xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
15ffd83dbSDimitry Andric //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
25ffd83dbSDimitry Andric //
35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
65ffd83dbSDimitry Andric //
75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
85ffd83dbSDimitry Andric //
95ffd83dbSDimitry Andric // This file contains the implementation of the scalar evolution expander,
105ffd83dbSDimitry Andric // which is used to generate the code corresponding to a given scalar evolution
115ffd83dbSDimitry Andric // expression.
125ffd83dbSDimitry Andric //
135ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
145ffd83dbSDimitry Andric 
155ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
165ffd83dbSDimitry Andric #include "llvm/ADT/STLExtras.h"
175ffd83dbSDimitry Andric #include "llvm/ADT/SmallSet.h"
185ffd83dbSDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
195ffd83dbSDimitry Andric #include "llvm/Analysis/LoopInfo.h"
205ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
21*4824e7fdSDimitry Andric #include "llvm/Analysis/ValueTracking.h"
225ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h"
235ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h"
245ffd83dbSDimitry Andric #include "llvm/IR/IntrinsicInst.h"
255ffd83dbSDimitry Andric #include "llvm/IR/LLVMContext.h"
265ffd83dbSDimitry Andric #include "llvm/IR/Module.h"
275ffd83dbSDimitry Andric #include "llvm/IR/PatternMatch.h"
285ffd83dbSDimitry Andric #include "llvm/Support/CommandLine.h"
295ffd83dbSDimitry Andric #include "llvm/Support/Debug.h"
305ffd83dbSDimitry Andric #include "llvm/Support/raw_ostream.h"
31e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
325ffd83dbSDimitry Andric 
33fe6060f1SDimitry Andric #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
34fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
35fe6060f1SDimitry Andric #else
36fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
37fe6060f1SDimitry Andric #endif
38fe6060f1SDimitry Andric 
395ffd83dbSDimitry Andric using namespace llvm;
405ffd83dbSDimitry Andric 
415ffd83dbSDimitry Andric cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
425ffd83dbSDimitry Andric     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
435ffd83dbSDimitry Andric     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
445ffd83dbSDimitry Andric              "controls the budget that is considered cheap (default = 4)"));
455ffd83dbSDimitry Andric 
465ffd83dbSDimitry Andric using namespace PatternMatch;
475ffd83dbSDimitry Andric 
485ffd83dbSDimitry Andric /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
49e8d8bef9SDimitry Andric /// reusing an existing cast if a suitable one (= dominating IP) exists, or
505ffd83dbSDimitry Andric /// creating a new one.
515ffd83dbSDimitry Andric Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
525ffd83dbSDimitry Andric                                        Instruction::CastOps Op,
535ffd83dbSDimitry Andric                                        BasicBlock::iterator IP) {
545ffd83dbSDimitry Andric   // This function must be called with the builder having a valid insertion
555ffd83dbSDimitry Andric   // point. It doesn't need to be the actual IP where the uses of the returned
565ffd83dbSDimitry Andric   // cast will be added, but it must dominate such IP.
575ffd83dbSDimitry Andric   // We use this precondition to produce a cast that will dominate all its
585ffd83dbSDimitry Andric   // uses. In particular, this is crucial for the case where the builder's
595ffd83dbSDimitry Andric   // insertion point *is* the point where we were asked to put the cast.
605ffd83dbSDimitry Andric   // Since we don't know the builder's insertion point is actually
615ffd83dbSDimitry Andric   // where the uses will be added (only that it dominates it), we are
625ffd83dbSDimitry Andric   // not allowed to move it.
635ffd83dbSDimitry Andric   BasicBlock::iterator BIP = Builder.GetInsertPoint();
645ffd83dbSDimitry Andric 
65fe6060f1SDimitry Andric   Value *Ret = nullptr;
665ffd83dbSDimitry Andric 
675ffd83dbSDimitry Andric   // Check to see if there is already a cast!
68e8d8bef9SDimitry Andric   for (User *U : V->users()) {
69e8d8bef9SDimitry Andric     if (U->getType() != Ty)
70e8d8bef9SDimitry Andric       continue;
71e8d8bef9SDimitry Andric     CastInst *CI = dyn_cast<CastInst>(U);
72e8d8bef9SDimitry Andric     if (!CI || CI->getOpcode() != Op)
73e8d8bef9SDimitry Andric       continue;
74e8d8bef9SDimitry Andric 
75e8d8bef9SDimitry Andric     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
76e8d8bef9SDimitry Andric     // the cast must also properly dominate the Builder's insertion point.
77e8d8bef9SDimitry Andric     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
78e8d8bef9SDimitry Andric         (&*IP == CI || CI->comesBefore(&*IP))) {
795ffd83dbSDimitry Andric       Ret = CI;
805ffd83dbSDimitry Andric       break;
815ffd83dbSDimitry Andric     }
82e8d8bef9SDimitry Andric   }
835ffd83dbSDimitry Andric 
845ffd83dbSDimitry Andric   // Create a new cast.
85e8d8bef9SDimitry Andric   if (!Ret) {
86fe6060f1SDimitry Andric     SCEVInsertPointGuard Guard(Builder, this);
87fe6060f1SDimitry Andric     Builder.SetInsertPoint(&*IP);
88fe6060f1SDimitry Andric     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
89e8d8bef9SDimitry Andric   }
905ffd83dbSDimitry Andric 
915ffd83dbSDimitry Andric   // We assert at the end of the function since IP might point to an
925ffd83dbSDimitry Andric   // instruction with different dominance properties than a cast
935ffd83dbSDimitry Andric   // (an invoke for example) and not dominate BIP (but the cast does).
94fe6060f1SDimitry Andric   assert(!isa<Instruction>(Ret) ||
95fe6060f1SDimitry Andric          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
965ffd83dbSDimitry Andric 
975ffd83dbSDimitry Andric   return Ret;
985ffd83dbSDimitry Andric }
995ffd83dbSDimitry Andric 
100e8d8bef9SDimitry Andric BasicBlock::iterator
101fe6060f1SDimitry Andric SCEVExpander::findInsertPointAfter(Instruction *I,
102fe6060f1SDimitry Andric                                    Instruction *MustDominate) const {
1035ffd83dbSDimitry Andric   BasicBlock::iterator IP = ++I->getIterator();
1045ffd83dbSDimitry Andric   if (auto *II = dyn_cast<InvokeInst>(I))
1055ffd83dbSDimitry Andric     IP = II->getNormalDest()->begin();
1065ffd83dbSDimitry Andric 
1075ffd83dbSDimitry Andric   while (isa<PHINode>(IP))
1085ffd83dbSDimitry Andric     ++IP;
1095ffd83dbSDimitry Andric 
1105ffd83dbSDimitry Andric   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
1115ffd83dbSDimitry Andric     ++IP;
1125ffd83dbSDimitry Andric   } else if (isa<CatchSwitchInst>(IP)) {
113e8d8bef9SDimitry Andric     IP = MustDominate->getParent()->getFirstInsertionPt();
1145ffd83dbSDimitry Andric   } else {
1155ffd83dbSDimitry Andric     assert(!IP->isEHPad() && "unexpected eh pad!");
1165ffd83dbSDimitry Andric   }
1175ffd83dbSDimitry Andric 
118e8d8bef9SDimitry Andric   // Adjust insert point to be after instructions inserted by the expander, so
119e8d8bef9SDimitry Andric   // we can re-use already inserted instructions. Avoid skipping past the
120e8d8bef9SDimitry Andric   // original \p MustDominate, in case it is an inserted instruction.
121e8d8bef9SDimitry Andric   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
122e8d8bef9SDimitry Andric     ++IP;
123e8d8bef9SDimitry Andric 
1245ffd83dbSDimitry Andric   return IP;
1255ffd83dbSDimitry Andric }
1265ffd83dbSDimitry Andric 
127fe6060f1SDimitry Andric BasicBlock::iterator
128fe6060f1SDimitry Andric SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
129fe6060f1SDimitry Andric   // Cast the argument at the beginning of the entry block, after
130fe6060f1SDimitry Andric   // any bitcasts of other arguments.
131fe6060f1SDimitry Andric   if (Argument *A = dyn_cast<Argument>(V)) {
132fe6060f1SDimitry Andric     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
133fe6060f1SDimitry Andric     while ((isa<BitCastInst>(IP) &&
134fe6060f1SDimitry Andric             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
135fe6060f1SDimitry Andric             cast<BitCastInst>(IP)->getOperand(0) != A) ||
136fe6060f1SDimitry Andric            isa<DbgInfoIntrinsic>(IP))
137fe6060f1SDimitry Andric       ++IP;
138fe6060f1SDimitry Andric     return IP;
139fe6060f1SDimitry Andric   }
140fe6060f1SDimitry Andric 
141fe6060f1SDimitry Andric   // Cast the instruction immediately after the instruction.
142fe6060f1SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(V))
143fe6060f1SDimitry Andric     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
144fe6060f1SDimitry Andric 
145fe6060f1SDimitry Andric   // Otherwise, this must be some kind of a constant,
146fe6060f1SDimitry Andric   // so let's plop this cast into the function's entry block.
147fe6060f1SDimitry Andric   assert(isa<Constant>(V) &&
148fe6060f1SDimitry Andric          "Expected the cast argument to be a global/constant");
149fe6060f1SDimitry Andric   return Builder.GetInsertBlock()
150fe6060f1SDimitry Andric       ->getParent()
151fe6060f1SDimitry Andric       ->getEntryBlock()
152fe6060f1SDimitry Andric       .getFirstInsertionPt();
153fe6060f1SDimitry Andric }
154fe6060f1SDimitry Andric 
1555ffd83dbSDimitry Andric /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
1565ffd83dbSDimitry Andric /// which must be possible with a noop cast, doing what we can to share
1575ffd83dbSDimitry Andric /// the casts.
1585ffd83dbSDimitry Andric Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
1595ffd83dbSDimitry Andric   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
1605ffd83dbSDimitry Andric   assert((Op == Instruction::BitCast ||
1615ffd83dbSDimitry Andric           Op == Instruction::PtrToInt ||
1625ffd83dbSDimitry Andric           Op == Instruction::IntToPtr) &&
1635ffd83dbSDimitry Andric          "InsertNoopCastOfTo cannot perform non-noop casts!");
1645ffd83dbSDimitry Andric   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
1655ffd83dbSDimitry Andric          "InsertNoopCastOfTo cannot change sizes!");
1665ffd83dbSDimitry Andric 
167e8d8bef9SDimitry Andric   // inttoptr only works for integral pointers. For non-integral pointers, we
168e8d8bef9SDimitry Andric   // can create a GEP on i8* null  with the integral value as index. Note that
169e8d8bef9SDimitry Andric   // it is safe to use GEP of null instead of inttoptr here, because only
170e8d8bef9SDimitry Andric   // expressions already based on a GEP of null should be converted to pointers
171e8d8bef9SDimitry Andric   // during expansion.
172e8d8bef9SDimitry Andric   if (Op == Instruction::IntToPtr) {
173e8d8bef9SDimitry Andric     auto *PtrTy = cast<PointerType>(Ty);
174e8d8bef9SDimitry Andric     if (DL.isNonIntegralPointerType(PtrTy)) {
175e8d8bef9SDimitry Andric       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
176e8d8bef9SDimitry Andric       assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
177e8d8bef9SDimitry Andric              "alloc size of i8 must by 1 byte for the GEP to be correct");
178e8d8bef9SDimitry Andric       auto *GEP = Builder.CreateGEP(
179e8d8bef9SDimitry Andric           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
180e8d8bef9SDimitry Andric       return Builder.CreateBitCast(GEP, Ty);
181e8d8bef9SDimitry Andric     }
182e8d8bef9SDimitry Andric   }
1835ffd83dbSDimitry Andric   // Short-circuit unnecessary bitcasts.
1845ffd83dbSDimitry Andric   if (Op == Instruction::BitCast) {
1855ffd83dbSDimitry Andric     if (V->getType() == Ty)
1865ffd83dbSDimitry Andric       return V;
1875ffd83dbSDimitry Andric     if (CastInst *CI = dyn_cast<CastInst>(V)) {
1885ffd83dbSDimitry Andric       if (CI->getOperand(0)->getType() == Ty)
1895ffd83dbSDimitry Andric         return CI->getOperand(0);
1905ffd83dbSDimitry Andric     }
1915ffd83dbSDimitry Andric   }
1925ffd83dbSDimitry Andric   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
1935ffd83dbSDimitry Andric   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
1945ffd83dbSDimitry Andric       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
1955ffd83dbSDimitry Andric     if (CastInst *CI = dyn_cast<CastInst>(V))
1965ffd83dbSDimitry Andric       if ((CI->getOpcode() == Instruction::PtrToInt ||
1975ffd83dbSDimitry Andric            CI->getOpcode() == Instruction::IntToPtr) &&
1985ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CI->getType()) ==
1995ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
2005ffd83dbSDimitry Andric         return CI->getOperand(0);
2015ffd83dbSDimitry Andric     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2025ffd83dbSDimitry Andric       if ((CE->getOpcode() == Instruction::PtrToInt ||
2035ffd83dbSDimitry Andric            CE->getOpcode() == Instruction::IntToPtr) &&
2045ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CE->getType()) ==
2055ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
2065ffd83dbSDimitry Andric         return CE->getOperand(0);
2075ffd83dbSDimitry Andric   }
2085ffd83dbSDimitry Andric 
2095ffd83dbSDimitry Andric   // Fold a cast of a constant.
2105ffd83dbSDimitry Andric   if (Constant *C = dyn_cast<Constant>(V))
2115ffd83dbSDimitry Andric     return ConstantExpr::getCast(Op, C, Ty);
2125ffd83dbSDimitry Andric 
213fe6060f1SDimitry Andric   // Try to reuse existing cast, or insert one.
214fe6060f1SDimitry Andric   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
2155ffd83dbSDimitry Andric }
2165ffd83dbSDimitry Andric 
2175ffd83dbSDimitry Andric /// InsertBinop - Insert the specified binary operator, doing a small amount
2185ffd83dbSDimitry Andric /// of work to avoid inserting an obviously redundant operation, and hoisting
2195ffd83dbSDimitry Andric /// to an outer loop when the opportunity is there and it is safe.
2205ffd83dbSDimitry Andric Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
2215ffd83dbSDimitry Andric                                  Value *LHS, Value *RHS,
2225ffd83dbSDimitry Andric                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
2235ffd83dbSDimitry Andric   // Fold a binop with constant operands.
2245ffd83dbSDimitry Andric   if (Constant *CLHS = dyn_cast<Constant>(LHS))
2255ffd83dbSDimitry Andric     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2265ffd83dbSDimitry Andric       return ConstantExpr::get(Opcode, CLHS, CRHS);
2275ffd83dbSDimitry Andric 
2285ffd83dbSDimitry Andric   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
2295ffd83dbSDimitry Andric   unsigned ScanLimit = 6;
2305ffd83dbSDimitry Andric   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
2315ffd83dbSDimitry Andric   // Scanning starts from the last instruction before the insertion point.
2325ffd83dbSDimitry Andric   BasicBlock::iterator IP = Builder.GetInsertPoint();
2335ffd83dbSDimitry Andric   if (IP != BlockBegin) {
2345ffd83dbSDimitry Andric     --IP;
2355ffd83dbSDimitry Andric     for (; ScanLimit; --IP, --ScanLimit) {
2365ffd83dbSDimitry Andric       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
2375ffd83dbSDimitry Andric       // generated code.
2385ffd83dbSDimitry Andric       if (isa<DbgInfoIntrinsic>(IP))
2395ffd83dbSDimitry Andric         ScanLimit++;
2405ffd83dbSDimitry Andric 
2415ffd83dbSDimitry Andric       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
2425ffd83dbSDimitry Andric         // Ensure that no-wrap flags match.
2435ffd83dbSDimitry Andric         if (isa<OverflowingBinaryOperator>(I)) {
2445ffd83dbSDimitry Andric           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
2455ffd83dbSDimitry Andric             return true;
2465ffd83dbSDimitry Andric           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
2475ffd83dbSDimitry Andric             return true;
2485ffd83dbSDimitry Andric         }
2495ffd83dbSDimitry Andric         // Conservatively, do not use any instruction which has any of exact
2505ffd83dbSDimitry Andric         // flags installed.
2515ffd83dbSDimitry Andric         if (isa<PossiblyExactOperator>(I) && I->isExact())
2525ffd83dbSDimitry Andric           return true;
2535ffd83dbSDimitry Andric         return false;
2545ffd83dbSDimitry Andric       };
2555ffd83dbSDimitry Andric       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
2565ffd83dbSDimitry Andric           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
2575ffd83dbSDimitry Andric         return &*IP;
2585ffd83dbSDimitry Andric       if (IP == BlockBegin) break;
2595ffd83dbSDimitry Andric     }
2605ffd83dbSDimitry Andric   }
2615ffd83dbSDimitry Andric 
2625ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
2635ffd83dbSDimitry Andric   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
2645ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
2655ffd83dbSDimitry Andric 
2665ffd83dbSDimitry Andric   if (IsSafeToHoist) {
2675ffd83dbSDimitry Andric     // Move the insertion point out of as many loops as we can.
2685ffd83dbSDimitry Andric     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
2695ffd83dbSDimitry Andric       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
2705ffd83dbSDimitry Andric       BasicBlock *Preheader = L->getLoopPreheader();
2715ffd83dbSDimitry Andric       if (!Preheader) break;
2725ffd83dbSDimitry Andric 
2735ffd83dbSDimitry Andric       // Ok, move up a level.
2745ffd83dbSDimitry Andric       Builder.SetInsertPoint(Preheader->getTerminator());
2755ffd83dbSDimitry Andric     }
2765ffd83dbSDimitry Andric   }
2775ffd83dbSDimitry Andric 
2785ffd83dbSDimitry Andric   // If we haven't found this binop, insert it.
2795ffd83dbSDimitry Andric   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
2805ffd83dbSDimitry Andric   BO->setDebugLoc(Loc);
2815ffd83dbSDimitry Andric   if (Flags & SCEV::FlagNUW)
2825ffd83dbSDimitry Andric     BO->setHasNoUnsignedWrap();
2835ffd83dbSDimitry Andric   if (Flags & SCEV::FlagNSW)
2845ffd83dbSDimitry Andric     BO->setHasNoSignedWrap();
2855ffd83dbSDimitry Andric 
2865ffd83dbSDimitry Andric   return BO;
2875ffd83dbSDimitry Andric }
2885ffd83dbSDimitry Andric 
2895ffd83dbSDimitry Andric /// FactorOutConstant - Test if S is divisible by Factor, using signed
2905ffd83dbSDimitry Andric /// division. If so, update S with Factor divided out and return true.
2915ffd83dbSDimitry Andric /// S need not be evenly divisible if a reasonable remainder can be
2925ffd83dbSDimitry Andric /// computed.
2935ffd83dbSDimitry Andric static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
2945ffd83dbSDimitry Andric                               const SCEV *Factor, ScalarEvolution &SE,
2955ffd83dbSDimitry Andric                               const DataLayout &DL) {
2965ffd83dbSDimitry Andric   // Everything is divisible by one.
2975ffd83dbSDimitry Andric   if (Factor->isOne())
2985ffd83dbSDimitry Andric     return true;
2995ffd83dbSDimitry Andric 
3005ffd83dbSDimitry Andric   // x/x == 1.
3015ffd83dbSDimitry Andric   if (S == Factor) {
3025ffd83dbSDimitry Andric     S = SE.getConstant(S->getType(), 1);
3035ffd83dbSDimitry Andric     return true;
3045ffd83dbSDimitry Andric   }
3055ffd83dbSDimitry Andric 
3065ffd83dbSDimitry Andric   // For a Constant, check for a multiple of the given factor.
3075ffd83dbSDimitry Andric   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
3085ffd83dbSDimitry Andric     // 0/x == 0.
3095ffd83dbSDimitry Andric     if (C->isZero())
3105ffd83dbSDimitry Andric       return true;
3115ffd83dbSDimitry Andric     // Check for divisibility.
3125ffd83dbSDimitry Andric     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
3135ffd83dbSDimitry Andric       ConstantInt *CI =
3145ffd83dbSDimitry Andric           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
3155ffd83dbSDimitry Andric       // If the quotient is zero and the remainder is non-zero, reject
3165ffd83dbSDimitry Andric       // the value at this scale. It will be considered for subsequent
3175ffd83dbSDimitry Andric       // smaller scales.
3185ffd83dbSDimitry Andric       if (!CI->isZero()) {
3195ffd83dbSDimitry Andric         const SCEV *Div = SE.getConstant(CI);
3205ffd83dbSDimitry Andric         S = Div;
3215ffd83dbSDimitry Andric         Remainder = SE.getAddExpr(
3225ffd83dbSDimitry Andric             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
3235ffd83dbSDimitry Andric         return true;
3245ffd83dbSDimitry Andric       }
3255ffd83dbSDimitry Andric     }
3265ffd83dbSDimitry Andric   }
3275ffd83dbSDimitry Andric 
3285ffd83dbSDimitry Andric   // In a Mul, check if there is a constant operand which is a multiple
3295ffd83dbSDimitry Andric   // of the given factor.
3305ffd83dbSDimitry Andric   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3315ffd83dbSDimitry Andric     // Size is known, check if there is a constant operand which is a multiple
3325ffd83dbSDimitry Andric     // of the given factor. If so, we can factor it.
3335ffd83dbSDimitry Andric     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
3345ffd83dbSDimitry Andric       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
3355ffd83dbSDimitry Andric         if (!C->getAPInt().srem(FC->getAPInt())) {
336e8d8bef9SDimitry Andric           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
3375ffd83dbSDimitry Andric           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
3385ffd83dbSDimitry Andric           S = SE.getMulExpr(NewMulOps);
3395ffd83dbSDimitry Andric           return true;
3405ffd83dbSDimitry Andric         }
3415ffd83dbSDimitry Andric   }
3425ffd83dbSDimitry Andric 
3435ffd83dbSDimitry Andric   // In an AddRec, check if both start and step are divisible.
3445ffd83dbSDimitry Andric   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3455ffd83dbSDimitry Andric     const SCEV *Step = A->getStepRecurrence(SE);
3465ffd83dbSDimitry Andric     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
3475ffd83dbSDimitry Andric     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
3485ffd83dbSDimitry Andric       return false;
3495ffd83dbSDimitry Andric     if (!StepRem->isZero())
3505ffd83dbSDimitry Andric       return false;
3515ffd83dbSDimitry Andric     const SCEV *Start = A->getStart();
3525ffd83dbSDimitry Andric     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
3535ffd83dbSDimitry Andric       return false;
3545ffd83dbSDimitry Andric     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
3555ffd83dbSDimitry Andric                          A->getNoWrapFlags(SCEV::FlagNW));
3565ffd83dbSDimitry Andric     return true;
3575ffd83dbSDimitry Andric   }
3585ffd83dbSDimitry Andric 
3595ffd83dbSDimitry Andric   return false;
3605ffd83dbSDimitry Andric }
3615ffd83dbSDimitry Andric 
3625ffd83dbSDimitry Andric /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
3635ffd83dbSDimitry Andric /// is the number of SCEVAddRecExprs present, which are kept at the end of
3645ffd83dbSDimitry Andric /// the list.
3655ffd83dbSDimitry Andric ///
3665ffd83dbSDimitry Andric static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
3675ffd83dbSDimitry Andric                                 Type *Ty,
3685ffd83dbSDimitry Andric                                 ScalarEvolution &SE) {
3695ffd83dbSDimitry Andric   unsigned NumAddRecs = 0;
3705ffd83dbSDimitry Andric   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
3715ffd83dbSDimitry Andric     ++NumAddRecs;
3725ffd83dbSDimitry Andric   // Group Ops into non-addrecs and addrecs.
3735ffd83dbSDimitry Andric   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
3745ffd83dbSDimitry Andric   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
3755ffd83dbSDimitry Andric   // Let ScalarEvolution sort and simplify the non-addrecs list.
3765ffd83dbSDimitry Andric   const SCEV *Sum = NoAddRecs.empty() ?
3775ffd83dbSDimitry Andric                     SE.getConstant(Ty, 0) :
3785ffd83dbSDimitry Andric                     SE.getAddExpr(NoAddRecs);
3795ffd83dbSDimitry Andric   // If it returned an add, use the operands. Otherwise it simplified
3805ffd83dbSDimitry Andric   // the sum into a single value, so just use that.
3815ffd83dbSDimitry Andric   Ops.clear();
3825ffd83dbSDimitry Andric   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
3835ffd83dbSDimitry Andric     Ops.append(Add->op_begin(), Add->op_end());
3845ffd83dbSDimitry Andric   else if (!Sum->isZero())
3855ffd83dbSDimitry Andric     Ops.push_back(Sum);
3865ffd83dbSDimitry Andric   // Then append the addrecs.
3875ffd83dbSDimitry Andric   Ops.append(AddRecs.begin(), AddRecs.end());
3885ffd83dbSDimitry Andric }
3895ffd83dbSDimitry Andric 
3905ffd83dbSDimitry Andric /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
3915ffd83dbSDimitry Andric /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
3925ffd83dbSDimitry Andric /// This helps expose more opportunities for folding parts of the expressions
3935ffd83dbSDimitry Andric /// into GEP indices.
3945ffd83dbSDimitry Andric ///
3955ffd83dbSDimitry Andric static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
3965ffd83dbSDimitry Andric                          Type *Ty,
3975ffd83dbSDimitry Andric                          ScalarEvolution &SE) {
3985ffd83dbSDimitry Andric   // Find the addrecs.
3995ffd83dbSDimitry Andric   SmallVector<const SCEV *, 8> AddRecs;
4005ffd83dbSDimitry Andric   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4015ffd83dbSDimitry Andric     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
4025ffd83dbSDimitry Andric       const SCEV *Start = A->getStart();
4035ffd83dbSDimitry Andric       if (Start->isZero()) break;
4045ffd83dbSDimitry Andric       const SCEV *Zero = SE.getConstant(Ty, 0);
4055ffd83dbSDimitry Andric       AddRecs.push_back(SE.getAddRecExpr(Zero,
4065ffd83dbSDimitry Andric                                          A->getStepRecurrence(SE),
4075ffd83dbSDimitry Andric                                          A->getLoop(),
4085ffd83dbSDimitry Andric                                          A->getNoWrapFlags(SCEV::FlagNW)));
4095ffd83dbSDimitry Andric       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
4105ffd83dbSDimitry Andric         Ops[i] = Zero;
4115ffd83dbSDimitry Andric         Ops.append(Add->op_begin(), Add->op_end());
4125ffd83dbSDimitry Andric         e += Add->getNumOperands();
4135ffd83dbSDimitry Andric       } else {
4145ffd83dbSDimitry Andric         Ops[i] = Start;
4155ffd83dbSDimitry Andric       }
4165ffd83dbSDimitry Andric     }
4175ffd83dbSDimitry Andric   if (!AddRecs.empty()) {
4185ffd83dbSDimitry Andric     // Add the addrecs onto the end of the list.
4195ffd83dbSDimitry Andric     Ops.append(AddRecs.begin(), AddRecs.end());
4205ffd83dbSDimitry Andric     // Resort the operand list, moving any constants to the front.
4215ffd83dbSDimitry Andric     SimplifyAddOperands(Ops, Ty, SE);
4225ffd83dbSDimitry Andric   }
4235ffd83dbSDimitry Andric }
4245ffd83dbSDimitry Andric 
4255ffd83dbSDimitry Andric /// expandAddToGEP - Expand an addition expression with a pointer type into
4265ffd83dbSDimitry Andric /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
4275ffd83dbSDimitry Andric /// BasicAliasAnalysis and other passes analyze the result. See the rules
4285ffd83dbSDimitry Andric /// for getelementptr vs. inttoptr in
4295ffd83dbSDimitry Andric /// http://llvm.org/docs/LangRef.html#pointeraliasing
4305ffd83dbSDimitry Andric /// for details.
4315ffd83dbSDimitry Andric ///
4325ffd83dbSDimitry Andric /// Design note: The correctness of using getelementptr here depends on
4335ffd83dbSDimitry Andric /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
4345ffd83dbSDimitry Andric /// they may introduce pointer arithmetic which may not be safely converted
4355ffd83dbSDimitry Andric /// into getelementptr.
4365ffd83dbSDimitry Andric ///
4375ffd83dbSDimitry Andric /// Design note: It might seem desirable for this function to be more
4385ffd83dbSDimitry Andric /// loop-aware. If some of the indices are loop-invariant while others
4395ffd83dbSDimitry Andric /// aren't, it might seem desirable to emit multiple GEPs, keeping the
4405ffd83dbSDimitry Andric /// loop-invariant portions of the overall computation outside the loop.
4415ffd83dbSDimitry Andric /// However, there are a few reasons this is not done here. Hoisting simple
4425ffd83dbSDimitry Andric /// arithmetic is a low-level optimization that often isn't very
4435ffd83dbSDimitry Andric /// important until late in the optimization process. In fact, passes
4445ffd83dbSDimitry Andric /// like InstructionCombining will combine GEPs, even if it means
4455ffd83dbSDimitry Andric /// pushing loop-invariant computation down into loops, so even if the
4465ffd83dbSDimitry Andric /// GEPs were split here, the work would quickly be undone. The
4475ffd83dbSDimitry Andric /// LoopStrengthReduction pass, which is usually run quite late (and
4485ffd83dbSDimitry Andric /// after the last InstructionCombining pass), takes care of hoisting
4495ffd83dbSDimitry Andric /// loop-invariant portions of expressions, after considering what
4505ffd83dbSDimitry Andric /// can be folded using target addressing modes.
4515ffd83dbSDimitry Andric ///
4525ffd83dbSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
4535ffd83dbSDimitry Andric                                     const SCEV *const *op_end,
4545ffd83dbSDimitry Andric                                     PointerType *PTy,
4555ffd83dbSDimitry Andric                                     Type *Ty,
4565ffd83dbSDimitry Andric                                     Value *V) {
4575ffd83dbSDimitry Andric   SmallVector<Value *, 4> GepIndices;
4585ffd83dbSDimitry Andric   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
4595ffd83dbSDimitry Andric   bool AnyNonZeroIndices = false;
4605ffd83dbSDimitry Andric 
4615ffd83dbSDimitry Andric   // Split AddRecs up into parts as either of the parts may be usable
4625ffd83dbSDimitry Andric   // without the other.
4635ffd83dbSDimitry Andric   SplitAddRecs(Ops, Ty, SE);
4645ffd83dbSDimitry Andric 
4655ffd83dbSDimitry Andric   Type *IntIdxTy = DL.getIndexType(PTy);
4665ffd83dbSDimitry Andric 
467fe6060f1SDimitry Andric   // For opaque pointers, always generate i8 GEP.
468fe6060f1SDimitry Andric   if (!PTy->isOpaque()) {
4695ffd83dbSDimitry Andric     // Descend down the pointer's type and attempt to convert the other
4705ffd83dbSDimitry Andric     // operands into GEP indices, at each level. The first index in a GEP
4715ffd83dbSDimitry Andric     // indexes into the array implied by the pointer operand; the rest of
4725ffd83dbSDimitry Andric     // the indices index into the element or field type selected by the
4735ffd83dbSDimitry Andric     // preceding index.
474fe6060f1SDimitry Andric     Type *ElTy = PTy->getElementType();
4755ffd83dbSDimitry Andric     for (;;) {
4765ffd83dbSDimitry Andric       // If the scale size is not 0, attempt to factor out a scale for
4775ffd83dbSDimitry Andric       // array indexing.
4785ffd83dbSDimitry Andric       SmallVector<const SCEV *, 8> ScaledOps;
4795ffd83dbSDimitry Andric       if (ElTy->isSized()) {
4805ffd83dbSDimitry Andric         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
4815ffd83dbSDimitry Andric         if (!ElSize->isZero()) {
4825ffd83dbSDimitry Andric           SmallVector<const SCEV *, 8> NewOps;
4835ffd83dbSDimitry Andric           for (const SCEV *Op : Ops) {
4845ffd83dbSDimitry Andric             const SCEV *Remainder = SE.getConstant(Ty, 0);
4855ffd83dbSDimitry Andric             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
4865ffd83dbSDimitry Andric               // Op now has ElSize factored out.
4875ffd83dbSDimitry Andric               ScaledOps.push_back(Op);
4885ffd83dbSDimitry Andric               if (!Remainder->isZero())
4895ffd83dbSDimitry Andric                 NewOps.push_back(Remainder);
4905ffd83dbSDimitry Andric               AnyNonZeroIndices = true;
4915ffd83dbSDimitry Andric             } else {
492fe6060f1SDimitry Andric               // The operand was not divisible, so add it to the list of
493fe6060f1SDimitry Andric               // operands we'll scan next iteration.
4945ffd83dbSDimitry Andric               NewOps.push_back(Op);
4955ffd83dbSDimitry Andric             }
4965ffd83dbSDimitry Andric           }
4975ffd83dbSDimitry Andric           // If we made any changes, update Ops.
4985ffd83dbSDimitry Andric           if (!ScaledOps.empty()) {
4995ffd83dbSDimitry Andric             Ops = NewOps;
5005ffd83dbSDimitry Andric             SimplifyAddOperands(Ops, Ty, SE);
5015ffd83dbSDimitry Andric           }
5025ffd83dbSDimitry Andric         }
5035ffd83dbSDimitry Andric       }
5045ffd83dbSDimitry Andric 
5055ffd83dbSDimitry Andric       // Record the scaled array index for this level of the type. If
5065ffd83dbSDimitry Andric       // we didn't find any operands that could be factored, tentatively
5075ffd83dbSDimitry Andric       // assume that element zero was selected (since the zero offset
5085ffd83dbSDimitry Andric       // would obviously be folded away).
509e8d8bef9SDimitry Andric       Value *Scaled =
510e8d8bef9SDimitry Andric           ScaledOps.empty()
511e8d8bef9SDimitry Andric               ? Constant::getNullValue(Ty)
512e8d8bef9SDimitry Andric               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
5135ffd83dbSDimitry Andric       GepIndices.push_back(Scaled);
5145ffd83dbSDimitry Andric 
5155ffd83dbSDimitry Andric       // Collect struct field index operands.
5165ffd83dbSDimitry Andric       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
5175ffd83dbSDimitry Andric         bool FoundFieldNo = false;
5185ffd83dbSDimitry Andric         // An empty struct has no fields.
5195ffd83dbSDimitry Andric         if (STy->getNumElements() == 0) break;
5205ffd83dbSDimitry Andric         // Field offsets are known. See if a constant offset falls within any of
5215ffd83dbSDimitry Andric         // the struct fields.
5225ffd83dbSDimitry Andric         if (Ops.empty())
5235ffd83dbSDimitry Andric           break;
5245ffd83dbSDimitry Andric         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
5255ffd83dbSDimitry Andric           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
5265ffd83dbSDimitry Andric             const StructLayout &SL = *DL.getStructLayout(STy);
5275ffd83dbSDimitry Andric             uint64_t FullOffset = C->getValue()->getZExtValue();
5285ffd83dbSDimitry Andric             if (FullOffset < SL.getSizeInBytes()) {
5295ffd83dbSDimitry Andric               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
5305ffd83dbSDimitry Andric               GepIndices.push_back(
5315ffd83dbSDimitry Andric                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
5325ffd83dbSDimitry Andric               ElTy = STy->getTypeAtIndex(ElIdx);
5335ffd83dbSDimitry Andric               Ops[0] =
5345ffd83dbSDimitry Andric                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
5355ffd83dbSDimitry Andric               AnyNonZeroIndices = true;
5365ffd83dbSDimitry Andric               FoundFieldNo = true;
5375ffd83dbSDimitry Andric             }
5385ffd83dbSDimitry Andric           }
5395ffd83dbSDimitry Andric         // If no struct field offsets were found, tentatively assume that
5405ffd83dbSDimitry Andric         // field zero was selected (since the zero offset would obviously
5415ffd83dbSDimitry Andric         // be folded away).
5425ffd83dbSDimitry Andric         if (!FoundFieldNo) {
5435ffd83dbSDimitry Andric           ElTy = STy->getTypeAtIndex(0u);
5445ffd83dbSDimitry Andric           GepIndices.push_back(
5455ffd83dbSDimitry Andric             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
5465ffd83dbSDimitry Andric         }
5475ffd83dbSDimitry Andric       }
5485ffd83dbSDimitry Andric 
5495ffd83dbSDimitry Andric       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
5505ffd83dbSDimitry Andric         ElTy = ATy->getElementType();
5515ffd83dbSDimitry Andric       else
5525ffd83dbSDimitry Andric         // FIXME: Handle VectorType.
5535ffd83dbSDimitry Andric         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
5545ffd83dbSDimitry Andric         // constant, therefore can not be factored out. The generated IR is less
5555ffd83dbSDimitry Andric         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
5565ffd83dbSDimitry Andric         break;
5575ffd83dbSDimitry Andric     }
558fe6060f1SDimitry Andric   }
5595ffd83dbSDimitry Andric 
5605ffd83dbSDimitry Andric   // If none of the operands were convertible to proper GEP indices, cast
5615ffd83dbSDimitry Andric   // the base to i8* and do an ugly getelementptr with that. It's still
5625ffd83dbSDimitry Andric   // better than ptrtoint+arithmetic+inttoptr at least.
5635ffd83dbSDimitry Andric   if (!AnyNonZeroIndices) {
5645ffd83dbSDimitry Andric     // Cast the base to i8*.
565fe6060f1SDimitry Andric     if (!PTy->isOpaque())
5665ffd83dbSDimitry Andric       V = InsertNoopCastOfTo(V,
5675ffd83dbSDimitry Andric          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
5685ffd83dbSDimitry Andric 
5695ffd83dbSDimitry Andric     assert(!isa<Instruction>(V) ||
5705ffd83dbSDimitry Andric            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
5715ffd83dbSDimitry Andric 
5725ffd83dbSDimitry Andric     // Expand the operands for a plain byte offset.
573e8d8bef9SDimitry Andric     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
5745ffd83dbSDimitry Andric 
5755ffd83dbSDimitry Andric     // Fold a GEP with constant operands.
5765ffd83dbSDimitry Andric     if (Constant *CLHS = dyn_cast<Constant>(V))
5775ffd83dbSDimitry Andric       if (Constant *CRHS = dyn_cast<Constant>(Idx))
5785ffd83dbSDimitry Andric         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
5795ffd83dbSDimitry Andric                                               CLHS, CRHS);
5805ffd83dbSDimitry Andric 
5815ffd83dbSDimitry Andric     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
5825ffd83dbSDimitry Andric     unsigned ScanLimit = 6;
5835ffd83dbSDimitry Andric     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
5845ffd83dbSDimitry Andric     // Scanning starts from the last instruction before the insertion point.
5855ffd83dbSDimitry Andric     BasicBlock::iterator IP = Builder.GetInsertPoint();
5865ffd83dbSDimitry Andric     if (IP != BlockBegin) {
5875ffd83dbSDimitry Andric       --IP;
5885ffd83dbSDimitry Andric       for (; ScanLimit; --IP, --ScanLimit) {
5895ffd83dbSDimitry Andric         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
5905ffd83dbSDimitry Andric         // generated code.
5915ffd83dbSDimitry Andric         if (isa<DbgInfoIntrinsic>(IP))
5925ffd83dbSDimitry Andric           ScanLimit++;
5935ffd83dbSDimitry Andric         if (IP->getOpcode() == Instruction::GetElementPtr &&
5945ffd83dbSDimitry Andric             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
5955ffd83dbSDimitry Andric           return &*IP;
5965ffd83dbSDimitry Andric         if (IP == BlockBegin) break;
5975ffd83dbSDimitry Andric       }
5985ffd83dbSDimitry Andric     }
5995ffd83dbSDimitry Andric 
6005ffd83dbSDimitry Andric     // Save the original insertion point so we can restore it when we're done.
6015ffd83dbSDimitry Andric     SCEVInsertPointGuard Guard(Builder, this);
6025ffd83dbSDimitry Andric 
6035ffd83dbSDimitry Andric     // Move the insertion point out of as many loops as we can.
6045ffd83dbSDimitry Andric     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
6055ffd83dbSDimitry Andric       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
6065ffd83dbSDimitry Andric       BasicBlock *Preheader = L->getLoopPreheader();
6075ffd83dbSDimitry Andric       if (!Preheader) break;
6085ffd83dbSDimitry Andric 
6095ffd83dbSDimitry Andric       // Ok, move up a level.
6105ffd83dbSDimitry Andric       Builder.SetInsertPoint(Preheader->getTerminator());
6115ffd83dbSDimitry Andric     }
6125ffd83dbSDimitry Andric 
6135ffd83dbSDimitry Andric     // Emit a GEP.
614e8d8bef9SDimitry Andric     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
6155ffd83dbSDimitry Andric   }
6165ffd83dbSDimitry Andric 
6175ffd83dbSDimitry Andric   {
6185ffd83dbSDimitry Andric     SCEVInsertPointGuard Guard(Builder, this);
6195ffd83dbSDimitry Andric 
6205ffd83dbSDimitry Andric     // Move the insertion point out of as many loops as we can.
6215ffd83dbSDimitry Andric     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
6225ffd83dbSDimitry Andric       if (!L->isLoopInvariant(V)) break;
6235ffd83dbSDimitry Andric 
6245ffd83dbSDimitry Andric       bool AnyIndexNotLoopInvariant = any_of(
6255ffd83dbSDimitry Andric           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
6265ffd83dbSDimitry Andric 
6275ffd83dbSDimitry Andric       if (AnyIndexNotLoopInvariant)
6285ffd83dbSDimitry Andric         break;
6295ffd83dbSDimitry Andric 
6305ffd83dbSDimitry Andric       BasicBlock *Preheader = L->getLoopPreheader();
6315ffd83dbSDimitry Andric       if (!Preheader) break;
6325ffd83dbSDimitry Andric 
6335ffd83dbSDimitry Andric       // Ok, move up a level.
6345ffd83dbSDimitry Andric       Builder.SetInsertPoint(Preheader->getTerminator());
6355ffd83dbSDimitry Andric     }
6365ffd83dbSDimitry Andric 
6375ffd83dbSDimitry Andric     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
6385ffd83dbSDimitry Andric     // because ScalarEvolution may have changed the address arithmetic to
6395ffd83dbSDimitry Andric     // compute a value which is beyond the end of the allocated object.
6405ffd83dbSDimitry Andric     Value *Casted = V;
6415ffd83dbSDimitry Andric     if (V->getType() != PTy)
6425ffd83dbSDimitry Andric       Casted = InsertNoopCastOfTo(Casted, PTy);
643fe6060f1SDimitry Andric     Value *GEP = Builder.CreateGEP(PTy->getElementType(), Casted, GepIndices,
644fe6060f1SDimitry Andric                                    "scevgep");
6455ffd83dbSDimitry Andric     Ops.push_back(SE.getUnknown(GEP));
6465ffd83dbSDimitry Andric   }
6475ffd83dbSDimitry Andric 
6485ffd83dbSDimitry Andric   return expand(SE.getAddExpr(Ops));
6495ffd83dbSDimitry Andric }
6505ffd83dbSDimitry Andric 
6515ffd83dbSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
6525ffd83dbSDimitry Andric                                     Value *V) {
6535ffd83dbSDimitry Andric   const SCEV *const Ops[1] = {Op};
6545ffd83dbSDimitry Andric   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
6555ffd83dbSDimitry Andric }
6565ffd83dbSDimitry Andric 
6575ffd83dbSDimitry Andric /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
6585ffd83dbSDimitry Andric /// SCEV expansion. If they are nested, this is the most nested. If they are
6595ffd83dbSDimitry Andric /// neighboring, pick the later.
6605ffd83dbSDimitry Andric static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
6615ffd83dbSDimitry Andric                                         DominatorTree &DT) {
6625ffd83dbSDimitry Andric   if (!A) return B;
6635ffd83dbSDimitry Andric   if (!B) return A;
6645ffd83dbSDimitry Andric   if (A->contains(B)) return B;
6655ffd83dbSDimitry Andric   if (B->contains(A)) return A;
6665ffd83dbSDimitry Andric   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
6675ffd83dbSDimitry Andric   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
6685ffd83dbSDimitry Andric   return A; // Arbitrarily break the tie.
6695ffd83dbSDimitry Andric }
6705ffd83dbSDimitry Andric 
6715ffd83dbSDimitry Andric /// getRelevantLoop - Get the most relevant loop associated with the given
6725ffd83dbSDimitry Andric /// expression, according to PickMostRelevantLoop.
6735ffd83dbSDimitry Andric const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
6745ffd83dbSDimitry Andric   // Test whether we've already computed the most relevant loop for this SCEV.
6755ffd83dbSDimitry Andric   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
6765ffd83dbSDimitry Andric   if (!Pair.second)
6775ffd83dbSDimitry Andric     return Pair.first->second;
6785ffd83dbSDimitry Andric 
6795ffd83dbSDimitry Andric   if (isa<SCEVConstant>(S))
6805ffd83dbSDimitry Andric     // A constant has no relevant loops.
6815ffd83dbSDimitry Andric     return nullptr;
6825ffd83dbSDimitry Andric   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6835ffd83dbSDimitry Andric     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
6845ffd83dbSDimitry Andric       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
6855ffd83dbSDimitry Andric     // A non-instruction has no relevant loops.
6865ffd83dbSDimitry Andric     return nullptr;
6875ffd83dbSDimitry Andric   }
6885ffd83dbSDimitry Andric   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
6895ffd83dbSDimitry Andric     const Loop *L = nullptr;
6905ffd83dbSDimitry Andric     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
6915ffd83dbSDimitry Andric       L = AR->getLoop();
6925ffd83dbSDimitry Andric     for (const SCEV *Op : N->operands())
6935ffd83dbSDimitry Andric       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
6945ffd83dbSDimitry Andric     return RelevantLoops[N] = L;
6955ffd83dbSDimitry Andric   }
6965ffd83dbSDimitry Andric   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
6975ffd83dbSDimitry Andric     const Loop *Result = getRelevantLoop(C->getOperand());
6985ffd83dbSDimitry Andric     return RelevantLoops[C] = Result;
6995ffd83dbSDimitry Andric   }
7005ffd83dbSDimitry Andric   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
7015ffd83dbSDimitry Andric     const Loop *Result = PickMostRelevantLoop(
7025ffd83dbSDimitry Andric         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
7035ffd83dbSDimitry Andric     return RelevantLoops[D] = Result;
7045ffd83dbSDimitry Andric   }
7055ffd83dbSDimitry Andric   llvm_unreachable("Unexpected SCEV type!");
7065ffd83dbSDimitry Andric }
7075ffd83dbSDimitry Andric 
7085ffd83dbSDimitry Andric namespace {
7095ffd83dbSDimitry Andric 
7105ffd83dbSDimitry Andric /// LoopCompare - Compare loops by PickMostRelevantLoop.
7115ffd83dbSDimitry Andric class LoopCompare {
7125ffd83dbSDimitry Andric   DominatorTree &DT;
7135ffd83dbSDimitry Andric public:
7145ffd83dbSDimitry Andric   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
7155ffd83dbSDimitry Andric 
7165ffd83dbSDimitry Andric   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
7175ffd83dbSDimitry Andric                   std::pair<const Loop *, const SCEV *> RHS) const {
7185ffd83dbSDimitry Andric     // Keep pointer operands sorted at the end.
7195ffd83dbSDimitry Andric     if (LHS.second->getType()->isPointerTy() !=
7205ffd83dbSDimitry Andric         RHS.second->getType()->isPointerTy())
7215ffd83dbSDimitry Andric       return LHS.second->getType()->isPointerTy();
7225ffd83dbSDimitry Andric 
7235ffd83dbSDimitry Andric     // Compare loops with PickMostRelevantLoop.
7245ffd83dbSDimitry Andric     if (LHS.first != RHS.first)
7255ffd83dbSDimitry Andric       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
7265ffd83dbSDimitry Andric 
7275ffd83dbSDimitry Andric     // If one operand is a non-constant negative and the other is not,
7285ffd83dbSDimitry Andric     // put the non-constant negative on the right so that a sub can
7295ffd83dbSDimitry Andric     // be used instead of a negate and add.
7305ffd83dbSDimitry Andric     if (LHS.second->isNonConstantNegative()) {
7315ffd83dbSDimitry Andric       if (!RHS.second->isNonConstantNegative())
7325ffd83dbSDimitry Andric         return false;
7335ffd83dbSDimitry Andric     } else if (RHS.second->isNonConstantNegative())
7345ffd83dbSDimitry Andric       return true;
7355ffd83dbSDimitry Andric 
7365ffd83dbSDimitry Andric     // Otherwise they are equivalent according to this comparison.
7375ffd83dbSDimitry Andric     return false;
7385ffd83dbSDimitry Andric   }
7395ffd83dbSDimitry Andric };
7405ffd83dbSDimitry Andric 
7415ffd83dbSDimitry Andric }
7425ffd83dbSDimitry Andric 
7435ffd83dbSDimitry Andric Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
7445ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
7455ffd83dbSDimitry Andric 
7465ffd83dbSDimitry Andric   // Collect all the add operands in a loop, along with their associated loops.
7475ffd83dbSDimitry Andric   // Iterate in reverse so that constants are emitted last, all else equal, and
7485ffd83dbSDimitry Andric   // so that pointer operands are inserted first, which the code below relies on
7495ffd83dbSDimitry Andric   // to form more involved GEPs.
7505ffd83dbSDimitry Andric   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
751349cc55cSDimitry Andric   for (const SCEV *Op : reverse(S->operands()))
752349cc55cSDimitry Andric     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
7535ffd83dbSDimitry Andric 
7545ffd83dbSDimitry Andric   // Sort by loop. Use a stable sort so that constants follow non-constants and
7555ffd83dbSDimitry Andric   // pointer operands precede non-pointer operands.
7565ffd83dbSDimitry Andric   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
7575ffd83dbSDimitry Andric 
7585ffd83dbSDimitry Andric   // Emit instructions to add all the operands. Hoist as much as possible
7595ffd83dbSDimitry Andric   // out of loops, and form meaningful getelementptrs where possible.
7605ffd83dbSDimitry Andric   Value *Sum = nullptr;
7615ffd83dbSDimitry Andric   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
7625ffd83dbSDimitry Andric     const Loop *CurLoop = I->first;
7635ffd83dbSDimitry Andric     const SCEV *Op = I->second;
7645ffd83dbSDimitry Andric     if (!Sum) {
7655ffd83dbSDimitry Andric       // This is the first operand. Just expand it.
7665ffd83dbSDimitry Andric       Sum = expand(Op);
7675ffd83dbSDimitry Andric       ++I;
768349cc55cSDimitry Andric       continue;
769349cc55cSDimitry Andric     }
770349cc55cSDimitry Andric 
771349cc55cSDimitry Andric     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
772349cc55cSDimitry Andric     if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
7735ffd83dbSDimitry Andric       // The running sum expression is a pointer. Try to form a getelementptr
7745ffd83dbSDimitry Andric       // at this level with that as the base.
7755ffd83dbSDimitry Andric       SmallVector<const SCEV *, 4> NewOps;
7765ffd83dbSDimitry Andric       for (; I != E && I->first == CurLoop; ++I) {
7775ffd83dbSDimitry Andric         // If the operand is SCEVUnknown and not instructions, peek through
7785ffd83dbSDimitry Andric         // it, to enable more of it to be folded into the GEP.
7795ffd83dbSDimitry Andric         const SCEV *X = I->second;
7805ffd83dbSDimitry Andric         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
7815ffd83dbSDimitry Andric           if (!isa<Instruction>(U->getValue()))
7825ffd83dbSDimitry Andric             X = SE.getSCEV(U->getValue());
7835ffd83dbSDimitry Andric         NewOps.push_back(X);
7845ffd83dbSDimitry Andric       }
7855ffd83dbSDimitry Andric       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
7865ffd83dbSDimitry Andric     } else if (Op->isNonConstantNegative()) {
7875ffd83dbSDimitry Andric       // Instead of doing a negate and add, just do a subtract.
788e8d8bef9SDimitry Andric       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
7895ffd83dbSDimitry Andric       Sum = InsertNoopCastOfTo(Sum, Ty);
7905ffd83dbSDimitry Andric       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
7915ffd83dbSDimitry Andric                         /*IsSafeToHoist*/ true);
7925ffd83dbSDimitry Andric       ++I;
7935ffd83dbSDimitry Andric     } else {
7945ffd83dbSDimitry Andric       // A simple add.
795e8d8bef9SDimitry Andric       Value *W = expandCodeForImpl(Op, Ty, false);
7965ffd83dbSDimitry Andric       Sum = InsertNoopCastOfTo(Sum, Ty);
7975ffd83dbSDimitry Andric       // Canonicalize a constant to the RHS.
7985ffd83dbSDimitry Andric       if (isa<Constant>(Sum)) std::swap(Sum, W);
7995ffd83dbSDimitry Andric       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
8005ffd83dbSDimitry Andric                         /*IsSafeToHoist*/ true);
8015ffd83dbSDimitry Andric       ++I;
8025ffd83dbSDimitry Andric     }
8035ffd83dbSDimitry Andric   }
8045ffd83dbSDimitry Andric 
8055ffd83dbSDimitry Andric   return Sum;
8065ffd83dbSDimitry Andric }
8075ffd83dbSDimitry Andric 
8085ffd83dbSDimitry Andric Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
8095ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
8105ffd83dbSDimitry Andric 
8115ffd83dbSDimitry Andric   // Collect all the mul operands in a loop, along with their associated loops.
8125ffd83dbSDimitry Andric   // Iterate in reverse so that constants are emitted last, all else equal.
8135ffd83dbSDimitry Andric   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
814349cc55cSDimitry Andric   for (const SCEV *Op : reverse(S->operands()))
815349cc55cSDimitry Andric     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
8165ffd83dbSDimitry Andric 
8175ffd83dbSDimitry Andric   // Sort by loop. Use a stable sort so that constants follow non-constants.
8185ffd83dbSDimitry Andric   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
8195ffd83dbSDimitry Andric 
8205ffd83dbSDimitry Andric   // Emit instructions to mul all the operands. Hoist as much as possible
8215ffd83dbSDimitry Andric   // out of loops.
8225ffd83dbSDimitry Andric   Value *Prod = nullptr;
8235ffd83dbSDimitry Andric   auto I = OpsAndLoops.begin();
8245ffd83dbSDimitry Andric 
8255ffd83dbSDimitry Andric   // Expand the calculation of X pow N in the following manner:
8265ffd83dbSDimitry Andric   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
8275ffd83dbSDimitry Andric   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
8285ffd83dbSDimitry Andric   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
8295ffd83dbSDimitry Andric     auto E = I;
8305ffd83dbSDimitry Andric     // Calculate how many times the same operand from the same loop is included
8315ffd83dbSDimitry Andric     // into this power.
8325ffd83dbSDimitry Andric     uint64_t Exponent = 0;
8335ffd83dbSDimitry Andric     const uint64_t MaxExponent = UINT64_MAX >> 1;
8345ffd83dbSDimitry Andric     // No one sane will ever try to calculate such huge exponents, but if we
8355ffd83dbSDimitry Andric     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
8365ffd83dbSDimitry Andric     // below when the power of 2 exceeds our Exponent, and we want it to be
8375ffd83dbSDimitry Andric     // 1u << 31 at most to not deal with unsigned overflow.
8385ffd83dbSDimitry Andric     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
8395ffd83dbSDimitry Andric       ++Exponent;
8405ffd83dbSDimitry Andric       ++E;
8415ffd83dbSDimitry Andric     }
8425ffd83dbSDimitry Andric     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
8435ffd83dbSDimitry Andric 
8445ffd83dbSDimitry Andric     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
8455ffd83dbSDimitry Andric     // that are needed into the result.
846e8d8bef9SDimitry Andric     Value *P = expandCodeForImpl(I->second, Ty, false);
8475ffd83dbSDimitry Andric     Value *Result = nullptr;
8485ffd83dbSDimitry Andric     if (Exponent & 1)
8495ffd83dbSDimitry Andric       Result = P;
8505ffd83dbSDimitry Andric     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
8515ffd83dbSDimitry Andric       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
8525ffd83dbSDimitry Andric                       /*IsSafeToHoist*/ true);
8535ffd83dbSDimitry Andric       if (Exponent & BinExp)
8545ffd83dbSDimitry Andric         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
8555ffd83dbSDimitry Andric                                       SCEV::FlagAnyWrap,
8565ffd83dbSDimitry Andric                                       /*IsSafeToHoist*/ true)
8575ffd83dbSDimitry Andric                         : P;
8585ffd83dbSDimitry Andric     }
8595ffd83dbSDimitry Andric 
8605ffd83dbSDimitry Andric     I = E;
8615ffd83dbSDimitry Andric     assert(Result && "Nothing was expanded?");
8625ffd83dbSDimitry Andric     return Result;
8635ffd83dbSDimitry Andric   };
8645ffd83dbSDimitry Andric 
8655ffd83dbSDimitry Andric   while (I != OpsAndLoops.end()) {
8665ffd83dbSDimitry Andric     if (!Prod) {
8675ffd83dbSDimitry Andric       // This is the first operand. Just expand it.
8685ffd83dbSDimitry Andric       Prod = ExpandOpBinPowN();
8695ffd83dbSDimitry Andric     } else if (I->second->isAllOnesValue()) {
8705ffd83dbSDimitry Andric       // Instead of doing a multiply by negative one, just do a negate.
8715ffd83dbSDimitry Andric       Prod = InsertNoopCastOfTo(Prod, Ty);
8725ffd83dbSDimitry Andric       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
8735ffd83dbSDimitry Andric                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
8745ffd83dbSDimitry Andric       ++I;
8755ffd83dbSDimitry Andric     } else {
8765ffd83dbSDimitry Andric       // A simple mul.
8775ffd83dbSDimitry Andric       Value *W = ExpandOpBinPowN();
8785ffd83dbSDimitry Andric       Prod = InsertNoopCastOfTo(Prod, Ty);
8795ffd83dbSDimitry Andric       // Canonicalize a constant to the RHS.
8805ffd83dbSDimitry Andric       if (isa<Constant>(Prod)) std::swap(Prod, W);
8815ffd83dbSDimitry Andric       const APInt *RHS;
8825ffd83dbSDimitry Andric       if (match(W, m_Power2(RHS))) {
8835ffd83dbSDimitry Andric         // Canonicalize Prod*(1<<C) to Prod<<C.
8845ffd83dbSDimitry Andric         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
8855ffd83dbSDimitry Andric         auto NWFlags = S->getNoWrapFlags();
8865ffd83dbSDimitry Andric         // clear nsw flag if shl will produce poison value.
8875ffd83dbSDimitry Andric         if (RHS->logBase2() == RHS->getBitWidth() - 1)
8885ffd83dbSDimitry Andric           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
8895ffd83dbSDimitry Andric         Prod = InsertBinop(Instruction::Shl, Prod,
8905ffd83dbSDimitry Andric                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
8915ffd83dbSDimitry Andric                            /*IsSafeToHoist*/ true);
8925ffd83dbSDimitry Andric       } else {
8935ffd83dbSDimitry Andric         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
8945ffd83dbSDimitry Andric                            /*IsSafeToHoist*/ true);
8955ffd83dbSDimitry Andric       }
8965ffd83dbSDimitry Andric     }
8975ffd83dbSDimitry Andric   }
8985ffd83dbSDimitry Andric 
8995ffd83dbSDimitry Andric   return Prod;
9005ffd83dbSDimitry Andric }
9015ffd83dbSDimitry Andric 
9025ffd83dbSDimitry Andric Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
9035ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
9045ffd83dbSDimitry Andric 
905e8d8bef9SDimitry Andric   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
9065ffd83dbSDimitry Andric   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
9075ffd83dbSDimitry Andric     const APInt &RHS = SC->getAPInt();
9085ffd83dbSDimitry Andric     if (RHS.isPowerOf2())
9095ffd83dbSDimitry Andric       return InsertBinop(Instruction::LShr, LHS,
9105ffd83dbSDimitry Andric                          ConstantInt::get(Ty, RHS.logBase2()),
9115ffd83dbSDimitry Andric                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
9125ffd83dbSDimitry Andric   }
9135ffd83dbSDimitry Andric 
914e8d8bef9SDimitry Andric   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
9155ffd83dbSDimitry Andric   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
9165ffd83dbSDimitry Andric                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
9175ffd83dbSDimitry Andric }
9185ffd83dbSDimitry Andric 
9195ffd83dbSDimitry Andric /// Determine if this is a well-behaved chain of instructions leading back to
9205ffd83dbSDimitry Andric /// the PHI. If so, it may be reused by expanded expressions.
9215ffd83dbSDimitry Andric bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
9225ffd83dbSDimitry Andric                                          const Loop *L) {
9235ffd83dbSDimitry Andric   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
9245ffd83dbSDimitry Andric       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
9255ffd83dbSDimitry Andric     return false;
9265ffd83dbSDimitry Andric   // If any of the operands don't dominate the insert position, bail.
9275ffd83dbSDimitry Andric   // Addrec operands are always loop-invariant, so this can only happen
9285ffd83dbSDimitry Andric   // if there are instructions which haven't been hoisted.
9295ffd83dbSDimitry Andric   if (L == IVIncInsertLoop) {
930fe6060f1SDimitry Andric     for (Use &Op : llvm::drop_begin(IncV->operands()))
931fe6060f1SDimitry Andric       if (Instruction *OInst = dyn_cast<Instruction>(Op))
9325ffd83dbSDimitry Andric         if (!SE.DT.dominates(OInst, IVIncInsertPos))
9335ffd83dbSDimitry Andric           return false;
9345ffd83dbSDimitry Andric   }
9355ffd83dbSDimitry Andric   // Advance to the next instruction.
9365ffd83dbSDimitry Andric   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
9375ffd83dbSDimitry Andric   if (!IncV)
9385ffd83dbSDimitry Andric     return false;
9395ffd83dbSDimitry Andric 
9405ffd83dbSDimitry Andric   if (IncV->mayHaveSideEffects())
9415ffd83dbSDimitry Andric     return false;
9425ffd83dbSDimitry Andric 
9435ffd83dbSDimitry Andric   if (IncV == PN)
9445ffd83dbSDimitry Andric     return true;
9455ffd83dbSDimitry Andric 
9465ffd83dbSDimitry Andric   return isNormalAddRecExprPHI(PN, IncV, L);
9475ffd83dbSDimitry Andric }
9485ffd83dbSDimitry Andric 
9495ffd83dbSDimitry Andric /// getIVIncOperand returns an induction variable increment's induction
9505ffd83dbSDimitry Andric /// variable operand.
9515ffd83dbSDimitry Andric ///
9525ffd83dbSDimitry Andric /// If allowScale is set, any type of GEP is allowed as long as the nonIV
9535ffd83dbSDimitry Andric /// operands dominate InsertPos.
9545ffd83dbSDimitry Andric ///
9555ffd83dbSDimitry Andric /// If allowScale is not set, ensure that a GEP increment conforms to one of the
9565ffd83dbSDimitry Andric /// simple patterns generated by getAddRecExprPHILiterally and
9575ffd83dbSDimitry Andric /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
9585ffd83dbSDimitry Andric Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
9595ffd83dbSDimitry Andric                                            Instruction *InsertPos,
9605ffd83dbSDimitry Andric                                            bool allowScale) {
9615ffd83dbSDimitry Andric   if (IncV == InsertPos)
9625ffd83dbSDimitry Andric     return nullptr;
9635ffd83dbSDimitry Andric 
9645ffd83dbSDimitry Andric   switch (IncV->getOpcode()) {
9655ffd83dbSDimitry Andric   default:
9665ffd83dbSDimitry Andric     return nullptr;
9675ffd83dbSDimitry Andric   // Check for a simple Add/Sub or GEP of a loop invariant step.
9685ffd83dbSDimitry Andric   case Instruction::Add:
9695ffd83dbSDimitry Andric   case Instruction::Sub: {
9705ffd83dbSDimitry Andric     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
9715ffd83dbSDimitry Andric     if (!OInst || SE.DT.dominates(OInst, InsertPos))
9725ffd83dbSDimitry Andric       return dyn_cast<Instruction>(IncV->getOperand(0));
9735ffd83dbSDimitry Andric     return nullptr;
9745ffd83dbSDimitry Andric   }
9755ffd83dbSDimitry Andric   case Instruction::BitCast:
9765ffd83dbSDimitry Andric     return dyn_cast<Instruction>(IncV->getOperand(0));
9775ffd83dbSDimitry Andric   case Instruction::GetElementPtr:
978fe6060f1SDimitry Andric     for (Use &U : llvm::drop_begin(IncV->operands())) {
979fe6060f1SDimitry Andric       if (isa<Constant>(U))
9805ffd83dbSDimitry Andric         continue;
981fe6060f1SDimitry Andric       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
9825ffd83dbSDimitry Andric         if (!SE.DT.dominates(OInst, InsertPos))
9835ffd83dbSDimitry Andric           return nullptr;
9845ffd83dbSDimitry Andric       }
9855ffd83dbSDimitry Andric       if (allowScale) {
9865ffd83dbSDimitry Andric         // allow any kind of GEP as long as it can be hoisted.
9875ffd83dbSDimitry Andric         continue;
9885ffd83dbSDimitry Andric       }
9895ffd83dbSDimitry Andric       // This must be a pointer addition of constants (pretty), which is already
9905ffd83dbSDimitry Andric       // handled, or some number of address-size elements (ugly). Ugly geps
9915ffd83dbSDimitry Andric       // have 2 operands. i1* is used by the expander to represent an
9925ffd83dbSDimitry Andric       // address-size element.
9935ffd83dbSDimitry Andric       if (IncV->getNumOperands() != 2)
9945ffd83dbSDimitry Andric         return nullptr;
9955ffd83dbSDimitry Andric       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
9965ffd83dbSDimitry Andric       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
9975ffd83dbSDimitry Andric           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
9985ffd83dbSDimitry Andric         return nullptr;
9995ffd83dbSDimitry Andric       break;
10005ffd83dbSDimitry Andric     }
10015ffd83dbSDimitry Andric     return dyn_cast<Instruction>(IncV->getOperand(0));
10025ffd83dbSDimitry Andric   }
10035ffd83dbSDimitry Andric }
10045ffd83dbSDimitry Andric 
10055ffd83dbSDimitry Andric /// If the insert point of the current builder or any of the builders on the
10065ffd83dbSDimitry Andric /// stack of saved builders has 'I' as its insert point, update it to point to
10075ffd83dbSDimitry Andric /// the instruction after 'I'.  This is intended to be used when the instruction
10085ffd83dbSDimitry Andric /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
10095ffd83dbSDimitry Andric /// different block, the inconsistent insert point (with a mismatched
10105ffd83dbSDimitry Andric /// Instruction and Block) can lead to an instruction being inserted in a block
10115ffd83dbSDimitry Andric /// other than its parent.
10125ffd83dbSDimitry Andric void SCEVExpander::fixupInsertPoints(Instruction *I) {
10135ffd83dbSDimitry Andric   BasicBlock::iterator It(*I);
10145ffd83dbSDimitry Andric   BasicBlock::iterator NewInsertPt = std::next(It);
10155ffd83dbSDimitry Andric   if (Builder.GetInsertPoint() == It)
10165ffd83dbSDimitry Andric     Builder.SetInsertPoint(&*NewInsertPt);
10175ffd83dbSDimitry Andric   for (auto *InsertPtGuard : InsertPointGuards)
10185ffd83dbSDimitry Andric     if (InsertPtGuard->GetInsertPoint() == It)
10195ffd83dbSDimitry Andric       InsertPtGuard->SetInsertPoint(NewInsertPt);
10205ffd83dbSDimitry Andric }
10215ffd83dbSDimitry Andric 
10225ffd83dbSDimitry Andric /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
10235ffd83dbSDimitry Andric /// it available to other uses in this loop. Recursively hoist any operands,
10245ffd83dbSDimitry Andric /// until we reach a value that dominates InsertPos.
10255ffd83dbSDimitry Andric bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
10265ffd83dbSDimitry Andric   if (SE.DT.dominates(IncV, InsertPos))
10275ffd83dbSDimitry Andric       return true;
10285ffd83dbSDimitry Andric 
10295ffd83dbSDimitry Andric   // InsertPos must itself dominate IncV so that IncV's new position satisfies
10305ffd83dbSDimitry Andric   // its existing users.
10315ffd83dbSDimitry Andric   if (isa<PHINode>(InsertPos) ||
10325ffd83dbSDimitry Andric       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
10335ffd83dbSDimitry Andric     return false;
10345ffd83dbSDimitry Andric 
10355ffd83dbSDimitry Andric   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
10365ffd83dbSDimitry Andric     return false;
10375ffd83dbSDimitry Andric 
10385ffd83dbSDimitry Andric   // Check that the chain of IV operands leading back to Phi can be hoisted.
10395ffd83dbSDimitry Andric   SmallVector<Instruction*, 4> IVIncs;
10405ffd83dbSDimitry Andric   for(;;) {
10415ffd83dbSDimitry Andric     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
10425ffd83dbSDimitry Andric     if (!Oper)
10435ffd83dbSDimitry Andric       return false;
10445ffd83dbSDimitry Andric     // IncV is safe to hoist.
10455ffd83dbSDimitry Andric     IVIncs.push_back(IncV);
10465ffd83dbSDimitry Andric     IncV = Oper;
10475ffd83dbSDimitry Andric     if (SE.DT.dominates(IncV, InsertPos))
10485ffd83dbSDimitry Andric       break;
10495ffd83dbSDimitry Andric   }
10505ffd83dbSDimitry Andric   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
10515ffd83dbSDimitry Andric     fixupInsertPoints(*I);
10525ffd83dbSDimitry Andric     (*I)->moveBefore(InsertPos);
10535ffd83dbSDimitry Andric   }
10545ffd83dbSDimitry Andric   return true;
10555ffd83dbSDimitry Andric }
10565ffd83dbSDimitry Andric 
10575ffd83dbSDimitry Andric /// Determine if this cyclic phi is in a form that would have been generated by
10585ffd83dbSDimitry Andric /// LSR. We don't care if the phi was actually expanded in this pass, as long
10595ffd83dbSDimitry Andric /// as it is in a low-cost form, for example, no implied multiplication. This
10605ffd83dbSDimitry Andric /// should match any patterns generated by getAddRecExprPHILiterally and
10615ffd83dbSDimitry Andric /// expandAddtoGEP.
10625ffd83dbSDimitry Andric bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
10635ffd83dbSDimitry Andric                                            const Loop *L) {
10645ffd83dbSDimitry Andric   for(Instruction *IVOper = IncV;
10655ffd83dbSDimitry Andric       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
10665ffd83dbSDimitry Andric                                 /*allowScale=*/false));) {
10675ffd83dbSDimitry Andric     if (IVOper == PN)
10685ffd83dbSDimitry Andric       return true;
10695ffd83dbSDimitry Andric   }
10705ffd83dbSDimitry Andric   return false;
10715ffd83dbSDimitry Andric }
10725ffd83dbSDimitry Andric 
10735ffd83dbSDimitry Andric /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
10745ffd83dbSDimitry Andric /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
10755ffd83dbSDimitry Andric /// need to materialize IV increments elsewhere to handle difficult situations.
10765ffd83dbSDimitry Andric Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
10775ffd83dbSDimitry Andric                                  Type *ExpandTy, Type *IntTy,
10785ffd83dbSDimitry Andric                                  bool useSubtract) {
10795ffd83dbSDimitry Andric   Value *IncV;
10805ffd83dbSDimitry Andric   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
10815ffd83dbSDimitry Andric   if (ExpandTy->isPointerTy()) {
10825ffd83dbSDimitry Andric     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
10835ffd83dbSDimitry Andric     // If the step isn't constant, don't use an implicitly scaled GEP, because
10845ffd83dbSDimitry Andric     // that would require a multiply inside the loop.
10855ffd83dbSDimitry Andric     if (!isa<ConstantInt>(StepV))
10865ffd83dbSDimitry Andric       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
10875ffd83dbSDimitry Andric                                   GEPPtrTy->getAddressSpace());
10885ffd83dbSDimitry Andric     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1089e8d8bef9SDimitry Andric     if (IncV->getType() != PN->getType())
10905ffd83dbSDimitry Andric       IncV = Builder.CreateBitCast(IncV, PN->getType());
10915ffd83dbSDimitry Andric   } else {
10925ffd83dbSDimitry Andric     IncV = useSubtract ?
10935ffd83dbSDimitry Andric       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
10945ffd83dbSDimitry Andric       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
10955ffd83dbSDimitry Andric   }
10965ffd83dbSDimitry Andric   return IncV;
10975ffd83dbSDimitry Andric }
10985ffd83dbSDimitry Andric 
10995ffd83dbSDimitry Andric /// Check whether we can cheaply express the requested SCEV in terms of
11005ffd83dbSDimitry Andric /// the available PHI SCEV by truncation and/or inversion of the step.
11015ffd83dbSDimitry Andric static bool canBeCheaplyTransformed(ScalarEvolution &SE,
11025ffd83dbSDimitry Andric                                     const SCEVAddRecExpr *Phi,
11035ffd83dbSDimitry Andric                                     const SCEVAddRecExpr *Requested,
11045ffd83dbSDimitry Andric                                     bool &InvertStep) {
1105fe6060f1SDimitry Andric   // We can't transform to match a pointer PHI.
1106fe6060f1SDimitry Andric   if (Phi->getType()->isPointerTy())
1107fe6060f1SDimitry Andric     return false;
1108fe6060f1SDimitry Andric 
11095ffd83dbSDimitry Andric   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
11105ffd83dbSDimitry Andric   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
11115ffd83dbSDimitry Andric 
11125ffd83dbSDimitry Andric   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
11135ffd83dbSDimitry Andric     return false;
11145ffd83dbSDimitry Andric 
11155ffd83dbSDimitry Andric   // Try truncate it if necessary.
11165ffd83dbSDimitry Andric   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
11175ffd83dbSDimitry Andric   if (!Phi)
11185ffd83dbSDimitry Andric     return false;
11195ffd83dbSDimitry Andric 
11205ffd83dbSDimitry Andric   // Check whether truncation will help.
11215ffd83dbSDimitry Andric   if (Phi == Requested) {
11225ffd83dbSDimitry Andric     InvertStep = false;
11235ffd83dbSDimitry Andric     return true;
11245ffd83dbSDimitry Andric   }
11255ffd83dbSDimitry Andric 
11265ffd83dbSDimitry Andric   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1127fe6060f1SDimitry Andric   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
11285ffd83dbSDimitry Andric     InvertStep = true;
11295ffd83dbSDimitry Andric     return true;
11305ffd83dbSDimitry Andric   }
11315ffd83dbSDimitry Andric 
11325ffd83dbSDimitry Andric   return false;
11335ffd83dbSDimitry Andric }
11345ffd83dbSDimitry Andric 
11355ffd83dbSDimitry Andric static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
11365ffd83dbSDimitry Andric   if (!isa<IntegerType>(AR->getType()))
11375ffd83dbSDimitry Andric     return false;
11385ffd83dbSDimitry Andric 
11395ffd83dbSDimitry Andric   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
11405ffd83dbSDimitry Andric   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
11415ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
11425ffd83dbSDimitry Andric   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
11435ffd83dbSDimitry Andric                                             SE.getSignExtendExpr(AR, WideTy));
11445ffd83dbSDimitry Andric   const SCEV *ExtendAfterOp =
11455ffd83dbSDimitry Andric     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
11465ffd83dbSDimitry Andric   return ExtendAfterOp == OpAfterExtend;
11475ffd83dbSDimitry Andric }
11485ffd83dbSDimitry Andric 
11495ffd83dbSDimitry Andric static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
11505ffd83dbSDimitry Andric   if (!isa<IntegerType>(AR->getType()))
11515ffd83dbSDimitry Andric     return false;
11525ffd83dbSDimitry Andric 
11535ffd83dbSDimitry Andric   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
11545ffd83dbSDimitry Andric   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
11555ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
11565ffd83dbSDimitry Andric   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
11575ffd83dbSDimitry Andric                                             SE.getZeroExtendExpr(AR, WideTy));
11585ffd83dbSDimitry Andric   const SCEV *ExtendAfterOp =
11595ffd83dbSDimitry Andric     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
11605ffd83dbSDimitry Andric   return ExtendAfterOp == OpAfterExtend;
11615ffd83dbSDimitry Andric }
11625ffd83dbSDimitry Andric 
11635ffd83dbSDimitry Andric /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
11645ffd83dbSDimitry Andric /// the base addrec, which is the addrec without any non-loop-dominating
11655ffd83dbSDimitry Andric /// values, and return the PHI.
11665ffd83dbSDimitry Andric PHINode *
11675ffd83dbSDimitry Andric SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
11685ffd83dbSDimitry Andric                                         const Loop *L,
11695ffd83dbSDimitry Andric                                         Type *ExpandTy,
11705ffd83dbSDimitry Andric                                         Type *IntTy,
11715ffd83dbSDimitry Andric                                         Type *&TruncTy,
11725ffd83dbSDimitry Andric                                         bool &InvertStep) {
11735ffd83dbSDimitry Andric   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
11745ffd83dbSDimitry Andric 
11755ffd83dbSDimitry Andric   // Reuse a previously-inserted PHI, if present.
11765ffd83dbSDimitry Andric   BasicBlock *LatchBlock = L->getLoopLatch();
11775ffd83dbSDimitry Andric   if (LatchBlock) {
11785ffd83dbSDimitry Andric     PHINode *AddRecPhiMatch = nullptr;
11795ffd83dbSDimitry Andric     Instruction *IncV = nullptr;
11805ffd83dbSDimitry Andric     TruncTy = nullptr;
11815ffd83dbSDimitry Andric     InvertStep = false;
11825ffd83dbSDimitry Andric 
11835ffd83dbSDimitry Andric     // Only try partially matching scevs that need truncation and/or
11845ffd83dbSDimitry Andric     // step-inversion if we know this loop is outside the current loop.
11855ffd83dbSDimitry Andric     bool TryNonMatchingSCEV =
11865ffd83dbSDimitry Andric         IVIncInsertLoop &&
11875ffd83dbSDimitry Andric         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
11885ffd83dbSDimitry Andric 
11895ffd83dbSDimitry Andric     for (PHINode &PN : L->getHeader()->phis()) {
11905ffd83dbSDimitry Andric       if (!SE.isSCEVable(PN.getType()))
11915ffd83dbSDimitry Andric         continue;
11925ffd83dbSDimitry Andric 
1193e8d8bef9SDimitry Andric       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1194e8d8bef9SDimitry Andric       // PHI has no meaning at all.
1195e8d8bef9SDimitry Andric       if (!PN.isComplete()) {
1196fe6060f1SDimitry Andric         SCEV_DEBUG_WITH_TYPE(
1197e8d8bef9SDimitry Andric             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1198e8d8bef9SDimitry Andric         continue;
1199e8d8bef9SDimitry Andric       }
1200e8d8bef9SDimitry Andric 
12015ffd83dbSDimitry Andric       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
12025ffd83dbSDimitry Andric       if (!PhiSCEV)
12035ffd83dbSDimitry Andric         continue;
12045ffd83dbSDimitry Andric 
12055ffd83dbSDimitry Andric       bool IsMatchingSCEV = PhiSCEV == Normalized;
12065ffd83dbSDimitry Andric       // We only handle truncation and inversion of phi recurrences for the
12075ffd83dbSDimitry Andric       // expanded expression if the expanded expression's loop dominates the
12085ffd83dbSDimitry Andric       // loop we insert to. Check now, so we can bail out early.
12095ffd83dbSDimitry Andric       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
12105ffd83dbSDimitry Andric           continue;
12115ffd83dbSDimitry Andric 
12125ffd83dbSDimitry Andric       // TODO: this possibly can be reworked to avoid this cast at all.
12135ffd83dbSDimitry Andric       Instruction *TempIncV =
12145ffd83dbSDimitry Andric           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
12155ffd83dbSDimitry Andric       if (!TempIncV)
12165ffd83dbSDimitry Andric         continue;
12175ffd83dbSDimitry Andric 
12185ffd83dbSDimitry Andric       // Check whether we can reuse this PHI node.
12195ffd83dbSDimitry Andric       if (LSRMode) {
12205ffd83dbSDimitry Andric         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
12215ffd83dbSDimitry Andric           continue;
12225ffd83dbSDimitry Andric       } else {
12235ffd83dbSDimitry Andric         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
12245ffd83dbSDimitry Andric           continue;
12255ffd83dbSDimitry Andric       }
12265ffd83dbSDimitry Andric 
12275ffd83dbSDimitry Andric       // Stop if we have found an exact match SCEV.
12285ffd83dbSDimitry Andric       if (IsMatchingSCEV) {
12295ffd83dbSDimitry Andric         IncV = TempIncV;
12305ffd83dbSDimitry Andric         TruncTy = nullptr;
12315ffd83dbSDimitry Andric         InvertStep = false;
12325ffd83dbSDimitry Andric         AddRecPhiMatch = &PN;
12335ffd83dbSDimitry Andric         break;
12345ffd83dbSDimitry Andric       }
12355ffd83dbSDimitry Andric 
12365ffd83dbSDimitry Andric       // Try whether the phi can be translated into the requested form
12375ffd83dbSDimitry Andric       // (truncated and/or offset by a constant).
12385ffd83dbSDimitry Andric       if ((!TruncTy || InvertStep) &&
12395ffd83dbSDimitry Andric           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
12405ffd83dbSDimitry Andric         // Record the phi node. But don't stop we might find an exact match
12415ffd83dbSDimitry Andric         // later.
12425ffd83dbSDimitry Andric         AddRecPhiMatch = &PN;
12435ffd83dbSDimitry Andric         IncV = TempIncV;
12445ffd83dbSDimitry Andric         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
12455ffd83dbSDimitry Andric       }
12465ffd83dbSDimitry Andric     }
12475ffd83dbSDimitry Andric 
12485ffd83dbSDimitry Andric     if (AddRecPhiMatch) {
12495ffd83dbSDimitry Andric       // Ok, the add recurrence looks usable.
12505ffd83dbSDimitry Andric       // Remember this PHI, even in post-inc mode.
12515ffd83dbSDimitry Andric       InsertedValues.insert(AddRecPhiMatch);
12525ffd83dbSDimitry Andric       // Remember the increment.
12535ffd83dbSDimitry Andric       rememberInstruction(IncV);
1254e8d8bef9SDimitry Andric       // Those values were not actually inserted but re-used.
1255e8d8bef9SDimitry Andric       ReusedValues.insert(AddRecPhiMatch);
1256e8d8bef9SDimitry Andric       ReusedValues.insert(IncV);
12575ffd83dbSDimitry Andric       return AddRecPhiMatch;
12585ffd83dbSDimitry Andric     }
12595ffd83dbSDimitry Andric   }
12605ffd83dbSDimitry Andric 
12615ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
12625ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
12635ffd83dbSDimitry Andric 
12645ffd83dbSDimitry Andric   // Another AddRec may need to be recursively expanded below. For example, if
12655ffd83dbSDimitry Andric   // this AddRec is quadratic, the StepV may itself be an AddRec in this
12665ffd83dbSDimitry Andric   // loop. Remove this loop from the PostIncLoops set before expanding such
12675ffd83dbSDimitry Andric   // AddRecs. Otherwise, we cannot find a valid position for the step
12685ffd83dbSDimitry Andric   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
12695ffd83dbSDimitry Andric   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
12705ffd83dbSDimitry Andric   // so it's not worth implementing SmallPtrSet::swap.
12715ffd83dbSDimitry Andric   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
12725ffd83dbSDimitry Andric   PostIncLoops.clear();
12735ffd83dbSDimitry Andric 
12745ffd83dbSDimitry Andric   // Expand code for the start value into the loop preheader.
12755ffd83dbSDimitry Andric   assert(L->getLoopPreheader() &&
12765ffd83dbSDimitry Andric          "Can't expand add recurrences without a loop preheader!");
1277e8d8bef9SDimitry Andric   Value *StartV =
1278e8d8bef9SDimitry Andric       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1279e8d8bef9SDimitry Andric                         L->getLoopPreheader()->getTerminator(), false);
12805ffd83dbSDimitry Andric 
12815ffd83dbSDimitry Andric   // StartV must have been be inserted into L's preheader to dominate the new
12825ffd83dbSDimitry Andric   // phi.
12835ffd83dbSDimitry Andric   assert(!isa<Instruction>(StartV) ||
12845ffd83dbSDimitry Andric          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
12855ffd83dbSDimitry Andric                                  L->getHeader()));
12865ffd83dbSDimitry Andric 
12875ffd83dbSDimitry Andric   // Expand code for the step value. Do this before creating the PHI so that PHI
12885ffd83dbSDimitry Andric   // reuse code doesn't see an incomplete PHI.
12895ffd83dbSDimitry Andric   const SCEV *Step = Normalized->getStepRecurrence(SE);
12905ffd83dbSDimitry Andric   // If the stride is negative, insert a sub instead of an add for the increment
12915ffd83dbSDimitry Andric   // (unless it's a constant, because subtracts of constants are canonicalized
12925ffd83dbSDimitry Andric   // to adds).
12935ffd83dbSDimitry Andric   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
12945ffd83dbSDimitry Andric   if (useSubtract)
12955ffd83dbSDimitry Andric     Step = SE.getNegativeSCEV(Step);
12965ffd83dbSDimitry Andric   // Expand the step somewhere that dominates the loop header.
1297e8d8bef9SDimitry Andric   Value *StepV = expandCodeForImpl(
1298e8d8bef9SDimitry Andric       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
12995ffd83dbSDimitry Andric 
13005ffd83dbSDimitry Andric   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
13015ffd83dbSDimitry Andric   // we actually do emit an addition.  It does not apply if we emit a
13025ffd83dbSDimitry Andric   // subtraction.
13035ffd83dbSDimitry Andric   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
13045ffd83dbSDimitry Andric   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
13055ffd83dbSDimitry Andric 
13065ffd83dbSDimitry Andric   // Create the PHI.
13075ffd83dbSDimitry Andric   BasicBlock *Header = L->getHeader();
13085ffd83dbSDimitry Andric   Builder.SetInsertPoint(Header, Header->begin());
13095ffd83dbSDimitry Andric   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
13105ffd83dbSDimitry Andric   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
13115ffd83dbSDimitry Andric                                   Twine(IVName) + ".iv");
13125ffd83dbSDimitry Andric 
13135ffd83dbSDimitry Andric   // Create the step instructions and populate the PHI.
13145ffd83dbSDimitry Andric   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
13155ffd83dbSDimitry Andric     BasicBlock *Pred = *HPI;
13165ffd83dbSDimitry Andric 
13175ffd83dbSDimitry Andric     // Add a start value.
13185ffd83dbSDimitry Andric     if (!L->contains(Pred)) {
13195ffd83dbSDimitry Andric       PN->addIncoming(StartV, Pred);
13205ffd83dbSDimitry Andric       continue;
13215ffd83dbSDimitry Andric     }
13225ffd83dbSDimitry Andric 
13235ffd83dbSDimitry Andric     // Create a step value and add it to the PHI.
13245ffd83dbSDimitry Andric     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
13255ffd83dbSDimitry Andric     // instructions at IVIncInsertPos.
13265ffd83dbSDimitry Andric     Instruction *InsertPos = L == IVIncInsertLoop ?
13275ffd83dbSDimitry Andric       IVIncInsertPos : Pred->getTerminator();
13285ffd83dbSDimitry Andric     Builder.SetInsertPoint(InsertPos);
13295ffd83dbSDimitry Andric     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
13305ffd83dbSDimitry Andric 
13315ffd83dbSDimitry Andric     if (isa<OverflowingBinaryOperator>(IncV)) {
13325ffd83dbSDimitry Andric       if (IncrementIsNUW)
13335ffd83dbSDimitry Andric         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
13345ffd83dbSDimitry Andric       if (IncrementIsNSW)
13355ffd83dbSDimitry Andric         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
13365ffd83dbSDimitry Andric     }
13375ffd83dbSDimitry Andric     PN->addIncoming(IncV, Pred);
13385ffd83dbSDimitry Andric   }
13395ffd83dbSDimitry Andric 
13405ffd83dbSDimitry Andric   // After expanding subexpressions, restore the PostIncLoops set so the caller
13415ffd83dbSDimitry Andric   // can ensure that IVIncrement dominates the current uses.
13425ffd83dbSDimitry Andric   PostIncLoops = SavedPostIncLoops;
13435ffd83dbSDimitry Andric 
1344fe6060f1SDimitry Andric   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1345fe6060f1SDimitry Andric   // effective when we are able to use an IV inserted here, so record it.
13465ffd83dbSDimitry Andric   InsertedValues.insert(PN);
1347fe6060f1SDimitry Andric   InsertedIVs.push_back(PN);
13485ffd83dbSDimitry Andric   return PN;
13495ffd83dbSDimitry Andric }
13505ffd83dbSDimitry Andric 
13515ffd83dbSDimitry Andric Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
13525ffd83dbSDimitry Andric   Type *STy = S->getType();
13535ffd83dbSDimitry Andric   Type *IntTy = SE.getEffectiveSCEVType(STy);
13545ffd83dbSDimitry Andric   const Loop *L = S->getLoop();
13555ffd83dbSDimitry Andric 
13565ffd83dbSDimitry Andric   // Determine a normalized form of this expression, which is the expression
13575ffd83dbSDimitry Andric   // before any post-inc adjustment is made.
13585ffd83dbSDimitry Andric   const SCEVAddRecExpr *Normalized = S;
13595ffd83dbSDimitry Andric   if (PostIncLoops.count(L)) {
13605ffd83dbSDimitry Andric     PostIncLoopSet Loops;
13615ffd83dbSDimitry Andric     Loops.insert(L);
13625ffd83dbSDimitry Andric     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
13635ffd83dbSDimitry Andric   }
13645ffd83dbSDimitry Andric 
13655ffd83dbSDimitry Andric   // Strip off any non-loop-dominating component from the addrec start.
13665ffd83dbSDimitry Andric   const SCEV *Start = Normalized->getStart();
13675ffd83dbSDimitry Andric   const SCEV *PostLoopOffset = nullptr;
13685ffd83dbSDimitry Andric   if (!SE.properlyDominates(Start, L->getHeader())) {
13695ffd83dbSDimitry Andric     PostLoopOffset = Start;
13705ffd83dbSDimitry Andric     Start = SE.getConstant(Normalized->getType(), 0);
13715ffd83dbSDimitry Andric     Normalized = cast<SCEVAddRecExpr>(
13725ffd83dbSDimitry Andric       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
13735ffd83dbSDimitry Andric                        Normalized->getLoop(),
13745ffd83dbSDimitry Andric                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
13755ffd83dbSDimitry Andric   }
13765ffd83dbSDimitry Andric 
13775ffd83dbSDimitry Andric   // Strip off any non-loop-dominating component from the addrec step.
13785ffd83dbSDimitry Andric   const SCEV *Step = Normalized->getStepRecurrence(SE);
13795ffd83dbSDimitry Andric   const SCEV *PostLoopScale = nullptr;
13805ffd83dbSDimitry Andric   if (!SE.dominates(Step, L->getHeader())) {
13815ffd83dbSDimitry Andric     PostLoopScale = Step;
13825ffd83dbSDimitry Andric     Step = SE.getConstant(Normalized->getType(), 1);
13835ffd83dbSDimitry Andric     if (!Start->isZero()) {
13845ffd83dbSDimitry Andric         // The normalization below assumes that Start is constant zero, so if
13855ffd83dbSDimitry Andric         // it isn't re-associate Start to PostLoopOffset.
13865ffd83dbSDimitry Andric         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
13875ffd83dbSDimitry Andric         PostLoopOffset = Start;
13885ffd83dbSDimitry Andric         Start = SE.getConstant(Normalized->getType(), 0);
13895ffd83dbSDimitry Andric     }
13905ffd83dbSDimitry Andric     Normalized =
13915ffd83dbSDimitry Andric       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
13925ffd83dbSDimitry Andric                              Start, Step, Normalized->getLoop(),
13935ffd83dbSDimitry Andric                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
13945ffd83dbSDimitry Andric   }
13955ffd83dbSDimitry Andric 
13965ffd83dbSDimitry Andric   // Expand the core addrec. If we need post-loop scaling, force it to
13975ffd83dbSDimitry Andric   // expand to an integer type to avoid the need for additional casting.
13985ffd83dbSDimitry Andric   Type *ExpandTy = PostLoopScale ? IntTy : STy;
13995ffd83dbSDimitry Andric   // We can't use a pointer type for the addrec if the pointer type is
14005ffd83dbSDimitry Andric   // non-integral.
14015ffd83dbSDimitry Andric   Type *AddRecPHIExpandTy =
14025ffd83dbSDimitry Andric       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
14035ffd83dbSDimitry Andric 
14045ffd83dbSDimitry Andric   // In some cases, we decide to reuse an existing phi node but need to truncate
14055ffd83dbSDimitry Andric   // it and/or invert the step.
14065ffd83dbSDimitry Andric   Type *TruncTy = nullptr;
14075ffd83dbSDimitry Andric   bool InvertStep = false;
14085ffd83dbSDimitry Andric   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
14095ffd83dbSDimitry Andric                                           IntTy, TruncTy, InvertStep);
14105ffd83dbSDimitry Andric 
14115ffd83dbSDimitry Andric   // Accommodate post-inc mode, if necessary.
14125ffd83dbSDimitry Andric   Value *Result;
14135ffd83dbSDimitry Andric   if (!PostIncLoops.count(L))
14145ffd83dbSDimitry Andric     Result = PN;
14155ffd83dbSDimitry Andric   else {
14165ffd83dbSDimitry Andric     // In PostInc mode, use the post-incremented value.
14175ffd83dbSDimitry Andric     BasicBlock *LatchBlock = L->getLoopLatch();
14185ffd83dbSDimitry Andric     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
14195ffd83dbSDimitry Andric     Result = PN->getIncomingValueForBlock(LatchBlock);
14205ffd83dbSDimitry Andric 
1421e8d8bef9SDimitry Andric     // We might be introducing a new use of the post-inc IV that is not poison
1422e8d8bef9SDimitry Andric     // safe, in which case we should drop poison generating flags. Only keep
1423e8d8bef9SDimitry Andric     // those flags for which SCEV has proven that they always hold.
1424e8d8bef9SDimitry Andric     if (isa<OverflowingBinaryOperator>(Result)) {
1425e8d8bef9SDimitry Andric       auto *I = cast<Instruction>(Result);
1426e8d8bef9SDimitry Andric       if (!S->hasNoUnsignedWrap())
1427e8d8bef9SDimitry Andric         I->setHasNoUnsignedWrap(false);
1428e8d8bef9SDimitry Andric       if (!S->hasNoSignedWrap())
1429e8d8bef9SDimitry Andric         I->setHasNoSignedWrap(false);
1430e8d8bef9SDimitry Andric     }
1431e8d8bef9SDimitry Andric 
14325ffd83dbSDimitry Andric     // For an expansion to use the postinc form, the client must call
14335ffd83dbSDimitry Andric     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
14345ffd83dbSDimitry Andric     // or dominated by IVIncInsertPos.
14355ffd83dbSDimitry Andric     if (isa<Instruction>(Result) &&
14365ffd83dbSDimitry Andric         !SE.DT.dominates(cast<Instruction>(Result),
14375ffd83dbSDimitry Andric                          &*Builder.GetInsertPoint())) {
14385ffd83dbSDimitry Andric       // The induction variable's postinc expansion does not dominate this use.
14395ffd83dbSDimitry Andric       // IVUsers tries to prevent this case, so it is rare. However, it can
14405ffd83dbSDimitry Andric       // happen when an IVUser outside the loop is not dominated by the latch
14415ffd83dbSDimitry Andric       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
14425ffd83dbSDimitry Andric       // all cases. Consider a phi outside whose operand is replaced during
14435ffd83dbSDimitry Andric       // expansion with the value of the postinc user. Without fundamentally
14445ffd83dbSDimitry Andric       // changing the way postinc users are tracked, the only remedy is
14455ffd83dbSDimitry Andric       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
14465ffd83dbSDimitry Andric       // but hopefully expandCodeFor handles that.
14475ffd83dbSDimitry Andric       bool useSubtract =
14485ffd83dbSDimitry Andric         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
14495ffd83dbSDimitry Andric       if (useSubtract)
14505ffd83dbSDimitry Andric         Step = SE.getNegativeSCEV(Step);
14515ffd83dbSDimitry Andric       Value *StepV;
14525ffd83dbSDimitry Andric       {
14535ffd83dbSDimitry Andric         // Expand the step somewhere that dominates the loop header.
14545ffd83dbSDimitry Andric         SCEVInsertPointGuard Guard(Builder, this);
1455e8d8bef9SDimitry Andric         StepV = expandCodeForImpl(
1456e8d8bef9SDimitry Andric             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
14575ffd83dbSDimitry Andric       }
14585ffd83dbSDimitry Andric       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
14595ffd83dbSDimitry Andric     }
14605ffd83dbSDimitry Andric   }
14615ffd83dbSDimitry Andric 
14625ffd83dbSDimitry Andric   // We have decided to reuse an induction variable of a dominating loop. Apply
14635ffd83dbSDimitry Andric   // truncation and/or inversion of the step.
14645ffd83dbSDimitry Andric   if (TruncTy) {
14655ffd83dbSDimitry Andric     Type *ResTy = Result->getType();
14665ffd83dbSDimitry Andric     // Normalize the result type.
14675ffd83dbSDimitry Andric     if (ResTy != SE.getEffectiveSCEVType(ResTy))
14685ffd83dbSDimitry Andric       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
14695ffd83dbSDimitry Andric     // Truncate the result.
1470e8d8bef9SDimitry Andric     if (TruncTy != Result->getType())
14715ffd83dbSDimitry Andric       Result = Builder.CreateTrunc(Result, TruncTy);
1472e8d8bef9SDimitry Andric 
14735ffd83dbSDimitry Andric     // Invert the result.
1474e8d8bef9SDimitry Andric     if (InvertStep)
1475e8d8bef9SDimitry Andric       Result = Builder.CreateSub(
1476e8d8bef9SDimitry Andric           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
14775ffd83dbSDimitry Andric   }
14785ffd83dbSDimitry Andric 
14795ffd83dbSDimitry Andric   // Re-apply any non-loop-dominating scale.
14805ffd83dbSDimitry Andric   if (PostLoopScale) {
14815ffd83dbSDimitry Andric     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
14825ffd83dbSDimitry Andric     Result = InsertNoopCastOfTo(Result, IntTy);
14835ffd83dbSDimitry Andric     Result = Builder.CreateMul(Result,
1484e8d8bef9SDimitry Andric                                expandCodeForImpl(PostLoopScale, IntTy, false));
14855ffd83dbSDimitry Andric   }
14865ffd83dbSDimitry Andric 
14875ffd83dbSDimitry Andric   // Re-apply any non-loop-dominating offset.
14885ffd83dbSDimitry Andric   if (PostLoopOffset) {
14895ffd83dbSDimitry Andric     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
14905ffd83dbSDimitry Andric       if (Result->getType()->isIntegerTy()) {
1491e8d8bef9SDimitry Andric         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
14925ffd83dbSDimitry Andric         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
14935ffd83dbSDimitry Andric       } else {
14945ffd83dbSDimitry Andric         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
14955ffd83dbSDimitry Andric       }
14965ffd83dbSDimitry Andric     } else {
14975ffd83dbSDimitry Andric       Result = InsertNoopCastOfTo(Result, IntTy);
1498e8d8bef9SDimitry Andric       Result = Builder.CreateAdd(
1499e8d8bef9SDimitry Andric           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
15005ffd83dbSDimitry Andric     }
15015ffd83dbSDimitry Andric   }
15025ffd83dbSDimitry Andric 
15035ffd83dbSDimitry Andric   return Result;
15045ffd83dbSDimitry Andric }
15055ffd83dbSDimitry Andric 
15065ffd83dbSDimitry Andric Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
15075ffd83dbSDimitry Andric   // In canonical mode we compute the addrec as an expression of a canonical IV
15085ffd83dbSDimitry Andric   // using evaluateAtIteration and expand the resulting SCEV expression. This
15095ffd83dbSDimitry Andric   // way we avoid introducing new IVs to carry on the comutation of the addrec
15105ffd83dbSDimitry Andric   // throughout the loop.
15115ffd83dbSDimitry Andric   //
15125ffd83dbSDimitry Andric   // For nested addrecs evaluateAtIteration might need a canonical IV of a
15135ffd83dbSDimitry Andric   // type wider than the addrec itself. Emitting a canonical IV of the
15145ffd83dbSDimitry Andric   // proper type might produce non-legal types, for example expanding an i64
15155ffd83dbSDimitry Andric   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
15165ffd83dbSDimitry Andric   // back to non-canonical mode for nested addrecs.
15175ffd83dbSDimitry Andric   if (!CanonicalMode || (S->getNumOperands() > 2))
15185ffd83dbSDimitry Andric     return expandAddRecExprLiterally(S);
15195ffd83dbSDimitry Andric 
15205ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
15215ffd83dbSDimitry Andric   const Loop *L = S->getLoop();
15225ffd83dbSDimitry Andric 
15235ffd83dbSDimitry Andric   // First check for an existing canonical IV in a suitable type.
15245ffd83dbSDimitry Andric   PHINode *CanonicalIV = nullptr;
15255ffd83dbSDimitry Andric   if (PHINode *PN = L->getCanonicalInductionVariable())
15265ffd83dbSDimitry Andric     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
15275ffd83dbSDimitry Andric       CanonicalIV = PN;
15285ffd83dbSDimitry Andric 
15295ffd83dbSDimitry Andric   // Rewrite an AddRec in terms of the canonical induction variable, if
15305ffd83dbSDimitry Andric   // its type is more narrow.
15315ffd83dbSDimitry Andric   if (CanonicalIV &&
1532fe6060f1SDimitry Andric       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1533fe6060f1SDimitry Andric       !S->getType()->isPointerTy()) {
15345ffd83dbSDimitry Andric     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
15355ffd83dbSDimitry Andric     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
15365ffd83dbSDimitry Andric       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
15375ffd83dbSDimitry Andric     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
15385ffd83dbSDimitry Andric                                        S->getNoWrapFlags(SCEV::FlagNW)));
15395ffd83dbSDimitry Andric     BasicBlock::iterator NewInsertPt =
1540e8d8bef9SDimitry Andric         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1541e8d8bef9SDimitry Andric     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1542e8d8bef9SDimitry Andric                           &*NewInsertPt, false);
15435ffd83dbSDimitry Andric     return V;
15445ffd83dbSDimitry Andric   }
15455ffd83dbSDimitry Andric 
15465ffd83dbSDimitry Andric   // {X,+,F} --> X + {0,+,F}
15475ffd83dbSDimitry Andric   if (!S->getStart()->isZero()) {
1548349cc55cSDimitry Andric     if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) {
1549349cc55cSDimitry Andric       Value *StartV = expand(SE.getPointerBase(S));
1550349cc55cSDimitry Andric       assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1551349cc55cSDimitry Andric       return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV);
1552349cc55cSDimitry Andric     }
1553349cc55cSDimitry Andric 
1554e8d8bef9SDimitry Andric     SmallVector<const SCEV *, 4> NewOps(S->operands());
15555ffd83dbSDimitry Andric     NewOps[0] = SE.getConstant(Ty, 0);
15565ffd83dbSDimitry Andric     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
15575ffd83dbSDimitry Andric                                         S->getNoWrapFlags(SCEV::FlagNW));
15585ffd83dbSDimitry Andric 
15595ffd83dbSDimitry Andric     // Just do a normal add. Pre-expand the operands to suppress folding.
15605ffd83dbSDimitry Andric     //
15615ffd83dbSDimitry Andric     // The LHS and RHS values are factored out of the expand call to make the
15625ffd83dbSDimitry Andric     // output independent of the argument evaluation order.
15635ffd83dbSDimitry Andric     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
15645ffd83dbSDimitry Andric     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
15655ffd83dbSDimitry Andric     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
15665ffd83dbSDimitry Andric   }
15675ffd83dbSDimitry Andric 
15685ffd83dbSDimitry Andric   // If we don't yet have a canonical IV, create one.
15695ffd83dbSDimitry Andric   if (!CanonicalIV) {
15705ffd83dbSDimitry Andric     // Create and insert the PHI node for the induction variable in the
15715ffd83dbSDimitry Andric     // specified loop.
15725ffd83dbSDimitry Andric     BasicBlock *Header = L->getHeader();
15735ffd83dbSDimitry Andric     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
15745ffd83dbSDimitry Andric     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
15755ffd83dbSDimitry Andric                                   &Header->front());
15765ffd83dbSDimitry Andric     rememberInstruction(CanonicalIV);
15775ffd83dbSDimitry Andric 
15785ffd83dbSDimitry Andric     SmallSet<BasicBlock *, 4> PredSeen;
15795ffd83dbSDimitry Andric     Constant *One = ConstantInt::get(Ty, 1);
15805ffd83dbSDimitry Andric     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
15815ffd83dbSDimitry Andric       BasicBlock *HP = *HPI;
15825ffd83dbSDimitry Andric       if (!PredSeen.insert(HP).second) {
15835ffd83dbSDimitry Andric         // There must be an incoming value for each predecessor, even the
15845ffd83dbSDimitry Andric         // duplicates!
15855ffd83dbSDimitry Andric         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
15865ffd83dbSDimitry Andric         continue;
15875ffd83dbSDimitry Andric       }
15885ffd83dbSDimitry Andric 
15895ffd83dbSDimitry Andric       if (L->contains(HP)) {
15905ffd83dbSDimitry Andric         // Insert a unit add instruction right before the terminator
15915ffd83dbSDimitry Andric         // corresponding to the back-edge.
15925ffd83dbSDimitry Andric         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
15935ffd83dbSDimitry Andric                                                      "indvar.next",
15945ffd83dbSDimitry Andric                                                      HP->getTerminator());
15955ffd83dbSDimitry Andric         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
15965ffd83dbSDimitry Andric         rememberInstruction(Add);
15975ffd83dbSDimitry Andric         CanonicalIV->addIncoming(Add, HP);
15985ffd83dbSDimitry Andric       } else {
15995ffd83dbSDimitry Andric         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
16005ffd83dbSDimitry Andric       }
16015ffd83dbSDimitry Andric     }
16025ffd83dbSDimitry Andric   }
16035ffd83dbSDimitry Andric 
16045ffd83dbSDimitry Andric   // {0,+,1} --> Insert a canonical induction variable into the loop!
16055ffd83dbSDimitry Andric   if (S->isAffine() && S->getOperand(1)->isOne()) {
16065ffd83dbSDimitry Andric     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
16075ffd83dbSDimitry Andric            "IVs with types different from the canonical IV should "
16085ffd83dbSDimitry Andric            "already have been handled!");
16095ffd83dbSDimitry Andric     return CanonicalIV;
16105ffd83dbSDimitry Andric   }
16115ffd83dbSDimitry Andric 
16125ffd83dbSDimitry Andric   // {0,+,F} --> {0,+,1} * F
16135ffd83dbSDimitry Andric 
16145ffd83dbSDimitry Andric   // If this is a simple linear addrec, emit it now as a special case.
16155ffd83dbSDimitry Andric   if (S->isAffine())    // {0,+,F} --> i*F
16165ffd83dbSDimitry Andric     return
16175ffd83dbSDimitry Andric       expand(SE.getTruncateOrNoop(
16185ffd83dbSDimitry Andric         SE.getMulExpr(SE.getUnknown(CanonicalIV),
16195ffd83dbSDimitry Andric                       SE.getNoopOrAnyExtend(S->getOperand(1),
16205ffd83dbSDimitry Andric                                             CanonicalIV->getType())),
16215ffd83dbSDimitry Andric         Ty));
16225ffd83dbSDimitry Andric 
16235ffd83dbSDimitry Andric   // If this is a chain of recurrences, turn it into a closed form, using the
16245ffd83dbSDimitry Andric   // folders, then expandCodeFor the closed form.  This allows the folders to
16255ffd83dbSDimitry Andric   // simplify the expression without having to build a bunch of special code
16265ffd83dbSDimitry Andric   // into this folder.
16275ffd83dbSDimitry Andric   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
16285ffd83dbSDimitry Andric 
16295ffd83dbSDimitry Andric   // Promote S up to the canonical IV type, if the cast is foldable.
16305ffd83dbSDimitry Andric   const SCEV *NewS = S;
16315ffd83dbSDimitry Andric   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
16325ffd83dbSDimitry Andric   if (isa<SCEVAddRecExpr>(Ext))
16335ffd83dbSDimitry Andric     NewS = Ext;
16345ffd83dbSDimitry Andric 
16355ffd83dbSDimitry Andric   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
16365ffd83dbSDimitry Andric   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
16375ffd83dbSDimitry Andric 
16385ffd83dbSDimitry Andric   // Truncate the result down to the original type, if needed.
16395ffd83dbSDimitry Andric   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
16405ffd83dbSDimitry Andric   return expand(T);
16415ffd83dbSDimitry Andric }
16425ffd83dbSDimitry Andric 
1643e8d8bef9SDimitry Andric Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1644e8d8bef9SDimitry Andric   Value *V =
1645e8d8bef9SDimitry Andric       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1646fe6060f1SDimitry Andric   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1647fe6060f1SDimitry Andric                            GetOptimalInsertionPointForCastOf(V));
1648e8d8bef9SDimitry Andric }
1649e8d8bef9SDimitry Andric 
16505ffd83dbSDimitry Andric Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
16515ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1652e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1653e8d8bef9SDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1654e8d8bef9SDimitry Andric       false);
1655e8d8bef9SDimitry Andric   return Builder.CreateTrunc(V, Ty);
16565ffd83dbSDimitry Andric }
16575ffd83dbSDimitry Andric 
16585ffd83dbSDimitry Andric Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
16595ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1660e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1661e8d8bef9SDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1662e8d8bef9SDimitry Andric       false);
1663e8d8bef9SDimitry Andric   return Builder.CreateZExt(V, Ty);
16645ffd83dbSDimitry Andric }
16655ffd83dbSDimitry Andric 
16665ffd83dbSDimitry Andric Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
16675ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1668e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1669e8d8bef9SDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1670e8d8bef9SDimitry Andric       false);
1671e8d8bef9SDimitry Andric   return Builder.CreateSExt(V, Ty);
16725ffd83dbSDimitry Andric }
16735ffd83dbSDimitry Andric 
16745ffd83dbSDimitry Andric Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
16755ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
16765ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
16775ffd83dbSDimitry Andric   for (int i = S->getNumOperands()-2; i >= 0; --i) {
16785ffd83dbSDimitry Andric     // In the case of mixed integer and pointer types, do the
16795ffd83dbSDimitry Andric     // rest of the comparisons as integer.
16805ffd83dbSDimitry Andric     Type *OpTy = S->getOperand(i)->getType();
16815ffd83dbSDimitry Andric     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
16825ffd83dbSDimitry Andric       Ty = SE.getEffectiveSCEVType(Ty);
16835ffd83dbSDimitry Andric       LHS = InsertNoopCastOfTo(LHS, Ty);
16845ffd83dbSDimitry Andric     }
1685e8d8bef9SDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1686fe6060f1SDimitry Andric     Value *Sel;
1687fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
1688fe6060f1SDimitry Andric       Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1689fe6060f1SDimitry Andric                                     /*FMFSource=*/nullptr, "smax");
1690fe6060f1SDimitry Andric     else {
16915ffd83dbSDimitry Andric       Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1692fe6060f1SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1693fe6060f1SDimitry Andric     }
16945ffd83dbSDimitry Andric     LHS = Sel;
16955ffd83dbSDimitry Andric   }
16965ffd83dbSDimitry Andric   // In the case of mixed integer and pointer types, cast the
16975ffd83dbSDimitry Andric   // final result back to the pointer type.
16985ffd83dbSDimitry Andric   if (LHS->getType() != S->getType())
16995ffd83dbSDimitry Andric     LHS = InsertNoopCastOfTo(LHS, S->getType());
17005ffd83dbSDimitry Andric   return LHS;
17015ffd83dbSDimitry Andric }
17025ffd83dbSDimitry Andric 
17035ffd83dbSDimitry Andric Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
17045ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
17055ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
17065ffd83dbSDimitry Andric   for (int i = S->getNumOperands()-2; i >= 0; --i) {
17075ffd83dbSDimitry Andric     // In the case of mixed integer and pointer types, do the
17085ffd83dbSDimitry Andric     // rest of the comparisons as integer.
17095ffd83dbSDimitry Andric     Type *OpTy = S->getOperand(i)->getType();
17105ffd83dbSDimitry Andric     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
17115ffd83dbSDimitry Andric       Ty = SE.getEffectiveSCEVType(Ty);
17125ffd83dbSDimitry Andric       LHS = InsertNoopCastOfTo(LHS, Ty);
17135ffd83dbSDimitry Andric     }
1714e8d8bef9SDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1715fe6060f1SDimitry Andric     Value *Sel;
1716fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
1717fe6060f1SDimitry Andric       Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1718fe6060f1SDimitry Andric                                     /*FMFSource=*/nullptr, "umax");
1719fe6060f1SDimitry Andric     else {
17205ffd83dbSDimitry Andric       Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1721fe6060f1SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1722fe6060f1SDimitry Andric     }
17235ffd83dbSDimitry Andric     LHS = Sel;
17245ffd83dbSDimitry Andric   }
17255ffd83dbSDimitry Andric   // In the case of mixed integer and pointer types, cast the
17265ffd83dbSDimitry Andric   // final result back to the pointer type.
17275ffd83dbSDimitry Andric   if (LHS->getType() != S->getType())
17285ffd83dbSDimitry Andric     LHS = InsertNoopCastOfTo(LHS, S->getType());
17295ffd83dbSDimitry Andric   return LHS;
17305ffd83dbSDimitry Andric }
17315ffd83dbSDimitry Andric 
17325ffd83dbSDimitry Andric Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
17335ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
17345ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
17355ffd83dbSDimitry Andric   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
17365ffd83dbSDimitry Andric     // In the case of mixed integer and pointer types, do the
17375ffd83dbSDimitry Andric     // rest of the comparisons as integer.
17385ffd83dbSDimitry Andric     Type *OpTy = S->getOperand(i)->getType();
17395ffd83dbSDimitry Andric     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
17405ffd83dbSDimitry Andric       Ty = SE.getEffectiveSCEVType(Ty);
17415ffd83dbSDimitry Andric       LHS = InsertNoopCastOfTo(LHS, Ty);
17425ffd83dbSDimitry Andric     }
1743e8d8bef9SDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1744fe6060f1SDimitry Andric     Value *Sel;
1745fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
1746fe6060f1SDimitry Andric       Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1747fe6060f1SDimitry Andric                                     /*FMFSource=*/nullptr, "smin");
1748fe6060f1SDimitry Andric     else {
17495ffd83dbSDimitry Andric       Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1750fe6060f1SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1751fe6060f1SDimitry Andric     }
17525ffd83dbSDimitry Andric     LHS = Sel;
17535ffd83dbSDimitry Andric   }
17545ffd83dbSDimitry Andric   // In the case of mixed integer and pointer types, cast the
17555ffd83dbSDimitry Andric   // final result back to the pointer type.
17565ffd83dbSDimitry Andric   if (LHS->getType() != S->getType())
17575ffd83dbSDimitry Andric     LHS = InsertNoopCastOfTo(LHS, S->getType());
17585ffd83dbSDimitry Andric   return LHS;
17595ffd83dbSDimitry Andric }
17605ffd83dbSDimitry Andric 
17615ffd83dbSDimitry Andric Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
17625ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
17635ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
17645ffd83dbSDimitry Andric   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
17655ffd83dbSDimitry Andric     // In the case of mixed integer and pointer types, do the
17665ffd83dbSDimitry Andric     // rest of the comparisons as integer.
17675ffd83dbSDimitry Andric     Type *OpTy = S->getOperand(i)->getType();
17685ffd83dbSDimitry Andric     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
17695ffd83dbSDimitry Andric       Ty = SE.getEffectiveSCEVType(Ty);
17705ffd83dbSDimitry Andric       LHS = InsertNoopCastOfTo(LHS, Ty);
17715ffd83dbSDimitry Andric     }
1772e8d8bef9SDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1773fe6060f1SDimitry Andric     Value *Sel;
1774fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
1775fe6060f1SDimitry Andric       Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1776fe6060f1SDimitry Andric                                     /*FMFSource=*/nullptr, "umin");
1777fe6060f1SDimitry Andric     else {
17785ffd83dbSDimitry Andric       Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1779fe6060f1SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1780fe6060f1SDimitry Andric     }
17815ffd83dbSDimitry Andric     LHS = Sel;
17825ffd83dbSDimitry Andric   }
17835ffd83dbSDimitry Andric   // In the case of mixed integer and pointer types, cast the
17845ffd83dbSDimitry Andric   // final result back to the pointer type.
17855ffd83dbSDimitry Andric   if (LHS->getType() != S->getType())
17865ffd83dbSDimitry Andric     LHS = InsertNoopCastOfTo(LHS, S->getType());
17875ffd83dbSDimitry Andric   return LHS;
17885ffd83dbSDimitry Andric }
17895ffd83dbSDimitry Andric 
1790e8d8bef9SDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1791e8d8bef9SDimitry Andric                                        Instruction *IP, bool Root) {
17925ffd83dbSDimitry Andric   setInsertPoint(IP);
1793e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(SH, Ty, Root);
1794e8d8bef9SDimitry Andric   return V;
17955ffd83dbSDimitry Andric }
17965ffd83dbSDimitry Andric 
1797e8d8bef9SDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
17985ffd83dbSDimitry Andric   // Expand the code for this SCEV.
17995ffd83dbSDimitry Andric   Value *V = expand(SH);
1800e8d8bef9SDimitry Andric 
1801e8d8bef9SDimitry Andric   if (PreserveLCSSA) {
1802e8d8bef9SDimitry Andric     if (auto *Inst = dyn_cast<Instruction>(V)) {
1803e8d8bef9SDimitry Andric       // Create a temporary instruction to at the current insertion point, so we
1804e8d8bef9SDimitry Andric       // can hand it off to the helper to create LCSSA PHIs if required for the
1805e8d8bef9SDimitry Andric       // new use.
1806e8d8bef9SDimitry Andric       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1807e8d8bef9SDimitry Andric       // would accept a insertion point and return an LCSSA phi for that
1808e8d8bef9SDimitry Andric       // insertion point, so there is no need to insert & remove the temporary
1809e8d8bef9SDimitry Andric       // instruction.
1810e8d8bef9SDimitry Andric       Instruction *Tmp;
1811e8d8bef9SDimitry Andric       if (Inst->getType()->isIntegerTy())
1812e8d8bef9SDimitry Andric         Tmp =
1813e8d8bef9SDimitry Andric             cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1814e8d8bef9SDimitry Andric       else {
1815e8d8bef9SDimitry Andric         assert(Inst->getType()->isPointerTy());
1816fe6060f1SDimitry Andric         Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1817fe6060f1SDimitry Andric             Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1818e8d8bef9SDimitry Andric       }
1819e8d8bef9SDimitry Andric       V = fixupLCSSAFormFor(Tmp, 0);
1820e8d8bef9SDimitry Andric 
1821e8d8bef9SDimitry Andric       // Clean up temporary instruction.
1822e8d8bef9SDimitry Andric       InsertedValues.erase(Tmp);
1823e8d8bef9SDimitry Andric       InsertedPostIncValues.erase(Tmp);
1824e8d8bef9SDimitry Andric       Tmp->eraseFromParent();
1825e8d8bef9SDimitry Andric     }
1826e8d8bef9SDimitry Andric   }
1827e8d8bef9SDimitry Andric 
1828e8d8bef9SDimitry Andric   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
18295ffd83dbSDimitry Andric   if (Ty) {
18305ffd83dbSDimitry Andric     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
18315ffd83dbSDimitry Andric            "non-trivial casts should be done with the SCEVs directly!");
18325ffd83dbSDimitry Andric     V = InsertNoopCastOfTo(V, Ty);
18335ffd83dbSDimitry Andric   }
18345ffd83dbSDimitry Andric   return V;
18355ffd83dbSDimitry Andric }
18365ffd83dbSDimitry Andric 
18375ffd83dbSDimitry Andric ScalarEvolution::ValueOffsetPair
18385ffd83dbSDimitry Andric SCEVExpander::FindValueInExprValueMap(const SCEV *S,
18395ffd83dbSDimitry Andric                                       const Instruction *InsertPt) {
1840fe6060f1SDimitry Andric   auto *Set = SE.getSCEVValues(S);
18415ffd83dbSDimitry Andric   // If the expansion is not in CanonicalMode, and the SCEV contains any
18425ffd83dbSDimitry Andric   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
18435ffd83dbSDimitry Andric   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
18445ffd83dbSDimitry Andric     // If S is scConstant, it may be worse to reuse an existing Value.
18455ffd83dbSDimitry Andric     if (S->getSCEVType() != scConstant && Set) {
1846349cc55cSDimitry Andric       // Choose a Value from the set which dominates the InsertPt.
1847349cc55cSDimitry Andric       // InsertPt should be inside the Value's parent loop so as not to break
18485ffd83dbSDimitry Andric       // the LCSSA form.
18495ffd83dbSDimitry Andric       for (auto const &VOPair : *Set) {
18505ffd83dbSDimitry Andric         Value *V = VOPair.first;
18515ffd83dbSDimitry Andric         ConstantInt *Offset = VOPair.second;
1852349cc55cSDimitry Andric         Instruction *EntInst = dyn_cast_or_null<Instruction>(V);
1853349cc55cSDimitry Andric         if (!EntInst)
1854349cc55cSDimitry Andric           continue;
1855349cc55cSDimitry Andric 
1856349cc55cSDimitry Andric         assert(EntInst->getFunction() == InsertPt->getFunction());
1857349cc55cSDimitry Andric         if (S->getType() == V->getType() &&
18585ffd83dbSDimitry Andric             SE.DT.dominates(EntInst, InsertPt) &&
18595ffd83dbSDimitry Andric             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1860*4824e7fdSDimitry Andric              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
18615ffd83dbSDimitry Andric           return {V, Offset};
18625ffd83dbSDimitry Andric       }
18635ffd83dbSDimitry Andric     }
18645ffd83dbSDimitry Andric   }
18655ffd83dbSDimitry Andric   return {nullptr, nullptr};
18665ffd83dbSDimitry Andric }
18675ffd83dbSDimitry Andric 
18685ffd83dbSDimitry Andric // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
18695ffd83dbSDimitry Andric // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
18705ffd83dbSDimitry Andric // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
18715ffd83dbSDimitry Andric // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
18725ffd83dbSDimitry Andric // the expansion will try to reuse Value from ExprValueMap, and only when it
18735ffd83dbSDimitry Andric // fails, expand the SCEV literally.
18745ffd83dbSDimitry Andric Value *SCEVExpander::expand(const SCEV *S) {
18755ffd83dbSDimitry Andric   // Compute an insertion point for this SCEV object. Hoist the instructions
18765ffd83dbSDimitry Andric   // as far out in the loop nest as possible.
18775ffd83dbSDimitry Andric   Instruction *InsertPt = &*Builder.GetInsertPoint();
18785ffd83dbSDimitry Andric 
18795ffd83dbSDimitry Andric   // We can move insertion point only if there is no div or rem operations
18805ffd83dbSDimitry Andric   // otherwise we are risky to move it over the check for zero denominator.
18815ffd83dbSDimitry Andric   auto SafeToHoist = [](const SCEV *S) {
18825ffd83dbSDimitry Andric     return !SCEVExprContains(S, [](const SCEV *S) {
18835ffd83dbSDimitry Andric               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
18845ffd83dbSDimitry Andric                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
18855ffd83dbSDimitry Andric                   // Division by non-zero constants can be hoisted.
18865ffd83dbSDimitry Andric                   return SC->getValue()->isZero();
18875ffd83dbSDimitry Andric                 // All other divisions should not be moved as they may be
18885ffd83dbSDimitry Andric                 // divisions by zero and should be kept within the
18895ffd83dbSDimitry Andric                 // conditions of the surrounding loops that guard their
18905ffd83dbSDimitry Andric                 // execution (see PR35406).
18915ffd83dbSDimitry Andric                 return true;
18925ffd83dbSDimitry Andric               }
18935ffd83dbSDimitry Andric               return false;
18945ffd83dbSDimitry Andric             });
18955ffd83dbSDimitry Andric   };
18965ffd83dbSDimitry Andric   if (SafeToHoist(S)) {
18975ffd83dbSDimitry Andric     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
18985ffd83dbSDimitry Andric          L = L->getParentLoop()) {
18995ffd83dbSDimitry Andric       if (SE.isLoopInvariant(S, L)) {
19005ffd83dbSDimitry Andric         if (!L) break;
19015ffd83dbSDimitry Andric         if (BasicBlock *Preheader = L->getLoopPreheader())
19025ffd83dbSDimitry Andric           InsertPt = Preheader->getTerminator();
19035ffd83dbSDimitry Andric         else
19045ffd83dbSDimitry Andric           // LSR sets the insertion point for AddRec start/step values to the
19055ffd83dbSDimitry Andric           // block start to simplify value reuse, even though it's an invalid
19065ffd83dbSDimitry Andric           // position. SCEVExpander must correct for this in all cases.
19075ffd83dbSDimitry Andric           InsertPt = &*L->getHeader()->getFirstInsertionPt();
19085ffd83dbSDimitry Andric       } else {
19095ffd83dbSDimitry Andric         // If the SCEV is computable at this level, insert it into the header
19105ffd83dbSDimitry Andric         // after the PHIs (and after any other instructions that we've inserted
19115ffd83dbSDimitry Andric         // there) so that it is guaranteed to dominate any user inside the loop.
19125ffd83dbSDimitry Andric         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
19135ffd83dbSDimitry Andric           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1914e8d8bef9SDimitry Andric 
19155ffd83dbSDimitry Andric         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
19165ffd83dbSDimitry Andric                (isInsertedInstruction(InsertPt) ||
1917e8d8bef9SDimitry Andric                 isa<DbgInfoIntrinsic>(InsertPt))) {
19185ffd83dbSDimitry Andric           InsertPt = &*std::next(InsertPt->getIterator());
1919e8d8bef9SDimitry Andric         }
19205ffd83dbSDimitry Andric         break;
19215ffd83dbSDimitry Andric       }
19225ffd83dbSDimitry Andric     }
19235ffd83dbSDimitry Andric   }
19245ffd83dbSDimitry Andric 
19255ffd83dbSDimitry Andric   // Check to see if we already expanded this here.
19265ffd83dbSDimitry Andric   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
19275ffd83dbSDimitry Andric   if (I != InsertedExpressions.end())
19285ffd83dbSDimitry Andric     return I->second;
19295ffd83dbSDimitry Andric 
19305ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
19315ffd83dbSDimitry Andric   Builder.SetInsertPoint(InsertPt);
19325ffd83dbSDimitry Andric 
19335ffd83dbSDimitry Andric   // Expand the expression into instructions.
19345ffd83dbSDimitry Andric   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
19355ffd83dbSDimitry Andric   Value *V = VO.first;
19365ffd83dbSDimitry Andric 
19375ffd83dbSDimitry Andric   if (!V)
19385ffd83dbSDimitry Andric     V = visit(S);
1939*4824e7fdSDimitry Andric   else {
1940*4824e7fdSDimitry Andric     // If we're reusing an existing instruction, we are effectively CSEing two
1941*4824e7fdSDimitry Andric     // copies of the instruction (with potentially different flags).  As such,
1942*4824e7fdSDimitry Andric     // we need to drop any poison generating flags unless we can prove that
1943*4824e7fdSDimitry Andric     // said flags must be valid for all new users.
1944*4824e7fdSDimitry Andric     if (auto *I = dyn_cast<Instruction>(V))
1945*4824e7fdSDimitry Andric       if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))
1946*4824e7fdSDimitry Andric         I->dropPoisonGeneratingFlags();
1947*4824e7fdSDimitry Andric 
1948*4824e7fdSDimitry Andric     if (VO.second) {
19495ffd83dbSDimitry Andric       if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
19505ffd83dbSDimitry Andric         Type *Ety = Vty->getPointerElementType();
19515ffd83dbSDimitry Andric         int64_t Offset = VO.second->getSExtValue();
19525ffd83dbSDimitry Andric         int64_t ESize = SE.getTypeSizeInBits(Ety);
19535ffd83dbSDimitry Andric         if ((Offset * 8) % ESize == 0) {
19545ffd83dbSDimitry Andric           ConstantInt *Idx =
19555ffd83dbSDimitry Andric             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
19565ffd83dbSDimitry Andric           V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
19575ffd83dbSDimitry Andric         } else {
19585ffd83dbSDimitry Andric           ConstantInt *Idx =
19595ffd83dbSDimitry Andric             ConstantInt::getSigned(VO.second->getType(), -Offset);
19605ffd83dbSDimitry Andric           unsigned AS = Vty->getAddressSpace();
19615ffd83dbSDimitry Andric           V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
19625ffd83dbSDimitry Andric           V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
19635ffd83dbSDimitry Andric                                 "uglygep");
19645ffd83dbSDimitry Andric           V = Builder.CreateBitCast(V, Vty);
19655ffd83dbSDimitry Andric         }
19665ffd83dbSDimitry Andric       } else {
19675ffd83dbSDimitry Andric         V = Builder.CreateSub(V, VO.second);
19685ffd83dbSDimitry Andric       }
19695ffd83dbSDimitry Andric     }
1970*4824e7fdSDimitry Andric   }
19715ffd83dbSDimitry Andric   // Remember the expanded value for this SCEV at this location.
19725ffd83dbSDimitry Andric   //
19735ffd83dbSDimitry Andric   // This is independent of PostIncLoops. The mapped value simply materializes
19745ffd83dbSDimitry Andric   // the expression at this insertion point. If the mapped value happened to be
19755ffd83dbSDimitry Andric   // a postinc expansion, it could be reused by a non-postinc user, but only if
19765ffd83dbSDimitry Andric   // its insertion point was already at the head of the loop.
19775ffd83dbSDimitry Andric   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
19785ffd83dbSDimitry Andric   return V;
19795ffd83dbSDimitry Andric }
19805ffd83dbSDimitry Andric 
19815ffd83dbSDimitry Andric void SCEVExpander::rememberInstruction(Value *I) {
1982e8d8bef9SDimitry Andric   auto DoInsert = [this](Value *V) {
19835ffd83dbSDimitry Andric     if (!PostIncLoops.empty())
1984e8d8bef9SDimitry Andric       InsertedPostIncValues.insert(V);
19855ffd83dbSDimitry Andric     else
1986e8d8bef9SDimitry Andric       InsertedValues.insert(V);
1987e8d8bef9SDimitry Andric   };
1988e8d8bef9SDimitry Andric   DoInsert(I);
1989e8d8bef9SDimitry Andric 
1990e8d8bef9SDimitry Andric   if (!PreserveLCSSA)
1991e8d8bef9SDimitry Andric     return;
1992e8d8bef9SDimitry Andric 
1993e8d8bef9SDimitry Andric   if (auto *Inst = dyn_cast<Instruction>(I)) {
1994e8d8bef9SDimitry Andric     // A new instruction has been added, which might introduce new uses outside
1995e8d8bef9SDimitry Andric     // a defining loop. Fix LCSSA from for each operand of the new instruction,
1996e8d8bef9SDimitry Andric     // if required.
1997e8d8bef9SDimitry Andric     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
1998e8d8bef9SDimitry Andric          OpIdx++)
1999e8d8bef9SDimitry Andric       fixupLCSSAFormFor(Inst, OpIdx);
20005ffd83dbSDimitry Andric   }
20015ffd83dbSDimitry Andric }
20025ffd83dbSDimitry Andric 
20035ffd83dbSDimitry Andric /// replaceCongruentIVs - Check for congruent phis in this loop header and
20045ffd83dbSDimitry Andric /// replace them with their most canonical representative. Return the number of
20055ffd83dbSDimitry Andric /// phis eliminated.
20065ffd83dbSDimitry Andric ///
20075ffd83dbSDimitry Andric /// This does not depend on any SCEVExpander state but should be used in
20085ffd83dbSDimitry Andric /// the same context that SCEVExpander is used.
20095ffd83dbSDimitry Andric unsigned
20105ffd83dbSDimitry Andric SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
20115ffd83dbSDimitry Andric                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
20125ffd83dbSDimitry Andric                                   const TargetTransformInfo *TTI) {
20135ffd83dbSDimitry Andric   // Find integer phis in order of increasing width.
20145ffd83dbSDimitry Andric   SmallVector<PHINode*, 8> Phis;
20155ffd83dbSDimitry Andric   for (PHINode &PN : L->getHeader()->phis())
20165ffd83dbSDimitry Andric     Phis.push_back(&PN);
20175ffd83dbSDimitry Andric 
20185ffd83dbSDimitry Andric   if (TTI)
2019349cc55cSDimitry Andric     // Use stable_sort to preserve order of equivalent PHIs, so the order
2020349cc55cSDimitry Andric     // of the sorted Phis is the same from run to run on the same loop.
2021349cc55cSDimitry Andric     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
20225ffd83dbSDimitry Andric       // Put pointers at the back and make sure pointer < pointer = false.
20235ffd83dbSDimitry Andric       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
20245ffd83dbSDimitry Andric         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2025e8d8bef9SDimitry Andric       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2026e8d8bef9SDimitry Andric              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
20275ffd83dbSDimitry Andric     });
20285ffd83dbSDimitry Andric 
20295ffd83dbSDimitry Andric   unsigned NumElim = 0;
20305ffd83dbSDimitry Andric   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
20315ffd83dbSDimitry Andric   // Process phis from wide to narrow. Map wide phis to their truncation
20325ffd83dbSDimitry Andric   // so narrow phis can reuse them.
20335ffd83dbSDimitry Andric   for (PHINode *Phi : Phis) {
20345ffd83dbSDimitry Andric     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
20355ffd83dbSDimitry Andric       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
20365ffd83dbSDimitry Andric         return V;
20375ffd83dbSDimitry Andric       if (!SE.isSCEVable(PN->getType()))
20385ffd83dbSDimitry Andric         return nullptr;
20395ffd83dbSDimitry Andric       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
20405ffd83dbSDimitry Andric       if (!Const)
20415ffd83dbSDimitry Andric         return nullptr;
20425ffd83dbSDimitry Andric       return Const->getValue();
20435ffd83dbSDimitry Andric     };
20445ffd83dbSDimitry Andric 
20455ffd83dbSDimitry Andric     // Fold constant phis. They may be congruent to other constant phis and
20465ffd83dbSDimitry Andric     // would confuse the logic below that expects proper IVs.
20475ffd83dbSDimitry Andric     if (Value *V = SimplifyPHINode(Phi)) {
20485ffd83dbSDimitry Andric       if (V->getType() != Phi->getType())
20495ffd83dbSDimitry Andric         continue;
20505ffd83dbSDimitry Andric       Phi->replaceAllUsesWith(V);
20515ffd83dbSDimitry Andric       DeadInsts.emplace_back(Phi);
20525ffd83dbSDimitry Andric       ++NumElim;
2053fe6060f1SDimitry Andric       SCEV_DEBUG_WITH_TYPE(DebugType,
2054fe6060f1SDimitry Andric                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
2055fe6060f1SDimitry Andric                                   << '\n');
20565ffd83dbSDimitry Andric       continue;
20575ffd83dbSDimitry Andric     }
20585ffd83dbSDimitry Andric 
20595ffd83dbSDimitry Andric     if (!SE.isSCEVable(Phi->getType()))
20605ffd83dbSDimitry Andric       continue;
20615ffd83dbSDimitry Andric 
20625ffd83dbSDimitry Andric     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
20635ffd83dbSDimitry Andric     if (!OrigPhiRef) {
20645ffd83dbSDimitry Andric       OrigPhiRef = Phi;
20655ffd83dbSDimitry Andric       if (Phi->getType()->isIntegerTy() && TTI &&
20665ffd83dbSDimitry Andric           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
20675ffd83dbSDimitry Andric         // This phi can be freely truncated to the narrowest phi type. Map the
20685ffd83dbSDimitry Andric         // truncated expression to it so it will be reused for narrow types.
20695ffd83dbSDimitry Andric         const SCEV *TruncExpr =
20705ffd83dbSDimitry Andric           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
20715ffd83dbSDimitry Andric         ExprToIVMap[TruncExpr] = Phi;
20725ffd83dbSDimitry Andric       }
20735ffd83dbSDimitry Andric       continue;
20745ffd83dbSDimitry Andric     }
20755ffd83dbSDimitry Andric 
20765ffd83dbSDimitry Andric     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
20775ffd83dbSDimitry Andric     // sense.
20785ffd83dbSDimitry Andric     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
20795ffd83dbSDimitry Andric       continue;
20805ffd83dbSDimitry Andric 
20815ffd83dbSDimitry Andric     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
20825ffd83dbSDimitry Andric       Instruction *OrigInc = dyn_cast<Instruction>(
20835ffd83dbSDimitry Andric           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
20845ffd83dbSDimitry Andric       Instruction *IsomorphicInc =
20855ffd83dbSDimitry Andric           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
20865ffd83dbSDimitry Andric 
20875ffd83dbSDimitry Andric       if (OrigInc && IsomorphicInc) {
20885ffd83dbSDimitry Andric         // If this phi has the same width but is more canonical, replace the
20895ffd83dbSDimitry Andric         // original with it. As part of the "more canonical" determination,
20905ffd83dbSDimitry Andric         // respect a prior decision to use an IV chain.
20915ffd83dbSDimitry Andric         if (OrigPhiRef->getType() == Phi->getType() &&
20925ffd83dbSDimitry Andric             !(ChainedPhis.count(Phi) ||
20935ffd83dbSDimitry Andric               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
20945ffd83dbSDimitry Andric             (ChainedPhis.count(Phi) ||
20955ffd83dbSDimitry Andric              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
20965ffd83dbSDimitry Andric           std::swap(OrigPhiRef, Phi);
20975ffd83dbSDimitry Andric           std::swap(OrigInc, IsomorphicInc);
20985ffd83dbSDimitry Andric         }
20995ffd83dbSDimitry Andric         // Replacing the congruent phi is sufficient because acyclic
21005ffd83dbSDimitry Andric         // redundancy elimination, CSE/GVN, should handle the
21015ffd83dbSDimitry Andric         // rest. However, once SCEV proves that a phi is congruent,
21025ffd83dbSDimitry Andric         // it's often the head of an IV user cycle that is isomorphic
21035ffd83dbSDimitry Andric         // with the original phi. It's worth eagerly cleaning up the
21045ffd83dbSDimitry Andric         // common case of a single IV increment so that DeleteDeadPHIs
21055ffd83dbSDimitry Andric         // can remove cycles that had postinc uses.
21065ffd83dbSDimitry Andric         const SCEV *TruncExpr =
21075ffd83dbSDimitry Andric             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
21085ffd83dbSDimitry Andric         if (OrigInc != IsomorphicInc &&
21095ffd83dbSDimitry Andric             TruncExpr == SE.getSCEV(IsomorphicInc) &&
21105ffd83dbSDimitry Andric             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
21115ffd83dbSDimitry Andric             hoistIVInc(OrigInc, IsomorphicInc)) {
2112fe6060f1SDimitry Andric           SCEV_DEBUG_WITH_TYPE(
2113fe6060f1SDimitry Andric               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
21145ffd83dbSDimitry Andric                                 << *IsomorphicInc << '\n');
21155ffd83dbSDimitry Andric           Value *NewInc = OrigInc;
21165ffd83dbSDimitry Andric           if (OrigInc->getType() != IsomorphicInc->getType()) {
21175ffd83dbSDimitry Andric             Instruction *IP = nullptr;
21185ffd83dbSDimitry Andric             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
21195ffd83dbSDimitry Andric               IP = &*PN->getParent()->getFirstInsertionPt();
21205ffd83dbSDimitry Andric             else
21215ffd83dbSDimitry Andric               IP = OrigInc->getNextNode();
21225ffd83dbSDimitry Andric 
21235ffd83dbSDimitry Andric             IRBuilder<> Builder(IP);
21245ffd83dbSDimitry Andric             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
21255ffd83dbSDimitry Andric             NewInc = Builder.CreateTruncOrBitCast(
21265ffd83dbSDimitry Andric                 OrigInc, IsomorphicInc->getType(), IVName);
21275ffd83dbSDimitry Andric           }
21285ffd83dbSDimitry Andric           IsomorphicInc->replaceAllUsesWith(NewInc);
21295ffd83dbSDimitry Andric           DeadInsts.emplace_back(IsomorphicInc);
21305ffd83dbSDimitry Andric         }
21315ffd83dbSDimitry Andric       }
21325ffd83dbSDimitry Andric     }
2133fe6060f1SDimitry Andric     SCEV_DEBUG_WITH_TYPE(DebugType,
2134fe6060f1SDimitry Andric                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2135fe6060f1SDimitry Andric                                 << '\n');
2136fe6060f1SDimitry Andric     SCEV_DEBUG_WITH_TYPE(
2137fe6060f1SDimitry Andric         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
21385ffd83dbSDimitry Andric     ++NumElim;
21395ffd83dbSDimitry Andric     Value *NewIV = OrigPhiRef;
21405ffd83dbSDimitry Andric     if (OrigPhiRef->getType() != Phi->getType()) {
21415ffd83dbSDimitry Andric       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
21425ffd83dbSDimitry Andric       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
21435ffd83dbSDimitry Andric       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
21445ffd83dbSDimitry Andric     }
21455ffd83dbSDimitry Andric     Phi->replaceAllUsesWith(NewIV);
21465ffd83dbSDimitry Andric     DeadInsts.emplace_back(Phi);
21475ffd83dbSDimitry Andric   }
21485ffd83dbSDimitry Andric   return NumElim;
21495ffd83dbSDimitry Andric }
21505ffd83dbSDimitry Andric 
21515ffd83dbSDimitry Andric Optional<ScalarEvolution::ValueOffsetPair>
21525ffd83dbSDimitry Andric SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
21535ffd83dbSDimitry Andric                                           Loop *L) {
21545ffd83dbSDimitry Andric   using namespace llvm::PatternMatch;
21555ffd83dbSDimitry Andric 
21565ffd83dbSDimitry Andric   SmallVector<BasicBlock *, 4> ExitingBlocks;
21575ffd83dbSDimitry Andric   L->getExitingBlocks(ExitingBlocks);
21585ffd83dbSDimitry Andric 
21595ffd83dbSDimitry Andric   // Look for suitable value in simple conditions at the loop exits.
21605ffd83dbSDimitry Andric   for (BasicBlock *BB : ExitingBlocks) {
21615ffd83dbSDimitry Andric     ICmpInst::Predicate Pred;
21625ffd83dbSDimitry Andric     Instruction *LHS, *RHS;
21635ffd83dbSDimitry Andric 
21645ffd83dbSDimitry Andric     if (!match(BB->getTerminator(),
21655ffd83dbSDimitry Andric                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
21665ffd83dbSDimitry Andric                     m_BasicBlock(), m_BasicBlock())))
21675ffd83dbSDimitry Andric       continue;
21685ffd83dbSDimitry Andric 
21695ffd83dbSDimitry Andric     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
21705ffd83dbSDimitry Andric       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
21715ffd83dbSDimitry Andric 
21725ffd83dbSDimitry Andric     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
21735ffd83dbSDimitry Andric       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
21745ffd83dbSDimitry Andric   }
21755ffd83dbSDimitry Andric 
21765ffd83dbSDimitry Andric   // Use expand's logic which is used for reusing a previous Value in
2177*4824e7fdSDimitry Andric   // ExprValueMap.  Note that we don't currently model the cost of
2178*4824e7fdSDimitry Andric   // needing to drop poison generating flags on the instruction if we
2179*4824e7fdSDimitry Andric   // want to reuse it.  We effectively assume that has zero cost.
21805ffd83dbSDimitry Andric   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
21815ffd83dbSDimitry Andric   if (VO.first)
21825ffd83dbSDimitry Andric     return VO;
21835ffd83dbSDimitry Andric 
21845ffd83dbSDimitry Andric   // There is potential to make this significantly smarter, but this simple
21855ffd83dbSDimitry Andric   // heuristic already gets some interesting cases.
21865ffd83dbSDimitry Andric 
21875ffd83dbSDimitry Andric   // Can not find suitable value.
21885ffd83dbSDimitry Andric   return None;
21895ffd83dbSDimitry Andric }
21905ffd83dbSDimitry Andric 
2191fe6060f1SDimitry Andric template<typename T> static InstructionCost costAndCollectOperands(
2192e8d8bef9SDimitry Andric   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2193e8d8bef9SDimitry Andric   TargetTransformInfo::TargetCostKind CostKind,
2194e8d8bef9SDimitry Andric   SmallVectorImpl<SCEVOperand> &Worklist) {
2195e8d8bef9SDimitry Andric 
2196e8d8bef9SDimitry Andric   const T *S = cast<T>(WorkItem.S);
2197fe6060f1SDimitry Andric   InstructionCost Cost = 0;
2198e8d8bef9SDimitry Andric   // Object to help map SCEV operands to expanded IR instructions.
2199e8d8bef9SDimitry Andric   struct OperationIndices {
2200e8d8bef9SDimitry Andric     OperationIndices(unsigned Opc, size_t min, size_t max) :
2201e8d8bef9SDimitry Andric       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2202e8d8bef9SDimitry Andric     unsigned Opcode;
2203e8d8bef9SDimitry Andric     size_t MinIdx;
2204e8d8bef9SDimitry Andric     size_t MaxIdx;
2205e8d8bef9SDimitry Andric   };
2206e8d8bef9SDimitry Andric 
2207e8d8bef9SDimitry Andric   // Collect the operations of all the instructions that will be needed to
2208e8d8bef9SDimitry Andric   // expand the SCEVExpr. This is so that when we come to cost the operands,
2209e8d8bef9SDimitry Andric   // we know what the generated user(s) will be.
2210e8d8bef9SDimitry Andric   SmallVector<OperationIndices, 2> Operations;
2211e8d8bef9SDimitry Andric 
2212fe6060f1SDimitry Andric   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2213e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, 0, 0);
2214e8d8bef9SDimitry Andric     return TTI.getCastInstrCost(Opcode, S->getType(),
2215e8d8bef9SDimitry Andric                                 S->getOperand(0)->getType(),
2216e8d8bef9SDimitry Andric                                 TTI::CastContextHint::None, CostKind);
2217e8d8bef9SDimitry Andric   };
2218e8d8bef9SDimitry Andric 
2219e8d8bef9SDimitry Andric   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2220fe6060f1SDimitry Andric                        unsigned MinIdx = 0,
2221fe6060f1SDimitry Andric                        unsigned MaxIdx = 1) -> InstructionCost {
2222e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2223e8d8bef9SDimitry Andric     return NumRequired *
2224e8d8bef9SDimitry Andric       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2225e8d8bef9SDimitry Andric   };
2226e8d8bef9SDimitry Andric 
2227fe6060f1SDimitry Andric   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2228fe6060f1SDimitry Andric                         unsigned MaxIdx) -> InstructionCost {
2229e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2230e8d8bef9SDimitry Andric     Type *OpType = S->getOperand(0)->getType();
2231e8d8bef9SDimitry Andric     return NumRequired * TTI.getCmpSelInstrCost(
2232e8d8bef9SDimitry Andric                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2233e8d8bef9SDimitry Andric                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2234e8d8bef9SDimitry Andric   };
2235e8d8bef9SDimitry Andric 
2236e8d8bef9SDimitry Andric   switch (S->getSCEVType()) {
2237e8d8bef9SDimitry Andric   case scCouldNotCompute:
2238e8d8bef9SDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2239e8d8bef9SDimitry Andric   case scUnknown:
2240e8d8bef9SDimitry Andric   case scConstant:
2241e8d8bef9SDimitry Andric     return 0;
2242e8d8bef9SDimitry Andric   case scPtrToInt:
2243e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::PtrToInt);
2244e8d8bef9SDimitry Andric     break;
2245e8d8bef9SDimitry Andric   case scTruncate:
2246e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::Trunc);
2247e8d8bef9SDimitry Andric     break;
2248e8d8bef9SDimitry Andric   case scZeroExtend:
2249e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::ZExt);
2250e8d8bef9SDimitry Andric     break;
2251e8d8bef9SDimitry Andric   case scSignExtend:
2252e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::SExt);
2253e8d8bef9SDimitry Andric     break;
2254e8d8bef9SDimitry Andric   case scUDivExpr: {
2255e8d8bef9SDimitry Andric     unsigned Opcode = Instruction::UDiv;
2256e8d8bef9SDimitry Andric     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2257e8d8bef9SDimitry Andric       if (SC->getAPInt().isPowerOf2())
2258e8d8bef9SDimitry Andric         Opcode = Instruction::LShr;
2259e8d8bef9SDimitry Andric     Cost = ArithCost(Opcode, 1);
2260e8d8bef9SDimitry Andric     break;
2261e8d8bef9SDimitry Andric   }
2262e8d8bef9SDimitry Andric   case scAddExpr:
2263e8d8bef9SDimitry Andric     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2264e8d8bef9SDimitry Andric     break;
2265e8d8bef9SDimitry Andric   case scMulExpr:
2266e8d8bef9SDimitry Andric     // TODO: this is a very pessimistic cost modelling for Mul,
2267e8d8bef9SDimitry Andric     // because of Bin Pow algorithm actually used by the expander,
2268e8d8bef9SDimitry Andric     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2269e8d8bef9SDimitry Andric     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2270e8d8bef9SDimitry Andric     break;
2271e8d8bef9SDimitry Andric   case scSMaxExpr:
2272e8d8bef9SDimitry Andric   case scUMaxExpr:
2273e8d8bef9SDimitry Andric   case scSMinExpr:
2274e8d8bef9SDimitry Andric   case scUMinExpr: {
2275fe6060f1SDimitry Andric     // FIXME: should this ask the cost for Intrinsic's?
2276e8d8bef9SDimitry Andric     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2277e8d8bef9SDimitry Andric     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2278e8d8bef9SDimitry Andric     break;
2279e8d8bef9SDimitry Andric   }
2280e8d8bef9SDimitry Andric   case scAddRecExpr: {
2281e8d8bef9SDimitry Andric     // In this polynominal, we may have some zero operands, and we shouldn't
2282e8d8bef9SDimitry Andric     // really charge for those. So how many non-zero coeffients are there?
2283e8d8bef9SDimitry Andric     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2284e8d8bef9SDimitry Andric                                     return !Op->isZero();
2285e8d8bef9SDimitry Andric                                   });
2286e8d8bef9SDimitry Andric 
2287e8d8bef9SDimitry Andric     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2288e8d8bef9SDimitry Andric     assert(!(*std::prev(S->operands().end()))->isZero() &&
2289e8d8bef9SDimitry Andric            "Last operand should not be zero");
2290e8d8bef9SDimitry Andric 
2291e8d8bef9SDimitry Andric     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2292e8d8bef9SDimitry Andric     int NumNonZeroDegreeNonOneTerms =
2293e8d8bef9SDimitry Andric       llvm::count_if(S->operands(), [](const SCEV *Op) {
2294e8d8bef9SDimitry Andric                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2295e8d8bef9SDimitry Andric                       return !SConst || SConst->getAPInt().ugt(1);
2296e8d8bef9SDimitry Andric                     });
2297e8d8bef9SDimitry Andric 
2298e8d8bef9SDimitry Andric     // Much like with normal add expr, the polynominal will require
2299e8d8bef9SDimitry Andric     // one less addition than the number of it's terms.
2300fe6060f1SDimitry Andric     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2301e8d8bef9SDimitry Andric                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2302e8d8bef9SDimitry Andric     // Here, *each* one of those will require a multiplication.
2303fe6060f1SDimitry Andric     InstructionCost MulCost =
2304fe6060f1SDimitry Andric         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2305e8d8bef9SDimitry Andric     Cost = AddCost + MulCost;
2306e8d8bef9SDimitry Andric 
2307e8d8bef9SDimitry Andric     // What is the degree of this polynominal?
2308e8d8bef9SDimitry Andric     int PolyDegree = S->getNumOperands() - 1;
2309e8d8bef9SDimitry Andric     assert(PolyDegree >= 1 && "Should be at least affine.");
2310e8d8bef9SDimitry Andric 
2311e8d8bef9SDimitry Andric     // The final term will be:
2312e8d8bef9SDimitry Andric     //   Op_{PolyDegree} * x ^ {PolyDegree}
2313e8d8bef9SDimitry Andric     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2314e8d8bef9SDimitry Andric     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2315e8d8bef9SDimitry Andric     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2316e8d8bef9SDimitry Andric     // FIXME: this is conservatively correct, but might be overly pessimistic.
2317e8d8bef9SDimitry Andric     Cost += MulCost * (PolyDegree - 1);
2318e8d8bef9SDimitry Andric     break;
2319e8d8bef9SDimitry Andric   }
2320e8d8bef9SDimitry Andric   }
2321e8d8bef9SDimitry Andric 
2322e8d8bef9SDimitry Andric   for (auto &CostOp : Operations) {
2323e8d8bef9SDimitry Andric     for (auto SCEVOp : enumerate(S->operands())) {
2324e8d8bef9SDimitry Andric       // Clamp the index to account for multiple IR operations being chained.
2325e8d8bef9SDimitry Andric       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2326e8d8bef9SDimitry Andric       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2327e8d8bef9SDimitry Andric       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2328e8d8bef9SDimitry Andric     }
2329e8d8bef9SDimitry Andric   }
2330e8d8bef9SDimitry Andric   return Cost;
2331e8d8bef9SDimitry Andric }
2332e8d8bef9SDimitry Andric 
23335ffd83dbSDimitry Andric bool SCEVExpander::isHighCostExpansionHelper(
2334e8d8bef9SDimitry Andric     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2335fe6060f1SDimitry Andric     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2336e8d8bef9SDimitry Andric     SmallPtrSetImpl<const SCEV *> &Processed,
2337e8d8bef9SDimitry Andric     SmallVectorImpl<SCEVOperand> &Worklist) {
2338fe6060f1SDimitry Andric   if (Cost > Budget)
23395ffd83dbSDimitry Andric     return true; // Already run out of budget, give up.
23405ffd83dbSDimitry Andric 
2341e8d8bef9SDimitry Andric   const SCEV *S = WorkItem.S;
23425ffd83dbSDimitry Andric   // Was the cost of expansion of this expression already accounted for?
2343e8d8bef9SDimitry Andric   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
23445ffd83dbSDimitry Andric     return false; // We have already accounted for this expression.
23455ffd83dbSDimitry Andric 
23465ffd83dbSDimitry Andric   // If we can find an existing value for this scev available at the point "At"
23475ffd83dbSDimitry Andric   // then consider the expression cheap.
23485ffd83dbSDimitry Andric   if (getRelatedExistingExpansion(S, &At, L))
23495ffd83dbSDimitry Andric     return false; // Consider the expression to be free.
23505ffd83dbSDimitry Andric 
23515ffd83dbSDimitry Andric   TargetTransformInfo::TargetCostKind CostKind =
2352e8d8bef9SDimitry Andric       L->getHeader()->getParent()->hasMinSize()
2353e8d8bef9SDimitry Andric           ? TargetTransformInfo::TCK_CodeSize
2354e8d8bef9SDimitry Andric           : TargetTransformInfo::TCK_RecipThroughput;
23555ffd83dbSDimitry Andric 
23565ffd83dbSDimitry Andric   switch (S->getSCEVType()) {
2357e8d8bef9SDimitry Andric   case scCouldNotCompute:
2358e8d8bef9SDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2359e8d8bef9SDimitry Andric   case scUnknown:
2360e8d8bef9SDimitry Andric     // Assume to be zero-cost.
2361e8d8bef9SDimitry Andric     return false;
2362e8d8bef9SDimitry Andric   case scConstant: {
2363e8d8bef9SDimitry Andric     // Only evalulate the costs of constants when optimizing for size.
2364e8d8bef9SDimitry Andric     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2365e8d8bef9SDimitry Andric       return 0;
2366e8d8bef9SDimitry Andric     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2367e8d8bef9SDimitry Andric     Type *Ty = S->getType();
2368fe6060f1SDimitry Andric     Cost += TTI.getIntImmCostInst(
2369e8d8bef9SDimitry Andric         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2370fe6060f1SDimitry Andric     return Cost > Budget;
2371e8d8bef9SDimitry Andric   }
23725ffd83dbSDimitry Andric   case scTruncate:
2373e8d8bef9SDimitry Andric   case scPtrToInt:
23745ffd83dbSDimitry Andric   case scZeroExtend:
2375e8d8bef9SDimitry Andric   case scSignExtend: {
2376fe6060f1SDimitry Andric     Cost +=
2377e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
23785ffd83dbSDimitry Andric     return false; // Will answer upon next entry into this function.
23795ffd83dbSDimitry Andric   }
2380e8d8bef9SDimitry Andric   case scUDivExpr: {
23815ffd83dbSDimitry Andric     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
23825ffd83dbSDimitry Andric     // HowManyLessThans produced to compute a precise expression, rather than a
23835ffd83dbSDimitry Andric     // UDiv from the user's code. If we can't find a UDiv in the code with some
23845ffd83dbSDimitry Andric     // simple searching, we need to account for it's cost.
23855ffd83dbSDimitry Andric 
23865ffd83dbSDimitry Andric     // At the beginning of this function we already tried to find existing
23875ffd83dbSDimitry Andric     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
23885ffd83dbSDimitry Andric     // pattern involving division. This is just a simple search heuristic.
23895ffd83dbSDimitry Andric     if (getRelatedExistingExpansion(
23905ffd83dbSDimitry Andric             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
23915ffd83dbSDimitry Andric       return false; // Consider it to be free.
23925ffd83dbSDimitry Andric 
2393fe6060f1SDimitry Andric     Cost +=
2394e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
23955ffd83dbSDimitry Andric     return false; // Will answer upon next entry into this function.
23965ffd83dbSDimitry Andric   }
23975ffd83dbSDimitry Andric   case scAddExpr:
23985ffd83dbSDimitry Andric   case scMulExpr:
23995ffd83dbSDimitry Andric   case scUMaxExpr:
2400e8d8bef9SDimitry Andric   case scSMaxExpr:
24015ffd83dbSDimitry Andric   case scUMinExpr:
2402e8d8bef9SDimitry Andric   case scSMinExpr: {
2403e8d8bef9SDimitry Andric     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
24045ffd83dbSDimitry Andric            "Nary expr should have more than 1 operand.");
24055ffd83dbSDimitry Andric     // The simple nary expr will require one less op (or pair of ops)
24065ffd83dbSDimitry Andric     // than the number of it's terms.
2407fe6060f1SDimitry Andric     Cost +=
2408e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2409fe6060f1SDimitry Andric     return Cost > Budget;
24105ffd83dbSDimitry Andric   }
2411e8d8bef9SDimitry Andric   case scAddRecExpr: {
2412e8d8bef9SDimitry Andric     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2413e8d8bef9SDimitry Andric            "Polynomial should be at least linear");
2414fe6060f1SDimitry Andric     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2415e8d8bef9SDimitry Andric         WorkItem, TTI, CostKind, Worklist);
2416fe6060f1SDimitry Andric     return Cost > Budget;
2417e8d8bef9SDimitry Andric   }
2418e8d8bef9SDimitry Andric   }
2419e8d8bef9SDimitry Andric   llvm_unreachable("Unknown SCEV kind!");
24205ffd83dbSDimitry Andric }
24215ffd83dbSDimitry Andric 
24225ffd83dbSDimitry Andric Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
24235ffd83dbSDimitry Andric                                             Instruction *IP) {
24245ffd83dbSDimitry Andric   assert(IP);
24255ffd83dbSDimitry Andric   switch (Pred->getKind()) {
24265ffd83dbSDimitry Andric   case SCEVPredicate::P_Union:
24275ffd83dbSDimitry Andric     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
24285ffd83dbSDimitry Andric   case SCEVPredicate::P_Equal:
24295ffd83dbSDimitry Andric     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
24305ffd83dbSDimitry Andric   case SCEVPredicate::P_Wrap: {
24315ffd83dbSDimitry Andric     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
24325ffd83dbSDimitry Andric     return expandWrapPredicate(AddRecPred, IP);
24335ffd83dbSDimitry Andric   }
24345ffd83dbSDimitry Andric   }
24355ffd83dbSDimitry Andric   llvm_unreachable("Unknown SCEV predicate type");
24365ffd83dbSDimitry Andric }
24375ffd83dbSDimitry Andric 
24385ffd83dbSDimitry Andric Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
24395ffd83dbSDimitry Andric                                           Instruction *IP) {
2440e8d8bef9SDimitry Andric   Value *Expr0 =
2441e8d8bef9SDimitry Andric       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2442e8d8bef9SDimitry Andric   Value *Expr1 =
2443e8d8bef9SDimitry Andric       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
24445ffd83dbSDimitry Andric 
24455ffd83dbSDimitry Andric   Builder.SetInsertPoint(IP);
24465ffd83dbSDimitry Andric   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
24475ffd83dbSDimitry Andric   return I;
24485ffd83dbSDimitry Andric }
24495ffd83dbSDimitry Andric 
24505ffd83dbSDimitry Andric Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
24515ffd83dbSDimitry Andric                                            Instruction *Loc, bool Signed) {
24525ffd83dbSDimitry Andric   assert(AR->isAffine() && "Cannot generate RT check for "
24535ffd83dbSDimitry Andric                            "non-affine expression");
24545ffd83dbSDimitry Andric 
24555ffd83dbSDimitry Andric   SCEVUnionPredicate Pred;
24565ffd83dbSDimitry Andric   const SCEV *ExitCount =
24575ffd83dbSDimitry Andric       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
24585ffd83dbSDimitry Andric 
2459e8d8bef9SDimitry Andric   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
24605ffd83dbSDimitry Andric 
24615ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
24625ffd83dbSDimitry Andric   const SCEV *Start = AR->getStart();
24635ffd83dbSDimitry Andric 
24645ffd83dbSDimitry Andric   Type *ARTy = AR->getType();
24655ffd83dbSDimitry Andric   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
24665ffd83dbSDimitry Andric   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
24675ffd83dbSDimitry Andric 
24685ffd83dbSDimitry Andric   // The expression {Start,+,Step} has nusw/nssw if
24695ffd83dbSDimitry Andric   //   Step < 0, Start - |Step| * Backedge <= Start
24705ffd83dbSDimitry Andric   //   Step >= 0, Start + |Step| * Backedge > Start
24715ffd83dbSDimitry Andric   // and |Step| * Backedge doesn't unsigned overflow.
24725ffd83dbSDimitry Andric 
24735ffd83dbSDimitry Andric   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
24745ffd83dbSDimitry Andric   Builder.SetInsertPoint(Loc);
2475e8d8bef9SDimitry Andric   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
24765ffd83dbSDimitry Andric 
24775ffd83dbSDimitry Andric   IntegerType *Ty =
24785ffd83dbSDimitry Andric       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
24795ffd83dbSDimitry Andric 
2480e8d8bef9SDimitry Andric   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2481e8d8bef9SDimitry Andric   Value *NegStepValue =
2482e8d8bef9SDimitry Andric       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2483349cc55cSDimitry Andric   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false);
24845ffd83dbSDimitry Andric 
24855ffd83dbSDimitry Andric   ConstantInt *Zero =
2486349cc55cSDimitry Andric       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
24875ffd83dbSDimitry Andric 
24885ffd83dbSDimitry Andric   Builder.SetInsertPoint(Loc);
24895ffd83dbSDimitry Andric   // Compute |Step|
24905ffd83dbSDimitry Andric   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
24915ffd83dbSDimitry Andric   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
24925ffd83dbSDimitry Andric 
24935ffd83dbSDimitry Andric   // Get the backedge taken count and truncate or extended to the AR type.
24945ffd83dbSDimitry Andric   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
24955ffd83dbSDimitry Andric 
24965ffd83dbSDimitry Andric   // Compute |Step| * Backedge
2497349cc55cSDimitry Andric   Value *MulV, *OfMul;
2498349cc55cSDimitry Andric   if (Step->isOne()) {
2499349cc55cSDimitry Andric     // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2500349cc55cSDimitry Andric     // needed, there is never an overflow, so to avoid artificially inflating
2501349cc55cSDimitry Andric     // the cost of the check, directly emit the optimized IR.
2502349cc55cSDimitry Andric     MulV = TruncTripCount;
2503349cc55cSDimitry Andric     OfMul = ConstantInt::getFalse(MulV->getContext());
2504349cc55cSDimitry Andric   } else {
2505349cc55cSDimitry Andric     auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2506349cc55cSDimitry Andric                                            Intrinsic::umul_with_overflow, Ty);
25075ffd83dbSDimitry Andric     CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2508349cc55cSDimitry Andric     MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2509349cc55cSDimitry Andric     OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2510349cc55cSDimitry Andric   }
25115ffd83dbSDimitry Andric 
25125ffd83dbSDimitry Andric   // Compute:
25135ffd83dbSDimitry Andric   //   Start + |Step| * Backedge < Start
25145ffd83dbSDimitry Andric   //   Start - |Step| * Backedge > Start
25155ffd83dbSDimitry Andric   Value *Add = nullptr, *Sub = nullptr;
2516349cc55cSDimitry Andric   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2517349cc55cSDimitry Andric     StartValue = InsertNoopCastOfTo(
2518349cc55cSDimitry Andric         StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2519349cc55cSDimitry Andric     Value *NegMulV = Builder.CreateNeg(MulV);
2520349cc55cSDimitry Andric     Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2521349cc55cSDimitry Andric     Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
25225ffd83dbSDimitry Andric   } else {
25235ffd83dbSDimitry Andric     Add = Builder.CreateAdd(StartValue, MulV);
25245ffd83dbSDimitry Andric     Sub = Builder.CreateSub(StartValue, MulV);
25255ffd83dbSDimitry Andric   }
25265ffd83dbSDimitry Andric 
25275ffd83dbSDimitry Andric   Value *EndCompareGT = Builder.CreateICmp(
25285ffd83dbSDimitry Andric       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
25295ffd83dbSDimitry Andric 
25305ffd83dbSDimitry Andric   Value *EndCompareLT = Builder.CreateICmp(
25315ffd83dbSDimitry Andric       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
25325ffd83dbSDimitry Andric 
25335ffd83dbSDimitry Andric   // Select the answer based on the sign of Step.
25345ffd83dbSDimitry Andric   Value *EndCheck =
25355ffd83dbSDimitry Andric       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
25365ffd83dbSDimitry Andric 
25375ffd83dbSDimitry Andric   // If the backedge taken count type is larger than the AR type,
25385ffd83dbSDimitry Andric   // check that we don't drop any bits by truncating it. If we are
25395ffd83dbSDimitry Andric   // dropping bits, then we have overflow (unless the step is zero).
25405ffd83dbSDimitry Andric   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
25415ffd83dbSDimitry Andric     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
25425ffd83dbSDimitry Andric     auto *BackedgeCheck =
25435ffd83dbSDimitry Andric         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
25445ffd83dbSDimitry Andric                            ConstantInt::get(Loc->getContext(), MaxVal));
25455ffd83dbSDimitry Andric     BackedgeCheck = Builder.CreateAnd(
25465ffd83dbSDimitry Andric         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
25475ffd83dbSDimitry Andric 
25485ffd83dbSDimitry Andric     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
25495ffd83dbSDimitry Andric   }
25505ffd83dbSDimitry Andric 
2551e8d8bef9SDimitry Andric   return Builder.CreateOr(EndCheck, OfMul);
25525ffd83dbSDimitry Andric }
25535ffd83dbSDimitry Andric 
25545ffd83dbSDimitry Andric Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
25555ffd83dbSDimitry Andric                                          Instruction *IP) {
25565ffd83dbSDimitry Andric   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
25575ffd83dbSDimitry Andric   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
25585ffd83dbSDimitry Andric 
25595ffd83dbSDimitry Andric   // Add a check for NUSW
25605ffd83dbSDimitry Andric   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
25615ffd83dbSDimitry Andric     NUSWCheck = generateOverflowCheck(A, IP, false);
25625ffd83dbSDimitry Andric 
25635ffd83dbSDimitry Andric   // Add a check for NSSW
25645ffd83dbSDimitry Andric   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
25655ffd83dbSDimitry Andric     NSSWCheck = generateOverflowCheck(A, IP, true);
25665ffd83dbSDimitry Andric 
25675ffd83dbSDimitry Andric   if (NUSWCheck && NSSWCheck)
25685ffd83dbSDimitry Andric     return Builder.CreateOr(NUSWCheck, NSSWCheck);
25695ffd83dbSDimitry Andric 
25705ffd83dbSDimitry Andric   if (NUSWCheck)
25715ffd83dbSDimitry Andric     return NUSWCheck;
25725ffd83dbSDimitry Andric 
25735ffd83dbSDimitry Andric   if (NSSWCheck)
25745ffd83dbSDimitry Andric     return NSSWCheck;
25755ffd83dbSDimitry Andric 
25765ffd83dbSDimitry Andric   return ConstantInt::getFalse(IP->getContext());
25775ffd83dbSDimitry Andric }
25785ffd83dbSDimitry Andric 
25795ffd83dbSDimitry Andric Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
25805ffd83dbSDimitry Andric                                           Instruction *IP) {
25815ffd83dbSDimitry Andric   auto *BoolType = IntegerType::get(IP->getContext(), 1);
25825ffd83dbSDimitry Andric   Value *Check = ConstantInt::getNullValue(BoolType);
25835ffd83dbSDimitry Andric 
25845ffd83dbSDimitry Andric   // Loop over all checks in this set.
25855ffd83dbSDimitry Andric   for (auto Pred : Union->getPredicates()) {
25865ffd83dbSDimitry Andric     auto *NextCheck = expandCodeForPredicate(Pred, IP);
25875ffd83dbSDimitry Andric     Builder.SetInsertPoint(IP);
25885ffd83dbSDimitry Andric     Check = Builder.CreateOr(Check, NextCheck);
25895ffd83dbSDimitry Andric   }
25905ffd83dbSDimitry Andric 
25915ffd83dbSDimitry Andric   return Check;
25925ffd83dbSDimitry Andric }
25935ffd83dbSDimitry Andric 
2594e8d8bef9SDimitry Andric Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2595e8d8bef9SDimitry Andric   assert(PreserveLCSSA);
2596e8d8bef9SDimitry Andric   SmallVector<Instruction *, 1> ToUpdate;
2597e8d8bef9SDimitry Andric 
2598e8d8bef9SDimitry Andric   auto *OpV = User->getOperand(OpIdx);
2599e8d8bef9SDimitry Andric   auto *OpI = dyn_cast<Instruction>(OpV);
2600e8d8bef9SDimitry Andric   if (!OpI)
2601e8d8bef9SDimitry Andric     return OpV;
2602e8d8bef9SDimitry Andric 
2603e8d8bef9SDimitry Andric   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2604e8d8bef9SDimitry Andric   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2605e8d8bef9SDimitry Andric   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2606e8d8bef9SDimitry Andric     return OpV;
2607e8d8bef9SDimitry Andric 
2608e8d8bef9SDimitry Andric   ToUpdate.push_back(OpI);
2609e8d8bef9SDimitry Andric   SmallVector<PHINode *, 16> PHIsToRemove;
2610e8d8bef9SDimitry Andric   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2611e8d8bef9SDimitry Andric   for (PHINode *PN : PHIsToRemove) {
2612e8d8bef9SDimitry Andric     if (!PN->use_empty())
2613e8d8bef9SDimitry Andric       continue;
2614e8d8bef9SDimitry Andric     InsertedValues.erase(PN);
2615e8d8bef9SDimitry Andric     InsertedPostIncValues.erase(PN);
2616e8d8bef9SDimitry Andric     PN->eraseFromParent();
2617e8d8bef9SDimitry Andric   }
2618e8d8bef9SDimitry Andric 
2619e8d8bef9SDimitry Andric   return User->getOperand(OpIdx);
2620e8d8bef9SDimitry Andric }
2621e8d8bef9SDimitry Andric 
26225ffd83dbSDimitry Andric namespace {
26235ffd83dbSDimitry Andric // Search for a SCEV subexpression that is not safe to expand.  Any expression
26245ffd83dbSDimitry Andric // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
26255ffd83dbSDimitry Andric // UDiv expressions. We don't know if the UDiv is derived from an IR divide
26265ffd83dbSDimitry Andric // instruction, but the important thing is that we prove the denominator is
26275ffd83dbSDimitry Andric // nonzero before expansion.
26285ffd83dbSDimitry Andric //
26295ffd83dbSDimitry Andric // IVUsers already checks that IV-derived expressions are safe. So this check is
26305ffd83dbSDimitry Andric // only needed when the expression includes some subexpression that is not IV
26315ffd83dbSDimitry Andric // derived.
26325ffd83dbSDimitry Andric //
26335ffd83dbSDimitry Andric // Currently, we only allow division by a nonzero constant here. If this is
26345ffd83dbSDimitry Andric // inadequate, we could easily allow division by SCEVUnknown by using
26355ffd83dbSDimitry Andric // ValueTracking to check isKnownNonZero().
26365ffd83dbSDimitry Andric //
26375ffd83dbSDimitry Andric // We cannot generally expand recurrences unless the step dominates the loop
26385ffd83dbSDimitry Andric // header. The expander handles the special case of affine recurrences by
26395ffd83dbSDimitry Andric // scaling the recurrence outside the loop, but this technique isn't generally
26405ffd83dbSDimitry Andric // applicable. Expanding a nested recurrence outside a loop requires computing
26415ffd83dbSDimitry Andric // binomial coefficients. This could be done, but the recurrence has to be in a
26425ffd83dbSDimitry Andric // perfectly reduced form, which can't be guaranteed.
26435ffd83dbSDimitry Andric struct SCEVFindUnsafe {
26445ffd83dbSDimitry Andric   ScalarEvolution &SE;
2645349cc55cSDimitry Andric   bool CanonicalMode;
26465ffd83dbSDimitry Andric   bool IsUnsafe;
26475ffd83dbSDimitry Andric 
2648349cc55cSDimitry Andric   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2649349cc55cSDimitry Andric       : SE(SE), CanonicalMode(CanonicalMode), IsUnsafe(false) {}
26505ffd83dbSDimitry Andric 
26515ffd83dbSDimitry Andric   bool follow(const SCEV *S) {
26525ffd83dbSDimitry Andric     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
26535ffd83dbSDimitry Andric       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
26545ffd83dbSDimitry Andric       if (!SC || SC->getValue()->isZero()) {
26555ffd83dbSDimitry Andric         IsUnsafe = true;
26565ffd83dbSDimitry Andric         return false;
26575ffd83dbSDimitry Andric       }
26585ffd83dbSDimitry Andric     }
26595ffd83dbSDimitry Andric     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
26605ffd83dbSDimitry Andric       const SCEV *Step = AR->getStepRecurrence(SE);
26615ffd83dbSDimitry Andric       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
26625ffd83dbSDimitry Andric         IsUnsafe = true;
26635ffd83dbSDimitry Andric         return false;
26645ffd83dbSDimitry Andric       }
2665349cc55cSDimitry Andric 
2666349cc55cSDimitry Andric       // For non-affine addrecs or in non-canonical mode we need a preheader
2667349cc55cSDimitry Andric       // to insert into.
2668349cc55cSDimitry Andric       if (!AR->getLoop()->getLoopPreheader() &&
2669349cc55cSDimitry Andric           (!CanonicalMode || !AR->isAffine())) {
2670349cc55cSDimitry Andric         IsUnsafe = true;
2671349cc55cSDimitry Andric         return false;
2672349cc55cSDimitry Andric       }
26735ffd83dbSDimitry Andric     }
26745ffd83dbSDimitry Andric     return true;
26755ffd83dbSDimitry Andric   }
26765ffd83dbSDimitry Andric   bool isDone() const { return IsUnsafe; }
26775ffd83dbSDimitry Andric };
26785ffd83dbSDimitry Andric }
26795ffd83dbSDimitry Andric 
26805ffd83dbSDimitry Andric namespace llvm {
2681349cc55cSDimitry Andric bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, bool CanonicalMode) {
2682349cc55cSDimitry Andric   SCEVFindUnsafe Search(SE, CanonicalMode);
26835ffd83dbSDimitry Andric   visitAll(S, Search);
26845ffd83dbSDimitry Andric   return !Search.IsUnsafe;
26855ffd83dbSDimitry Andric }
26865ffd83dbSDimitry Andric 
26875ffd83dbSDimitry Andric bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
26885ffd83dbSDimitry Andric                       ScalarEvolution &SE) {
26895ffd83dbSDimitry Andric   if (!isSafeToExpand(S, SE))
26905ffd83dbSDimitry Andric     return false;
26915ffd83dbSDimitry Andric   // We have to prove that the expanded site of S dominates InsertionPoint.
26925ffd83dbSDimitry Andric   // This is easy when not in the same block, but hard when S is an instruction
26935ffd83dbSDimitry Andric   // to be expanded somewhere inside the same block as our insertion point.
26945ffd83dbSDimitry Andric   // What we really need here is something analogous to an OrderedBasicBlock,
26955ffd83dbSDimitry Andric   // but for the moment, we paper over the problem by handling two common and
26965ffd83dbSDimitry Andric   // cheap to check cases.
26975ffd83dbSDimitry Andric   if (SE.properlyDominates(S, InsertionPoint->getParent()))
26985ffd83dbSDimitry Andric     return true;
26995ffd83dbSDimitry Andric   if (SE.dominates(S, InsertionPoint->getParent())) {
27005ffd83dbSDimitry Andric     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
27015ffd83dbSDimitry Andric       return true;
27025ffd83dbSDimitry Andric     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2703fe6060f1SDimitry Andric       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
27045ffd83dbSDimitry Andric         return true;
27055ffd83dbSDimitry Andric   }
27065ffd83dbSDimitry Andric   return false;
27075ffd83dbSDimitry Andric }
2708e8d8bef9SDimitry Andric 
2709fe6060f1SDimitry Andric void SCEVExpanderCleaner::cleanup() {
2710e8d8bef9SDimitry Andric   // Result is used, nothing to remove.
2711e8d8bef9SDimitry Andric   if (ResultUsed)
2712e8d8bef9SDimitry Andric     return;
2713e8d8bef9SDimitry Andric 
2714e8d8bef9SDimitry Andric   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2715e8d8bef9SDimitry Andric #ifndef NDEBUG
2716e8d8bef9SDimitry Andric   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2717e8d8bef9SDimitry Andric                                             InsertedInstructions.end());
2718e8d8bef9SDimitry Andric   (void)InsertedSet;
2719e8d8bef9SDimitry Andric #endif
2720e8d8bef9SDimitry Andric   // Remove sets with value handles.
2721e8d8bef9SDimitry Andric   Expander.clear();
2722e8d8bef9SDimitry Andric 
2723e8d8bef9SDimitry Andric   // Sort so that earlier instructions do not dominate later instructions.
2724e8d8bef9SDimitry Andric   stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2725e8d8bef9SDimitry Andric     return DT.dominates(B, A);
2726e8d8bef9SDimitry Andric   });
2727e8d8bef9SDimitry Andric   // Remove all inserted instructions.
2728e8d8bef9SDimitry Andric   for (Instruction *I : InsertedInstructions) {
2729e8d8bef9SDimitry Andric 
2730e8d8bef9SDimitry Andric #ifndef NDEBUG
2731e8d8bef9SDimitry Andric     assert(all_of(I->users(),
2732e8d8bef9SDimitry Andric                   [&InsertedSet](Value *U) {
2733e8d8bef9SDimitry Andric                     return InsertedSet.contains(cast<Instruction>(U));
2734e8d8bef9SDimitry Andric                   }) &&
2735e8d8bef9SDimitry Andric            "removed instruction should only be used by instructions inserted "
2736e8d8bef9SDimitry Andric            "during expansion");
2737e8d8bef9SDimitry Andric #endif
2738e8d8bef9SDimitry Andric     assert(!I->getType()->isVoidTy() &&
2739e8d8bef9SDimitry Andric            "inserted instruction should have non-void types");
2740e8d8bef9SDimitry Andric     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2741e8d8bef9SDimitry Andric     I->eraseFromParent();
2742e8d8bef9SDimitry Andric   }
2743e8d8bef9SDimitry Andric }
27445ffd83dbSDimitry Andric }
2745