15ffd83dbSDimitry Andric //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 25ffd83dbSDimitry Andric // 35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 65ffd83dbSDimitry Andric // 75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 85ffd83dbSDimitry Andric // 95ffd83dbSDimitry Andric // This file contains the implementation of the scalar evolution expander, 105ffd83dbSDimitry Andric // which is used to generate the code corresponding to a given scalar evolution 115ffd83dbSDimitry Andric // expression. 125ffd83dbSDimitry Andric // 135ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 145ffd83dbSDimitry Andric 155ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 165ffd83dbSDimitry Andric #include "llvm/ADT/STLExtras.h" 17bdd1243dSDimitry Andric #include "llvm/ADT/ScopeExit.h" 185ffd83dbSDimitry Andric #include "llvm/ADT/SmallSet.h" 195ffd83dbSDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 205ffd83dbSDimitry Andric #include "llvm/Analysis/LoopInfo.h" 215ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 224824e7fdSDimitry Andric #include "llvm/Analysis/ValueTracking.h" 235ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h" 245ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h" 255ffd83dbSDimitry Andric #include "llvm/IR/IntrinsicInst.h" 265ffd83dbSDimitry Andric #include "llvm/IR/PatternMatch.h" 275ffd83dbSDimitry Andric #include "llvm/Support/CommandLine.h" 285ffd83dbSDimitry Andric #include "llvm/Support/raw_ostream.h" 29e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h" 305ffd83dbSDimitry Andric 31fe6060f1SDimitry Andric #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33fe6060f1SDimitry Andric #else 34fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35fe6060f1SDimitry Andric #endif 36fe6060f1SDimitry Andric 375ffd83dbSDimitry Andric using namespace llvm; 385ffd83dbSDimitry Andric 395ffd83dbSDimitry Andric cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 405ffd83dbSDimitry Andric "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 415ffd83dbSDimitry Andric cl::desc("When performing SCEV expansion only if it is cheap to do, this " 425ffd83dbSDimitry Andric "controls the budget that is considered cheap (default = 4)")); 435ffd83dbSDimitry Andric 445ffd83dbSDimitry Andric using namespace PatternMatch; 455ffd83dbSDimitry Andric 465ffd83dbSDimitry Andric /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47e8d8bef9SDimitry Andric /// reusing an existing cast if a suitable one (= dominating IP) exists, or 485ffd83dbSDimitry Andric /// creating a new one. 495ffd83dbSDimitry Andric Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 505ffd83dbSDimitry Andric Instruction::CastOps Op, 515ffd83dbSDimitry Andric BasicBlock::iterator IP) { 525ffd83dbSDimitry Andric // This function must be called with the builder having a valid insertion 535ffd83dbSDimitry Andric // point. It doesn't need to be the actual IP where the uses of the returned 545ffd83dbSDimitry Andric // cast will be added, but it must dominate such IP. 555ffd83dbSDimitry Andric // We use this precondition to produce a cast that will dominate all its 565ffd83dbSDimitry Andric // uses. In particular, this is crucial for the case where the builder's 575ffd83dbSDimitry Andric // insertion point *is* the point where we were asked to put the cast. 585ffd83dbSDimitry Andric // Since we don't know the builder's insertion point is actually 595ffd83dbSDimitry Andric // where the uses will be added (only that it dominates it), we are 605ffd83dbSDimitry Andric // not allowed to move it. 615ffd83dbSDimitry Andric BasicBlock::iterator BIP = Builder.GetInsertPoint(); 625ffd83dbSDimitry Andric 63fe6060f1SDimitry Andric Value *Ret = nullptr; 645ffd83dbSDimitry Andric 655ffd83dbSDimitry Andric // Check to see if there is already a cast! 66e8d8bef9SDimitry Andric for (User *U : V->users()) { 67e8d8bef9SDimitry Andric if (U->getType() != Ty) 68e8d8bef9SDimitry Andric continue; 69e8d8bef9SDimitry Andric CastInst *CI = dyn_cast<CastInst>(U); 70e8d8bef9SDimitry Andric if (!CI || CI->getOpcode() != Op) 71e8d8bef9SDimitry Andric continue; 72e8d8bef9SDimitry Andric 73e8d8bef9SDimitry Andric // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74e8d8bef9SDimitry Andric // the cast must also properly dominate the Builder's insertion point. 75e8d8bef9SDimitry Andric if (IP->getParent() == CI->getParent() && &*BIP != CI && 76e8d8bef9SDimitry Andric (&*IP == CI || CI->comesBefore(&*IP))) { 775ffd83dbSDimitry Andric Ret = CI; 785ffd83dbSDimitry Andric break; 795ffd83dbSDimitry Andric } 80e8d8bef9SDimitry Andric } 815ffd83dbSDimitry Andric 825ffd83dbSDimitry Andric // Create a new cast. 83e8d8bef9SDimitry Andric if (!Ret) { 84fe6060f1SDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 85fe6060f1SDimitry Andric Builder.SetInsertPoint(&*IP); 86fe6060f1SDimitry Andric Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87e8d8bef9SDimitry Andric } 885ffd83dbSDimitry Andric 895ffd83dbSDimitry Andric // We assert at the end of the function since IP might point to an 905ffd83dbSDimitry Andric // instruction with different dominance properties than a cast 915ffd83dbSDimitry Andric // (an invoke for example) and not dominate BIP (but the cast does). 92fe6060f1SDimitry Andric assert(!isa<Instruction>(Ret) || 93fe6060f1SDimitry Andric SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 945ffd83dbSDimitry Andric 955ffd83dbSDimitry Andric return Ret; 965ffd83dbSDimitry Andric } 975ffd83dbSDimitry Andric 98e8d8bef9SDimitry Andric BasicBlock::iterator 99fe6060f1SDimitry Andric SCEVExpander::findInsertPointAfter(Instruction *I, 100fe6060f1SDimitry Andric Instruction *MustDominate) const { 1015ffd83dbSDimitry Andric BasicBlock::iterator IP = ++I->getIterator(); 1025ffd83dbSDimitry Andric if (auto *II = dyn_cast<InvokeInst>(I)) 1035ffd83dbSDimitry Andric IP = II->getNormalDest()->begin(); 1045ffd83dbSDimitry Andric 1055ffd83dbSDimitry Andric while (isa<PHINode>(IP)) 1065ffd83dbSDimitry Andric ++IP; 1075ffd83dbSDimitry Andric 1085ffd83dbSDimitry Andric if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 1095ffd83dbSDimitry Andric ++IP; 1105ffd83dbSDimitry Andric } else if (isa<CatchSwitchInst>(IP)) { 111e8d8bef9SDimitry Andric IP = MustDominate->getParent()->getFirstInsertionPt(); 1125ffd83dbSDimitry Andric } else { 1135ffd83dbSDimitry Andric assert(!IP->isEHPad() && "unexpected eh pad!"); 1145ffd83dbSDimitry Andric } 1155ffd83dbSDimitry Andric 116e8d8bef9SDimitry Andric // Adjust insert point to be after instructions inserted by the expander, so 117e8d8bef9SDimitry Andric // we can re-use already inserted instructions. Avoid skipping past the 118e8d8bef9SDimitry Andric // original \p MustDominate, in case it is an inserted instruction. 119e8d8bef9SDimitry Andric while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120e8d8bef9SDimitry Andric ++IP; 121e8d8bef9SDimitry Andric 1225ffd83dbSDimitry Andric return IP; 1235ffd83dbSDimitry Andric } 1245ffd83dbSDimitry Andric 125fe6060f1SDimitry Andric BasicBlock::iterator 126fe6060f1SDimitry Andric SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127fe6060f1SDimitry Andric // Cast the argument at the beginning of the entry block, after 128fe6060f1SDimitry Andric // any bitcasts of other arguments. 129fe6060f1SDimitry Andric if (Argument *A = dyn_cast<Argument>(V)) { 130fe6060f1SDimitry Andric BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131fe6060f1SDimitry Andric while ((isa<BitCastInst>(IP) && 132fe6060f1SDimitry Andric isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133fe6060f1SDimitry Andric cast<BitCastInst>(IP)->getOperand(0) != A) || 134fe6060f1SDimitry Andric isa<DbgInfoIntrinsic>(IP)) 135fe6060f1SDimitry Andric ++IP; 136fe6060f1SDimitry Andric return IP; 137fe6060f1SDimitry Andric } 138fe6060f1SDimitry Andric 139fe6060f1SDimitry Andric // Cast the instruction immediately after the instruction. 140fe6060f1SDimitry Andric if (Instruction *I = dyn_cast<Instruction>(V)) 141fe6060f1SDimitry Andric return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142fe6060f1SDimitry Andric 143fe6060f1SDimitry Andric // Otherwise, this must be some kind of a constant, 144fe6060f1SDimitry Andric // so let's plop this cast into the function's entry block. 145fe6060f1SDimitry Andric assert(isa<Constant>(V) && 146fe6060f1SDimitry Andric "Expected the cast argument to be a global/constant"); 147fe6060f1SDimitry Andric return Builder.GetInsertBlock() 148fe6060f1SDimitry Andric ->getParent() 149fe6060f1SDimitry Andric ->getEntryBlock() 150fe6060f1SDimitry Andric .getFirstInsertionPt(); 151fe6060f1SDimitry Andric } 152fe6060f1SDimitry Andric 1535ffd83dbSDimitry Andric /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 1545ffd83dbSDimitry Andric /// which must be possible with a noop cast, doing what we can to share 1555ffd83dbSDimitry Andric /// the casts. 1565ffd83dbSDimitry Andric Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 1575ffd83dbSDimitry Andric Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 1585ffd83dbSDimitry Andric assert((Op == Instruction::BitCast || 1595ffd83dbSDimitry Andric Op == Instruction::PtrToInt || 1605ffd83dbSDimitry Andric Op == Instruction::IntToPtr) && 1615ffd83dbSDimitry Andric "InsertNoopCastOfTo cannot perform non-noop casts!"); 1625ffd83dbSDimitry Andric assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 1635ffd83dbSDimitry Andric "InsertNoopCastOfTo cannot change sizes!"); 1645ffd83dbSDimitry Andric 165e8d8bef9SDimitry Andric // inttoptr only works for integral pointers. For non-integral pointers, we 16606c3fb27SDimitry Andric // can create a GEP on null with the integral value as index. Note that 167e8d8bef9SDimitry Andric // it is safe to use GEP of null instead of inttoptr here, because only 168e8d8bef9SDimitry Andric // expressions already based on a GEP of null should be converted to pointers 169e8d8bef9SDimitry Andric // during expansion. 170e8d8bef9SDimitry Andric if (Op == Instruction::IntToPtr) { 171e8d8bef9SDimitry Andric auto *PtrTy = cast<PointerType>(Ty); 1727a6dacacSDimitry Andric if (DL.isNonIntegralPointerType(PtrTy)) 1737a6dacacSDimitry Andric return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep"); 174e8d8bef9SDimitry Andric } 1755ffd83dbSDimitry Andric // Short-circuit unnecessary bitcasts. 1765ffd83dbSDimitry Andric if (Op == Instruction::BitCast) { 1775ffd83dbSDimitry Andric if (V->getType() == Ty) 1785ffd83dbSDimitry Andric return V; 1795ffd83dbSDimitry Andric if (CastInst *CI = dyn_cast<CastInst>(V)) { 1805ffd83dbSDimitry Andric if (CI->getOperand(0)->getType() == Ty) 1815ffd83dbSDimitry Andric return CI->getOperand(0); 1825ffd83dbSDimitry Andric } 1835ffd83dbSDimitry Andric } 1845ffd83dbSDimitry Andric // Short-circuit unnecessary inttoptr<->ptrtoint casts. 1855ffd83dbSDimitry Andric if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 1865ffd83dbSDimitry Andric SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 1875ffd83dbSDimitry Andric if (CastInst *CI = dyn_cast<CastInst>(V)) 1885ffd83dbSDimitry Andric if ((CI->getOpcode() == Instruction::PtrToInt || 1895ffd83dbSDimitry Andric CI->getOpcode() == Instruction::IntToPtr) && 1905ffd83dbSDimitry Andric SE.getTypeSizeInBits(CI->getType()) == 1915ffd83dbSDimitry Andric SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 1925ffd83dbSDimitry Andric return CI->getOperand(0); 1935ffd83dbSDimitry Andric if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1945ffd83dbSDimitry Andric if ((CE->getOpcode() == Instruction::PtrToInt || 1955ffd83dbSDimitry Andric CE->getOpcode() == Instruction::IntToPtr) && 1965ffd83dbSDimitry Andric SE.getTypeSizeInBits(CE->getType()) == 1975ffd83dbSDimitry Andric SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 1985ffd83dbSDimitry Andric return CE->getOperand(0); 1995ffd83dbSDimitry Andric } 2005ffd83dbSDimitry Andric 2015ffd83dbSDimitry Andric // Fold a cast of a constant. 2025ffd83dbSDimitry Andric if (Constant *C = dyn_cast<Constant>(V)) 2035ffd83dbSDimitry Andric return ConstantExpr::getCast(Op, C, Ty); 2045ffd83dbSDimitry Andric 205fe6060f1SDimitry Andric // Try to reuse existing cast, or insert one. 206fe6060f1SDimitry Andric return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 2075ffd83dbSDimitry Andric } 2085ffd83dbSDimitry Andric 2095ffd83dbSDimitry Andric /// InsertBinop - Insert the specified binary operator, doing a small amount 2105ffd83dbSDimitry Andric /// of work to avoid inserting an obviously redundant operation, and hoisting 2115ffd83dbSDimitry Andric /// to an outer loop when the opportunity is there and it is safe. 2125ffd83dbSDimitry Andric Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 2135ffd83dbSDimitry Andric Value *LHS, Value *RHS, 2145ffd83dbSDimitry Andric SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 2155ffd83dbSDimitry Andric // Fold a binop with constant operands. 2165ffd83dbSDimitry Andric if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2175ffd83dbSDimitry Andric if (Constant *CRHS = dyn_cast<Constant>(RHS)) 218753f127fSDimitry Andric if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 219753f127fSDimitry Andric return Res; 2205ffd83dbSDimitry Andric 2215ffd83dbSDimitry Andric // Do a quick scan to see if we have this binop nearby. If so, reuse it. 2225ffd83dbSDimitry Andric unsigned ScanLimit = 6; 2235ffd83dbSDimitry Andric BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 2245ffd83dbSDimitry Andric // Scanning starts from the last instruction before the insertion point. 2255ffd83dbSDimitry Andric BasicBlock::iterator IP = Builder.GetInsertPoint(); 2265ffd83dbSDimitry Andric if (IP != BlockBegin) { 2275ffd83dbSDimitry Andric --IP; 2285ffd83dbSDimitry Andric for (; ScanLimit; --IP, --ScanLimit) { 2295ffd83dbSDimitry Andric // Don't count dbg.value against the ScanLimit, to avoid perturbing the 2305ffd83dbSDimitry Andric // generated code. 2315ffd83dbSDimitry Andric if (isa<DbgInfoIntrinsic>(IP)) 2325ffd83dbSDimitry Andric ScanLimit++; 2335ffd83dbSDimitry Andric 2345ffd83dbSDimitry Andric auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 2355ffd83dbSDimitry Andric // Ensure that no-wrap flags match. 2365ffd83dbSDimitry Andric if (isa<OverflowingBinaryOperator>(I)) { 2375ffd83dbSDimitry Andric if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 2385ffd83dbSDimitry Andric return true; 2395ffd83dbSDimitry Andric if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 2405ffd83dbSDimitry Andric return true; 2415ffd83dbSDimitry Andric } 2425ffd83dbSDimitry Andric // Conservatively, do not use any instruction which has any of exact 2435ffd83dbSDimitry Andric // flags installed. 2445ffd83dbSDimitry Andric if (isa<PossiblyExactOperator>(I) && I->isExact()) 2455ffd83dbSDimitry Andric return true; 2465ffd83dbSDimitry Andric return false; 2475ffd83dbSDimitry Andric }; 2485ffd83dbSDimitry Andric if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 2495ffd83dbSDimitry Andric IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 2505ffd83dbSDimitry Andric return &*IP; 2515ffd83dbSDimitry Andric if (IP == BlockBegin) break; 2525ffd83dbSDimitry Andric } 2535ffd83dbSDimitry Andric } 2545ffd83dbSDimitry Andric 2555ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 2565ffd83dbSDimitry Andric DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 2575ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 2585ffd83dbSDimitry Andric 2595ffd83dbSDimitry Andric if (IsSafeToHoist) { 2605ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 2615ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 2625ffd83dbSDimitry Andric if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 2635ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 2645ffd83dbSDimitry Andric if (!Preheader) break; 2655ffd83dbSDimitry Andric 2665ffd83dbSDimitry Andric // Ok, move up a level. 2675ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 2685ffd83dbSDimitry Andric } 2695ffd83dbSDimitry Andric } 2705ffd83dbSDimitry Andric 2715ffd83dbSDimitry Andric // If we haven't found this binop, insert it. 27281ad6265SDimitry Andric // TODO: Use the Builder, which will make CreateBinOp below fold with 27381ad6265SDimitry Andric // InstSimplifyFolder. 27481ad6265SDimitry Andric Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 2755ffd83dbSDimitry Andric BO->setDebugLoc(Loc); 2765ffd83dbSDimitry Andric if (Flags & SCEV::FlagNUW) 2775ffd83dbSDimitry Andric BO->setHasNoUnsignedWrap(); 2785ffd83dbSDimitry Andric if (Flags & SCEV::FlagNSW) 2795ffd83dbSDimitry Andric BO->setHasNoSignedWrap(); 2805ffd83dbSDimitry Andric 2815ffd83dbSDimitry Andric return BO; 2825ffd83dbSDimitry Andric } 2835ffd83dbSDimitry Andric 2845ffd83dbSDimitry Andric /// expandAddToGEP - Expand an addition expression with a pointer type into 2855ffd83dbSDimitry Andric /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 2865ffd83dbSDimitry Andric /// BasicAliasAnalysis and other passes analyze the result. See the rules 2875ffd83dbSDimitry Andric /// for getelementptr vs. inttoptr in 2885ffd83dbSDimitry Andric /// http://llvm.org/docs/LangRef.html#pointeraliasing 2895ffd83dbSDimitry Andric /// for details. 2905ffd83dbSDimitry Andric /// 2915ffd83dbSDimitry Andric /// Design note: The correctness of using getelementptr here depends on 2925ffd83dbSDimitry Andric /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 2935ffd83dbSDimitry Andric /// they may introduce pointer arithmetic which may not be safely converted 2945ffd83dbSDimitry Andric /// into getelementptr. 2955ffd83dbSDimitry Andric /// 2965ffd83dbSDimitry Andric /// Design note: It might seem desirable for this function to be more 2975ffd83dbSDimitry Andric /// loop-aware. If some of the indices are loop-invariant while others 2985ffd83dbSDimitry Andric /// aren't, it might seem desirable to emit multiple GEPs, keeping the 2995ffd83dbSDimitry Andric /// loop-invariant portions of the overall computation outside the loop. 3005ffd83dbSDimitry Andric /// However, there are a few reasons this is not done here. Hoisting simple 3015ffd83dbSDimitry Andric /// arithmetic is a low-level optimization that often isn't very 3025ffd83dbSDimitry Andric /// important until late in the optimization process. In fact, passes 3035ffd83dbSDimitry Andric /// like InstructionCombining will combine GEPs, even if it means 3045ffd83dbSDimitry Andric /// pushing loop-invariant computation down into loops, so even if the 3055ffd83dbSDimitry Andric /// GEPs were split here, the work would quickly be undone. The 3065ffd83dbSDimitry Andric /// LoopStrengthReduction pass, which is usually run quite late (and 3075ffd83dbSDimitry Andric /// after the last InstructionCombining pass), takes care of hoisting 3085ffd83dbSDimitry Andric /// loop-invariant portions of expressions, after considering what 3095ffd83dbSDimitry Andric /// can be folded using target addressing modes. 3105ffd83dbSDimitry Andric /// 3115f757f3fSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) { 3125ffd83dbSDimitry Andric assert(!isa<Instruction>(V) || 3135ffd83dbSDimitry Andric SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 3145ffd83dbSDimitry Andric 3155f757f3fSDimitry Andric Value *Idx = expand(Offset); 3165ffd83dbSDimitry Andric 3175ffd83dbSDimitry Andric // Fold a GEP with constant operands. 3185ffd83dbSDimitry Andric if (Constant *CLHS = dyn_cast<Constant>(V)) 3195ffd83dbSDimitry Andric if (Constant *CRHS = dyn_cast<Constant>(Idx)) 3207a6dacacSDimitry Andric return Builder.CreatePtrAdd(CLHS, CRHS); 3215ffd83dbSDimitry Andric 3225ffd83dbSDimitry Andric // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 3235ffd83dbSDimitry Andric unsigned ScanLimit = 6; 3245ffd83dbSDimitry Andric BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 3255ffd83dbSDimitry Andric // Scanning starts from the last instruction before the insertion point. 3265ffd83dbSDimitry Andric BasicBlock::iterator IP = Builder.GetInsertPoint(); 3275ffd83dbSDimitry Andric if (IP != BlockBegin) { 3285ffd83dbSDimitry Andric --IP; 3295ffd83dbSDimitry Andric for (; ScanLimit; --IP, --ScanLimit) { 3305ffd83dbSDimitry Andric // Don't count dbg.value against the ScanLimit, to avoid perturbing the 3315ffd83dbSDimitry Andric // generated code. 3325ffd83dbSDimitry Andric if (isa<DbgInfoIntrinsic>(IP)) 3335ffd83dbSDimitry Andric ScanLimit++; 3345ffd83dbSDimitry Andric if (IP->getOpcode() == Instruction::GetElementPtr && 33581ad6265SDimitry Andric IP->getOperand(0) == V && IP->getOperand(1) == Idx && 33681ad6265SDimitry Andric cast<GEPOperator>(&*IP)->getSourceElementType() == 3375f757f3fSDimitry Andric Builder.getInt8Ty()) 3385ffd83dbSDimitry Andric return &*IP; 3395ffd83dbSDimitry Andric if (IP == BlockBegin) break; 3405ffd83dbSDimitry Andric } 3415ffd83dbSDimitry Andric } 3425ffd83dbSDimitry Andric 3435ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 3445ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 3455ffd83dbSDimitry Andric 3465ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 3475ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 3485ffd83dbSDimitry Andric if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 3495ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 3505ffd83dbSDimitry Andric if (!Preheader) break; 3515ffd83dbSDimitry Andric 3525ffd83dbSDimitry Andric // Ok, move up a level. 3535ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 3545ffd83dbSDimitry Andric } 3555ffd83dbSDimitry Andric 3565ffd83dbSDimitry Andric // Emit a GEP. 3577a6dacacSDimitry Andric return Builder.CreatePtrAdd(V, Idx, "scevgep"); 3585ffd83dbSDimitry Andric } 3595ffd83dbSDimitry Andric 3605ffd83dbSDimitry Andric /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 3615ffd83dbSDimitry Andric /// SCEV expansion. If they are nested, this is the most nested. If they are 3625ffd83dbSDimitry Andric /// neighboring, pick the later. 3635ffd83dbSDimitry Andric static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 3645ffd83dbSDimitry Andric DominatorTree &DT) { 3655ffd83dbSDimitry Andric if (!A) return B; 3665ffd83dbSDimitry Andric if (!B) return A; 3675ffd83dbSDimitry Andric if (A->contains(B)) return B; 3685ffd83dbSDimitry Andric if (B->contains(A)) return A; 3695ffd83dbSDimitry Andric if (DT.dominates(A->getHeader(), B->getHeader())) return B; 3705ffd83dbSDimitry Andric if (DT.dominates(B->getHeader(), A->getHeader())) return A; 3715ffd83dbSDimitry Andric return A; // Arbitrarily break the tie. 3725ffd83dbSDimitry Andric } 3735ffd83dbSDimitry Andric 3745ffd83dbSDimitry Andric /// getRelevantLoop - Get the most relevant loop associated with the given 3755ffd83dbSDimitry Andric /// expression, according to PickMostRelevantLoop. 3765ffd83dbSDimitry Andric const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 3775ffd83dbSDimitry Andric // Test whether we've already computed the most relevant loop for this SCEV. 3785ffd83dbSDimitry Andric auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 3795ffd83dbSDimitry Andric if (!Pair.second) 3805ffd83dbSDimitry Andric return Pair.first->second; 3815ffd83dbSDimitry Andric 382bdd1243dSDimitry Andric switch (S->getSCEVType()) { 383bdd1243dSDimitry Andric case scConstant: 38406c3fb27SDimitry Andric case scVScale: 385bdd1243dSDimitry Andric return nullptr; // A constant has no relevant loops. 386bdd1243dSDimitry Andric case scTruncate: 387bdd1243dSDimitry Andric case scZeroExtend: 388bdd1243dSDimitry Andric case scSignExtend: 389bdd1243dSDimitry Andric case scPtrToInt: 390bdd1243dSDimitry Andric case scAddExpr: 391bdd1243dSDimitry Andric case scMulExpr: 392bdd1243dSDimitry Andric case scUDivExpr: 393bdd1243dSDimitry Andric case scAddRecExpr: 394bdd1243dSDimitry Andric case scUMaxExpr: 395bdd1243dSDimitry Andric case scSMaxExpr: 396bdd1243dSDimitry Andric case scUMinExpr: 397bdd1243dSDimitry Andric case scSMinExpr: 398bdd1243dSDimitry Andric case scSequentialUMinExpr: { 399bdd1243dSDimitry Andric const Loop *L = nullptr; 400bdd1243dSDimitry Andric if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 401bdd1243dSDimitry Andric L = AR->getLoop(); 402bdd1243dSDimitry Andric for (const SCEV *Op : S->operands()) 403bdd1243dSDimitry Andric L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 404bdd1243dSDimitry Andric return RelevantLoops[S] = L; 405bdd1243dSDimitry Andric } 406bdd1243dSDimitry Andric case scUnknown: { 407bdd1243dSDimitry Andric const SCEVUnknown *U = cast<SCEVUnknown>(S); 4085ffd83dbSDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 4095ffd83dbSDimitry Andric return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 4105ffd83dbSDimitry Andric // A non-instruction has no relevant loops. 4115ffd83dbSDimitry Andric return nullptr; 4125ffd83dbSDimitry Andric } 413bdd1243dSDimitry Andric case scCouldNotCompute: 414bdd1243dSDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4155ffd83dbSDimitry Andric } 4165ffd83dbSDimitry Andric llvm_unreachable("Unexpected SCEV type!"); 4175ffd83dbSDimitry Andric } 4185ffd83dbSDimitry Andric 4195ffd83dbSDimitry Andric namespace { 4205ffd83dbSDimitry Andric 4215ffd83dbSDimitry Andric /// LoopCompare - Compare loops by PickMostRelevantLoop. 4225ffd83dbSDimitry Andric class LoopCompare { 4235ffd83dbSDimitry Andric DominatorTree &DT; 4245ffd83dbSDimitry Andric public: 4255ffd83dbSDimitry Andric explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 4265ffd83dbSDimitry Andric 4275ffd83dbSDimitry Andric bool operator()(std::pair<const Loop *, const SCEV *> LHS, 4285ffd83dbSDimitry Andric std::pair<const Loop *, const SCEV *> RHS) const { 4295ffd83dbSDimitry Andric // Keep pointer operands sorted at the end. 4305ffd83dbSDimitry Andric if (LHS.second->getType()->isPointerTy() != 4315ffd83dbSDimitry Andric RHS.second->getType()->isPointerTy()) 4325ffd83dbSDimitry Andric return LHS.second->getType()->isPointerTy(); 4335ffd83dbSDimitry Andric 4345ffd83dbSDimitry Andric // Compare loops with PickMostRelevantLoop. 4355ffd83dbSDimitry Andric if (LHS.first != RHS.first) 4365ffd83dbSDimitry Andric return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 4375ffd83dbSDimitry Andric 4385ffd83dbSDimitry Andric // If one operand is a non-constant negative and the other is not, 4395ffd83dbSDimitry Andric // put the non-constant negative on the right so that a sub can 4405ffd83dbSDimitry Andric // be used instead of a negate and add. 4415ffd83dbSDimitry Andric if (LHS.second->isNonConstantNegative()) { 4425ffd83dbSDimitry Andric if (!RHS.second->isNonConstantNegative()) 4435ffd83dbSDimitry Andric return false; 4445ffd83dbSDimitry Andric } else if (RHS.second->isNonConstantNegative()) 4455ffd83dbSDimitry Andric return true; 4465ffd83dbSDimitry Andric 4475ffd83dbSDimitry Andric // Otherwise they are equivalent according to this comparison. 4485ffd83dbSDimitry Andric return false; 4495ffd83dbSDimitry Andric } 4505ffd83dbSDimitry Andric }; 4515ffd83dbSDimitry Andric 4525ffd83dbSDimitry Andric } 4535ffd83dbSDimitry Andric 4545ffd83dbSDimitry Andric Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 4555ffd83dbSDimitry Andric // Collect all the add operands in a loop, along with their associated loops. 4565ffd83dbSDimitry Andric // Iterate in reverse so that constants are emitted last, all else equal, and 4575ffd83dbSDimitry Andric // so that pointer operands are inserted first, which the code below relies on 4585ffd83dbSDimitry Andric // to form more involved GEPs. 4595ffd83dbSDimitry Andric SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 460349cc55cSDimitry Andric for (const SCEV *Op : reverse(S->operands())) 461349cc55cSDimitry Andric OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 4625ffd83dbSDimitry Andric 4635ffd83dbSDimitry Andric // Sort by loop. Use a stable sort so that constants follow non-constants and 4645ffd83dbSDimitry Andric // pointer operands precede non-pointer operands. 4655ffd83dbSDimitry Andric llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 4665ffd83dbSDimitry Andric 4675ffd83dbSDimitry Andric // Emit instructions to add all the operands. Hoist as much as possible 4685ffd83dbSDimitry Andric // out of loops, and form meaningful getelementptrs where possible. 4695ffd83dbSDimitry Andric Value *Sum = nullptr; 4705ffd83dbSDimitry Andric for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 4715ffd83dbSDimitry Andric const Loop *CurLoop = I->first; 4725ffd83dbSDimitry Andric const SCEV *Op = I->second; 4735ffd83dbSDimitry Andric if (!Sum) { 4745ffd83dbSDimitry Andric // This is the first operand. Just expand it. 4755ffd83dbSDimitry Andric Sum = expand(Op); 4765ffd83dbSDimitry Andric ++I; 477349cc55cSDimitry Andric continue; 478349cc55cSDimitry Andric } 479349cc55cSDimitry Andric 480349cc55cSDimitry Andric assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 48106c3fb27SDimitry Andric if (isa<PointerType>(Sum->getType())) { 4825ffd83dbSDimitry Andric // The running sum expression is a pointer. Try to form a getelementptr 4835ffd83dbSDimitry Andric // at this level with that as the base. 4845ffd83dbSDimitry Andric SmallVector<const SCEV *, 4> NewOps; 4855ffd83dbSDimitry Andric for (; I != E && I->first == CurLoop; ++I) { 4865ffd83dbSDimitry Andric // If the operand is SCEVUnknown and not instructions, peek through 4875ffd83dbSDimitry Andric // it, to enable more of it to be folded into the GEP. 4885ffd83dbSDimitry Andric const SCEV *X = I->second; 4895ffd83dbSDimitry Andric if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 4905ffd83dbSDimitry Andric if (!isa<Instruction>(U->getValue())) 4915ffd83dbSDimitry Andric X = SE.getSCEV(U->getValue()); 4925ffd83dbSDimitry Andric NewOps.push_back(X); 4935ffd83dbSDimitry Andric } 4945f757f3fSDimitry Andric Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum); 4955ffd83dbSDimitry Andric } else if (Op->isNonConstantNegative()) { 4965ffd83dbSDimitry Andric // Instead of doing a negate and add, just do a subtract. 4975f757f3fSDimitry Andric Value *W = expand(SE.getNegativeSCEV(Op)); 4985ffd83dbSDimitry Andric Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 4995ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5005ffd83dbSDimitry Andric ++I; 5015ffd83dbSDimitry Andric } else { 5025ffd83dbSDimitry Andric // A simple add. 5035f757f3fSDimitry Andric Value *W = expand(Op); 5045ffd83dbSDimitry Andric // Canonicalize a constant to the RHS. 5055f757f3fSDimitry Andric if (isa<Constant>(Sum)) 5065f757f3fSDimitry Andric std::swap(Sum, W); 5075ffd83dbSDimitry Andric Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 5085ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5095ffd83dbSDimitry Andric ++I; 5105ffd83dbSDimitry Andric } 5115ffd83dbSDimitry Andric } 5125ffd83dbSDimitry Andric 5135ffd83dbSDimitry Andric return Sum; 5145ffd83dbSDimitry Andric } 5155ffd83dbSDimitry Andric 5165ffd83dbSDimitry Andric Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 5175f757f3fSDimitry Andric Type *Ty = S->getType(); 5185ffd83dbSDimitry Andric 5195ffd83dbSDimitry Andric // Collect all the mul operands in a loop, along with their associated loops. 5205ffd83dbSDimitry Andric // Iterate in reverse so that constants are emitted last, all else equal. 5215ffd83dbSDimitry Andric SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 522349cc55cSDimitry Andric for (const SCEV *Op : reverse(S->operands())) 523349cc55cSDimitry Andric OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 5245ffd83dbSDimitry Andric 5255ffd83dbSDimitry Andric // Sort by loop. Use a stable sort so that constants follow non-constants. 5265ffd83dbSDimitry Andric llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 5275ffd83dbSDimitry Andric 5285ffd83dbSDimitry Andric // Emit instructions to mul all the operands. Hoist as much as possible 5295ffd83dbSDimitry Andric // out of loops. 5305ffd83dbSDimitry Andric Value *Prod = nullptr; 5315ffd83dbSDimitry Andric auto I = OpsAndLoops.begin(); 5325ffd83dbSDimitry Andric 5335ffd83dbSDimitry Andric // Expand the calculation of X pow N in the following manner: 5345ffd83dbSDimitry Andric // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 5355ffd83dbSDimitry Andric // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 5365f757f3fSDimitry Andric const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 5375ffd83dbSDimitry Andric auto E = I; 5385ffd83dbSDimitry Andric // Calculate how many times the same operand from the same loop is included 5395ffd83dbSDimitry Andric // into this power. 5405ffd83dbSDimitry Andric uint64_t Exponent = 0; 5415ffd83dbSDimitry Andric const uint64_t MaxExponent = UINT64_MAX >> 1; 5425ffd83dbSDimitry Andric // No one sane will ever try to calculate such huge exponents, but if we 5435ffd83dbSDimitry Andric // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 5445ffd83dbSDimitry Andric // below when the power of 2 exceeds our Exponent, and we want it to be 5455ffd83dbSDimitry Andric // 1u << 31 at most to not deal with unsigned overflow. 5465ffd83dbSDimitry Andric while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 5475ffd83dbSDimitry Andric ++Exponent; 5485ffd83dbSDimitry Andric ++E; 5495ffd83dbSDimitry Andric } 5505ffd83dbSDimitry Andric assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 5515ffd83dbSDimitry Andric 5525ffd83dbSDimitry Andric // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 5535ffd83dbSDimitry Andric // that are needed into the result. 5545f757f3fSDimitry Andric Value *P = expand(I->second); 5555ffd83dbSDimitry Andric Value *Result = nullptr; 5565ffd83dbSDimitry Andric if (Exponent & 1) 5575ffd83dbSDimitry Andric Result = P; 5585ffd83dbSDimitry Andric for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 5595ffd83dbSDimitry Andric P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 5605ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5615ffd83dbSDimitry Andric if (Exponent & BinExp) 5625ffd83dbSDimitry Andric Result = Result ? InsertBinop(Instruction::Mul, Result, P, 5635ffd83dbSDimitry Andric SCEV::FlagAnyWrap, 5645ffd83dbSDimitry Andric /*IsSafeToHoist*/ true) 5655ffd83dbSDimitry Andric : P; 5665ffd83dbSDimitry Andric } 5675ffd83dbSDimitry Andric 5685ffd83dbSDimitry Andric I = E; 5695ffd83dbSDimitry Andric assert(Result && "Nothing was expanded?"); 5705ffd83dbSDimitry Andric return Result; 5715ffd83dbSDimitry Andric }; 5725ffd83dbSDimitry Andric 5735ffd83dbSDimitry Andric while (I != OpsAndLoops.end()) { 5745ffd83dbSDimitry Andric if (!Prod) { 5755ffd83dbSDimitry Andric // This is the first operand. Just expand it. 5765ffd83dbSDimitry Andric Prod = ExpandOpBinPowN(); 5775ffd83dbSDimitry Andric } else if (I->second->isAllOnesValue()) { 5785ffd83dbSDimitry Andric // Instead of doing a multiply by negative one, just do a negate. 5795ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 5805ffd83dbSDimitry Andric SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 5815ffd83dbSDimitry Andric ++I; 5825ffd83dbSDimitry Andric } else { 5835ffd83dbSDimitry Andric // A simple mul. 5845ffd83dbSDimitry Andric Value *W = ExpandOpBinPowN(); 5855ffd83dbSDimitry Andric // Canonicalize a constant to the RHS. 5865ffd83dbSDimitry Andric if (isa<Constant>(Prod)) std::swap(Prod, W); 5875ffd83dbSDimitry Andric const APInt *RHS; 5885ffd83dbSDimitry Andric if (match(W, m_Power2(RHS))) { 5895ffd83dbSDimitry Andric // Canonicalize Prod*(1<<C) to Prod<<C. 5905ffd83dbSDimitry Andric assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 5915ffd83dbSDimitry Andric auto NWFlags = S->getNoWrapFlags(); 5925ffd83dbSDimitry Andric // clear nsw flag if shl will produce poison value. 5935ffd83dbSDimitry Andric if (RHS->logBase2() == RHS->getBitWidth() - 1) 5945ffd83dbSDimitry Andric NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 5955ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Shl, Prod, 5965ffd83dbSDimitry Andric ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 5975ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5985ffd83dbSDimitry Andric } else { 5995ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 6005ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 6015ffd83dbSDimitry Andric } 6025ffd83dbSDimitry Andric } 6035ffd83dbSDimitry Andric } 6045ffd83dbSDimitry Andric 6055ffd83dbSDimitry Andric return Prod; 6065ffd83dbSDimitry Andric } 6075ffd83dbSDimitry Andric 6085ffd83dbSDimitry Andric Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 6095f757f3fSDimitry Andric Value *LHS = expand(S->getLHS()); 6105ffd83dbSDimitry Andric if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 6115ffd83dbSDimitry Andric const APInt &RHS = SC->getAPInt(); 6125ffd83dbSDimitry Andric if (RHS.isPowerOf2()) 6135ffd83dbSDimitry Andric return InsertBinop(Instruction::LShr, LHS, 6145f757f3fSDimitry Andric ConstantInt::get(SC->getType(), RHS.logBase2()), 6155ffd83dbSDimitry Andric SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 6165ffd83dbSDimitry Andric } 6175ffd83dbSDimitry Andric 6185f757f3fSDimitry Andric Value *RHS = expand(S->getRHS()); 6195ffd83dbSDimitry Andric return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 6205ffd83dbSDimitry Andric /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 6215ffd83dbSDimitry Andric } 6225ffd83dbSDimitry Andric 6235ffd83dbSDimitry Andric /// Determine if this is a well-behaved chain of instructions leading back to 6245ffd83dbSDimitry Andric /// the PHI. If so, it may be reused by expanded expressions. 6255ffd83dbSDimitry Andric bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 6265ffd83dbSDimitry Andric const Loop *L) { 6275ffd83dbSDimitry Andric if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 6285ffd83dbSDimitry Andric (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 6295ffd83dbSDimitry Andric return false; 6305ffd83dbSDimitry Andric // If any of the operands don't dominate the insert position, bail. 6315ffd83dbSDimitry Andric // Addrec operands are always loop-invariant, so this can only happen 6325ffd83dbSDimitry Andric // if there are instructions which haven't been hoisted. 6335ffd83dbSDimitry Andric if (L == IVIncInsertLoop) { 634fe6060f1SDimitry Andric for (Use &Op : llvm::drop_begin(IncV->operands())) 635fe6060f1SDimitry Andric if (Instruction *OInst = dyn_cast<Instruction>(Op)) 6365ffd83dbSDimitry Andric if (!SE.DT.dominates(OInst, IVIncInsertPos)) 6375ffd83dbSDimitry Andric return false; 6385ffd83dbSDimitry Andric } 6395ffd83dbSDimitry Andric // Advance to the next instruction. 6405ffd83dbSDimitry Andric IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 6415ffd83dbSDimitry Andric if (!IncV) 6425ffd83dbSDimitry Andric return false; 6435ffd83dbSDimitry Andric 6445ffd83dbSDimitry Andric if (IncV->mayHaveSideEffects()) 6455ffd83dbSDimitry Andric return false; 6465ffd83dbSDimitry Andric 6475ffd83dbSDimitry Andric if (IncV == PN) 6485ffd83dbSDimitry Andric return true; 6495ffd83dbSDimitry Andric 6505ffd83dbSDimitry Andric return isNormalAddRecExprPHI(PN, IncV, L); 6515ffd83dbSDimitry Andric } 6525ffd83dbSDimitry Andric 6535ffd83dbSDimitry Andric /// getIVIncOperand returns an induction variable increment's induction 6545ffd83dbSDimitry Andric /// variable operand. 6555ffd83dbSDimitry Andric /// 6565ffd83dbSDimitry Andric /// If allowScale is set, any type of GEP is allowed as long as the nonIV 6575ffd83dbSDimitry Andric /// operands dominate InsertPos. 6585ffd83dbSDimitry Andric /// 6595ffd83dbSDimitry Andric /// If allowScale is not set, ensure that a GEP increment conforms to one of the 6605ffd83dbSDimitry Andric /// simple patterns generated by getAddRecExprPHILiterally and 6615ffd83dbSDimitry Andric /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 6625ffd83dbSDimitry Andric Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 6635ffd83dbSDimitry Andric Instruction *InsertPos, 6645ffd83dbSDimitry Andric bool allowScale) { 6655ffd83dbSDimitry Andric if (IncV == InsertPos) 6665ffd83dbSDimitry Andric return nullptr; 6675ffd83dbSDimitry Andric 6685ffd83dbSDimitry Andric switch (IncV->getOpcode()) { 6695ffd83dbSDimitry Andric default: 6705ffd83dbSDimitry Andric return nullptr; 6715ffd83dbSDimitry Andric // Check for a simple Add/Sub or GEP of a loop invariant step. 6725ffd83dbSDimitry Andric case Instruction::Add: 6735ffd83dbSDimitry Andric case Instruction::Sub: { 6745ffd83dbSDimitry Andric Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 6755ffd83dbSDimitry Andric if (!OInst || SE.DT.dominates(OInst, InsertPos)) 6765ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 6775ffd83dbSDimitry Andric return nullptr; 6785ffd83dbSDimitry Andric } 6795ffd83dbSDimitry Andric case Instruction::BitCast: 6805ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 6815ffd83dbSDimitry Andric case Instruction::GetElementPtr: 682fe6060f1SDimitry Andric for (Use &U : llvm::drop_begin(IncV->operands())) { 683fe6060f1SDimitry Andric if (isa<Constant>(U)) 6845ffd83dbSDimitry Andric continue; 685fe6060f1SDimitry Andric if (Instruction *OInst = dyn_cast<Instruction>(U)) { 6865ffd83dbSDimitry Andric if (!SE.DT.dominates(OInst, InsertPos)) 6875ffd83dbSDimitry Andric return nullptr; 6885ffd83dbSDimitry Andric } 6895ffd83dbSDimitry Andric if (allowScale) { 6905ffd83dbSDimitry Andric // allow any kind of GEP as long as it can be hoisted. 6915ffd83dbSDimitry Andric continue; 6925ffd83dbSDimitry Andric } 69306c3fb27SDimitry Andric // GEPs produced by SCEVExpander use i8 element type. 69406c3fb27SDimitry Andric if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 6955ffd83dbSDimitry Andric return nullptr; 6965ffd83dbSDimitry Andric break; 6975ffd83dbSDimitry Andric } 6985ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 6995ffd83dbSDimitry Andric } 7005ffd83dbSDimitry Andric } 7015ffd83dbSDimitry Andric 7025ffd83dbSDimitry Andric /// If the insert point of the current builder or any of the builders on the 7035ffd83dbSDimitry Andric /// stack of saved builders has 'I' as its insert point, update it to point to 7045ffd83dbSDimitry Andric /// the instruction after 'I'. This is intended to be used when the instruction 7055ffd83dbSDimitry Andric /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 7065ffd83dbSDimitry Andric /// different block, the inconsistent insert point (with a mismatched 7075ffd83dbSDimitry Andric /// Instruction and Block) can lead to an instruction being inserted in a block 7085ffd83dbSDimitry Andric /// other than its parent. 7095ffd83dbSDimitry Andric void SCEVExpander::fixupInsertPoints(Instruction *I) { 7105ffd83dbSDimitry Andric BasicBlock::iterator It(*I); 7115ffd83dbSDimitry Andric BasicBlock::iterator NewInsertPt = std::next(It); 7125ffd83dbSDimitry Andric if (Builder.GetInsertPoint() == It) 7135ffd83dbSDimitry Andric Builder.SetInsertPoint(&*NewInsertPt); 7145ffd83dbSDimitry Andric for (auto *InsertPtGuard : InsertPointGuards) 7155ffd83dbSDimitry Andric if (InsertPtGuard->GetInsertPoint() == It) 7165ffd83dbSDimitry Andric InsertPtGuard->SetInsertPoint(NewInsertPt); 7175ffd83dbSDimitry Andric } 7185ffd83dbSDimitry Andric 7195ffd83dbSDimitry Andric /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 7205ffd83dbSDimitry Andric /// it available to other uses in this loop. Recursively hoist any operands, 7215ffd83dbSDimitry Andric /// until we reach a value that dominates InsertPos. 722bdd1243dSDimitry Andric bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 723bdd1243dSDimitry Andric bool RecomputePoisonFlags) { 724bdd1243dSDimitry Andric auto FixupPoisonFlags = [this](Instruction *I) { 725bdd1243dSDimitry Andric // Drop flags that are potentially inferred from old context and infer flags 726bdd1243dSDimitry Andric // in new context. 727bdd1243dSDimitry Andric I->dropPoisonGeneratingFlags(); 728bdd1243dSDimitry Andric if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 729bdd1243dSDimitry Andric if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 730bdd1243dSDimitry Andric auto *BO = cast<BinaryOperator>(I); 731bdd1243dSDimitry Andric BO->setHasNoUnsignedWrap( 732bdd1243dSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 733bdd1243dSDimitry Andric BO->setHasNoSignedWrap( 734bdd1243dSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 735bdd1243dSDimitry Andric } 736bdd1243dSDimitry Andric }; 737bdd1243dSDimitry Andric 738bdd1243dSDimitry Andric if (SE.DT.dominates(IncV, InsertPos)) { 739bdd1243dSDimitry Andric if (RecomputePoisonFlags) 740bdd1243dSDimitry Andric FixupPoisonFlags(IncV); 7415ffd83dbSDimitry Andric return true; 742bdd1243dSDimitry Andric } 7435ffd83dbSDimitry Andric 7445ffd83dbSDimitry Andric // InsertPos must itself dominate IncV so that IncV's new position satisfies 7455ffd83dbSDimitry Andric // its existing users. 7465ffd83dbSDimitry Andric if (isa<PHINode>(InsertPos) || 7475ffd83dbSDimitry Andric !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 7485ffd83dbSDimitry Andric return false; 7495ffd83dbSDimitry Andric 7505ffd83dbSDimitry Andric if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 7515ffd83dbSDimitry Andric return false; 7525ffd83dbSDimitry Andric 7535ffd83dbSDimitry Andric // Check that the chain of IV operands leading back to Phi can be hoisted. 7545ffd83dbSDimitry Andric SmallVector<Instruction*, 4> IVIncs; 7555ffd83dbSDimitry Andric for(;;) { 7565ffd83dbSDimitry Andric Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 7575ffd83dbSDimitry Andric if (!Oper) 7585ffd83dbSDimitry Andric return false; 7595ffd83dbSDimitry Andric // IncV is safe to hoist. 7605ffd83dbSDimitry Andric IVIncs.push_back(IncV); 7615ffd83dbSDimitry Andric IncV = Oper; 7625ffd83dbSDimitry Andric if (SE.DT.dominates(IncV, InsertPos)) 7635ffd83dbSDimitry Andric break; 7645ffd83dbSDimitry Andric } 7650eae32dcSDimitry Andric for (Instruction *I : llvm::reverse(IVIncs)) { 7660eae32dcSDimitry Andric fixupInsertPoints(I); 7670eae32dcSDimitry Andric I->moveBefore(InsertPos); 768bdd1243dSDimitry Andric if (RecomputePoisonFlags) 769bdd1243dSDimitry Andric FixupPoisonFlags(I); 7705ffd83dbSDimitry Andric } 7715ffd83dbSDimitry Andric return true; 7725ffd83dbSDimitry Andric } 7735ffd83dbSDimitry Andric 7745ffd83dbSDimitry Andric /// Determine if this cyclic phi is in a form that would have been generated by 7755ffd83dbSDimitry Andric /// LSR. We don't care if the phi was actually expanded in this pass, as long 7765ffd83dbSDimitry Andric /// as it is in a low-cost form, for example, no implied multiplication. This 7775ffd83dbSDimitry Andric /// should match any patterns generated by getAddRecExprPHILiterally and 7785ffd83dbSDimitry Andric /// expandAddtoGEP. 7795ffd83dbSDimitry Andric bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 7805ffd83dbSDimitry Andric const Loop *L) { 7815ffd83dbSDimitry Andric for(Instruction *IVOper = IncV; 7825ffd83dbSDimitry Andric (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 7835ffd83dbSDimitry Andric /*allowScale=*/false));) { 7845ffd83dbSDimitry Andric if (IVOper == PN) 7855ffd83dbSDimitry Andric return true; 7865ffd83dbSDimitry Andric } 7875ffd83dbSDimitry Andric return false; 7885ffd83dbSDimitry Andric } 7895ffd83dbSDimitry Andric 7905ffd83dbSDimitry Andric /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 7915ffd83dbSDimitry Andric /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 7925ffd83dbSDimitry Andric /// need to materialize IV increments elsewhere to handle difficult situations. 7935ffd83dbSDimitry Andric Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 7945ffd83dbSDimitry Andric bool useSubtract) { 7955ffd83dbSDimitry Andric Value *IncV; 7965ffd83dbSDimitry Andric // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 7975f757f3fSDimitry Andric if (PN->getType()->isPointerTy()) { 7985f757f3fSDimitry Andric IncV = expandAddToGEP(SE.getSCEV(StepV), PN); 7995ffd83dbSDimitry Andric } else { 8005ffd83dbSDimitry Andric IncV = useSubtract ? 8015ffd83dbSDimitry Andric Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 8025ffd83dbSDimitry Andric Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 8035ffd83dbSDimitry Andric } 8045ffd83dbSDimitry Andric return IncV; 8055ffd83dbSDimitry Andric } 8065ffd83dbSDimitry Andric 8075ffd83dbSDimitry Andric /// Check whether we can cheaply express the requested SCEV in terms of 8085ffd83dbSDimitry Andric /// the available PHI SCEV by truncation and/or inversion of the step. 8095ffd83dbSDimitry Andric static bool canBeCheaplyTransformed(ScalarEvolution &SE, 8105ffd83dbSDimitry Andric const SCEVAddRecExpr *Phi, 8115ffd83dbSDimitry Andric const SCEVAddRecExpr *Requested, 8125ffd83dbSDimitry Andric bool &InvertStep) { 813fe6060f1SDimitry Andric // We can't transform to match a pointer PHI. 8145f757f3fSDimitry Andric Type *PhiTy = Phi->getType(); 8155f757f3fSDimitry Andric Type *RequestedTy = Requested->getType(); 8165f757f3fSDimitry Andric if (PhiTy->isPointerTy() || RequestedTy->isPointerTy()) 817fe6060f1SDimitry Andric return false; 818fe6060f1SDimitry Andric 8195ffd83dbSDimitry Andric if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 8205ffd83dbSDimitry Andric return false; 8215ffd83dbSDimitry Andric 8225ffd83dbSDimitry Andric // Try truncate it if necessary. 8235ffd83dbSDimitry Andric Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 8245ffd83dbSDimitry Andric if (!Phi) 8255ffd83dbSDimitry Andric return false; 8265ffd83dbSDimitry Andric 8275ffd83dbSDimitry Andric // Check whether truncation will help. 8285ffd83dbSDimitry Andric if (Phi == Requested) { 8295ffd83dbSDimitry Andric InvertStep = false; 8305ffd83dbSDimitry Andric return true; 8315ffd83dbSDimitry Andric } 8325ffd83dbSDimitry Andric 8335ffd83dbSDimitry Andric // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 834fe6060f1SDimitry Andric if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 8355ffd83dbSDimitry Andric InvertStep = true; 8365ffd83dbSDimitry Andric return true; 8375ffd83dbSDimitry Andric } 8385ffd83dbSDimitry Andric 8395ffd83dbSDimitry Andric return false; 8405ffd83dbSDimitry Andric } 8415ffd83dbSDimitry Andric 8425ffd83dbSDimitry Andric static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 8435ffd83dbSDimitry Andric if (!isa<IntegerType>(AR->getType())) 8445ffd83dbSDimitry Andric return false; 8455ffd83dbSDimitry Andric 8465ffd83dbSDimitry Andric unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 8475ffd83dbSDimitry Andric Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 8485ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 8495ffd83dbSDimitry Andric const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 8505ffd83dbSDimitry Andric SE.getSignExtendExpr(AR, WideTy)); 8515ffd83dbSDimitry Andric const SCEV *ExtendAfterOp = 8525ffd83dbSDimitry Andric SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 8535ffd83dbSDimitry Andric return ExtendAfterOp == OpAfterExtend; 8545ffd83dbSDimitry Andric } 8555ffd83dbSDimitry Andric 8565ffd83dbSDimitry Andric static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 8575ffd83dbSDimitry Andric if (!isa<IntegerType>(AR->getType())) 8585ffd83dbSDimitry Andric return false; 8595ffd83dbSDimitry Andric 8605ffd83dbSDimitry Andric unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 8615ffd83dbSDimitry Andric Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 8625ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 8635ffd83dbSDimitry Andric const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 8645ffd83dbSDimitry Andric SE.getZeroExtendExpr(AR, WideTy)); 8655ffd83dbSDimitry Andric const SCEV *ExtendAfterOp = 8665ffd83dbSDimitry Andric SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 8675ffd83dbSDimitry Andric return ExtendAfterOp == OpAfterExtend; 8685ffd83dbSDimitry Andric } 8695ffd83dbSDimitry Andric 8705ffd83dbSDimitry Andric /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 8715ffd83dbSDimitry Andric /// the base addrec, which is the addrec without any non-loop-dominating 8725ffd83dbSDimitry Andric /// values, and return the PHI. 8735ffd83dbSDimitry Andric PHINode * 8745ffd83dbSDimitry Andric SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 8755f757f3fSDimitry Andric const Loop *L, Type *&TruncTy, 8765ffd83dbSDimitry Andric bool &InvertStep) { 8775f757f3fSDimitry Andric assert((!IVIncInsertLoop || IVIncInsertPos) && 8785f757f3fSDimitry Andric "Uninitialized insert position"); 8795ffd83dbSDimitry Andric 8805ffd83dbSDimitry Andric // Reuse a previously-inserted PHI, if present. 8815ffd83dbSDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 8825ffd83dbSDimitry Andric if (LatchBlock) { 8835ffd83dbSDimitry Andric PHINode *AddRecPhiMatch = nullptr; 8845ffd83dbSDimitry Andric Instruction *IncV = nullptr; 8855ffd83dbSDimitry Andric TruncTy = nullptr; 8865ffd83dbSDimitry Andric InvertStep = false; 8875ffd83dbSDimitry Andric 8885ffd83dbSDimitry Andric // Only try partially matching scevs that need truncation and/or 8895ffd83dbSDimitry Andric // step-inversion if we know this loop is outside the current loop. 8905ffd83dbSDimitry Andric bool TryNonMatchingSCEV = 8915ffd83dbSDimitry Andric IVIncInsertLoop && 8925ffd83dbSDimitry Andric SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 8935ffd83dbSDimitry Andric 8945ffd83dbSDimitry Andric for (PHINode &PN : L->getHeader()->phis()) { 8955ffd83dbSDimitry Andric if (!SE.isSCEVable(PN.getType())) 8965ffd83dbSDimitry Andric continue; 8975ffd83dbSDimitry Andric 898e8d8bef9SDimitry Andric // We should not look for a incomplete PHI. Getting SCEV for a incomplete 899e8d8bef9SDimitry Andric // PHI has no meaning at all. 900e8d8bef9SDimitry Andric if (!PN.isComplete()) { 901fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 902e8d8bef9SDimitry Andric DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 903e8d8bef9SDimitry Andric continue; 904e8d8bef9SDimitry Andric } 905e8d8bef9SDimitry Andric 9065ffd83dbSDimitry Andric const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 9075ffd83dbSDimitry Andric if (!PhiSCEV) 9085ffd83dbSDimitry Andric continue; 9095ffd83dbSDimitry Andric 9105ffd83dbSDimitry Andric bool IsMatchingSCEV = PhiSCEV == Normalized; 9115ffd83dbSDimitry Andric // We only handle truncation and inversion of phi recurrences for the 9125ffd83dbSDimitry Andric // expanded expression if the expanded expression's loop dominates the 9135ffd83dbSDimitry Andric // loop we insert to. Check now, so we can bail out early. 9145ffd83dbSDimitry Andric if (!IsMatchingSCEV && !TryNonMatchingSCEV) 9155ffd83dbSDimitry Andric continue; 9165ffd83dbSDimitry Andric 9175ffd83dbSDimitry Andric // TODO: this possibly can be reworked to avoid this cast at all. 9185ffd83dbSDimitry Andric Instruction *TempIncV = 9195ffd83dbSDimitry Andric dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 9205ffd83dbSDimitry Andric if (!TempIncV) 9215ffd83dbSDimitry Andric continue; 9225ffd83dbSDimitry Andric 9235ffd83dbSDimitry Andric // Check whether we can reuse this PHI node. 9245ffd83dbSDimitry Andric if (LSRMode) { 9255ffd83dbSDimitry Andric if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 9265ffd83dbSDimitry Andric continue; 9275ffd83dbSDimitry Andric } else { 9285ffd83dbSDimitry Andric if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 9295ffd83dbSDimitry Andric continue; 9305ffd83dbSDimitry Andric } 9315ffd83dbSDimitry Andric 9325ffd83dbSDimitry Andric // Stop if we have found an exact match SCEV. 9335ffd83dbSDimitry Andric if (IsMatchingSCEV) { 9345ffd83dbSDimitry Andric IncV = TempIncV; 9355ffd83dbSDimitry Andric TruncTy = nullptr; 9365ffd83dbSDimitry Andric InvertStep = false; 9375ffd83dbSDimitry Andric AddRecPhiMatch = &PN; 9385ffd83dbSDimitry Andric break; 9395ffd83dbSDimitry Andric } 9405ffd83dbSDimitry Andric 9415ffd83dbSDimitry Andric // Try whether the phi can be translated into the requested form 9425ffd83dbSDimitry Andric // (truncated and/or offset by a constant). 9435ffd83dbSDimitry Andric if ((!TruncTy || InvertStep) && 9445ffd83dbSDimitry Andric canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 9455ffd83dbSDimitry Andric // Record the phi node. But don't stop we might find an exact match 9465ffd83dbSDimitry Andric // later. 9475ffd83dbSDimitry Andric AddRecPhiMatch = &PN; 9485ffd83dbSDimitry Andric IncV = TempIncV; 9495f757f3fSDimitry Andric TruncTy = Normalized->getType(); 9505ffd83dbSDimitry Andric } 9515ffd83dbSDimitry Andric } 9525ffd83dbSDimitry Andric 9535ffd83dbSDimitry Andric if (AddRecPhiMatch) { 9545ffd83dbSDimitry Andric // Ok, the add recurrence looks usable. 9555ffd83dbSDimitry Andric // Remember this PHI, even in post-inc mode. 9565ffd83dbSDimitry Andric InsertedValues.insert(AddRecPhiMatch); 9575ffd83dbSDimitry Andric // Remember the increment. 9585ffd83dbSDimitry Andric rememberInstruction(IncV); 959e8d8bef9SDimitry Andric // Those values were not actually inserted but re-used. 960e8d8bef9SDimitry Andric ReusedValues.insert(AddRecPhiMatch); 961e8d8bef9SDimitry Andric ReusedValues.insert(IncV); 9625ffd83dbSDimitry Andric return AddRecPhiMatch; 9635ffd83dbSDimitry Andric } 9645ffd83dbSDimitry Andric } 9655ffd83dbSDimitry Andric 9665ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 9675ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 9685ffd83dbSDimitry Andric 9695ffd83dbSDimitry Andric // Another AddRec may need to be recursively expanded below. For example, if 9705ffd83dbSDimitry Andric // this AddRec is quadratic, the StepV may itself be an AddRec in this 9715ffd83dbSDimitry Andric // loop. Remove this loop from the PostIncLoops set before expanding such 9725ffd83dbSDimitry Andric // AddRecs. Otherwise, we cannot find a valid position for the step 9735ffd83dbSDimitry Andric // (i.e. StepV can never dominate its loop header). Ideally, we could do 9745ffd83dbSDimitry Andric // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 9755ffd83dbSDimitry Andric // so it's not worth implementing SmallPtrSet::swap. 9765ffd83dbSDimitry Andric PostIncLoopSet SavedPostIncLoops = PostIncLoops; 9775ffd83dbSDimitry Andric PostIncLoops.clear(); 9785ffd83dbSDimitry Andric 9795ffd83dbSDimitry Andric // Expand code for the start value into the loop preheader. 9805ffd83dbSDimitry Andric assert(L->getLoopPreheader() && 9815ffd83dbSDimitry Andric "Can't expand add recurrences without a loop preheader!"); 982e8d8bef9SDimitry Andric Value *StartV = 9835f757f3fSDimitry Andric expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator()); 9845ffd83dbSDimitry Andric 9855ffd83dbSDimitry Andric // StartV must have been be inserted into L's preheader to dominate the new 9865ffd83dbSDimitry Andric // phi. 9875ffd83dbSDimitry Andric assert(!isa<Instruction>(StartV) || 9885ffd83dbSDimitry Andric SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 9895ffd83dbSDimitry Andric L->getHeader())); 9905ffd83dbSDimitry Andric 9915ffd83dbSDimitry Andric // Expand code for the step value. Do this before creating the PHI so that PHI 9925ffd83dbSDimitry Andric // reuse code doesn't see an incomplete PHI. 9935ffd83dbSDimitry Andric const SCEV *Step = Normalized->getStepRecurrence(SE); 9945f757f3fSDimitry Andric Type *ExpandTy = Normalized->getType(); 9955ffd83dbSDimitry Andric // If the stride is negative, insert a sub instead of an add for the increment 9965ffd83dbSDimitry Andric // (unless it's a constant, because subtracts of constants are canonicalized 9975ffd83dbSDimitry Andric // to adds). 9985ffd83dbSDimitry Andric bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 9995ffd83dbSDimitry Andric if (useSubtract) 10005ffd83dbSDimitry Andric Step = SE.getNegativeSCEV(Step); 10015ffd83dbSDimitry Andric // Expand the step somewhere that dominates the loop header. 10025f757f3fSDimitry Andric Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 10035ffd83dbSDimitry Andric 10045ffd83dbSDimitry Andric // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 10055ffd83dbSDimitry Andric // we actually do emit an addition. It does not apply if we emit a 10065ffd83dbSDimitry Andric // subtraction. 10075ffd83dbSDimitry Andric bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 10085ffd83dbSDimitry Andric bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 10095ffd83dbSDimitry Andric 10105ffd83dbSDimitry Andric // Create the PHI. 10115ffd83dbSDimitry Andric BasicBlock *Header = L->getHeader(); 10125ffd83dbSDimitry Andric Builder.SetInsertPoint(Header, Header->begin()); 10135ffd83dbSDimitry Andric pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 10145ffd83dbSDimitry Andric PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 10155ffd83dbSDimitry Andric Twine(IVName) + ".iv"); 10165ffd83dbSDimitry Andric 10175ffd83dbSDimitry Andric // Create the step instructions and populate the PHI. 10185ffd83dbSDimitry Andric for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 10195ffd83dbSDimitry Andric BasicBlock *Pred = *HPI; 10205ffd83dbSDimitry Andric 10215ffd83dbSDimitry Andric // Add a start value. 10225ffd83dbSDimitry Andric if (!L->contains(Pred)) { 10235ffd83dbSDimitry Andric PN->addIncoming(StartV, Pred); 10245ffd83dbSDimitry Andric continue; 10255ffd83dbSDimitry Andric } 10265ffd83dbSDimitry Andric 10275ffd83dbSDimitry Andric // Create a step value and add it to the PHI. 10285ffd83dbSDimitry Andric // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 10295ffd83dbSDimitry Andric // instructions at IVIncInsertPos. 10305ffd83dbSDimitry Andric Instruction *InsertPos = L == IVIncInsertLoop ? 10315ffd83dbSDimitry Andric IVIncInsertPos : Pred->getTerminator(); 10325ffd83dbSDimitry Andric Builder.SetInsertPoint(InsertPos); 10335f757f3fSDimitry Andric Value *IncV = expandIVInc(PN, StepV, L, useSubtract); 10345ffd83dbSDimitry Andric 10355ffd83dbSDimitry Andric if (isa<OverflowingBinaryOperator>(IncV)) { 10365ffd83dbSDimitry Andric if (IncrementIsNUW) 10375ffd83dbSDimitry Andric cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 10385ffd83dbSDimitry Andric if (IncrementIsNSW) 10395ffd83dbSDimitry Andric cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 10405ffd83dbSDimitry Andric } 10415ffd83dbSDimitry Andric PN->addIncoming(IncV, Pred); 10425ffd83dbSDimitry Andric } 10435ffd83dbSDimitry Andric 10445ffd83dbSDimitry Andric // After expanding subexpressions, restore the PostIncLoops set so the caller 10455ffd83dbSDimitry Andric // can ensure that IVIncrement dominates the current uses. 10465ffd83dbSDimitry Andric PostIncLoops = SavedPostIncLoops; 10475ffd83dbSDimitry Andric 1048fe6060f1SDimitry Andric // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1049fe6060f1SDimitry Andric // effective when we are able to use an IV inserted here, so record it. 10505ffd83dbSDimitry Andric InsertedValues.insert(PN); 1051fe6060f1SDimitry Andric InsertedIVs.push_back(PN); 10525ffd83dbSDimitry Andric return PN; 10535ffd83dbSDimitry Andric } 10545ffd83dbSDimitry Andric 10555ffd83dbSDimitry Andric Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 10565ffd83dbSDimitry Andric const Loop *L = S->getLoop(); 10575ffd83dbSDimitry Andric 10585ffd83dbSDimitry Andric // Determine a normalized form of this expression, which is the expression 10595ffd83dbSDimitry Andric // before any post-inc adjustment is made. 10605ffd83dbSDimitry Andric const SCEVAddRecExpr *Normalized = S; 10615ffd83dbSDimitry Andric if (PostIncLoops.count(L)) { 10625ffd83dbSDimitry Andric PostIncLoopSet Loops; 10635ffd83dbSDimitry Andric Loops.insert(L); 106406c3fb27SDimitry Andric Normalized = cast<SCEVAddRecExpr>( 106506c3fb27SDimitry Andric normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 10665ffd83dbSDimitry Andric } 10675ffd83dbSDimitry Andric 10685f757f3fSDimitry Andric [[maybe_unused]] const SCEV *Start = Normalized->getStart(); 10695ffd83dbSDimitry Andric const SCEV *Step = Normalized->getStepRecurrence(SE); 10705f757f3fSDimitry Andric assert(SE.properlyDominates(Start, L->getHeader()) && 10715f757f3fSDimitry Andric "Start does not properly dominate loop header"); 10725f757f3fSDimitry Andric assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header"); 10735ffd83dbSDimitry Andric 10745ffd83dbSDimitry Andric // In some cases, we decide to reuse an existing phi node but need to truncate 10755ffd83dbSDimitry Andric // it and/or invert the step. 10765ffd83dbSDimitry Andric Type *TruncTy = nullptr; 10775ffd83dbSDimitry Andric bool InvertStep = false; 10785f757f3fSDimitry Andric PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep); 10795ffd83dbSDimitry Andric 10805ffd83dbSDimitry Andric // Accommodate post-inc mode, if necessary. 10815ffd83dbSDimitry Andric Value *Result; 10825ffd83dbSDimitry Andric if (!PostIncLoops.count(L)) 10835ffd83dbSDimitry Andric Result = PN; 10845ffd83dbSDimitry Andric else { 10855ffd83dbSDimitry Andric // In PostInc mode, use the post-incremented value. 10865ffd83dbSDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 10875ffd83dbSDimitry Andric assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 10885ffd83dbSDimitry Andric Result = PN->getIncomingValueForBlock(LatchBlock); 10895ffd83dbSDimitry Andric 1090e8d8bef9SDimitry Andric // We might be introducing a new use of the post-inc IV that is not poison 1091e8d8bef9SDimitry Andric // safe, in which case we should drop poison generating flags. Only keep 1092e8d8bef9SDimitry Andric // those flags for which SCEV has proven that they always hold. 1093e8d8bef9SDimitry Andric if (isa<OverflowingBinaryOperator>(Result)) { 1094e8d8bef9SDimitry Andric auto *I = cast<Instruction>(Result); 1095e8d8bef9SDimitry Andric if (!S->hasNoUnsignedWrap()) 1096e8d8bef9SDimitry Andric I->setHasNoUnsignedWrap(false); 1097e8d8bef9SDimitry Andric if (!S->hasNoSignedWrap()) 1098e8d8bef9SDimitry Andric I->setHasNoSignedWrap(false); 1099e8d8bef9SDimitry Andric } 1100e8d8bef9SDimitry Andric 11015ffd83dbSDimitry Andric // For an expansion to use the postinc form, the client must call 11025ffd83dbSDimitry Andric // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 11035ffd83dbSDimitry Andric // or dominated by IVIncInsertPos. 11045ffd83dbSDimitry Andric if (isa<Instruction>(Result) && 11055ffd83dbSDimitry Andric !SE.DT.dominates(cast<Instruction>(Result), 11065ffd83dbSDimitry Andric &*Builder.GetInsertPoint())) { 11075ffd83dbSDimitry Andric // The induction variable's postinc expansion does not dominate this use. 11085ffd83dbSDimitry Andric // IVUsers tries to prevent this case, so it is rare. However, it can 11095ffd83dbSDimitry Andric // happen when an IVUser outside the loop is not dominated by the latch 11105ffd83dbSDimitry Andric // block. Adjusting IVIncInsertPos before expansion begins cannot handle 11115ffd83dbSDimitry Andric // all cases. Consider a phi outside whose operand is replaced during 11125ffd83dbSDimitry Andric // expansion with the value of the postinc user. Without fundamentally 11135ffd83dbSDimitry Andric // changing the way postinc users are tracked, the only remedy is 11145ffd83dbSDimitry Andric // inserting an extra IV increment. StepV might fold into PostLoopOffset, 11155ffd83dbSDimitry Andric // but hopefully expandCodeFor handles that. 11165ffd83dbSDimitry Andric bool useSubtract = 11175f757f3fSDimitry Andric !S->getType()->isPointerTy() && Step->isNonConstantNegative(); 11185ffd83dbSDimitry Andric if (useSubtract) 11195ffd83dbSDimitry Andric Step = SE.getNegativeSCEV(Step); 11205ffd83dbSDimitry Andric Value *StepV; 11215ffd83dbSDimitry Andric { 11225ffd83dbSDimitry Andric // Expand the step somewhere that dominates the loop header. 11235ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 11245f757f3fSDimitry Andric StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 11255ffd83dbSDimitry Andric } 11265f757f3fSDimitry Andric Result = expandIVInc(PN, StepV, L, useSubtract); 11275ffd83dbSDimitry Andric } 11285ffd83dbSDimitry Andric } 11295ffd83dbSDimitry Andric 11305ffd83dbSDimitry Andric // We have decided to reuse an induction variable of a dominating loop. Apply 11315ffd83dbSDimitry Andric // truncation and/or inversion of the step. 11325ffd83dbSDimitry Andric if (TruncTy) { 11335ffd83dbSDimitry Andric // Truncate the result. 1134e8d8bef9SDimitry Andric if (TruncTy != Result->getType()) 11355ffd83dbSDimitry Andric Result = Builder.CreateTrunc(Result, TruncTy); 1136e8d8bef9SDimitry Andric 11375ffd83dbSDimitry Andric // Invert the result. 1138e8d8bef9SDimitry Andric if (InvertStep) 11395f757f3fSDimitry Andric Result = Builder.CreateSub(expand(Normalized->getStart()), Result); 11405ffd83dbSDimitry Andric } 11415ffd83dbSDimitry Andric 11425ffd83dbSDimitry Andric return Result; 11435ffd83dbSDimitry Andric } 11445ffd83dbSDimitry Andric 11455ffd83dbSDimitry Andric Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 11465ffd83dbSDimitry Andric // In canonical mode we compute the addrec as an expression of a canonical IV 11475ffd83dbSDimitry Andric // using evaluateAtIteration and expand the resulting SCEV expression. This 1148bdd1243dSDimitry Andric // way we avoid introducing new IVs to carry on the computation of the addrec 11495ffd83dbSDimitry Andric // throughout the loop. 11505ffd83dbSDimitry Andric // 11515ffd83dbSDimitry Andric // For nested addrecs evaluateAtIteration might need a canonical IV of a 11525ffd83dbSDimitry Andric // type wider than the addrec itself. Emitting a canonical IV of the 11535ffd83dbSDimitry Andric // proper type might produce non-legal types, for example expanding an i64 11545ffd83dbSDimitry Andric // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 11555ffd83dbSDimitry Andric // back to non-canonical mode for nested addrecs. 11565ffd83dbSDimitry Andric if (!CanonicalMode || (S->getNumOperands() > 2)) 11575ffd83dbSDimitry Andric return expandAddRecExprLiterally(S); 11585ffd83dbSDimitry Andric 11595ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 11605ffd83dbSDimitry Andric const Loop *L = S->getLoop(); 11615ffd83dbSDimitry Andric 11625ffd83dbSDimitry Andric // First check for an existing canonical IV in a suitable type. 11635ffd83dbSDimitry Andric PHINode *CanonicalIV = nullptr; 11645ffd83dbSDimitry Andric if (PHINode *PN = L->getCanonicalInductionVariable()) 11655ffd83dbSDimitry Andric if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 11665ffd83dbSDimitry Andric CanonicalIV = PN; 11675ffd83dbSDimitry Andric 11685ffd83dbSDimitry Andric // Rewrite an AddRec in terms of the canonical induction variable, if 11695ffd83dbSDimitry Andric // its type is more narrow. 11705ffd83dbSDimitry Andric if (CanonicalIV && 1171fe6060f1SDimitry Andric SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1172fe6060f1SDimitry Andric !S->getType()->isPointerTy()) { 11735ffd83dbSDimitry Andric SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 11745ffd83dbSDimitry Andric for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1175bdd1243dSDimitry Andric NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 11765ffd83dbSDimitry Andric Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 11775ffd83dbSDimitry Andric S->getNoWrapFlags(SCEV::FlagNW))); 11785ffd83dbSDimitry Andric BasicBlock::iterator NewInsertPt = 1179e8d8bef9SDimitry Andric findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 11805f757f3fSDimitry Andric V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt); 11815ffd83dbSDimitry Andric return V; 11825ffd83dbSDimitry Andric } 11835ffd83dbSDimitry Andric 11845ffd83dbSDimitry Andric // {X,+,F} --> X + {0,+,F} 11855ffd83dbSDimitry Andric if (!S->getStart()->isZero()) { 118606c3fb27SDimitry Andric if (isa<PointerType>(S->getType())) { 1187349cc55cSDimitry Andric Value *StartV = expand(SE.getPointerBase(S)); 11885f757f3fSDimitry Andric return expandAddToGEP(SE.removePointerBase(S), StartV); 1189349cc55cSDimitry Andric } 1190349cc55cSDimitry Andric 1191e8d8bef9SDimitry Andric SmallVector<const SCEV *, 4> NewOps(S->operands()); 11925ffd83dbSDimitry Andric NewOps[0] = SE.getConstant(Ty, 0); 11935ffd83dbSDimitry Andric const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 11945ffd83dbSDimitry Andric S->getNoWrapFlags(SCEV::FlagNW)); 11955ffd83dbSDimitry Andric 11965ffd83dbSDimitry Andric // Just do a normal add. Pre-expand the operands to suppress folding. 11975ffd83dbSDimitry Andric // 11985ffd83dbSDimitry Andric // The LHS and RHS values are factored out of the expand call to make the 11995ffd83dbSDimitry Andric // output independent of the argument evaluation order. 12005ffd83dbSDimitry Andric const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 12015ffd83dbSDimitry Andric const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 12025ffd83dbSDimitry Andric return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 12035ffd83dbSDimitry Andric } 12045ffd83dbSDimitry Andric 12055ffd83dbSDimitry Andric // If we don't yet have a canonical IV, create one. 12065ffd83dbSDimitry Andric if (!CanonicalIV) { 12075ffd83dbSDimitry Andric // Create and insert the PHI node for the induction variable in the 12085ffd83dbSDimitry Andric // specified loop. 12095ffd83dbSDimitry Andric BasicBlock *Header = L->getHeader(); 12105ffd83dbSDimitry Andric pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 12115f757f3fSDimitry Andric CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 12125f757f3fSDimitry Andric CanonicalIV->insertBefore(Header->begin()); 12135ffd83dbSDimitry Andric rememberInstruction(CanonicalIV); 12145ffd83dbSDimitry Andric 12155ffd83dbSDimitry Andric SmallSet<BasicBlock *, 4> PredSeen; 12165ffd83dbSDimitry Andric Constant *One = ConstantInt::get(Ty, 1); 12175ffd83dbSDimitry Andric for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 12185ffd83dbSDimitry Andric BasicBlock *HP = *HPI; 12195ffd83dbSDimitry Andric if (!PredSeen.insert(HP).second) { 12205ffd83dbSDimitry Andric // There must be an incoming value for each predecessor, even the 12215ffd83dbSDimitry Andric // duplicates! 12225ffd83dbSDimitry Andric CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 12235ffd83dbSDimitry Andric continue; 12245ffd83dbSDimitry Andric } 12255ffd83dbSDimitry Andric 12265ffd83dbSDimitry Andric if (L->contains(HP)) { 12275ffd83dbSDimitry Andric // Insert a unit add instruction right before the terminator 12285ffd83dbSDimitry Andric // corresponding to the back-edge. 12295ffd83dbSDimitry Andric Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 12305ffd83dbSDimitry Andric "indvar.next", 12315ffd83dbSDimitry Andric HP->getTerminator()); 12325ffd83dbSDimitry Andric Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 12335ffd83dbSDimitry Andric rememberInstruction(Add); 12345ffd83dbSDimitry Andric CanonicalIV->addIncoming(Add, HP); 12355ffd83dbSDimitry Andric } else { 12365ffd83dbSDimitry Andric CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 12375ffd83dbSDimitry Andric } 12385ffd83dbSDimitry Andric } 12395ffd83dbSDimitry Andric } 12405ffd83dbSDimitry Andric 12415ffd83dbSDimitry Andric // {0,+,1} --> Insert a canonical induction variable into the loop! 12425ffd83dbSDimitry Andric if (S->isAffine() && S->getOperand(1)->isOne()) { 12435ffd83dbSDimitry Andric assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 12445ffd83dbSDimitry Andric "IVs with types different from the canonical IV should " 12455ffd83dbSDimitry Andric "already have been handled!"); 12465ffd83dbSDimitry Andric return CanonicalIV; 12475ffd83dbSDimitry Andric } 12485ffd83dbSDimitry Andric 12495ffd83dbSDimitry Andric // {0,+,F} --> {0,+,1} * F 12505ffd83dbSDimitry Andric 12515ffd83dbSDimitry Andric // If this is a simple linear addrec, emit it now as a special case. 12525ffd83dbSDimitry Andric if (S->isAffine()) // {0,+,F} --> i*F 12535ffd83dbSDimitry Andric return 12545ffd83dbSDimitry Andric expand(SE.getTruncateOrNoop( 12555ffd83dbSDimitry Andric SE.getMulExpr(SE.getUnknown(CanonicalIV), 12565ffd83dbSDimitry Andric SE.getNoopOrAnyExtend(S->getOperand(1), 12575ffd83dbSDimitry Andric CanonicalIV->getType())), 12585ffd83dbSDimitry Andric Ty)); 12595ffd83dbSDimitry Andric 12605ffd83dbSDimitry Andric // If this is a chain of recurrences, turn it into a closed form, using the 12615ffd83dbSDimitry Andric // folders, then expandCodeFor the closed form. This allows the folders to 12625ffd83dbSDimitry Andric // simplify the expression without having to build a bunch of special code 12635ffd83dbSDimitry Andric // into this folder. 12645ffd83dbSDimitry Andric const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 12655ffd83dbSDimitry Andric 12665ffd83dbSDimitry Andric // Promote S up to the canonical IV type, if the cast is foldable. 12675ffd83dbSDimitry Andric const SCEV *NewS = S; 12685ffd83dbSDimitry Andric const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 12695ffd83dbSDimitry Andric if (isa<SCEVAddRecExpr>(Ext)) 12705ffd83dbSDimitry Andric NewS = Ext; 12715ffd83dbSDimitry Andric 12725ffd83dbSDimitry Andric const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 12735ffd83dbSDimitry Andric 12745ffd83dbSDimitry Andric // Truncate the result down to the original type, if needed. 12755ffd83dbSDimitry Andric const SCEV *T = SE.getTruncateOrNoop(V, Ty); 12765ffd83dbSDimitry Andric return expand(T); 12775ffd83dbSDimitry Andric } 12785ffd83dbSDimitry Andric 1279e8d8bef9SDimitry Andric Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 12805f757f3fSDimitry Andric Value *V = expand(S->getOperand()); 1281fe6060f1SDimitry Andric return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1282fe6060f1SDimitry Andric GetOptimalInsertionPointForCastOf(V)); 1283e8d8bef9SDimitry Andric } 1284e8d8bef9SDimitry Andric 12855ffd83dbSDimitry Andric Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 12865f757f3fSDimitry Andric Value *V = expand(S->getOperand()); 12875f757f3fSDimitry Andric return Builder.CreateTrunc(V, S->getType()); 12885ffd83dbSDimitry Andric } 12895ffd83dbSDimitry Andric 12905ffd83dbSDimitry Andric Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 12915f757f3fSDimitry Andric Value *V = expand(S->getOperand()); 12925f757f3fSDimitry Andric return Builder.CreateZExt(V, S->getType(), "", 12935f757f3fSDimitry Andric SE.isKnownNonNegative(S->getOperand())); 12945ffd83dbSDimitry Andric } 12955ffd83dbSDimitry Andric 12965ffd83dbSDimitry Andric Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 12975f757f3fSDimitry Andric Value *V = expand(S->getOperand()); 12985f757f3fSDimitry Andric return Builder.CreateSExt(V, S->getType()); 12995ffd83dbSDimitry Andric } 13005ffd83dbSDimitry Andric 130181ad6265SDimitry Andric Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 130281ad6265SDimitry Andric Intrinsic::ID IntrinID, Twine Name, 130381ad6265SDimitry Andric bool IsSequential) { 13045ffd83dbSDimitry Andric Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 13055ffd83dbSDimitry Andric Type *Ty = LHS->getType(); 130681ad6265SDimitry Andric if (IsSequential) 130781ad6265SDimitry Andric LHS = Builder.CreateFreeze(LHS); 13085ffd83dbSDimitry Andric for (int i = S->getNumOperands() - 2; i >= 0; --i) { 13095f757f3fSDimitry Andric Value *RHS = expand(S->getOperand(i)); 131081ad6265SDimitry Andric if (IsSequential && i != 0) 131181ad6265SDimitry Andric RHS = Builder.CreateFreeze(RHS); 1312fe6060f1SDimitry Andric Value *Sel; 1313fe6060f1SDimitry Andric if (Ty->isIntegerTy()) 131481ad6265SDimitry Andric Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 131581ad6265SDimitry Andric /*FMFSource=*/nullptr, Name); 1316fe6060f1SDimitry Andric else { 131781ad6265SDimitry Andric Value *ICmp = 131881ad6265SDimitry Andric Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 131981ad6265SDimitry Andric Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1320fe6060f1SDimitry Andric } 13215ffd83dbSDimitry Andric LHS = Sel; 13225ffd83dbSDimitry Andric } 13235ffd83dbSDimitry Andric return LHS; 13245ffd83dbSDimitry Andric } 13255ffd83dbSDimitry Andric 132604eeddc0SDimitry Andric Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 132781ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 132804eeddc0SDimitry Andric } 132904eeddc0SDimitry Andric 133004eeddc0SDimitry Andric Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 133181ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 133204eeddc0SDimitry Andric } 133304eeddc0SDimitry Andric 133404eeddc0SDimitry Andric Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 133581ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 133604eeddc0SDimitry Andric } 133704eeddc0SDimitry Andric 133804eeddc0SDimitry Andric Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 133981ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 134004eeddc0SDimitry Andric } 134104eeddc0SDimitry Andric 134204eeddc0SDimitry Andric Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 134381ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 134404eeddc0SDimitry Andric } 134504eeddc0SDimitry Andric 134606c3fb27SDimitry Andric Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 134706c3fb27SDimitry Andric return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 134806c3fb27SDimitry Andric } 134906c3fb27SDimitry Andric 13505f757f3fSDimitry Andric Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 13515f757f3fSDimitry Andric BasicBlock::iterator IP) { 13525ffd83dbSDimitry Andric setInsertPoint(IP); 13535f757f3fSDimitry Andric Value *V = expandCodeFor(SH, Ty); 1354e8d8bef9SDimitry Andric return V; 13555ffd83dbSDimitry Andric } 13565ffd83dbSDimitry Andric 13575f757f3fSDimitry Andric Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 13585ffd83dbSDimitry Andric // Expand the code for this SCEV. 13595ffd83dbSDimitry Andric Value *V = expand(SH); 1360e8d8bef9SDimitry Andric 13615ffd83dbSDimitry Andric if (Ty) { 13625ffd83dbSDimitry Andric assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 13635ffd83dbSDimitry Andric "non-trivial casts should be done with the SCEVs directly!"); 13645ffd83dbSDimitry Andric V = InsertNoopCastOfTo(V, Ty); 13655ffd83dbSDimitry Andric } 13665ffd83dbSDimitry Andric return V; 13675ffd83dbSDimitry Andric } 13685ffd83dbSDimitry Andric 13695f757f3fSDimitry Andric Value *SCEVExpander::FindValueInExprValueMap( 13705f757f3fSDimitry Andric const SCEV *S, const Instruction *InsertPt, 13715f757f3fSDimitry Andric SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 13725ffd83dbSDimitry Andric // If the expansion is not in CanonicalMode, and the SCEV contains any 13735ffd83dbSDimitry Andric // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 137481ad6265SDimitry Andric if (!CanonicalMode && SE.containsAddRecurrence(S)) 137581ad6265SDimitry Andric return nullptr; 137681ad6265SDimitry Andric 137781ad6265SDimitry Andric // If S is a constant, it may be worse to reuse an existing Value. 137881ad6265SDimitry Andric if (isa<SCEVConstant>(S)) 137981ad6265SDimitry Andric return nullptr; 138081ad6265SDimitry Andric 138181ad6265SDimitry Andric for (Value *V : SE.getSCEVValues(S)) { 138281ad6265SDimitry Andric Instruction *EntInst = dyn_cast<Instruction>(V); 1383349cc55cSDimitry Andric if (!EntInst) 1384349cc55cSDimitry Andric continue; 1385349cc55cSDimitry Andric 13865f757f3fSDimitry Andric // Choose a Value from the set which dominates the InsertPt. 13875f757f3fSDimitry Andric // InsertPt should be inside the Value's parent loop so as not to break 13885f757f3fSDimitry Andric // the LCSSA form. 1389349cc55cSDimitry Andric assert(EntInst->getFunction() == InsertPt->getFunction()); 13905f757f3fSDimitry Andric if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 13915f757f3fSDimitry Andric !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 13924824e7fdSDimitry Andric SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 13935f757f3fSDimitry Andric continue; 13945f757f3fSDimitry Andric 13955f757f3fSDimitry Andric // Make sure reusing the instruction is poison-safe. 1396*56727255SDimitry Andric if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts)) 139781ad6265SDimitry Andric return V; 13985f757f3fSDimitry Andric DropPoisonGeneratingInsts.clear(); 13995ffd83dbSDimitry Andric } 140081ad6265SDimitry Andric return nullptr; 14015ffd83dbSDimitry Andric } 14025ffd83dbSDimitry Andric 14035ffd83dbSDimitry Andric // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 14045ffd83dbSDimitry Andric // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 14055ffd83dbSDimitry Andric // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 14065ffd83dbSDimitry Andric // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 14075ffd83dbSDimitry Andric // the expansion will try to reuse Value from ExprValueMap, and only when it 14085ffd83dbSDimitry Andric // fails, expand the SCEV literally. 14095ffd83dbSDimitry Andric Value *SCEVExpander::expand(const SCEV *S) { 14105ffd83dbSDimitry Andric // Compute an insertion point for this SCEV object. Hoist the instructions 14115ffd83dbSDimitry Andric // as far out in the loop nest as possible. 14125f757f3fSDimitry Andric BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 14135ffd83dbSDimitry Andric 14145ffd83dbSDimitry Andric // We can move insertion point only if there is no div or rem operations 14155ffd83dbSDimitry Andric // otherwise we are risky to move it over the check for zero denominator. 14165ffd83dbSDimitry Andric auto SafeToHoist = [](const SCEV *S) { 14175ffd83dbSDimitry Andric return !SCEVExprContains(S, [](const SCEV *S) { 14185ffd83dbSDimitry Andric if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 14195ffd83dbSDimitry Andric if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 14205ffd83dbSDimitry Andric // Division by non-zero constants can be hoisted. 14215ffd83dbSDimitry Andric return SC->getValue()->isZero(); 14225ffd83dbSDimitry Andric // All other divisions should not be moved as they may be 14235ffd83dbSDimitry Andric // divisions by zero and should be kept within the 14245ffd83dbSDimitry Andric // conditions of the surrounding loops that guard their 14255ffd83dbSDimitry Andric // execution (see PR35406). 14265ffd83dbSDimitry Andric return true; 14275ffd83dbSDimitry Andric } 14285ffd83dbSDimitry Andric return false; 14295ffd83dbSDimitry Andric }); 14305ffd83dbSDimitry Andric }; 14315ffd83dbSDimitry Andric if (SafeToHoist(S)) { 14325ffd83dbSDimitry Andric for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 14335ffd83dbSDimitry Andric L = L->getParentLoop()) { 14345ffd83dbSDimitry Andric if (SE.isLoopInvariant(S, L)) { 14355ffd83dbSDimitry Andric if (!L) break; 14365f757f3fSDimitry Andric if (BasicBlock *Preheader = L->getLoopPreheader()) { 14375f757f3fSDimitry Andric InsertPt = Preheader->getTerminator()->getIterator(); 14385f757f3fSDimitry Andric } else { 14395ffd83dbSDimitry Andric // LSR sets the insertion point for AddRec start/step values to the 14405ffd83dbSDimitry Andric // block start to simplify value reuse, even though it's an invalid 14415ffd83dbSDimitry Andric // position. SCEVExpander must correct for this in all cases. 14425f757f3fSDimitry Andric InsertPt = L->getHeader()->getFirstInsertionPt(); 14435f757f3fSDimitry Andric } 14445ffd83dbSDimitry Andric } else { 14455ffd83dbSDimitry Andric // If the SCEV is computable at this level, insert it into the header 14465ffd83dbSDimitry Andric // after the PHIs (and after any other instructions that we've inserted 14475ffd83dbSDimitry Andric // there) so that it is guaranteed to dominate any user inside the loop. 14485ffd83dbSDimitry Andric if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 14495f757f3fSDimitry Andric InsertPt = L->getHeader()->getFirstInsertionPt(); 1450e8d8bef9SDimitry Andric 14515f757f3fSDimitry Andric while (InsertPt != Builder.GetInsertPoint() && 14525f757f3fSDimitry Andric (isInsertedInstruction(&*InsertPt) || 14535f757f3fSDimitry Andric isa<DbgInfoIntrinsic>(&*InsertPt))) { 14545f757f3fSDimitry Andric InsertPt = std::next(InsertPt); 1455e8d8bef9SDimitry Andric } 14565ffd83dbSDimitry Andric break; 14575ffd83dbSDimitry Andric } 14585ffd83dbSDimitry Andric } 14595ffd83dbSDimitry Andric } 14605ffd83dbSDimitry Andric 14615ffd83dbSDimitry Andric // Check to see if we already expanded this here. 14625f757f3fSDimitry Andric auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 14635ffd83dbSDimitry Andric if (I != InsertedExpressions.end()) 14645ffd83dbSDimitry Andric return I->second; 14655ffd83dbSDimitry Andric 14665ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 14675f757f3fSDimitry Andric Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 14685ffd83dbSDimitry Andric 14695ffd83dbSDimitry Andric // Expand the expression into instructions. 14705f757f3fSDimitry Andric SmallVector<Instruction *> DropPoisonGeneratingInsts; 14715f757f3fSDimitry Andric Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1472bdd1243dSDimitry Andric if (!V) { 14735ffd83dbSDimitry Andric V = visit(S); 1474bdd1243dSDimitry Andric V = fixupLCSSAFormFor(V); 1475bdd1243dSDimitry Andric } else { 14765f757f3fSDimitry Andric for (Instruction *I : DropPoisonGeneratingInsts) { 14775f757f3fSDimitry Andric I->dropPoisonGeneratingFlagsAndMetadata(); 14785f757f3fSDimitry Andric // See if we can re-infer from first principles any of the flags we just 14795f757f3fSDimitry Andric // dropped. 14805f757f3fSDimitry Andric if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 14815f757f3fSDimitry Andric if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 14825f757f3fSDimitry Andric auto *BO = cast<BinaryOperator>(I); 14835f757f3fSDimitry Andric BO->setHasNoUnsignedWrap( 14845f757f3fSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 14855f757f3fSDimitry Andric BO->setHasNoSignedWrap( 14865f757f3fSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 14875f757f3fSDimitry Andric } 14885f757f3fSDimitry Andric if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) { 14895f757f3fSDimitry Andric auto *Src = NNI->getOperand(0); 14905f757f3fSDimitry Andric if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src, 14915f757f3fSDimitry Andric Constant::getNullValue(Src->getType()), I, 14925f757f3fSDimitry Andric DL).value_or(false)) 14935f757f3fSDimitry Andric NNI->setNonNeg(true); 14945f757f3fSDimitry Andric } 14955f757f3fSDimitry Andric } 14964824e7fdSDimitry Andric } 14975ffd83dbSDimitry Andric // Remember the expanded value for this SCEV at this location. 14985ffd83dbSDimitry Andric // 14995ffd83dbSDimitry Andric // This is independent of PostIncLoops. The mapped value simply materializes 15005ffd83dbSDimitry Andric // the expression at this insertion point. If the mapped value happened to be 15015ffd83dbSDimitry Andric // a postinc expansion, it could be reused by a non-postinc user, but only if 15025ffd83dbSDimitry Andric // its insertion point was already at the head of the loop. 15035f757f3fSDimitry Andric InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 15045ffd83dbSDimitry Andric return V; 15055ffd83dbSDimitry Andric } 15065ffd83dbSDimitry Andric 15075ffd83dbSDimitry Andric void SCEVExpander::rememberInstruction(Value *I) { 1508e8d8bef9SDimitry Andric auto DoInsert = [this](Value *V) { 15095ffd83dbSDimitry Andric if (!PostIncLoops.empty()) 1510e8d8bef9SDimitry Andric InsertedPostIncValues.insert(V); 15115ffd83dbSDimitry Andric else 1512e8d8bef9SDimitry Andric InsertedValues.insert(V); 1513e8d8bef9SDimitry Andric }; 1514e8d8bef9SDimitry Andric DoInsert(I); 15155ffd83dbSDimitry Andric } 15165ffd83dbSDimitry Andric 15175ffd83dbSDimitry Andric /// replaceCongruentIVs - Check for congruent phis in this loop header and 15185ffd83dbSDimitry Andric /// replace them with their most canonical representative. Return the number of 15195ffd83dbSDimitry Andric /// phis eliminated. 15205ffd83dbSDimitry Andric /// 15215ffd83dbSDimitry Andric /// This does not depend on any SCEVExpander state but should be used in 15225ffd83dbSDimitry Andric /// the same context that SCEVExpander is used. 15235ffd83dbSDimitry Andric unsigned 15245ffd83dbSDimitry Andric SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 15255ffd83dbSDimitry Andric SmallVectorImpl<WeakTrackingVH> &DeadInsts, 15265ffd83dbSDimitry Andric const TargetTransformInfo *TTI) { 15275ffd83dbSDimitry Andric // Find integer phis in order of increasing width. 15285ffd83dbSDimitry Andric SmallVector<PHINode*, 8> Phis; 15295ffd83dbSDimitry Andric for (PHINode &PN : L->getHeader()->phis()) 15305ffd83dbSDimitry Andric Phis.push_back(&PN); 15315ffd83dbSDimitry Andric 15325ffd83dbSDimitry Andric if (TTI) 1533349cc55cSDimitry Andric // Use stable_sort to preserve order of equivalent PHIs, so the order 1534349cc55cSDimitry Andric // of the sorted Phis is the same from run to run on the same loop. 1535349cc55cSDimitry Andric llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 15365ffd83dbSDimitry Andric // Put pointers at the back and make sure pointer < pointer = false. 15375ffd83dbSDimitry Andric if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 15385ffd83dbSDimitry Andric return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1539bdd1243dSDimitry Andric return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1540bdd1243dSDimitry Andric LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 15415ffd83dbSDimitry Andric }); 15425ffd83dbSDimitry Andric 15435ffd83dbSDimitry Andric unsigned NumElim = 0; 15445ffd83dbSDimitry Andric DenseMap<const SCEV *, PHINode *> ExprToIVMap; 15455ffd83dbSDimitry Andric // Process phis from wide to narrow. Map wide phis to their truncation 15465ffd83dbSDimitry Andric // so narrow phis can reuse them. 15475ffd83dbSDimitry Andric for (PHINode *Phi : Phis) { 15485ffd83dbSDimitry Andric auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 154981ad6265SDimitry Andric if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 15505ffd83dbSDimitry Andric return V; 15515ffd83dbSDimitry Andric if (!SE.isSCEVable(PN->getType())) 15525ffd83dbSDimitry Andric return nullptr; 15535ffd83dbSDimitry Andric auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 15545ffd83dbSDimitry Andric if (!Const) 15555ffd83dbSDimitry Andric return nullptr; 15565ffd83dbSDimitry Andric return Const->getValue(); 15575ffd83dbSDimitry Andric }; 15585ffd83dbSDimitry Andric 15595ffd83dbSDimitry Andric // Fold constant phis. They may be congruent to other constant phis and 15605ffd83dbSDimitry Andric // would confuse the logic below that expects proper IVs. 15615ffd83dbSDimitry Andric if (Value *V = SimplifyPHINode(Phi)) { 15625ffd83dbSDimitry Andric if (V->getType() != Phi->getType()) 15635ffd83dbSDimitry Andric continue; 1564bdd1243dSDimitry Andric SE.forgetValue(Phi); 15655ffd83dbSDimitry Andric Phi->replaceAllUsesWith(V); 15665ffd83dbSDimitry Andric DeadInsts.emplace_back(Phi); 15675ffd83dbSDimitry Andric ++NumElim; 1568fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 1569fe6060f1SDimitry Andric dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1570fe6060f1SDimitry Andric << '\n'); 15715ffd83dbSDimitry Andric continue; 15725ffd83dbSDimitry Andric } 15735ffd83dbSDimitry Andric 15745ffd83dbSDimitry Andric if (!SE.isSCEVable(Phi->getType())) 15755ffd83dbSDimitry Andric continue; 15765ffd83dbSDimitry Andric 15775ffd83dbSDimitry Andric PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 15785ffd83dbSDimitry Andric if (!OrigPhiRef) { 15795ffd83dbSDimitry Andric OrigPhiRef = Phi; 15805ffd83dbSDimitry Andric if (Phi->getType()->isIntegerTy() && TTI && 15815ffd83dbSDimitry Andric TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 158206c3fb27SDimitry Andric // Make sure we only rewrite using simple induction variables; 158306c3fb27SDimitry Andric // otherwise, we can make the trip count of a loop unanalyzable 158406c3fb27SDimitry Andric // to SCEV. 158506c3fb27SDimitry Andric const SCEV *PhiExpr = SE.getSCEV(Phi); 158606c3fb27SDimitry Andric if (isa<SCEVAddRecExpr>(PhiExpr)) { 15875ffd83dbSDimitry Andric // This phi can be freely truncated to the narrowest phi type. Map the 15885ffd83dbSDimitry Andric // truncated expression to it so it will be reused for narrow types. 15895ffd83dbSDimitry Andric const SCEV *TruncExpr = 159006c3fb27SDimitry Andric SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 15915ffd83dbSDimitry Andric ExprToIVMap[TruncExpr] = Phi; 15925ffd83dbSDimitry Andric } 159306c3fb27SDimitry Andric } 15945ffd83dbSDimitry Andric continue; 15955ffd83dbSDimitry Andric } 15965ffd83dbSDimitry Andric 15975ffd83dbSDimitry Andric // Replacing a pointer phi with an integer phi or vice-versa doesn't make 15985ffd83dbSDimitry Andric // sense. 15995ffd83dbSDimitry Andric if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 16005ffd83dbSDimitry Andric continue; 16015ffd83dbSDimitry Andric 16025ffd83dbSDimitry Andric if (BasicBlock *LatchBlock = L->getLoopLatch()) { 16035ffd83dbSDimitry Andric Instruction *OrigInc = dyn_cast<Instruction>( 16045ffd83dbSDimitry Andric OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 16055ffd83dbSDimitry Andric Instruction *IsomorphicInc = 16065ffd83dbSDimitry Andric dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 16075ffd83dbSDimitry Andric 16085ffd83dbSDimitry Andric if (OrigInc && IsomorphicInc) { 16095ffd83dbSDimitry Andric // If this phi has the same width but is more canonical, replace the 16105ffd83dbSDimitry Andric // original with it. As part of the "more canonical" determination, 16115ffd83dbSDimitry Andric // respect a prior decision to use an IV chain. 16125ffd83dbSDimitry Andric if (OrigPhiRef->getType() == Phi->getType() && 16135ffd83dbSDimitry Andric !(ChainedPhis.count(Phi) || 16145ffd83dbSDimitry Andric isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 16155ffd83dbSDimitry Andric (ChainedPhis.count(Phi) || 16165ffd83dbSDimitry Andric isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 16175ffd83dbSDimitry Andric std::swap(OrigPhiRef, Phi); 16185ffd83dbSDimitry Andric std::swap(OrigInc, IsomorphicInc); 16195ffd83dbSDimitry Andric } 16205ffd83dbSDimitry Andric // Replacing the congruent phi is sufficient because acyclic 16215ffd83dbSDimitry Andric // redundancy elimination, CSE/GVN, should handle the 16225ffd83dbSDimitry Andric // rest. However, once SCEV proves that a phi is congruent, 16235ffd83dbSDimitry Andric // it's often the head of an IV user cycle that is isomorphic 16245ffd83dbSDimitry Andric // with the original phi. It's worth eagerly cleaning up the 16255ffd83dbSDimitry Andric // common case of a single IV increment so that DeleteDeadPHIs 16265ffd83dbSDimitry Andric // can remove cycles that had postinc uses. 1627bdd1243dSDimitry Andric // Because we may potentially introduce a new use of OrigIV that didn't 1628bdd1243dSDimitry Andric // exist before at this point, its poison flags need readjustment. 16295ffd83dbSDimitry Andric const SCEV *TruncExpr = 16305ffd83dbSDimitry Andric SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 16315ffd83dbSDimitry Andric if (OrigInc != IsomorphicInc && 16325ffd83dbSDimitry Andric TruncExpr == SE.getSCEV(IsomorphicInc) && 16335ffd83dbSDimitry Andric SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1634bdd1243dSDimitry Andric hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 1635fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 1636fe6060f1SDimitry Andric DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 16375ffd83dbSDimitry Andric << *IsomorphicInc << '\n'); 16385ffd83dbSDimitry Andric Value *NewInc = OrigInc; 16395ffd83dbSDimitry Andric if (OrigInc->getType() != IsomorphicInc->getType()) { 16405f757f3fSDimitry Andric BasicBlock::iterator IP; 16415ffd83dbSDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 16425f757f3fSDimitry Andric IP = PN->getParent()->getFirstInsertionPt(); 16435ffd83dbSDimitry Andric else 16445f757f3fSDimitry Andric IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 16455ffd83dbSDimitry Andric 16465f757f3fSDimitry Andric IRBuilder<> Builder(IP->getParent(), IP); 16475ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 16485ffd83dbSDimitry Andric NewInc = Builder.CreateTruncOrBitCast( 16495ffd83dbSDimitry Andric OrigInc, IsomorphicInc->getType(), IVName); 16505ffd83dbSDimitry Andric } 16515ffd83dbSDimitry Andric IsomorphicInc->replaceAllUsesWith(NewInc); 16525ffd83dbSDimitry Andric DeadInsts.emplace_back(IsomorphicInc); 16535ffd83dbSDimitry Andric } 16545ffd83dbSDimitry Andric } 16555ffd83dbSDimitry Andric } 1656fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 1657fe6060f1SDimitry Andric dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1658fe6060f1SDimitry Andric << '\n'); 1659fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 1660fe6060f1SDimitry Andric DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 16615ffd83dbSDimitry Andric ++NumElim; 16625ffd83dbSDimitry Andric Value *NewIV = OrigPhiRef; 16635ffd83dbSDimitry Andric if (OrigPhiRef->getType() != Phi->getType()) { 16645f757f3fSDimitry Andric IRBuilder<> Builder(L->getHeader(), 16655f757f3fSDimitry Andric L->getHeader()->getFirstInsertionPt()); 16665ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 16675ffd83dbSDimitry Andric NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 16685ffd83dbSDimitry Andric } 16695ffd83dbSDimitry Andric Phi->replaceAllUsesWith(NewIV); 16705ffd83dbSDimitry Andric DeadInsts.emplace_back(Phi); 16715ffd83dbSDimitry Andric } 16725ffd83dbSDimitry Andric return NumElim; 16735ffd83dbSDimitry Andric } 16745ffd83dbSDimitry Andric 16755f757f3fSDimitry Andric bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 167681ad6265SDimitry Andric const Instruction *At, 16775ffd83dbSDimitry Andric Loop *L) { 16785ffd83dbSDimitry Andric using namespace llvm::PatternMatch; 16795ffd83dbSDimitry Andric 16805ffd83dbSDimitry Andric SmallVector<BasicBlock *, 4> ExitingBlocks; 16815ffd83dbSDimitry Andric L->getExitingBlocks(ExitingBlocks); 16825ffd83dbSDimitry Andric 16835ffd83dbSDimitry Andric // Look for suitable value in simple conditions at the loop exits. 16845ffd83dbSDimitry Andric for (BasicBlock *BB : ExitingBlocks) { 16855ffd83dbSDimitry Andric ICmpInst::Predicate Pred; 16865ffd83dbSDimitry Andric Instruction *LHS, *RHS; 16875ffd83dbSDimitry Andric 16885ffd83dbSDimitry Andric if (!match(BB->getTerminator(), 16895ffd83dbSDimitry Andric m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 16905ffd83dbSDimitry Andric m_BasicBlock(), m_BasicBlock()))) 16915ffd83dbSDimitry Andric continue; 16925ffd83dbSDimitry Andric 16935ffd83dbSDimitry Andric if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 16945f757f3fSDimitry Andric return true; 16955ffd83dbSDimitry Andric 16965ffd83dbSDimitry Andric if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 16975f757f3fSDimitry Andric return true; 16985ffd83dbSDimitry Andric } 16995ffd83dbSDimitry Andric 17005ffd83dbSDimitry Andric // Use expand's logic which is used for reusing a previous Value in 17014824e7fdSDimitry Andric // ExprValueMap. Note that we don't currently model the cost of 17024824e7fdSDimitry Andric // needing to drop poison generating flags on the instruction if we 17034824e7fdSDimitry Andric // want to reuse it. We effectively assume that has zero cost. 17045f757f3fSDimitry Andric SmallVector<Instruction *> DropPoisonGeneratingInsts; 17055f757f3fSDimitry Andric return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 17065ffd83dbSDimitry Andric } 17075ffd83dbSDimitry Andric 1708fe6060f1SDimitry Andric template<typename T> static InstructionCost costAndCollectOperands( 1709e8d8bef9SDimitry Andric const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1710e8d8bef9SDimitry Andric TargetTransformInfo::TargetCostKind CostKind, 1711e8d8bef9SDimitry Andric SmallVectorImpl<SCEVOperand> &Worklist) { 1712e8d8bef9SDimitry Andric 1713e8d8bef9SDimitry Andric const T *S = cast<T>(WorkItem.S); 1714fe6060f1SDimitry Andric InstructionCost Cost = 0; 1715e8d8bef9SDimitry Andric // Object to help map SCEV operands to expanded IR instructions. 1716e8d8bef9SDimitry Andric struct OperationIndices { 1717e8d8bef9SDimitry Andric OperationIndices(unsigned Opc, size_t min, size_t max) : 1718e8d8bef9SDimitry Andric Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1719e8d8bef9SDimitry Andric unsigned Opcode; 1720e8d8bef9SDimitry Andric size_t MinIdx; 1721e8d8bef9SDimitry Andric size_t MaxIdx; 1722e8d8bef9SDimitry Andric }; 1723e8d8bef9SDimitry Andric 1724e8d8bef9SDimitry Andric // Collect the operations of all the instructions that will be needed to 1725e8d8bef9SDimitry Andric // expand the SCEVExpr. This is so that when we come to cost the operands, 1726e8d8bef9SDimitry Andric // we know what the generated user(s) will be. 1727e8d8bef9SDimitry Andric SmallVector<OperationIndices, 2> Operations; 1728e8d8bef9SDimitry Andric 1729fe6060f1SDimitry Andric auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1730e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, 0, 0); 1731e8d8bef9SDimitry Andric return TTI.getCastInstrCost(Opcode, S->getType(), 1732e8d8bef9SDimitry Andric S->getOperand(0)->getType(), 1733e8d8bef9SDimitry Andric TTI::CastContextHint::None, CostKind); 1734e8d8bef9SDimitry Andric }; 1735e8d8bef9SDimitry Andric 1736e8d8bef9SDimitry Andric auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1737fe6060f1SDimitry Andric unsigned MinIdx = 0, 1738fe6060f1SDimitry Andric unsigned MaxIdx = 1) -> InstructionCost { 1739e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1740e8d8bef9SDimitry Andric return NumRequired * 1741e8d8bef9SDimitry Andric TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1742e8d8bef9SDimitry Andric }; 1743e8d8bef9SDimitry Andric 1744fe6060f1SDimitry Andric auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1745fe6060f1SDimitry Andric unsigned MaxIdx) -> InstructionCost { 1746e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1747bdd1243dSDimitry Andric Type *OpType = S->getType(); 1748e8d8bef9SDimitry Andric return NumRequired * TTI.getCmpSelInstrCost( 1749e8d8bef9SDimitry Andric Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1750e8d8bef9SDimitry Andric CmpInst::BAD_ICMP_PREDICATE, CostKind); 1751e8d8bef9SDimitry Andric }; 1752e8d8bef9SDimitry Andric 1753e8d8bef9SDimitry Andric switch (S->getSCEVType()) { 1754e8d8bef9SDimitry Andric case scCouldNotCompute: 1755e8d8bef9SDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1756e8d8bef9SDimitry Andric case scUnknown: 1757e8d8bef9SDimitry Andric case scConstant: 175806c3fb27SDimitry Andric case scVScale: 1759e8d8bef9SDimitry Andric return 0; 1760e8d8bef9SDimitry Andric case scPtrToInt: 1761e8d8bef9SDimitry Andric Cost = CastCost(Instruction::PtrToInt); 1762e8d8bef9SDimitry Andric break; 1763e8d8bef9SDimitry Andric case scTruncate: 1764e8d8bef9SDimitry Andric Cost = CastCost(Instruction::Trunc); 1765e8d8bef9SDimitry Andric break; 1766e8d8bef9SDimitry Andric case scZeroExtend: 1767e8d8bef9SDimitry Andric Cost = CastCost(Instruction::ZExt); 1768e8d8bef9SDimitry Andric break; 1769e8d8bef9SDimitry Andric case scSignExtend: 1770e8d8bef9SDimitry Andric Cost = CastCost(Instruction::SExt); 1771e8d8bef9SDimitry Andric break; 1772e8d8bef9SDimitry Andric case scUDivExpr: { 1773e8d8bef9SDimitry Andric unsigned Opcode = Instruction::UDiv; 1774e8d8bef9SDimitry Andric if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1775e8d8bef9SDimitry Andric if (SC->getAPInt().isPowerOf2()) 1776e8d8bef9SDimitry Andric Opcode = Instruction::LShr; 1777e8d8bef9SDimitry Andric Cost = ArithCost(Opcode, 1); 1778e8d8bef9SDimitry Andric break; 1779e8d8bef9SDimitry Andric } 1780e8d8bef9SDimitry Andric case scAddExpr: 1781e8d8bef9SDimitry Andric Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1782e8d8bef9SDimitry Andric break; 1783e8d8bef9SDimitry Andric case scMulExpr: 1784e8d8bef9SDimitry Andric // TODO: this is a very pessimistic cost modelling for Mul, 1785e8d8bef9SDimitry Andric // because of Bin Pow algorithm actually used by the expander, 1786e8d8bef9SDimitry Andric // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1787e8d8bef9SDimitry Andric Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1788e8d8bef9SDimitry Andric break; 1789e8d8bef9SDimitry Andric case scSMaxExpr: 1790e8d8bef9SDimitry Andric case scUMaxExpr: 1791e8d8bef9SDimitry Andric case scSMinExpr: 179204eeddc0SDimitry Andric case scUMinExpr: 179304eeddc0SDimitry Andric case scSequentialUMinExpr: { 1794fe6060f1SDimitry Andric // FIXME: should this ask the cost for Intrinsic's? 179504eeddc0SDimitry Andric // The reduction tree. 1796e8d8bef9SDimitry Andric Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1797e8d8bef9SDimitry Andric Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 179804eeddc0SDimitry Andric switch (S->getSCEVType()) { 179904eeddc0SDimitry Andric case scSequentialUMinExpr: { 180004eeddc0SDimitry Andric // The safety net against poison. 180104eeddc0SDimitry Andric // FIXME: this is broken. 180204eeddc0SDimitry Andric Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 180304eeddc0SDimitry Andric Cost += ArithCost(Instruction::Or, 180404eeddc0SDimitry Andric S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 180504eeddc0SDimitry Andric Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 180604eeddc0SDimitry Andric break; 180704eeddc0SDimitry Andric } 180804eeddc0SDimitry Andric default: 180904eeddc0SDimitry Andric assert(!isa<SCEVSequentialMinMaxExpr>(S) && 181004eeddc0SDimitry Andric "Unhandled SCEV expression type?"); 181104eeddc0SDimitry Andric break; 181204eeddc0SDimitry Andric } 1813e8d8bef9SDimitry Andric break; 1814e8d8bef9SDimitry Andric } 1815e8d8bef9SDimitry Andric case scAddRecExpr: { 1816e8d8bef9SDimitry Andric // In this polynominal, we may have some zero operands, and we shouldn't 1817bdd1243dSDimitry Andric // really charge for those. So how many non-zero coefficients are there? 1818e8d8bef9SDimitry Andric int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1819e8d8bef9SDimitry Andric return !Op->isZero(); 1820e8d8bef9SDimitry Andric }); 1821e8d8bef9SDimitry Andric 1822e8d8bef9SDimitry Andric assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1823e8d8bef9SDimitry Andric assert(!(*std::prev(S->operands().end()))->isZero() && 1824e8d8bef9SDimitry Andric "Last operand should not be zero"); 1825e8d8bef9SDimitry Andric 1826bdd1243dSDimitry Andric // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1827e8d8bef9SDimitry Andric int NumNonZeroDegreeNonOneTerms = 1828e8d8bef9SDimitry Andric llvm::count_if(S->operands(), [](const SCEV *Op) { 1829e8d8bef9SDimitry Andric auto *SConst = dyn_cast<SCEVConstant>(Op); 1830e8d8bef9SDimitry Andric return !SConst || SConst->getAPInt().ugt(1); 1831e8d8bef9SDimitry Andric }); 1832e8d8bef9SDimitry Andric 1833e8d8bef9SDimitry Andric // Much like with normal add expr, the polynominal will require 1834e8d8bef9SDimitry Andric // one less addition than the number of it's terms. 1835fe6060f1SDimitry Andric InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1836e8d8bef9SDimitry Andric /*MinIdx*/ 1, /*MaxIdx*/ 1); 1837e8d8bef9SDimitry Andric // Here, *each* one of those will require a multiplication. 1838fe6060f1SDimitry Andric InstructionCost MulCost = 1839fe6060f1SDimitry Andric ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1840e8d8bef9SDimitry Andric Cost = AddCost + MulCost; 1841e8d8bef9SDimitry Andric 1842e8d8bef9SDimitry Andric // What is the degree of this polynominal? 1843e8d8bef9SDimitry Andric int PolyDegree = S->getNumOperands() - 1; 1844e8d8bef9SDimitry Andric assert(PolyDegree >= 1 && "Should be at least affine."); 1845e8d8bef9SDimitry Andric 1846e8d8bef9SDimitry Andric // The final term will be: 1847e8d8bef9SDimitry Andric // Op_{PolyDegree} * x ^ {PolyDegree} 1848e8d8bef9SDimitry Andric // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1849e8d8bef9SDimitry Andric // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1850e8d8bef9SDimitry Andric // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1851e8d8bef9SDimitry Andric // FIXME: this is conservatively correct, but might be overly pessimistic. 1852e8d8bef9SDimitry Andric Cost += MulCost * (PolyDegree - 1); 1853e8d8bef9SDimitry Andric break; 1854e8d8bef9SDimitry Andric } 1855e8d8bef9SDimitry Andric } 1856e8d8bef9SDimitry Andric 1857e8d8bef9SDimitry Andric for (auto &CostOp : Operations) { 1858e8d8bef9SDimitry Andric for (auto SCEVOp : enumerate(S->operands())) { 1859e8d8bef9SDimitry Andric // Clamp the index to account for multiple IR operations being chained. 1860e8d8bef9SDimitry Andric size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1861e8d8bef9SDimitry Andric size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1862e8d8bef9SDimitry Andric Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1863e8d8bef9SDimitry Andric } 1864e8d8bef9SDimitry Andric } 1865e8d8bef9SDimitry Andric return Cost; 1866e8d8bef9SDimitry Andric } 1867e8d8bef9SDimitry Andric 18685ffd83dbSDimitry Andric bool SCEVExpander::isHighCostExpansionHelper( 1869e8d8bef9SDimitry Andric const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1870fe6060f1SDimitry Andric InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1871e8d8bef9SDimitry Andric SmallPtrSetImpl<const SCEV *> &Processed, 1872e8d8bef9SDimitry Andric SmallVectorImpl<SCEVOperand> &Worklist) { 1873fe6060f1SDimitry Andric if (Cost > Budget) 18745ffd83dbSDimitry Andric return true; // Already run out of budget, give up. 18755ffd83dbSDimitry Andric 1876e8d8bef9SDimitry Andric const SCEV *S = WorkItem.S; 18775ffd83dbSDimitry Andric // Was the cost of expansion of this expression already accounted for? 1878e8d8bef9SDimitry Andric if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 18795ffd83dbSDimitry Andric return false; // We have already accounted for this expression. 18805ffd83dbSDimitry Andric 18815ffd83dbSDimitry Andric // If we can find an existing value for this scev available at the point "At" 18825ffd83dbSDimitry Andric // then consider the expression cheap. 18835f757f3fSDimitry Andric if (hasRelatedExistingExpansion(S, &At, L)) 18845ffd83dbSDimitry Andric return false; // Consider the expression to be free. 18855ffd83dbSDimitry Andric 18865ffd83dbSDimitry Andric TargetTransformInfo::TargetCostKind CostKind = 1887e8d8bef9SDimitry Andric L->getHeader()->getParent()->hasMinSize() 1888e8d8bef9SDimitry Andric ? TargetTransformInfo::TCK_CodeSize 1889e8d8bef9SDimitry Andric : TargetTransformInfo::TCK_RecipThroughput; 18905ffd83dbSDimitry Andric 18915ffd83dbSDimitry Andric switch (S->getSCEVType()) { 1892e8d8bef9SDimitry Andric case scCouldNotCompute: 1893e8d8bef9SDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1894e8d8bef9SDimitry Andric case scUnknown: 189506c3fb27SDimitry Andric case scVScale: 1896e8d8bef9SDimitry Andric // Assume to be zero-cost. 1897e8d8bef9SDimitry Andric return false; 1898e8d8bef9SDimitry Andric case scConstant: { 1899e8d8bef9SDimitry Andric // Only evalulate the costs of constants when optimizing for size. 1900e8d8bef9SDimitry Andric if (CostKind != TargetTransformInfo::TCK_CodeSize) 190104eeddc0SDimitry Andric return false; 1902e8d8bef9SDimitry Andric const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 1903e8d8bef9SDimitry Andric Type *Ty = S->getType(); 1904fe6060f1SDimitry Andric Cost += TTI.getIntImmCostInst( 1905e8d8bef9SDimitry Andric WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 1906fe6060f1SDimitry Andric return Cost > Budget; 1907e8d8bef9SDimitry Andric } 19085ffd83dbSDimitry Andric case scTruncate: 1909e8d8bef9SDimitry Andric case scPtrToInt: 19105ffd83dbSDimitry Andric case scZeroExtend: 1911e8d8bef9SDimitry Andric case scSignExtend: { 1912fe6060f1SDimitry Andric Cost += 1913e8d8bef9SDimitry Andric costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 19145ffd83dbSDimitry Andric return false; // Will answer upon next entry into this function. 19155ffd83dbSDimitry Andric } 1916e8d8bef9SDimitry Andric case scUDivExpr: { 19175ffd83dbSDimitry Andric // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 19185ffd83dbSDimitry Andric // HowManyLessThans produced to compute a precise expression, rather than a 19195ffd83dbSDimitry Andric // UDiv from the user's code. If we can't find a UDiv in the code with some 19205ffd83dbSDimitry Andric // simple searching, we need to account for it's cost. 19215ffd83dbSDimitry Andric 19225ffd83dbSDimitry Andric // At the beginning of this function we already tried to find existing 19235ffd83dbSDimitry Andric // value for plain 'S'. Now try to lookup 'S + 1' since it is common 19245ffd83dbSDimitry Andric // pattern involving division. This is just a simple search heuristic. 19255f757f3fSDimitry Andric if (hasRelatedExistingExpansion( 19265ffd83dbSDimitry Andric SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 19275ffd83dbSDimitry Andric return false; // Consider it to be free. 19285ffd83dbSDimitry Andric 1929fe6060f1SDimitry Andric Cost += 1930e8d8bef9SDimitry Andric costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 19315ffd83dbSDimitry Andric return false; // Will answer upon next entry into this function. 19325ffd83dbSDimitry Andric } 19335ffd83dbSDimitry Andric case scAddExpr: 19345ffd83dbSDimitry Andric case scMulExpr: 19355ffd83dbSDimitry Andric case scUMaxExpr: 1936e8d8bef9SDimitry Andric case scSMaxExpr: 19375ffd83dbSDimitry Andric case scUMinExpr: 193804eeddc0SDimitry Andric case scSMinExpr: 193904eeddc0SDimitry Andric case scSequentialUMinExpr: { 1940e8d8bef9SDimitry Andric assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 19415ffd83dbSDimitry Andric "Nary expr should have more than 1 operand."); 19425ffd83dbSDimitry Andric // The simple nary expr will require one less op (or pair of ops) 19435ffd83dbSDimitry Andric // than the number of it's terms. 1944fe6060f1SDimitry Andric Cost += 1945e8d8bef9SDimitry Andric costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 1946fe6060f1SDimitry Andric return Cost > Budget; 19475ffd83dbSDimitry Andric } 1948e8d8bef9SDimitry Andric case scAddRecExpr: { 1949e8d8bef9SDimitry Andric assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 1950e8d8bef9SDimitry Andric "Polynomial should be at least linear"); 1951fe6060f1SDimitry Andric Cost += costAndCollectOperands<SCEVAddRecExpr>( 1952e8d8bef9SDimitry Andric WorkItem, TTI, CostKind, Worklist); 1953fe6060f1SDimitry Andric return Cost > Budget; 1954e8d8bef9SDimitry Andric } 1955e8d8bef9SDimitry Andric } 1956e8d8bef9SDimitry Andric llvm_unreachable("Unknown SCEV kind!"); 19575ffd83dbSDimitry Andric } 19585ffd83dbSDimitry Andric 19595ffd83dbSDimitry Andric Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 19605ffd83dbSDimitry Andric Instruction *IP) { 19615ffd83dbSDimitry Andric assert(IP); 19625ffd83dbSDimitry Andric switch (Pred->getKind()) { 19635ffd83dbSDimitry Andric case SCEVPredicate::P_Union: 19645ffd83dbSDimitry Andric return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 196581ad6265SDimitry Andric case SCEVPredicate::P_Compare: 196681ad6265SDimitry Andric return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 19675ffd83dbSDimitry Andric case SCEVPredicate::P_Wrap: { 19685ffd83dbSDimitry Andric auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 19695ffd83dbSDimitry Andric return expandWrapPredicate(AddRecPred, IP); 19705ffd83dbSDimitry Andric } 19715ffd83dbSDimitry Andric } 19725ffd83dbSDimitry Andric llvm_unreachable("Unknown SCEV predicate type"); 19735ffd83dbSDimitry Andric } 19745ffd83dbSDimitry Andric 197581ad6265SDimitry Andric Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 19765ffd83dbSDimitry Andric Instruction *IP) { 19775f757f3fSDimitry Andric Value *Expr0 = expand(Pred->getLHS(), IP); 19785f757f3fSDimitry Andric Value *Expr1 = expand(Pred->getRHS(), IP); 19795ffd83dbSDimitry Andric 19805ffd83dbSDimitry Andric Builder.SetInsertPoint(IP); 198181ad6265SDimitry Andric auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 198281ad6265SDimitry Andric auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 19835ffd83dbSDimitry Andric return I; 19845ffd83dbSDimitry Andric } 19855ffd83dbSDimitry Andric 19865ffd83dbSDimitry Andric Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 19875ffd83dbSDimitry Andric Instruction *Loc, bool Signed) { 19885ffd83dbSDimitry Andric assert(AR->isAffine() && "Cannot generate RT check for " 19895ffd83dbSDimitry Andric "non-affine expression"); 19905ffd83dbSDimitry Andric 199181ad6265SDimitry Andric // FIXME: It is highly suspicious that we're ignoring the predicates here. 199281ad6265SDimitry Andric SmallVector<const SCEVPredicate *, 4> Pred; 19935ffd83dbSDimitry Andric const SCEV *ExitCount = 19945ffd83dbSDimitry Andric SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 19955ffd83dbSDimitry Andric 1996e8d8bef9SDimitry Andric assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 19975ffd83dbSDimitry Andric 19985ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 19995ffd83dbSDimitry Andric const SCEV *Start = AR->getStart(); 20005ffd83dbSDimitry Andric 20015ffd83dbSDimitry Andric Type *ARTy = AR->getType(); 20025ffd83dbSDimitry Andric unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 20035ffd83dbSDimitry Andric unsigned DstBits = SE.getTypeSizeInBits(ARTy); 20045ffd83dbSDimitry Andric 20055ffd83dbSDimitry Andric // The expression {Start,+,Step} has nusw/nssw if 20065ffd83dbSDimitry Andric // Step < 0, Start - |Step| * Backedge <= Start 20075ffd83dbSDimitry Andric // Step >= 0, Start + |Step| * Backedge > Start 20085ffd83dbSDimitry Andric // and |Step| * Backedge doesn't unsigned overflow. 20095ffd83dbSDimitry Andric 20105ffd83dbSDimitry Andric Builder.SetInsertPoint(Loc); 20115f757f3fSDimitry Andric Value *TripCountVal = expand(ExitCount, Loc); 20125ffd83dbSDimitry Andric 20135ffd83dbSDimitry Andric IntegerType *Ty = 20145ffd83dbSDimitry Andric IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 20155ffd83dbSDimitry Andric 20165f757f3fSDimitry Andric Value *StepValue = expand(Step, Loc); 20175f757f3fSDimitry Andric Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc); 20185f757f3fSDimitry Andric Value *StartValue = expand(Start, Loc); 20195ffd83dbSDimitry Andric 20205ffd83dbSDimitry Andric ConstantInt *Zero = 2021349cc55cSDimitry Andric ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 20225ffd83dbSDimitry Andric 20235ffd83dbSDimitry Andric Builder.SetInsertPoint(Loc); 20245ffd83dbSDimitry Andric // Compute |Step| 20255ffd83dbSDimitry Andric Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 20265ffd83dbSDimitry Andric Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 20275ffd83dbSDimitry Andric 202804eeddc0SDimitry Andric // Compute |Step| * Backedge 202904eeddc0SDimitry Andric // Compute: 203004eeddc0SDimitry Andric // 1. Start + |Step| * Backedge < Start 203104eeddc0SDimitry Andric // 2. Start - |Step| * Backedge > Start 203204eeddc0SDimitry Andric // 203304eeddc0SDimitry Andric // And select either 1. or 2. depending on whether step is positive or 203404eeddc0SDimitry Andric // negative. If Step is known to be positive or negative, only create 203504eeddc0SDimitry Andric // either 1. or 2. 203604eeddc0SDimitry Andric auto ComputeEndCheck = [&]() -> Value * { 203704eeddc0SDimitry Andric // Checking <u 0 is always false. 203804eeddc0SDimitry Andric if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 203904eeddc0SDimitry Andric return ConstantInt::getFalse(Loc->getContext()); 204004eeddc0SDimitry Andric 20415ffd83dbSDimitry Andric // Get the backedge taken count and truncate or extended to the AR type. 20425ffd83dbSDimitry Andric Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 20435ffd83dbSDimitry Andric 2044349cc55cSDimitry Andric Value *MulV, *OfMul; 2045349cc55cSDimitry Andric if (Step->isOne()) { 2046349cc55cSDimitry Andric // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2047349cc55cSDimitry Andric // needed, there is never an overflow, so to avoid artificially inflating 2048349cc55cSDimitry Andric // the cost of the check, directly emit the optimized IR. 2049349cc55cSDimitry Andric MulV = TruncTripCount; 2050349cc55cSDimitry Andric OfMul = ConstantInt::getFalse(MulV->getContext()); 2051349cc55cSDimitry Andric } else { 2052349cc55cSDimitry Andric auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2053349cc55cSDimitry Andric Intrinsic::umul_with_overflow, Ty); 205404eeddc0SDimitry Andric CallInst *Mul = 205504eeddc0SDimitry Andric Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2056349cc55cSDimitry Andric MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2057349cc55cSDimitry Andric OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2058349cc55cSDimitry Andric } 20595ffd83dbSDimitry Andric 20605ffd83dbSDimitry Andric Value *Add = nullptr, *Sub = nullptr; 206104eeddc0SDimitry Andric bool NeedPosCheck = !SE.isKnownNegative(Step); 206204eeddc0SDimitry Andric bool NeedNegCheck = !SE.isKnownPositive(Step); 206304eeddc0SDimitry Andric 20645f757f3fSDimitry Andric if (isa<PointerType>(ARTy)) { 2065349cc55cSDimitry Andric Value *NegMulV = Builder.CreateNeg(MulV); 206604eeddc0SDimitry Andric if (NeedPosCheck) 20677a6dacacSDimitry Andric Add = Builder.CreatePtrAdd(StartValue, MulV); 206804eeddc0SDimitry Andric if (NeedNegCheck) 20697a6dacacSDimitry Andric Sub = Builder.CreatePtrAdd(StartValue, NegMulV); 20705ffd83dbSDimitry Andric } else { 207104eeddc0SDimitry Andric if (NeedPosCheck) 20725ffd83dbSDimitry Andric Add = Builder.CreateAdd(StartValue, MulV); 207304eeddc0SDimitry Andric if (NeedNegCheck) 20745ffd83dbSDimitry Andric Sub = Builder.CreateSub(StartValue, MulV); 20755ffd83dbSDimitry Andric } 20765ffd83dbSDimitry Andric 207704eeddc0SDimitry Andric Value *EndCompareLT = nullptr; 207804eeddc0SDimitry Andric Value *EndCompareGT = nullptr; 207904eeddc0SDimitry Andric Value *EndCheck = nullptr; 208004eeddc0SDimitry Andric if (NeedPosCheck) 208104eeddc0SDimitry Andric EndCheck = EndCompareLT = Builder.CreateICmp( 20825ffd83dbSDimitry Andric Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 208304eeddc0SDimitry Andric if (NeedNegCheck) 208404eeddc0SDimitry Andric EndCheck = EndCompareGT = Builder.CreateICmp( 208504eeddc0SDimitry Andric Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 208604eeddc0SDimitry Andric if (NeedPosCheck && NeedNegCheck) { 20875ffd83dbSDimitry Andric // Select the answer based on the sign of Step. 208804eeddc0SDimitry Andric EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 208904eeddc0SDimitry Andric } 209004eeddc0SDimitry Andric return Builder.CreateOr(EndCheck, OfMul); 209104eeddc0SDimitry Andric }; 209204eeddc0SDimitry Andric Value *EndCheck = ComputeEndCheck(); 20935ffd83dbSDimitry Andric 20945ffd83dbSDimitry Andric // If the backedge taken count type is larger than the AR type, 20955ffd83dbSDimitry Andric // check that we don't drop any bits by truncating it. If we are 20965ffd83dbSDimitry Andric // dropping bits, then we have overflow (unless the step is zero). 20975f757f3fSDimitry Andric if (SrcBits > DstBits) { 20985ffd83dbSDimitry Andric auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 20995ffd83dbSDimitry Andric auto *BackedgeCheck = 21005ffd83dbSDimitry Andric Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 21015ffd83dbSDimitry Andric ConstantInt::get(Loc->getContext(), MaxVal)); 21025ffd83dbSDimitry Andric BackedgeCheck = Builder.CreateAnd( 21035ffd83dbSDimitry Andric BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 21045ffd83dbSDimitry Andric 21055ffd83dbSDimitry Andric EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 21065ffd83dbSDimitry Andric } 21075ffd83dbSDimitry Andric 210804eeddc0SDimitry Andric return EndCheck; 21095ffd83dbSDimitry Andric } 21105ffd83dbSDimitry Andric 21115ffd83dbSDimitry Andric Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 21125ffd83dbSDimitry Andric Instruction *IP) { 21135ffd83dbSDimitry Andric const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 21145ffd83dbSDimitry Andric Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 21155ffd83dbSDimitry Andric 21165ffd83dbSDimitry Andric // Add a check for NUSW 21175ffd83dbSDimitry Andric if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 21185ffd83dbSDimitry Andric NUSWCheck = generateOverflowCheck(A, IP, false); 21195ffd83dbSDimitry Andric 21205ffd83dbSDimitry Andric // Add a check for NSSW 21215ffd83dbSDimitry Andric if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 21225ffd83dbSDimitry Andric NSSWCheck = generateOverflowCheck(A, IP, true); 21235ffd83dbSDimitry Andric 21245ffd83dbSDimitry Andric if (NUSWCheck && NSSWCheck) 21255ffd83dbSDimitry Andric return Builder.CreateOr(NUSWCheck, NSSWCheck); 21265ffd83dbSDimitry Andric 21275ffd83dbSDimitry Andric if (NUSWCheck) 21285ffd83dbSDimitry Andric return NUSWCheck; 21295ffd83dbSDimitry Andric 21305ffd83dbSDimitry Andric if (NSSWCheck) 21315ffd83dbSDimitry Andric return NSSWCheck; 21325ffd83dbSDimitry Andric 21335ffd83dbSDimitry Andric return ConstantInt::getFalse(IP->getContext()); 21345ffd83dbSDimitry Andric } 21355ffd83dbSDimitry Andric 21365ffd83dbSDimitry Andric Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 21375ffd83dbSDimitry Andric Instruction *IP) { 21385ffd83dbSDimitry Andric // Loop over all checks in this set. 213904eeddc0SDimitry Andric SmallVector<Value *> Checks; 2140bdd1243dSDimitry Andric for (const auto *Pred : Union->getPredicates()) { 214104eeddc0SDimitry Andric Checks.push_back(expandCodeForPredicate(Pred, IP)); 21425ffd83dbSDimitry Andric Builder.SetInsertPoint(IP); 21435ffd83dbSDimitry Andric } 21445ffd83dbSDimitry Andric 214504eeddc0SDimitry Andric if (Checks.empty()) 214604eeddc0SDimitry Andric return ConstantInt::getFalse(IP->getContext()); 214704eeddc0SDimitry Andric return Builder.CreateOr(Checks); 21485ffd83dbSDimitry Andric } 21495ffd83dbSDimitry Andric 2150bdd1243dSDimitry Andric Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2151bdd1243dSDimitry Andric auto *DefI = dyn_cast<Instruction>(V); 2152bdd1243dSDimitry Andric if (!PreserveLCSSA || !DefI) 2153bdd1243dSDimitry Andric return V; 2154e8d8bef9SDimitry Andric 2155bdd1243dSDimitry Andric Instruction *InsertPt = &*Builder.GetInsertPoint(); 2156bdd1243dSDimitry Andric Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2157bdd1243dSDimitry Andric Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2158e8d8bef9SDimitry Andric if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2159bdd1243dSDimitry Andric return V; 2160e8d8bef9SDimitry Andric 2161bdd1243dSDimitry Andric // Create a temporary instruction to at the current insertion point, so we 2162bdd1243dSDimitry Andric // can hand it off to the helper to create LCSSA PHIs if required for the 2163bdd1243dSDimitry Andric // new use. 2164bdd1243dSDimitry Andric // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2165bdd1243dSDimitry Andric // would accept a insertion point and return an LCSSA phi for that 2166bdd1243dSDimitry Andric // insertion point, so there is no need to insert & remove the temporary 2167bdd1243dSDimitry Andric // instruction. 2168bdd1243dSDimitry Andric Type *ToTy; 2169bdd1243dSDimitry Andric if (DefI->getType()->isIntegerTy()) 21705f757f3fSDimitry Andric ToTy = PointerType::get(DefI->getContext(), 0); 2171bdd1243dSDimitry Andric else 2172bdd1243dSDimitry Andric ToTy = Type::getInt32Ty(DefI->getContext()); 2173bdd1243dSDimitry Andric Instruction *User = 2174bdd1243dSDimitry Andric CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2175bdd1243dSDimitry Andric auto RemoveUserOnExit = 2176bdd1243dSDimitry Andric make_scope_exit([User]() { User->eraseFromParent(); }); 2177bdd1243dSDimitry Andric 2178bdd1243dSDimitry Andric SmallVector<Instruction *, 1> ToUpdate; 2179bdd1243dSDimitry Andric ToUpdate.push_back(DefI); 2180e8d8bef9SDimitry Andric SmallVector<PHINode *, 16> PHIsToRemove; 218106c3fb27SDimitry Andric SmallVector<PHINode *, 16> InsertedPHIs; 218206c3fb27SDimitry Andric formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 218306c3fb27SDimitry Andric &InsertedPHIs); 218406c3fb27SDimitry Andric for (PHINode *PN : InsertedPHIs) 218506c3fb27SDimitry Andric rememberInstruction(PN); 2186e8d8bef9SDimitry Andric for (PHINode *PN : PHIsToRemove) { 2187e8d8bef9SDimitry Andric if (!PN->use_empty()) 2188e8d8bef9SDimitry Andric continue; 2189e8d8bef9SDimitry Andric InsertedValues.erase(PN); 2190e8d8bef9SDimitry Andric InsertedPostIncValues.erase(PN); 2191e8d8bef9SDimitry Andric PN->eraseFromParent(); 2192e8d8bef9SDimitry Andric } 2193e8d8bef9SDimitry Andric 2194bdd1243dSDimitry Andric return User->getOperand(0); 2195e8d8bef9SDimitry Andric } 2196e8d8bef9SDimitry Andric 21975ffd83dbSDimitry Andric namespace { 21985ffd83dbSDimitry Andric // Search for a SCEV subexpression that is not safe to expand. Any expression 21995ffd83dbSDimitry Andric // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 22005ffd83dbSDimitry Andric // UDiv expressions. We don't know if the UDiv is derived from an IR divide 22015ffd83dbSDimitry Andric // instruction, but the important thing is that we prove the denominator is 22025ffd83dbSDimitry Andric // nonzero before expansion. 22035ffd83dbSDimitry Andric // 22045ffd83dbSDimitry Andric // IVUsers already checks that IV-derived expressions are safe. So this check is 22055ffd83dbSDimitry Andric // only needed when the expression includes some subexpression that is not IV 22065ffd83dbSDimitry Andric // derived. 22075ffd83dbSDimitry Andric // 2208fcaf7f86SDimitry Andric // Currently, we only allow division by a value provably non-zero here. 22095ffd83dbSDimitry Andric // 22105ffd83dbSDimitry Andric // We cannot generally expand recurrences unless the step dominates the loop 22115ffd83dbSDimitry Andric // header. The expander handles the special case of affine recurrences by 22125ffd83dbSDimitry Andric // scaling the recurrence outside the loop, but this technique isn't generally 22135ffd83dbSDimitry Andric // applicable. Expanding a nested recurrence outside a loop requires computing 22145ffd83dbSDimitry Andric // binomial coefficients. This could be done, but the recurrence has to be in a 22155ffd83dbSDimitry Andric // perfectly reduced form, which can't be guaranteed. 22165ffd83dbSDimitry Andric struct SCEVFindUnsafe { 22175ffd83dbSDimitry Andric ScalarEvolution &SE; 2218349cc55cSDimitry Andric bool CanonicalMode; 221981ad6265SDimitry Andric bool IsUnsafe = false; 22205ffd83dbSDimitry Andric 2221349cc55cSDimitry Andric SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 222281ad6265SDimitry Andric : SE(SE), CanonicalMode(CanonicalMode) {} 22235ffd83dbSDimitry Andric 22245ffd83dbSDimitry Andric bool follow(const SCEV *S) { 22255ffd83dbSDimitry Andric if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2226fcaf7f86SDimitry Andric if (!SE.isKnownNonZero(D->getRHS())) { 22275ffd83dbSDimitry Andric IsUnsafe = true; 22285ffd83dbSDimitry Andric return false; 22295ffd83dbSDimitry Andric } 22305ffd83dbSDimitry Andric } 22315ffd83dbSDimitry Andric if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2232349cc55cSDimitry Andric // For non-affine addrecs or in non-canonical mode we need a preheader 2233349cc55cSDimitry Andric // to insert into. 2234349cc55cSDimitry Andric if (!AR->getLoop()->getLoopPreheader() && 2235349cc55cSDimitry Andric (!CanonicalMode || !AR->isAffine())) { 2236349cc55cSDimitry Andric IsUnsafe = true; 2237349cc55cSDimitry Andric return false; 2238349cc55cSDimitry Andric } 22395ffd83dbSDimitry Andric } 22405ffd83dbSDimitry Andric return true; 22415ffd83dbSDimitry Andric } 22425ffd83dbSDimitry Andric bool isDone() const { return IsUnsafe; } 22435ffd83dbSDimitry Andric }; 2244fcaf7f86SDimitry Andric } // namespace 22455ffd83dbSDimitry Andric 2246fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2247349cc55cSDimitry Andric SCEVFindUnsafe Search(SE, CanonicalMode); 22485ffd83dbSDimitry Andric visitAll(S, Search); 22495ffd83dbSDimitry Andric return !Search.IsUnsafe; 22505ffd83dbSDimitry Andric } 22515ffd83dbSDimitry Andric 2252fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2253fcaf7f86SDimitry Andric const Instruction *InsertionPoint) const { 2254fcaf7f86SDimitry Andric if (!isSafeToExpand(S)) 22555ffd83dbSDimitry Andric return false; 22565ffd83dbSDimitry Andric // We have to prove that the expanded site of S dominates InsertionPoint. 22575ffd83dbSDimitry Andric // This is easy when not in the same block, but hard when S is an instruction 22585ffd83dbSDimitry Andric // to be expanded somewhere inside the same block as our insertion point. 22595ffd83dbSDimitry Andric // What we really need here is something analogous to an OrderedBasicBlock, 22605ffd83dbSDimitry Andric // but for the moment, we paper over the problem by handling two common and 22615ffd83dbSDimitry Andric // cheap to check cases. 22625ffd83dbSDimitry Andric if (SE.properlyDominates(S, InsertionPoint->getParent())) 22635ffd83dbSDimitry Andric return true; 22645ffd83dbSDimitry Andric if (SE.dominates(S, InsertionPoint->getParent())) { 22655ffd83dbSDimitry Andric if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 22665ffd83dbSDimitry Andric return true; 22675ffd83dbSDimitry Andric if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2268fe6060f1SDimitry Andric if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 22695ffd83dbSDimitry Andric return true; 22705ffd83dbSDimitry Andric } 22715ffd83dbSDimitry Andric return false; 22725ffd83dbSDimitry Andric } 2273e8d8bef9SDimitry Andric 2274fe6060f1SDimitry Andric void SCEVExpanderCleaner::cleanup() { 2275e8d8bef9SDimitry Andric // Result is used, nothing to remove. 2276e8d8bef9SDimitry Andric if (ResultUsed) 2277e8d8bef9SDimitry Andric return; 2278e8d8bef9SDimitry Andric 2279e8d8bef9SDimitry Andric auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2280e8d8bef9SDimitry Andric #ifndef NDEBUG 2281e8d8bef9SDimitry Andric SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2282e8d8bef9SDimitry Andric InsertedInstructions.end()); 2283e8d8bef9SDimitry Andric (void)InsertedSet; 2284e8d8bef9SDimitry Andric #endif 2285e8d8bef9SDimitry Andric // Remove sets with value handles. 2286e8d8bef9SDimitry Andric Expander.clear(); 2287e8d8bef9SDimitry Andric 2288e8d8bef9SDimitry Andric // Remove all inserted instructions. 228904eeddc0SDimitry Andric for (Instruction *I : reverse(InsertedInstructions)) { 2290e8d8bef9SDimitry Andric #ifndef NDEBUG 2291e8d8bef9SDimitry Andric assert(all_of(I->users(), 2292e8d8bef9SDimitry Andric [&InsertedSet](Value *U) { 2293e8d8bef9SDimitry Andric return InsertedSet.contains(cast<Instruction>(U)); 2294e8d8bef9SDimitry Andric }) && 2295e8d8bef9SDimitry Andric "removed instruction should only be used by instructions inserted " 2296e8d8bef9SDimitry Andric "during expansion"); 2297e8d8bef9SDimitry Andric #endif 2298e8d8bef9SDimitry Andric assert(!I->getType()->isVoidTy() && 2299e8d8bef9SDimitry Andric "inserted instruction should have non-void types"); 2300bdd1243dSDimitry Andric I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2301e8d8bef9SDimitry Andric I->eraseFromParent(); 2302e8d8bef9SDimitry Andric } 2303e8d8bef9SDimitry Andric } 2304