFB may not. Model fallthroughs as a nullptr block.
3561   if (PTB == QBI->getParent())
3562     PTB = nullptr;
3563   if (QTB == PostBB)
3564     QTB = nullptr;
3565 
3566   // Legality bailouts. We must have at least the non-fallthrough blocks and
3567   // the post-dominating block, and the non-fallthroughs must only have one
3568   // predecessor.
3569   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3570     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3571   };
3572   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3573       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3574     return false;
3575   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3576       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3577     return false;
3578   if (!QBI->getParent()->hasNUses(2))
3579     return false;
3580 
3581   // OK, this is a sequence of two diamonds or triangles.
3582   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3583   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3584   for (auto *BB : {PTB, PFB}) {
3585     if (!BB)
3586       continue;
3587     for (auto &I : *BB)
3588       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3589         PStoreAddresses.insert(SI->getPointerOperand());
3590   }
3591   for (auto *BB : {QTB, QFB}) {
3592     if (!BB)
3593       continue;
3594     for (auto &I : *BB)
3595       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3596         QStoreAddresses.insert(SI->getPointerOperand());
3597   }
3598 
3599   set_intersect(PStoreAddresses, QStoreAddresses);
3600   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3601   // clear what it contains.
3602   auto &CommonAddresses = PStoreAddresses;
3603 
3604   bool Changed = false;
3605   for (auto *Address : CommonAddresses)
3606     Changed |=
3607         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3608                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3609   return Changed;
3610 }
3611 
3612 /// If the previous block ended with a widenable branch, determine if reusing
3613 /// the target block is profitable and legal.  This will have the effect of
3614 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3615 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3616                                            DomTreeUpdater *DTU) {
3617   // TODO: This can be generalized in two important ways:
3618   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3619   //    values from the PBI edge.
3620   // 2) We can sink side effecting instructions into BI's fallthrough
3621   //    successor provided they doesn't contribute to computation of
3622   //    BI's condition.
3623   Value *CondWB, *WC;
3624   BasicBlock *IfTrueBB, *IfFalseBB;
3625   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3626       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3627     return false;
3628   if (!IfFalseBB->phis().empty())
3629     return false; // TODO
3630   // Use lambda to lazily compute expensive condition after cheap ones.
3631   auto NoSideEffects = [](BasicBlock &BB) {
3632     return !llvm::any_of(BB, [](const Instruction &I) {
3633         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3634       });
3635   };
3636   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3637       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3638       NoSideEffects(*BI->getParent())) {
3639     auto *OldSuccessor = BI->getSuccessor(1);
3640     OldSuccessor->removePredecessor(BI->getParent());
3641     BI->setSuccessor(1, IfFalseBB);
3642     if (DTU)
3643       DTU->applyUpdates(
3644           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3645            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3646     return true;
3647   }
3648   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3649       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3650       NoSideEffects(*BI->getParent())) {
3651     auto *OldSuccessor = BI->getSuccessor(0);
3652     OldSuccessor->removePredecessor(BI->getParent());
3653     BI->setSuccessor(0, IfFalseBB);
3654     if (DTU)
3655       DTU->applyUpdates(
3656           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3657            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3658     return true;
3659   }
3660   return false;
3661 }
3662 
3663 /// If we have a conditional branch as a predecessor of another block,
3664 /// this function tries to simplify it.  We know
3665 /// that PBI and BI are both conditional branches, and BI is in one of the
3666 /// successor blocks of PBI - PBI branches to BI.
3667 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3668                                            DomTreeUpdater *DTU,
3669                                            const DataLayout &DL,
3670                                            const TargetTransformInfo &TTI) {
3671   assert(PBI->isConditional() && BI->isConditional());
3672   BasicBlock *BB = BI->getParent();
3673 
3674   // If this block ends with a branch instruction, and if there is a
3675   // predecessor that ends on a branch of the same condition, make
3676   // this conditional branch redundant.
3677   if (PBI->getCondition() == BI->getCondition() &&
3678       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3679     // Okay, the outcome of this conditional branch is statically
3680     // knowable.  If this block had a single pred, handle specially.
3681     if (BB->getSinglePredecessor()) {
3682       // Turn this into a branch on constant.
3683       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3684       BI->setCondition(
3685           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3686       return true; // Nuke the branch on constant.
3687     }
3688 
3689     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3690     // in the constant and simplify the block result.  Subsequent passes of
3691     // simplifycfg will thread the block.
3692     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3693       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3694       PHINode *NewPN = PHINode::Create(
3695           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3696           BI->getCondition()->getName() + ".pr", &BB->front());
3697       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3698       // predecessor, compute the PHI'd conditional value for all of the preds.
3699       // Any predecessor where the condition is not computable we keep symbolic.
3700       for (pred_iterator PI = PB; PI != PE; ++PI) {
3701         BasicBlock *P = *PI;
3702         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3703             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3704             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3705           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3706           NewPN->addIncoming(
3707               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3708               P);
3709         } else {
3710           NewPN->addIncoming(BI->getCondition(), P);
3711         }
3712       }
3713 
3714       BI->setCondition(NewPN);
3715       return true;
3716     }
3717   }
3718 
3719   // If the previous block ended with a widenable branch, determine if reusing
3720   // the target block is profitable and legal.  This will have the effect of
3721   // "widening" PBI, but doesn't require us to reason about hosting safety.
3722   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3723     return true;
3724 
3725   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3726     if (CE->canTrap())
3727       return false;
3728 
3729   // If both branches are conditional and both contain stores to the same
3730   // address, remove the stores from the conditionals and create a conditional
3731   // merged store at the end.
3732   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3733     return true;
3734 
3735   // If this is a conditional branch in an empty block, and if any
3736   // predecessors are a conditional branch to one of our destinations,
3737   // fold the conditions into logical ops and one cond br.
3738 
3739   // Ignore dbg intrinsics.
3740   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
3741     return false;
3742 
3743   int PBIOp, BIOp;
3744   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3745     PBIOp = 0;
3746     BIOp = 0;
3747   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3748     PBIOp = 0;
3749     BIOp = 1;
3750   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3751     PBIOp = 1;
3752     BIOp = 0;
3753   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3754     PBIOp = 1;
3755     BIOp = 1;
3756   } else {
3757     return false;
3758   }
3759 
3760   // Check to make sure that the other destination of this branch
3761   // isn't BB itself.  If so, this is an infinite loop that will
3762   // keep getting unwound.
3763   if (PBI->getSuccessor(PBIOp) == BB)
3764     return false;
3765 
3766   // Do not perform this transformation if it would require
3767   // insertion of a large number of select instructions. For targets
3768   // without predication/cmovs, this is a big pessimization.
3769 
3770   // Also do not perform this transformation if any phi node in the common
3771   // destination block can trap when reached by BB or PBB (PR17073). In that
3772   // case, it would be unsafe to hoist the operation into a select instruction.
3773 
3774   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3775   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3776   unsigned NumPhis = 0;
3777   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3778        ++II, ++NumPhis) {
3779     if (NumPhis > 2) // Disable this xform.
3780       return false;
3781 
3782     PHINode *PN = cast<PHINode>(II);
3783     Value *BIV = PN->getIncomingValueForBlock(BB);
3784     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3785       if (CE->canTrap())
3786         return false;
3787 
3788     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3789     Value *PBIV = PN->getIncomingValue(PBBIdx);
3790     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3791       if (CE->canTrap())
3792         return false;
3793   }
3794 
3795   // Finally, if everything is ok, fold the branches to logical ops.
3796   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3797 
3798   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3799                     << "AND: " << *BI->getParent());
3800 
3801   SmallVector<DominatorTree::UpdateType, 5> Updates;
3802 
3803   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3804   // branch in it, where one edge (OtherDest) goes back to itself but the other
3805   // exits.  We don't *know* that the program avoids the infinite loop
3806   // (even though that seems likely).  If we do this xform naively, we'll end up
3807   // recursively unpeeling the loop.  Since we know that (after the xform is
3808   // done) that the block *is* infinite if reached, we just make it an obviously
3809   // infinite loop with no cond branch.
3810   if (OtherDest == BB) {
3811     // Insert it at the end of the function, because it's either code,
3812     // or it won't matter if it's hot. :)
3813     BasicBlock *InfLoopBlock =
3814         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3815     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3816     if (DTU)
3817       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3818     OtherDest = InfLoopBlock;
3819   }
3820 
3821   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3822 
3823   // BI may have other predecessors.  Because of this, we leave
3824   // it alone, but modify PBI.
3825 
3826   // Make sure we get to CommonDest on True&True directions.
3827   Value *PBICond = PBI->getCondition();
3828   IRBuilder<NoFolder> Builder(PBI);
3829   if (PBIOp)
3830     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3831 
3832   Value *BICond = BI->getCondition();
3833   if (BIOp)
3834     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3835 
3836   // Merge the conditions.
3837   Value *Cond =
3838       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3839 
3840   // Modify PBI to branch on the new condition to the new dests.
3841   PBI->setCondition(Cond);
3842   PBI->setSuccessor(0, CommonDest);
3843   PBI->setSuccessor(1, OtherDest);
3844 
3845   if (DTU) {
3846     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3847     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3848 
3849     DTU->applyUpdates(Updates);
3850   }
3851 
3852   // Update branch weight for PBI.
3853   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3854   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3855   bool HasWeights =
3856       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3857                              SuccTrueWeight, SuccFalseWeight);
3858   if (HasWeights) {
3859     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3860     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3861     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3862     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3863     // The weight to CommonDest should be PredCommon * SuccTotal +
3864     //                                    PredOther * SuccCommon.
3865     // The weight to OtherDest should be PredOther * SuccOther.
3866     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3867                                   PredOther * SuccCommon,
3868                               PredOther * SuccOther};
3869     // Halve the weights if any of them cannot fit in an uint32_t
3870     FitWeights(NewWeights);
3871 
3872     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3873   }
3874 
3875   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3876   // block that are identical to the entries for BI's block.
3877   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3878 
3879   // We know that the CommonDest already had an edge from PBI to
3880   // it.  If it has PHIs though, the PHIs may have different
3881   // entries for BB and PBI's BB.  If so, insert a select to make
3882   // them agree.
3883   for (PHINode &PN : CommonDest->phis()) {
3884     Value *BIV = PN.getIncomingValueForBlock(BB);
3885     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3886     Value *PBIV = PN.getIncomingValue(PBBIdx);
3887     if (BIV != PBIV) {
3888       // Insert a select in PBI to pick the right value.
3889       SelectInst *NV = cast<SelectInst>(
3890           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3891       PN.setIncomingValue(PBBIdx, NV);
3892       // Although the select has the same condition as PBI, the original branch
3893       // weights for PBI do not apply to the new select because the select's
3894       // 'logical' edges are incoming edges of the phi that is eliminated, not
3895       // the outgoing edges of PBI.
3896       if (HasWeights) {
3897         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3898         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3899         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3900         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3901         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3902         // The weight to PredOtherDest should be PredOther * SuccCommon.
3903         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3904                                   PredOther * SuccCommon};
3905 
3906         FitWeights(NewWeights);
3907 
3908         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3909       }
3910     }
3911   }
3912 
3913   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3914   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3915 
3916   // This basic block is probably dead.  We know it has at least
3917   // one fewer predecessor.
3918   return true;
3919 }
3920 
3921 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3922 // true or to FalseBB if Cond is false.
3923 // Takes care of updating the successors and removing the old terminator.
3924 // Also makes sure not to introduce new successors by assuming that edges to
3925 // non-successor TrueBBs and FalseBBs aren't reachable.
3926 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3927                                                 Value *Cond, BasicBlock *TrueBB,
3928                                                 BasicBlock *FalseBB,
3929                                                 uint32_t TrueWeight,
3930                                                 uint32_t FalseWeight) {
3931   auto *BB = OldTerm->getParent();
3932   // Remove any superfluous successor edges from the CFG.
3933   // First, figure out which successors to preserve.
3934   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3935   // successor.
3936   BasicBlock *KeepEdge1 = TrueBB;
3937   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3938 
3939   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3940 
3941   // Then remove the rest.
3942   for (BasicBlock *Succ : successors(OldTerm)) {
3943     // Make sure only to keep exactly one copy of each edge.
3944     if (Succ == KeepEdge1)
3945       KeepEdge1 = nullptr;
3946     else if (Succ == KeepEdge2)
3947       KeepEdge2 = nullptr;
3948     else {
3949       Succ->removePredecessor(BB,
3950                               /*KeepOneInputPHIs=*/true);
3951 
3952       if (Succ != TrueBB && Succ != FalseBB)
3953         RemovedSuccessors.insert(Succ);
3954     }
3955   }
3956 
3957   IRBuilder<> Builder(OldTerm);
3958   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3959 
3960   // Insert an appropriate new terminator.
3961   if (!KeepEdge1 && !KeepEdge2) {
3962     if (TrueBB == FalseBB) {
3963       // We were only looking for one successor, and it was present.
3964       // Create an unconditional branch to it.
3965       Builder.CreateBr(TrueBB);
3966     } else {
3967       // We found both of the successors we were looking for.
3968       // Create a conditional branch sharing the condition of the select.
3969       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3970       if (TrueWeight != FalseWeight)
3971         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3972     }
3973   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3974     // Neither of the selected blocks were successors, so this
3975     // terminator must be unreachable.
3976     new UnreachableInst(OldTerm->getContext(), OldTerm);
3977   } else {
3978     // One of the selected values was a successor, but the other wasn't.
3979     // Insert an unconditional branch to the one that was found;
3980     // the edge to the one that wasn't must be unreachable.
3981     if (!KeepEdge1) {
3982       // Only TrueBB was found.
3983       Builder.CreateBr(TrueBB);
3984     } else {
3985       // Only FalseBB was found.
3986       Builder.CreateBr(FalseBB);
3987     }
3988   }
3989 
3990   EraseTerminatorAndDCECond(OldTerm);
3991 
3992   if (DTU) {
3993     SmallVector<DominatorTree::UpdateType, 2> Updates;
3994     Updates.reserve(RemovedSuccessors.size());
3995     for (auto *RemovedSuccessor : RemovedSuccessors)
3996       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3997     DTU->applyUpdates(Updates);
3998   }
3999 
4000   return true;
4001 }
4002 
4003 // Replaces
4004 //   (switch (select cond, X, Y)) on constant X, Y
4005 // with a branch - conditional if X and Y lead to distinct BBs,
4006 // unconditional otherwise.
4007 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4008                                             SelectInst *Select) {
4009   // Check for constant integer values in the select.
4010   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4011   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4012   if (!TrueVal || !FalseVal)
4013     return false;
4014 
4015   // Find the relevant condition and destinations.
4016   Value *Condition = Select->getCondition();
4017   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4018   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4019 
4020   // Get weight for TrueBB and FalseBB.
4021   uint32_t TrueWeight = 0, FalseWeight = 0;
4022   SmallVector<uint64_t, 8> Weights;
4023   bool HasWeights = HasBranchWeights(SI);
4024   if (HasWeights) {
4025     GetBranchWeights(SI, Weights);
4026     if (Weights.size() == 1 + SI->getNumCases()) {
4027       TrueWeight =
4028           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4029       FalseWeight =
4030           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4031     }
4032   }
4033 
4034   // Perform the actual simplification.
4035   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4036                                     FalseWeight);
4037 }
4038 
4039 // Replaces
4040 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4041 //                             blockaddress(@fn, BlockB)))
4042 // with
4043 //   (br cond, BlockA, BlockB).
4044 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4045                                                 SelectInst *SI) {
4046   // Check that both operands of the select are block addresses.
4047   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4048   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4049   if (!TBA || !FBA)
4050     return false;
4051 
4052   // Extract the actual blocks.
4053   BasicBlock *TrueBB = TBA->getBasicBlock();
4054   BasicBlock *FalseBB = FBA->getBasicBlock();
4055 
4056   // Perform the actual simplification.
4057   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4058                                     0);
4059 }
4060 
4061 /// This is called when we find an icmp instruction
4062 /// (a seteq/setne with a constant) as the only instruction in a
4063 /// block that ends with an uncond branch.  We are looking for a very specific
4064 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4065 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4066 /// default value goes to an uncond block with a seteq in it, we get something
4067 /// like:
4068 ///
4069 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4070 /// DEFAULT:
4071 ///   %tmp = icmp eq i8 %A, 92
4072 ///   br label %end
4073 /// end:
4074 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4075 ///
4076 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4077 /// the PHI, merging the third icmp into the switch.
4078 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4079     ICmpInst *ICI, IRBuilder<> &Builder) {
4080   BasicBlock *BB = ICI->getParent();
4081 
4082   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4083   // complex.
4084   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4085     return false;
4086 
4087   Value *V = ICI->getOperand(0);
4088   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4089 
4090   // The pattern we're looking for is where our only predecessor is a switch on
4091   // 'V' and this block is the default case for the switch.  In this case we can
4092   // fold the compared value into the switch to simplify things.
4093   BasicBlock *Pred = BB->getSinglePredecessor();
4094   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4095     return false;
4096 
4097   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4098   if (SI->getCondition() != V)
4099     return false;
4100 
4101   // If BB is reachable on a non-default case, then we simply know the value of
4102   // V in this block.  Substitute it and constant fold the icmp instruction
4103   // away.
4104   if (SI->getDefaultDest() != BB) {
4105     ConstantInt *VVal = SI->findCaseDest(BB);
4106     assert(VVal && "Should have a unique destination value");
4107     ICI->setOperand(0, VVal);
4108 
4109     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4110       ICI->replaceAllUsesWith(V);
4111       ICI->eraseFromParent();
4112     }
4113     // BB is now empty, so it is likely to simplify away.
4114     return requestResimplify();
4115   }
4116 
4117   // Ok, the block is reachable from the default dest.  If the constant we're
4118   // comparing exists in one of the other edges, then we can constant fold ICI
4119   // and zap it.
4120   if (SI->findCaseValue(Cst) != SI->case_default()) {
4121     Value *V;
4122     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4123       V = ConstantInt::getFalse(BB->getContext());
4124     else
4125       V = ConstantInt::getTrue(BB->getContext());
4126 
4127     ICI->replaceAllUsesWith(V);
4128     ICI->eraseFromParent();
4129     // BB is now empty, so it is likely to simplify away.
4130     return requestResimplify();
4131   }
4132 
4133   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4134   // the block.
4135   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4136   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4137   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4138       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4139     return false;
4140 
4141   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4142   // true in the PHI.
4143   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4144   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4145 
4146   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4147     std::swap(DefaultCst, NewCst);
4148 
4149   // Replace ICI (which is used by the PHI for the default value) with true or
4150   // false depending on if it is EQ or NE.
4151   ICI->replaceAllUsesWith(DefaultCst);
4152   ICI->eraseFromParent();
4153 
4154   SmallVector<DominatorTree::UpdateType, 2> Updates;
4155 
4156   // Okay, the switch goes to this block on a default value.  Add an edge from
4157   // the switch to the merge point on the compared value.
4158   BasicBlock *NewBB =
4159       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4160   {
4161     SwitchInstProfUpdateWrapper SIW(*SI);
4162     auto W0 = SIW.getSuccessorWeight(0);
4163     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4164     if (W0) {
4165       NewW = ((uint64_t(*W0) + 1) >> 1);
4166       SIW.setSuccessorWeight(0, *NewW);
4167     }
4168     SIW.addCase(Cst, NewBB, NewW);
4169     if (DTU)
4170       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4171   }
4172 
4173   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4174   Builder.SetInsertPoint(NewBB);
4175   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4176   Builder.CreateBr(SuccBlock);
4177   PHIUse->addIncoming(NewCst, NewBB);
4178   if (DTU) {
4179     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4180     DTU->applyUpdates(Updates);
4181   }
4182   return true;
4183 }
4184 
4185 /// The specified branch is a conditional branch.
4186 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4187 /// fold it into a switch instruction if so.
4188 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4189                                                IRBuilder<> &Builder,
4190                                                const DataLayout &DL) {
4191   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4192   if (!Cond)
4193     return false;
4194 
4195   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4196   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4197   // 'setne's and'ed together, collect them.
4198 
4199   // Try to gather values from a chain of and/or to be turned into a switch
4200   ConstantComparesGatherer ConstantCompare(Cond, DL);
4201   // Unpack the result
4202   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4203   Value *CompVal = ConstantCompare.CompValue;
4204   unsigned UsedICmps = ConstantCompare.UsedICmps;
4205   Value *ExtraCase = ConstantCompare.Extra;
4206 
4207   // If we didn't have a multiply compared value, fail.
4208   if (!CompVal)
4209     return false;
4210 
4211   // Avoid turning single icmps into a switch.
4212   if (UsedICmps <= 1)
4213     return false;
4214 
4215   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4216 
4217   // There might be duplicate constants in the list, which the switch
4218   // instruction can't handle, remove them now.
4219   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4220   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4221 
4222   // If Extra was used, we require at least two switch values to do the
4223   // transformation.  A switch with one value is just a conditional branch.
4224   if (ExtraCase && Values.size() < 2)
4225     return false;
4226 
4227   // TODO: Preserve branch weight metadata, similarly to how
4228   // FoldValueComparisonIntoPredecessors preserves it.
4229 
4230   // Figure out which block is which destination.
4231   BasicBlock *DefaultBB = BI->getSuccessor(1);
4232   BasicBlock *EdgeBB = BI->getSuccessor(0);
4233   if (!TrueWhenEqual)
4234     std::swap(DefaultBB, EdgeBB);
4235 
4236   BasicBlock *BB = BI->getParent();
4237 
4238   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4239                     << " cases into SWITCH.  BB is:\n"
4240                     << *BB);
4241 
4242   SmallVector<DominatorTree::UpdateType, 2> Updates;
4243 
4244   // If there are any extra values that couldn't be folded into the switch
4245   // then we evaluate them with an explicit branch first. Split the block
4246   // right before the condbr to handle it.
4247   if (ExtraCase) {
4248     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4249                                    /*MSSAU=*/nullptr, "switch.early.test");
4250 
4251     // Remove the uncond branch added to the old block.
4252     Instruction *OldTI = BB->getTerminator();
4253     Builder.SetInsertPoint(OldTI);
4254 
4255     // There can be an unintended UB if extra values are Poison. Before the
4256     // transformation, extra values may not be evaluated according to the
4257     // condition, and it will not raise UB. But after transformation, we are
4258     // evaluating extra values before checking the condition, and it will raise
4259     // UB. It can be solved by adding freeze instruction to extra values.
4260     AssumptionCache *AC = Options.AC;
4261 
4262     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4263       ExtraCase = Builder.CreateFreeze(ExtraCase);
4264 
4265     if (TrueWhenEqual)
4266       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4267     else
4268       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4269 
4270     OldTI->eraseFromParent();
4271 
4272     if (DTU)
4273       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4274 
4275     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4276     // for the edge we just added.
4277     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4278 
4279     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4280                       << "\nEXTRABB = " << *BB);
4281     BB = NewBB;
4282   }
4283 
4284   Builder.SetInsertPoint(BI);
4285   // Convert pointer to int before we switch.
4286   if (CompVal->getType()->isPointerTy()) {
4287     CompVal = Builder.CreatePtrToInt(
4288         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4289   }
4290 
4291   // Create the new switch instruction now.
4292   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4293 
4294   // Add all of the 'cases' to the switch instruction.
4295   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4296     New->addCase(Values[i], EdgeBB);
4297 
4298   // We added edges from PI to the EdgeBB.  As such, if there were any
4299   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4300   // the number of edges added.
4301   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4302     PHINode *PN = cast<PHINode>(BBI);
4303     Value *InVal = PN->getIncomingValueForBlock(BB);
4304     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4305       PN->addIncoming(InVal, BB);
4306   }
4307 
4308   // Erase the old branch instruction.
4309   EraseTerminatorAndDCECond(BI);
4310   if (DTU)
4311     DTU->applyUpdates(Updates);
4312 
4313   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4314   return true;
4315 }
4316 
4317 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4318   if (isa<PHINode>(RI->getValue()))
4319     return simplifyCommonResume(RI);
4320   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4321            RI->getValue() == RI->getParent()->getFirstNonPHI())
4322     // The resume must unwind the exception that caused control to branch here.
4323     return simplifySingleResume(RI);
4324 
4325   return false;
4326 }
4327 
4328 // Check if cleanup block is empty
4329 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4330   for (Instruction &I : R) {
4331     auto *II = dyn_cast<IntrinsicInst>(&I);
4332     if (!II)
4333       return false;
4334 
4335     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4336     switch (IntrinsicID) {
4337     case Intrinsic::dbg_declare:
4338     case Intrinsic::dbg_value:
4339     case Intrinsic::dbg_label:
4340     case Intrinsic::lifetime_end:
4341       break;
4342     default:
4343       return false;
4344     }
4345   }
4346   return true;
4347 }
4348 
4349 // Simplify resume that is shared by several landing pads (phi of landing pad).
4350 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4351   BasicBlock *BB = RI->getParent();
4352 
4353   // Check that there are no other instructions except for debug and lifetime
4354   // intrinsics between the phi's and resume instruction.
4355   if (!isCleanupBlockEmpty(
4356           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4357     return false;
4358 
4359   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4360   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4361 
4362   // Check incoming blocks to see if any of them are trivial.
4363   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4364        Idx++) {
4365     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4366     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4367 
4368     // If the block has other successors, we can not delete it because
4369     // it has other dependents.
4370     if (IncomingBB->getUniqueSuccessor() != BB)
4371       continue;
4372 
4373     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4374     // Not the landing pad that caused the control to branch here.
4375     if (IncomingValue != LandingPad)
4376       continue;
4377 
4378     if (isCleanupBlockEmpty(
4379             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4380       TrivialUnwindBlocks.insert(IncomingBB);
4381   }
4382 
4383   // If no trivial unwind blocks, don't do any simplifications.
4384   if (TrivialUnwindBlocks.empty())
4385     return false;
4386 
4387   // Turn all invokes that unwind here into calls.
4388   for (auto *TrivialBB : TrivialUnwindBlocks) {
4389     // Blocks that will be simplified should be removed from the phi node.
4390     // Note there could be multiple edges to the resume block, and we need
4391     // to remove them all.
4392     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4393       BB->removePredecessor(TrivialBB, true);
4394 
4395     for (BasicBlock *Pred :
4396          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4397       removeUnwindEdge(Pred, DTU);
4398       ++NumInvokes;
4399     }
4400 
4401     // In each SimplifyCFG run, only the current processed block can be erased.
4402     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4403     // of erasing TrivialBB, we only remove the branch to the common resume
4404     // block so that we can later erase the resume block since it has no
4405     // predecessors.
4406     TrivialBB->getTerminator()->eraseFromParent();
4407     new UnreachableInst(RI->getContext(), TrivialBB);
4408     if (DTU)
4409       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4410   }
4411 
4412   // Delete the resume block if all its predecessors have been removed.
4413   if (pred_empty(BB))
4414     DeleteDeadBlock(BB, DTU);
4415 
4416   return !TrivialUnwindBlocks.empty();
4417 }
4418 
4419 // Simplify resume that is only used by a single (non-phi) landing pad.
4420 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4421   BasicBlock *BB = RI->getParent();
4422   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4423   assert(RI->getValue() == LPInst &&
4424          "Resume must unwind the exception that caused control to here");
4425 
4426   // Check that there are no other instructions except for debug intrinsics.
4427   if (!isCleanupBlockEmpty(
4428           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4429     return false;
4430 
4431   // Turn all invokes that unwind here into calls and delete the basic block.
4432   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4433     removeUnwindEdge(Pred, DTU);
4434     ++NumInvokes;
4435   }
4436 
4437   // The landingpad is now unreachable.  Zap it.
4438   DeleteDeadBlock(BB, DTU);
4439   return true;
4440 }
4441 
4442 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4443   // If this is a trivial cleanup pad that executes no instructions, it can be
4444   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4445   // that is an EH pad will be updated to continue to the caller and any
4446   // predecessor that terminates with an invoke instruction will have its invoke
4447   // instruction converted to a call instruction.  If the cleanup pad being
4448   // simplified does not continue to the caller, each predecessor will be
4449   // updated to continue to the unwind destination of the cleanup pad being
4450   // simplified.
4451   BasicBlock *BB = RI->getParent();
4452   CleanupPadInst *CPInst = RI->getCleanupPad();
4453   if (CPInst->getParent() != BB)
4454     // This isn't an empty cleanup.
4455     return false;
4456 
4457   // We cannot kill the pad if it has multiple uses.  This typically arises
4458   // from unreachable basic blocks.
4459   if (!CPInst->hasOneUse())
4460     return false;
4461 
4462   // Check that there are no other instructions except for benign intrinsics.
4463   if (!isCleanupBlockEmpty(
4464           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4465     return false;
4466 
4467   // If the cleanup return we are simplifying unwinds to the caller, this will
4468   // set UnwindDest to nullptr.
4469   BasicBlock *UnwindDest = RI->getUnwindDest();
4470   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4471 
4472   // We're about to remove BB from the control flow.  Before we do, sink any
4473   // PHINodes into the unwind destination.  Doing this before changing the
4474   // control flow avoids some potentially slow checks, since we can currently
4475   // be certain that UnwindDest and BB have no common predecessors (since they
4476   // are both EH pads).
4477   if (UnwindDest) {
4478     // First, go through the PHI nodes in UnwindDest and update any nodes that
4479     // reference the block we are removing
4480     for (PHINode &DestPN : UnwindDest->phis()) {
4481       int Idx = DestPN.getBasicBlockIndex(BB);
4482       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4483       assert(Idx != -1);
4484       // This PHI node has an incoming value that corresponds to a control
4485       // path through the cleanup pad we are removing.  If the incoming
4486       // value is in the cleanup pad, it must be a PHINode (because we
4487       // verified above that the block is otherwise empty).  Otherwise, the
4488       // value is either a constant or a value that dominates the cleanup
4489       // pad being removed.
4490       //
4491       // Because BB and UnwindDest are both EH pads, all of their
4492       // predecessors must unwind to these blocks, and since no instruction
4493       // can have multiple unwind destinations, there will be no overlap in
4494       // incoming blocks between SrcPN and DestPN.
4495       Value *SrcVal = DestPN.getIncomingValue(Idx);
4496       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4497 
4498       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4499       for (auto *Pred : predecessors(BB)) {
4500         Value *Incoming =
4501             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4502         DestPN.addIncoming(Incoming, Pred);
4503       }
4504     }
4505 
4506     // Sink any remaining PHI nodes directly into UnwindDest.
4507     Instruction *InsertPt = DestEHPad;
4508     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4509       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4510         // If the PHI node has no uses or all of its uses are in this basic
4511         // block (meaning they are debug or lifetime intrinsics), just leave
4512         // it.  It will be erased when we erase BB below.
4513         continue;
4514 
4515       // Otherwise, sink this PHI node into UnwindDest.
4516       // Any predecessors to UnwindDest which are not already represented
4517       // must be back edges which inherit the value from the path through
4518       // BB.  In this case, the PHI value must reference itself.
4519       for (auto *pred : predecessors(UnwindDest))
4520         if (pred != BB)
4521           PN.addIncoming(&PN, pred);
4522       PN.moveBefore(InsertPt);
4523       // Also, add a dummy incoming value for the original BB itself,
4524       // so that the PHI is well-formed until we drop said predecessor.
4525       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4526     }
4527   }
4528 
4529   std::vector<DominatorTree::UpdateType> Updates;
4530 
4531   // We use make_early_inc_range here because we will remove all predecessors.
4532   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4533     if (UnwindDest == nullptr) {
4534       if (DTU) {
4535         DTU->applyUpdates(Updates);
4536         Updates.clear();
4537       }
4538       removeUnwindEdge(PredBB, DTU);
4539       ++NumInvokes;
4540     } else {
4541       BB->removePredecessor(PredBB);
4542       Instruction *TI = PredBB->getTerminator();
4543       TI->replaceUsesOfWith(BB, UnwindDest);
4544       if (DTU) {
4545         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4546         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4547       }
4548     }
4549   }
4550 
4551   if (DTU)
4552     DTU->applyUpdates(Updates);
4553 
4554   DeleteDeadBlock(BB, DTU);
4555 
4556   return true;
4557 }
4558 
4559 // Try to merge two cleanuppads together.
4560 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4561   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4562   // with.
4563   BasicBlock *UnwindDest = RI->getUnwindDest();
4564   if (!UnwindDest)
4565     return false;
4566 
4567   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4568   // be safe to merge without code duplication.
4569   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4570     return false;
4571 
4572   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4573   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4574   if (!SuccessorCleanupPad)
4575     return false;
4576 
4577   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4578   // Replace any uses of the successor cleanupad with the predecessor pad
4579   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4580   // funclet bundle operands.
4581   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4582   // Remove the old cleanuppad.
4583   SuccessorCleanupPad->eraseFromParent();
4584   // Now, we simply replace the cleanupret with a branch to the unwind
4585   // destination.
4586   BranchInst::Create(UnwindDest, RI->getParent());
4587   RI->eraseFromParent();
4588 
4589   return true;
4590 }
4591 
4592 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4593   // It is possible to transiantly have an undef cleanuppad operand because we
4594   // have deleted some, but not all, dead blocks.
4595   // Eventually, this block will be deleted.
4596   if (isa<UndefValue>(RI->getOperand(0)))
4597     return false;
4598 
4599   if (mergeCleanupPad(RI))
4600     return true;
4601 
4602   if (removeEmptyCleanup(RI, DTU))
4603     return true;
4604 
4605   return false;
4606 }
4607 
4608 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4609 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4610   BasicBlock *BB = UI->getParent();
4611 
4612   bool Changed = false;
4613 
4614   // If there are any instructions immediately before the unreachable that can
4615   // be removed, do so.
4616   while (UI->getIterator() != BB->begin()) {
4617     BasicBlock::iterator BBI = UI->getIterator();
4618     --BBI;
4619 
4620     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4621       break; // Can not drop any more instructions. We're done here.
4622     // Otherwise, this instruction can be freely erased,
4623     // even if it is not side-effect free.
4624 
4625     // Note that deleting EH's here is in fact okay, although it involves a bit
4626     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4627     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4628     // and we can therefore guarantee this block will be erased.
4629 
4630     // Delete this instruction (any uses are guaranteed to be dead)
4631     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4632     BBI->eraseFromParent();
4633     Changed = true;
4634   }
4635 
4636   // If the unreachable instruction is the first in the block, take a gander
4637   // at all of the predecessors of this instruction, and simplify them.
4638   if (&BB->front() != UI)
4639     return Changed;
4640 
4641   std::vector<DominatorTree::UpdateType> Updates;
4642 
4643   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4644   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4645     auto *Predecessor = Preds[i];
4646     Instruction *TI = Predecessor->getTerminator();
4647     IRBuilder<> Builder(TI);
4648     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4649       // We could either have a proper unconditional branch,
4650       // or a degenerate conditional branch with matching destinations.
4651       if (all_of(BI->successors(),
4652                  [BB](auto *Successor) { return Successor == BB; })) {
4653         new UnreachableInst(TI->getContext(), TI);
4654         TI->eraseFromParent();
4655         Changed = true;
4656       } else {
4657         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4658         Value* Cond = BI->getCondition();
4659         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4660                "The destinations are guaranteed to be different here.");
4661         if (BI->getSuccessor(0) == BB) {
4662           Builder.CreateAssumption(Builder.CreateNot(Cond));
4663           Builder.CreateBr(BI->getSuccessor(1));
4664         } else {
4665           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4666           Builder.CreateAssumption(Cond);
4667           Builder.CreateBr(BI->getSuccessor(0));
4668         }
4669         EraseTerminatorAndDCECond(BI);
4670         Changed = true;
4671       }
4672       if (DTU)
4673         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4674     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4675       SwitchInstProfUpdateWrapper SU(*SI);
4676       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4677         if (i->getCaseSuccessor() != BB) {
4678           ++i;
4679           continue;
4680         }
4681         BB->removePredecessor(SU->getParent());
4682         i = SU.removeCase(i);
4683         e = SU->case_end();
4684         Changed = true;
4685       }
4686       // Note that the default destination can't be removed!
4687       if (DTU && SI->getDefaultDest() != BB)
4688         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4689     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4690       if (II->getUnwindDest() == BB) {
4691         if (DTU) {
4692           DTU->applyUpdates(Updates);
4693           Updates.clear();
4694         }
4695         removeUnwindEdge(TI->getParent(), DTU);
4696         Changed = true;
4697       }
4698     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4699       if (CSI->getUnwindDest() == BB) {
4700         if (DTU) {
4701           DTU->applyUpdates(Updates);
4702           Updates.clear();
4703         }
4704         removeUnwindEdge(TI->getParent(), DTU);
4705         Changed = true;
4706         continue;
4707       }
4708 
4709       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4710                                              E = CSI->handler_end();
4711            I != E; ++I) {
4712         if (*I == BB) {
4713           CSI->removeHandler(I);
4714           --I;
4715           --E;
4716           Changed = true;
4717         }
4718       }
4719       if (DTU)
4720         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4721       if (CSI->getNumHandlers() == 0) {
4722         if (CSI->hasUnwindDest()) {
4723           // Redirect all predecessors of the block containing CatchSwitchInst
4724           // to instead branch to the CatchSwitchInst's unwind destination.
4725           if (DTU) {
4726             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4727               Updates.push_back({DominatorTree::Insert,
4728                                  PredecessorOfPredecessor,
4729                                  CSI->getUnwindDest()});
4730               Updates.push_back({DominatorTree::Delete,
4731                                  PredecessorOfPredecessor, Predecessor});
4732             }
4733           }
4734           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4735         } else {
4736           // Rewrite all preds to unwind to caller (or from invoke to call).
4737           if (DTU) {
4738             DTU->applyUpdates(Updates);
4739             Updates.clear();
4740           }
4741           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4742           for (BasicBlock *EHPred : EHPreds)
4743             removeUnwindEdge(EHPred, DTU);
4744         }
4745         // The catchswitch is no longer reachable.
4746         new UnreachableInst(CSI->getContext(), CSI);
4747         CSI->eraseFromParent();
4748         Changed = true;
4749       }
4750     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4751       (void)CRI;
4752       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4753              "Expected to always have an unwind to BB.");
4754       if (DTU)
4755         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4756       new UnreachableInst(TI->getContext(), TI);
4757       TI->eraseFromParent();
4758       Changed = true;
4759     }
4760   }
4761 
4762   if (DTU)
4763     DTU->applyUpdates(Updates);
4764 
4765   // If this block is now dead, remove it.
4766   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4767     DeleteDeadBlock(BB, DTU);
4768     return true;
4769   }
4770 
4771   return Changed;
4772 }
4773 
4774 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4775   assert(Cases.size() >= 1);
4776 
4777   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4778   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4779     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4780       return false;
4781   }
4782   return true;
4783 }
4784 
4785 /// Turn a switch with two reachable destinations into an integer range
4786 /// comparison and branch.
4787 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4788                                              IRBuilder<> &Builder) {
4789   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4790 
4791   bool HasDefault =
4792       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4793 
4794   auto *BB = SI->getParent();
4795 
4796   // Partition the cases into two sets with different destinations.
4797   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4798   BasicBlock *DestB = nullptr;
4799   SmallVector<ConstantInt *, 16> CasesA;
4800   SmallVector<ConstantInt *, 16> CasesB;
4801 
4802   for (auto Case : SI->cases()) {
4803     BasicBlock *Dest = Case.getCaseSuccessor();
4804     if (!DestA)
4805       DestA = Dest;
4806     if (Dest == DestA) {
4807       CasesA.push_back(Case.getCaseValue());
4808       continue;
4809     }
4810     if (!DestB)
4811       DestB = Dest;
4812     if (Dest == DestB) {
4813       CasesB.push_back(Case.getCaseValue());
4814       continue;
4815     }
4816     return false; // More than two destinations.
4817   }
4818 
4819   assert(DestA && DestB &&
4820          "Single-destination switch should have been folded.");
4821   assert(DestA != DestB);
4822   assert(DestB != SI->getDefaultDest());
4823   assert(!CasesB.empty() && "There must be non-default cases.");
4824   assert(!CasesA.empty() || HasDefault);
4825 
4826   // Figure out if one of the sets of cases form a contiguous range.
4827   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4828   BasicBlock *ContiguousDest = nullptr;
4829   BasicBlock *OtherDest = nullptr;
4830   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4831     ContiguousCases = &CasesA;
4832     ContiguousDest = DestA;
4833     OtherDest = DestB;
4834   } else if (CasesAreContiguous(CasesB)) {
4835     ContiguousCases = &CasesB;
4836     ContiguousDest = DestB;
4837     OtherDest = DestA;
4838   } else
4839     return false;
4840 
4841   // Start building the compare and branch.
4842 
4843   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4844   Constant *NumCases =
4845       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4846 
4847   Value *Sub = SI->getCondition();
4848   if (!Offset->isNullValue())
4849     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4850 
4851   Value *Cmp;
4852   // If NumCases overflowed, then all possible values jump to the successor.
4853   if (NumCases->isNullValue() && !ContiguousCases->empty())
4854     Cmp = ConstantInt::getTrue(SI->getContext());
4855   else
4856     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4857   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4858 
4859   // Update weight for the newly-created conditional branch.
4860   if (HasBranchWeights(SI)) {
4861     SmallVector<uint64_t, 8> Weights;
4862     GetBranchWeights(SI, Weights);
4863     if (Weights.size() == 1 + SI->getNumCases()) {
4864       uint64_t TrueWeight = 0;
4865       uint64_t FalseWeight = 0;
4866       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4867         if (SI->getSuccessor(I) == ContiguousDest)
4868           TrueWeight += Weights[I];
4869         else
4870           FalseWeight += Weights[I];
4871       }
4872       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4873         TrueWeight /= 2;
4874         FalseWeight /= 2;
4875       }
4876       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4877     }
4878   }
4879 
4880   // Prune obsolete incoming values off the successors' PHI nodes.
4881   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4882     unsigned PreviousEdges = ContiguousCases->size();
4883     if (ContiguousDest == SI->getDefaultDest())
4884       ++PreviousEdges;
4885     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4886       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4887   }
4888   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4889     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4890     if (OtherDest == SI->getDefaultDest())
4891       ++PreviousEdges;
4892     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4893       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4894   }
4895 
4896   // Clean up the default block - it may have phis or other instructions before
4897   // the unreachable terminator.
4898   if (!HasDefault)
4899     createUnreachableSwitchDefault(SI, DTU);
4900 
4901   auto *UnreachableDefault = SI->getDefaultDest();
4902 
4903   // Drop the switch.
4904   SI->eraseFromParent();
4905 
4906   if (!HasDefault && DTU)
4907     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4908 
4909   return true;
4910 }
4911 
4912 /// Compute masked bits for the condition of a switch
4913 /// and use it to remove dead cases.
4914 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4915                                      AssumptionCache *AC,
4916                                      const DataLayout &DL) {
4917   Value *Cond = SI->getCondition();
4918   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4919   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4920 
4921   // We can also eliminate cases by determining that their values are outside of
4922   // the limited range of the condition based on how many significant (non-sign)
4923   // bits are in the condition value.
4924   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4925   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4926 
4927   // Gather dead cases.
4928   SmallVector<ConstantInt *, 8> DeadCases;
4929   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4930   for (auto &Case : SI->cases()) {
4931     auto *Successor = Case.getCaseSuccessor();
4932     if (DTU)
4933       ++NumPerSuccessorCases[Successor];
4934     const APInt &CaseVal = Case.getCaseValue()->getValue();
4935     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4936         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4937       DeadCases.push_back(Case.getCaseValue());
4938       if (DTU)
4939         --NumPerSuccessorCases[Successor];
4940       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4941                         << " is dead.\n");
4942     }
4943   }
4944 
4945   // If we can prove that the cases must cover all possible values, the
4946   // default destination becomes dead and we can remove it.  If we know some
4947   // of the bits in the value, we can use that to more precisely compute the
4948   // number of possible unique case values.
4949   bool HasDefault =
4950       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4951   const unsigned NumUnknownBits =
4952       Bits - (Known.Zero | Known.One).countPopulation();
4953   assert(NumUnknownBits <= Bits);
4954   if (HasDefault && DeadCases.empty() &&
4955       NumUnknownBits < 64 /* avoid overflow */ &&
4956       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4957     createUnreachableSwitchDefault(SI, DTU);
4958     return true;
4959   }
4960 
4961   if (DeadCases.empty())
4962     return false;
4963 
4964   SwitchInstProfUpdateWrapper SIW(*SI);
4965   for (ConstantInt *DeadCase : DeadCases) {
4966     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4967     assert(CaseI != SI->case_default() &&
4968            "Case was not found. Probably mistake in DeadCases forming.");
4969     // Prune unused values from PHI nodes.
4970     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4971     SIW.removeCase(CaseI);
4972   }
4973 
4974   if (DTU) {
4975     std::vector<DominatorTree::UpdateType> Updates;
4976     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4977       if (I.second == 0)
4978         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4979     DTU->applyUpdates(Updates);
4980   }
4981 
4982   return true;
4983 }
4984 
4985 /// If BB would be eligible for simplification by
4986 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4987 /// by an unconditional branch), look at the phi node for BB in the successor
4988 /// block and see if the incoming value is equal to CaseValue. If so, return
4989 /// the phi node, and set PhiIndex to BB's index in the phi node.
4990 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4991                                               BasicBlock *BB, int *PhiIndex) {
4992   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4993     return nullptr; // BB must be empty to be a candidate for simplification.
4994   if (!BB->getSinglePredecessor())
4995     return nullptr; // BB must be dominated by the switch.
4996 
4997   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4998   if (!Branch || !Branch->isUnconditional())
4999     return nullptr; // Terminator must be unconditional branch.
5000 
5001   BasicBlock *Succ = Branch->getSuccessor(0);
5002 
5003   for (PHINode &PHI : Succ->phis()) {
5004     int Idx = PHI.getBasicBlockIndex(BB);
5005     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5006 
5007     Value *InValue = PHI.getIncomingValue(Idx);
5008     if (InValue != CaseValue)
5009       continue;
5010 
5011     *PhiIndex = Idx;
5012     return &PHI;
5013   }
5014 
5015   return nullptr;
5016 }
5017 
5018 /// Try to forward the condition of a switch instruction to a phi node
5019 /// dominated by the switch, if that would mean that some of the destination
5020 /// blocks of the switch can be folded away. Return true if a change is made.
5021 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5022   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5023 
5024   ForwardingNodesMap ForwardingNodes;
5025   BasicBlock *SwitchBlock = SI->getParent();
5026   bool Changed = false;
5027   for (auto &Case : SI->cases()) {
5028     ConstantInt *CaseValue = Case.getCaseValue();
5029     BasicBlock *CaseDest = Case.getCaseSuccessor();
5030 
5031     // Replace phi operands in successor blocks that are using the constant case
5032     // value rather than the switch condition variable:
5033     //   switchbb:
5034     //   switch i32 %x, label %default [
5035     //     i32 17, label %succ
5036     //   ...
5037     //   succ:
5038     //     %r = phi i32 ... [ 17, %switchbb ] ...
5039     // -->
5040     //     %r = phi i32 ... [ %x, %switchbb ] ...
5041 
5042     for (PHINode &Phi : CaseDest->phis()) {
5043       // This only works if there is exactly 1 incoming edge from the switch to
5044       // a phi. If there is >1, that means multiple cases of the switch map to 1
5045       // value in the phi, and that phi value is not the switch condition. Thus,
5046       // this transform would not make sense (the phi would be invalid because
5047       // a phi can't have different incoming values from the same block).
5048       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5049       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5050           count(Phi.blocks(), SwitchBlock) == 1) {
5051         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5052         Changed = true;
5053       }
5054     }
5055 
5056     // Collect phi nodes that are indirectly using this switch's case constants.
5057     int PhiIdx;
5058     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5059       ForwardingNodes[Phi].push_back(PhiIdx);
5060   }
5061 
5062   for (auto &ForwardingNode : ForwardingNodes) {
5063     PHINode *Phi = ForwardingNode.first;
5064     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5065     if (Indexes.size() < 2)
5066       continue;
5067 
5068     for (int Index : Indexes)
5069       Phi->setIncomingValue(Index, SI->getCondition());
5070     Changed = true;
5071   }
5072 
5073   return Changed;
5074 }
5075 
5076 /// Return true if the backend will be able to handle
5077 /// initializing an array of constants like C.
5078 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5079   if (C->isThreadDependent())
5080     return false;
5081   if (C->isDLLImportDependent())
5082     return false;
5083 
5084   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5085       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5086       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5087     return false;
5088 
5089   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5090     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5091     // materializing the array of constants.
5092     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5093     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5094       return false;
5095   }
5096 
5097   if (!TTI.shouldBuildLookupTablesForConstant(C))
5098     return false;
5099 
5100   return true;
5101 }
5102 
5103 /// If V is a Constant, return it. Otherwise, try to look up
5104 /// its constant value in ConstantPool, returning 0 if it's not there.
5105 static Constant *
5106 LookupConstant(Value *V,
5107                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5108   if (Constant *C = dyn_cast<Constant>(V))
5109     return C;
5110   return ConstantPool.lookup(V);
5111 }
5112 
5113 /// Try to fold instruction I into a constant. This works for
5114 /// simple instructions such as binary operations where both operands are
5115 /// constant or can be replaced by constants from the ConstantPool. Returns the
5116 /// resulting constant on success, 0 otherwise.
5117 static Constant *
5118 ConstantFold(Instruction *I, const DataLayout &DL,
5119              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5120   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5121     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5122     if (!A)
5123       return nullptr;
5124     if (A->isAllOnesValue())
5125       return LookupConstant(Select->getTrueValue(), ConstantPool);
5126     if (A->isNullValue())
5127       return LookupConstant(Select->getFalseValue(), ConstantPool);
5128     return nullptr;
5129   }
5130 
5131   SmallVector<Constant *, 4> COps;
5132   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5133     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5134       COps.push_back(A);
5135     else
5136       return nullptr;
5137   }
5138 
5139   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5140     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5141                                            COps[1], DL);
5142   }
5143 
5144   return ConstantFoldInstOperands(I, COps, DL);
5145 }
5146 
5147 /// Try to determine the resulting constant values in phi nodes
5148 /// at the common destination basic block, *CommonDest, for one of the case
5149 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5150 /// case), of a switch instruction SI.
5151 static bool
5152 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5153                BasicBlock **CommonDest,
5154                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5155                const DataLayout &DL, const TargetTransformInfo &TTI) {
5156   // The block from which we enter the common destination.
5157   BasicBlock *Pred = SI->getParent();
5158 
5159   // If CaseDest is empty except for some side-effect free instructions through
5160   // which we can constant-propagate the CaseVal, continue to its successor.
5161   SmallDenseMap<Value *, Constant *> ConstantPool;
5162   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5163   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5164     if (I.isTerminator()) {
5165       // If the terminator is a simple branch, continue to the next block.
5166       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5167         return false;
5168       Pred = CaseDest;
5169       CaseDest = I.getSuccessor(0);
5170     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5171       // Instruction is side-effect free and constant.
5172 
5173       // If the instruction has uses outside this block or a phi node slot for
5174       // the block, it is not safe to bypass the instruction since it would then
5175       // no longer dominate all its uses.
5176       for (auto &Use : I.uses()) {
5177         User *User = Use.getUser();
5178         if (Instruction *I = dyn_cast<Instruction>(User))
5179           if (I->getParent() == CaseDest)
5180             continue;
5181         if (PHINode *Phi = dyn_cast<PHINode>(User))
5182           if (Phi->getIncomingBlock(Use) == CaseDest)
5183             continue;
5184         return false;
5185       }
5186 
5187       ConstantPool.insert(std::make_pair(&I, C));
5188     } else {
5189       break;
5190     }
5191   }
5192 
5193   // If we did not have a CommonDest before, use the current one.
5194   if (!*CommonDest)
5195     *CommonDest = CaseDest;
5196   // If the destination isn't the common one, abort.
5197   if (CaseDest != *CommonDest)
5198     return false;
5199 
5200   // Get the values for this case from phi nodes in the destination block.
5201   for (PHINode &PHI : (*CommonDest)->phis()) {
5202     int Idx = PHI.getBasicBlockIndex(Pred);
5203     if (Idx == -1)
5204       continue;
5205 
5206     Constant *ConstVal =
5207         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5208     if (!ConstVal)
5209       return false;
5210 
5211     // Be conservative about which kinds of constants we support.
5212     if (!ValidLookupTableConstant(ConstVal, TTI))
5213       return false;
5214 
5215     Res.push_back(std::make_pair(&PHI, ConstVal));
5216   }
5217 
5218   return Res.size() > 0;
5219 }
5220 
5221 // Helper function used to add CaseVal to the list of cases that generate
5222 // Result. Returns the updated number of cases that generate this result.
5223 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5224                                  SwitchCaseResultVectorTy &UniqueResults,
5225                                  Constant *Result) {
5226   for (auto &I : UniqueResults) {
5227     if (I.first == Result) {
5228       I.second.push_back(CaseVal);
5229       return I.second.size();
5230     }
5231   }
5232   UniqueResults.push_back(
5233       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5234   return 1;
5235 }
5236 
5237 // Helper function that initializes a map containing
5238 // results for the PHI node of the common destination block for a switch
5239 // instruction. Returns false if multiple PHI nodes have been found or if
5240 // there is not a common destination block for the switch.
5241 static bool
5242 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5243                       SwitchCaseResultVectorTy &UniqueResults,
5244                       Constant *&DefaultResult, const DataLayout &DL,
5245                       const TargetTransformInfo &TTI,
5246                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5247   for (auto &I : SI->cases()) {
5248     ConstantInt *CaseVal = I.getCaseValue();
5249 
5250     // Resulting value at phi nodes for this case value.
5251     SwitchCaseResultsTy Results;
5252     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5253                         DL, TTI))
5254       return false;
5255 
5256     // Only one value per case is permitted.
5257     if (Results.size() > 1)
5258       return false;
5259 
5260     // Add the case->result mapping to UniqueResults.
5261     const uintptr_t NumCasesForResult =
5262         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5263 
5264     // Early out if there are too many cases for this result.
5265     if (NumCasesForResult > MaxCasesPerResult)
5266       return false;
5267 
5268     // Early out if there are too many unique results.
5269     if (UniqueResults.size() > MaxUniqueResults)
5270       return false;
5271 
5272     // Check the PHI consistency.
5273     if (!PHI)
5274       PHI = Results[0].first;
5275     else if (PHI != Results[0].first)
5276       return false;
5277   }
5278   // Find the default result value.
5279   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5280   BasicBlock *DefaultDest = SI->getDefaultDest();
5281   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5282                  DL, TTI);
5283   // If the default value is not found abort unless the default destination
5284   // is unreachable.
5285   DefaultResult =
5286       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5287   if ((!DefaultResult &&
5288        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5289     return false;
5290 
5291   return true;
5292 }
5293 
5294 // Helper function that checks if it is possible to transform a switch with only
5295 // two cases (or two cases + default) that produces a result into a select.
5296 // Example:
5297 // switch (a) {
5298 //   case 10:                %0 = icmp eq i32 %a, 10
5299 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5300 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5301 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5302 //   default:
5303 //     return 4;
5304 // }
5305 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5306                                    Constant *DefaultResult, Value *Condition,
5307                                    IRBuilder<> &Builder) {
5308   // If we are selecting between only two cases transform into a simple
5309   // select or a two-way select if default is possible.
5310   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5311       ResultVector[1].second.size() == 1) {
5312     ConstantInt *const FirstCase = ResultVector[0].second[0];
5313     ConstantInt *const SecondCase = ResultVector[1].second[0];
5314 
5315     bool DefaultCanTrigger = DefaultResult;
5316     Value *SelectValue = ResultVector[1].first;
5317     if (DefaultCanTrigger) {
5318       Value *const ValueCompare =
5319           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5320       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5321                                          DefaultResult, "switch.select");
5322     }
5323     Value *const ValueCompare =
5324         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5325     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5326                                 SelectValue, "switch.select");
5327   }
5328 
5329   // Handle the degenerate case where two cases have the same value.
5330   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5331       DefaultResult) {
5332     Value *Cmp1 = Builder.CreateICmpEQ(
5333         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5334     Value *Cmp2 = Builder.CreateICmpEQ(
5335         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5336     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5337     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5338   }
5339 
5340   return nullptr;
5341 }
5342 
5343 // Helper function to cleanup a switch instruction that has been converted into
5344 // a select, fixing up PHI nodes and basic blocks.
5345 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5346                                               Value *SelectValue,
5347                                               IRBuilder<> &Builder,
5348                                               DomTreeUpdater *DTU) {
5349   std::vector<DominatorTree::UpdateType> Updates;
5350 
5351   BasicBlock *SelectBB = SI->getParent();
5352   BasicBlock *DestBB = PHI->getParent();
5353 
5354   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5355     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5356   Builder.CreateBr(DestBB);
5357 
5358   // Remove the switch.
5359 
5360   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5361     PHI->removeIncomingValue(SelectBB);
5362   PHI->addIncoming(SelectValue, SelectBB);
5363 
5364   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5365   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5366     BasicBlock *Succ = SI->getSuccessor(i);
5367 
5368     if (Succ == DestBB)
5369       continue;
5370     Succ->removePredecessor(SelectBB);
5371     if (DTU && RemovedSuccessors.insert(Succ).second)
5372       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5373   }
5374   SI->eraseFromParent();
5375   if (DTU)
5376     DTU->applyUpdates(Updates);
5377 }
5378 
5379 /// If the switch is only used to initialize one or more
5380 /// phi nodes in a common successor block with only two different
5381 /// constant values, replace the switch with select.
5382 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5383                            DomTreeUpdater *DTU, const DataLayout &DL,
5384                            const TargetTransformInfo &TTI) {
5385   Value *const Cond = SI->getCondition();
5386   PHINode *PHI = nullptr;
5387   BasicBlock *CommonDest = nullptr;
5388   Constant *DefaultResult;
5389   SwitchCaseResultVectorTy UniqueResults;
5390   // Collect all the cases that will deliver the same value from the switch.
5391   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5392                              DL, TTI, /*MaxUniqueResults*/2,
5393                              /*MaxCasesPerResult*/2))
5394     return false;
5395   assert(PHI != nullptr && "PHI for value select not found");
5396 
5397   Builder.SetInsertPoint(SI);
5398   Value *SelectValue =
5399       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5400   if (SelectValue) {
5401     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5402     return true;
5403   }
5404   // The switch couldn't be converted into a select.
5405   return false;
5406 }
5407 
5408 namespace {
5409 
5410 /// This class represents a lookup table that can be used to replace a switch.
5411 class SwitchLookupTable {
5412 public:
5413   /// Create a lookup table to use as a switch replacement with the contents
5414   /// of Values, using DefaultValue to fill any holes in the table.
5415   SwitchLookupTable(
5416       Module &M, uint64_t TableSize, ConstantInt *Offset,
5417       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5418       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5419 
5420   /// Build instructions with Builder to retrieve the value at
5421   /// the position given by Index in the lookup table.
5422   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5423 
5424   /// Return true if a table with TableSize elements of
5425   /// type ElementType would fit in a target-legal register.
5426   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5427                                  Type *ElementType);
5428 
5429 private:
5430   // Depending on the contents of the table, it can be represented in
5431   // different ways.
5432   enum {
5433     // For tables where each element contains the same value, we just have to
5434     // store that single value and return it for each lookup.
5435     SingleValueKind,
5436 
5437     // For tables where there is a linear relationship between table index
5438     // and values. We calculate the result with a simple multiplication
5439     // and addition instead of a table lookup.
5440     LinearMapKind,
5441 
5442     // For small tables with integer elements, we can pack them into a bitmap
5443     // that fits into a target-legal register. Values are retrieved by
5444     // shift and mask operations.
5445     BitMapKind,
5446 
5447     // The table is stored as an array of values. Values are retrieved by load
5448     // instructions from the table.
5449     ArrayKind
5450   } Kind;
5451 
5452   // For SingleValueKind, this is the single value.
5453   Constant *SingleValue = nullptr;
5454 
5455   // For BitMapKind, this is the bitmap.
5456   ConstantInt *BitMap = nullptr;
5457   IntegerType *BitMapElementTy = nullptr;
5458 
5459   // For LinearMapKind, these are the constants used to derive the value.
5460   ConstantInt *LinearOffset = nullptr;
5461   ConstantInt *LinearMultiplier = nullptr;
5462 
5463   // For ArrayKind, this is the array.
5464   GlobalVariable *Array = nullptr;
5465 };
5466 
5467 } // end anonymous namespace
5468 
5469 SwitchLookupTable::SwitchLookupTable(
5470     Module &M, uint64_t TableSize, ConstantInt *Offset,
5471     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5472     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5473   assert(Values.size() && "Can't build lookup table without values!");
5474   assert(TableSize >= Values.size() && "Can't fit values in table!");
5475 
5476   // If all values in the table are equal, this is that value.
5477   SingleValue = Values.begin()->second;
5478 
5479   Type *ValueType = Values.begin()->second->getType();
5480 
5481   // Build up the table contents.
5482   SmallVector<Constant *, 64> TableContents(TableSize);
5483   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5484     ConstantInt *CaseVal = Values[I].first;
5485     Constant *CaseRes = Values[I].second;
5486     assert(CaseRes->getType() == ValueType);
5487 
5488     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5489     TableContents[Idx] = CaseRes;
5490 
5491     if (CaseRes != SingleValue)
5492       SingleValue = nullptr;
5493   }
5494 
5495   // Fill in any holes in the table with the default result.
5496   if (Values.size() < TableSize) {
5497     assert(DefaultValue &&
5498            "Need a default value to fill the lookup table holes.");
5499     assert(DefaultValue->getType() == ValueType);
5500     for (uint64_t I = 0; I < TableSize; ++I) {
5501       if (!TableContents[I])
5502         TableContents[I] = DefaultValue;
5503     }
5504 
5505     if (DefaultValue != SingleValue)
5506       SingleValue = nullptr;
5507   }
5508 
5509   // If each element in the table contains the same value, we only need to store
5510   // that single value.
5511   if (SingleValue) {
5512     Kind = SingleValueKind;
5513     return;
5514   }
5515 
5516   // Check if we can derive the value with a linear transformation from the
5517   // table index.
5518   if (isa<IntegerType>(ValueType)) {
5519     bool LinearMappingPossible = true;
5520     APInt PrevVal;
5521     APInt DistToPrev;
5522     assert(TableSize >= 2 && "Should be a SingleValue table.");
5523     // Check if there is the same distance between two consecutive values.
5524     for (uint64_t I = 0; I < TableSize; ++I) {
5525       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5526       if (!ConstVal) {
5527         // This is an undef. We could deal with it, but undefs in lookup tables
5528         // are very seldom. It's probably not worth the additional complexity.
5529         LinearMappingPossible = false;
5530         break;
5531       }
5532       const APInt &Val = ConstVal->getValue();
5533       if (I != 0) {
5534         APInt Dist = Val - PrevVal;
5535         if (I == 1) {
5536           DistToPrev = Dist;
5537         } else if (Dist != DistToPrev) {
5538           LinearMappingPossible = false;
5539           break;
5540         }
5541       }
5542       PrevVal = Val;
5543     }
5544     if (LinearMappingPossible) {
5545       LinearOffset = cast<ConstantInt>(TableContents[0]);
5546       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5547       Kind = LinearMapKind;
5548       ++NumLinearMaps;
5549       return;
5550     }
5551   }
5552 
5553   // If the type is integer and the table fits in a register, build a bitmap.
5554   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5555     IntegerType *IT = cast<IntegerType>(ValueType);
5556     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5557     for (uint64_t I = TableSize; I > 0; --I) {
5558       TableInt <<= IT->getBitWidth();
5559       // Insert values into the bitmap. Undef values are set to zero.
5560       if (!isa<UndefValue>(TableContents[I - 1])) {
5561         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5562         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5563       }
5564     }
5565     BitMap = ConstantInt::get(M.getContext(), TableInt);
5566     BitMapElementTy = IT;
5567     Kind = BitMapKind;
5568     ++NumBitMaps;
5569     return;
5570   }
5571 
5572   // Store the table in an array.
5573   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5574   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5575 
5576   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5577                              GlobalVariable::PrivateLinkage, Initializer,
5578                              "switch.table." + FuncName);
5579   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5580   // Set the alignment to that of an array items. We will be only loading one
5581   // value out of it.
5582   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5583   Kind = ArrayKind;
5584 }
5585 
5586 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5587   switch (Kind) {
5588   case SingleValueKind:
5589     return SingleValue;
5590   case LinearMapKind: {
5591     // Derive the result value from the input value.
5592     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5593                                           false, "switch.idx.cast");
5594     if (!LinearMultiplier->isOne())
5595       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5596     if (!LinearOffset->isZero())
5597       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5598     return Result;
5599   }
5600   case BitMapKind: {
5601     // Type of the bitmap (e.g. i59).
5602     IntegerType *MapTy = BitMap->getType();
5603 
5604     // Cast Index to the same type as the bitmap.
5605     // Note: The Index is <= the number of elements in the table, so
5606     // truncating it to the width of the bitmask is safe.
5607     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5608 
5609     // Multiply the shift amount by the element width.
5610     ShiftAmt = Builder.CreateMul(
5611         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5612         "switch.shiftamt");
5613 
5614     // Shift down.
5615     Value *DownShifted =
5616         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5617     // Mask off.
5618     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5619   }
5620   case ArrayKind: {
5621     // Make sure the table index will not overflow when treated as signed.
5622     IntegerType *IT = cast<IntegerType>(Index->getType());
5623     uint64_t TableSize =
5624         Array->getInitializer()->getType()->getArrayNumElements();
5625     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5626       Index = Builder.CreateZExt(
5627           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5628           "switch.tableidx.zext");
5629 
5630     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5631     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5632                                            GEPIndices, "switch.gep");
5633     return Builder.CreateLoad(
5634         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5635         "switch.load");
5636   }
5637   }
5638   llvm_unreachable("Unknown lookup table kind!");
5639 }
5640 
5641 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5642                                            uint64_t TableSize,
5643                                            Type *ElementType) {
5644   auto *IT = dyn_cast<IntegerType>(ElementType);
5645   if (!IT)
5646     return false;
5647   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5648   // are <= 15, we could try to narrow the type.
5649 
5650   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5651   if (TableSize >= UINT_MAX / IT->getBitWidth())
5652     return false;
5653   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5654 }
5655 
5656 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
5657                                       const DataLayout &DL) {
5658   // Allow any legal type.
5659   if (TTI.isTypeLegal(Ty))
5660     return true;
5661 
5662   auto *IT = dyn_cast<IntegerType>(Ty);
5663   if (!IT)
5664     return false;
5665 
5666   // Also allow power of 2 integer types that have at least 8 bits and fit in
5667   // a register. These types are common in frontend languages and targets
5668   // usually support loads of these types.
5669   // TODO: We could relax this to any integer that fits in a register and rely
5670   // on ABI alignment and padding in the table to allow the load to be widened.
5671   // Or we could widen the constants and truncate the load.
5672   unsigned BitWidth = IT->getBitWidth();
5673   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
5674          DL.fitsInLegalInteger(IT->getBitWidth());
5675 }
5676 
5677 /// Determine whether a lookup table should be built for this switch, based on
5678 /// the number of cases, size of the table, and the types of the results.
5679 // TODO: We could support larger than legal types by limiting based on the
5680 // number of loads required and/or table size. If the constants are small we
5681 // could use smaller table entries and extend after the load.
5682 static bool
5683 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5684                        const TargetTransformInfo &TTI, const DataLayout &DL,
5685                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5686   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5687     return false; // TableSize overflowed, or mul below might overflow.
5688 
5689   bool AllTablesFitInRegister = true;
5690   bool HasIllegalType = false;
5691   for (const auto &I : ResultTypes) {
5692     Type *Ty = I.second;
5693 
5694     // Saturate this flag to true.
5695     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
5696 
5697     // Saturate this flag to false.
5698     AllTablesFitInRegister =
5699         AllTablesFitInRegister &&
5700         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5701 
5702     // If both flags saturate, we're done. NOTE: This *only* works with
5703     // saturating flags, and all flags have to saturate first due to the
5704     // non-deterministic behavior of iterating over a dense map.
5705     if (HasIllegalType && !AllTablesFitInRegister)
5706       break;
5707   }
5708 
5709   // If each table would fit in a register, we should build it anyway.
5710   if (AllTablesFitInRegister)
5711     return true;
5712 
5713   // Don't build a table that doesn't fit in-register if it has illegal types.
5714   if (HasIllegalType)
5715     return false;
5716 
5717   // The table density should be at least 40%. This is the same criterion as for
5718   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5719   // FIXME: Find the best cut-off.
5720   return SI->getNumCases() * 10 >= TableSize * 4;
5721 }
5722 
5723 /// Try to reuse the switch table index compare. Following pattern:
5724 /// \code
5725 ///     if (idx < tablesize)
5726 ///        r = table[idx]; // table does not contain default_value
5727 ///     else
5728 ///        r = default_value;
5729 ///     if (r != default_value)
5730 ///        ...
5731 /// \endcode
5732 /// Is optimized to:
5733 /// \code
5734 ///     cond = idx < tablesize;
5735 ///     if (cond)
5736 ///        r = table[idx];
5737 ///     else
5738 ///        r = default_value;
5739 ///     if (cond)
5740 ///        ...
5741 /// \endcode
5742 /// Jump threading will then eliminate the second if(cond).
5743 static void reuseTableCompare(
5744     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5745     Constant *DefaultValue,
5746     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5747   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5748   if (!CmpInst)
5749     return;
5750 
5751   // We require that the compare is in the same block as the phi so that jump
5752   // threading can do its work afterwards.
5753   if (CmpInst->getParent() != PhiBlock)
5754     return;
5755 
5756   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5757   if (!CmpOp1)
5758     return;
5759 
5760   Value *RangeCmp = RangeCheckBranch->getCondition();
5761   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5762   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5763 
5764   // Check if the compare with the default value is constant true or false.
5765   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5766                                                  DefaultValue, CmpOp1, true);
5767   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5768     return;
5769 
5770   // Check if the compare with the case values is distinct from the default
5771   // compare result.
5772   for (auto ValuePair : Values) {
5773     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5774                                                 ValuePair.second, CmpOp1, true);
5775     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5776       return;
5777     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5778            "Expect true or false as compare result.");
5779   }
5780 
5781   // Check if the branch instruction dominates the phi node. It's a simple
5782   // dominance check, but sufficient for our needs.
5783   // Although this check is invariant in the calling loops, it's better to do it
5784   // at this late stage. Practically we do it at most once for a switch.
5785   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5786   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5787     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5788       return;
5789   }
5790 
5791   if (DefaultConst == FalseConst) {
5792     // The compare yields the same result. We can replace it.
5793     CmpInst->replaceAllUsesWith(RangeCmp);
5794     ++NumTableCmpReuses;
5795   } else {
5796     // The compare yields the same result, just inverted. We can replace it.
5797     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5798         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5799         RangeCheckBranch);
5800     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5801     ++NumTableCmpReuses;
5802   }
5803 }
5804 
5805 /// If the switch is only used to initialize one or more phi nodes in a common
5806 /// successor block with different constant values, replace the switch with
5807 /// lookup tables.
5808 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5809                                 DomTreeUpdater *DTU, const DataLayout &DL,
5810                                 const TargetTransformInfo &TTI) {
5811   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5812 
5813   BasicBlock *BB = SI->getParent();
5814   Function *Fn = BB->getParent();
5815   // Only build lookup table when we have a target that supports it or the
5816   // attribute is not set.
5817   if (!TTI.shouldBuildLookupTables() ||
5818       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5819     return false;
5820 
5821   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5822   // split off a dense part and build a lookup table for that.
5823 
5824   // FIXME: This creates arrays of GEPs to constant strings, which means each
5825   // GEP needs a runtime relocation in PIC code. We should just build one big
5826   // string and lookup indices into that.
5827 
5828   // Ignore switches with less than three cases. Lookup tables will not make
5829   // them faster, so we don't analyze them.
5830   if (SI->getNumCases() < 3)
5831     return false;
5832 
5833   // Figure out the corresponding result for each case value and phi node in the
5834   // common destination, as well as the min and max case values.
5835   assert(!SI->cases().empty());
5836   SwitchInst::CaseIt CI = SI->case_begin();
5837   ConstantInt *MinCaseVal = CI->getCaseValue();
5838   ConstantInt *MaxCaseVal = CI->getCaseValue();
5839 
5840   BasicBlock *CommonDest = nullptr;
5841 
5842   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5843   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5844 
5845   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5846   SmallDenseMap<PHINode *, Type *> ResultTypes;
5847   SmallVector<PHINode *, 4> PHIs;
5848 
5849   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5850     ConstantInt *CaseVal = CI->getCaseValue();
5851     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5852       MinCaseVal = CaseVal;
5853     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5854       MaxCaseVal = CaseVal;
5855 
5856     // Resulting value at phi nodes for this case value.
5857     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5858     ResultsTy Results;
5859     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5860                         Results, DL, TTI))
5861       return false;
5862 
5863     // Append the result from this case to the list for each phi.
5864     for (const auto &I : Results) {
5865       PHINode *PHI = I.first;
5866       Constant *Value = I.second;
5867       if (!ResultLists.count(PHI))
5868         PHIs.push_back(PHI);
5869       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5870     }
5871   }
5872 
5873   // Keep track of the result types.
5874   for (PHINode *PHI : PHIs) {
5875     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5876   }
5877 
5878   uint64_t NumResults = ResultLists[PHIs[0]].size();
5879   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5880   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5881   bool TableHasHoles = (NumResults < TableSize);
5882 
5883   // If the table has holes, we need a constant result for the default case
5884   // or a bitmask that fits in a register.
5885   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5886   bool HasDefaultResults =
5887       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5888                      DefaultResultsList, DL, TTI);
5889 
5890   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5891   if (NeedMask) {
5892     // As an extra penalty for the validity test we require more cases.
5893     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5894       return false;
5895     if (!DL.fitsInLegalInteger(TableSize))
5896       return false;
5897   }
5898 
5899   for (const auto &I : DefaultResultsList) {
5900     PHINode *PHI = I.first;
5901     Constant *Result = I.second;
5902     DefaultResults[PHI] = Result;
5903   }
5904 
5905   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5906     return false;
5907 
5908   std::vector<DominatorTree::UpdateType> Updates;
5909 
5910   // Create the BB that does the lookups.
5911   Module &Mod = *CommonDest->getParent()->getParent();
5912   BasicBlock *LookupBB = BasicBlock::Create(
5913       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5914 
5915   // Compute the table index value.
5916   Builder.SetInsertPoint(SI);
5917   Value *TableIndex;
5918   if (MinCaseVal->isNullValue())
5919     TableIndex = SI->getCondition();
5920   else
5921     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5922                                    "switch.tableidx");
5923 
5924   // Compute the maximum table size representable by the integer type we are
5925   // switching upon.
5926   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5927   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5928   assert(MaxTableSize >= TableSize &&
5929          "It is impossible for a switch to have more entries than the max "
5930          "representable value of its input integer type's size.");
5931 
5932   // If the default destination is unreachable, or if the lookup table covers
5933   // all values of the conditional variable, branch directly to the lookup table
5934   // BB. Otherwise, check that the condition is within the case range.
5935   const bool DefaultIsReachable =
5936       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5937   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5938   BranchInst *RangeCheckBranch = nullptr;
5939 
5940   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5941     Builder.CreateBr(LookupBB);
5942     if (DTU)
5943       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5944     // Note: We call removeProdecessor later since we need to be able to get the
5945     // PHI value for the default case in case we're using a bit mask.
5946   } else {
5947     Value *Cmp = Builder.CreateICmpULT(
5948         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5949     RangeCheckBranch =
5950         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5951     if (DTU)
5952       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5953   }
5954 
5955   // Populate the BB that does the lookups.
5956   Builder.SetInsertPoint(LookupBB);
5957 
5958   if (NeedMask) {
5959     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5960     // re-purposed to do the hole check, and we create a new LookupBB.
5961     BasicBlock *MaskBB = LookupBB;
5962     MaskBB->setName("switch.hole_check");
5963     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5964                                   CommonDest->getParent(), CommonDest);
5965 
5966     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5967     // unnecessary illegal types.
5968     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5969     APInt MaskInt(TableSizePowOf2, 0);
5970     APInt One(TableSizePowOf2, 1);
5971     // Build bitmask; fill in a 1 bit for every case.
5972     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5973     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5974       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5975                          .getLimitedValue();
5976       MaskInt |= One << Idx;
5977     }
5978     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5979 
5980     // Get the TableIndex'th bit of the bitmask.
5981     // If this bit is 0 (meaning hole) jump to the default destination,
5982     // else continue with table lookup.
5983     IntegerType *MapTy = TableMask->getType();
5984     Value *MaskIndex =
5985         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5986     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5987     Value *LoBit = Builder.CreateTrunc(
5988         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5989     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5990     if (DTU) {
5991       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5992       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5993     }
5994     Builder.SetInsertPoint(LookupBB);
5995     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5996   }
5997 
5998   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5999     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6000     // do not delete PHINodes here.
6001     SI->getDefaultDest()->removePredecessor(BB,
6002                                             /*KeepOneInputPHIs=*/true);
6003     if (DTU)
6004       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6005   }
6006 
6007   for (PHINode *PHI : PHIs) {
6008     const ResultListTy &ResultList = ResultLists[PHI];
6009 
6010     // If using a bitmask, use any value to fill the lookup table holes.
6011     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6012     StringRef FuncName = Fn->getName();
6013     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6014                             FuncName);
6015 
6016     Value *Result = Table.BuildLookup(TableIndex, Builder);
6017 
6018     // Do a small peephole optimization: re-use the switch table compare if
6019     // possible.
6020     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6021       BasicBlock *PhiBlock = PHI->getParent();
6022       // Search for compare instructions which use the phi.
6023       for (auto *User : PHI->users()) {
6024         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6025       }
6026     }
6027 
6028     PHI->addIncoming(Result, LookupBB);
6029   }
6030 
6031   Builder.CreateBr(CommonDest);
6032   if (DTU)
6033     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6034 
6035   // Remove the switch.
6036   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6037   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6038     BasicBlock *Succ = SI->getSuccessor(i);
6039 
6040     if (Succ == SI->getDefaultDest())
6041       continue;
6042     Succ->removePredecessor(BB);
6043     RemovedSuccessors.insert(Succ);
6044   }
6045   SI->eraseFromParent();
6046 
6047   if (DTU) {
6048     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6049       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6050     DTU->applyUpdates(Updates);
6051   }
6052 
6053   ++NumLookupTables;
6054   if (NeedMask)
6055     ++NumLookupTablesHoles;
6056   return true;
6057 }
6058 
6059 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6060   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6061   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6062   uint64_t Range = Diff + 1;
6063   uint64_t NumCases = Values.size();
6064   // 40% is the default density for building a jump table in optsize/minsize mode.
6065   uint64_t MinDensity = 40;
6066 
6067   return NumCases * 100 >= Range * MinDensity;
6068 }
6069 
6070 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6071 /// of cases.
6072 ///
6073 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6074 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6075 ///
6076 /// This converts a sparse switch into a dense switch which allows better
6077 /// lowering and could also allow transforming into a lookup table.
6078 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6079                               const DataLayout &DL,
6080                               const TargetTransformInfo &TTI) {
6081   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6082   if (CondTy->getIntegerBitWidth() > 64 ||
6083       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6084     return false;
6085   // Only bother with this optimization if there are more than 3 switch cases;
6086   // SDAG will only bother creating jump tables for 4 or more cases.
6087   if (SI->getNumCases() < 4)
6088     return false;
6089 
6090   // This transform is agnostic to the signedness of the input or case values. We
6091   // can treat the case values as signed or unsigned. We can optimize more common
6092   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6093   // as signed.
6094   SmallVector<int64_t,4> Values;
6095   for (auto &C : SI->cases())
6096     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6097   llvm::sort(Values);
6098 
6099   // If the switch is already dense, there's nothing useful to do here.
6100   if (isSwitchDense(Values))
6101     return false;
6102 
6103   // First, transform the values such that they start at zero and ascend.
6104   int64_t Base = Values[0];
6105   for (auto &V : Values)
6106     V -= (uint64_t)(Base);
6107 
6108   // Now we have signed numbers that have been shifted so that, given enough
6109   // precision, there are no negative values. Since the rest of the transform
6110   // is bitwise only, we switch now to an unsigned representation.
6111 
6112   // This transform can be done speculatively because it is so cheap - it
6113   // results in a single rotate operation being inserted.
6114   // FIXME: It's possible that optimizing a switch on powers of two might also
6115   // be beneficial - flag values are often powers of two and we could use a CLZ
6116   // as the key function.
6117 
6118   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6119   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6120   // less than 64.
6121   unsigned Shift = 64;
6122   for (auto &V : Values)
6123     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6124   assert(Shift < 64);
6125   if (Shift > 0)
6126     for (auto &V : Values)
6127       V = (int64_t)((uint64_t)V >> Shift);
6128 
6129   if (!isSwitchDense(Values))
6130     // Transform didn't create a dense switch.
6131     return false;
6132 
6133   // The obvious transform is to shift the switch condition right and emit a
6134   // check that the condition actually cleanly divided by GCD, i.e.
6135   //   C & (1 << Shift - 1) == 0
6136   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6137   //
6138   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6139   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6140   // are nonzero then the switch condition will be very large and will hit the
6141   // default case.
6142 
6143   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6144   Builder.SetInsertPoint(SI);
6145   auto *ShiftC = ConstantInt::get(Ty, Shift);
6146   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6147   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6148   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6149   auto *Rot = Builder.CreateOr(LShr, Shl);
6150   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6151 
6152   for (auto Case : SI->cases()) {
6153     auto *Orig = Case.getCaseValue();
6154     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6155     Case.setValue(
6156         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6157   }
6158   return true;
6159 }
6160 
6161 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6162   BasicBlock *BB = SI->getParent();
6163 
6164   if (isValueEqualityComparison(SI)) {
6165     // If we only have one predecessor, and if it is a branch on this value,
6166     // see if that predecessor totally determines the outcome of this switch.
6167     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6168       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6169         return requestResimplify();
6170 
6171     Value *Cond = SI->getCondition();
6172     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6173       if (SimplifySwitchOnSelect(SI, Select))
6174         return requestResimplify();
6175 
6176     // If the block only contains the switch, see if we can fold the block
6177     // away into any preds.
6178     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6179       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6180         return requestResimplify();
6181   }
6182 
6183   // Try to transform the switch into an icmp and a branch.
6184   if (TurnSwitchRangeIntoICmp(SI, Builder))
6185     return requestResimplify();
6186 
6187   // Remove unreachable cases.
6188   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6189     return requestResimplify();
6190 
6191   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6192     return requestResimplify();
6193 
6194   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6195     return requestResimplify();
6196 
6197   // The conversion from switch to lookup tables results in difficult-to-analyze
6198   // code and makes pruning branches much harder. This is a problem if the
6199   // switch expression itself can still be restricted as a result of inlining or
6200   // CVP. Therefore, only apply this transformation during late stages of the
6201   // optimisation pipeline.
6202   if (Options.ConvertSwitchToLookupTable &&
6203       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6204     return requestResimplify();
6205 
6206   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6207     return requestResimplify();
6208 
6209   return false;
6210 }
6211 
6212 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6213   BasicBlock *BB = IBI->getParent();
6214   bool Changed = false;
6215 
6216   // Eliminate redundant destinations.
6217   SmallPtrSet<Value *, 8> Succs;
6218   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6219   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6220     BasicBlock *Dest = IBI->getDestination(i);
6221     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6222       if (!Dest->hasAddressTaken())
6223         RemovedSuccs.insert(Dest);
6224       Dest->removePredecessor(BB);
6225       IBI->removeDestination(i);
6226       --i;
6227       --e;
6228       Changed = true;
6229     }
6230   }
6231 
6232   if (DTU) {
6233     std::vector<DominatorTree::UpdateType> Updates;
6234     Updates.reserve(RemovedSuccs.size());
6235     for (auto *RemovedSucc : RemovedSuccs)
6236       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6237     DTU->applyUpdates(Updates);
6238   }
6239 
6240   if (IBI->getNumDestinations() == 0) {
6241     // If the indirectbr has no successors, change it to unreachable.
6242     new UnreachableInst(IBI->getContext(), IBI);
6243     EraseTerminatorAndDCECond(IBI);
6244     return true;
6245   }
6246 
6247   if (IBI->getNumDestinations() == 1) {
6248     // If the indirectbr has one successor, change it to a direct branch.
6249     BranchInst::Create(IBI->getDestination(0), IBI);
6250     EraseTerminatorAndDCECond(IBI);
6251     return true;
6252   }
6253 
6254   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6255     if (SimplifyIndirectBrOnSelect(IBI, SI))
6256       return requestResimplify();
6257   }
6258   return Changed;
6259 }
6260 
6261 /// Given an block with only a single landing pad and a unconditional branch
6262 /// try to find another basic block which this one can be merged with.  This
6263 /// handles cases where we have multiple invokes with unique landing pads, but
6264 /// a shared handler.
6265 ///
6266 /// We specifically choose to not worry about merging non-empty blocks
6267 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6268 /// practice, the optimizer produces empty landing pad blocks quite frequently
6269 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6270 /// sinking in this file)
6271 ///
6272 /// This is primarily a code size optimization.  We need to avoid performing
6273 /// any transform which might inhibit optimization (such as our ability to
6274 /// specialize a particular handler via tail commoning).  We do this by not
6275 /// merging any blocks which require us to introduce a phi.  Since the same
6276 /// values are flowing through both blocks, we don't lose any ability to
6277 /// specialize.  If anything, we make such specialization more likely.
6278 ///
6279 /// TODO - This transformation could remove entries from a phi in the target
6280 /// block when the inputs in the phi are the same for the two blocks being
6281 /// merged.  In some cases, this could result in removal of the PHI entirely.
6282 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6283                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6284   auto Succ = BB->getUniqueSuccessor();
6285   assert(Succ);
6286   // If there's a phi in the successor block, we'd likely have to introduce
6287   // a phi into the merged landing pad block.
6288   if (isa<PHINode>(*Succ->begin()))
6289     return false;
6290 
6291   for (BasicBlock *OtherPred : predecessors(Succ)) {
6292     if (BB == OtherPred)
6293       continue;
6294     BasicBlock::iterator I = OtherPred->begin();
6295     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6296     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6297       continue;
6298     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6299       ;
6300     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6301     if (!BI2 || !BI2->isIdenticalTo(BI))
6302       continue;
6303 
6304     std::vector<DominatorTree::UpdateType> Updates;
6305 
6306     // We've found an identical block.  Update our predecessors to take that
6307     // path instead and make ourselves dead.
6308     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6309     for (BasicBlock *Pred : Preds) {
6310       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6311       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6312              "unexpected successor");
6313       II->setUnwindDest(OtherPred);
6314       if (DTU) {
6315         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6316         Updates.push_back({DominatorTree::Delete, Pred, BB});
6317       }
6318     }
6319 
6320     // The debug info in OtherPred doesn't cover the merged control flow that
6321     // used to go through BB.  We need to delete it or update it.
6322     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6323       if (isa<DbgInfoIntrinsic>(Inst))
6324         Inst.eraseFromParent();
6325 
6326     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6327     for (BasicBlock *Succ : Succs) {
6328       Succ->removePredecessor(BB);
6329       if (DTU)
6330         Updates.push_back({DominatorTree::Delete, BB, Succ});
6331     }
6332 
6333     IRBuilder<> Builder(BI);
6334     Builder.CreateUnreachable();
6335     BI->eraseFromParent();
6336     if (DTU)
6337       DTU->applyUpdates(Updates);
6338     return true;
6339   }
6340   return false;
6341 }
6342 
6343 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6344   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6345                                    : simplifyCondBranch(Branch, Builder);
6346 }
6347 
6348 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6349                                           IRBuilder<> &Builder) {
6350   BasicBlock *BB = BI->getParent();
6351   BasicBlock *Succ = BI->getSuccessor(0);
6352 
6353   // If the Terminator is the only non-phi instruction, simplify the block.
6354   // If LoopHeader is provided, check if the block or its successor is a loop
6355   // header. (This is for early invocations before loop simplify and
6356   // vectorization to keep canonical loop forms for nested loops. These blocks
6357   // can be eliminated when the pass is invoked later in the back-end.)
6358   // Note that if BB has only one predecessor then we do not introduce new
6359   // backedge, so we can eliminate BB.
6360   bool NeedCanonicalLoop =
6361       Options.NeedCanonicalLoop &&
6362       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6363        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6364   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6365   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6366       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6367     return true;
6368 
6369   // If the only instruction in the block is a seteq/setne comparison against a
6370   // constant, try to simplify the block.
6371   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6372     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6373       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6374         ;
6375       if (I->isTerminator() &&
6376           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6377         return true;
6378     }
6379 
6380   // See if we can merge an empty landing pad block with another which is
6381   // equivalent.
6382   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6383     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6384       ;
6385     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6386       return true;
6387   }
6388 
6389   // If this basic block is ONLY a compare and a branch, and if a predecessor
6390   // branches to us and our successor, fold the comparison into the
6391   // predecessor and use logical operations to update the incoming value
6392   // for PHI nodes in common successor.
6393   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6394                              Options.BonusInstThreshold))
6395     return requestResimplify();
6396   return false;
6397 }
6398 
6399 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6400   BasicBlock *PredPred = nullptr;
6401   for (auto *P : predecessors(BB)) {
6402     BasicBlock *PPred = P->getSinglePredecessor();
6403     if (!PPred || (PredPred && PredPred != PPred))
6404       return nullptr;
6405     PredPred = PPred;
6406   }
6407   return PredPred;
6408 }
6409 
6410 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6411   assert(
6412       !isa<ConstantInt>(BI->getCondition()) &&
6413       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6414       "Tautological conditional branch should have been eliminated already.");
6415 
6416   BasicBlock *BB = BI->getParent();
6417   if (!Options.SimplifyCondBranch)
6418     return false;
6419 
6420   // Conditional branch
6421   if (isValueEqualityComparison(BI)) {
6422     // If we only have one predecessor, and if it is a branch on this value,
6423     // see if that predecessor totally determines the outcome of this
6424     // switch.
6425     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6426       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6427         return requestResimplify();
6428 
6429     // This block must be empty, except for the setcond inst, if it exists.
6430     // Ignore dbg and pseudo intrinsics.
6431     auto I = BB->instructionsWithoutDebug(true).begin();
6432     if (&*I == BI) {
6433       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6434         return requestResimplify();
6435     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6436       ++I;
6437       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6438         return requestResimplify();
6439     }
6440   }
6441 
6442   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6443   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6444     return true;
6445 
6446   // If this basic block has dominating predecessor blocks and the dominating
6447   // blocks' conditions imply BI's condition, we know the direction of BI.
6448   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6449   if (Imp) {
6450     // Turn this into a branch on constant.
6451     auto *OldCond = BI->getCondition();
6452     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6453                              : ConstantInt::getFalse(BB->getContext());
6454     BI->setCondition(TorF);
6455     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6456     return requestResimplify();
6457   }
6458 
6459   // If this basic block is ONLY a compare and a branch, and if a predecessor
6460   // branches to us and one of our successors, fold the comparison into the
6461   // predecessor and use logical operations to pick the right destination.
6462   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6463                              Options.BonusInstThreshold))
6464     return requestResimplify();
6465 
6466   // We have a conditional branch to two blocks that are only reachable
6467   // from BI.  We know that the condbr dominates the two blocks, so see if
6468   // there is any identical code in the "then" and "else" blocks.  If so, we
6469   // can hoist it up to the branching block.
6470   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6471     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6472       if (HoistCommon &&
6473           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6474         return requestResimplify();
6475     } else {
6476       // If Successor #1 has multiple preds, we may be able to conditionally
6477       // execute Successor #0 if it branches to Successor #1.
6478       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6479       if (Succ0TI->getNumSuccessors() == 1 &&
6480           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6481         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6482           return requestResimplify();
6483     }
6484   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6485     // If Successor #0 has multiple preds, we may be able to conditionally
6486     // execute Successor #1 if it branches to Successor #0.
6487     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6488     if (Succ1TI->getNumSuccessors() == 1 &&
6489         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6490       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6491         return requestResimplify();
6492   }
6493 
6494   // If this is a branch on a phi node in the current block, thread control
6495   // through this block if any PHI node entries are constants.
6496   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6497     if (PN->getParent() == BI->getParent())
6498       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6499         return requestResimplify();
6500 
6501   // Scan predecessor blocks for conditional branches.
6502   for (BasicBlock *Pred : predecessors(BB))
6503     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6504       if (PBI != BI && PBI->isConditional())
6505         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6506           return requestResimplify();
6507 
6508   // Look for diamond patterns.
6509   if (MergeCondStores)
6510     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6511       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6512         if (PBI != BI && PBI->isConditional())
6513           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6514             return requestResimplify();
6515 
6516   return false;
6517 }
6518 
6519 /// Check if passing a value to an instruction will cause undefined behavior.
6520 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6521   Constant *C = dyn_cast<Constant>(V);
6522   if (!C)
6523     return false;
6524 
6525   if (I->use_empty())
6526     return false;
6527 
6528   if (C->isNullValue() || isa<UndefValue>(C)) {
6529     // Only look at the first use, avoid hurting compile time with long uselists
6530     auto *Use = cast<Instruction>(*I->user_begin());
6531     // Bail out if Use is not in the same BB as I or Use == I or Use comes
6532     // before I in the block. The latter two can be the case if Use is a PHI
6533     // node.
6534     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6535       return false;
6536 
6537     // Now make sure that there are no instructions in between that can alter
6538     // control flow (eg. calls)
6539     auto InstrRange =
6540         make_range(std::next(I->getIterator()), Use->getIterator());
6541     if (any_of(InstrRange, [](Instruction &I) {
6542           return !isGuaranteedToTransferExecutionToSuccessor(&I);
6543         }))
6544       return false;
6545 
6546     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6547     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6548       if (GEP->getPointerOperand() == I) {
6549         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6550           PtrValueMayBeModified = true;
6551         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6552       }
6553 
6554     // Look through bitcasts.
6555     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6556       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6557 
6558     // Load from null is undefined.
6559     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6560       if (!LI->isVolatile())
6561         return !NullPointerIsDefined(LI->getFunction(),
6562                                      LI->getPointerAddressSpace());
6563 
6564     // Store to null is undefined.
6565     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6566       if (!SI->isVolatile())
6567         return (!NullPointerIsDefined(SI->getFunction(),
6568                                       SI->getPointerAddressSpace())) &&
6569                SI->getPointerOperand() == I;
6570 
6571     if (auto *CB = dyn_cast<CallBase>(Use)) {
6572       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6573         return false;
6574       // A call to null is undefined.
6575       if (CB->getCalledOperand() == I)
6576         return true;
6577 
6578       if (C->isNullValue()) {
6579         for (const llvm::Use &Arg : CB->args())
6580           if (Arg == I) {
6581             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6582             if (CB->isPassingUndefUB(ArgIdx) &&
6583                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6584               // Passing null to a nonnnull+noundef argument is undefined.
6585               return !PtrValueMayBeModified;
6586             }
6587           }
6588       } else if (isa<UndefValue>(C)) {
6589         // Passing undef to a noundef argument is undefined.
6590         for (const llvm::Use &Arg : CB->args())
6591           if (Arg == I) {
6592             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6593             if (CB->isPassingUndefUB(ArgIdx)) {
6594               // Passing undef to a noundef argument is undefined.
6595               return true;
6596             }
6597           }
6598       }
6599     }
6600   }
6601   return false;
6602 }
6603 
6604 /// If BB has an incoming value that will always trigger undefined behavior
6605 /// (eg. null pointer dereference), remove the branch leading here.
6606 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6607                                               DomTreeUpdater *DTU) {
6608   for (PHINode &PHI : BB->phis())
6609     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6610       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6611         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6612         Instruction *T = Predecessor->getTerminator();
6613         IRBuilder<> Builder(T);
6614         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6615           BB->removePredecessor(Predecessor);
6616           // Turn uncoditional branches into unreachables and remove the dead
6617           // destination from conditional branches.
6618           if (BI->isUnconditional())
6619             Builder.CreateUnreachable();
6620           else {
6621             // Preserve guarding condition in assume, because it might not be
6622             // inferrable from any dominating condition.
6623             Value *Cond = BI->getCondition();
6624             if (BI->getSuccessor(0) == BB)
6625               Builder.CreateAssumption(Builder.CreateNot(Cond));
6626             else
6627               Builder.CreateAssumption(Cond);
6628             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6629                                                        : BI->getSuccessor(0));
6630           }
6631           BI->eraseFromParent();
6632           if (DTU)
6633             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6634           return true;
6635         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
6636           // Redirect all branches leading to UB into
6637           // a newly created unreachable block.
6638           BasicBlock *Unreachable = BasicBlock::Create(
6639               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
6640           Builder.SetInsertPoint(Unreachable);
6641           // The new block contains only one instruction: Unreachable
6642           Builder.CreateUnreachable();
6643           for (auto &Case : SI->cases())
6644             if (Case.getCaseSuccessor() == BB) {
6645               BB->removePredecessor(Predecessor);
6646               Case.setSuccessor(Unreachable);
6647             }
6648           if (SI->getDefaultDest() == BB) {
6649             BB->removePredecessor(Predecessor);
6650             SI->setDefaultDest(Unreachable);
6651           }
6652 
6653           if (DTU)
6654             DTU->applyUpdates(
6655                 { { DominatorTree::Insert, Predecessor, Unreachable },
6656                   { DominatorTree::Delete, Predecessor, BB } });
6657           return true;
6658         }
6659       }
6660 
6661   return false;
6662 }
6663 
6664 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6665   bool Changed = false;
6666 
6667   assert(BB && BB->getParent() && "Block not embedded in function!");
6668   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6669 
6670   // Remove basic blocks that have no predecessors (except the entry block)...
6671   // or that just have themself as a predecessor.  These are unreachable.
6672   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6673       BB->getSinglePredecessor() == BB) {
6674     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6675     DeleteDeadBlock(BB, DTU);
6676     return true;
6677   }
6678 
6679   // Check to see if we can constant propagate this terminator instruction
6680   // away...
6681   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6682                                     /*TLI=*/nullptr, DTU);
6683 
6684   // Check for and eliminate duplicate PHI nodes in this block.
6685   Changed |= EliminateDuplicatePHINodes(BB);
6686 
6687   // Check for and remove branches that will always cause undefined behavior.
6688   if (removeUndefIntroducingPredecessor(BB, DTU))
6689     return requestResimplify();
6690 
6691   // Merge basic blocks into their predecessor if there is only one distinct
6692   // pred, and if there is only one distinct successor of the predecessor, and
6693   // if there are no PHI nodes.
6694   if (MergeBlockIntoPredecessor(BB, DTU))
6695     return true;
6696 
6697   if (SinkCommon && Options.SinkCommonInsts)
6698     if (SinkCommonCodeFromPredecessors(BB, DTU)) {
6699       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6700       // so we may now how duplicate PHI's.
6701       // Let's rerun EliminateDuplicatePHINodes() first,
6702       // before FoldTwoEntryPHINode() potentially converts them into select's,
6703       // after which we'd need a whole EarlyCSE pass run to cleanup them.
6704       return true;
6705     }
6706 
6707   IRBuilder<> Builder(BB);
6708 
6709   if (Options.FoldTwoEntryPHINode) {
6710     // If there is a trivial two-entry PHI node in this basic block, and we can
6711     // eliminate it, do so now.
6712     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6713       if (PN->getNumIncomingValues() == 2)
6714         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
6715           return true;
6716   }
6717 
6718   Instruction *Terminator = BB->getTerminator();
6719   Builder.SetInsertPoint(Terminator);
6720   switch (Terminator->getOpcode()) {
6721   case Instruction::Br:
6722     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6723     break;
6724   case Instruction::Resume:
6725     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6726     break;
6727   case Instruction::CleanupRet:
6728     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6729     break;
6730   case Instruction::Switch:
6731     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6732     break;
6733   case Instruction::Unreachable:
6734     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6735     break;
6736   case Instruction::IndirectBr:
6737     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6738     break;
6739   }
6740 
6741   return Changed;
6742 }
6743 
6744 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6745   bool Changed = false;
6746 
6747   // Repeated simplify BB as long as resimplification is requested.
6748   do {
6749     Resimplify = false;
6750 
6751     // Perform one round of simplifcation. Resimplify flag will be set if
6752     // another iteration is requested.
6753     Changed |= simplifyOnce(BB);
6754   } while (Resimplify);
6755 
6756   return Changed;
6757 }
6758 
6759 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6760                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6761                        ArrayRef<WeakVH> LoopHeaders) {
6762   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6763                         Options)
6764       .run(BB);
6765 }
6766