15ffd83dbSDimitry Andric //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 25ffd83dbSDimitry Andric // 35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 65ffd83dbSDimitry Andric // 75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 85ffd83dbSDimitry Andric // 95ffd83dbSDimitry Andric // This file contains the implementation of the scalar evolution expander, 105ffd83dbSDimitry Andric // which is used to generate the code corresponding to a given scalar evolution 115ffd83dbSDimitry Andric // expression. 125ffd83dbSDimitry Andric // 135ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 145ffd83dbSDimitry Andric 155ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 165ffd83dbSDimitry Andric #include "llvm/ADT/STLExtras.h" 17*bdd1243dSDimitry Andric #include "llvm/ADT/ScopeExit.h" 185ffd83dbSDimitry Andric #include "llvm/ADT/SmallSet.h" 195ffd83dbSDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 205ffd83dbSDimitry Andric #include "llvm/Analysis/LoopInfo.h" 215ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 224824e7fdSDimitry Andric #include "llvm/Analysis/ValueTracking.h" 235ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h" 245ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h" 255ffd83dbSDimitry Andric #include "llvm/IR/IntrinsicInst.h" 265ffd83dbSDimitry Andric #include "llvm/IR/PatternMatch.h" 275ffd83dbSDimitry Andric #include "llvm/Support/CommandLine.h" 285ffd83dbSDimitry Andric #include "llvm/Support/raw_ostream.h" 29e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h" 305ffd83dbSDimitry Andric 31fe6060f1SDimitry Andric #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33fe6060f1SDimitry Andric #else 34fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35fe6060f1SDimitry Andric #endif 36fe6060f1SDimitry Andric 375ffd83dbSDimitry Andric using namespace llvm; 385ffd83dbSDimitry Andric 395ffd83dbSDimitry Andric cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 405ffd83dbSDimitry Andric "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 415ffd83dbSDimitry Andric cl::desc("When performing SCEV expansion only if it is cheap to do, this " 425ffd83dbSDimitry Andric "controls the budget that is considered cheap (default = 4)")); 435ffd83dbSDimitry Andric 445ffd83dbSDimitry Andric using namespace PatternMatch; 455ffd83dbSDimitry Andric 465ffd83dbSDimitry Andric /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47e8d8bef9SDimitry Andric /// reusing an existing cast if a suitable one (= dominating IP) exists, or 485ffd83dbSDimitry Andric /// creating a new one. 495ffd83dbSDimitry Andric Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 505ffd83dbSDimitry Andric Instruction::CastOps Op, 515ffd83dbSDimitry Andric BasicBlock::iterator IP) { 525ffd83dbSDimitry Andric // This function must be called with the builder having a valid insertion 535ffd83dbSDimitry Andric // point. It doesn't need to be the actual IP where the uses of the returned 545ffd83dbSDimitry Andric // cast will be added, but it must dominate such IP. 555ffd83dbSDimitry Andric // We use this precondition to produce a cast that will dominate all its 565ffd83dbSDimitry Andric // uses. In particular, this is crucial for the case where the builder's 575ffd83dbSDimitry Andric // insertion point *is* the point where we were asked to put the cast. 585ffd83dbSDimitry Andric // Since we don't know the builder's insertion point is actually 595ffd83dbSDimitry Andric // where the uses will be added (only that it dominates it), we are 605ffd83dbSDimitry Andric // not allowed to move it. 615ffd83dbSDimitry Andric BasicBlock::iterator BIP = Builder.GetInsertPoint(); 625ffd83dbSDimitry Andric 63fe6060f1SDimitry Andric Value *Ret = nullptr; 645ffd83dbSDimitry Andric 655ffd83dbSDimitry Andric // Check to see if there is already a cast! 66e8d8bef9SDimitry Andric for (User *U : V->users()) { 67e8d8bef9SDimitry Andric if (U->getType() != Ty) 68e8d8bef9SDimitry Andric continue; 69e8d8bef9SDimitry Andric CastInst *CI = dyn_cast<CastInst>(U); 70e8d8bef9SDimitry Andric if (!CI || CI->getOpcode() != Op) 71e8d8bef9SDimitry Andric continue; 72e8d8bef9SDimitry Andric 73e8d8bef9SDimitry Andric // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74e8d8bef9SDimitry Andric // the cast must also properly dominate the Builder's insertion point. 75e8d8bef9SDimitry Andric if (IP->getParent() == CI->getParent() && &*BIP != CI && 76e8d8bef9SDimitry Andric (&*IP == CI || CI->comesBefore(&*IP))) { 775ffd83dbSDimitry Andric Ret = CI; 785ffd83dbSDimitry Andric break; 795ffd83dbSDimitry Andric } 80e8d8bef9SDimitry Andric } 815ffd83dbSDimitry Andric 825ffd83dbSDimitry Andric // Create a new cast. 83e8d8bef9SDimitry Andric if (!Ret) { 84fe6060f1SDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 85fe6060f1SDimitry Andric Builder.SetInsertPoint(&*IP); 86fe6060f1SDimitry Andric Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87e8d8bef9SDimitry Andric } 885ffd83dbSDimitry Andric 895ffd83dbSDimitry Andric // We assert at the end of the function since IP might point to an 905ffd83dbSDimitry Andric // instruction with different dominance properties than a cast 915ffd83dbSDimitry Andric // (an invoke for example) and not dominate BIP (but the cast does). 92fe6060f1SDimitry Andric assert(!isa<Instruction>(Ret) || 93fe6060f1SDimitry Andric SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 945ffd83dbSDimitry Andric 955ffd83dbSDimitry Andric return Ret; 965ffd83dbSDimitry Andric } 975ffd83dbSDimitry Andric 98e8d8bef9SDimitry Andric BasicBlock::iterator 99fe6060f1SDimitry Andric SCEVExpander::findInsertPointAfter(Instruction *I, 100fe6060f1SDimitry Andric Instruction *MustDominate) const { 1015ffd83dbSDimitry Andric BasicBlock::iterator IP = ++I->getIterator(); 1025ffd83dbSDimitry Andric if (auto *II = dyn_cast<InvokeInst>(I)) 1035ffd83dbSDimitry Andric IP = II->getNormalDest()->begin(); 1045ffd83dbSDimitry Andric 1055ffd83dbSDimitry Andric while (isa<PHINode>(IP)) 1065ffd83dbSDimitry Andric ++IP; 1075ffd83dbSDimitry Andric 1085ffd83dbSDimitry Andric if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 1095ffd83dbSDimitry Andric ++IP; 1105ffd83dbSDimitry Andric } else if (isa<CatchSwitchInst>(IP)) { 111e8d8bef9SDimitry Andric IP = MustDominate->getParent()->getFirstInsertionPt(); 1125ffd83dbSDimitry Andric } else { 1135ffd83dbSDimitry Andric assert(!IP->isEHPad() && "unexpected eh pad!"); 1145ffd83dbSDimitry Andric } 1155ffd83dbSDimitry Andric 116e8d8bef9SDimitry Andric // Adjust insert point to be after instructions inserted by the expander, so 117e8d8bef9SDimitry Andric // we can re-use already inserted instructions. Avoid skipping past the 118e8d8bef9SDimitry Andric // original \p MustDominate, in case it is an inserted instruction. 119e8d8bef9SDimitry Andric while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120e8d8bef9SDimitry Andric ++IP; 121e8d8bef9SDimitry Andric 1225ffd83dbSDimitry Andric return IP; 1235ffd83dbSDimitry Andric } 1245ffd83dbSDimitry Andric 125fe6060f1SDimitry Andric BasicBlock::iterator 126fe6060f1SDimitry Andric SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127fe6060f1SDimitry Andric // Cast the argument at the beginning of the entry block, after 128fe6060f1SDimitry Andric // any bitcasts of other arguments. 129fe6060f1SDimitry Andric if (Argument *A = dyn_cast<Argument>(V)) { 130fe6060f1SDimitry Andric BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131fe6060f1SDimitry Andric while ((isa<BitCastInst>(IP) && 132fe6060f1SDimitry Andric isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133fe6060f1SDimitry Andric cast<BitCastInst>(IP)->getOperand(0) != A) || 134fe6060f1SDimitry Andric isa<DbgInfoIntrinsic>(IP)) 135fe6060f1SDimitry Andric ++IP; 136fe6060f1SDimitry Andric return IP; 137fe6060f1SDimitry Andric } 138fe6060f1SDimitry Andric 139fe6060f1SDimitry Andric // Cast the instruction immediately after the instruction. 140fe6060f1SDimitry Andric if (Instruction *I = dyn_cast<Instruction>(V)) 141fe6060f1SDimitry Andric return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142fe6060f1SDimitry Andric 143fe6060f1SDimitry Andric // Otherwise, this must be some kind of a constant, 144fe6060f1SDimitry Andric // so let's plop this cast into the function's entry block. 145fe6060f1SDimitry Andric assert(isa<Constant>(V) && 146fe6060f1SDimitry Andric "Expected the cast argument to be a global/constant"); 147fe6060f1SDimitry Andric return Builder.GetInsertBlock() 148fe6060f1SDimitry Andric ->getParent() 149fe6060f1SDimitry Andric ->getEntryBlock() 150fe6060f1SDimitry Andric .getFirstInsertionPt(); 151fe6060f1SDimitry Andric } 152fe6060f1SDimitry Andric 1535ffd83dbSDimitry Andric /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 1545ffd83dbSDimitry Andric /// which must be possible with a noop cast, doing what we can to share 1555ffd83dbSDimitry Andric /// the casts. 1565ffd83dbSDimitry Andric Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 1575ffd83dbSDimitry Andric Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 1585ffd83dbSDimitry Andric assert((Op == Instruction::BitCast || 1595ffd83dbSDimitry Andric Op == Instruction::PtrToInt || 1605ffd83dbSDimitry Andric Op == Instruction::IntToPtr) && 1615ffd83dbSDimitry Andric "InsertNoopCastOfTo cannot perform non-noop casts!"); 1625ffd83dbSDimitry Andric assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 1635ffd83dbSDimitry Andric "InsertNoopCastOfTo cannot change sizes!"); 1645ffd83dbSDimitry Andric 165e8d8bef9SDimitry Andric // inttoptr only works for integral pointers. For non-integral pointers, we 166e8d8bef9SDimitry Andric // can create a GEP on i8* null with the integral value as index. Note that 167e8d8bef9SDimitry Andric // it is safe to use GEP of null instead of inttoptr here, because only 168e8d8bef9SDimitry Andric // expressions already based on a GEP of null should be converted to pointers 169e8d8bef9SDimitry Andric // during expansion. 170e8d8bef9SDimitry Andric if (Op == Instruction::IntToPtr) { 171e8d8bef9SDimitry Andric auto *PtrTy = cast<PointerType>(Ty); 172e8d8bef9SDimitry Andric if (DL.isNonIntegralPointerType(PtrTy)) { 173e8d8bef9SDimitry Andric auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 17404eeddc0SDimitry Andric assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 175e8d8bef9SDimitry Andric "alloc size of i8 must by 1 byte for the GEP to be correct"); 176e8d8bef9SDimitry Andric auto *GEP = Builder.CreateGEP( 177e8d8bef9SDimitry Andric Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 178e8d8bef9SDimitry Andric return Builder.CreateBitCast(GEP, Ty); 179e8d8bef9SDimitry Andric } 180e8d8bef9SDimitry Andric } 1815ffd83dbSDimitry Andric // Short-circuit unnecessary bitcasts. 1825ffd83dbSDimitry Andric if (Op == Instruction::BitCast) { 1835ffd83dbSDimitry Andric if (V->getType() == Ty) 1845ffd83dbSDimitry Andric return V; 1855ffd83dbSDimitry Andric if (CastInst *CI = dyn_cast<CastInst>(V)) { 1865ffd83dbSDimitry Andric if (CI->getOperand(0)->getType() == Ty) 1875ffd83dbSDimitry Andric return CI->getOperand(0); 1885ffd83dbSDimitry Andric } 1895ffd83dbSDimitry Andric } 1905ffd83dbSDimitry Andric // Short-circuit unnecessary inttoptr<->ptrtoint casts. 1915ffd83dbSDimitry Andric if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 1925ffd83dbSDimitry Andric SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 1935ffd83dbSDimitry Andric if (CastInst *CI = dyn_cast<CastInst>(V)) 1945ffd83dbSDimitry Andric if ((CI->getOpcode() == Instruction::PtrToInt || 1955ffd83dbSDimitry Andric CI->getOpcode() == Instruction::IntToPtr) && 1965ffd83dbSDimitry Andric SE.getTypeSizeInBits(CI->getType()) == 1975ffd83dbSDimitry Andric SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 1985ffd83dbSDimitry Andric return CI->getOperand(0); 1995ffd83dbSDimitry Andric if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2005ffd83dbSDimitry Andric if ((CE->getOpcode() == Instruction::PtrToInt || 2015ffd83dbSDimitry Andric CE->getOpcode() == Instruction::IntToPtr) && 2025ffd83dbSDimitry Andric SE.getTypeSizeInBits(CE->getType()) == 2035ffd83dbSDimitry Andric SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 2045ffd83dbSDimitry Andric return CE->getOperand(0); 2055ffd83dbSDimitry Andric } 2065ffd83dbSDimitry Andric 2075ffd83dbSDimitry Andric // Fold a cast of a constant. 2085ffd83dbSDimitry Andric if (Constant *C = dyn_cast<Constant>(V)) 2095ffd83dbSDimitry Andric return ConstantExpr::getCast(Op, C, Ty); 2105ffd83dbSDimitry Andric 211fe6060f1SDimitry Andric // Try to reuse existing cast, or insert one. 212fe6060f1SDimitry Andric return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 2135ffd83dbSDimitry Andric } 2145ffd83dbSDimitry Andric 2155ffd83dbSDimitry Andric /// InsertBinop - Insert the specified binary operator, doing a small amount 2165ffd83dbSDimitry Andric /// of work to avoid inserting an obviously redundant operation, and hoisting 2175ffd83dbSDimitry Andric /// to an outer loop when the opportunity is there and it is safe. 2185ffd83dbSDimitry Andric Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 2195ffd83dbSDimitry Andric Value *LHS, Value *RHS, 2205ffd83dbSDimitry Andric SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 2215ffd83dbSDimitry Andric // Fold a binop with constant operands. 2225ffd83dbSDimitry Andric if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2235ffd83dbSDimitry Andric if (Constant *CRHS = dyn_cast<Constant>(RHS)) 224753f127fSDimitry Andric if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 225753f127fSDimitry Andric return Res; 2265ffd83dbSDimitry Andric 2275ffd83dbSDimitry Andric // Do a quick scan to see if we have this binop nearby. If so, reuse it. 2285ffd83dbSDimitry Andric unsigned ScanLimit = 6; 2295ffd83dbSDimitry Andric BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 2305ffd83dbSDimitry Andric // Scanning starts from the last instruction before the insertion point. 2315ffd83dbSDimitry Andric BasicBlock::iterator IP = Builder.GetInsertPoint(); 2325ffd83dbSDimitry Andric if (IP != BlockBegin) { 2335ffd83dbSDimitry Andric --IP; 2345ffd83dbSDimitry Andric for (; ScanLimit; --IP, --ScanLimit) { 2355ffd83dbSDimitry Andric // Don't count dbg.value against the ScanLimit, to avoid perturbing the 2365ffd83dbSDimitry Andric // generated code. 2375ffd83dbSDimitry Andric if (isa<DbgInfoIntrinsic>(IP)) 2385ffd83dbSDimitry Andric ScanLimit++; 2395ffd83dbSDimitry Andric 2405ffd83dbSDimitry Andric auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 2415ffd83dbSDimitry Andric // Ensure that no-wrap flags match. 2425ffd83dbSDimitry Andric if (isa<OverflowingBinaryOperator>(I)) { 2435ffd83dbSDimitry Andric if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 2445ffd83dbSDimitry Andric return true; 2455ffd83dbSDimitry Andric if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 2465ffd83dbSDimitry Andric return true; 2475ffd83dbSDimitry Andric } 2485ffd83dbSDimitry Andric // Conservatively, do not use any instruction which has any of exact 2495ffd83dbSDimitry Andric // flags installed. 2505ffd83dbSDimitry Andric if (isa<PossiblyExactOperator>(I) && I->isExact()) 2515ffd83dbSDimitry Andric return true; 2525ffd83dbSDimitry Andric return false; 2535ffd83dbSDimitry Andric }; 2545ffd83dbSDimitry Andric if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 2555ffd83dbSDimitry Andric IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 2565ffd83dbSDimitry Andric return &*IP; 2575ffd83dbSDimitry Andric if (IP == BlockBegin) break; 2585ffd83dbSDimitry Andric } 2595ffd83dbSDimitry Andric } 2605ffd83dbSDimitry Andric 2615ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 2625ffd83dbSDimitry Andric DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 2635ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 2645ffd83dbSDimitry Andric 2655ffd83dbSDimitry Andric if (IsSafeToHoist) { 2665ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 2675ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 2685ffd83dbSDimitry Andric if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 2695ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 2705ffd83dbSDimitry Andric if (!Preheader) break; 2715ffd83dbSDimitry Andric 2725ffd83dbSDimitry Andric // Ok, move up a level. 2735ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 2745ffd83dbSDimitry Andric } 2755ffd83dbSDimitry Andric } 2765ffd83dbSDimitry Andric 2775ffd83dbSDimitry Andric // If we haven't found this binop, insert it. 27881ad6265SDimitry Andric // TODO: Use the Builder, which will make CreateBinOp below fold with 27981ad6265SDimitry Andric // InstSimplifyFolder. 28081ad6265SDimitry Andric Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 2815ffd83dbSDimitry Andric BO->setDebugLoc(Loc); 2825ffd83dbSDimitry Andric if (Flags & SCEV::FlagNUW) 2835ffd83dbSDimitry Andric BO->setHasNoUnsignedWrap(); 2845ffd83dbSDimitry Andric if (Flags & SCEV::FlagNSW) 2855ffd83dbSDimitry Andric BO->setHasNoSignedWrap(); 2865ffd83dbSDimitry Andric 2875ffd83dbSDimitry Andric return BO; 2885ffd83dbSDimitry Andric } 2895ffd83dbSDimitry Andric 2905ffd83dbSDimitry Andric /// FactorOutConstant - Test if S is divisible by Factor, using signed 2915ffd83dbSDimitry Andric /// division. If so, update S with Factor divided out and return true. 2925ffd83dbSDimitry Andric /// S need not be evenly divisible if a reasonable remainder can be 2935ffd83dbSDimitry Andric /// computed. 2945ffd83dbSDimitry Andric static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 2955ffd83dbSDimitry Andric const SCEV *Factor, ScalarEvolution &SE, 2965ffd83dbSDimitry Andric const DataLayout &DL) { 2975ffd83dbSDimitry Andric // Everything is divisible by one. 2985ffd83dbSDimitry Andric if (Factor->isOne()) 2995ffd83dbSDimitry Andric return true; 3005ffd83dbSDimitry Andric 3015ffd83dbSDimitry Andric // x/x == 1. 3025ffd83dbSDimitry Andric if (S == Factor) { 3035ffd83dbSDimitry Andric S = SE.getConstant(S->getType(), 1); 3045ffd83dbSDimitry Andric return true; 3055ffd83dbSDimitry Andric } 3065ffd83dbSDimitry Andric 3075ffd83dbSDimitry Andric // For a Constant, check for a multiple of the given factor. 3085ffd83dbSDimitry Andric if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 3095ffd83dbSDimitry Andric // 0/x == 0. 3105ffd83dbSDimitry Andric if (C->isZero()) 3115ffd83dbSDimitry Andric return true; 3125ffd83dbSDimitry Andric // Check for divisibility. 3135ffd83dbSDimitry Andric if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 3145ffd83dbSDimitry Andric ConstantInt *CI = 3155ffd83dbSDimitry Andric ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 3165ffd83dbSDimitry Andric // If the quotient is zero and the remainder is non-zero, reject 3175ffd83dbSDimitry Andric // the value at this scale. It will be considered for subsequent 3185ffd83dbSDimitry Andric // smaller scales. 3195ffd83dbSDimitry Andric if (!CI->isZero()) { 3205ffd83dbSDimitry Andric const SCEV *Div = SE.getConstant(CI); 3215ffd83dbSDimitry Andric S = Div; 3225ffd83dbSDimitry Andric Remainder = SE.getAddExpr( 3235ffd83dbSDimitry Andric Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 3245ffd83dbSDimitry Andric return true; 3255ffd83dbSDimitry Andric } 3265ffd83dbSDimitry Andric } 3275ffd83dbSDimitry Andric } 3285ffd83dbSDimitry Andric 3295ffd83dbSDimitry Andric // In a Mul, check if there is a constant operand which is a multiple 3305ffd83dbSDimitry Andric // of the given factor. 3315ffd83dbSDimitry Andric if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3325ffd83dbSDimitry Andric // Size is known, check if there is a constant operand which is a multiple 3335ffd83dbSDimitry Andric // of the given factor. If so, we can factor it. 3345ffd83dbSDimitry Andric if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 3355ffd83dbSDimitry Andric if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 3365ffd83dbSDimitry Andric if (!C->getAPInt().srem(FC->getAPInt())) { 337e8d8bef9SDimitry Andric SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 3385ffd83dbSDimitry Andric NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 3395ffd83dbSDimitry Andric S = SE.getMulExpr(NewMulOps); 3405ffd83dbSDimitry Andric return true; 3415ffd83dbSDimitry Andric } 3425ffd83dbSDimitry Andric } 3435ffd83dbSDimitry Andric 3445ffd83dbSDimitry Andric // In an AddRec, check if both start and step are divisible. 3455ffd83dbSDimitry Andric if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3465ffd83dbSDimitry Andric const SCEV *Step = A->getStepRecurrence(SE); 3475ffd83dbSDimitry Andric const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 3485ffd83dbSDimitry Andric if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 3495ffd83dbSDimitry Andric return false; 3505ffd83dbSDimitry Andric if (!StepRem->isZero()) 3515ffd83dbSDimitry Andric return false; 3525ffd83dbSDimitry Andric const SCEV *Start = A->getStart(); 3535ffd83dbSDimitry Andric if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 3545ffd83dbSDimitry Andric return false; 3555ffd83dbSDimitry Andric S = SE.getAddRecExpr(Start, Step, A->getLoop(), 3565ffd83dbSDimitry Andric A->getNoWrapFlags(SCEV::FlagNW)); 3575ffd83dbSDimitry Andric return true; 3585ffd83dbSDimitry Andric } 3595ffd83dbSDimitry Andric 3605ffd83dbSDimitry Andric return false; 3615ffd83dbSDimitry Andric } 3625ffd83dbSDimitry Andric 3635ffd83dbSDimitry Andric /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 3645ffd83dbSDimitry Andric /// is the number of SCEVAddRecExprs present, which are kept at the end of 3655ffd83dbSDimitry Andric /// the list. 3665ffd83dbSDimitry Andric /// 3675ffd83dbSDimitry Andric static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 3685ffd83dbSDimitry Andric Type *Ty, 3695ffd83dbSDimitry Andric ScalarEvolution &SE) { 3705ffd83dbSDimitry Andric unsigned NumAddRecs = 0; 3715ffd83dbSDimitry Andric for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 3725ffd83dbSDimitry Andric ++NumAddRecs; 3735ffd83dbSDimitry Andric // Group Ops into non-addrecs and addrecs. 3745ffd83dbSDimitry Andric SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 3755ffd83dbSDimitry Andric SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 3765ffd83dbSDimitry Andric // Let ScalarEvolution sort and simplify the non-addrecs list. 3775ffd83dbSDimitry Andric const SCEV *Sum = NoAddRecs.empty() ? 3785ffd83dbSDimitry Andric SE.getConstant(Ty, 0) : 3795ffd83dbSDimitry Andric SE.getAddExpr(NoAddRecs); 3805ffd83dbSDimitry Andric // If it returned an add, use the operands. Otherwise it simplified 3815ffd83dbSDimitry Andric // the sum into a single value, so just use that. 3825ffd83dbSDimitry Andric Ops.clear(); 3835ffd83dbSDimitry Andric if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 384*bdd1243dSDimitry Andric append_range(Ops, Add->operands()); 3855ffd83dbSDimitry Andric else if (!Sum->isZero()) 3865ffd83dbSDimitry Andric Ops.push_back(Sum); 3875ffd83dbSDimitry Andric // Then append the addrecs. 3885ffd83dbSDimitry Andric Ops.append(AddRecs.begin(), AddRecs.end()); 3895ffd83dbSDimitry Andric } 3905ffd83dbSDimitry Andric 3915ffd83dbSDimitry Andric /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 3925ffd83dbSDimitry Andric /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 3935ffd83dbSDimitry Andric /// This helps expose more opportunities for folding parts of the expressions 3945ffd83dbSDimitry Andric /// into GEP indices. 3955ffd83dbSDimitry Andric /// 3965ffd83dbSDimitry Andric static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 3975ffd83dbSDimitry Andric Type *Ty, 3985ffd83dbSDimitry Andric ScalarEvolution &SE) { 3995ffd83dbSDimitry Andric // Find the addrecs. 4005ffd83dbSDimitry Andric SmallVector<const SCEV *, 8> AddRecs; 4015ffd83dbSDimitry Andric for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4025ffd83dbSDimitry Andric while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 4035ffd83dbSDimitry Andric const SCEV *Start = A->getStart(); 4045ffd83dbSDimitry Andric if (Start->isZero()) break; 4055ffd83dbSDimitry Andric const SCEV *Zero = SE.getConstant(Ty, 0); 4065ffd83dbSDimitry Andric AddRecs.push_back(SE.getAddRecExpr(Zero, 4075ffd83dbSDimitry Andric A->getStepRecurrence(SE), 4085ffd83dbSDimitry Andric A->getLoop(), 4095ffd83dbSDimitry Andric A->getNoWrapFlags(SCEV::FlagNW))); 4105ffd83dbSDimitry Andric if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 4115ffd83dbSDimitry Andric Ops[i] = Zero; 412*bdd1243dSDimitry Andric append_range(Ops, Add->operands()); 4135ffd83dbSDimitry Andric e += Add->getNumOperands(); 4145ffd83dbSDimitry Andric } else { 4155ffd83dbSDimitry Andric Ops[i] = Start; 4165ffd83dbSDimitry Andric } 4175ffd83dbSDimitry Andric } 4185ffd83dbSDimitry Andric if (!AddRecs.empty()) { 4195ffd83dbSDimitry Andric // Add the addrecs onto the end of the list. 4205ffd83dbSDimitry Andric Ops.append(AddRecs.begin(), AddRecs.end()); 4215ffd83dbSDimitry Andric // Resort the operand list, moving any constants to the front. 4225ffd83dbSDimitry Andric SimplifyAddOperands(Ops, Ty, SE); 4235ffd83dbSDimitry Andric } 4245ffd83dbSDimitry Andric } 4255ffd83dbSDimitry Andric 4265ffd83dbSDimitry Andric /// expandAddToGEP - Expand an addition expression with a pointer type into 4275ffd83dbSDimitry Andric /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 4285ffd83dbSDimitry Andric /// BasicAliasAnalysis and other passes analyze the result. See the rules 4295ffd83dbSDimitry Andric /// for getelementptr vs. inttoptr in 4305ffd83dbSDimitry Andric /// http://llvm.org/docs/LangRef.html#pointeraliasing 4315ffd83dbSDimitry Andric /// for details. 4325ffd83dbSDimitry Andric /// 4335ffd83dbSDimitry Andric /// Design note: The correctness of using getelementptr here depends on 4345ffd83dbSDimitry Andric /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 4355ffd83dbSDimitry Andric /// they may introduce pointer arithmetic which may not be safely converted 4365ffd83dbSDimitry Andric /// into getelementptr. 4375ffd83dbSDimitry Andric /// 4385ffd83dbSDimitry Andric /// Design note: It might seem desirable for this function to be more 4395ffd83dbSDimitry Andric /// loop-aware. If some of the indices are loop-invariant while others 4405ffd83dbSDimitry Andric /// aren't, it might seem desirable to emit multiple GEPs, keeping the 4415ffd83dbSDimitry Andric /// loop-invariant portions of the overall computation outside the loop. 4425ffd83dbSDimitry Andric /// However, there are a few reasons this is not done here. Hoisting simple 4435ffd83dbSDimitry Andric /// arithmetic is a low-level optimization that often isn't very 4445ffd83dbSDimitry Andric /// important until late in the optimization process. In fact, passes 4455ffd83dbSDimitry Andric /// like InstructionCombining will combine GEPs, even if it means 4465ffd83dbSDimitry Andric /// pushing loop-invariant computation down into loops, so even if the 4475ffd83dbSDimitry Andric /// GEPs were split here, the work would quickly be undone. The 4485ffd83dbSDimitry Andric /// LoopStrengthReduction pass, which is usually run quite late (and 4495ffd83dbSDimitry Andric /// after the last InstructionCombining pass), takes care of hoisting 4505ffd83dbSDimitry Andric /// loop-invariant portions of expressions, after considering what 4515ffd83dbSDimitry Andric /// can be folded using target addressing modes. 4525ffd83dbSDimitry Andric /// 4535ffd83dbSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 4545ffd83dbSDimitry Andric const SCEV *const *op_end, 4555ffd83dbSDimitry Andric PointerType *PTy, 4565ffd83dbSDimitry Andric Type *Ty, 4575ffd83dbSDimitry Andric Value *V) { 4585ffd83dbSDimitry Andric SmallVector<Value *, 4> GepIndices; 4595ffd83dbSDimitry Andric SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 4605ffd83dbSDimitry Andric bool AnyNonZeroIndices = false; 4615ffd83dbSDimitry Andric 4625ffd83dbSDimitry Andric // Split AddRecs up into parts as either of the parts may be usable 4635ffd83dbSDimitry Andric // without the other. 4645ffd83dbSDimitry Andric SplitAddRecs(Ops, Ty, SE); 4655ffd83dbSDimitry Andric 4665ffd83dbSDimitry Andric Type *IntIdxTy = DL.getIndexType(PTy); 4675ffd83dbSDimitry Andric 468fe6060f1SDimitry Andric // For opaque pointers, always generate i8 GEP. 469fe6060f1SDimitry Andric if (!PTy->isOpaque()) { 4705ffd83dbSDimitry Andric // Descend down the pointer's type and attempt to convert the other 4715ffd83dbSDimitry Andric // operands into GEP indices, at each level. The first index in a GEP 4725ffd83dbSDimitry Andric // indexes into the array implied by the pointer operand; the rest of 4735ffd83dbSDimitry Andric // the indices index into the element or field type selected by the 4745ffd83dbSDimitry Andric // preceding index. 47504eeddc0SDimitry Andric Type *ElTy = PTy->getNonOpaquePointerElementType(); 4765ffd83dbSDimitry Andric for (;;) { 4775ffd83dbSDimitry Andric // If the scale size is not 0, attempt to factor out a scale for 4785ffd83dbSDimitry Andric // array indexing. 4795ffd83dbSDimitry Andric SmallVector<const SCEV *, 8> ScaledOps; 4805ffd83dbSDimitry Andric if (ElTy->isSized()) { 4815ffd83dbSDimitry Andric const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 4825ffd83dbSDimitry Andric if (!ElSize->isZero()) { 4835ffd83dbSDimitry Andric SmallVector<const SCEV *, 8> NewOps; 4845ffd83dbSDimitry Andric for (const SCEV *Op : Ops) { 4855ffd83dbSDimitry Andric const SCEV *Remainder = SE.getConstant(Ty, 0); 4865ffd83dbSDimitry Andric if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 4875ffd83dbSDimitry Andric // Op now has ElSize factored out. 4885ffd83dbSDimitry Andric ScaledOps.push_back(Op); 4895ffd83dbSDimitry Andric if (!Remainder->isZero()) 4905ffd83dbSDimitry Andric NewOps.push_back(Remainder); 4915ffd83dbSDimitry Andric AnyNonZeroIndices = true; 4925ffd83dbSDimitry Andric } else { 493fe6060f1SDimitry Andric // The operand was not divisible, so add it to the list of 494fe6060f1SDimitry Andric // operands we'll scan next iteration. 4955ffd83dbSDimitry Andric NewOps.push_back(Op); 4965ffd83dbSDimitry Andric } 4975ffd83dbSDimitry Andric } 4985ffd83dbSDimitry Andric // If we made any changes, update Ops. 4995ffd83dbSDimitry Andric if (!ScaledOps.empty()) { 5005ffd83dbSDimitry Andric Ops = NewOps; 5015ffd83dbSDimitry Andric SimplifyAddOperands(Ops, Ty, SE); 5025ffd83dbSDimitry Andric } 5035ffd83dbSDimitry Andric } 5045ffd83dbSDimitry Andric } 5055ffd83dbSDimitry Andric 5065ffd83dbSDimitry Andric // Record the scaled array index for this level of the type. If 5075ffd83dbSDimitry Andric // we didn't find any operands that could be factored, tentatively 5085ffd83dbSDimitry Andric // assume that element zero was selected (since the zero offset 5095ffd83dbSDimitry Andric // would obviously be folded away). 510e8d8bef9SDimitry Andric Value *Scaled = 511e8d8bef9SDimitry Andric ScaledOps.empty() 512e8d8bef9SDimitry Andric ? Constant::getNullValue(Ty) 513*bdd1243dSDimitry Andric : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty); 5145ffd83dbSDimitry Andric GepIndices.push_back(Scaled); 5155ffd83dbSDimitry Andric 5165ffd83dbSDimitry Andric // Collect struct field index operands. 5175ffd83dbSDimitry Andric while (StructType *STy = dyn_cast<StructType>(ElTy)) { 5185ffd83dbSDimitry Andric bool FoundFieldNo = false; 5195ffd83dbSDimitry Andric // An empty struct has no fields. 5205ffd83dbSDimitry Andric if (STy->getNumElements() == 0) break; 5215ffd83dbSDimitry Andric // Field offsets are known. See if a constant offset falls within any of 5225ffd83dbSDimitry Andric // the struct fields. 5235ffd83dbSDimitry Andric if (Ops.empty()) 5245ffd83dbSDimitry Andric break; 5255ffd83dbSDimitry Andric if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 5265ffd83dbSDimitry Andric if (SE.getTypeSizeInBits(C->getType()) <= 64) { 5275ffd83dbSDimitry Andric const StructLayout &SL = *DL.getStructLayout(STy); 5285ffd83dbSDimitry Andric uint64_t FullOffset = C->getValue()->getZExtValue(); 5295ffd83dbSDimitry Andric if (FullOffset < SL.getSizeInBytes()) { 5305ffd83dbSDimitry Andric unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 5315ffd83dbSDimitry Andric GepIndices.push_back( 5325ffd83dbSDimitry Andric ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 5335ffd83dbSDimitry Andric ElTy = STy->getTypeAtIndex(ElIdx); 5345ffd83dbSDimitry Andric Ops[0] = 5355ffd83dbSDimitry Andric SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 5365ffd83dbSDimitry Andric AnyNonZeroIndices = true; 5375ffd83dbSDimitry Andric FoundFieldNo = true; 5385ffd83dbSDimitry Andric } 5395ffd83dbSDimitry Andric } 5405ffd83dbSDimitry Andric // If no struct field offsets were found, tentatively assume that 5415ffd83dbSDimitry Andric // field zero was selected (since the zero offset would obviously 5425ffd83dbSDimitry Andric // be folded away). 5435ffd83dbSDimitry Andric if (!FoundFieldNo) { 5445ffd83dbSDimitry Andric ElTy = STy->getTypeAtIndex(0u); 5455ffd83dbSDimitry Andric GepIndices.push_back( 5465ffd83dbSDimitry Andric Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 5475ffd83dbSDimitry Andric } 5485ffd83dbSDimitry Andric } 5495ffd83dbSDimitry Andric 5505ffd83dbSDimitry Andric if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 5515ffd83dbSDimitry Andric ElTy = ATy->getElementType(); 5525ffd83dbSDimitry Andric else 5535ffd83dbSDimitry Andric // FIXME: Handle VectorType. 5545ffd83dbSDimitry Andric // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 5555ffd83dbSDimitry Andric // constant, therefore can not be factored out. The generated IR is less 5565ffd83dbSDimitry Andric // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 5575ffd83dbSDimitry Andric break; 5585ffd83dbSDimitry Andric } 559fe6060f1SDimitry Andric } 5605ffd83dbSDimitry Andric 5615ffd83dbSDimitry Andric // If none of the operands were convertible to proper GEP indices, cast 5625ffd83dbSDimitry Andric // the base to i8* and do an ugly getelementptr with that. It's still 5635ffd83dbSDimitry Andric // better than ptrtoint+arithmetic+inttoptr at least. 5645ffd83dbSDimitry Andric if (!AnyNonZeroIndices) { 5655ffd83dbSDimitry Andric // Cast the base to i8*. 566fe6060f1SDimitry Andric if (!PTy->isOpaque()) 5675ffd83dbSDimitry Andric V = InsertNoopCastOfTo(V, 5685ffd83dbSDimitry Andric Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 5695ffd83dbSDimitry Andric 5705ffd83dbSDimitry Andric assert(!isa<Instruction>(V) || 5715ffd83dbSDimitry Andric SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 5725ffd83dbSDimitry Andric 5735ffd83dbSDimitry Andric // Expand the operands for a plain byte offset. 574*bdd1243dSDimitry Andric Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty); 5755ffd83dbSDimitry Andric 5765ffd83dbSDimitry Andric // Fold a GEP with constant operands. 5775ffd83dbSDimitry Andric if (Constant *CLHS = dyn_cast<Constant>(V)) 5785ffd83dbSDimitry Andric if (Constant *CRHS = dyn_cast<Constant>(Idx)) 579*bdd1243dSDimitry Andric return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS); 5805ffd83dbSDimitry Andric 5815ffd83dbSDimitry Andric // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 5825ffd83dbSDimitry Andric unsigned ScanLimit = 6; 5835ffd83dbSDimitry Andric BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 5845ffd83dbSDimitry Andric // Scanning starts from the last instruction before the insertion point. 5855ffd83dbSDimitry Andric BasicBlock::iterator IP = Builder.GetInsertPoint(); 5865ffd83dbSDimitry Andric if (IP != BlockBegin) { 5875ffd83dbSDimitry Andric --IP; 5885ffd83dbSDimitry Andric for (; ScanLimit; --IP, --ScanLimit) { 5895ffd83dbSDimitry Andric // Don't count dbg.value against the ScanLimit, to avoid perturbing the 5905ffd83dbSDimitry Andric // generated code. 5915ffd83dbSDimitry Andric if (isa<DbgInfoIntrinsic>(IP)) 5925ffd83dbSDimitry Andric ScanLimit++; 5935ffd83dbSDimitry Andric if (IP->getOpcode() == Instruction::GetElementPtr && 59481ad6265SDimitry Andric IP->getOperand(0) == V && IP->getOperand(1) == Idx && 59581ad6265SDimitry Andric cast<GEPOperator>(&*IP)->getSourceElementType() == 59681ad6265SDimitry Andric Type::getInt8Ty(Ty->getContext())) 5975ffd83dbSDimitry Andric return &*IP; 5985ffd83dbSDimitry Andric if (IP == BlockBegin) break; 5995ffd83dbSDimitry Andric } 6005ffd83dbSDimitry Andric } 6015ffd83dbSDimitry Andric 6025ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 6035ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 6045ffd83dbSDimitry Andric 6055ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 6065ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 6075ffd83dbSDimitry Andric if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 6085ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 6095ffd83dbSDimitry Andric if (!Preheader) break; 6105ffd83dbSDimitry Andric 6115ffd83dbSDimitry Andric // Ok, move up a level. 6125ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 6135ffd83dbSDimitry Andric } 6145ffd83dbSDimitry Andric 6155ffd83dbSDimitry Andric // Emit a GEP. 616e8d8bef9SDimitry Andric return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 6175ffd83dbSDimitry Andric } 6185ffd83dbSDimitry Andric 6195ffd83dbSDimitry Andric { 6205ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 6215ffd83dbSDimitry Andric 6225ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 6235ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 6245ffd83dbSDimitry Andric if (!L->isLoopInvariant(V)) break; 6255ffd83dbSDimitry Andric 6265ffd83dbSDimitry Andric bool AnyIndexNotLoopInvariant = any_of( 6275ffd83dbSDimitry Andric GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 6285ffd83dbSDimitry Andric 6295ffd83dbSDimitry Andric if (AnyIndexNotLoopInvariant) 6305ffd83dbSDimitry Andric break; 6315ffd83dbSDimitry Andric 6325ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 6335ffd83dbSDimitry Andric if (!Preheader) break; 6345ffd83dbSDimitry Andric 6355ffd83dbSDimitry Andric // Ok, move up a level. 6365ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 6375ffd83dbSDimitry Andric } 6385ffd83dbSDimitry Andric 6395ffd83dbSDimitry Andric // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 6405ffd83dbSDimitry Andric // because ScalarEvolution may have changed the address arithmetic to 6415ffd83dbSDimitry Andric // compute a value which is beyond the end of the allocated object. 6425ffd83dbSDimitry Andric Value *Casted = V; 6435ffd83dbSDimitry Andric if (V->getType() != PTy) 6445ffd83dbSDimitry Andric Casted = InsertNoopCastOfTo(Casted, PTy); 64504eeddc0SDimitry Andric Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(), 64604eeddc0SDimitry Andric Casted, GepIndices, "scevgep"); 6475ffd83dbSDimitry Andric Ops.push_back(SE.getUnknown(GEP)); 6485ffd83dbSDimitry Andric } 6495ffd83dbSDimitry Andric 6505ffd83dbSDimitry Andric return expand(SE.getAddExpr(Ops)); 6515ffd83dbSDimitry Andric } 6525ffd83dbSDimitry Andric 6535ffd83dbSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 6545ffd83dbSDimitry Andric Value *V) { 6555ffd83dbSDimitry Andric const SCEV *const Ops[1] = {Op}; 6565ffd83dbSDimitry Andric return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 6575ffd83dbSDimitry Andric } 6585ffd83dbSDimitry Andric 6595ffd83dbSDimitry Andric /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 6605ffd83dbSDimitry Andric /// SCEV expansion. If they are nested, this is the most nested. If they are 6615ffd83dbSDimitry Andric /// neighboring, pick the later. 6625ffd83dbSDimitry Andric static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 6635ffd83dbSDimitry Andric DominatorTree &DT) { 6645ffd83dbSDimitry Andric if (!A) return B; 6655ffd83dbSDimitry Andric if (!B) return A; 6665ffd83dbSDimitry Andric if (A->contains(B)) return B; 6675ffd83dbSDimitry Andric if (B->contains(A)) return A; 6685ffd83dbSDimitry Andric if (DT.dominates(A->getHeader(), B->getHeader())) return B; 6695ffd83dbSDimitry Andric if (DT.dominates(B->getHeader(), A->getHeader())) return A; 6705ffd83dbSDimitry Andric return A; // Arbitrarily break the tie. 6715ffd83dbSDimitry Andric } 6725ffd83dbSDimitry Andric 6735ffd83dbSDimitry Andric /// getRelevantLoop - Get the most relevant loop associated with the given 6745ffd83dbSDimitry Andric /// expression, according to PickMostRelevantLoop. 6755ffd83dbSDimitry Andric const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 6765ffd83dbSDimitry Andric // Test whether we've already computed the most relevant loop for this SCEV. 6775ffd83dbSDimitry Andric auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 6785ffd83dbSDimitry Andric if (!Pair.second) 6795ffd83dbSDimitry Andric return Pair.first->second; 6805ffd83dbSDimitry Andric 681*bdd1243dSDimitry Andric switch (S->getSCEVType()) { 682*bdd1243dSDimitry Andric case scConstant: 683*bdd1243dSDimitry Andric return nullptr; // A constant has no relevant loops. 684*bdd1243dSDimitry Andric case scTruncate: 685*bdd1243dSDimitry Andric case scZeroExtend: 686*bdd1243dSDimitry Andric case scSignExtend: 687*bdd1243dSDimitry Andric case scPtrToInt: 688*bdd1243dSDimitry Andric case scAddExpr: 689*bdd1243dSDimitry Andric case scMulExpr: 690*bdd1243dSDimitry Andric case scUDivExpr: 691*bdd1243dSDimitry Andric case scAddRecExpr: 692*bdd1243dSDimitry Andric case scUMaxExpr: 693*bdd1243dSDimitry Andric case scSMaxExpr: 694*bdd1243dSDimitry Andric case scUMinExpr: 695*bdd1243dSDimitry Andric case scSMinExpr: 696*bdd1243dSDimitry Andric case scSequentialUMinExpr: { 697*bdd1243dSDimitry Andric const Loop *L = nullptr; 698*bdd1243dSDimitry Andric if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 699*bdd1243dSDimitry Andric L = AR->getLoop(); 700*bdd1243dSDimitry Andric for (const SCEV *Op : S->operands()) 701*bdd1243dSDimitry Andric L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 702*bdd1243dSDimitry Andric return RelevantLoops[S] = L; 703*bdd1243dSDimitry Andric } 704*bdd1243dSDimitry Andric case scUnknown: { 705*bdd1243dSDimitry Andric const SCEVUnknown *U = cast<SCEVUnknown>(S); 7065ffd83dbSDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 7075ffd83dbSDimitry Andric return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 7085ffd83dbSDimitry Andric // A non-instruction has no relevant loops. 7095ffd83dbSDimitry Andric return nullptr; 7105ffd83dbSDimitry Andric } 711*bdd1243dSDimitry Andric case scCouldNotCompute: 712*bdd1243dSDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7135ffd83dbSDimitry Andric } 7145ffd83dbSDimitry Andric llvm_unreachable("Unexpected SCEV type!"); 7155ffd83dbSDimitry Andric } 7165ffd83dbSDimitry Andric 7175ffd83dbSDimitry Andric namespace { 7185ffd83dbSDimitry Andric 7195ffd83dbSDimitry Andric /// LoopCompare - Compare loops by PickMostRelevantLoop. 7205ffd83dbSDimitry Andric class LoopCompare { 7215ffd83dbSDimitry Andric DominatorTree &DT; 7225ffd83dbSDimitry Andric public: 7235ffd83dbSDimitry Andric explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 7245ffd83dbSDimitry Andric 7255ffd83dbSDimitry Andric bool operator()(std::pair<const Loop *, const SCEV *> LHS, 7265ffd83dbSDimitry Andric std::pair<const Loop *, const SCEV *> RHS) const { 7275ffd83dbSDimitry Andric // Keep pointer operands sorted at the end. 7285ffd83dbSDimitry Andric if (LHS.second->getType()->isPointerTy() != 7295ffd83dbSDimitry Andric RHS.second->getType()->isPointerTy()) 7305ffd83dbSDimitry Andric return LHS.second->getType()->isPointerTy(); 7315ffd83dbSDimitry Andric 7325ffd83dbSDimitry Andric // Compare loops with PickMostRelevantLoop. 7335ffd83dbSDimitry Andric if (LHS.first != RHS.first) 7345ffd83dbSDimitry Andric return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 7355ffd83dbSDimitry Andric 7365ffd83dbSDimitry Andric // If one operand is a non-constant negative and the other is not, 7375ffd83dbSDimitry Andric // put the non-constant negative on the right so that a sub can 7385ffd83dbSDimitry Andric // be used instead of a negate and add. 7395ffd83dbSDimitry Andric if (LHS.second->isNonConstantNegative()) { 7405ffd83dbSDimitry Andric if (!RHS.second->isNonConstantNegative()) 7415ffd83dbSDimitry Andric return false; 7425ffd83dbSDimitry Andric } else if (RHS.second->isNonConstantNegative()) 7435ffd83dbSDimitry Andric return true; 7445ffd83dbSDimitry Andric 7455ffd83dbSDimitry Andric // Otherwise they are equivalent according to this comparison. 7465ffd83dbSDimitry Andric return false; 7475ffd83dbSDimitry Andric } 7485ffd83dbSDimitry Andric }; 7495ffd83dbSDimitry Andric 7505ffd83dbSDimitry Andric } 7515ffd83dbSDimitry Andric 7525ffd83dbSDimitry Andric Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 7535ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 7545ffd83dbSDimitry Andric 7555ffd83dbSDimitry Andric // Collect all the add operands in a loop, along with their associated loops. 7565ffd83dbSDimitry Andric // Iterate in reverse so that constants are emitted last, all else equal, and 7575ffd83dbSDimitry Andric // so that pointer operands are inserted first, which the code below relies on 7585ffd83dbSDimitry Andric // to form more involved GEPs. 7595ffd83dbSDimitry Andric SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 760349cc55cSDimitry Andric for (const SCEV *Op : reverse(S->operands())) 761349cc55cSDimitry Andric OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 7625ffd83dbSDimitry Andric 7635ffd83dbSDimitry Andric // Sort by loop. Use a stable sort so that constants follow non-constants and 7645ffd83dbSDimitry Andric // pointer operands precede non-pointer operands. 7655ffd83dbSDimitry Andric llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 7665ffd83dbSDimitry Andric 7675ffd83dbSDimitry Andric // Emit instructions to add all the operands. Hoist as much as possible 7685ffd83dbSDimitry Andric // out of loops, and form meaningful getelementptrs where possible. 7695ffd83dbSDimitry Andric Value *Sum = nullptr; 7705ffd83dbSDimitry Andric for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 7715ffd83dbSDimitry Andric const Loop *CurLoop = I->first; 7725ffd83dbSDimitry Andric const SCEV *Op = I->second; 7735ffd83dbSDimitry Andric if (!Sum) { 7745ffd83dbSDimitry Andric // This is the first operand. Just expand it. 7755ffd83dbSDimitry Andric Sum = expand(Op); 7765ffd83dbSDimitry Andric ++I; 777349cc55cSDimitry Andric continue; 778349cc55cSDimitry Andric } 779349cc55cSDimitry Andric 780349cc55cSDimitry Andric assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 781349cc55cSDimitry Andric if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 7825ffd83dbSDimitry Andric // The running sum expression is a pointer. Try to form a getelementptr 7835ffd83dbSDimitry Andric // at this level with that as the base. 7845ffd83dbSDimitry Andric SmallVector<const SCEV *, 4> NewOps; 7855ffd83dbSDimitry Andric for (; I != E && I->first == CurLoop; ++I) { 7865ffd83dbSDimitry Andric // If the operand is SCEVUnknown and not instructions, peek through 7875ffd83dbSDimitry Andric // it, to enable more of it to be folded into the GEP. 7885ffd83dbSDimitry Andric const SCEV *X = I->second; 7895ffd83dbSDimitry Andric if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 7905ffd83dbSDimitry Andric if (!isa<Instruction>(U->getValue())) 7915ffd83dbSDimitry Andric X = SE.getSCEV(U->getValue()); 7925ffd83dbSDimitry Andric NewOps.push_back(X); 7935ffd83dbSDimitry Andric } 7945ffd83dbSDimitry Andric Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 7955ffd83dbSDimitry Andric } else if (Op->isNonConstantNegative()) { 7965ffd83dbSDimitry Andric // Instead of doing a negate and add, just do a subtract. 797*bdd1243dSDimitry Andric Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty); 7985ffd83dbSDimitry Andric Sum = InsertNoopCastOfTo(Sum, Ty); 7995ffd83dbSDimitry Andric Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 8005ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 8015ffd83dbSDimitry Andric ++I; 8025ffd83dbSDimitry Andric } else { 8035ffd83dbSDimitry Andric // A simple add. 804*bdd1243dSDimitry Andric Value *W = expandCodeForImpl(Op, Ty); 8055ffd83dbSDimitry Andric Sum = InsertNoopCastOfTo(Sum, Ty); 8065ffd83dbSDimitry Andric // Canonicalize a constant to the RHS. 8075ffd83dbSDimitry Andric if (isa<Constant>(Sum)) std::swap(Sum, W); 8085ffd83dbSDimitry Andric Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 8095ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 8105ffd83dbSDimitry Andric ++I; 8115ffd83dbSDimitry Andric } 8125ffd83dbSDimitry Andric } 8135ffd83dbSDimitry Andric 8145ffd83dbSDimitry Andric return Sum; 8155ffd83dbSDimitry Andric } 8165ffd83dbSDimitry Andric 8175ffd83dbSDimitry Andric Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 8185ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 8195ffd83dbSDimitry Andric 8205ffd83dbSDimitry Andric // Collect all the mul operands in a loop, along with their associated loops. 8215ffd83dbSDimitry Andric // Iterate in reverse so that constants are emitted last, all else equal. 8225ffd83dbSDimitry Andric SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 823349cc55cSDimitry Andric for (const SCEV *Op : reverse(S->operands())) 824349cc55cSDimitry Andric OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 8255ffd83dbSDimitry Andric 8265ffd83dbSDimitry Andric // Sort by loop. Use a stable sort so that constants follow non-constants. 8275ffd83dbSDimitry Andric llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 8285ffd83dbSDimitry Andric 8295ffd83dbSDimitry Andric // Emit instructions to mul all the operands. Hoist as much as possible 8305ffd83dbSDimitry Andric // out of loops. 8315ffd83dbSDimitry Andric Value *Prod = nullptr; 8325ffd83dbSDimitry Andric auto I = OpsAndLoops.begin(); 8335ffd83dbSDimitry Andric 8345ffd83dbSDimitry Andric // Expand the calculation of X pow N in the following manner: 8355ffd83dbSDimitry Andric // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 8365ffd83dbSDimitry Andric // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 8375ffd83dbSDimitry Andric const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 8385ffd83dbSDimitry Andric auto E = I; 8395ffd83dbSDimitry Andric // Calculate how many times the same operand from the same loop is included 8405ffd83dbSDimitry Andric // into this power. 8415ffd83dbSDimitry Andric uint64_t Exponent = 0; 8425ffd83dbSDimitry Andric const uint64_t MaxExponent = UINT64_MAX >> 1; 8435ffd83dbSDimitry Andric // No one sane will ever try to calculate such huge exponents, but if we 8445ffd83dbSDimitry Andric // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 8455ffd83dbSDimitry Andric // below when the power of 2 exceeds our Exponent, and we want it to be 8465ffd83dbSDimitry Andric // 1u << 31 at most to not deal with unsigned overflow. 8475ffd83dbSDimitry Andric while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 8485ffd83dbSDimitry Andric ++Exponent; 8495ffd83dbSDimitry Andric ++E; 8505ffd83dbSDimitry Andric } 8515ffd83dbSDimitry Andric assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 8525ffd83dbSDimitry Andric 8535ffd83dbSDimitry Andric // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 8545ffd83dbSDimitry Andric // that are needed into the result. 855*bdd1243dSDimitry Andric Value *P = expandCodeForImpl(I->second, Ty); 8565ffd83dbSDimitry Andric Value *Result = nullptr; 8575ffd83dbSDimitry Andric if (Exponent & 1) 8585ffd83dbSDimitry Andric Result = P; 8595ffd83dbSDimitry Andric for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 8605ffd83dbSDimitry Andric P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 8615ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 8625ffd83dbSDimitry Andric if (Exponent & BinExp) 8635ffd83dbSDimitry Andric Result = Result ? InsertBinop(Instruction::Mul, Result, P, 8645ffd83dbSDimitry Andric SCEV::FlagAnyWrap, 8655ffd83dbSDimitry Andric /*IsSafeToHoist*/ true) 8665ffd83dbSDimitry Andric : P; 8675ffd83dbSDimitry Andric } 8685ffd83dbSDimitry Andric 8695ffd83dbSDimitry Andric I = E; 8705ffd83dbSDimitry Andric assert(Result && "Nothing was expanded?"); 8715ffd83dbSDimitry Andric return Result; 8725ffd83dbSDimitry Andric }; 8735ffd83dbSDimitry Andric 8745ffd83dbSDimitry Andric while (I != OpsAndLoops.end()) { 8755ffd83dbSDimitry Andric if (!Prod) { 8765ffd83dbSDimitry Andric // This is the first operand. Just expand it. 8775ffd83dbSDimitry Andric Prod = ExpandOpBinPowN(); 8785ffd83dbSDimitry Andric } else if (I->second->isAllOnesValue()) { 8795ffd83dbSDimitry Andric // Instead of doing a multiply by negative one, just do a negate. 8805ffd83dbSDimitry Andric Prod = InsertNoopCastOfTo(Prod, Ty); 8815ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 8825ffd83dbSDimitry Andric SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 8835ffd83dbSDimitry Andric ++I; 8845ffd83dbSDimitry Andric } else { 8855ffd83dbSDimitry Andric // A simple mul. 8865ffd83dbSDimitry Andric Value *W = ExpandOpBinPowN(); 8875ffd83dbSDimitry Andric Prod = InsertNoopCastOfTo(Prod, Ty); 8885ffd83dbSDimitry Andric // Canonicalize a constant to the RHS. 8895ffd83dbSDimitry Andric if (isa<Constant>(Prod)) std::swap(Prod, W); 8905ffd83dbSDimitry Andric const APInt *RHS; 8915ffd83dbSDimitry Andric if (match(W, m_Power2(RHS))) { 8925ffd83dbSDimitry Andric // Canonicalize Prod*(1<<C) to Prod<<C. 8935ffd83dbSDimitry Andric assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 8945ffd83dbSDimitry Andric auto NWFlags = S->getNoWrapFlags(); 8955ffd83dbSDimitry Andric // clear nsw flag if shl will produce poison value. 8965ffd83dbSDimitry Andric if (RHS->logBase2() == RHS->getBitWidth() - 1) 8975ffd83dbSDimitry Andric NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 8985ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Shl, Prod, 8995ffd83dbSDimitry Andric ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 9005ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 9015ffd83dbSDimitry Andric } else { 9025ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 9035ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 9045ffd83dbSDimitry Andric } 9055ffd83dbSDimitry Andric } 9065ffd83dbSDimitry Andric } 9075ffd83dbSDimitry Andric 9085ffd83dbSDimitry Andric return Prod; 9095ffd83dbSDimitry Andric } 9105ffd83dbSDimitry Andric 9115ffd83dbSDimitry Andric Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 9125ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 9135ffd83dbSDimitry Andric 914*bdd1243dSDimitry Andric Value *LHS = expandCodeForImpl(S->getLHS(), Ty); 9155ffd83dbSDimitry Andric if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 9165ffd83dbSDimitry Andric const APInt &RHS = SC->getAPInt(); 9175ffd83dbSDimitry Andric if (RHS.isPowerOf2()) 9185ffd83dbSDimitry Andric return InsertBinop(Instruction::LShr, LHS, 9195ffd83dbSDimitry Andric ConstantInt::get(Ty, RHS.logBase2()), 9205ffd83dbSDimitry Andric SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 9215ffd83dbSDimitry Andric } 9225ffd83dbSDimitry Andric 923*bdd1243dSDimitry Andric Value *RHS = expandCodeForImpl(S->getRHS(), Ty); 9245ffd83dbSDimitry Andric return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 9255ffd83dbSDimitry Andric /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 9265ffd83dbSDimitry Andric } 9275ffd83dbSDimitry Andric 9285ffd83dbSDimitry Andric /// Determine if this is a well-behaved chain of instructions leading back to 9295ffd83dbSDimitry Andric /// the PHI. If so, it may be reused by expanded expressions. 9305ffd83dbSDimitry Andric bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 9315ffd83dbSDimitry Andric const Loop *L) { 9325ffd83dbSDimitry Andric if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 9335ffd83dbSDimitry Andric (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 9345ffd83dbSDimitry Andric return false; 9355ffd83dbSDimitry Andric // If any of the operands don't dominate the insert position, bail. 9365ffd83dbSDimitry Andric // Addrec operands are always loop-invariant, so this can only happen 9375ffd83dbSDimitry Andric // if there are instructions which haven't been hoisted. 9385ffd83dbSDimitry Andric if (L == IVIncInsertLoop) { 939fe6060f1SDimitry Andric for (Use &Op : llvm::drop_begin(IncV->operands())) 940fe6060f1SDimitry Andric if (Instruction *OInst = dyn_cast<Instruction>(Op)) 9415ffd83dbSDimitry Andric if (!SE.DT.dominates(OInst, IVIncInsertPos)) 9425ffd83dbSDimitry Andric return false; 9435ffd83dbSDimitry Andric } 9445ffd83dbSDimitry Andric // Advance to the next instruction. 9455ffd83dbSDimitry Andric IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 9465ffd83dbSDimitry Andric if (!IncV) 9475ffd83dbSDimitry Andric return false; 9485ffd83dbSDimitry Andric 9495ffd83dbSDimitry Andric if (IncV->mayHaveSideEffects()) 9505ffd83dbSDimitry Andric return false; 9515ffd83dbSDimitry Andric 9525ffd83dbSDimitry Andric if (IncV == PN) 9535ffd83dbSDimitry Andric return true; 9545ffd83dbSDimitry Andric 9555ffd83dbSDimitry Andric return isNormalAddRecExprPHI(PN, IncV, L); 9565ffd83dbSDimitry Andric } 9575ffd83dbSDimitry Andric 9585ffd83dbSDimitry Andric /// getIVIncOperand returns an induction variable increment's induction 9595ffd83dbSDimitry Andric /// variable operand. 9605ffd83dbSDimitry Andric /// 9615ffd83dbSDimitry Andric /// If allowScale is set, any type of GEP is allowed as long as the nonIV 9625ffd83dbSDimitry Andric /// operands dominate InsertPos. 9635ffd83dbSDimitry Andric /// 9645ffd83dbSDimitry Andric /// If allowScale is not set, ensure that a GEP increment conforms to one of the 9655ffd83dbSDimitry Andric /// simple patterns generated by getAddRecExprPHILiterally and 9665ffd83dbSDimitry Andric /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 9675ffd83dbSDimitry Andric Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 9685ffd83dbSDimitry Andric Instruction *InsertPos, 9695ffd83dbSDimitry Andric bool allowScale) { 9705ffd83dbSDimitry Andric if (IncV == InsertPos) 9715ffd83dbSDimitry Andric return nullptr; 9725ffd83dbSDimitry Andric 9735ffd83dbSDimitry Andric switch (IncV->getOpcode()) { 9745ffd83dbSDimitry Andric default: 9755ffd83dbSDimitry Andric return nullptr; 9765ffd83dbSDimitry Andric // Check for a simple Add/Sub or GEP of a loop invariant step. 9775ffd83dbSDimitry Andric case Instruction::Add: 9785ffd83dbSDimitry Andric case Instruction::Sub: { 9795ffd83dbSDimitry Andric Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 9805ffd83dbSDimitry Andric if (!OInst || SE.DT.dominates(OInst, InsertPos)) 9815ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 9825ffd83dbSDimitry Andric return nullptr; 9835ffd83dbSDimitry Andric } 9845ffd83dbSDimitry Andric case Instruction::BitCast: 9855ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 9865ffd83dbSDimitry Andric case Instruction::GetElementPtr: 987fe6060f1SDimitry Andric for (Use &U : llvm::drop_begin(IncV->operands())) { 988fe6060f1SDimitry Andric if (isa<Constant>(U)) 9895ffd83dbSDimitry Andric continue; 990fe6060f1SDimitry Andric if (Instruction *OInst = dyn_cast<Instruction>(U)) { 9915ffd83dbSDimitry Andric if (!SE.DT.dominates(OInst, InsertPos)) 9925ffd83dbSDimitry Andric return nullptr; 9935ffd83dbSDimitry Andric } 9945ffd83dbSDimitry Andric if (allowScale) { 9955ffd83dbSDimitry Andric // allow any kind of GEP as long as it can be hoisted. 9965ffd83dbSDimitry Andric continue; 9975ffd83dbSDimitry Andric } 9985ffd83dbSDimitry Andric // This must be a pointer addition of constants (pretty), which is already 9995ffd83dbSDimitry Andric // handled, or some number of address-size elements (ugly). Ugly geps 10005ffd83dbSDimitry Andric // have 2 operands. i1* is used by the expander to represent an 10015ffd83dbSDimitry Andric // address-size element. 10025ffd83dbSDimitry Andric if (IncV->getNumOperands() != 2) 10035ffd83dbSDimitry Andric return nullptr; 10045ffd83dbSDimitry Andric unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 10055ffd83dbSDimitry Andric if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 10065ffd83dbSDimitry Andric && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 10075ffd83dbSDimitry Andric return nullptr; 10085ffd83dbSDimitry Andric break; 10095ffd83dbSDimitry Andric } 10105ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 10115ffd83dbSDimitry Andric } 10125ffd83dbSDimitry Andric } 10135ffd83dbSDimitry Andric 10145ffd83dbSDimitry Andric /// If the insert point of the current builder or any of the builders on the 10155ffd83dbSDimitry Andric /// stack of saved builders has 'I' as its insert point, update it to point to 10165ffd83dbSDimitry Andric /// the instruction after 'I'. This is intended to be used when the instruction 10175ffd83dbSDimitry Andric /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 10185ffd83dbSDimitry Andric /// different block, the inconsistent insert point (with a mismatched 10195ffd83dbSDimitry Andric /// Instruction and Block) can lead to an instruction being inserted in a block 10205ffd83dbSDimitry Andric /// other than its parent. 10215ffd83dbSDimitry Andric void SCEVExpander::fixupInsertPoints(Instruction *I) { 10225ffd83dbSDimitry Andric BasicBlock::iterator It(*I); 10235ffd83dbSDimitry Andric BasicBlock::iterator NewInsertPt = std::next(It); 10245ffd83dbSDimitry Andric if (Builder.GetInsertPoint() == It) 10255ffd83dbSDimitry Andric Builder.SetInsertPoint(&*NewInsertPt); 10265ffd83dbSDimitry Andric for (auto *InsertPtGuard : InsertPointGuards) 10275ffd83dbSDimitry Andric if (InsertPtGuard->GetInsertPoint() == It) 10285ffd83dbSDimitry Andric InsertPtGuard->SetInsertPoint(NewInsertPt); 10295ffd83dbSDimitry Andric } 10305ffd83dbSDimitry Andric 10315ffd83dbSDimitry Andric /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 10325ffd83dbSDimitry Andric /// it available to other uses in this loop. Recursively hoist any operands, 10335ffd83dbSDimitry Andric /// until we reach a value that dominates InsertPos. 1034*bdd1243dSDimitry Andric bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 1035*bdd1243dSDimitry Andric bool RecomputePoisonFlags) { 1036*bdd1243dSDimitry Andric auto FixupPoisonFlags = [this](Instruction *I) { 1037*bdd1243dSDimitry Andric // Drop flags that are potentially inferred from old context and infer flags 1038*bdd1243dSDimitry Andric // in new context. 1039*bdd1243dSDimitry Andric I->dropPoisonGeneratingFlags(); 1040*bdd1243dSDimitry Andric if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 1041*bdd1243dSDimitry Andric if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 1042*bdd1243dSDimitry Andric auto *BO = cast<BinaryOperator>(I); 1043*bdd1243dSDimitry Andric BO->setHasNoUnsignedWrap( 1044*bdd1243dSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 1045*bdd1243dSDimitry Andric BO->setHasNoSignedWrap( 1046*bdd1243dSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 1047*bdd1243dSDimitry Andric } 1048*bdd1243dSDimitry Andric }; 1049*bdd1243dSDimitry Andric 1050*bdd1243dSDimitry Andric if (SE.DT.dominates(IncV, InsertPos)) { 1051*bdd1243dSDimitry Andric if (RecomputePoisonFlags) 1052*bdd1243dSDimitry Andric FixupPoisonFlags(IncV); 10535ffd83dbSDimitry Andric return true; 1054*bdd1243dSDimitry Andric } 10555ffd83dbSDimitry Andric 10565ffd83dbSDimitry Andric // InsertPos must itself dominate IncV so that IncV's new position satisfies 10575ffd83dbSDimitry Andric // its existing users. 10585ffd83dbSDimitry Andric if (isa<PHINode>(InsertPos) || 10595ffd83dbSDimitry Andric !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 10605ffd83dbSDimitry Andric return false; 10615ffd83dbSDimitry Andric 10625ffd83dbSDimitry Andric if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 10635ffd83dbSDimitry Andric return false; 10645ffd83dbSDimitry Andric 10655ffd83dbSDimitry Andric // Check that the chain of IV operands leading back to Phi can be hoisted. 10665ffd83dbSDimitry Andric SmallVector<Instruction*, 4> IVIncs; 10675ffd83dbSDimitry Andric for(;;) { 10685ffd83dbSDimitry Andric Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 10695ffd83dbSDimitry Andric if (!Oper) 10705ffd83dbSDimitry Andric return false; 10715ffd83dbSDimitry Andric // IncV is safe to hoist. 10725ffd83dbSDimitry Andric IVIncs.push_back(IncV); 10735ffd83dbSDimitry Andric IncV = Oper; 10745ffd83dbSDimitry Andric if (SE.DT.dominates(IncV, InsertPos)) 10755ffd83dbSDimitry Andric break; 10765ffd83dbSDimitry Andric } 10770eae32dcSDimitry Andric for (Instruction *I : llvm::reverse(IVIncs)) { 10780eae32dcSDimitry Andric fixupInsertPoints(I); 10790eae32dcSDimitry Andric I->moveBefore(InsertPos); 1080*bdd1243dSDimitry Andric if (RecomputePoisonFlags) 1081*bdd1243dSDimitry Andric FixupPoisonFlags(I); 10825ffd83dbSDimitry Andric } 10835ffd83dbSDimitry Andric return true; 10845ffd83dbSDimitry Andric } 10855ffd83dbSDimitry Andric 10865ffd83dbSDimitry Andric /// Determine if this cyclic phi is in a form that would have been generated by 10875ffd83dbSDimitry Andric /// LSR. We don't care if the phi was actually expanded in this pass, as long 10885ffd83dbSDimitry Andric /// as it is in a low-cost form, for example, no implied multiplication. This 10895ffd83dbSDimitry Andric /// should match any patterns generated by getAddRecExprPHILiterally and 10905ffd83dbSDimitry Andric /// expandAddtoGEP. 10915ffd83dbSDimitry Andric bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 10925ffd83dbSDimitry Andric const Loop *L) { 10935ffd83dbSDimitry Andric for(Instruction *IVOper = IncV; 10945ffd83dbSDimitry Andric (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 10955ffd83dbSDimitry Andric /*allowScale=*/false));) { 10965ffd83dbSDimitry Andric if (IVOper == PN) 10975ffd83dbSDimitry Andric return true; 10985ffd83dbSDimitry Andric } 10995ffd83dbSDimitry Andric return false; 11005ffd83dbSDimitry Andric } 11015ffd83dbSDimitry Andric 11025ffd83dbSDimitry Andric /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 11035ffd83dbSDimitry Andric /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 11045ffd83dbSDimitry Andric /// need to materialize IV increments elsewhere to handle difficult situations. 11055ffd83dbSDimitry Andric Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 11065ffd83dbSDimitry Andric Type *ExpandTy, Type *IntTy, 11075ffd83dbSDimitry Andric bool useSubtract) { 11085ffd83dbSDimitry Andric Value *IncV; 11095ffd83dbSDimitry Andric // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 11105ffd83dbSDimitry Andric if (ExpandTy->isPointerTy()) { 11115ffd83dbSDimitry Andric PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 11125ffd83dbSDimitry Andric // If the step isn't constant, don't use an implicitly scaled GEP, because 11135ffd83dbSDimitry Andric // that would require a multiply inside the loop. 11145ffd83dbSDimitry Andric if (!isa<ConstantInt>(StepV)) 11155ffd83dbSDimitry Andric GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 11165ffd83dbSDimitry Andric GEPPtrTy->getAddressSpace()); 11175ffd83dbSDimitry Andric IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1118e8d8bef9SDimitry Andric if (IncV->getType() != PN->getType()) 11195ffd83dbSDimitry Andric IncV = Builder.CreateBitCast(IncV, PN->getType()); 11205ffd83dbSDimitry Andric } else { 11215ffd83dbSDimitry Andric IncV = useSubtract ? 11225ffd83dbSDimitry Andric Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 11235ffd83dbSDimitry Andric Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 11245ffd83dbSDimitry Andric } 11255ffd83dbSDimitry Andric return IncV; 11265ffd83dbSDimitry Andric } 11275ffd83dbSDimitry Andric 11285ffd83dbSDimitry Andric /// Check whether we can cheaply express the requested SCEV in terms of 11295ffd83dbSDimitry Andric /// the available PHI SCEV by truncation and/or inversion of the step. 11305ffd83dbSDimitry Andric static bool canBeCheaplyTransformed(ScalarEvolution &SE, 11315ffd83dbSDimitry Andric const SCEVAddRecExpr *Phi, 11325ffd83dbSDimitry Andric const SCEVAddRecExpr *Requested, 11335ffd83dbSDimitry Andric bool &InvertStep) { 1134fe6060f1SDimitry Andric // We can't transform to match a pointer PHI. 1135fe6060f1SDimitry Andric if (Phi->getType()->isPointerTy()) 1136fe6060f1SDimitry Andric return false; 1137fe6060f1SDimitry Andric 11385ffd83dbSDimitry Andric Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 11395ffd83dbSDimitry Andric Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 11405ffd83dbSDimitry Andric 11415ffd83dbSDimitry Andric if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 11425ffd83dbSDimitry Andric return false; 11435ffd83dbSDimitry Andric 11445ffd83dbSDimitry Andric // Try truncate it if necessary. 11455ffd83dbSDimitry Andric Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 11465ffd83dbSDimitry Andric if (!Phi) 11475ffd83dbSDimitry Andric return false; 11485ffd83dbSDimitry Andric 11495ffd83dbSDimitry Andric // Check whether truncation will help. 11505ffd83dbSDimitry Andric if (Phi == Requested) { 11515ffd83dbSDimitry Andric InvertStep = false; 11525ffd83dbSDimitry Andric return true; 11535ffd83dbSDimitry Andric } 11545ffd83dbSDimitry Andric 11555ffd83dbSDimitry Andric // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1156fe6060f1SDimitry Andric if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 11575ffd83dbSDimitry Andric InvertStep = true; 11585ffd83dbSDimitry Andric return true; 11595ffd83dbSDimitry Andric } 11605ffd83dbSDimitry Andric 11615ffd83dbSDimitry Andric return false; 11625ffd83dbSDimitry Andric } 11635ffd83dbSDimitry Andric 11645ffd83dbSDimitry Andric static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 11655ffd83dbSDimitry Andric if (!isa<IntegerType>(AR->getType())) 11665ffd83dbSDimitry Andric return false; 11675ffd83dbSDimitry Andric 11685ffd83dbSDimitry Andric unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 11695ffd83dbSDimitry Andric Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 11705ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 11715ffd83dbSDimitry Andric const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 11725ffd83dbSDimitry Andric SE.getSignExtendExpr(AR, WideTy)); 11735ffd83dbSDimitry Andric const SCEV *ExtendAfterOp = 11745ffd83dbSDimitry Andric SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 11755ffd83dbSDimitry Andric return ExtendAfterOp == OpAfterExtend; 11765ffd83dbSDimitry Andric } 11775ffd83dbSDimitry Andric 11785ffd83dbSDimitry Andric static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 11795ffd83dbSDimitry Andric if (!isa<IntegerType>(AR->getType())) 11805ffd83dbSDimitry Andric return false; 11815ffd83dbSDimitry Andric 11825ffd83dbSDimitry Andric unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 11835ffd83dbSDimitry Andric Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 11845ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 11855ffd83dbSDimitry Andric const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 11865ffd83dbSDimitry Andric SE.getZeroExtendExpr(AR, WideTy)); 11875ffd83dbSDimitry Andric const SCEV *ExtendAfterOp = 11885ffd83dbSDimitry Andric SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 11895ffd83dbSDimitry Andric return ExtendAfterOp == OpAfterExtend; 11905ffd83dbSDimitry Andric } 11915ffd83dbSDimitry Andric 11925ffd83dbSDimitry Andric /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 11935ffd83dbSDimitry Andric /// the base addrec, which is the addrec without any non-loop-dominating 11945ffd83dbSDimitry Andric /// values, and return the PHI. 11955ffd83dbSDimitry Andric PHINode * 11965ffd83dbSDimitry Andric SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 11975ffd83dbSDimitry Andric const Loop *L, 11985ffd83dbSDimitry Andric Type *ExpandTy, 11995ffd83dbSDimitry Andric Type *IntTy, 12005ffd83dbSDimitry Andric Type *&TruncTy, 12015ffd83dbSDimitry Andric bool &InvertStep) { 12025ffd83dbSDimitry Andric assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 12035ffd83dbSDimitry Andric 12045ffd83dbSDimitry Andric // Reuse a previously-inserted PHI, if present. 12055ffd83dbSDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 12065ffd83dbSDimitry Andric if (LatchBlock) { 12075ffd83dbSDimitry Andric PHINode *AddRecPhiMatch = nullptr; 12085ffd83dbSDimitry Andric Instruction *IncV = nullptr; 12095ffd83dbSDimitry Andric TruncTy = nullptr; 12105ffd83dbSDimitry Andric InvertStep = false; 12115ffd83dbSDimitry Andric 12125ffd83dbSDimitry Andric // Only try partially matching scevs that need truncation and/or 12135ffd83dbSDimitry Andric // step-inversion if we know this loop is outside the current loop. 12145ffd83dbSDimitry Andric bool TryNonMatchingSCEV = 12155ffd83dbSDimitry Andric IVIncInsertLoop && 12165ffd83dbSDimitry Andric SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 12175ffd83dbSDimitry Andric 12185ffd83dbSDimitry Andric for (PHINode &PN : L->getHeader()->phis()) { 12195ffd83dbSDimitry Andric if (!SE.isSCEVable(PN.getType())) 12205ffd83dbSDimitry Andric continue; 12215ffd83dbSDimitry Andric 1222e8d8bef9SDimitry Andric // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1223e8d8bef9SDimitry Andric // PHI has no meaning at all. 1224e8d8bef9SDimitry Andric if (!PN.isComplete()) { 1225fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 1226e8d8bef9SDimitry Andric DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1227e8d8bef9SDimitry Andric continue; 1228e8d8bef9SDimitry Andric } 1229e8d8bef9SDimitry Andric 12305ffd83dbSDimitry Andric const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 12315ffd83dbSDimitry Andric if (!PhiSCEV) 12325ffd83dbSDimitry Andric continue; 12335ffd83dbSDimitry Andric 12345ffd83dbSDimitry Andric bool IsMatchingSCEV = PhiSCEV == Normalized; 12355ffd83dbSDimitry Andric // We only handle truncation and inversion of phi recurrences for the 12365ffd83dbSDimitry Andric // expanded expression if the expanded expression's loop dominates the 12375ffd83dbSDimitry Andric // loop we insert to. Check now, so we can bail out early. 12385ffd83dbSDimitry Andric if (!IsMatchingSCEV && !TryNonMatchingSCEV) 12395ffd83dbSDimitry Andric continue; 12405ffd83dbSDimitry Andric 12415ffd83dbSDimitry Andric // TODO: this possibly can be reworked to avoid this cast at all. 12425ffd83dbSDimitry Andric Instruction *TempIncV = 12435ffd83dbSDimitry Andric dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 12445ffd83dbSDimitry Andric if (!TempIncV) 12455ffd83dbSDimitry Andric continue; 12465ffd83dbSDimitry Andric 12475ffd83dbSDimitry Andric // Check whether we can reuse this PHI node. 12485ffd83dbSDimitry Andric if (LSRMode) { 12495ffd83dbSDimitry Andric if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 12505ffd83dbSDimitry Andric continue; 12515ffd83dbSDimitry Andric } else { 12525ffd83dbSDimitry Andric if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 12535ffd83dbSDimitry Andric continue; 12545ffd83dbSDimitry Andric } 12555ffd83dbSDimitry Andric 12565ffd83dbSDimitry Andric // Stop if we have found an exact match SCEV. 12575ffd83dbSDimitry Andric if (IsMatchingSCEV) { 12585ffd83dbSDimitry Andric IncV = TempIncV; 12595ffd83dbSDimitry Andric TruncTy = nullptr; 12605ffd83dbSDimitry Andric InvertStep = false; 12615ffd83dbSDimitry Andric AddRecPhiMatch = &PN; 12625ffd83dbSDimitry Andric break; 12635ffd83dbSDimitry Andric } 12645ffd83dbSDimitry Andric 12655ffd83dbSDimitry Andric // Try whether the phi can be translated into the requested form 12665ffd83dbSDimitry Andric // (truncated and/or offset by a constant). 12675ffd83dbSDimitry Andric if ((!TruncTy || InvertStep) && 12685ffd83dbSDimitry Andric canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 12695ffd83dbSDimitry Andric // Record the phi node. But don't stop we might find an exact match 12705ffd83dbSDimitry Andric // later. 12715ffd83dbSDimitry Andric AddRecPhiMatch = &PN; 12725ffd83dbSDimitry Andric IncV = TempIncV; 12735ffd83dbSDimitry Andric TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 12745ffd83dbSDimitry Andric } 12755ffd83dbSDimitry Andric } 12765ffd83dbSDimitry Andric 12775ffd83dbSDimitry Andric if (AddRecPhiMatch) { 12785ffd83dbSDimitry Andric // Ok, the add recurrence looks usable. 12795ffd83dbSDimitry Andric // Remember this PHI, even in post-inc mode. 12805ffd83dbSDimitry Andric InsertedValues.insert(AddRecPhiMatch); 12815ffd83dbSDimitry Andric // Remember the increment. 12825ffd83dbSDimitry Andric rememberInstruction(IncV); 1283e8d8bef9SDimitry Andric // Those values were not actually inserted but re-used. 1284e8d8bef9SDimitry Andric ReusedValues.insert(AddRecPhiMatch); 1285e8d8bef9SDimitry Andric ReusedValues.insert(IncV); 12865ffd83dbSDimitry Andric return AddRecPhiMatch; 12875ffd83dbSDimitry Andric } 12885ffd83dbSDimitry Andric } 12895ffd83dbSDimitry Andric 12905ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 12915ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 12925ffd83dbSDimitry Andric 12935ffd83dbSDimitry Andric // Another AddRec may need to be recursively expanded below. For example, if 12945ffd83dbSDimitry Andric // this AddRec is quadratic, the StepV may itself be an AddRec in this 12955ffd83dbSDimitry Andric // loop. Remove this loop from the PostIncLoops set before expanding such 12965ffd83dbSDimitry Andric // AddRecs. Otherwise, we cannot find a valid position for the step 12975ffd83dbSDimitry Andric // (i.e. StepV can never dominate its loop header). Ideally, we could do 12985ffd83dbSDimitry Andric // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 12995ffd83dbSDimitry Andric // so it's not worth implementing SmallPtrSet::swap. 13005ffd83dbSDimitry Andric PostIncLoopSet SavedPostIncLoops = PostIncLoops; 13015ffd83dbSDimitry Andric PostIncLoops.clear(); 13025ffd83dbSDimitry Andric 13035ffd83dbSDimitry Andric // Expand code for the start value into the loop preheader. 13045ffd83dbSDimitry Andric assert(L->getLoopPreheader() && 13055ffd83dbSDimitry Andric "Can't expand add recurrences without a loop preheader!"); 1306e8d8bef9SDimitry Andric Value *StartV = 1307e8d8bef9SDimitry Andric expandCodeForImpl(Normalized->getStart(), ExpandTy, 1308*bdd1243dSDimitry Andric L->getLoopPreheader()->getTerminator()); 13095ffd83dbSDimitry Andric 13105ffd83dbSDimitry Andric // StartV must have been be inserted into L's preheader to dominate the new 13115ffd83dbSDimitry Andric // phi. 13125ffd83dbSDimitry Andric assert(!isa<Instruction>(StartV) || 13135ffd83dbSDimitry Andric SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 13145ffd83dbSDimitry Andric L->getHeader())); 13155ffd83dbSDimitry Andric 13165ffd83dbSDimitry Andric // Expand code for the step value. Do this before creating the PHI so that PHI 13175ffd83dbSDimitry Andric // reuse code doesn't see an incomplete PHI. 13185ffd83dbSDimitry Andric const SCEV *Step = Normalized->getStepRecurrence(SE); 13195ffd83dbSDimitry Andric // If the stride is negative, insert a sub instead of an add for the increment 13205ffd83dbSDimitry Andric // (unless it's a constant, because subtracts of constants are canonicalized 13215ffd83dbSDimitry Andric // to adds). 13225ffd83dbSDimitry Andric bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 13235ffd83dbSDimitry Andric if (useSubtract) 13245ffd83dbSDimitry Andric Step = SE.getNegativeSCEV(Step); 13255ffd83dbSDimitry Andric // Expand the step somewhere that dominates the loop header. 1326e8d8bef9SDimitry Andric Value *StepV = expandCodeForImpl( 1327*bdd1243dSDimitry Andric Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 13285ffd83dbSDimitry Andric 13295ffd83dbSDimitry Andric // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 13305ffd83dbSDimitry Andric // we actually do emit an addition. It does not apply if we emit a 13315ffd83dbSDimitry Andric // subtraction. 13325ffd83dbSDimitry Andric bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 13335ffd83dbSDimitry Andric bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 13345ffd83dbSDimitry Andric 13355ffd83dbSDimitry Andric // Create the PHI. 13365ffd83dbSDimitry Andric BasicBlock *Header = L->getHeader(); 13375ffd83dbSDimitry Andric Builder.SetInsertPoint(Header, Header->begin()); 13385ffd83dbSDimitry Andric pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 13395ffd83dbSDimitry Andric PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 13405ffd83dbSDimitry Andric Twine(IVName) + ".iv"); 13415ffd83dbSDimitry Andric 13425ffd83dbSDimitry Andric // Create the step instructions and populate the PHI. 13435ffd83dbSDimitry Andric for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 13445ffd83dbSDimitry Andric BasicBlock *Pred = *HPI; 13455ffd83dbSDimitry Andric 13465ffd83dbSDimitry Andric // Add a start value. 13475ffd83dbSDimitry Andric if (!L->contains(Pred)) { 13485ffd83dbSDimitry Andric PN->addIncoming(StartV, Pred); 13495ffd83dbSDimitry Andric continue; 13505ffd83dbSDimitry Andric } 13515ffd83dbSDimitry Andric 13525ffd83dbSDimitry Andric // Create a step value and add it to the PHI. 13535ffd83dbSDimitry Andric // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 13545ffd83dbSDimitry Andric // instructions at IVIncInsertPos. 13555ffd83dbSDimitry Andric Instruction *InsertPos = L == IVIncInsertLoop ? 13565ffd83dbSDimitry Andric IVIncInsertPos : Pred->getTerminator(); 13575ffd83dbSDimitry Andric Builder.SetInsertPoint(InsertPos); 13585ffd83dbSDimitry Andric Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 13595ffd83dbSDimitry Andric 13605ffd83dbSDimitry Andric if (isa<OverflowingBinaryOperator>(IncV)) { 13615ffd83dbSDimitry Andric if (IncrementIsNUW) 13625ffd83dbSDimitry Andric cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 13635ffd83dbSDimitry Andric if (IncrementIsNSW) 13645ffd83dbSDimitry Andric cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 13655ffd83dbSDimitry Andric } 13665ffd83dbSDimitry Andric PN->addIncoming(IncV, Pred); 13675ffd83dbSDimitry Andric } 13685ffd83dbSDimitry Andric 13695ffd83dbSDimitry Andric // After expanding subexpressions, restore the PostIncLoops set so the caller 13705ffd83dbSDimitry Andric // can ensure that IVIncrement dominates the current uses. 13715ffd83dbSDimitry Andric PostIncLoops = SavedPostIncLoops; 13725ffd83dbSDimitry Andric 1373fe6060f1SDimitry Andric // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1374fe6060f1SDimitry Andric // effective when we are able to use an IV inserted here, so record it. 13755ffd83dbSDimitry Andric InsertedValues.insert(PN); 1376fe6060f1SDimitry Andric InsertedIVs.push_back(PN); 13775ffd83dbSDimitry Andric return PN; 13785ffd83dbSDimitry Andric } 13795ffd83dbSDimitry Andric 13805ffd83dbSDimitry Andric Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 13815ffd83dbSDimitry Andric Type *STy = S->getType(); 13825ffd83dbSDimitry Andric Type *IntTy = SE.getEffectiveSCEVType(STy); 13835ffd83dbSDimitry Andric const Loop *L = S->getLoop(); 13845ffd83dbSDimitry Andric 13855ffd83dbSDimitry Andric // Determine a normalized form of this expression, which is the expression 13865ffd83dbSDimitry Andric // before any post-inc adjustment is made. 13875ffd83dbSDimitry Andric const SCEVAddRecExpr *Normalized = S; 13885ffd83dbSDimitry Andric if (PostIncLoops.count(L)) { 13895ffd83dbSDimitry Andric PostIncLoopSet Loops; 13905ffd83dbSDimitry Andric Loops.insert(L); 13915ffd83dbSDimitry Andric Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 13925ffd83dbSDimitry Andric } 13935ffd83dbSDimitry Andric 13945ffd83dbSDimitry Andric // Strip off any non-loop-dominating component from the addrec start. 13955ffd83dbSDimitry Andric const SCEV *Start = Normalized->getStart(); 13965ffd83dbSDimitry Andric const SCEV *PostLoopOffset = nullptr; 13975ffd83dbSDimitry Andric if (!SE.properlyDominates(Start, L->getHeader())) { 13985ffd83dbSDimitry Andric PostLoopOffset = Start; 13995ffd83dbSDimitry Andric Start = SE.getConstant(Normalized->getType(), 0); 14005ffd83dbSDimitry Andric Normalized = cast<SCEVAddRecExpr>( 14015ffd83dbSDimitry Andric SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 14025ffd83dbSDimitry Andric Normalized->getLoop(), 14035ffd83dbSDimitry Andric Normalized->getNoWrapFlags(SCEV::FlagNW))); 14045ffd83dbSDimitry Andric } 14055ffd83dbSDimitry Andric 14065ffd83dbSDimitry Andric // Strip off any non-loop-dominating component from the addrec step. 14075ffd83dbSDimitry Andric const SCEV *Step = Normalized->getStepRecurrence(SE); 14085ffd83dbSDimitry Andric const SCEV *PostLoopScale = nullptr; 14095ffd83dbSDimitry Andric if (!SE.dominates(Step, L->getHeader())) { 14105ffd83dbSDimitry Andric PostLoopScale = Step; 14115ffd83dbSDimitry Andric Step = SE.getConstant(Normalized->getType(), 1); 14125ffd83dbSDimitry Andric if (!Start->isZero()) { 14135ffd83dbSDimitry Andric // The normalization below assumes that Start is constant zero, so if 14145ffd83dbSDimitry Andric // it isn't re-associate Start to PostLoopOffset. 14155ffd83dbSDimitry Andric assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 14165ffd83dbSDimitry Andric PostLoopOffset = Start; 14175ffd83dbSDimitry Andric Start = SE.getConstant(Normalized->getType(), 0); 14185ffd83dbSDimitry Andric } 14195ffd83dbSDimitry Andric Normalized = 14205ffd83dbSDimitry Andric cast<SCEVAddRecExpr>(SE.getAddRecExpr( 14215ffd83dbSDimitry Andric Start, Step, Normalized->getLoop(), 14225ffd83dbSDimitry Andric Normalized->getNoWrapFlags(SCEV::FlagNW))); 14235ffd83dbSDimitry Andric } 14245ffd83dbSDimitry Andric 14255ffd83dbSDimitry Andric // Expand the core addrec. If we need post-loop scaling, force it to 14265ffd83dbSDimitry Andric // expand to an integer type to avoid the need for additional casting. 14275ffd83dbSDimitry Andric Type *ExpandTy = PostLoopScale ? IntTy : STy; 14285ffd83dbSDimitry Andric // We can't use a pointer type for the addrec if the pointer type is 14295ffd83dbSDimitry Andric // non-integral. 14305ffd83dbSDimitry Andric Type *AddRecPHIExpandTy = 14315ffd83dbSDimitry Andric DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 14325ffd83dbSDimitry Andric 14335ffd83dbSDimitry Andric // In some cases, we decide to reuse an existing phi node but need to truncate 14345ffd83dbSDimitry Andric // it and/or invert the step. 14355ffd83dbSDimitry Andric Type *TruncTy = nullptr; 14365ffd83dbSDimitry Andric bool InvertStep = false; 14375ffd83dbSDimitry Andric PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 14385ffd83dbSDimitry Andric IntTy, TruncTy, InvertStep); 14395ffd83dbSDimitry Andric 14405ffd83dbSDimitry Andric // Accommodate post-inc mode, if necessary. 14415ffd83dbSDimitry Andric Value *Result; 14425ffd83dbSDimitry Andric if (!PostIncLoops.count(L)) 14435ffd83dbSDimitry Andric Result = PN; 14445ffd83dbSDimitry Andric else { 14455ffd83dbSDimitry Andric // In PostInc mode, use the post-incremented value. 14465ffd83dbSDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 14475ffd83dbSDimitry Andric assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 14485ffd83dbSDimitry Andric Result = PN->getIncomingValueForBlock(LatchBlock); 14495ffd83dbSDimitry Andric 1450e8d8bef9SDimitry Andric // We might be introducing a new use of the post-inc IV that is not poison 1451e8d8bef9SDimitry Andric // safe, in which case we should drop poison generating flags. Only keep 1452e8d8bef9SDimitry Andric // those flags for which SCEV has proven that they always hold. 1453e8d8bef9SDimitry Andric if (isa<OverflowingBinaryOperator>(Result)) { 1454e8d8bef9SDimitry Andric auto *I = cast<Instruction>(Result); 1455e8d8bef9SDimitry Andric if (!S->hasNoUnsignedWrap()) 1456e8d8bef9SDimitry Andric I->setHasNoUnsignedWrap(false); 1457e8d8bef9SDimitry Andric if (!S->hasNoSignedWrap()) 1458e8d8bef9SDimitry Andric I->setHasNoSignedWrap(false); 1459e8d8bef9SDimitry Andric } 1460e8d8bef9SDimitry Andric 14615ffd83dbSDimitry Andric // For an expansion to use the postinc form, the client must call 14625ffd83dbSDimitry Andric // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 14635ffd83dbSDimitry Andric // or dominated by IVIncInsertPos. 14645ffd83dbSDimitry Andric if (isa<Instruction>(Result) && 14655ffd83dbSDimitry Andric !SE.DT.dominates(cast<Instruction>(Result), 14665ffd83dbSDimitry Andric &*Builder.GetInsertPoint())) { 14675ffd83dbSDimitry Andric // The induction variable's postinc expansion does not dominate this use. 14685ffd83dbSDimitry Andric // IVUsers tries to prevent this case, so it is rare. However, it can 14695ffd83dbSDimitry Andric // happen when an IVUser outside the loop is not dominated by the latch 14705ffd83dbSDimitry Andric // block. Adjusting IVIncInsertPos before expansion begins cannot handle 14715ffd83dbSDimitry Andric // all cases. Consider a phi outside whose operand is replaced during 14725ffd83dbSDimitry Andric // expansion with the value of the postinc user. Without fundamentally 14735ffd83dbSDimitry Andric // changing the way postinc users are tracked, the only remedy is 14745ffd83dbSDimitry Andric // inserting an extra IV increment. StepV might fold into PostLoopOffset, 14755ffd83dbSDimitry Andric // but hopefully expandCodeFor handles that. 14765ffd83dbSDimitry Andric bool useSubtract = 14775ffd83dbSDimitry Andric !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 14785ffd83dbSDimitry Andric if (useSubtract) 14795ffd83dbSDimitry Andric Step = SE.getNegativeSCEV(Step); 14805ffd83dbSDimitry Andric Value *StepV; 14815ffd83dbSDimitry Andric { 14825ffd83dbSDimitry Andric // Expand the step somewhere that dominates the loop header. 14835ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 1484e8d8bef9SDimitry Andric StepV = expandCodeForImpl( 1485*bdd1243dSDimitry Andric Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 14865ffd83dbSDimitry Andric } 14875ffd83dbSDimitry Andric Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 14885ffd83dbSDimitry Andric } 14895ffd83dbSDimitry Andric } 14905ffd83dbSDimitry Andric 14915ffd83dbSDimitry Andric // We have decided to reuse an induction variable of a dominating loop. Apply 14925ffd83dbSDimitry Andric // truncation and/or inversion of the step. 14935ffd83dbSDimitry Andric if (TruncTy) { 14945ffd83dbSDimitry Andric Type *ResTy = Result->getType(); 14955ffd83dbSDimitry Andric // Normalize the result type. 14965ffd83dbSDimitry Andric if (ResTy != SE.getEffectiveSCEVType(ResTy)) 14975ffd83dbSDimitry Andric Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 14985ffd83dbSDimitry Andric // Truncate the result. 1499e8d8bef9SDimitry Andric if (TruncTy != Result->getType()) 15005ffd83dbSDimitry Andric Result = Builder.CreateTrunc(Result, TruncTy); 1501e8d8bef9SDimitry Andric 15025ffd83dbSDimitry Andric // Invert the result. 1503e8d8bef9SDimitry Andric if (InvertStep) 1504e8d8bef9SDimitry Andric Result = Builder.CreateSub( 1505*bdd1243dSDimitry Andric expandCodeForImpl(Normalized->getStart(), TruncTy), Result); 15065ffd83dbSDimitry Andric } 15075ffd83dbSDimitry Andric 15085ffd83dbSDimitry Andric // Re-apply any non-loop-dominating scale. 15095ffd83dbSDimitry Andric if (PostLoopScale) { 15105ffd83dbSDimitry Andric assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 15115ffd83dbSDimitry Andric Result = InsertNoopCastOfTo(Result, IntTy); 15125ffd83dbSDimitry Andric Result = Builder.CreateMul(Result, 1513*bdd1243dSDimitry Andric expandCodeForImpl(PostLoopScale, IntTy)); 15145ffd83dbSDimitry Andric } 15155ffd83dbSDimitry Andric 15165ffd83dbSDimitry Andric // Re-apply any non-loop-dominating offset. 15175ffd83dbSDimitry Andric if (PostLoopOffset) { 15185ffd83dbSDimitry Andric if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 15195ffd83dbSDimitry Andric if (Result->getType()->isIntegerTy()) { 1520*bdd1243dSDimitry Andric Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy); 15215ffd83dbSDimitry Andric Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 15225ffd83dbSDimitry Andric } else { 15235ffd83dbSDimitry Andric Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 15245ffd83dbSDimitry Andric } 15255ffd83dbSDimitry Andric } else { 15265ffd83dbSDimitry Andric Result = InsertNoopCastOfTo(Result, IntTy); 1527e8d8bef9SDimitry Andric Result = Builder.CreateAdd( 1528*bdd1243dSDimitry Andric Result, expandCodeForImpl(PostLoopOffset, IntTy)); 15295ffd83dbSDimitry Andric } 15305ffd83dbSDimitry Andric } 15315ffd83dbSDimitry Andric 15325ffd83dbSDimitry Andric return Result; 15335ffd83dbSDimitry Andric } 15345ffd83dbSDimitry Andric 15355ffd83dbSDimitry Andric Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 15365ffd83dbSDimitry Andric // In canonical mode we compute the addrec as an expression of a canonical IV 15375ffd83dbSDimitry Andric // using evaluateAtIteration and expand the resulting SCEV expression. This 1538*bdd1243dSDimitry Andric // way we avoid introducing new IVs to carry on the computation of the addrec 15395ffd83dbSDimitry Andric // throughout the loop. 15405ffd83dbSDimitry Andric // 15415ffd83dbSDimitry Andric // For nested addrecs evaluateAtIteration might need a canonical IV of a 15425ffd83dbSDimitry Andric // type wider than the addrec itself. Emitting a canonical IV of the 15435ffd83dbSDimitry Andric // proper type might produce non-legal types, for example expanding an i64 15445ffd83dbSDimitry Andric // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 15455ffd83dbSDimitry Andric // back to non-canonical mode for nested addrecs. 15465ffd83dbSDimitry Andric if (!CanonicalMode || (S->getNumOperands() > 2)) 15475ffd83dbSDimitry Andric return expandAddRecExprLiterally(S); 15485ffd83dbSDimitry Andric 15495ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 15505ffd83dbSDimitry Andric const Loop *L = S->getLoop(); 15515ffd83dbSDimitry Andric 15525ffd83dbSDimitry Andric // First check for an existing canonical IV in a suitable type. 15535ffd83dbSDimitry Andric PHINode *CanonicalIV = nullptr; 15545ffd83dbSDimitry Andric if (PHINode *PN = L->getCanonicalInductionVariable()) 15555ffd83dbSDimitry Andric if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 15565ffd83dbSDimitry Andric CanonicalIV = PN; 15575ffd83dbSDimitry Andric 15585ffd83dbSDimitry Andric // Rewrite an AddRec in terms of the canonical induction variable, if 15595ffd83dbSDimitry Andric // its type is more narrow. 15605ffd83dbSDimitry Andric if (CanonicalIV && 1561fe6060f1SDimitry Andric SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1562fe6060f1SDimitry Andric !S->getType()->isPointerTy()) { 15635ffd83dbSDimitry Andric SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 15645ffd83dbSDimitry Andric for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1565*bdd1243dSDimitry Andric NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 15665ffd83dbSDimitry Andric Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 15675ffd83dbSDimitry Andric S->getNoWrapFlags(SCEV::FlagNW))); 15685ffd83dbSDimitry Andric BasicBlock::iterator NewInsertPt = 1569e8d8bef9SDimitry Andric findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1570e8d8bef9SDimitry Andric V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1571*bdd1243dSDimitry Andric &*NewInsertPt); 15725ffd83dbSDimitry Andric return V; 15735ffd83dbSDimitry Andric } 15745ffd83dbSDimitry Andric 15755ffd83dbSDimitry Andric // {X,+,F} --> X + {0,+,F} 15765ffd83dbSDimitry Andric if (!S->getStart()->isZero()) { 1577349cc55cSDimitry Andric if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) { 1578349cc55cSDimitry Andric Value *StartV = expand(SE.getPointerBase(S)); 1579349cc55cSDimitry Andric assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1580349cc55cSDimitry Andric return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV); 1581349cc55cSDimitry Andric } 1582349cc55cSDimitry Andric 1583e8d8bef9SDimitry Andric SmallVector<const SCEV *, 4> NewOps(S->operands()); 15845ffd83dbSDimitry Andric NewOps[0] = SE.getConstant(Ty, 0); 15855ffd83dbSDimitry Andric const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 15865ffd83dbSDimitry Andric S->getNoWrapFlags(SCEV::FlagNW)); 15875ffd83dbSDimitry Andric 15885ffd83dbSDimitry Andric // Just do a normal add. Pre-expand the operands to suppress folding. 15895ffd83dbSDimitry Andric // 15905ffd83dbSDimitry Andric // The LHS and RHS values are factored out of the expand call to make the 15915ffd83dbSDimitry Andric // output independent of the argument evaluation order. 15925ffd83dbSDimitry Andric const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 15935ffd83dbSDimitry Andric const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 15945ffd83dbSDimitry Andric return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 15955ffd83dbSDimitry Andric } 15965ffd83dbSDimitry Andric 15975ffd83dbSDimitry Andric // If we don't yet have a canonical IV, create one. 15985ffd83dbSDimitry Andric if (!CanonicalIV) { 15995ffd83dbSDimitry Andric // Create and insert the PHI node for the induction variable in the 16005ffd83dbSDimitry Andric // specified loop. 16015ffd83dbSDimitry Andric BasicBlock *Header = L->getHeader(); 16025ffd83dbSDimitry Andric pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 16035ffd83dbSDimitry Andric CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 16045ffd83dbSDimitry Andric &Header->front()); 16055ffd83dbSDimitry Andric rememberInstruction(CanonicalIV); 16065ffd83dbSDimitry Andric 16075ffd83dbSDimitry Andric SmallSet<BasicBlock *, 4> PredSeen; 16085ffd83dbSDimitry Andric Constant *One = ConstantInt::get(Ty, 1); 16095ffd83dbSDimitry Andric for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 16105ffd83dbSDimitry Andric BasicBlock *HP = *HPI; 16115ffd83dbSDimitry Andric if (!PredSeen.insert(HP).second) { 16125ffd83dbSDimitry Andric // There must be an incoming value for each predecessor, even the 16135ffd83dbSDimitry Andric // duplicates! 16145ffd83dbSDimitry Andric CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 16155ffd83dbSDimitry Andric continue; 16165ffd83dbSDimitry Andric } 16175ffd83dbSDimitry Andric 16185ffd83dbSDimitry Andric if (L->contains(HP)) { 16195ffd83dbSDimitry Andric // Insert a unit add instruction right before the terminator 16205ffd83dbSDimitry Andric // corresponding to the back-edge. 16215ffd83dbSDimitry Andric Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 16225ffd83dbSDimitry Andric "indvar.next", 16235ffd83dbSDimitry Andric HP->getTerminator()); 16245ffd83dbSDimitry Andric Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 16255ffd83dbSDimitry Andric rememberInstruction(Add); 16265ffd83dbSDimitry Andric CanonicalIV->addIncoming(Add, HP); 16275ffd83dbSDimitry Andric } else { 16285ffd83dbSDimitry Andric CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 16295ffd83dbSDimitry Andric } 16305ffd83dbSDimitry Andric } 16315ffd83dbSDimitry Andric } 16325ffd83dbSDimitry Andric 16335ffd83dbSDimitry Andric // {0,+,1} --> Insert a canonical induction variable into the loop! 16345ffd83dbSDimitry Andric if (S->isAffine() && S->getOperand(1)->isOne()) { 16355ffd83dbSDimitry Andric assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 16365ffd83dbSDimitry Andric "IVs with types different from the canonical IV should " 16375ffd83dbSDimitry Andric "already have been handled!"); 16385ffd83dbSDimitry Andric return CanonicalIV; 16395ffd83dbSDimitry Andric } 16405ffd83dbSDimitry Andric 16415ffd83dbSDimitry Andric // {0,+,F} --> {0,+,1} * F 16425ffd83dbSDimitry Andric 16435ffd83dbSDimitry Andric // If this is a simple linear addrec, emit it now as a special case. 16445ffd83dbSDimitry Andric if (S->isAffine()) // {0,+,F} --> i*F 16455ffd83dbSDimitry Andric return 16465ffd83dbSDimitry Andric expand(SE.getTruncateOrNoop( 16475ffd83dbSDimitry Andric SE.getMulExpr(SE.getUnknown(CanonicalIV), 16485ffd83dbSDimitry Andric SE.getNoopOrAnyExtend(S->getOperand(1), 16495ffd83dbSDimitry Andric CanonicalIV->getType())), 16505ffd83dbSDimitry Andric Ty)); 16515ffd83dbSDimitry Andric 16525ffd83dbSDimitry Andric // If this is a chain of recurrences, turn it into a closed form, using the 16535ffd83dbSDimitry Andric // folders, then expandCodeFor the closed form. This allows the folders to 16545ffd83dbSDimitry Andric // simplify the expression without having to build a bunch of special code 16555ffd83dbSDimitry Andric // into this folder. 16565ffd83dbSDimitry Andric const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 16575ffd83dbSDimitry Andric 16585ffd83dbSDimitry Andric // Promote S up to the canonical IV type, if the cast is foldable. 16595ffd83dbSDimitry Andric const SCEV *NewS = S; 16605ffd83dbSDimitry Andric const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 16615ffd83dbSDimitry Andric if (isa<SCEVAddRecExpr>(Ext)) 16625ffd83dbSDimitry Andric NewS = Ext; 16635ffd83dbSDimitry Andric 16645ffd83dbSDimitry Andric const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 16655ffd83dbSDimitry Andric 16665ffd83dbSDimitry Andric // Truncate the result down to the original type, if needed. 16675ffd83dbSDimitry Andric const SCEV *T = SE.getTruncateOrNoop(V, Ty); 16685ffd83dbSDimitry Andric return expand(T); 16695ffd83dbSDimitry Andric } 16705ffd83dbSDimitry Andric 1671e8d8bef9SDimitry Andric Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1672e8d8bef9SDimitry Andric Value *V = 1673*bdd1243dSDimitry Andric expandCodeForImpl(S->getOperand(), S->getOperand()->getType()); 1674fe6060f1SDimitry Andric return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1675fe6060f1SDimitry Andric GetOptimalInsertionPointForCastOf(V)); 1676e8d8bef9SDimitry Andric } 1677e8d8bef9SDimitry Andric 16785ffd83dbSDimitry Andric Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 16795ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1680e8d8bef9SDimitry Andric Value *V = expandCodeForImpl( 1681*bdd1243dSDimitry Andric S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1682*bdd1243dSDimitry Andric ); 1683e8d8bef9SDimitry Andric return Builder.CreateTrunc(V, Ty); 16845ffd83dbSDimitry Andric } 16855ffd83dbSDimitry Andric 16865ffd83dbSDimitry Andric Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 16875ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1688e8d8bef9SDimitry Andric Value *V = expandCodeForImpl( 1689*bdd1243dSDimitry Andric S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1690*bdd1243dSDimitry Andric ); 1691e8d8bef9SDimitry Andric return Builder.CreateZExt(V, Ty); 16925ffd83dbSDimitry Andric } 16935ffd83dbSDimitry Andric 16945ffd83dbSDimitry Andric Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 16955ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1696e8d8bef9SDimitry Andric Value *V = expandCodeForImpl( 1697*bdd1243dSDimitry Andric S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1698*bdd1243dSDimitry Andric ); 1699e8d8bef9SDimitry Andric return Builder.CreateSExt(V, Ty); 17005ffd83dbSDimitry Andric } 17015ffd83dbSDimitry Andric 170281ad6265SDimitry Andric Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 170381ad6265SDimitry Andric Intrinsic::ID IntrinID, Twine Name, 170481ad6265SDimitry Andric bool IsSequential) { 17055ffd83dbSDimitry Andric Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 17065ffd83dbSDimitry Andric Type *Ty = LHS->getType(); 170781ad6265SDimitry Andric if (IsSequential) 170881ad6265SDimitry Andric LHS = Builder.CreateFreeze(LHS); 17095ffd83dbSDimitry Andric for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1710*bdd1243dSDimitry Andric Value *RHS = expandCodeForImpl(S->getOperand(i), Ty); 171181ad6265SDimitry Andric if (IsSequential && i != 0) 171281ad6265SDimitry Andric RHS = Builder.CreateFreeze(RHS); 1713fe6060f1SDimitry Andric Value *Sel; 1714fe6060f1SDimitry Andric if (Ty->isIntegerTy()) 171581ad6265SDimitry Andric Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 171681ad6265SDimitry Andric /*FMFSource=*/nullptr, Name); 1717fe6060f1SDimitry Andric else { 171881ad6265SDimitry Andric Value *ICmp = 171981ad6265SDimitry Andric Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 172081ad6265SDimitry Andric Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1721fe6060f1SDimitry Andric } 17225ffd83dbSDimitry Andric LHS = Sel; 17235ffd83dbSDimitry Andric } 17245ffd83dbSDimitry Andric return LHS; 17255ffd83dbSDimitry Andric } 17265ffd83dbSDimitry Andric 172704eeddc0SDimitry Andric Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 172881ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 172904eeddc0SDimitry Andric } 173004eeddc0SDimitry Andric 173104eeddc0SDimitry Andric Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 173281ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 173304eeddc0SDimitry Andric } 173404eeddc0SDimitry Andric 173504eeddc0SDimitry Andric Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 173681ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 173704eeddc0SDimitry Andric } 173804eeddc0SDimitry Andric 173904eeddc0SDimitry Andric Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 174081ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 174104eeddc0SDimitry Andric } 174204eeddc0SDimitry Andric 174304eeddc0SDimitry Andric Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 174481ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 174504eeddc0SDimitry Andric } 174604eeddc0SDimitry Andric 1747e8d8bef9SDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1748*bdd1243dSDimitry Andric Instruction *IP) { 17495ffd83dbSDimitry Andric setInsertPoint(IP); 1750*bdd1243dSDimitry Andric Value *V = expandCodeForImpl(SH, Ty); 1751e8d8bef9SDimitry Andric return V; 17525ffd83dbSDimitry Andric } 17535ffd83dbSDimitry Andric 1754*bdd1243dSDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) { 17555ffd83dbSDimitry Andric // Expand the code for this SCEV. 17565ffd83dbSDimitry Andric Value *V = expand(SH); 1757e8d8bef9SDimitry Andric 17585ffd83dbSDimitry Andric if (Ty) { 17595ffd83dbSDimitry Andric assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 17605ffd83dbSDimitry Andric "non-trivial casts should be done with the SCEVs directly!"); 17615ffd83dbSDimitry Andric V = InsertNoopCastOfTo(V, Ty); 17625ffd83dbSDimitry Andric } 17635ffd83dbSDimitry Andric return V; 17645ffd83dbSDimitry Andric } 17655ffd83dbSDimitry Andric 176681ad6265SDimitry Andric Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 17675ffd83dbSDimitry Andric const Instruction *InsertPt) { 17685ffd83dbSDimitry Andric // If the expansion is not in CanonicalMode, and the SCEV contains any 17695ffd83dbSDimitry Andric // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 177081ad6265SDimitry Andric if (!CanonicalMode && SE.containsAddRecurrence(S)) 177181ad6265SDimitry Andric return nullptr; 177281ad6265SDimitry Andric 177381ad6265SDimitry Andric // If S is a constant, it may be worse to reuse an existing Value. 177481ad6265SDimitry Andric if (isa<SCEVConstant>(S)) 177581ad6265SDimitry Andric return nullptr; 177681ad6265SDimitry Andric 1777349cc55cSDimitry Andric // Choose a Value from the set which dominates the InsertPt. 1778349cc55cSDimitry Andric // InsertPt should be inside the Value's parent loop so as not to break 17795ffd83dbSDimitry Andric // the LCSSA form. 178081ad6265SDimitry Andric for (Value *V : SE.getSCEVValues(S)) { 178181ad6265SDimitry Andric Instruction *EntInst = dyn_cast<Instruction>(V); 1782349cc55cSDimitry Andric if (!EntInst) 1783349cc55cSDimitry Andric continue; 1784349cc55cSDimitry Andric 1785349cc55cSDimitry Andric assert(EntInst->getFunction() == InsertPt->getFunction()); 1786349cc55cSDimitry Andric if (S->getType() == V->getType() && 17875ffd83dbSDimitry Andric SE.DT.dominates(EntInst, InsertPt) && 17885ffd83dbSDimitry Andric (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 17894824e7fdSDimitry Andric SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 179081ad6265SDimitry Andric return V; 17915ffd83dbSDimitry Andric } 179281ad6265SDimitry Andric return nullptr; 17935ffd83dbSDimitry Andric } 17945ffd83dbSDimitry Andric 17955ffd83dbSDimitry Andric // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 17965ffd83dbSDimitry Andric // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 17975ffd83dbSDimitry Andric // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 17985ffd83dbSDimitry Andric // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 17995ffd83dbSDimitry Andric // the expansion will try to reuse Value from ExprValueMap, and only when it 18005ffd83dbSDimitry Andric // fails, expand the SCEV literally. 18015ffd83dbSDimitry Andric Value *SCEVExpander::expand(const SCEV *S) { 18025ffd83dbSDimitry Andric // Compute an insertion point for this SCEV object. Hoist the instructions 18035ffd83dbSDimitry Andric // as far out in the loop nest as possible. 18045ffd83dbSDimitry Andric Instruction *InsertPt = &*Builder.GetInsertPoint(); 18055ffd83dbSDimitry Andric 18065ffd83dbSDimitry Andric // We can move insertion point only if there is no div or rem operations 18075ffd83dbSDimitry Andric // otherwise we are risky to move it over the check for zero denominator. 18085ffd83dbSDimitry Andric auto SafeToHoist = [](const SCEV *S) { 18095ffd83dbSDimitry Andric return !SCEVExprContains(S, [](const SCEV *S) { 18105ffd83dbSDimitry Andric if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 18115ffd83dbSDimitry Andric if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 18125ffd83dbSDimitry Andric // Division by non-zero constants can be hoisted. 18135ffd83dbSDimitry Andric return SC->getValue()->isZero(); 18145ffd83dbSDimitry Andric // All other divisions should not be moved as they may be 18155ffd83dbSDimitry Andric // divisions by zero and should be kept within the 18165ffd83dbSDimitry Andric // conditions of the surrounding loops that guard their 18175ffd83dbSDimitry Andric // execution (see PR35406). 18185ffd83dbSDimitry Andric return true; 18195ffd83dbSDimitry Andric } 18205ffd83dbSDimitry Andric return false; 18215ffd83dbSDimitry Andric }); 18225ffd83dbSDimitry Andric }; 18235ffd83dbSDimitry Andric if (SafeToHoist(S)) { 18245ffd83dbSDimitry Andric for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 18255ffd83dbSDimitry Andric L = L->getParentLoop()) { 18265ffd83dbSDimitry Andric if (SE.isLoopInvariant(S, L)) { 18275ffd83dbSDimitry Andric if (!L) break; 18285ffd83dbSDimitry Andric if (BasicBlock *Preheader = L->getLoopPreheader()) 18295ffd83dbSDimitry Andric InsertPt = Preheader->getTerminator(); 18305ffd83dbSDimitry Andric else 18315ffd83dbSDimitry Andric // LSR sets the insertion point for AddRec start/step values to the 18325ffd83dbSDimitry Andric // block start to simplify value reuse, even though it's an invalid 18335ffd83dbSDimitry Andric // position. SCEVExpander must correct for this in all cases. 18345ffd83dbSDimitry Andric InsertPt = &*L->getHeader()->getFirstInsertionPt(); 18355ffd83dbSDimitry Andric } else { 18365ffd83dbSDimitry Andric // If the SCEV is computable at this level, insert it into the header 18375ffd83dbSDimitry Andric // after the PHIs (and after any other instructions that we've inserted 18385ffd83dbSDimitry Andric // there) so that it is guaranteed to dominate any user inside the loop. 18395ffd83dbSDimitry Andric if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 18405ffd83dbSDimitry Andric InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1841e8d8bef9SDimitry Andric 18425ffd83dbSDimitry Andric while (InsertPt->getIterator() != Builder.GetInsertPoint() && 18435ffd83dbSDimitry Andric (isInsertedInstruction(InsertPt) || 1844e8d8bef9SDimitry Andric isa<DbgInfoIntrinsic>(InsertPt))) { 18455ffd83dbSDimitry Andric InsertPt = &*std::next(InsertPt->getIterator()); 1846e8d8bef9SDimitry Andric } 18475ffd83dbSDimitry Andric break; 18485ffd83dbSDimitry Andric } 18495ffd83dbSDimitry Andric } 18505ffd83dbSDimitry Andric } 18515ffd83dbSDimitry Andric 18525ffd83dbSDimitry Andric // Check to see if we already expanded this here. 18535ffd83dbSDimitry Andric auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 18545ffd83dbSDimitry Andric if (I != InsertedExpressions.end()) 18555ffd83dbSDimitry Andric return I->second; 18565ffd83dbSDimitry Andric 18575ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 18585ffd83dbSDimitry Andric Builder.SetInsertPoint(InsertPt); 18595ffd83dbSDimitry Andric 18605ffd83dbSDimitry Andric // Expand the expression into instructions. 186181ad6265SDimitry Andric Value *V = FindValueInExprValueMap(S, InsertPt); 1862*bdd1243dSDimitry Andric if (!V) { 18635ffd83dbSDimitry Andric V = visit(S); 1864*bdd1243dSDimitry Andric V = fixupLCSSAFormFor(V); 1865*bdd1243dSDimitry Andric } else { 18664824e7fdSDimitry Andric // If we're reusing an existing instruction, we are effectively CSEing two 18674824e7fdSDimitry Andric // copies of the instruction (with potentially different flags). As such, 18684824e7fdSDimitry Andric // we need to drop any poison generating flags unless we can prove that 18694824e7fdSDimitry Andric // said flags must be valid for all new users. 18704824e7fdSDimitry Andric if (auto *I = dyn_cast<Instruction>(V)) 18714824e7fdSDimitry Andric if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)) 18724824e7fdSDimitry Andric I->dropPoisonGeneratingFlags(); 18734824e7fdSDimitry Andric } 18745ffd83dbSDimitry Andric // Remember the expanded value for this SCEV at this location. 18755ffd83dbSDimitry Andric // 18765ffd83dbSDimitry Andric // This is independent of PostIncLoops. The mapped value simply materializes 18775ffd83dbSDimitry Andric // the expression at this insertion point. If the mapped value happened to be 18785ffd83dbSDimitry Andric // a postinc expansion, it could be reused by a non-postinc user, but only if 18795ffd83dbSDimitry Andric // its insertion point was already at the head of the loop. 18805ffd83dbSDimitry Andric InsertedExpressions[std::make_pair(S, InsertPt)] = V; 18815ffd83dbSDimitry Andric return V; 18825ffd83dbSDimitry Andric } 18835ffd83dbSDimitry Andric 18845ffd83dbSDimitry Andric void SCEVExpander::rememberInstruction(Value *I) { 1885e8d8bef9SDimitry Andric auto DoInsert = [this](Value *V) { 18865ffd83dbSDimitry Andric if (!PostIncLoops.empty()) 1887e8d8bef9SDimitry Andric InsertedPostIncValues.insert(V); 18885ffd83dbSDimitry Andric else 1889e8d8bef9SDimitry Andric InsertedValues.insert(V); 1890e8d8bef9SDimitry Andric }; 1891e8d8bef9SDimitry Andric DoInsert(I); 18925ffd83dbSDimitry Andric } 18935ffd83dbSDimitry Andric 18945ffd83dbSDimitry Andric /// replaceCongruentIVs - Check for congruent phis in this loop header and 18955ffd83dbSDimitry Andric /// replace them with their most canonical representative. Return the number of 18965ffd83dbSDimitry Andric /// phis eliminated. 18975ffd83dbSDimitry Andric /// 18985ffd83dbSDimitry Andric /// This does not depend on any SCEVExpander state but should be used in 18995ffd83dbSDimitry Andric /// the same context that SCEVExpander is used. 19005ffd83dbSDimitry Andric unsigned 19015ffd83dbSDimitry Andric SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 19025ffd83dbSDimitry Andric SmallVectorImpl<WeakTrackingVH> &DeadInsts, 19035ffd83dbSDimitry Andric const TargetTransformInfo *TTI) { 19045ffd83dbSDimitry Andric // Find integer phis in order of increasing width. 19055ffd83dbSDimitry Andric SmallVector<PHINode*, 8> Phis; 19065ffd83dbSDimitry Andric for (PHINode &PN : L->getHeader()->phis()) 19075ffd83dbSDimitry Andric Phis.push_back(&PN); 19085ffd83dbSDimitry Andric 19095ffd83dbSDimitry Andric if (TTI) 1910349cc55cSDimitry Andric // Use stable_sort to preserve order of equivalent PHIs, so the order 1911349cc55cSDimitry Andric // of the sorted Phis is the same from run to run on the same loop. 1912349cc55cSDimitry Andric llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 19135ffd83dbSDimitry Andric // Put pointers at the back and make sure pointer < pointer = false. 19145ffd83dbSDimitry Andric if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 19155ffd83dbSDimitry Andric return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1916*bdd1243dSDimitry Andric return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1917*bdd1243dSDimitry Andric LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 19185ffd83dbSDimitry Andric }); 19195ffd83dbSDimitry Andric 19205ffd83dbSDimitry Andric unsigned NumElim = 0; 19215ffd83dbSDimitry Andric DenseMap<const SCEV *, PHINode *> ExprToIVMap; 19225ffd83dbSDimitry Andric // Process phis from wide to narrow. Map wide phis to their truncation 19235ffd83dbSDimitry Andric // so narrow phis can reuse them. 19245ffd83dbSDimitry Andric for (PHINode *Phi : Phis) { 19255ffd83dbSDimitry Andric auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 192681ad6265SDimitry Andric if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 19275ffd83dbSDimitry Andric return V; 19285ffd83dbSDimitry Andric if (!SE.isSCEVable(PN->getType())) 19295ffd83dbSDimitry Andric return nullptr; 19305ffd83dbSDimitry Andric auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 19315ffd83dbSDimitry Andric if (!Const) 19325ffd83dbSDimitry Andric return nullptr; 19335ffd83dbSDimitry Andric return Const->getValue(); 19345ffd83dbSDimitry Andric }; 19355ffd83dbSDimitry Andric 19365ffd83dbSDimitry Andric // Fold constant phis. They may be congruent to other constant phis and 19375ffd83dbSDimitry Andric // would confuse the logic below that expects proper IVs. 19385ffd83dbSDimitry Andric if (Value *V = SimplifyPHINode(Phi)) { 19395ffd83dbSDimitry Andric if (V->getType() != Phi->getType()) 19405ffd83dbSDimitry Andric continue; 1941*bdd1243dSDimitry Andric SE.forgetValue(Phi); 19425ffd83dbSDimitry Andric Phi->replaceAllUsesWith(V); 19435ffd83dbSDimitry Andric DeadInsts.emplace_back(Phi); 19445ffd83dbSDimitry Andric ++NumElim; 1945fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 1946fe6060f1SDimitry Andric dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1947fe6060f1SDimitry Andric << '\n'); 19485ffd83dbSDimitry Andric continue; 19495ffd83dbSDimitry Andric } 19505ffd83dbSDimitry Andric 19515ffd83dbSDimitry Andric if (!SE.isSCEVable(Phi->getType())) 19525ffd83dbSDimitry Andric continue; 19535ffd83dbSDimitry Andric 19545ffd83dbSDimitry Andric PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 19555ffd83dbSDimitry Andric if (!OrigPhiRef) { 19565ffd83dbSDimitry Andric OrigPhiRef = Phi; 19575ffd83dbSDimitry Andric if (Phi->getType()->isIntegerTy() && TTI && 19585ffd83dbSDimitry Andric TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 19595ffd83dbSDimitry Andric // This phi can be freely truncated to the narrowest phi type. Map the 19605ffd83dbSDimitry Andric // truncated expression to it so it will be reused for narrow types. 19615ffd83dbSDimitry Andric const SCEV *TruncExpr = 19625ffd83dbSDimitry Andric SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 19635ffd83dbSDimitry Andric ExprToIVMap[TruncExpr] = Phi; 19645ffd83dbSDimitry Andric } 19655ffd83dbSDimitry Andric continue; 19665ffd83dbSDimitry Andric } 19675ffd83dbSDimitry Andric 19685ffd83dbSDimitry Andric // Replacing a pointer phi with an integer phi or vice-versa doesn't make 19695ffd83dbSDimitry Andric // sense. 19705ffd83dbSDimitry Andric if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 19715ffd83dbSDimitry Andric continue; 19725ffd83dbSDimitry Andric 19735ffd83dbSDimitry Andric if (BasicBlock *LatchBlock = L->getLoopLatch()) { 19745ffd83dbSDimitry Andric Instruction *OrigInc = dyn_cast<Instruction>( 19755ffd83dbSDimitry Andric OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 19765ffd83dbSDimitry Andric Instruction *IsomorphicInc = 19775ffd83dbSDimitry Andric dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 19785ffd83dbSDimitry Andric 19795ffd83dbSDimitry Andric if (OrigInc && IsomorphicInc) { 19805ffd83dbSDimitry Andric // If this phi has the same width but is more canonical, replace the 19815ffd83dbSDimitry Andric // original with it. As part of the "more canonical" determination, 19825ffd83dbSDimitry Andric // respect a prior decision to use an IV chain. 19835ffd83dbSDimitry Andric if (OrigPhiRef->getType() == Phi->getType() && 19845ffd83dbSDimitry Andric !(ChainedPhis.count(Phi) || 19855ffd83dbSDimitry Andric isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 19865ffd83dbSDimitry Andric (ChainedPhis.count(Phi) || 19875ffd83dbSDimitry Andric isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 19885ffd83dbSDimitry Andric std::swap(OrigPhiRef, Phi); 19895ffd83dbSDimitry Andric std::swap(OrigInc, IsomorphicInc); 19905ffd83dbSDimitry Andric } 19915ffd83dbSDimitry Andric // Replacing the congruent phi is sufficient because acyclic 19925ffd83dbSDimitry Andric // redundancy elimination, CSE/GVN, should handle the 19935ffd83dbSDimitry Andric // rest. However, once SCEV proves that a phi is congruent, 19945ffd83dbSDimitry Andric // it's often the head of an IV user cycle that is isomorphic 19955ffd83dbSDimitry Andric // with the original phi. It's worth eagerly cleaning up the 19965ffd83dbSDimitry Andric // common case of a single IV increment so that DeleteDeadPHIs 19975ffd83dbSDimitry Andric // can remove cycles that had postinc uses. 1998*bdd1243dSDimitry Andric // Because we may potentially introduce a new use of OrigIV that didn't 1999*bdd1243dSDimitry Andric // exist before at this point, its poison flags need readjustment. 20005ffd83dbSDimitry Andric const SCEV *TruncExpr = 20015ffd83dbSDimitry Andric SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 20025ffd83dbSDimitry Andric if (OrigInc != IsomorphicInc && 20035ffd83dbSDimitry Andric TruncExpr == SE.getSCEV(IsomorphicInc) && 20045ffd83dbSDimitry Andric SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2005*bdd1243dSDimitry Andric hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 2006fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 2007fe6060f1SDimitry Andric DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 20085ffd83dbSDimitry Andric << *IsomorphicInc << '\n'); 20095ffd83dbSDimitry Andric Value *NewInc = OrigInc; 20105ffd83dbSDimitry Andric if (OrigInc->getType() != IsomorphicInc->getType()) { 20115ffd83dbSDimitry Andric Instruction *IP = nullptr; 20125ffd83dbSDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 20135ffd83dbSDimitry Andric IP = &*PN->getParent()->getFirstInsertionPt(); 20145ffd83dbSDimitry Andric else 20155ffd83dbSDimitry Andric IP = OrigInc->getNextNode(); 20165ffd83dbSDimitry Andric 20175ffd83dbSDimitry Andric IRBuilder<> Builder(IP); 20185ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 20195ffd83dbSDimitry Andric NewInc = Builder.CreateTruncOrBitCast( 20205ffd83dbSDimitry Andric OrigInc, IsomorphicInc->getType(), IVName); 20215ffd83dbSDimitry Andric } 20225ffd83dbSDimitry Andric IsomorphicInc->replaceAllUsesWith(NewInc); 20235ffd83dbSDimitry Andric DeadInsts.emplace_back(IsomorphicInc); 20245ffd83dbSDimitry Andric } 20255ffd83dbSDimitry Andric } 20265ffd83dbSDimitry Andric } 2027fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 2028fe6060f1SDimitry Andric dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2029fe6060f1SDimitry Andric << '\n'); 2030fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 2031fe6060f1SDimitry Andric DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 20325ffd83dbSDimitry Andric ++NumElim; 20335ffd83dbSDimitry Andric Value *NewIV = OrigPhiRef; 20345ffd83dbSDimitry Andric if (OrigPhiRef->getType() != Phi->getType()) { 20355ffd83dbSDimitry Andric IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 20365ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 20375ffd83dbSDimitry Andric NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 20385ffd83dbSDimitry Andric } 20395ffd83dbSDimitry Andric Phi->replaceAllUsesWith(NewIV); 20405ffd83dbSDimitry Andric DeadInsts.emplace_back(Phi); 20415ffd83dbSDimitry Andric } 20425ffd83dbSDimitry Andric return NumElim; 20435ffd83dbSDimitry Andric } 20445ffd83dbSDimitry Andric 204581ad6265SDimitry Andric Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S, 204681ad6265SDimitry Andric const Instruction *At, 20475ffd83dbSDimitry Andric Loop *L) { 20485ffd83dbSDimitry Andric using namespace llvm::PatternMatch; 20495ffd83dbSDimitry Andric 20505ffd83dbSDimitry Andric SmallVector<BasicBlock *, 4> ExitingBlocks; 20515ffd83dbSDimitry Andric L->getExitingBlocks(ExitingBlocks); 20525ffd83dbSDimitry Andric 20535ffd83dbSDimitry Andric // Look for suitable value in simple conditions at the loop exits. 20545ffd83dbSDimitry Andric for (BasicBlock *BB : ExitingBlocks) { 20555ffd83dbSDimitry Andric ICmpInst::Predicate Pred; 20565ffd83dbSDimitry Andric Instruction *LHS, *RHS; 20575ffd83dbSDimitry Andric 20585ffd83dbSDimitry Andric if (!match(BB->getTerminator(), 20595ffd83dbSDimitry Andric m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 20605ffd83dbSDimitry Andric m_BasicBlock(), m_BasicBlock()))) 20615ffd83dbSDimitry Andric continue; 20625ffd83dbSDimitry Andric 20635ffd83dbSDimitry Andric if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 206481ad6265SDimitry Andric return LHS; 20655ffd83dbSDimitry Andric 20665ffd83dbSDimitry Andric if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 206781ad6265SDimitry Andric return RHS; 20685ffd83dbSDimitry Andric } 20695ffd83dbSDimitry Andric 20705ffd83dbSDimitry Andric // Use expand's logic which is used for reusing a previous Value in 20714824e7fdSDimitry Andric // ExprValueMap. Note that we don't currently model the cost of 20724824e7fdSDimitry Andric // needing to drop poison generating flags on the instruction if we 20734824e7fdSDimitry Andric // want to reuse it. We effectively assume that has zero cost. 207481ad6265SDimitry Andric return FindValueInExprValueMap(S, At); 20755ffd83dbSDimitry Andric } 20765ffd83dbSDimitry Andric 2077fe6060f1SDimitry Andric template<typename T> static InstructionCost costAndCollectOperands( 2078e8d8bef9SDimitry Andric const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2079e8d8bef9SDimitry Andric TargetTransformInfo::TargetCostKind CostKind, 2080e8d8bef9SDimitry Andric SmallVectorImpl<SCEVOperand> &Worklist) { 2081e8d8bef9SDimitry Andric 2082e8d8bef9SDimitry Andric const T *S = cast<T>(WorkItem.S); 2083fe6060f1SDimitry Andric InstructionCost Cost = 0; 2084e8d8bef9SDimitry Andric // Object to help map SCEV operands to expanded IR instructions. 2085e8d8bef9SDimitry Andric struct OperationIndices { 2086e8d8bef9SDimitry Andric OperationIndices(unsigned Opc, size_t min, size_t max) : 2087e8d8bef9SDimitry Andric Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2088e8d8bef9SDimitry Andric unsigned Opcode; 2089e8d8bef9SDimitry Andric size_t MinIdx; 2090e8d8bef9SDimitry Andric size_t MaxIdx; 2091e8d8bef9SDimitry Andric }; 2092e8d8bef9SDimitry Andric 2093e8d8bef9SDimitry Andric // Collect the operations of all the instructions that will be needed to 2094e8d8bef9SDimitry Andric // expand the SCEVExpr. This is so that when we come to cost the operands, 2095e8d8bef9SDimitry Andric // we know what the generated user(s) will be. 2096e8d8bef9SDimitry Andric SmallVector<OperationIndices, 2> Operations; 2097e8d8bef9SDimitry Andric 2098fe6060f1SDimitry Andric auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2099e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, 0, 0); 2100e8d8bef9SDimitry Andric return TTI.getCastInstrCost(Opcode, S->getType(), 2101e8d8bef9SDimitry Andric S->getOperand(0)->getType(), 2102e8d8bef9SDimitry Andric TTI::CastContextHint::None, CostKind); 2103e8d8bef9SDimitry Andric }; 2104e8d8bef9SDimitry Andric 2105e8d8bef9SDimitry Andric auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2106fe6060f1SDimitry Andric unsigned MinIdx = 0, 2107fe6060f1SDimitry Andric unsigned MaxIdx = 1) -> InstructionCost { 2108e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2109e8d8bef9SDimitry Andric return NumRequired * 2110e8d8bef9SDimitry Andric TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2111e8d8bef9SDimitry Andric }; 2112e8d8bef9SDimitry Andric 2113fe6060f1SDimitry Andric auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2114fe6060f1SDimitry Andric unsigned MaxIdx) -> InstructionCost { 2115e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2116*bdd1243dSDimitry Andric Type *OpType = S->getType(); 2117e8d8bef9SDimitry Andric return NumRequired * TTI.getCmpSelInstrCost( 2118e8d8bef9SDimitry Andric Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2119e8d8bef9SDimitry Andric CmpInst::BAD_ICMP_PREDICATE, CostKind); 2120e8d8bef9SDimitry Andric }; 2121e8d8bef9SDimitry Andric 2122e8d8bef9SDimitry Andric switch (S->getSCEVType()) { 2123e8d8bef9SDimitry Andric case scCouldNotCompute: 2124e8d8bef9SDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2125e8d8bef9SDimitry Andric case scUnknown: 2126e8d8bef9SDimitry Andric case scConstant: 2127e8d8bef9SDimitry Andric return 0; 2128e8d8bef9SDimitry Andric case scPtrToInt: 2129e8d8bef9SDimitry Andric Cost = CastCost(Instruction::PtrToInt); 2130e8d8bef9SDimitry Andric break; 2131e8d8bef9SDimitry Andric case scTruncate: 2132e8d8bef9SDimitry Andric Cost = CastCost(Instruction::Trunc); 2133e8d8bef9SDimitry Andric break; 2134e8d8bef9SDimitry Andric case scZeroExtend: 2135e8d8bef9SDimitry Andric Cost = CastCost(Instruction::ZExt); 2136e8d8bef9SDimitry Andric break; 2137e8d8bef9SDimitry Andric case scSignExtend: 2138e8d8bef9SDimitry Andric Cost = CastCost(Instruction::SExt); 2139e8d8bef9SDimitry Andric break; 2140e8d8bef9SDimitry Andric case scUDivExpr: { 2141e8d8bef9SDimitry Andric unsigned Opcode = Instruction::UDiv; 2142e8d8bef9SDimitry Andric if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2143e8d8bef9SDimitry Andric if (SC->getAPInt().isPowerOf2()) 2144e8d8bef9SDimitry Andric Opcode = Instruction::LShr; 2145e8d8bef9SDimitry Andric Cost = ArithCost(Opcode, 1); 2146e8d8bef9SDimitry Andric break; 2147e8d8bef9SDimitry Andric } 2148e8d8bef9SDimitry Andric case scAddExpr: 2149e8d8bef9SDimitry Andric Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2150e8d8bef9SDimitry Andric break; 2151e8d8bef9SDimitry Andric case scMulExpr: 2152e8d8bef9SDimitry Andric // TODO: this is a very pessimistic cost modelling for Mul, 2153e8d8bef9SDimitry Andric // because of Bin Pow algorithm actually used by the expander, 2154e8d8bef9SDimitry Andric // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2155e8d8bef9SDimitry Andric Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2156e8d8bef9SDimitry Andric break; 2157e8d8bef9SDimitry Andric case scSMaxExpr: 2158e8d8bef9SDimitry Andric case scUMaxExpr: 2159e8d8bef9SDimitry Andric case scSMinExpr: 216004eeddc0SDimitry Andric case scUMinExpr: 216104eeddc0SDimitry Andric case scSequentialUMinExpr: { 2162fe6060f1SDimitry Andric // FIXME: should this ask the cost for Intrinsic's? 216304eeddc0SDimitry Andric // The reduction tree. 2164e8d8bef9SDimitry Andric Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2165e8d8bef9SDimitry Andric Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 216604eeddc0SDimitry Andric switch (S->getSCEVType()) { 216704eeddc0SDimitry Andric case scSequentialUMinExpr: { 216804eeddc0SDimitry Andric // The safety net against poison. 216904eeddc0SDimitry Andric // FIXME: this is broken. 217004eeddc0SDimitry Andric Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 217104eeddc0SDimitry Andric Cost += ArithCost(Instruction::Or, 217204eeddc0SDimitry Andric S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 217304eeddc0SDimitry Andric Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 217404eeddc0SDimitry Andric break; 217504eeddc0SDimitry Andric } 217604eeddc0SDimitry Andric default: 217704eeddc0SDimitry Andric assert(!isa<SCEVSequentialMinMaxExpr>(S) && 217804eeddc0SDimitry Andric "Unhandled SCEV expression type?"); 217904eeddc0SDimitry Andric break; 218004eeddc0SDimitry Andric } 2181e8d8bef9SDimitry Andric break; 2182e8d8bef9SDimitry Andric } 2183e8d8bef9SDimitry Andric case scAddRecExpr: { 2184e8d8bef9SDimitry Andric // In this polynominal, we may have some zero operands, and we shouldn't 2185*bdd1243dSDimitry Andric // really charge for those. So how many non-zero coefficients are there? 2186e8d8bef9SDimitry Andric int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2187e8d8bef9SDimitry Andric return !Op->isZero(); 2188e8d8bef9SDimitry Andric }); 2189e8d8bef9SDimitry Andric 2190e8d8bef9SDimitry Andric assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2191e8d8bef9SDimitry Andric assert(!(*std::prev(S->operands().end()))->isZero() && 2192e8d8bef9SDimitry Andric "Last operand should not be zero"); 2193e8d8bef9SDimitry Andric 2194*bdd1243dSDimitry Andric // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 2195e8d8bef9SDimitry Andric int NumNonZeroDegreeNonOneTerms = 2196e8d8bef9SDimitry Andric llvm::count_if(S->operands(), [](const SCEV *Op) { 2197e8d8bef9SDimitry Andric auto *SConst = dyn_cast<SCEVConstant>(Op); 2198e8d8bef9SDimitry Andric return !SConst || SConst->getAPInt().ugt(1); 2199e8d8bef9SDimitry Andric }); 2200e8d8bef9SDimitry Andric 2201e8d8bef9SDimitry Andric // Much like with normal add expr, the polynominal will require 2202e8d8bef9SDimitry Andric // one less addition than the number of it's terms. 2203fe6060f1SDimitry Andric InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2204e8d8bef9SDimitry Andric /*MinIdx*/ 1, /*MaxIdx*/ 1); 2205e8d8bef9SDimitry Andric // Here, *each* one of those will require a multiplication. 2206fe6060f1SDimitry Andric InstructionCost MulCost = 2207fe6060f1SDimitry Andric ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2208e8d8bef9SDimitry Andric Cost = AddCost + MulCost; 2209e8d8bef9SDimitry Andric 2210e8d8bef9SDimitry Andric // What is the degree of this polynominal? 2211e8d8bef9SDimitry Andric int PolyDegree = S->getNumOperands() - 1; 2212e8d8bef9SDimitry Andric assert(PolyDegree >= 1 && "Should be at least affine."); 2213e8d8bef9SDimitry Andric 2214e8d8bef9SDimitry Andric // The final term will be: 2215e8d8bef9SDimitry Andric // Op_{PolyDegree} * x ^ {PolyDegree} 2216e8d8bef9SDimitry Andric // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2217e8d8bef9SDimitry Andric // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2218e8d8bef9SDimitry Andric // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2219e8d8bef9SDimitry Andric // FIXME: this is conservatively correct, but might be overly pessimistic. 2220e8d8bef9SDimitry Andric Cost += MulCost * (PolyDegree - 1); 2221e8d8bef9SDimitry Andric break; 2222e8d8bef9SDimitry Andric } 2223e8d8bef9SDimitry Andric } 2224e8d8bef9SDimitry Andric 2225e8d8bef9SDimitry Andric for (auto &CostOp : Operations) { 2226e8d8bef9SDimitry Andric for (auto SCEVOp : enumerate(S->operands())) { 2227e8d8bef9SDimitry Andric // Clamp the index to account for multiple IR operations being chained. 2228e8d8bef9SDimitry Andric size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2229e8d8bef9SDimitry Andric size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2230e8d8bef9SDimitry Andric Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2231e8d8bef9SDimitry Andric } 2232e8d8bef9SDimitry Andric } 2233e8d8bef9SDimitry Andric return Cost; 2234e8d8bef9SDimitry Andric } 2235e8d8bef9SDimitry Andric 22365ffd83dbSDimitry Andric bool SCEVExpander::isHighCostExpansionHelper( 2237e8d8bef9SDimitry Andric const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2238fe6060f1SDimitry Andric InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2239e8d8bef9SDimitry Andric SmallPtrSetImpl<const SCEV *> &Processed, 2240e8d8bef9SDimitry Andric SmallVectorImpl<SCEVOperand> &Worklist) { 2241fe6060f1SDimitry Andric if (Cost > Budget) 22425ffd83dbSDimitry Andric return true; // Already run out of budget, give up. 22435ffd83dbSDimitry Andric 2244e8d8bef9SDimitry Andric const SCEV *S = WorkItem.S; 22455ffd83dbSDimitry Andric // Was the cost of expansion of this expression already accounted for? 2246e8d8bef9SDimitry Andric if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 22475ffd83dbSDimitry Andric return false; // We have already accounted for this expression. 22485ffd83dbSDimitry Andric 22495ffd83dbSDimitry Andric // If we can find an existing value for this scev available at the point "At" 22505ffd83dbSDimitry Andric // then consider the expression cheap. 22515ffd83dbSDimitry Andric if (getRelatedExistingExpansion(S, &At, L)) 22525ffd83dbSDimitry Andric return false; // Consider the expression to be free. 22535ffd83dbSDimitry Andric 22545ffd83dbSDimitry Andric TargetTransformInfo::TargetCostKind CostKind = 2255e8d8bef9SDimitry Andric L->getHeader()->getParent()->hasMinSize() 2256e8d8bef9SDimitry Andric ? TargetTransformInfo::TCK_CodeSize 2257e8d8bef9SDimitry Andric : TargetTransformInfo::TCK_RecipThroughput; 22585ffd83dbSDimitry Andric 22595ffd83dbSDimitry Andric switch (S->getSCEVType()) { 2260e8d8bef9SDimitry Andric case scCouldNotCompute: 2261e8d8bef9SDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2262e8d8bef9SDimitry Andric case scUnknown: 2263e8d8bef9SDimitry Andric // Assume to be zero-cost. 2264e8d8bef9SDimitry Andric return false; 2265e8d8bef9SDimitry Andric case scConstant: { 2266e8d8bef9SDimitry Andric // Only evalulate the costs of constants when optimizing for size. 2267e8d8bef9SDimitry Andric if (CostKind != TargetTransformInfo::TCK_CodeSize) 226804eeddc0SDimitry Andric return false; 2269e8d8bef9SDimitry Andric const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2270e8d8bef9SDimitry Andric Type *Ty = S->getType(); 2271fe6060f1SDimitry Andric Cost += TTI.getIntImmCostInst( 2272e8d8bef9SDimitry Andric WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2273fe6060f1SDimitry Andric return Cost > Budget; 2274e8d8bef9SDimitry Andric } 22755ffd83dbSDimitry Andric case scTruncate: 2276e8d8bef9SDimitry Andric case scPtrToInt: 22775ffd83dbSDimitry Andric case scZeroExtend: 2278e8d8bef9SDimitry Andric case scSignExtend: { 2279fe6060f1SDimitry Andric Cost += 2280e8d8bef9SDimitry Andric costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 22815ffd83dbSDimitry Andric return false; // Will answer upon next entry into this function. 22825ffd83dbSDimitry Andric } 2283e8d8bef9SDimitry Andric case scUDivExpr: { 22845ffd83dbSDimitry Andric // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 22855ffd83dbSDimitry Andric // HowManyLessThans produced to compute a precise expression, rather than a 22865ffd83dbSDimitry Andric // UDiv from the user's code. If we can't find a UDiv in the code with some 22875ffd83dbSDimitry Andric // simple searching, we need to account for it's cost. 22885ffd83dbSDimitry Andric 22895ffd83dbSDimitry Andric // At the beginning of this function we already tried to find existing 22905ffd83dbSDimitry Andric // value for plain 'S'. Now try to lookup 'S + 1' since it is common 22915ffd83dbSDimitry Andric // pattern involving division. This is just a simple search heuristic. 22925ffd83dbSDimitry Andric if (getRelatedExistingExpansion( 22935ffd83dbSDimitry Andric SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 22945ffd83dbSDimitry Andric return false; // Consider it to be free. 22955ffd83dbSDimitry Andric 2296fe6060f1SDimitry Andric Cost += 2297e8d8bef9SDimitry Andric costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 22985ffd83dbSDimitry Andric return false; // Will answer upon next entry into this function. 22995ffd83dbSDimitry Andric } 23005ffd83dbSDimitry Andric case scAddExpr: 23015ffd83dbSDimitry Andric case scMulExpr: 23025ffd83dbSDimitry Andric case scUMaxExpr: 2303e8d8bef9SDimitry Andric case scSMaxExpr: 23045ffd83dbSDimitry Andric case scUMinExpr: 230504eeddc0SDimitry Andric case scSMinExpr: 230604eeddc0SDimitry Andric case scSequentialUMinExpr: { 2307e8d8bef9SDimitry Andric assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 23085ffd83dbSDimitry Andric "Nary expr should have more than 1 operand."); 23095ffd83dbSDimitry Andric // The simple nary expr will require one less op (or pair of ops) 23105ffd83dbSDimitry Andric // than the number of it's terms. 2311fe6060f1SDimitry Andric Cost += 2312e8d8bef9SDimitry Andric costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2313fe6060f1SDimitry Andric return Cost > Budget; 23145ffd83dbSDimitry Andric } 2315e8d8bef9SDimitry Andric case scAddRecExpr: { 2316e8d8bef9SDimitry Andric assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2317e8d8bef9SDimitry Andric "Polynomial should be at least linear"); 2318fe6060f1SDimitry Andric Cost += costAndCollectOperands<SCEVAddRecExpr>( 2319e8d8bef9SDimitry Andric WorkItem, TTI, CostKind, Worklist); 2320fe6060f1SDimitry Andric return Cost > Budget; 2321e8d8bef9SDimitry Andric } 2322e8d8bef9SDimitry Andric } 2323e8d8bef9SDimitry Andric llvm_unreachable("Unknown SCEV kind!"); 23245ffd83dbSDimitry Andric } 23255ffd83dbSDimitry Andric 23265ffd83dbSDimitry Andric Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 23275ffd83dbSDimitry Andric Instruction *IP) { 23285ffd83dbSDimitry Andric assert(IP); 23295ffd83dbSDimitry Andric switch (Pred->getKind()) { 23305ffd83dbSDimitry Andric case SCEVPredicate::P_Union: 23315ffd83dbSDimitry Andric return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 233281ad6265SDimitry Andric case SCEVPredicate::P_Compare: 233381ad6265SDimitry Andric return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 23345ffd83dbSDimitry Andric case SCEVPredicate::P_Wrap: { 23355ffd83dbSDimitry Andric auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 23365ffd83dbSDimitry Andric return expandWrapPredicate(AddRecPred, IP); 23375ffd83dbSDimitry Andric } 23385ffd83dbSDimitry Andric } 23395ffd83dbSDimitry Andric llvm_unreachable("Unknown SCEV predicate type"); 23405ffd83dbSDimitry Andric } 23415ffd83dbSDimitry Andric 234281ad6265SDimitry Andric Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 23435ffd83dbSDimitry Andric Instruction *IP) { 2344e8d8bef9SDimitry Andric Value *Expr0 = 2345*bdd1243dSDimitry Andric expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2346e8d8bef9SDimitry Andric Value *Expr1 = 2347*bdd1243dSDimitry Andric expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP); 23485ffd83dbSDimitry Andric 23495ffd83dbSDimitry Andric Builder.SetInsertPoint(IP); 235081ad6265SDimitry Andric auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 235181ad6265SDimitry Andric auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 23525ffd83dbSDimitry Andric return I; 23535ffd83dbSDimitry Andric } 23545ffd83dbSDimitry Andric 23555ffd83dbSDimitry Andric Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 23565ffd83dbSDimitry Andric Instruction *Loc, bool Signed) { 23575ffd83dbSDimitry Andric assert(AR->isAffine() && "Cannot generate RT check for " 23585ffd83dbSDimitry Andric "non-affine expression"); 23595ffd83dbSDimitry Andric 236081ad6265SDimitry Andric // FIXME: It is highly suspicious that we're ignoring the predicates here. 236181ad6265SDimitry Andric SmallVector<const SCEVPredicate *, 4> Pred; 23625ffd83dbSDimitry Andric const SCEV *ExitCount = 23635ffd83dbSDimitry Andric SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 23645ffd83dbSDimitry Andric 2365e8d8bef9SDimitry Andric assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 23665ffd83dbSDimitry Andric 23675ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 23685ffd83dbSDimitry Andric const SCEV *Start = AR->getStart(); 23695ffd83dbSDimitry Andric 23705ffd83dbSDimitry Andric Type *ARTy = AR->getType(); 23715ffd83dbSDimitry Andric unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 23725ffd83dbSDimitry Andric unsigned DstBits = SE.getTypeSizeInBits(ARTy); 23735ffd83dbSDimitry Andric 23745ffd83dbSDimitry Andric // The expression {Start,+,Step} has nusw/nssw if 23755ffd83dbSDimitry Andric // Step < 0, Start - |Step| * Backedge <= Start 23765ffd83dbSDimitry Andric // Step >= 0, Start + |Step| * Backedge > Start 23775ffd83dbSDimitry Andric // and |Step| * Backedge doesn't unsigned overflow. 23785ffd83dbSDimitry Andric 23795ffd83dbSDimitry Andric IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 23805ffd83dbSDimitry Andric Builder.SetInsertPoint(Loc); 2381*bdd1243dSDimitry Andric Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc); 23825ffd83dbSDimitry Andric 23835ffd83dbSDimitry Andric IntegerType *Ty = 23845ffd83dbSDimitry Andric IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 23855ffd83dbSDimitry Andric 2386*bdd1243dSDimitry Andric Value *StepValue = expandCodeForImpl(Step, Ty, Loc); 2387e8d8bef9SDimitry Andric Value *NegStepValue = 2388*bdd1243dSDimitry Andric expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc); 2389*bdd1243dSDimitry Andric Value *StartValue = expandCodeForImpl(Start, ARTy, Loc); 23905ffd83dbSDimitry Andric 23915ffd83dbSDimitry Andric ConstantInt *Zero = 2392349cc55cSDimitry Andric ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 23935ffd83dbSDimitry Andric 23945ffd83dbSDimitry Andric Builder.SetInsertPoint(Loc); 23955ffd83dbSDimitry Andric // Compute |Step| 23965ffd83dbSDimitry Andric Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 23975ffd83dbSDimitry Andric Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 23985ffd83dbSDimitry Andric 239904eeddc0SDimitry Andric // Compute |Step| * Backedge 240004eeddc0SDimitry Andric // Compute: 240104eeddc0SDimitry Andric // 1. Start + |Step| * Backedge < Start 240204eeddc0SDimitry Andric // 2. Start - |Step| * Backedge > Start 240304eeddc0SDimitry Andric // 240404eeddc0SDimitry Andric // And select either 1. or 2. depending on whether step is positive or 240504eeddc0SDimitry Andric // negative. If Step is known to be positive or negative, only create 240604eeddc0SDimitry Andric // either 1. or 2. 240704eeddc0SDimitry Andric auto ComputeEndCheck = [&]() -> Value * { 240804eeddc0SDimitry Andric // Checking <u 0 is always false. 240904eeddc0SDimitry Andric if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 241004eeddc0SDimitry Andric return ConstantInt::getFalse(Loc->getContext()); 241104eeddc0SDimitry Andric 24125ffd83dbSDimitry Andric // Get the backedge taken count and truncate or extended to the AR type. 24135ffd83dbSDimitry Andric Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 24145ffd83dbSDimitry Andric 2415349cc55cSDimitry Andric Value *MulV, *OfMul; 2416349cc55cSDimitry Andric if (Step->isOne()) { 2417349cc55cSDimitry Andric // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2418349cc55cSDimitry Andric // needed, there is never an overflow, so to avoid artificially inflating 2419349cc55cSDimitry Andric // the cost of the check, directly emit the optimized IR. 2420349cc55cSDimitry Andric MulV = TruncTripCount; 2421349cc55cSDimitry Andric OfMul = ConstantInt::getFalse(MulV->getContext()); 2422349cc55cSDimitry Andric } else { 2423349cc55cSDimitry Andric auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2424349cc55cSDimitry Andric Intrinsic::umul_with_overflow, Ty); 242504eeddc0SDimitry Andric CallInst *Mul = 242604eeddc0SDimitry Andric Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2427349cc55cSDimitry Andric MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2428349cc55cSDimitry Andric OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2429349cc55cSDimitry Andric } 24305ffd83dbSDimitry Andric 24315ffd83dbSDimitry Andric Value *Add = nullptr, *Sub = nullptr; 243204eeddc0SDimitry Andric bool NeedPosCheck = !SE.isKnownNegative(Step); 243304eeddc0SDimitry Andric bool NeedNegCheck = !SE.isKnownPositive(Step); 243404eeddc0SDimitry Andric 2435349cc55cSDimitry Andric if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2436349cc55cSDimitry Andric StartValue = InsertNoopCastOfTo( 2437349cc55cSDimitry Andric StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace())); 2438349cc55cSDimitry Andric Value *NegMulV = Builder.CreateNeg(MulV); 243904eeddc0SDimitry Andric if (NeedPosCheck) 2440349cc55cSDimitry Andric Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 244104eeddc0SDimitry Andric if (NeedNegCheck) 2442349cc55cSDimitry Andric Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 24435ffd83dbSDimitry Andric } else { 244404eeddc0SDimitry Andric if (NeedPosCheck) 24455ffd83dbSDimitry Andric Add = Builder.CreateAdd(StartValue, MulV); 244604eeddc0SDimitry Andric if (NeedNegCheck) 24475ffd83dbSDimitry Andric Sub = Builder.CreateSub(StartValue, MulV); 24485ffd83dbSDimitry Andric } 24495ffd83dbSDimitry Andric 245004eeddc0SDimitry Andric Value *EndCompareLT = nullptr; 245104eeddc0SDimitry Andric Value *EndCompareGT = nullptr; 245204eeddc0SDimitry Andric Value *EndCheck = nullptr; 245304eeddc0SDimitry Andric if (NeedPosCheck) 245404eeddc0SDimitry Andric EndCheck = EndCompareLT = Builder.CreateICmp( 24555ffd83dbSDimitry Andric Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 245604eeddc0SDimitry Andric if (NeedNegCheck) 245704eeddc0SDimitry Andric EndCheck = EndCompareGT = Builder.CreateICmp( 245804eeddc0SDimitry Andric Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 245904eeddc0SDimitry Andric if (NeedPosCheck && NeedNegCheck) { 24605ffd83dbSDimitry Andric // Select the answer based on the sign of Step. 246104eeddc0SDimitry Andric EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 246204eeddc0SDimitry Andric } 246304eeddc0SDimitry Andric return Builder.CreateOr(EndCheck, OfMul); 246404eeddc0SDimitry Andric }; 246504eeddc0SDimitry Andric Value *EndCheck = ComputeEndCheck(); 24665ffd83dbSDimitry Andric 24675ffd83dbSDimitry Andric // If the backedge taken count type is larger than the AR type, 24685ffd83dbSDimitry Andric // check that we don't drop any bits by truncating it. If we are 24695ffd83dbSDimitry Andric // dropping bits, then we have overflow (unless the step is zero). 24705ffd83dbSDimitry Andric if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 24715ffd83dbSDimitry Andric auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 24725ffd83dbSDimitry Andric auto *BackedgeCheck = 24735ffd83dbSDimitry Andric Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 24745ffd83dbSDimitry Andric ConstantInt::get(Loc->getContext(), MaxVal)); 24755ffd83dbSDimitry Andric BackedgeCheck = Builder.CreateAnd( 24765ffd83dbSDimitry Andric BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 24775ffd83dbSDimitry Andric 24785ffd83dbSDimitry Andric EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 24795ffd83dbSDimitry Andric } 24805ffd83dbSDimitry Andric 248104eeddc0SDimitry Andric return EndCheck; 24825ffd83dbSDimitry Andric } 24835ffd83dbSDimitry Andric 24845ffd83dbSDimitry Andric Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 24855ffd83dbSDimitry Andric Instruction *IP) { 24865ffd83dbSDimitry Andric const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 24875ffd83dbSDimitry Andric Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 24885ffd83dbSDimitry Andric 24895ffd83dbSDimitry Andric // Add a check for NUSW 24905ffd83dbSDimitry Andric if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 24915ffd83dbSDimitry Andric NUSWCheck = generateOverflowCheck(A, IP, false); 24925ffd83dbSDimitry Andric 24935ffd83dbSDimitry Andric // Add a check for NSSW 24945ffd83dbSDimitry Andric if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 24955ffd83dbSDimitry Andric NSSWCheck = generateOverflowCheck(A, IP, true); 24965ffd83dbSDimitry Andric 24975ffd83dbSDimitry Andric if (NUSWCheck && NSSWCheck) 24985ffd83dbSDimitry Andric return Builder.CreateOr(NUSWCheck, NSSWCheck); 24995ffd83dbSDimitry Andric 25005ffd83dbSDimitry Andric if (NUSWCheck) 25015ffd83dbSDimitry Andric return NUSWCheck; 25025ffd83dbSDimitry Andric 25035ffd83dbSDimitry Andric if (NSSWCheck) 25045ffd83dbSDimitry Andric return NSSWCheck; 25055ffd83dbSDimitry Andric 25065ffd83dbSDimitry Andric return ConstantInt::getFalse(IP->getContext()); 25075ffd83dbSDimitry Andric } 25085ffd83dbSDimitry Andric 25095ffd83dbSDimitry Andric Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 25105ffd83dbSDimitry Andric Instruction *IP) { 25115ffd83dbSDimitry Andric // Loop over all checks in this set. 251204eeddc0SDimitry Andric SmallVector<Value *> Checks; 2513*bdd1243dSDimitry Andric for (const auto *Pred : Union->getPredicates()) { 251404eeddc0SDimitry Andric Checks.push_back(expandCodeForPredicate(Pred, IP)); 25155ffd83dbSDimitry Andric Builder.SetInsertPoint(IP); 25165ffd83dbSDimitry Andric } 25175ffd83dbSDimitry Andric 251804eeddc0SDimitry Andric if (Checks.empty()) 251904eeddc0SDimitry Andric return ConstantInt::getFalse(IP->getContext()); 252004eeddc0SDimitry Andric return Builder.CreateOr(Checks); 25215ffd83dbSDimitry Andric } 25225ffd83dbSDimitry Andric 2523*bdd1243dSDimitry Andric Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2524*bdd1243dSDimitry Andric auto *DefI = dyn_cast<Instruction>(V); 2525*bdd1243dSDimitry Andric if (!PreserveLCSSA || !DefI) 2526*bdd1243dSDimitry Andric return V; 2527e8d8bef9SDimitry Andric 2528*bdd1243dSDimitry Andric Instruction *InsertPt = &*Builder.GetInsertPoint(); 2529*bdd1243dSDimitry Andric Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2530*bdd1243dSDimitry Andric Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2531e8d8bef9SDimitry Andric if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2532*bdd1243dSDimitry Andric return V; 2533e8d8bef9SDimitry Andric 2534*bdd1243dSDimitry Andric // Create a temporary instruction to at the current insertion point, so we 2535*bdd1243dSDimitry Andric // can hand it off to the helper to create LCSSA PHIs if required for the 2536*bdd1243dSDimitry Andric // new use. 2537*bdd1243dSDimitry Andric // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2538*bdd1243dSDimitry Andric // would accept a insertion point and return an LCSSA phi for that 2539*bdd1243dSDimitry Andric // insertion point, so there is no need to insert & remove the temporary 2540*bdd1243dSDimitry Andric // instruction. 2541*bdd1243dSDimitry Andric Type *ToTy; 2542*bdd1243dSDimitry Andric if (DefI->getType()->isIntegerTy()) 2543*bdd1243dSDimitry Andric ToTy = DefI->getType()->getPointerTo(); 2544*bdd1243dSDimitry Andric else 2545*bdd1243dSDimitry Andric ToTy = Type::getInt32Ty(DefI->getContext()); 2546*bdd1243dSDimitry Andric Instruction *User = 2547*bdd1243dSDimitry Andric CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2548*bdd1243dSDimitry Andric auto RemoveUserOnExit = 2549*bdd1243dSDimitry Andric make_scope_exit([User]() { User->eraseFromParent(); }); 2550*bdd1243dSDimitry Andric 2551*bdd1243dSDimitry Andric SmallVector<Instruction *, 1> ToUpdate; 2552*bdd1243dSDimitry Andric ToUpdate.push_back(DefI); 2553e8d8bef9SDimitry Andric SmallVector<PHINode *, 16> PHIsToRemove; 2554e8d8bef9SDimitry Andric formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2555e8d8bef9SDimitry Andric for (PHINode *PN : PHIsToRemove) { 2556e8d8bef9SDimitry Andric if (!PN->use_empty()) 2557e8d8bef9SDimitry Andric continue; 2558e8d8bef9SDimitry Andric InsertedValues.erase(PN); 2559e8d8bef9SDimitry Andric InsertedPostIncValues.erase(PN); 2560e8d8bef9SDimitry Andric PN->eraseFromParent(); 2561e8d8bef9SDimitry Andric } 2562e8d8bef9SDimitry Andric 2563*bdd1243dSDimitry Andric return User->getOperand(0); 2564e8d8bef9SDimitry Andric } 2565e8d8bef9SDimitry Andric 25665ffd83dbSDimitry Andric namespace { 25675ffd83dbSDimitry Andric // Search for a SCEV subexpression that is not safe to expand. Any expression 25685ffd83dbSDimitry Andric // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 25695ffd83dbSDimitry Andric // UDiv expressions. We don't know if the UDiv is derived from an IR divide 25705ffd83dbSDimitry Andric // instruction, but the important thing is that we prove the denominator is 25715ffd83dbSDimitry Andric // nonzero before expansion. 25725ffd83dbSDimitry Andric // 25735ffd83dbSDimitry Andric // IVUsers already checks that IV-derived expressions are safe. So this check is 25745ffd83dbSDimitry Andric // only needed when the expression includes some subexpression that is not IV 25755ffd83dbSDimitry Andric // derived. 25765ffd83dbSDimitry Andric // 2577fcaf7f86SDimitry Andric // Currently, we only allow division by a value provably non-zero here. 25785ffd83dbSDimitry Andric // 25795ffd83dbSDimitry Andric // We cannot generally expand recurrences unless the step dominates the loop 25805ffd83dbSDimitry Andric // header. The expander handles the special case of affine recurrences by 25815ffd83dbSDimitry Andric // scaling the recurrence outside the loop, but this technique isn't generally 25825ffd83dbSDimitry Andric // applicable. Expanding a nested recurrence outside a loop requires computing 25835ffd83dbSDimitry Andric // binomial coefficients. This could be done, but the recurrence has to be in a 25845ffd83dbSDimitry Andric // perfectly reduced form, which can't be guaranteed. 25855ffd83dbSDimitry Andric struct SCEVFindUnsafe { 25865ffd83dbSDimitry Andric ScalarEvolution &SE; 2587349cc55cSDimitry Andric bool CanonicalMode; 258881ad6265SDimitry Andric bool IsUnsafe = false; 25895ffd83dbSDimitry Andric 2590349cc55cSDimitry Andric SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 259181ad6265SDimitry Andric : SE(SE), CanonicalMode(CanonicalMode) {} 25925ffd83dbSDimitry Andric 25935ffd83dbSDimitry Andric bool follow(const SCEV *S) { 25945ffd83dbSDimitry Andric if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2595fcaf7f86SDimitry Andric if (!SE.isKnownNonZero(D->getRHS())) { 25965ffd83dbSDimitry Andric IsUnsafe = true; 25975ffd83dbSDimitry Andric return false; 25985ffd83dbSDimitry Andric } 25995ffd83dbSDimitry Andric } 26005ffd83dbSDimitry Andric if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 26015ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 26025ffd83dbSDimitry Andric if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 26035ffd83dbSDimitry Andric IsUnsafe = true; 26045ffd83dbSDimitry Andric return false; 26055ffd83dbSDimitry Andric } 2606349cc55cSDimitry Andric 2607349cc55cSDimitry Andric // For non-affine addrecs or in non-canonical mode we need a preheader 2608349cc55cSDimitry Andric // to insert into. 2609349cc55cSDimitry Andric if (!AR->getLoop()->getLoopPreheader() && 2610349cc55cSDimitry Andric (!CanonicalMode || !AR->isAffine())) { 2611349cc55cSDimitry Andric IsUnsafe = true; 2612349cc55cSDimitry Andric return false; 2613349cc55cSDimitry Andric } 26145ffd83dbSDimitry Andric } 26155ffd83dbSDimitry Andric return true; 26165ffd83dbSDimitry Andric } 26175ffd83dbSDimitry Andric bool isDone() const { return IsUnsafe; } 26185ffd83dbSDimitry Andric }; 2619fcaf7f86SDimitry Andric } // namespace 26205ffd83dbSDimitry Andric 2621fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2622349cc55cSDimitry Andric SCEVFindUnsafe Search(SE, CanonicalMode); 26235ffd83dbSDimitry Andric visitAll(S, Search); 26245ffd83dbSDimitry Andric return !Search.IsUnsafe; 26255ffd83dbSDimitry Andric } 26265ffd83dbSDimitry Andric 2627fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2628fcaf7f86SDimitry Andric const Instruction *InsertionPoint) const { 2629fcaf7f86SDimitry Andric if (!isSafeToExpand(S)) 26305ffd83dbSDimitry Andric return false; 26315ffd83dbSDimitry Andric // We have to prove that the expanded site of S dominates InsertionPoint. 26325ffd83dbSDimitry Andric // This is easy when not in the same block, but hard when S is an instruction 26335ffd83dbSDimitry Andric // to be expanded somewhere inside the same block as our insertion point. 26345ffd83dbSDimitry Andric // What we really need here is something analogous to an OrderedBasicBlock, 26355ffd83dbSDimitry Andric // but for the moment, we paper over the problem by handling two common and 26365ffd83dbSDimitry Andric // cheap to check cases. 26375ffd83dbSDimitry Andric if (SE.properlyDominates(S, InsertionPoint->getParent())) 26385ffd83dbSDimitry Andric return true; 26395ffd83dbSDimitry Andric if (SE.dominates(S, InsertionPoint->getParent())) { 26405ffd83dbSDimitry Andric if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 26415ffd83dbSDimitry Andric return true; 26425ffd83dbSDimitry Andric if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2643fe6060f1SDimitry Andric if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 26445ffd83dbSDimitry Andric return true; 26455ffd83dbSDimitry Andric } 26465ffd83dbSDimitry Andric return false; 26475ffd83dbSDimitry Andric } 2648e8d8bef9SDimitry Andric 2649fe6060f1SDimitry Andric void SCEVExpanderCleaner::cleanup() { 2650e8d8bef9SDimitry Andric // Result is used, nothing to remove. 2651e8d8bef9SDimitry Andric if (ResultUsed) 2652e8d8bef9SDimitry Andric return; 2653e8d8bef9SDimitry Andric 2654e8d8bef9SDimitry Andric auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2655e8d8bef9SDimitry Andric #ifndef NDEBUG 2656e8d8bef9SDimitry Andric SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2657e8d8bef9SDimitry Andric InsertedInstructions.end()); 2658e8d8bef9SDimitry Andric (void)InsertedSet; 2659e8d8bef9SDimitry Andric #endif 2660e8d8bef9SDimitry Andric // Remove sets with value handles. 2661e8d8bef9SDimitry Andric Expander.clear(); 2662e8d8bef9SDimitry Andric 2663e8d8bef9SDimitry Andric // Remove all inserted instructions. 266404eeddc0SDimitry Andric for (Instruction *I : reverse(InsertedInstructions)) { 2665e8d8bef9SDimitry Andric #ifndef NDEBUG 2666e8d8bef9SDimitry Andric assert(all_of(I->users(), 2667e8d8bef9SDimitry Andric [&InsertedSet](Value *U) { 2668e8d8bef9SDimitry Andric return InsertedSet.contains(cast<Instruction>(U)); 2669e8d8bef9SDimitry Andric }) && 2670e8d8bef9SDimitry Andric "removed instruction should only be used by instructions inserted " 2671e8d8bef9SDimitry Andric "during expansion"); 2672e8d8bef9SDimitry Andric #endif 2673e8d8bef9SDimitry Andric assert(!I->getType()->isVoidTy() && 2674e8d8bef9SDimitry Andric "inserted instruction should have non-void types"); 2675*bdd1243dSDimitry Andric I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2676e8d8bef9SDimitry Andric I->eraseFromParent(); 2677e8d8bef9SDimitry Andric } 2678e8d8bef9SDimitry Andric } 2679