xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 349cc55c9796c4596a5b9904cd3281af295f878f)
15ffd83dbSDimitry Andric //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
25ffd83dbSDimitry Andric //
35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
65ffd83dbSDimitry Andric //
75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
85ffd83dbSDimitry Andric //
95ffd83dbSDimitry Andric // This file contains the implementation of the scalar evolution expander,
105ffd83dbSDimitry Andric // which is used to generate the code corresponding to a given scalar evolution
115ffd83dbSDimitry Andric // expression.
125ffd83dbSDimitry Andric //
135ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
145ffd83dbSDimitry Andric 
155ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
165ffd83dbSDimitry Andric #include "llvm/ADT/STLExtras.h"
175ffd83dbSDimitry Andric #include "llvm/ADT/SmallSet.h"
185ffd83dbSDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
195ffd83dbSDimitry Andric #include "llvm/Analysis/LoopInfo.h"
205ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
215ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h"
225ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h"
235ffd83dbSDimitry Andric #include "llvm/IR/IntrinsicInst.h"
245ffd83dbSDimitry Andric #include "llvm/IR/LLVMContext.h"
255ffd83dbSDimitry Andric #include "llvm/IR/Module.h"
265ffd83dbSDimitry Andric #include "llvm/IR/PatternMatch.h"
275ffd83dbSDimitry Andric #include "llvm/Support/CommandLine.h"
285ffd83dbSDimitry Andric #include "llvm/Support/Debug.h"
295ffd83dbSDimitry Andric #include "llvm/Support/raw_ostream.h"
30e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
315ffd83dbSDimitry Andric 
32fe6060f1SDimitry Andric #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
33fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
34fe6060f1SDimitry Andric #else
35fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
36fe6060f1SDimitry Andric #endif
37fe6060f1SDimitry Andric 
385ffd83dbSDimitry Andric using namespace llvm;
395ffd83dbSDimitry Andric 
405ffd83dbSDimitry Andric cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
415ffd83dbSDimitry Andric     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
425ffd83dbSDimitry Andric     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
435ffd83dbSDimitry Andric              "controls the budget that is considered cheap (default = 4)"));
445ffd83dbSDimitry Andric 
455ffd83dbSDimitry Andric using namespace PatternMatch;
465ffd83dbSDimitry Andric 
475ffd83dbSDimitry Andric /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
48e8d8bef9SDimitry Andric /// reusing an existing cast if a suitable one (= dominating IP) exists, or
495ffd83dbSDimitry Andric /// creating a new one.
505ffd83dbSDimitry Andric Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
515ffd83dbSDimitry Andric                                        Instruction::CastOps Op,
525ffd83dbSDimitry Andric                                        BasicBlock::iterator IP) {
535ffd83dbSDimitry Andric   // This function must be called with the builder having a valid insertion
545ffd83dbSDimitry Andric   // point. It doesn't need to be the actual IP where the uses of the returned
555ffd83dbSDimitry Andric   // cast will be added, but it must dominate such IP.
565ffd83dbSDimitry Andric   // We use this precondition to produce a cast that will dominate all its
575ffd83dbSDimitry Andric   // uses. In particular, this is crucial for the case where the builder's
585ffd83dbSDimitry Andric   // insertion point *is* the point where we were asked to put the cast.
595ffd83dbSDimitry Andric   // Since we don't know the builder's insertion point is actually
605ffd83dbSDimitry Andric   // where the uses will be added (only that it dominates it), we are
615ffd83dbSDimitry Andric   // not allowed to move it.
625ffd83dbSDimitry Andric   BasicBlock::iterator BIP = Builder.GetInsertPoint();
635ffd83dbSDimitry Andric 
64fe6060f1SDimitry Andric   Value *Ret = nullptr;
655ffd83dbSDimitry Andric 
665ffd83dbSDimitry Andric   // Check to see if there is already a cast!
67e8d8bef9SDimitry Andric   for (User *U : V->users()) {
68e8d8bef9SDimitry Andric     if (U->getType() != Ty)
69e8d8bef9SDimitry Andric       continue;
70e8d8bef9SDimitry Andric     CastInst *CI = dyn_cast<CastInst>(U);
71e8d8bef9SDimitry Andric     if (!CI || CI->getOpcode() != Op)
72e8d8bef9SDimitry Andric       continue;
73e8d8bef9SDimitry Andric 
74e8d8bef9SDimitry Andric     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
75e8d8bef9SDimitry Andric     // the cast must also properly dominate the Builder's insertion point.
76e8d8bef9SDimitry Andric     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
77e8d8bef9SDimitry Andric         (&*IP == CI || CI->comesBefore(&*IP))) {
785ffd83dbSDimitry Andric       Ret = CI;
795ffd83dbSDimitry Andric       break;
805ffd83dbSDimitry Andric     }
81e8d8bef9SDimitry Andric   }
825ffd83dbSDimitry Andric 
835ffd83dbSDimitry Andric   // Create a new cast.
84e8d8bef9SDimitry Andric   if (!Ret) {
85fe6060f1SDimitry Andric     SCEVInsertPointGuard Guard(Builder, this);
86fe6060f1SDimitry Andric     Builder.SetInsertPoint(&*IP);
87fe6060f1SDimitry Andric     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
88e8d8bef9SDimitry Andric   }
895ffd83dbSDimitry Andric 
905ffd83dbSDimitry Andric   // We assert at the end of the function since IP might point to an
915ffd83dbSDimitry Andric   // instruction with different dominance properties than a cast
925ffd83dbSDimitry Andric   // (an invoke for example) and not dominate BIP (but the cast does).
93fe6060f1SDimitry Andric   assert(!isa<Instruction>(Ret) ||
94fe6060f1SDimitry Andric          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
955ffd83dbSDimitry Andric 
965ffd83dbSDimitry Andric   return Ret;
975ffd83dbSDimitry Andric }
985ffd83dbSDimitry Andric 
99e8d8bef9SDimitry Andric BasicBlock::iterator
100fe6060f1SDimitry Andric SCEVExpander::findInsertPointAfter(Instruction *I,
101fe6060f1SDimitry Andric                                    Instruction *MustDominate) const {
1025ffd83dbSDimitry Andric   BasicBlock::iterator IP = ++I->getIterator();
1035ffd83dbSDimitry Andric   if (auto *II = dyn_cast<InvokeInst>(I))
1045ffd83dbSDimitry Andric     IP = II->getNormalDest()->begin();
1055ffd83dbSDimitry Andric 
1065ffd83dbSDimitry Andric   while (isa<PHINode>(IP))
1075ffd83dbSDimitry Andric     ++IP;
1085ffd83dbSDimitry Andric 
1095ffd83dbSDimitry Andric   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
1105ffd83dbSDimitry Andric     ++IP;
1115ffd83dbSDimitry Andric   } else if (isa<CatchSwitchInst>(IP)) {
112e8d8bef9SDimitry Andric     IP = MustDominate->getParent()->getFirstInsertionPt();
1135ffd83dbSDimitry Andric   } else {
1145ffd83dbSDimitry Andric     assert(!IP->isEHPad() && "unexpected eh pad!");
1155ffd83dbSDimitry Andric   }
1165ffd83dbSDimitry Andric 
117e8d8bef9SDimitry Andric   // Adjust insert point to be after instructions inserted by the expander, so
118e8d8bef9SDimitry Andric   // we can re-use already inserted instructions. Avoid skipping past the
119e8d8bef9SDimitry Andric   // original \p MustDominate, in case it is an inserted instruction.
120e8d8bef9SDimitry Andric   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
121e8d8bef9SDimitry Andric     ++IP;
122e8d8bef9SDimitry Andric 
1235ffd83dbSDimitry Andric   return IP;
1245ffd83dbSDimitry Andric }
1255ffd83dbSDimitry Andric 
126fe6060f1SDimitry Andric BasicBlock::iterator
127fe6060f1SDimitry Andric SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
128fe6060f1SDimitry Andric   // Cast the argument at the beginning of the entry block, after
129fe6060f1SDimitry Andric   // any bitcasts of other arguments.
130fe6060f1SDimitry Andric   if (Argument *A = dyn_cast<Argument>(V)) {
131fe6060f1SDimitry Andric     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
132fe6060f1SDimitry Andric     while ((isa<BitCastInst>(IP) &&
133fe6060f1SDimitry Andric             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
134fe6060f1SDimitry Andric             cast<BitCastInst>(IP)->getOperand(0) != A) ||
135fe6060f1SDimitry Andric            isa<DbgInfoIntrinsic>(IP))
136fe6060f1SDimitry Andric       ++IP;
137fe6060f1SDimitry Andric     return IP;
138fe6060f1SDimitry Andric   }
139fe6060f1SDimitry Andric 
140fe6060f1SDimitry Andric   // Cast the instruction immediately after the instruction.
141fe6060f1SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(V))
142fe6060f1SDimitry Andric     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
143fe6060f1SDimitry Andric 
144fe6060f1SDimitry Andric   // Otherwise, this must be some kind of a constant,
145fe6060f1SDimitry Andric   // so let's plop this cast into the function's entry block.
146fe6060f1SDimitry Andric   assert(isa<Constant>(V) &&
147fe6060f1SDimitry Andric          "Expected the cast argument to be a global/constant");
148fe6060f1SDimitry Andric   return Builder.GetInsertBlock()
149fe6060f1SDimitry Andric       ->getParent()
150fe6060f1SDimitry Andric       ->getEntryBlock()
151fe6060f1SDimitry Andric       .getFirstInsertionPt();
152fe6060f1SDimitry Andric }
153fe6060f1SDimitry Andric 
1545ffd83dbSDimitry Andric /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
1555ffd83dbSDimitry Andric /// which must be possible with a noop cast, doing what we can to share
1565ffd83dbSDimitry Andric /// the casts.
1575ffd83dbSDimitry Andric Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
1585ffd83dbSDimitry Andric   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
1595ffd83dbSDimitry Andric   assert((Op == Instruction::BitCast ||
1605ffd83dbSDimitry Andric           Op == Instruction::PtrToInt ||
1615ffd83dbSDimitry Andric           Op == Instruction::IntToPtr) &&
1625ffd83dbSDimitry Andric          "InsertNoopCastOfTo cannot perform non-noop casts!");
1635ffd83dbSDimitry Andric   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
1645ffd83dbSDimitry Andric          "InsertNoopCastOfTo cannot change sizes!");
1655ffd83dbSDimitry Andric 
166e8d8bef9SDimitry Andric   // inttoptr only works for integral pointers. For non-integral pointers, we
167e8d8bef9SDimitry Andric   // can create a GEP on i8* null  with the integral value as index. Note that
168e8d8bef9SDimitry Andric   // it is safe to use GEP of null instead of inttoptr here, because only
169e8d8bef9SDimitry Andric   // expressions already based on a GEP of null should be converted to pointers
170e8d8bef9SDimitry Andric   // during expansion.
171e8d8bef9SDimitry Andric   if (Op == Instruction::IntToPtr) {
172e8d8bef9SDimitry Andric     auto *PtrTy = cast<PointerType>(Ty);
173e8d8bef9SDimitry Andric     if (DL.isNonIntegralPointerType(PtrTy)) {
174e8d8bef9SDimitry Andric       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
175e8d8bef9SDimitry Andric       assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
176e8d8bef9SDimitry Andric              "alloc size of i8 must by 1 byte for the GEP to be correct");
177e8d8bef9SDimitry Andric       auto *GEP = Builder.CreateGEP(
178e8d8bef9SDimitry Andric           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
179e8d8bef9SDimitry Andric       return Builder.CreateBitCast(GEP, Ty);
180e8d8bef9SDimitry Andric     }
181e8d8bef9SDimitry Andric   }
1825ffd83dbSDimitry Andric   // Short-circuit unnecessary bitcasts.
1835ffd83dbSDimitry Andric   if (Op == Instruction::BitCast) {
1845ffd83dbSDimitry Andric     if (V->getType() == Ty)
1855ffd83dbSDimitry Andric       return V;
1865ffd83dbSDimitry Andric     if (CastInst *CI = dyn_cast<CastInst>(V)) {
1875ffd83dbSDimitry Andric       if (CI->getOperand(0)->getType() == Ty)
1885ffd83dbSDimitry Andric         return CI->getOperand(0);
1895ffd83dbSDimitry Andric     }
1905ffd83dbSDimitry Andric   }
1915ffd83dbSDimitry Andric   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
1925ffd83dbSDimitry Andric   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
1935ffd83dbSDimitry Andric       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
1945ffd83dbSDimitry Andric     if (CastInst *CI = dyn_cast<CastInst>(V))
1955ffd83dbSDimitry Andric       if ((CI->getOpcode() == Instruction::PtrToInt ||
1965ffd83dbSDimitry Andric            CI->getOpcode() == Instruction::IntToPtr) &&
1975ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CI->getType()) ==
1985ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
1995ffd83dbSDimitry Andric         return CI->getOperand(0);
2005ffd83dbSDimitry Andric     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2015ffd83dbSDimitry Andric       if ((CE->getOpcode() == Instruction::PtrToInt ||
2025ffd83dbSDimitry Andric            CE->getOpcode() == Instruction::IntToPtr) &&
2035ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CE->getType()) ==
2045ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
2055ffd83dbSDimitry Andric         return CE->getOperand(0);
2065ffd83dbSDimitry Andric   }
2075ffd83dbSDimitry Andric 
2085ffd83dbSDimitry Andric   // Fold a cast of a constant.
2095ffd83dbSDimitry Andric   if (Constant *C = dyn_cast<Constant>(V))
2105ffd83dbSDimitry Andric     return ConstantExpr::getCast(Op, C, Ty);
2115ffd83dbSDimitry Andric 
212fe6060f1SDimitry Andric   // Try to reuse existing cast, or insert one.
213fe6060f1SDimitry Andric   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
2145ffd83dbSDimitry Andric }
2155ffd83dbSDimitry Andric 
2165ffd83dbSDimitry Andric /// InsertBinop - Insert the specified binary operator, doing a small amount
2175ffd83dbSDimitry Andric /// of work to avoid inserting an obviously redundant operation, and hoisting
2185ffd83dbSDimitry Andric /// to an outer loop when the opportunity is there and it is safe.
2195ffd83dbSDimitry Andric Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
2205ffd83dbSDimitry Andric                                  Value *LHS, Value *RHS,
2215ffd83dbSDimitry Andric                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
2225ffd83dbSDimitry Andric   // Fold a binop with constant operands.
2235ffd83dbSDimitry Andric   if (Constant *CLHS = dyn_cast<Constant>(LHS))
2245ffd83dbSDimitry Andric     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2255ffd83dbSDimitry Andric       return ConstantExpr::get(Opcode, CLHS, CRHS);
2265ffd83dbSDimitry Andric 
2275ffd83dbSDimitry Andric   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
2285ffd83dbSDimitry Andric   unsigned ScanLimit = 6;
2295ffd83dbSDimitry Andric   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
2305ffd83dbSDimitry Andric   // Scanning starts from the last instruction before the insertion point.
2315ffd83dbSDimitry Andric   BasicBlock::iterator IP = Builder.GetInsertPoint();
2325ffd83dbSDimitry Andric   if (IP != BlockBegin) {
2335ffd83dbSDimitry Andric     --IP;
2345ffd83dbSDimitry Andric     for (; ScanLimit; --IP, --ScanLimit) {
2355ffd83dbSDimitry Andric       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
2365ffd83dbSDimitry Andric       // generated code.
2375ffd83dbSDimitry Andric       if (isa<DbgInfoIntrinsic>(IP))
2385ffd83dbSDimitry Andric         ScanLimit++;
2395ffd83dbSDimitry Andric 
2405ffd83dbSDimitry Andric       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
2415ffd83dbSDimitry Andric         // Ensure that no-wrap flags match.
2425ffd83dbSDimitry Andric         if (isa<OverflowingBinaryOperator>(I)) {
2435ffd83dbSDimitry Andric           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
2445ffd83dbSDimitry Andric             return true;
2455ffd83dbSDimitry Andric           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
2465ffd83dbSDimitry Andric             return true;
2475ffd83dbSDimitry Andric         }
2485ffd83dbSDimitry Andric         // Conservatively, do not use any instruction which has any of exact
2495ffd83dbSDimitry Andric         // flags installed.
2505ffd83dbSDimitry Andric         if (isa<PossiblyExactOperator>(I) && I->isExact())
2515ffd83dbSDimitry Andric           return true;
2525ffd83dbSDimitry Andric         return false;
2535ffd83dbSDimitry Andric       };
2545ffd83dbSDimitry Andric       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
2555ffd83dbSDimitry Andric           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
2565ffd83dbSDimitry Andric         return &*IP;
2575ffd83dbSDimitry Andric       if (IP == BlockBegin) break;
2585ffd83dbSDimitry Andric     }
2595ffd83dbSDimitry Andric   }
2605ffd83dbSDimitry Andric 
2615ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
2625ffd83dbSDimitry Andric   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
2635ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
2645ffd83dbSDimitry Andric 
2655ffd83dbSDimitry Andric   if (IsSafeToHoist) {
2665ffd83dbSDimitry Andric     // Move the insertion point out of as many loops as we can.
2675ffd83dbSDimitry Andric     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
2685ffd83dbSDimitry Andric       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
2695ffd83dbSDimitry Andric       BasicBlock *Preheader = L->getLoopPreheader();
2705ffd83dbSDimitry Andric       if (!Preheader) break;
2715ffd83dbSDimitry Andric 
2725ffd83dbSDimitry Andric       // Ok, move up a level.
2735ffd83dbSDimitry Andric       Builder.SetInsertPoint(Preheader->getTerminator());
2745ffd83dbSDimitry Andric     }
2755ffd83dbSDimitry Andric   }
2765ffd83dbSDimitry Andric 
2775ffd83dbSDimitry Andric   // If we haven't found this binop, insert it.
2785ffd83dbSDimitry Andric   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
2795ffd83dbSDimitry Andric   BO->setDebugLoc(Loc);
2805ffd83dbSDimitry Andric   if (Flags & SCEV::FlagNUW)
2815ffd83dbSDimitry Andric     BO->setHasNoUnsignedWrap();
2825ffd83dbSDimitry Andric   if (Flags & SCEV::FlagNSW)
2835ffd83dbSDimitry Andric     BO->setHasNoSignedWrap();
2845ffd83dbSDimitry Andric 
2855ffd83dbSDimitry Andric   return BO;
2865ffd83dbSDimitry Andric }
2875ffd83dbSDimitry Andric 
2885ffd83dbSDimitry Andric /// FactorOutConstant - Test if S is divisible by Factor, using signed
2895ffd83dbSDimitry Andric /// division. If so, update S with Factor divided out and return true.
2905ffd83dbSDimitry Andric /// S need not be evenly divisible if a reasonable remainder can be
2915ffd83dbSDimitry Andric /// computed.
2925ffd83dbSDimitry Andric static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
2935ffd83dbSDimitry Andric                               const SCEV *Factor, ScalarEvolution &SE,
2945ffd83dbSDimitry Andric                               const DataLayout &DL) {
2955ffd83dbSDimitry Andric   // Everything is divisible by one.
2965ffd83dbSDimitry Andric   if (Factor->isOne())
2975ffd83dbSDimitry Andric     return true;
2985ffd83dbSDimitry Andric 
2995ffd83dbSDimitry Andric   // x/x == 1.
3005ffd83dbSDimitry Andric   if (S == Factor) {
3015ffd83dbSDimitry Andric     S = SE.getConstant(S->getType(), 1);
3025ffd83dbSDimitry Andric     return true;
3035ffd83dbSDimitry Andric   }
3045ffd83dbSDimitry Andric 
3055ffd83dbSDimitry Andric   // For a Constant, check for a multiple of the given factor.
3065ffd83dbSDimitry Andric   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
3075ffd83dbSDimitry Andric     // 0/x == 0.
3085ffd83dbSDimitry Andric     if (C->isZero())
3095ffd83dbSDimitry Andric       return true;
3105ffd83dbSDimitry Andric     // Check for divisibility.
3115ffd83dbSDimitry Andric     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
3125ffd83dbSDimitry Andric       ConstantInt *CI =
3135ffd83dbSDimitry Andric           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
3145ffd83dbSDimitry Andric       // If the quotient is zero and the remainder is non-zero, reject
3155ffd83dbSDimitry Andric       // the value at this scale. It will be considered for subsequent
3165ffd83dbSDimitry Andric       // smaller scales.
3175ffd83dbSDimitry Andric       if (!CI->isZero()) {
3185ffd83dbSDimitry Andric         const SCEV *Div = SE.getConstant(CI);
3195ffd83dbSDimitry Andric         S = Div;
3205ffd83dbSDimitry Andric         Remainder = SE.getAddExpr(
3215ffd83dbSDimitry Andric             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
3225ffd83dbSDimitry Andric         return true;
3235ffd83dbSDimitry Andric       }
3245ffd83dbSDimitry Andric     }
3255ffd83dbSDimitry Andric   }
3265ffd83dbSDimitry Andric 
3275ffd83dbSDimitry Andric   // In a Mul, check if there is a constant operand which is a multiple
3285ffd83dbSDimitry Andric   // of the given factor.
3295ffd83dbSDimitry Andric   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3305ffd83dbSDimitry Andric     // Size is known, check if there is a constant operand which is a multiple
3315ffd83dbSDimitry Andric     // of the given factor. If so, we can factor it.
3325ffd83dbSDimitry Andric     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
3335ffd83dbSDimitry Andric       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
3345ffd83dbSDimitry Andric         if (!C->getAPInt().srem(FC->getAPInt())) {
335e8d8bef9SDimitry Andric           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
3365ffd83dbSDimitry Andric           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
3375ffd83dbSDimitry Andric           S = SE.getMulExpr(NewMulOps);
3385ffd83dbSDimitry Andric           return true;
3395ffd83dbSDimitry Andric         }
3405ffd83dbSDimitry Andric   }
3415ffd83dbSDimitry Andric 
3425ffd83dbSDimitry Andric   // In an AddRec, check if both start and step are divisible.
3435ffd83dbSDimitry Andric   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3445ffd83dbSDimitry Andric     const SCEV *Step = A->getStepRecurrence(SE);
3455ffd83dbSDimitry Andric     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
3465ffd83dbSDimitry Andric     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
3475ffd83dbSDimitry Andric       return false;
3485ffd83dbSDimitry Andric     if (!StepRem->isZero())
3495ffd83dbSDimitry Andric       return false;
3505ffd83dbSDimitry Andric     const SCEV *Start = A->getStart();
3515ffd83dbSDimitry Andric     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
3525ffd83dbSDimitry Andric       return false;
3535ffd83dbSDimitry Andric     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
3545ffd83dbSDimitry Andric                          A->getNoWrapFlags(SCEV::FlagNW));
3555ffd83dbSDimitry Andric     return true;
3565ffd83dbSDimitry Andric   }
3575ffd83dbSDimitry Andric 
3585ffd83dbSDimitry Andric   return false;
3595ffd83dbSDimitry Andric }
3605ffd83dbSDimitry Andric 
3615ffd83dbSDimitry Andric /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
3625ffd83dbSDimitry Andric /// is the number of SCEVAddRecExprs present, which are kept at the end of
3635ffd83dbSDimitry Andric /// the list.
3645ffd83dbSDimitry Andric ///
3655ffd83dbSDimitry Andric static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
3665ffd83dbSDimitry Andric                                 Type *Ty,
3675ffd83dbSDimitry Andric                                 ScalarEvolution &SE) {
3685ffd83dbSDimitry Andric   unsigned NumAddRecs = 0;
3695ffd83dbSDimitry Andric   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
3705ffd83dbSDimitry Andric     ++NumAddRecs;
3715ffd83dbSDimitry Andric   // Group Ops into non-addrecs and addrecs.
3725ffd83dbSDimitry Andric   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
3735ffd83dbSDimitry Andric   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
3745ffd83dbSDimitry Andric   // Let ScalarEvolution sort and simplify the non-addrecs list.
3755ffd83dbSDimitry Andric   const SCEV *Sum = NoAddRecs.empty() ?
3765ffd83dbSDimitry Andric                     SE.getConstant(Ty, 0) :
3775ffd83dbSDimitry Andric                     SE.getAddExpr(NoAddRecs);
3785ffd83dbSDimitry Andric   // If it returned an add, use the operands. Otherwise it simplified
3795ffd83dbSDimitry Andric   // the sum into a single value, so just use that.
3805ffd83dbSDimitry Andric   Ops.clear();
3815ffd83dbSDimitry Andric   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
3825ffd83dbSDimitry Andric     Ops.append(Add->op_begin(), Add->op_end());
3835ffd83dbSDimitry Andric   else if (!Sum->isZero())
3845ffd83dbSDimitry Andric     Ops.push_back(Sum);
3855ffd83dbSDimitry Andric   // Then append the addrecs.
3865ffd83dbSDimitry Andric   Ops.append(AddRecs.begin(), AddRecs.end());
3875ffd83dbSDimitry Andric }
3885ffd83dbSDimitry Andric 
3895ffd83dbSDimitry Andric /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
3905ffd83dbSDimitry Andric /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
3915ffd83dbSDimitry Andric /// This helps expose more opportunities for folding parts of the expressions
3925ffd83dbSDimitry Andric /// into GEP indices.
3935ffd83dbSDimitry Andric ///
3945ffd83dbSDimitry Andric static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
3955ffd83dbSDimitry Andric                          Type *Ty,
3965ffd83dbSDimitry Andric                          ScalarEvolution &SE) {
3975ffd83dbSDimitry Andric   // Find the addrecs.
3985ffd83dbSDimitry Andric   SmallVector<const SCEV *, 8> AddRecs;
3995ffd83dbSDimitry Andric   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4005ffd83dbSDimitry Andric     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
4015ffd83dbSDimitry Andric       const SCEV *Start = A->getStart();
4025ffd83dbSDimitry Andric       if (Start->isZero()) break;
4035ffd83dbSDimitry Andric       const SCEV *Zero = SE.getConstant(Ty, 0);
4045ffd83dbSDimitry Andric       AddRecs.push_back(SE.getAddRecExpr(Zero,
4055ffd83dbSDimitry Andric                                          A->getStepRecurrence(SE),
4065ffd83dbSDimitry Andric                                          A->getLoop(),
4075ffd83dbSDimitry Andric                                          A->getNoWrapFlags(SCEV::FlagNW)));
4085ffd83dbSDimitry Andric       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
4095ffd83dbSDimitry Andric         Ops[i] = Zero;
4105ffd83dbSDimitry Andric         Ops.append(Add->op_begin(), Add->op_end());
4115ffd83dbSDimitry Andric         e += Add->getNumOperands();
4125ffd83dbSDimitry Andric       } else {
4135ffd83dbSDimitry Andric         Ops[i] = Start;
4145ffd83dbSDimitry Andric       }
4155ffd83dbSDimitry Andric     }
4165ffd83dbSDimitry Andric   if (!AddRecs.empty()) {
4175ffd83dbSDimitry Andric     // Add the addrecs onto the end of the list.
4185ffd83dbSDimitry Andric     Ops.append(AddRecs.begin(), AddRecs.end());
4195ffd83dbSDimitry Andric     // Resort the operand list, moving any constants to the front.
4205ffd83dbSDimitry Andric     SimplifyAddOperands(Ops, Ty, SE);
4215ffd83dbSDimitry Andric   }
4225ffd83dbSDimitry Andric }
4235ffd83dbSDimitry Andric 
4245ffd83dbSDimitry Andric /// expandAddToGEP - Expand an addition expression with a pointer type into
4255ffd83dbSDimitry Andric /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
4265ffd83dbSDimitry Andric /// BasicAliasAnalysis and other passes analyze the result. See the rules
4275ffd83dbSDimitry Andric /// for getelementptr vs. inttoptr in
4285ffd83dbSDimitry Andric /// http://llvm.org/docs/LangRef.html#pointeraliasing
4295ffd83dbSDimitry Andric /// for details.
4305ffd83dbSDimitry Andric ///
4315ffd83dbSDimitry Andric /// Design note: The correctness of using getelementptr here depends on
4325ffd83dbSDimitry Andric /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
4335ffd83dbSDimitry Andric /// they may introduce pointer arithmetic which may not be safely converted
4345ffd83dbSDimitry Andric /// into getelementptr.
4355ffd83dbSDimitry Andric ///
4365ffd83dbSDimitry Andric /// Design note: It might seem desirable for this function to be more
4375ffd83dbSDimitry Andric /// loop-aware. If some of the indices are loop-invariant while others
4385ffd83dbSDimitry Andric /// aren't, it might seem desirable to emit multiple GEPs, keeping the
4395ffd83dbSDimitry Andric /// loop-invariant portions of the overall computation outside the loop.
4405ffd83dbSDimitry Andric /// However, there are a few reasons this is not done here. Hoisting simple
4415ffd83dbSDimitry Andric /// arithmetic is a low-level optimization that often isn't very
4425ffd83dbSDimitry Andric /// important until late in the optimization process. In fact, passes
4435ffd83dbSDimitry Andric /// like InstructionCombining will combine GEPs, even if it means
4445ffd83dbSDimitry Andric /// pushing loop-invariant computation down into loops, so even if the
4455ffd83dbSDimitry Andric /// GEPs were split here, the work would quickly be undone. The
4465ffd83dbSDimitry Andric /// LoopStrengthReduction pass, which is usually run quite late (and
4475ffd83dbSDimitry Andric /// after the last InstructionCombining pass), takes care of hoisting
4485ffd83dbSDimitry Andric /// loop-invariant portions of expressions, after considering what
4495ffd83dbSDimitry Andric /// can be folded using target addressing modes.
4505ffd83dbSDimitry Andric ///
4515ffd83dbSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
4525ffd83dbSDimitry Andric                                     const SCEV *const *op_end,
4535ffd83dbSDimitry Andric                                     PointerType *PTy,
4545ffd83dbSDimitry Andric                                     Type *Ty,
4555ffd83dbSDimitry Andric                                     Value *V) {
4565ffd83dbSDimitry Andric   SmallVector<Value *, 4> GepIndices;
4575ffd83dbSDimitry Andric   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
4585ffd83dbSDimitry Andric   bool AnyNonZeroIndices = false;
4595ffd83dbSDimitry Andric 
4605ffd83dbSDimitry Andric   // Split AddRecs up into parts as either of the parts may be usable
4615ffd83dbSDimitry Andric   // without the other.
4625ffd83dbSDimitry Andric   SplitAddRecs(Ops, Ty, SE);
4635ffd83dbSDimitry Andric 
4645ffd83dbSDimitry Andric   Type *IntIdxTy = DL.getIndexType(PTy);
4655ffd83dbSDimitry Andric 
466fe6060f1SDimitry Andric   // For opaque pointers, always generate i8 GEP.
467fe6060f1SDimitry Andric   if (!PTy->isOpaque()) {
4685ffd83dbSDimitry Andric     // Descend down the pointer's type and attempt to convert the other
4695ffd83dbSDimitry Andric     // operands into GEP indices, at each level. The first index in a GEP
4705ffd83dbSDimitry Andric     // indexes into the array implied by the pointer operand; the rest of
4715ffd83dbSDimitry Andric     // the indices index into the element or field type selected by the
4725ffd83dbSDimitry Andric     // preceding index.
473fe6060f1SDimitry Andric     Type *ElTy = PTy->getElementType();
4745ffd83dbSDimitry Andric     for (;;) {
4755ffd83dbSDimitry Andric       // If the scale size is not 0, attempt to factor out a scale for
4765ffd83dbSDimitry Andric       // array indexing.
4775ffd83dbSDimitry Andric       SmallVector<const SCEV *, 8> ScaledOps;
4785ffd83dbSDimitry Andric       if (ElTy->isSized()) {
4795ffd83dbSDimitry Andric         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
4805ffd83dbSDimitry Andric         if (!ElSize->isZero()) {
4815ffd83dbSDimitry Andric           SmallVector<const SCEV *, 8> NewOps;
4825ffd83dbSDimitry Andric           for (const SCEV *Op : Ops) {
4835ffd83dbSDimitry Andric             const SCEV *Remainder = SE.getConstant(Ty, 0);
4845ffd83dbSDimitry Andric             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
4855ffd83dbSDimitry Andric               // Op now has ElSize factored out.
4865ffd83dbSDimitry Andric               ScaledOps.push_back(Op);
4875ffd83dbSDimitry Andric               if (!Remainder->isZero())
4885ffd83dbSDimitry Andric                 NewOps.push_back(Remainder);
4895ffd83dbSDimitry Andric               AnyNonZeroIndices = true;
4905ffd83dbSDimitry Andric             } else {
491fe6060f1SDimitry Andric               // The operand was not divisible, so add it to the list of
492fe6060f1SDimitry Andric               // operands we'll scan next iteration.
4935ffd83dbSDimitry Andric               NewOps.push_back(Op);
4945ffd83dbSDimitry Andric             }
4955ffd83dbSDimitry Andric           }
4965ffd83dbSDimitry Andric           // If we made any changes, update Ops.
4975ffd83dbSDimitry Andric           if (!ScaledOps.empty()) {
4985ffd83dbSDimitry Andric             Ops = NewOps;
4995ffd83dbSDimitry Andric             SimplifyAddOperands(Ops, Ty, SE);
5005ffd83dbSDimitry Andric           }
5015ffd83dbSDimitry Andric         }
5025ffd83dbSDimitry Andric       }
5035ffd83dbSDimitry Andric 
5045ffd83dbSDimitry Andric       // Record the scaled array index for this level of the type. If
5055ffd83dbSDimitry Andric       // we didn't find any operands that could be factored, tentatively
5065ffd83dbSDimitry Andric       // assume that element zero was selected (since the zero offset
5075ffd83dbSDimitry Andric       // would obviously be folded away).
508e8d8bef9SDimitry Andric       Value *Scaled =
509e8d8bef9SDimitry Andric           ScaledOps.empty()
510e8d8bef9SDimitry Andric               ? Constant::getNullValue(Ty)
511e8d8bef9SDimitry Andric               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
5125ffd83dbSDimitry Andric       GepIndices.push_back(Scaled);
5135ffd83dbSDimitry Andric 
5145ffd83dbSDimitry Andric       // Collect struct field index operands.
5155ffd83dbSDimitry Andric       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
5165ffd83dbSDimitry Andric         bool FoundFieldNo = false;
5175ffd83dbSDimitry Andric         // An empty struct has no fields.
5185ffd83dbSDimitry Andric         if (STy->getNumElements() == 0) break;
5195ffd83dbSDimitry Andric         // Field offsets are known. See if a constant offset falls within any of
5205ffd83dbSDimitry Andric         // the struct fields.
5215ffd83dbSDimitry Andric         if (Ops.empty())
5225ffd83dbSDimitry Andric           break;
5235ffd83dbSDimitry Andric         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
5245ffd83dbSDimitry Andric           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
5255ffd83dbSDimitry Andric             const StructLayout &SL = *DL.getStructLayout(STy);
5265ffd83dbSDimitry Andric             uint64_t FullOffset = C->getValue()->getZExtValue();
5275ffd83dbSDimitry Andric             if (FullOffset < SL.getSizeInBytes()) {
5285ffd83dbSDimitry Andric               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
5295ffd83dbSDimitry Andric               GepIndices.push_back(
5305ffd83dbSDimitry Andric                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
5315ffd83dbSDimitry Andric               ElTy = STy->getTypeAtIndex(ElIdx);
5325ffd83dbSDimitry Andric               Ops[0] =
5335ffd83dbSDimitry Andric                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
5345ffd83dbSDimitry Andric               AnyNonZeroIndices = true;
5355ffd83dbSDimitry Andric               FoundFieldNo = true;
5365ffd83dbSDimitry Andric             }
5375ffd83dbSDimitry Andric           }
5385ffd83dbSDimitry Andric         // If no struct field offsets were found, tentatively assume that
5395ffd83dbSDimitry Andric         // field zero was selected (since the zero offset would obviously
5405ffd83dbSDimitry Andric         // be folded away).
5415ffd83dbSDimitry Andric         if (!FoundFieldNo) {
5425ffd83dbSDimitry Andric           ElTy = STy->getTypeAtIndex(0u);
5435ffd83dbSDimitry Andric           GepIndices.push_back(
5445ffd83dbSDimitry Andric             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
5455ffd83dbSDimitry Andric         }
5465ffd83dbSDimitry Andric       }
5475ffd83dbSDimitry Andric 
5485ffd83dbSDimitry Andric       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
5495ffd83dbSDimitry Andric         ElTy = ATy->getElementType();
5505ffd83dbSDimitry Andric       else
5515ffd83dbSDimitry Andric         // FIXME: Handle VectorType.
5525ffd83dbSDimitry Andric         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
5535ffd83dbSDimitry Andric         // constant, therefore can not be factored out. The generated IR is less
5545ffd83dbSDimitry Andric         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
5555ffd83dbSDimitry Andric         break;
5565ffd83dbSDimitry Andric     }
557fe6060f1SDimitry Andric   }
5585ffd83dbSDimitry Andric 
5595ffd83dbSDimitry Andric   // If none of the operands were convertible to proper GEP indices, cast
5605ffd83dbSDimitry Andric   // the base to i8* and do an ugly getelementptr with that. It's still
5615ffd83dbSDimitry Andric   // better than ptrtoint+arithmetic+inttoptr at least.
5625ffd83dbSDimitry Andric   if (!AnyNonZeroIndices) {
5635ffd83dbSDimitry Andric     // Cast the base to i8*.
564fe6060f1SDimitry Andric     if (!PTy->isOpaque())
5655ffd83dbSDimitry Andric       V = InsertNoopCastOfTo(V,
5665ffd83dbSDimitry Andric          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
5675ffd83dbSDimitry Andric 
5685ffd83dbSDimitry Andric     assert(!isa<Instruction>(V) ||
5695ffd83dbSDimitry Andric            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
5705ffd83dbSDimitry Andric 
5715ffd83dbSDimitry Andric     // Expand the operands for a plain byte offset.
572e8d8bef9SDimitry Andric     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
5735ffd83dbSDimitry Andric 
5745ffd83dbSDimitry Andric     // Fold a GEP with constant operands.
5755ffd83dbSDimitry Andric     if (Constant *CLHS = dyn_cast<Constant>(V))
5765ffd83dbSDimitry Andric       if (Constant *CRHS = dyn_cast<Constant>(Idx))
5775ffd83dbSDimitry Andric         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
5785ffd83dbSDimitry Andric                                               CLHS, CRHS);
5795ffd83dbSDimitry Andric 
5805ffd83dbSDimitry Andric     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
5815ffd83dbSDimitry Andric     unsigned ScanLimit = 6;
5825ffd83dbSDimitry Andric     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
5835ffd83dbSDimitry Andric     // Scanning starts from the last instruction before the insertion point.
5845ffd83dbSDimitry Andric     BasicBlock::iterator IP = Builder.GetInsertPoint();
5855ffd83dbSDimitry Andric     if (IP != BlockBegin) {
5865ffd83dbSDimitry Andric       --IP;
5875ffd83dbSDimitry Andric       for (; ScanLimit; --IP, --ScanLimit) {
5885ffd83dbSDimitry Andric         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
5895ffd83dbSDimitry Andric         // generated code.
5905ffd83dbSDimitry Andric         if (isa<DbgInfoIntrinsic>(IP))
5915ffd83dbSDimitry Andric           ScanLimit++;
5925ffd83dbSDimitry Andric         if (IP->getOpcode() == Instruction::GetElementPtr &&
5935ffd83dbSDimitry Andric             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
5945ffd83dbSDimitry Andric           return &*IP;
5955ffd83dbSDimitry Andric         if (IP == BlockBegin) break;
5965ffd83dbSDimitry Andric       }
5975ffd83dbSDimitry Andric     }
5985ffd83dbSDimitry Andric 
5995ffd83dbSDimitry Andric     // Save the original insertion point so we can restore it when we're done.
6005ffd83dbSDimitry Andric     SCEVInsertPointGuard Guard(Builder, this);
6015ffd83dbSDimitry Andric 
6025ffd83dbSDimitry Andric     // Move the insertion point out of as many loops as we can.
6035ffd83dbSDimitry Andric     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
6045ffd83dbSDimitry Andric       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
6055ffd83dbSDimitry Andric       BasicBlock *Preheader = L->getLoopPreheader();
6065ffd83dbSDimitry Andric       if (!Preheader) break;
6075ffd83dbSDimitry Andric 
6085ffd83dbSDimitry Andric       // Ok, move up a level.
6095ffd83dbSDimitry Andric       Builder.SetInsertPoint(Preheader->getTerminator());
6105ffd83dbSDimitry Andric     }
6115ffd83dbSDimitry Andric 
6125ffd83dbSDimitry Andric     // Emit a GEP.
613e8d8bef9SDimitry Andric     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
6145ffd83dbSDimitry Andric   }
6155ffd83dbSDimitry Andric 
6165ffd83dbSDimitry Andric   {
6175ffd83dbSDimitry Andric     SCEVInsertPointGuard Guard(Builder, this);
6185ffd83dbSDimitry Andric 
6195ffd83dbSDimitry Andric     // Move the insertion point out of as many loops as we can.
6205ffd83dbSDimitry Andric     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
6215ffd83dbSDimitry Andric       if (!L->isLoopInvariant(V)) break;
6225ffd83dbSDimitry Andric 
6235ffd83dbSDimitry Andric       bool AnyIndexNotLoopInvariant = any_of(
6245ffd83dbSDimitry Andric           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
6255ffd83dbSDimitry Andric 
6265ffd83dbSDimitry Andric       if (AnyIndexNotLoopInvariant)
6275ffd83dbSDimitry Andric         break;
6285ffd83dbSDimitry Andric 
6295ffd83dbSDimitry Andric       BasicBlock *Preheader = L->getLoopPreheader();
6305ffd83dbSDimitry Andric       if (!Preheader) break;
6315ffd83dbSDimitry Andric 
6325ffd83dbSDimitry Andric       // Ok, move up a level.
6335ffd83dbSDimitry Andric       Builder.SetInsertPoint(Preheader->getTerminator());
6345ffd83dbSDimitry Andric     }
6355ffd83dbSDimitry Andric 
6365ffd83dbSDimitry Andric     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
6375ffd83dbSDimitry Andric     // because ScalarEvolution may have changed the address arithmetic to
6385ffd83dbSDimitry Andric     // compute a value which is beyond the end of the allocated object.
6395ffd83dbSDimitry Andric     Value *Casted = V;
6405ffd83dbSDimitry Andric     if (V->getType() != PTy)
6415ffd83dbSDimitry Andric       Casted = InsertNoopCastOfTo(Casted, PTy);
642fe6060f1SDimitry Andric     Value *GEP = Builder.CreateGEP(PTy->getElementType(), Casted, GepIndices,
643fe6060f1SDimitry Andric                                    "scevgep");
6445ffd83dbSDimitry Andric     Ops.push_back(SE.getUnknown(GEP));
6455ffd83dbSDimitry Andric   }
6465ffd83dbSDimitry Andric 
6475ffd83dbSDimitry Andric   return expand(SE.getAddExpr(Ops));
6485ffd83dbSDimitry Andric }
6495ffd83dbSDimitry Andric 
6505ffd83dbSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
6515ffd83dbSDimitry Andric                                     Value *V) {
6525ffd83dbSDimitry Andric   const SCEV *const Ops[1] = {Op};
6535ffd83dbSDimitry Andric   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
6545ffd83dbSDimitry Andric }
6555ffd83dbSDimitry Andric 
6565ffd83dbSDimitry Andric /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
6575ffd83dbSDimitry Andric /// SCEV expansion. If they are nested, this is the most nested. If they are
6585ffd83dbSDimitry Andric /// neighboring, pick the later.
6595ffd83dbSDimitry Andric static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
6605ffd83dbSDimitry Andric                                         DominatorTree &DT) {
6615ffd83dbSDimitry Andric   if (!A) return B;
6625ffd83dbSDimitry Andric   if (!B) return A;
6635ffd83dbSDimitry Andric   if (A->contains(B)) return B;
6645ffd83dbSDimitry Andric   if (B->contains(A)) return A;
6655ffd83dbSDimitry Andric   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
6665ffd83dbSDimitry Andric   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
6675ffd83dbSDimitry Andric   return A; // Arbitrarily break the tie.
6685ffd83dbSDimitry Andric }
6695ffd83dbSDimitry Andric 
6705ffd83dbSDimitry Andric /// getRelevantLoop - Get the most relevant loop associated with the given
6715ffd83dbSDimitry Andric /// expression, according to PickMostRelevantLoop.
6725ffd83dbSDimitry Andric const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
6735ffd83dbSDimitry Andric   // Test whether we've already computed the most relevant loop for this SCEV.
6745ffd83dbSDimitry Andric   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
6755ffd83dbSDimitry Andric   if (!Pair.second)
6765ffd83dbSDimitry Andric     return Pair.first->second;
6775ffd83dbSDimitry Andric 
6785ffd83dbSDimitry Andric   if (isa<SCEVConstant>(S))
6795ffd83dbSDimitry Andric     // A constant has no relevant loops.
6805ffd83dbSDimitry Andric     return nullptr;
6815ffd83dbSDimitry Andric   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6825ffd83dbSDimitry Andric     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
6835ffd83dbSDimitry Andric       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
6845ffd83dbSDimitry Andric     // A non-instruction has no relevant loops.
6855ffd83dbSDimitry Andric     return nullptr;
6865ffd83dbSDimitry Andric   }
6875ffd83dbSDimitry Andric   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
6885ffd83dbSDimitry Andric     const Loop *L = nullptr;
6895ffd83dbSDimitry Andric     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
6905ffd83dbSDimitry Andric       L = AR->getLoop();
6915ffd83dbSDimitry Andric     for (const SCEV *Op : N->operands())
6925ffd83dbSDimitry Andric       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
6935ffd83dbSDimitry Andric     return RelevantLoops[N] = L;
6945ffd83dbSDimitry Andric   }
6955ffd83dbSDimitry Andric   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
6965ffd83dbSDimitry Andric     const Loop *Result = getRelevantLoop(C->getOperand());
6975ffd83dbSDimitry Andric     return RelevantLoops[C] = Result;
6985ffd83dbSDimitry Andric   }
6995ffd83dbSDimitry Andric   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
7005ffd83dbSDimitry Andric     const Loop *Result = PickMostRelevantLoop(
7015ffd83dbSDimitry Andric         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
7025ffd83dbSDimitry Andric     return RelevantLoops[D] = Result;
7035ffd83dbSDimitry Andric   }
7045ffd83dbSDimitry Andric   llvm_unreachable("Unexpected SCEV type!");
7055ffd83dbSDimitry Andric }
7065ffd83dbSDimitry Andric 
7075ffd83dbSDimitry Andric namespace {
7085ffd83dbSDimitry Andric 
7095ffd83dbSDimitry Andric /// LoopCompare - Compare loops by PickMostRelevantLoop.
7105ffd83dbSDimitry Andric class LoopCompare {
7115ffd83dbSDimitry Andric   DominatorTree &DT;
7125ffd83dbSDimitry Andric public:
7135ffd83dbSDimitry Andric   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
7145ffd83dbSDimitry Andric 
7155ffd83dbSDimitry Andric   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
7165ffd83dbSDimitry Andric                   std::pair<const Loop *, const SCEV *> RHS) const {
7175ffd83dbSDimitry Andric     // Keep pointer operands sorted at the end.
7185ffd83dbSDimitry Andric     if (LHS.second->getType()->isPointerTy() !=
7195ffd83dbSDimitry Andric         RHS.second->getType()->isPointerTy())
7205ffd83dbSDimitry Andric       return LHS.second->getType()->isPointerTy();
7215ffd83dbSDimitry Andric 
7225ffd83dbSDimitry Andric     // Compare loops with PickMostRelevantLoop.
7235ffd83dbSDimitry Andric     if (LHS.first != RHS.first)
7245ffd83dbSDimitry Andric       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
7255ffd83dbSDimitry Andric 
7265ffd83dbSDimitry Andric     // If one operand is a non-constant negative and the other is not,
7275ffd83dbSDimitry Andric     // put the non-constant negative on the right so that a sub can
7285ffd83dbSDimitry Andric     // be used instead of a negate and add.
7295ffd83dbSDimitry Andric     if (LHS.second->isNonConstantNegative()) {
7305ffd83dbSDimitry Andric       if (!RHS.second->isNonConstantNegative())
7315ffd83dbSDimitry Andric         return false;
7325ffd83dbSDimitry Andric     } else if (RHS.second->isNonConstantNegative())
7335ffd83dbSDimitry Andric       return true;
7345ffd83dbSDimitry Andric 
7355ffd83dbSDimitry Andric     // Otherwise they are equivalent according to this comparison.
7365ffd83dbSDimitry Andric     return false;
7375ffd83dbSDimitry Andric   }
7385ffd83dbSDimitry Andric };
7395ffd83dbSDimitry Andric 
7405ffd83dbSDimitry Andric }
7415ffd83dbSDimitry Andric 
7425ffd83dbSDimitry Andric Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
7435ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
7445ffd83dbSDimitry Andric 
7455ffd83dbSDimitry Andric   // Collect all the add operands in a loop, along with their associated loops.
7465ffd83dbSDimitry Andric   // Iterate in reverse so that constants are emitted last, all else equal, and
7475ffd83dbSDimitry Andric   // so that pointer operands are inserted first, which the code below relies on
7485ffd83dbSDimitry Andric   // to form more involved GEPs.
7495ffd83dbSDimitry Andric   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
750*349cc55cSDimitry Andric   for (const SCEV *Op : reverse(S->operands()))
751*349cc55cSDimitry Andric     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
7525ffd83dbSDimitry Andric 
7535ffd83dbSDimitry Andric   // Sort by loop. Use a stable sort so that constants follow non-constants and
7545ffd83dbSDimitry Andric   // pointer operands precede non-pointer operands.
7555ffd83dbSDimitry Andric   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
7565ffd83dbSDimitry Andric 
7575ffd83dbSDimitry Andric   // Emit instructions to add all the operands. Hoist as much as possible
7585ffd83dbSDimitry Andric   // out of loops, and form meaningful getelementptrs where possible.
7595ffd83dbSDimitry Andric   Value *Sum = nullptr;
7605ffd83dbSDimitry Andric   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
7615ffd83dbSDimitry Andric     const Loop *CurLoop = I->first;
7625ffd83dbSDimitry Andric     const SCEV *Op = I->second;
7635ffd83dbSDimitry Andric     if (!Sum) {
7645ffd83dbSDimitry Andric       // This is the first operand. Just expand it.
7655ffd83dbSDimitry Andric       Sum = expand(Op);
7665ffd83dbSDimitry Andric       ++I;
767*349cc55cSDimitry Andric       continue;
768*349cc55cSDimitry Andric     }
769*349cc55cSDimitry Andric 
770*349cc55cSDimitry Andric     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
771*349cc55cSDimitry Andric     if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
7725ffd83dbSDimitry Andric       // The running sum expression is a pointer. Try to form a getelementptr
7735ffd83dbSDimitry Andric       // at this level with that as the base.
7745ffd83dbSDimitry Andric       SmallVector<const SCEV *, 4> NewOps;
7755ffd83dbSDimitry Andric       for (; I != E && I->first == CurLoop; ++I) {
7765ffd83dbSDimitry Andric         // If the operand is SCEVUnknown and not instructions, peek through
7775ffd83dbSDimitry Andric         // it, to enable more of it to be folded into the GEP.
7785ffd83dbSDimitry Andric         const SCEV *X = I->second;
7795ffd83dbSDimitry Andric         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
7805ffd83dbSDimitry Andric           if (!isa<Instruction>(U->getValue()))
7815ffd83dbSDimitry Andric             X = SE.getSCEV(U->getValue());
7825ffd83dbSDimitry Andric         NewOps.push_back(X);
7835ffd83dbSDimitry Andric       }
7845ffd83dbSDimitry Andric       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
7855ffd83dbSDimitry Andric     } else if (Op->isNonConstantNegative()) {
7865ffd83dbSDimitry Andric       // Instead of doing a negate and add, just do a subtract.
787e8d8bef9SDimitry Andric       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
7885ffd83dbSDimitry Andric       Sum = InsertNoopCastOfTo(Sum, Ty);
7895ffd83dbSDimitry Andric       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
7905ffd83dbSDimitry Andric                         /*IsSafeToHoist*/ true);
7915ffd83dbSDimitry Andric       ++I;
7925ffd83dbSDimitry Andric     } else {
7935ffd83dbSDimitry Andric       // A simple add.
794e8d8bef9SDimitry Andric       Value *W = expandCodeForImpl(Op, Ty, false);
7955ffd83dbSDimitry Andric       Sum = InsertNoopCastOfTo(Sum, Ty);
7965ffd83dbSDimitry Andric       // Canonicalize a constant to the RHS.
7975ffd83dbSDimitry Andric       if (isa<Constant>(Sum)) std::swap(Sum, W);
7985ffd83dbSDimitry Andric       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
7995ffd83dbSDimitry Andric                         /*IsSafeToHoist*/ true);
8005ffd83dbSDimitry Andric       ++I;
8015ffd83dbSDimitry Andric     }
8025ffd83dbSDimitry Andric   }
8035ffd83dbSDimitry Andric 
8045ffd83dbSDimitry Andric   return Sum;
8055ffd83dbSDimitry Andric }
8065ffd83dbSDimitry Andric 
8075ffd83dbSDimitry Andric Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
8085ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
8095ffd83dbSDimitry Andric 
8105ffd83dbSDimitry Andric   // Collect all the mul operands in a loop, along with their associated loops.
8115ffd83dbSDimitry Andric   // Iterate in reverse so that constants are emitted last, all else equal.
8125ffd83dbSDimitry Andric   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
813*349cc55cSDimitry Andric   for (const SCEV *Op : reverse(S->operands()))
814*349cc55cSDimitry Andric     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
8155ffd83dbSDimitry Andric 
8165ffd83dbSDimitry Andric   // Sort by loop. Use a stable sort so that constants follow non-constants.
8175ffd83dbSDimitry Andric   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
8185ffd83dbSDimitry Andric 
8195ffd83dbSDimitry Andric   // Emit instructions to mul all the operands. Hoist as much as possible
8205ffd83dbSDimitry Andric   // out of loops.
8215ffd83dbSDimitry Andric   Value *Prod = nullptr;
8225ffd83dbSDimitry Andric   auto I = OpsAndLoops.begin();
8235ffd83dbSDimitry Andric 
8245ffd83dbSDimitry Andric   // Expand the calculation of X pow N in the following manner:
8255ffd83dbSDimitry Andric   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
8265ffd83dbSDimitry Andric   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
8275ffd83dbSDimitry Andric   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
8285ffd83dbSDimitry Andric     auto E = I;
8295ffd83dbSDimitry Andric     // Calculate how many times the same operand from the same loop is included
8305ffd83dbSDimitry Andric     // into this power.
8315ffd83dbSDimitry Andric     uint64_t Exponent = 0;
8325ffd83dbSDimitry Andric     const uint64_t MaxExponent = UINT64_MAX >> 1;
8335ffd83dbSDimitry Andric     // No one sane will ever try to calculate such huge exponents, but if we
8345ffd83dbSDimitry Andric     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
8355ffd83dbSDimitry Andric     // below when the power of 2 exceeds our Exponent, and we want it to be
8365ffd83dbSDimitry Andric     // 1u << 31 at most to not deal with unsigned overflow.
8375ffd83dbSDimitry Andric     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
8385ffd83dbSDimitry Andric       ++Exponent;
8395ffd83dbSDimitry Andric       ++E;
8405ffd83dbSDimitry Andric     }
8415ffd83dbSDimitry Andric     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
8425ffd83dbSDimitry Andric 
8435ffd83dbSDimitry Andric     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
8445ffd83dbSDimitry Andric     // that are needed into the result.
845e8d8bef9SDimitry Andric     Value *P = expandCodeForImpl(I->second, Ty, false);
8465ffd83dbSDimitry Andric     Value *Result = nullptr;
8475ffd83dbSDimitry Andric     if (Exponent & 1)
8485ffd83dbSDimitry Andric       Result = P;
8495ffd83dbSDimitry Andric     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
8505ffd83dbSDimitry Andric       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
8515ffd83dbSDimitry Andric                       /*IsSafeToHoist*/ true);
8525ffd83dbSDimitry Andric       if (Exponent & BinExp)
8535ffd83dbSDimitry Andric         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
8545ffd83dbSDimitry Andric                                       SCEV::FlagAnyWrap,
8555ffd83dbSDimitry Andric                                       /*IsSafeToHoist*/ true)
8565ffd83dbSDimitry Andric                         : P;
8575ffd83dbSDimitry Andric     }
8585ffd83dbSDimitry Andric 
8595ffd83dbSDimitry Andric     I = E;
8605ffd83dbSDimitry Andric     assert(Result && "Nothing was expanded?");
8615ffd83dbSDimitry Andric     return Result;
8625ffd83dbSDimitry Andric   };
8635ffd83dbSDimitry Andric 
8645ffd83dbSDimitry Andric   while (I != OpsAndLoops.end()) {
8655ffd83dbSDimitry Andric     if (!Prod) {
8665ffd83dbSDimitry Andric       // This is the first operand. Just expand it.
8675ffd83dbSDimitry Andric       Prod = ExpandOpBinPowN();
8685ffd83dbSDimitry Andric     } else if (I->second->isAllOnesValue()) {
8695ffd83dbSDimitry Andric       // Instead of doing a multiply by negative one, just do a negate.
8705ffd83dbSDimitry Andric       Prod = InsertNoopCastOfTo(Prod, Ty);
8715ffd83dbSDimitry Andric       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
8725ffd83dbSDimitry Andric                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
8735ffd83dbSDimitry Andric       ++I;
8745ffd83dbSDimitry Andric     } else {
8755ffd83dbSDimitry Andric       // A simple mul.
8765ffd83dbSDimitry Andric       Value *W = ExpandOpBinPowN();
8775ffd83dbSDimitry Andric       Prod = InsertNoopCastOfTo(Prod, Ty);
8785ffd83dbSDimitry Andric       // Canonicalize a constant to the RHS.
8795ffd83dbSDimitry Andric       if (isa<Constant>(Prod)) std::swap(Prod, W);
8805ffd83dbSDimitry Andric       const APInt *RHS;
8815ffd83dbSDimitry Andric       if (match(W, m_Power2(RHS))) {
8825ffd83dbSDimitry Andric         // Canonicalize Prod*(1<<C) to Prod<<C.
8835ffd83dbSDimitry Andric         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
8845ffd83dbSDimitry Andric         auto NWFlags = S->getNoWrapFlags();
8855ffd83dbSDimitry Andric         // clear nsw flag if shl will produce poison value.
8865ffd83dbSDimitry Andric         if (RHS->logBase2() == RHS->getBitWidth() - 1)
8875ffd83dbSDimitry Andric           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
8885ffd83dbSDimitry Andric         Prod = InsertBinop(Instruction::Shl, Prod,
8895ffd83dbSDimitry Andric                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
8905ffd83dbSDimitry Andric                            /*IsSafeToHoist*/ true);
8915ffd83dbSDimitry Andric       } else {
8925ffd83dbSDimitry Andric         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
8935ffd83dbSDimitry Andric                            /*IsSafeToHoist*/ true);
8945ffd83dbSDimitry Andric       }
8955ffd83dbSDimitry Andric     }
8965ffd83dbSDimitry Andric   }
8975ffd83dbSDimitry Andric 
8985ffd83dbSDimitry Andric   return Prod;
8995ffd83dbSDimitry Andric }
9005ffd83dbSDimitry Andric 
9015ffd83dbSDimitry Andric Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
9025ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
9035ffd83dbSDimitry Andric 
904e8d8bef9SDimitry Andric   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
9055ffd83dbSDimitry Andric   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
9065ffd83dbSDimitry Andric     const APInt &RHS = SC->getAPInt();
9075ffd83dbSDimitry Andric     if (RHS.isPowerOf2())
9085ffd83dbSDimitry Andric       return InsertBinop(Instruction::LShr, LHS,
9095ffd83dbSDimitry Andric                          ConstantInt::get(Ty, RHS.logBase2()),
9105ffd83dbSDimitry Andric                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
9115ffd83dbSDimitry Andric   }
9125ffd83dbSDimitry Andric 
913e8d8bef9SDimitry Andric   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
9145ffd83dbSDimitry Andric   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
9155ffd83dbSDimitry Andric                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
9165ffd83dbSDimitry Andric }
9175ffd83dbSDimitry Andric 
9185ffd83dbSDimitry Andric /// Determine if this is a well-behaved chain of instructions leading back to
9195ffd83dbSDimitry Andric /// the PHI. If so, it may be reused by expanded expressions.
9205ffd83dbSDimitry Andric bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
9215ffd83dbSDimitry Andric                                          const Loop *L) {
9225ffd83dbSDimitry Andric   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
9235ffd83dbSDimitry Andric       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
9245ffd83dbSDimitry Andric     return false;
9255ffd83dbSDimitry Andric   // If any of the operands don't dominate the insert position, bail.
9265ffd83dbSDimitry Andric   // Addrec operands are always loop-invariant, so this can only happen
9275ffd83dbSDimitry Andric   // if there are instructions which haven't been hoisted.
9285ffd83dbSDimitry Andric   if (L == IVIncInsertLoop) {
929fe6060f1SDimitry Andric     for (Use &Op : llvm::drop_begin(IncV->operands()))
930fe6060f1SDimitry Andric       if (Instruction *OInst = dyn_cast<Instruction>(Op))
9315ffd83dbSDimitry Andric         if (!SE.DT.dominates(OInst, IVIncInsertPos))
9325ffd83dbSDimitry Andric           return false;
9335ffd83dbSDimitry Andric   }
9345ffd83dbSDimitry Andric   // Advance to the next instruction.
9355ffd83dbSDimitry Andric   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
9365ffd83dbSDimitry Andric   if (!IncV)
9375ffd83dbSDimitry Andric     return false;
9385ffd83dbSDimitry Andric 
9395ffd83dbSDimitry Andric   if (IncV->mayHaveSideEffects())
9405ffd83dbSDimitry Andric     return false;
9415ffd83dbSDimitry Andric 
9425ffd83dbSDimitry Andric   if (IncV == PN)
9435ffd83dbSDimitry Andric     return true;
9445ffd83dbSDimitry Andric 
9455ffd83dbSDimitry Andric   return isNormalAddRecExprPHI(PN, IncV, L);
9465ffd83dbSDimitry Andric }
9475ffd83dbSDimitry Andric 
9485ffd83dbSDimitry Andric /// getIVIncOperand returns an induction variable increment's induction
9495ffd83dbSDimitry Andric /// variable operand.
9505ffd83dbSDimitry Andric ///
9515ffd83dbSDimitry Andric /// If allowScale is set, any type of GEP is allowed as long as the nonIV
9525ffd83dbSDimitry Andric /// operands dominate InsertPos.
9535ffd83dbSDimitry Andric ///
9545ffd83dbSDimitry Andric /// If allowScale is not set, ensure that a GEP increment conforms to one of the
9555ffd83dbSDimitry Andric /// simple patterns generated by getAddRecExprPHILiterally and
9565ffd83dbSDimitry Andric /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
9575ffd83dbSDimitry Andric Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
9585ffd83dbSDimitry Andric                                            Instruction *InsertPos,
9595ffd83dbSDimitry Andric                                            bool allowScale) {
9605ffd83dbSDimitry Andric   if (IncV == InsertPos)
9615ffd83dbSDimitry Andric     return nullptr;
9625ffd83dbSDimitry Andric 
9635ffd83dbSDimitry Andric   switch (IncV->getOpcode()) {
9645ffd83dbSDimitry Andric   default:
9655ffd83dbSDimitry Andric     return nullptr;
9665ffd83dbSDimitry Andric   // Check for a simple Add/Sub or GEP of a loop invariant step.
9675ffd83dbSDimitry Andric   case Instruction::Add:
9685ffd83dbSDimitry Andric   case Instruction::Sub: {
9695ffd83dbSDimitry Andric     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
9705ffd83dbSDimitry Andric     if (!OInst || SE.DT.dominates(OInst, InsertPos))
9715ffd83dbSDimitry Andric       return dyn_cast<Instruction>(IncV->getOperand(0));
9725ffd83dbSDimitry Andric     return nullptr;
9735ffd83dbSDimitry Andric   }
9745ffd83dbSDimitry Andric   case Instruction::BitCast:
9755ffd83dbSDimitry Andric     return dyn_cast<Instruction>(IncV->getOperand(0));
9765ffd83dbSDimitry Andric   case Instruction::GetElementPtr:
977fe6060f1SDimitry Andric     for (Use &U : llvm::drop_begin(IncV->operands())) {
978fe6060f1SDimitry Andric       if (isa<Constant>(U))
9795ffd83dbSDimitry Andric         continue;
980fe6060f1SDimitry Andric       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
9815ffd83dbSDimitry Andric         if (!SE.DT.dominates(OInst, InsertPos))
9825ffd83dbSDimitry Andric           return nullptr;
9835ffd83dbSDimitry Andric       }
9845ffd83dbSDimitry Andric       if (allowScale) {
9855ffd83dbSDimitry Andric         // allow any kind of GEP as long as it can be hoisted.
9865ffd83dbSDimitry Andric         continue;
9875ffd83dbSDimitry Andric       }
9885ffd83dbSDimitry Andric       // This must be a pointer addition of constants (pretty), which is already
9895ffd83dbSDimitry Andric       // handled, or some number of address-size elements (ugly). Ugly geps
9905ffd83dbSDimitry Andric       // have 2 operands. i1* is used by the expander to represent an
9915ffd83dbSDimitry Andric       // address-size element.
9925ffd83dbSDimitry Andric       if (IncV->getNumOperands() != 2)
9935ffd83dbSDimitry Andric         return nullptr;
9945ffd83dbSDimitry Andric       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
9955ffd83dbSDimitry Andric       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
9965ffd83dbSDimitry Andric           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
9975ffd83dbSDimitry Andric         return nullptr;
9985ffd83dbSDimitry Andric       break;
9995ffd83dbSDimitry Andric     }
10005ffd83dbSDimitry Andric     return dyn_cast<Instruction>(IncV->getOperand(0));
10015ffd83dbSDimitry Andric   }
10025ffd83dbSDimitry Andric }
10035ffd83dbSDimitry Andric 
10045ffd83dbSDimitry Andric /// If the insert point of the current builder or any of the builders on the
10055ffd83dbSDimitry Andric /// stack of saved builders has 'I' as its insert point, update it to point to
10065ffd83dbSDimitry Andric /// the instruction after 'I'.  This is intended to be used when the instruction
10075ffd83dbSDimitry Andric /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
10085ffd83dbSDimitry Andric /// different block, the inconsistent insert point (with a mismatched
10095ffd83dbSDimitry Andric /// Instruction and Block) can lead to an instruction being inserted in a block
10105ffd83dbSDimitry Andric /// other than its parent.
10115ffd83dbSDimitry Andric void SCEVExpander::fixupInsertPoints(Instruction *I) {
10125ffd83dbSDimitry Andric   BasicBlock::iterator It(*I);
10135ffd83dbSDimitry Andric   BasicBlock::iterator NewInsertPt = std::next(It);
10145ffd83dbSDimitry Andric   if (Builder.GetInsertPoint() == It)
10155ffd83dbSDimitry Andric     Builder.SetInsertPoint(&*NewInsertPt);
10165ffd83dbSDimitry Andric   for (auto *InsertPtGuard : InsertPointGuards)
10175ffd83dbSDimitry Andric     if (InsertPtGuard->GetInsertPoint() == It)
10185ffd83dbSDimitry Andric       InsertPtGuard->SetInsertPoint(NewInsertPt);
10195ffd83dbSDimitry Andric }
10205ffd83dbSDimitry Andric 
10215ffd83dbSDimitry Andric /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
10225ffd83dbSDimitry Andric /// it available to other uses in this loop. Recursively hoist any operands,
10235ffd83dbSDimitry Andric /// until we reach a value that dominates InsertPos.
10245ffd83dbSDimitry Andric bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
10255ffd83dbSDimitry Andric   if (SE.DT.dominates(IncV, InsertPos))
10265ffd83dbSDimitry Andric       return true;
10275ffd83dbSDimitry Andric 
10285ffd83dbSDimitry Andric   // InsertPos must itself dominate IncV so that IncV's new position satisfies
10295ffd83dbSDimitry Andric   // its existing users.
10305ffd83dbSDimitry Andric   if (isa<PHINode>(InsertPos) ||
10315ffd83dbSDimitry Andric       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
10325ffd83dbSDimitry Andric     return false;
10335ffd83dbSDimitry Andric 
10345ffd83dbSDimitry Andric   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
10355ffd83dbSDimitry Andric     return false;
10365ffd83dbSDimitry Andric 
10375ffd83dbSDimitry Andric   // Check that the chain of IV operands leading back to Phi can be hoisted.
10385ffd83dbSDimitry Andric   SmallVector<Instruction*, 4> IVIncs;
10395ffd83dbSDimitry Andric   for(;;) {
10405ffd83dbSDimitry Andric     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
10415ffd83dbSDimitry Andric     if (!Oper)
10425ffd83dbSDimitry Andric       return false;
10435ffd83dbSDimitry Andric     // IncV is safe to hoist.
10445ffd83dbSDimitry Andric     IVIncs.push_back(IncV);
10455ffd83dbSDimitry Andric     IncV = Oper;
10465ffd83dbSDimitry Andric     if (SE.DT.dominates(IncV, InsertPos))
10475ffd83dbSDimitry Andric       break;
10485ffd83dbSDimitry Andric   }
10495ffd83dbSDimitry Andric   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
10505ffd83dbSDimitry Andric     fixupInsertPoints(*I);
10515ffd83dbSDimitry Andric     (*I)->moveBefore(InsertPos);
10525ffd83dbSDimitry Andric   }
10535ffd83dbSDimitry Andric   return true;
10545ffd83dbSDimitry Andric }
10555ffd83dbSDimitry Andric 
10565ffd83dbSDimitry Andric /// Determine if this cyclic phi is in a form that would have been generated by
10575ffd83dbSDimitry Andric /// LSR. We don't care if the phi was actually expanded in this pass, as long
10585ffd83dbSDimitry Andric /// as it is in a low-cost form, for example, no implied multiplication. This
10595ffd83dbSDimitry Andric /// should match any patterns generated by getAddRecExprPHILiterally and
10605ffd83dbSDimitry Andric /// expandAddtoGEP.
10615ffd83dbSDimitry Andric bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
10625ffd83dbSDimitry Andric                                            const Loop *L) {
10635ffd83dbSDimitry Andric   for(Instruction *IVOper = IncV;
10645ffd83dbSDimitry Andric       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
10655ffd83dbSDimitry Andric                                 /*allowScale=*/false));) {
10665ffd83dbSDimitry Andric     if (IVOper == PN)
10675ffd83dbSDimitry Andric       return true;
10685ffd83dbSDimitry Andric   }
10695ffd83dbSDimitry Andric   return false;
10705ffd83dbSDimitry Andric }
10715ffd83dbSDimitry Andric 
10725ffd83dbSDimitry Andric /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
10735ffd83dbSDimitry Andric /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
10745ffd83dbSDimitry Andric /// need to materialize IV increments elsewhere to handle difficult situations.
10755ffd83dbSDimitry Andric Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
10765ffd83dbSDimitry Andric                                  Type *ExpandTy, Type *IntTy,
10775ffd83dbSDimitry Andric                                  bool useSubtract) {
10785ffd83dbSDimitry Andric   Value *IncV;
10795ffd83dbSDimitry Andric   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
10805ffd83dbSDimitry Andric   if (ExpandTy->isPointerTy()) {
10815ffd83dbSDimitry Andric     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
10825ffd83dbSDimitry Andric     // If the step isn't constant, don't use an implicitly scaled GEP, because
10835ffd83dbSDimitry Andric     // that would require a multiply inside the loop.
10845ffd83dbSDimitry Andric     if (!isa<ConstantInt>(StepV))
10855ffd83dbSDimitry Andric       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
10865ffd83dbSDimitry Andric                                   GEPPtrTy->getAddressSpace());
10875ffd83dbSDimitry Andric     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1088e8d8bef9SDimitry Andric     if (IncV->getType() != PN->getType())
10895ffd83dbSDimitry Andric       IncV = Builder.CreateBitCast(IncV, PN->getType());
10905ffd83dbSDimitry Andric   } else {
10915ffd83dbSDimitry Andric     IncV = useSubtract ?
10925ffd83dbSDimitry Andric       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
10935ffd83dbSDimitry Andric       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
10945ffd83dbSDimitry Andric   }
10955ffd83dbSDimitry Andric   return IncV;
10965ffd83dbSDimitry Andric }
10975ffd83dbSDimitry Andric 
10985ffd83dbSDimitry Andric /// Check whether we can cheaply express the requested SCEV in terms of
10995ffd83dbSDimitry Andric /// the available PHI SCEV by truncation and/or inversion of the step.
11005ffd83dbSDimitry Andric static bool canBeCheaplyTransformed(ScalarEvolution &SE,
11015ffd83dbSDimitry Andric                                     const SCEVAddRecExpr *Phi,
11025ffd83dbSDimitry Andric                                     const SCEVAddRecExpr *Requested,
11035ffd83dbSDimitry Andric                                     bool &InvertStep) {
1104fe6060f1SDimitry Andric   // We can't transform to match a pointer PHI.
1105fe6060f1SDimitry Andric   if (Phi->getType()->isPointerTy())
1106fe6060f1SDimitry Andric     return false;
1107fe6060f1SDimitry Andric 
11085ffd83dbSDimitry Andric   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
11095ffd83dbSDimitry Andric   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
11105ffd83dbSDimitry Andric 
11115ffd83dbSDimitry Andric   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
11125ffd83dbSDimitry Andric     return false;
11135ffd83dbSDimitry Andric 
11145ffd83dbSDimitry Andric   // Try truncate it if necessary.
11155ffd83dbSDimitry Andric   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
11165ffd83dbSDimitry Andric   if (!Phi)
11175ffd83dbSDimitry Andric     return false;
11185ffd83dbSDimitry Andric 
11195ffd83dbSDimitry Andric   // Check whether truncation will help.
11205ffd83dbSDimitry Andric   if (Phi == Requested) {
11215ffd83dbSDimitry Andric     InvertStep = false;
11225ffd83dbSDimitry Andric     return true;
11235ffd83dbSDimitry Andric   }
11245ffd83dbSDimitry Andric 
11255ffd83dbSDimitry Andric   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1126fe6060f1SDimitry Andric   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
11275ffd83dbSDimitry Andric     InvertStep = true;
11285ffd83dbSDimitry Andric     return true;
11295ffd83dbSDimitry Andric   }
11305ffd83dbSDimitry Andric 
11315ffd83dbSDimitry Andric   return false;
11325ffd83dbSDimitry Andric }
11335ffd83dbSDimitry Andric 
11345ffd83dbSDimitry Andric static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
11355ffd83dbSDimitry Andric   if (!isa<IntegerType>(AR->getType()))
11365ffd83dbSDimitry Andric     return false;
11375ffd83dbSDimitry Andric 
11385ffd83dbSDimitry Andric   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
11395ffd83dbSDimitry Andric   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
11405ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
11415ffd83dbSDimitry Andric   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
11425ffd83dbSDimitry Andric                                             SE.getSignExtendExpr(AR, WideTy));
11435ffd83dbSDimitry Andric   const SCEV *ExtendAfterOp =
11445ffd83dbSDimitry Andric     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
11455ffd83dbSDimitry Andric   return ExtendAfterOp == OpAfterExtend;
11465ffd83dbSDimitry Andric }
11475ffd83dbSDimitry Andric 
11485ffd83dbSDimitry Andric static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
11495ffd83dbSDimitry Andric   if (!isa<IntegerType>(AR->getType()))
11505ffd83dbSDimitry Andric     return false;
11515ffd83dbSDimitry Andric 
11525ffd83dbSDimitry Andric   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
11535ffd83dbSDimitry Andric   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
11545ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
11555ffd83dbSDimitry Andric   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
11565ffd83dbSDimitry Andric                                             SE.getZeroExtendExpr(AR, WideTy));
11575ffd83dbSDimitry Andric   const SCEV *ExtendAfterOp =
11585ffd83dbSDimitry Andric     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
11595ffd83dbSDimitry Andric   return ExtendAfterOp == OpAfterExtend;
11605ffd83dbSDimitry Andric }
11615ffd83dbSDimitry Andric 
11625ffd83dbSDimitry Andric /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
11635ffd83dbSDimitry Andric /// the base addrec, which is the addrec without any non-loop-dominating
11645ffd83dbSDimitry Andric /// values, and return the PHI.
11655ffd83dbSDimitry Andric PHINode *
11665ffd83dbSDimitry Andric SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
11675ffd83dbSDimitry Andric                                         const Loop *L,
11685ffd83dbSDimitry Andric                                         Type *ExpandTy,
11695ffd83dbSDimitry Andric                                         Type *IntTy,
11705ffd83dbSDimitry Andric                                         Type *&TruncTy,
11715ffd83dbSDimitry Andric                                         bool &InvertStep) {
11725ffd83dbSDimitry Andric   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
11735ffd83dbSDimitry Andric 
11745ffd83dbSDimitry Andric   // Reuse a previously-inserted PHI, if present.
11755ffd83dbSDimitry Andric   BasicBlock *LatchBlock = L->getLoopLatch();
11765ffd83dbSDimitry Andric   if (LatchBlock) {
11775ffd83dbSDimitry Andric     PHINode *AddRecPhiMatch = nullptr;
11785ffd83dbSDimitry Andric     Instruction *IncV = nullptr;
11795ffd83dbSDimitry Andric     TruncTy = nullptr;
11805ffd83dbSDimitry Andric     InvertStep = false;
11815ffd83dbSDimitry Andric 
11825ffd83dbSDimitry Andric     // Only try partially matching scevs that need truncation and/or
11835ffd83dbSDimitry Andric     // step-inversion if we know this loop is outside the current loop.
11845ffd83dbSDimitry Andric     bool TryNonMatchingSCEV =
11855ffd83dbSDimitry Andric         IVIncInsertLoop &&
11865ffd83dbSDimitry Andric         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
11875ffd83dbSDimitry Andric 
11885ffd83dbSDimitry Andric     for (PHINode &PN : L->getHeader()->phis()) {
11895ffd83dbSDimitry Andric       if (!SE.isSCEVable(PN.getType()))
11905ffd83dbSDimitry Andric         continue;
11915ffd83dbSDimitry Andric 
1192e8d8bef9SDimitry Andric       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1193e8d8bef9SDimitry Andric       // PHI has no meaning at all.
1194e8d8bef9SDimitry Andric       if (!PN.isComplete()) {
1195fe6060f1SDimitry Andric         SCEV_DEBUG_WITH_TYPE(
1196e8d8bef9SDimitry Andric             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1197e8d8bef9SDimitry Andric         continue;
1198e8d8bef9SDimitry Andric       }
1199e8d8bef9SDimitry Andric 
12005ffd83dbSDimitry Andric       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
12015ffd83dbSDimitry Andric       if (!PhiSCEV)
12025ffd83dbSDimitry Andric         continue;
12035ffd83dbSDimitry Andric 
12045ffd83dbSDimitry Andric       bool IsMatchingSCEV = PhiSCEV == Normalized;
12055ffd83dbSDimitry Andric       // We only handle truncation and inversion of phi recurrences for the
12065ffd83dbSDimitry Andric       // expanded expression if the expanded expression's loop dominates the
12075ffd83dbSDimitry Andric       // loop we insert to. Check now, so we can bail out early.
12085ffd83dbSDimitry Andric       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
12095ffd83dbSDimitry Andric           continue;
12105ffd83dbSDimitry Andric 
12115ffd83dbSDimitry Andric       // TODO: this possibly can be reworked to avoid this cast at all.
12125ffd83dbSDimitry Andric       Instruction *TempIncV =
12135ffd83dbSDimitry Andric           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
12145ffd83dbSDimitry Andric       if (!TempIncV)
12155ffd83dbSDimitry Andric         continue;
12165ffd83dbSDimitry Andric 
12175ffd83dbSDimitry Andric       // Check whether we can reuse this PHI node.
12185ffd83dbSDimitry Andric       if (LSRMode) {
12195ffd83dbSDimitry Andric         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
12205ffd83dbSDimitry Andric           continue;
12215ffd83dbSDimitry Andric       } else {
12225ffd83dbSDimitry Andric         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
12235ffd83dbSDimitry Andric           continue;
12245ffd83dbSDimitry Andric       }
12255ffd83dbSDimitry Andric 
12265ffd83dbSDimitry Andric       // Stop if we have found an exact match SCEV.
12275ffd83dbSDimitry Andric       if (IsMatchingSCEV) {
12285ffd83dbSDimitry Andric         IncV = TempIncV;
12295ffd83dbSDimitry Andric         TruncTy = nullptr;
12305ffd83dbSDimitry Andric         InvertStep = false;
12315ffd83dbSDimitry Andric         AddRecPhiMatch = &PN;
12325ffd83dbSDimitry Andric         break;
12335ffd83dbSDimitry Andric       }
12345ffd83dbSDimitry Andric 
12355ffd83dbSDimitry Andric       // Try whether the phi can be translated into the requested form
12365ffd83dbSDimitry Andric       // (truncated and/or offset by a constant).
12375ffd83dbSDimitry Andric       if ((!TruncTy || InvertStep) &&
12385ffd83dbSDimitry Andric           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
12395ffd83dbSDimitry Andric         // Record the phi node. But don't stop we might find an exact match
12405ffd83dbSDimitry Andric         // later.
12415ffd83dbSDimitry Andric         AddRecPhiMatch = &PN;
12425ffd83dbSDimitry Andric         IncV = TempIncV;
12435ffd83dbSDimitry Andric         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
12445ffd83dbSDimitry Andric       }
12455ffd83dbSDimitry Andric     }
12465ffd83dbSDimitry Andric 
12475ffd83dbSDimitry Andric     if (AddRecPhiMatch) {
12485ffd83dbSDimitry Andric       // Ok, the add recurrence looks usable.
12495ffd83dbSDimitry Andric       // Remember this PHI, even in post-inc mode.
12505ffd83dbSDimitry Andric       InsertedValues.insert(AddRecPhiMatch);
12515ffd83dbSDimitry Andric       // Remember the increment.
12525ffd83dbSDimitry Andric       rememberInstruction(IncV);
1253e8d8bef9SDimitry Andric       // Those values were not actually inserted but re-used.
1254e8d8bef9SDimitry Andric       ReusedValues.insert(AddRecPhiMatch);
1255e8d8bef9SDimitry Andric       ReusedValues.insert(IncV);
12565ffd83dbSDimitry Andric       return AddRecPhiMatch;
12575ffd83dbSDimitry Andric     }
12585ffd83dbSDimitry Andric   }
12595ffd83dbSDimitry Andric 
12605ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
12615ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
12625ffd83dbSDimitry Andric 
12635ffd83dbSDimitry Andric   // Another AddRec may need to be recursively expanded below. For example, if
12645ffd83dbSDimitry Andric   // this AddRec is quadratic, the StepV may itself be an AddRec in this
12655ffd83dbSDimitry Andric   // loop. Remove this loop from the PostIncLoops set before expanding such
12665ffd83dbSDimitry Andric   // AddRecs. Otherwise, we cannot find a valid position for the step
12675ffd83dbSDimitry Andric   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
12685ffd83dbSDimitry Andric   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
12695ffd83dbSDimitry Andric   // so it's not worth implementing SmallPtrSet::swap.
12705ffd83dbSDimitry Andric   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
12715ffd83dbSDimitry Andric   PostIncLoops.clear();
12725ffd83dbSDimitry Andric 
12735ffd83dbSDimitry Andric   // Expand code for the start value into the loop preheader.
12745ffd83dbSDimitry Andric   assert(L->getLoopPreheader() &&
12755ffd83dbSDimitry Andric          "Can't expand add recurrences without a loop preheader!");
1276e8d8bef9SDimitry Andric   Value *StartV =
1277e8d8bef9SDimitry Andric       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1278e8d8bef9SDimitry Andric                         L->getLoopPreheader()->getTerminator(), false);
12795ffd83dbSDimitry Andric 
12805ffd83dbSDimitry Andric   // StartV must have been be inserted into L's preheader to dominate the new
12815ffd83dbSDimitry Andric   // phi.
12825ffd83dbSDimitry Andric   assert(!isa<Instruction>(StartV) ||
12835ffd83dbSDimitry Andric          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
12845ffd83dbSDimitry Andric                                  L->getHeader()));
12855ffd83dbSDimitry Andric 
12865ffd83dbSDimitry Andric   // Expand code for the step value. Do this before creating the PHI so that PHI
12875ffd83dbSDimitry Andric   // reuse code doesn't see an incomplete PHI.
12885ffd83dbSDimitry Andric   const SCEV *Step = Normalized->getStepRecurrence(SE);
12895ffd83dbSDimitry Andric   // If the stride is negative, insert a sub instead of an add for the increment
12905ffd83dbSDimitry Andric   // (unless it's a constant, because subtracts of constants are canonicalized
12915ffd83dbSDimitry Andric   // to adds).
12925ffd83dbSDimitry Andric   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
12935ffd83dbSDimitry Andric   if (useSubtract)
12945ffd83dbSDimitry Andric     Step = SE.getNegativeSCEV(Step);
12955ffd83dbSDimitry Andric   // Expand the step somewhere that dominates the loop header.
1296e8d8bef9SDimitry Andric   Value *StepV = expandCodeForImpl(
1297e8d8bef9SDimitry Andric       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
12985ffd83dbSDimitry Andric 
12995ffd83dbSDimitry Andric   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
13005ffd83dbSDimitry Andric   // we actually do emit an addition.  It does not apply if we emit a
13015ffd83dbSDimitry Andric   // subtraction.
13025ffd83dbSDimitry Andric   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
13035ffd83dbSDimitry Andric   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
13045ffd83dbSDimitry Andric 
13055ffd83dbSDimitry Andric   // Create the PHI.
13065ffd83dbSDimitry Andric   BasicBlock *Header = L->getHeader();
13075ffd83dbSDimitry Andric   Builder.SetInsertPoint(Header, Header->begin());
13085ffd83dbSDimitry Andric   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
13095ffd83dbSDimitry Andric   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
13105ffd83dbSDimitry Andric                                   Twine(IVName) + ".iv");
13115ffd83dbSDimitry Andric 
13125ffd83dbSDimitry Andric   // Create the step instructions and populate the PHI.
13135ffd83dbSDimitry Andric   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
13145ffd83dbSDimitry Andric     BasicBlock *Pred = *HPI;
13155ffd83dbSDimitry Andric 
13165ffd83dbSDimitry Andric     // Add a start value.
13175ffd83dbSDimitry Andric     if (!L->contains(Pred)) {
13185ffd83dbSDimitry Andric       PN->addIncoming(StartV, Pred);
13195ffd83dbSDimitry Andric       continue;
13205ffd83dbSDimitry Andric     }
13215ffd83dbSDimitry Andric 
13225ffd83dbSDimitry Andric     // Create a step value and add it to the PHI.
13235ffd83dbSDimitry Andric     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
13245ffd83dbSDimitry Andric     // instructions at IVIncInsertPos.
13255ffd83dbSDimitry Andric     Instruction *InsertPos = L == IVIncInsertLoop ?
13265ffd83dbSDimitry Andric       IVIncInsertPos : Pred->getTerminator();
13275ffd83dbSDimitry Andric     Builder.SetInsertPoint(InsertPos);
13285ffd83dbSDimitry Andric     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
13295ffd83dbSDimitry Andric 
13305ffd83dbSDimitry Andric     if (isa<OverflowingBinaryOperator>(IncV)) {
13315ffd83dbSDimitry Andric       if (IncrementIsNUW)
13325ffd83dbSDimitry Andric         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
13335ffd83dbSDimitry Andric       if (IncrementIsNSW)
13345ffd83dbSDimitry Andric         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
13355ffd83dbSDimitry Andric     }
13365ffd83dbSDimitry Andric     PN->addIncoming(IncV, Pred);
13375ffd83dbSDimitry Andric   }
13385ffd83dbSDimitry Andric 
13395ffd83dbSDimitry Andric   // After expanding subexpressions, restore the PostIncLoops set so the caller
13405ffd83dbSDimitry Andric   // can ensure that IVIncrement dominates the current uses.
13415ffd83dbSDimitry Andric   PostIncLoops = SavedPostIncLoops;
13425ffd83dbSDimitry Andric 
1343fe6060f1SDimitry Andric   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1344fe6060f1SDimitry Andric   // effective when we are able to use an IV inserted here, so record it.
13455ffd83dbSDimitry Andric   InsertedValues.insert(PN);
1346fe6060f1SDimitry Andric   InsertedIVs.push_back(PN);
13475ffd83dbSDimitry Andric   return PN;
13485ffd83dbSDimitry Andric }
13495ffd83dbSDimitry Andric 
13505ffd83dbSDimitry Andric Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
13515ffd83dbSDimitry Andric   Type *STy = S->getType();
13525ffd83dbSDimitry Andric   Type *IntTy = SE.getEffectiveSCEVType(STy);
13535ffd83dbSDimitry Andric   const Loop *L = S->getLoop();
13545ffd83dbSDimitry Andric 
13555ffd83dbSDimitry Andric   // Determine a normalized form of this expression, which is the expression
13565ffd83dbSDimitry Andric   // before any post-inc adjustment is made.
13575ffd83dbSDimitry Andric   const SCEVAddRecExpr *Normalized = S;
13585ffd83dbSDimitry Andric   if (PostIncLoops.count(L)) {
13595ffd83dbSDimitry Andric     PostIncLoopSet Loops;
13605ffd83dbSDimitry Andric     Loops.insert(L);
13615ffd83dbSDimitry Andric     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
13625ffd83dbSDimitry Andric   }
13635ffd83dbSDimitry Andric 
13645ffd83dbSDimitry Andric   // Strip off any non-loop-dominating component from the addrec start.
13655ffd83dbSDimitry Andric   const SCEV *Start = Normalized->getStart();
13665ffd83dbSDimitry Andric   const SCEV *PostLoopOffset = nullptr;
13675ffd83dbSDimitry Andric   if (!SE.properlyDominates(Start, L->getHeader())) {
13685ffd83dbSDimitry Andric     PostLoopOffset = Start;
13695ffd83dbSDimitry Andric     Start = SE.getConstant(Normalized->getType(), 0);
13705ffd83dbSDimitry Andric     Normalized = cast<SCEVAddRecExpr>(
13715ffd83dbSDimitry Andric       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
13725ffd83dbSDimitry Andric                        Normalized->getLoop(),
13735ffd83dbSDimitry Andric                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
13745ffd83dbSDimitry Andric   }
13755ffd83dbSDimitry Andric 
13765ffd83dbSDimitry Andric   // Strip off any non-loop-dominating component from the addrec step.
13775ffd83dbSDimitry Andric   const SCEV *Step = Normalized->getStepRecurrence(SE);
13785ffd83dbSDimitry Andric   const SCEV *PostLoopScale = nullptr;
13795ffd83dbSDimitry Andric   if (!SE.dominates(Step, L->getHeader())) {
13805ffd83dbSDimitry Andric     PostLoopScale = Step;
13815ffd83dbSDimitry Andric     Step = SE.getConstant(Normalized->getType(), 1);
13825ffd83dbSDimitry Andric     if (!Start->isZero()) {
13835ffd83dbSDimitry Andric         // The normalization below assumes that Start is constant zero, so if
13845ffd83dbSDimitry Andric         // it isn't re-associate Start to PostLoopOffset.
13855ffd83dbSDimitry Andric         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
13865ffd83dbSDimitry Andric         PostLoopOffset = Start;
13875ffd83dbSDimitry Andric         Start = SE.getConstant(Normalized->getType(), 0);
13885ffd83dbSDimitry Andric     }
13895ffd83dbSDimitry Andric     Normalized =
13905ffd83dbSDimitry Andric       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
13915ffd83dbSDimitry Andric                              Start, Step, Normalized->getLoop(),
13925ffd83dbSDimitry Andric                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
13935ffd83dbSDimitry Andric   }
13945ffd83dbSDimitry Andric 
13955ffd83dbSDimitry Andric   // Expand the core addrec. If we need post-loop scaling, force it to
13965ffd83dbSDimitry Andric   // expand to an integer type to avoid the need for additional casting.
13975ffd83dbSDimitry Andric   Type *ExpandTy = PostLoopScale ? IntTy : STy;
13985ffd83dbSDimitry Andric   // We can't use a pointer type for the addrec if the pointer type is
13995ffd83dbSDimitry Andric   // non-integral.
14005ffd83dbSDimitry Andric   Type *AddRecPHIExpandTy =
14015ffd83dbSDimitry Andric       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
14025ffd83dbSDimitry Andric 
14035ffd83dbSDimitry Andric   // In some cases, we decide to reuse an existing phi node but need to truncate
14045ffd83dbSDimitry Andric   // it and/or invert the step.
14055ffd83dbSDimitry Andric   Type *TruncTy = nullptr;
14065ffd83dbSDimitry Andric   bool InvertStep = false;
14075ffd83dbSDimitry Andric   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
14085ffd83dbSDimitry Andric                                           IntTy, TruncTy, InvertStep);
14095ffd83dbSDimitry Andric 
14105ffd83dbSDimitry Andric   // Accommodate post-inc mode, if necessary.
14115ffd83dbSDimitry Andric   Value *Result;
14125ffd83dbSDimitry Andric   if (!PostIncLoops.count(L))
14135ffd83dbSDimitry Andric     Result = PN;
14145ffd83dbSDimitry Andric   else {
14155ffd83dbSDimitry Andric     // In PostInc mode, use the post-incremented value.
14165ffd83dbSDimitry Andric     BasicBlock *LatchBlock = L->getLoopLatch();
14175ffd83dbSDimitry Andric     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
14185ffd83dbSDimitry Andric     Result = PN->getIncomingValueForBlock(LatchBlock);
14195ffd83dbSDimitry Andric 
1420e8d8bef9SDimitry Andric     // We might be introducing a new use of the post-inc IV that is not poison
1421e8d8bef9SDimitry Andric     // safe, in which case we should drop poison generating flags. Only keep
1422e8d8bef9SDimitry Andric     // those flags for which SCEV has proven that they always hold.
1423e8d8bef9SDimitry Andric     if (isa<OverflowingBinaryOperator>(Result)) {
1424e8d8bef9SDimitry Andric       auto *I = cast<Instruction>(Result);
1425e8d8bef9SDimitry Andric       if (!S->hasNoUnsignedWrap())
1426e8d8bef9SDimitry Andric         I->setHasNoUnsignedWrap(false);
1427e8d8bef9SDimitry Andric       if (!S->hasNoSignedWrap())
1428e8d8bef9SDimitry Andric         I->setHasNoSignedWrap(false);
1429e8d8bef9SDimitry Andric     }
1430e8d8bef9SDimitry Andric 
14315ffd83dbSDimitry Andric     // For an expansion to use the postinc form, the client must call
14325ffd83dbSDimitry Andric     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
14335ffd83dbSDimitry Andric     // or dominated by IVIncInsertPos.
14345ffd83dbSDimitry Andric     if (isa<Instruction>(Result) &&
14355ffd83dbSDimitry Andric         !SE.DT.dominates(cast<Instruction>(Result),
14365ffd83dbSDimitry Andric                          &*Builder.GetInsertPoint())) {
14375ffd83dbSDimitry Andric       // The induction variable's postinc expansion does not dominate this use.
14385ffd83dbSDimitry Andric       // IVUsers tries to prevent this case, so it is rare. However, it can
14395ffd83dbSDimitry Andric       // happen when an IVUser outside the loop is not dominated by the latch
14405ffd83dbSDimitry Andric       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
14415ffd83dbSDimitry Andric       // all cases. Consider a phi outside whose operand is replaced during
14425ffd83dbSDimitry Andric       // expansion with the value of the postinc user. Without fundamentally
14435ffd83dbSDimitry Andric       // changing the way postinc users are tracked, the only remedy is
14445ffd83dbSDimitry Andric       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
14455ffd83dbSDimitry Andric       // but hopefully expandCodeFor handles that.
14465ffd83dbSDimitry Andric       bool useSubtract =
14475ffd83dbSDimitry Andric         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
14485ffd83dbSDimitry Andric       if (useSubtract)
14495ffd83dbSDimitry Andric         Step = SE.getNegativeSCEV(Step);
14505ffd83dbSDimitry Andric       Value *StepV;
14515ffd83dbSDimitry Andric       {
14525ffd83dbSDimitry Andric         // Expand the step somewhere that dominates the loop header.
14535ffd83dbSDimitry Andric         SCEVInsertPointGuard Guard(Builder, this);
1454e8d8bef9SDimitry Andric         StepV = expandCodeForImpl(
1455e8d8bef9SDimitry Andric             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
14565ffd83dbSDimitry Andric       }
14575ffd83dbSDimitry Andric       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
14585ffd83dbSDimitry Andric     }
14595ffd83dbSDimitry Andric   }
14605ffd83dbSDimitry Andric 
14615ffd83dbSDimitry Andric   // We have decided to reuse an induction variable of a dominating loop. Apply
14625ffd83dbSDimitry Andric   // truncation and/or inversion of the step.
14635ffd83dbSDimitry Andric   if (TruncTy) {
14645ffd83dbSDimitry Andric     Type *ResTy = Result->getType();
14655ffd83dbSDimitry Andric     // Normalize the result type.
14665ffd83dbSDimitry Andric     if (ResTy != SE.getEffectiveSCEVType(ResTy))
14675ffd83dbSDimitry Andric       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
14685ffd83dbSDimitry Andric     // Truncate the result.
1469e8d8bef9SDimitry Andric     if (TruncTy != Result->getType())
14705ffd83dbSDimitry Andric       Result = Builder.CreateTrunc(Result, TruncTy);
1471e8d8bef9SDimitry Andric 
14725ffd83dbSDimitry Andric     // Invert the result.
1473e8d8bef9SDimitry Andric     if (InvertStep)
1474e8d8bef9SDimitry Andric       Result = Builder.CreateSub(
1475e8d8bef9SDimitry Andric           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
14765ffd83dbSDimitry Andric   }
14775ffd83dbSDimitry Andric 
14785ffd83dbSDimitry Andric   // Re-apply any non-loop-dominating scale.
14795ffd83dbSDimitry Andric   if (PostLoopScale) {
14805ffd83dbSDimitry Andric     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
14815ffd83dbSDimitry Andric     Result = InsertNoopCastOfTo(Result, IntTy);
14825ffd83dbSDimitry Andric     Result = Builder.CreateMul(Result,
1483e8d8bef9SDimitry Andric                                expandCodeForImpl(PostLoopScale, IntTy, false));
14845ffd83dbSDimitry Andric   }
14855ffd83dbSDimitry Andric 
14865ffd83dbSDimitry Andric   // Re-apply any non-loop-dominating offset.
14875ffd83dbSDimitry Andric   if (PostLoopOffset) {
14885ffd83dbSDimitry Andric     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
14895ffd83dbSDimitry Andric       if (Result->getType()->isIntegerTy()) {
1490e8d8bef9SDimitry Andric         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
14915ffd83dbSDimitry Andric         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
14925ffd83dbSDimitry Andric       } else {
14935ffd83dbSDimitry Andric         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
14945ffd83dbSDimitry Andric       }
14955ffd83dbSDimitry Andric     } else {
14965ffd83dbSDimitry Andric       Result = InsertNoopCastOfTo(Result, IntTy);
1497e8d8bef9SDimitry Andric       Result = Builder.CreateAdd(
1498e8d8bef9SDimitry Andric           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
14995ffd83dbSDimitry Andric     }
15005ffd83dbSDimitry Andric   }
15015ffd83dbSDimitry Andric 
15025ffd83dbSDimitry Andric   return Result;
15035ffd83dbSDimitry Andric }
15045ffd83dbSDimitry Andric 
15055ffd83dbSDimitry Andric Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
15065ffd83dbSDimitry Andric   // In canonical mode we compute the addrec as an expression of a canonical IV
15075ffd83dbSDimitry Andric   // using evaluateAtIteration and expand the resulting SCEV expression. This
15085ffd83dbSDimitry Andric   // way we avoid introducing new IVs to carry on the comutation of the addrec
15095ffd83dbSDimitry Andric   // throughout the loop.
15105ffd83dbSDimitry Andric   //
15115ffd83dbSDimitry Andric   // For nested addrecs evaluateAtIteration might need a canonical IV of a
15125ffd83dbSDimitry Andric   // type wider than the addrec itself. Emitting a canonical IV of the
15135ffd83dbSDimitry Andric   // proper type might produce non-legal types, for example expanding an i64
15145ffd83dbSDimitry Andric   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
15155ffd83dbSDimitry Andric   // back to non-canonical mode for nested addrecs.
15165ffd83dbSDimitry Andric   if (!CanonicalMode || (S->getNumOperands() > 2))
15175ffd83dbSDimitry Andric     return expandAddRecExprLiterally(S);
15185ffd83dbSDimitry Andric 
15195ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
15205ffd83dbSDimitry Andric   const Loop *L = S->getLoop();
15215ffd83dbSDimitry Andric 
15225ffd83dbSDimitry Andric   // First check for an existing canonical IV in a suitable type.
15235ffd83dbSDimitry Andric   PHINode *CanonicalIV = nullptr;
15245ffd83dbSDimitry Andric   if (PHINode *PN = L->getCanonicalInductionVariable())
15255ffd83dbSDimitry Andric     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
15265ffd83dbSDimitry Andric       CanonicalIV = PN;
15275ffd83dbSDimitry Andric 
15285ffd83dbSDimitry Andric   // Rewrite an AddRec in terms of the canonical induction variable, if
15295ffd83dbSDimitry Andric   // its type is more narrow.
15305ffd83dbSDimitry Andric   if (CanonicalIV &&
1531fe6060f1SDimitry Andric       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1532fe6060f1SDimitry Andric       !S->getType()->isPointerTy()) {
15335ffd83dbSDimitry Andric     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
15345ffd83dbSDimitry Andric     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
15355ffd83dbSDimitry Andric       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
15365ffd83dbSDimitry Andric     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
15375ffd83dbSDimitry Andric                                        S->getNoWrapFlags(SCEV::FlagNW)));
15385ffd83dbSDimitry Andric     BasicBlock::iterator NewInsertPt =
1539e8d8bef9SDimitry Andric         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1540e8d8bef9SDimitry Andric     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1541e8d8bef9SDimitry Andric                           &*NewInsertPt, false);
15425ffd83dbSDimitry Andric     return V;
15435ffd83dbSDimitry Andric   }
15445ffd83dbSDimitry Andric 
15455ffd83dbSDimitry Andric   // {X,+,F} --> X + {0,+,F}
15465ffd83dbSDimitry Andric   if (!S->getStart()->isZero()) {
1547*349cc55cSDimitry Andric     if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) {
1548*349cc55cSDimitry Andric       Value *StartV = expand(SE.getPointerBase(S));
1549*349cc55cSDimitry Andric       assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1550*349cc55cSDimitry Andric       return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV);
1551*349cc55cSDimitry Andric     }
1552*349cc55cSDimitry Andric 
1553e8d8bef9SDimitry Andric     SmallVector<const SCEV *, 4> NewOps(S->operands());
15545ffd83dbSDimitry Andric     NewOps[0] = SE.getConstant(Ty, 0);
15555ffd83dbSDimitry Andric     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
15565ffd83dbSDimitry Andric                                         S->getNoWrapFlags(SCEV::FlagNW));
15575ffd83dbSDimitry Andric 
15585ffd83dbSDimitry Andric     // Just do a normal add. Pre-expand the operands to suppress folding.
15595ffd83dbSDimitry Andric     //
15605ffd83dbSDimitry Andric     // The LHS and RHS values are factored out of the expand call to make the
15615ffd83dbSDimitry Andric     // output independent of the argument evaluation order.
15625ffd83dbSDimitry Andric     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
15635ffd83dbSDimitry Andric     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
15645ffd83dbSDimitry Andric     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
15655ffd83dbSDimitry Andric   }
15665ffd83dbSDimitry Andric 
15675ffd83dbSDimitry Andric   // If we don't yet have a canonical IV, create one.
15685ffd83dbSDimitry Andric   if (!CanonicalIV) {
15695ffd83dbSDimitry Andric     // Create and insert the PHI node for the induction variable in the
15705ffd83dbSDimitry Andric     // specified loop.
15715ffd83dbSDimitry Andric     BasicBlock *Header = L->getHeader();
15725ffd83dbSDimitry Andric     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
15735ffd83dbSDimitry Andric     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
15745ffd83dbSDimitry Andric                                   &Header->front());
15755ffd83dbSDimitry Andric     rememberInstruction(CanonicalIV);
15765ffd83dbSDimitry Andric 
15775ffd83dbSDimitry Andric     SmallSet<BasicBlock *, 4> PredSeen;
15785ffd83dbSDimitry Andric     Constant *One = ConstantInt::get(Ty, 1);
15795ffd83dbSDimitry Andric     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
15805ffd83dbSDimitry Andric       BasicBlock *HP = *HPI;
15815ffd83dbSDimitry Andric       if (!PredSeen.insert(HP).second) {
15825ffd83dbSDimitry Andric         // There must be an incoming value for each predecessor, even the
15835ffd83dbSDimitry Andric         // duplicates!
15845ffd83dbSDimitry Andric         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
15855ffd83dbSDimitry Andric         continue;
15865ffd83dbSDimitry Andric       }
15875ffd83dbSDimitry Andric 
15885ffd83dbSDimitry Andric       if (L->contains(HP)) {
15895ffd83dbSDimitry Andric         // Insert a unit add instruction right before the terminator
15905ffd83dbSDimitry Andric         // corresponding to the back-edge.
15915ffd83dbSDimitry Andric         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
15925ffd83dbSDimitry Andric                                                      "indvar.next",
15935ffd83dbSDimitry Andric                                                      HP->getTerminator());
15945ffd83dbSDimitry Andric         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
15955ffd83dbSDimitry Andric         rememberInstruction(Add);
15965ffd83dbSDimitry Andric         CanonicalIV->addIncoming(Add, HP);
15975ffd83dbSDimitry Andric       } else {
15985ffd83dbSDimitry Andric         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
15995ffd83dbSDimitry Andric       }
16005ffd83dbSDimitry Andric     }
16015ffd83dbSDimitry Andric   }
16025ffd83dbSDimitry Andric 
16035ffd83dbSDimitry Andric   // {0,+,1} --> Insert a canonical induction variable into the loop!
16045ffd83dbSDimitry Andric   if (S->isAffine() && S->getOperand(1)->isOne()) {
16055ffd83dbSDimitry Andric     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
16065ffd83dbSDimitry Andric            "IVs with types different from the canonical IV should "
16075ffd83dbSDimitry Andric            "already have been handled!");
16085ffd83dbSDimitry Andric     return CanonicalIV;
16095ffd83dbSDimitry Andric   }
16105ffd83dbSDimitry Andric 
16115ffd83dbSDimitry Andric   // {0,+,F} --> {0,+,1} * F
16125ffd83dbSDimitry Andric 
16135ffd83dbSDimitry Andric   // If this is a simple linear addrec, emit it now as a special case.
16145ffd83dbSDimitry Andric   if (S->isAffine())    // {0,+,F} --> i*F
16155ffd83dbSDimitry Andric     return
16165ffd83dbSDimitry Andric       expand(SE.getTruncateOrNoop(
16175ffd83dbSDimitry Andric         SE.getMulExpr(SE.getUnknown(CanonicalIV),
16185ffd83dbSDimitry Andric                       SE.getNoopOrAnyExtend(S->getOperand(1),
16195ffd83dbSDimitry Andric                                             CanonicalIV->getType())),
16205ffd83dbSDimitry Andric         Ty));
16215ffd83dbSDimitry Andric 
16225ffd83dbSDimitry Andric   // If this is a chain of recurrences, turn it into a closed form, using the
16235ffd83dbSDimitry Andric   // folders, then expandCodeFor the closed form.  This allows the folders to
16245ffd83dbSDimitry Andric   // simplify the expression without having to build a bunch of special code
16255ffd83dbSDimitry Andric   // into this folder.
16265ffd83dbSDimitry Andric   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
16275ffd83dbSDimitry Andric 
16285ffd83dbSDimitry Andric   // Promote S up to the canonical IV type, if the cast is foldable.
16295ffd83dbSDimitry Andric   const SCEV *NewS = S;
16305ffd83dbSDimitry Andric   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
16315ffd83dbSDimitry Andric   if (isa<SCEVAddRecExpr>(Ext))
16325ffd83dbSDimitry Andric     NewS = Ext;
16335ffd83dbSDimitry Andric 
16345ffd83dbSDimitry Andric   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
16355ffd83dbSDimitry Andric   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
16365ffd83dbSDimitry Andric 
16375ffd83dbSDimitry Andric   // Truncate the result down to the original type, if needed.
16385ffd83dbSDimitry Andric   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
16395ffd83dbSDimitry Andric   return expand(T);
16405ffd83dbSDimitry Andric }
16415ffd83dbSDimitry Andric 
1642e8d8bef9SDimitry Andric Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1643e8d8bef9SDimitry Andric   Value *V =
1644e8d8bef9SDimitry Andric       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1645fe6060f1SDimitry Andric   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1646fe6060f1SDimitry Andric                            GetOptimalInsertionPointForCastOf(V));
1647e8d8bef9SDimitry Andric }
1648e8d8bef9SDimitry Andric 
16495ffd83dbSDimitry Andric Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
16505ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1651e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1652e8d8bef9SDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1653e8d8bef9SDimitry Andric       false);
1654e8d8bef9SDimitry Andric   return Builder.CreateTrunc(V, Ty);
16555ffd83dbSDimitry Andric }
16565ffd83dbSDimitry Andric 
16575ffd83dbSDimitry Andric Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
16585ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1659e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1660e8d8bef9SDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1661e8d8bef9SDimitry Andric       false);
1662e8d8bef9SDimitry Andric   return Builder.CreateZExt(V, Ty);
16635ffd83dbSDimitry Andric }
16645ffd83dbSDimitry Andric 
16655ffd83dbSDimitry Andric Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
16665ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1667e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1668e8d8bef9SDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1669e8d8bef9SDimitry Andric       false);
1670e8d8bef9SDimitry Andric   return Builder.CreateSExt(V, Ty);
16715ffd83dbSDimitry Andric }
16725ffd83dbSDimitry Andric 
16735ffd83dbSDimitry Andric Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
16745ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
16755ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
16765ffd83dbSDimitry Andric   for (int i = S->getNumOperands()-2; i >= 0; --i) {
16775ffd83dbSDimitry Andric     // In the case of mixed integer and pointer types, do the
16785ffd83dbSDimitry Andric     // rest of the comparisons as integer.
16795ffd83dbSDimitry Andric     Type *OpTy = S->getOperand(i)->getType();
16805ffd83dbSDimitry Andric     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
16815ffd83dbSDimitry Andric       Ty = SE.getEffectiveSCEVType(Ty);
16825ffd83dbSDimitry Andric       LHS = InsertNoopCastOfTo(LHS, Ty);
16835ffd83dbSDimitry Andric     }
1684e8d8bef9SDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1685fe6060f1SDimitry Andric     Value *Sel;
1686fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
1687fe6060f1SDimitry Andric       Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1688fe6060f1SDimitry Andric                                     /*FMFSource=*/nullptr, "smax");
1689fe6060f1SDimitry Andric     else {
16905ffd83dbSDimitry Andric       Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1691fe6060f1SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1692fe6060f1SDimitry Andric     }
16935ffd83dbSDimitry Andric     LHS = Sel;
16945ffd83dbSDimitry Andric   }
16955ffd83dbSDimitry Andric   // In the case of mixed integer and pointer types, cast the
16965ffd83dbSDimitry Andric   // final result back to the pointer type.
16975ffd83dbSDimitry Andric   if (LHS->getType() != S->getType())
16985ffd83dbSDimitry Andric     LHS = InsertNoopCastOfTo(LHS, S->getType());
16995ffd83dbSDimitry Andric   return LHS;
17005ffd83dbSDimitry Andric }
17015ffd83dbSDimitry Andric 
17025ffd83dbSDimitry Andric Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
17035ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
17045ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
17055ffd83dbSDimitry Andric   for (int i = S->getNumOperands()-2; i >= 0; --i) {
17065ffd83dbSDimitry Andric     // In the case of mixed integer and pointer types, do the
17075ffd83dbSDimitry Andric     // rest of the comparisons as integer.
17085ffd83dbSDimitry Andric     Type *OpTy = S->getOperand(i)->getType();
17095ffd83dbSDimitry Andric     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
17105ffd83dbSDimitry Andric       Ty = SE.getEffectiveSCEVType(Ty);
17115ffd83dbSDimitry Andric       LHS = InsertNoopCastOfTo(LHS, Ty);
17125ffd83dbSDimitry Andric     }
1713e8d8bef9SDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1714fe6060f1SDimitry Andric     Value *Sel;
1715fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
1716fe6060f1SDimitry Andric       Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1717fe6060f1SDimitry Andric                                     /*FMFSource=*/nullptr, "umax");
1718fe6060f1SDimitry Andric     else {
17195ffd83dbSDimitry Andric       Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1720fe6060f1SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1721fe6060f1SDimitry Andric     }
17225ffd83dbSDimitry Andric     LHS = Sel;
17235ffd83dbSDimitry Andric   }
17245ffd83dbSDimitry Andric   // In the case of mixed integer and pointer types, cast the
17255ffd83dbSDimitry Andric   // final result back to the pointer type.
17265ffd83dbSDimitry Andric   if (LHS->getType() != S->getType())
17275ffd83dbSDimitry Andric     LHS = InsertNoopCastOfTo(LHS, S->getType());
17285ffd83dbSDimitry Andric   return LHS;
17295ffd83dbSDimitry Andric }
17305ffd83dbSDimitry Andric 
17315ffd83dbSDimitry Andric Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
17325ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
17335ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
17345ffd83dbSDimitry Andric   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
17355ffd83dbSDimitry Andric     // In the case of mixed integer and pointer types, do the
17365ffd83dbSDimitry Andric     // rest of the comparisons as integer.
17375ffd83dbSDimitry Andric     Type *OpTy = S->getOperand(i)->getType();
17385ffd83dbSDimitry Andric     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
17395ffd83dbSDimitry Andric       Ty = SE.getEffectiveSCEVType(Ty);
17405ffd83dbSDimitry Andric       LHS = InsertNoopCastOfTo(LHS, Ty);
17415ffd83dbSDimitry Andric     }
1742e8d8bef9SDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1743fe6060f1SDimitry Andric     Value *Sel;
1744fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
1745fe6060f1SDimitry Andric       Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1746fe6060f1SDimitry Andric                                     /*FMFSource=*/nullptr, "smin");
1747fe6060f1SDimitry Andric     else {
17485ffd83dbSDimitry Andric       Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1749fe6060f1SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1750fe6060f1SDimitry Andric     }
17515ffd83dbSDimitry Andric     LHS = Sel;
17525ffd83dbSDimitry Andric   }
17535ffd83dbSDimitry Andric   // In the case of mixed integer and pointer types, cast the
17545ffd83dbSDimitry Andric   // final result back to the pointer type.
17555ffd83dbSDimitry Andric   if (LHS->getType() != S->getType())
17565ffd83dbSDimitry Andric     LHS = InsertNoopCastOfTo(LHS, S->getType());
17575ffd83dbSDimitry Andric   return LHS;
17585ffd83dbSDimitry Andric }
17595ffd83dbSDimitry Andric 
17605ffd83dbSDimitry Andric Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
17615ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
17625ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
17635ffd83dbSDimitry Andric   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
17645ffd83dbSDimitry Andric     // In the case of mixed integer and pointer types, do the
17655ffd83dbSDimitry Andric     // rest of the comparisons as integer.
17665ffd83dbSDimitry Andric     Type *OpTy = S->getOperand(i)->getType();
17675ffd83dbSDimitry Andric     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
17685ffd83dbSDimitry Andric       Ty = SE.getEffectiveSCEVType(Ty);
17695ffd83dbSDimitry Andric       LHS = InsertNoopCastOfTo(LHS, Ty);
17705ffd83dbSDimitry Andric     }
1771e8d8bef9SDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1772fe6060f1SDimitry Andric     Value *Sel;
1773fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
1774fe6060f1SDimitry Andric       Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1775fe6060f1SDimitry Andric                                     /*FMFSource=*/nullptr, "umin");
1776fe6060f1SDimitry Andric     else {
17775ffd83dbSDimitry Andric       Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1778fe6060f1SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1779fe6060f1SDimitry Andric     }
17805ffd83dbSDimitry Andric     LHS = Sel;
17815ffd83dbSDimitry Andric   }
17825ffd83dbSDimitry Andric   // In the case of mixed integer and pointer types, cast the
17835ffd83dbSDimitry Andric   // final result back to the pointer type.
17845ffd83dbSDimitry Andric   if (LHS->getType() != S->getType())
17855ffd83dbSDimitry Andric     LHS = InsertNoopCastOfTo(LHS, S->getType());
17865ffd83dbSDimitry Andric   return LHS;
17875ffd83dbSDimitry Andric }
17885ffd83dbSDimitry Andric 
1789e8d8bef9SDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1790e8d8bef9SDimitry Andric                                        Instruction *IP, bool Root) {
17915ffd83dbSDimitry Andric   setInsertPoint(IP);
1792e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(SH, Ty, Root);
1793e8d8bef9SDimitry Andric   return V;
17945ffd83dbSDimitry Andric }
17955ffd83dbSDimitry Andric 
1796e8d8bef9SDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
17975ffd83dbSDimitry Andric   // Expand the code for this SCEV.
17985ffd83dbSDimitry Andric   Value *V = expand(SH);
1799e8d8bef9SDimitry Andric 
1800e8d8bef9SDimitry Andric   if (PreserveLCSSA) {
1801e8d8bef9SDimitry Andric     if (auto *Inst = dyn_cast<Instruction>(V)) {
1802e8d8bef9SDimitry Andric       // Create a temporary instruction to at the current insertion point, so we
1803e8d8bef9SDimitry Andric       // can hand it off to the helper to create LCSSA PHIs if required for the
1804e8d8bef9SDimitry Andric       // new use.
1805e8d8bef9SDimitry Andric       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1806e8d8bef9SDimitry Andric       // would accept a insertion point and return an LCSSA phi for that
1807e8d8bef9SDimitry Andric       // insertion point, so there is no need to insert & remove the temporary
1808e8d8bef9SDimitry Andric       // instruction.
1809e8d8bef9SDimitry Andric       Instruction *Tmp;
1810e8d8bef9SDimitry Andric       if (Inst->getType()->isIntegerTy())
1811e8d8bef9SDimitry Andric         Tmp =
1812e8d8bef9SDimitry Andric             cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1813e8d8bef9SDimitry Andric       else {
1814e8d8bef9SDimitry Andric         assert(Inst->getType()->isPointerTy());
1815fe6060f1SDimitry Andric         Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1816fe6060f1SDimitry Andric             Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1817e8d8bef9SDimitry Andric       }
1818e8d8bef9SDimitry Andric       V = fixupLCSSAFormFor(Tmp, 0);
1819e8d8bef9SDimitry Andric 
1820e8d8bef9SDimitry Andric       // Clean up temporary instruction.
1821e8d8bef9SDimitry Andric       InsertedValues.erase(Tmp);
1822e8d8bef9SDimitry Andric       InsertedPostIncValues.erase(Tmp);
1823e8d8bef9SDimitry Andric       Tmp->eraseFromParent();
1824e8d8bef9SDimitry Andric     }
1825e8d8bef9SDimitry Andric   }
1826e8d8bef9SDimitry Andric 
1827e8d8bef9SDimitry Andric   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
18285ffd83dbSDimitry Andric   if (Ty) {
18295ffd83dbSDimitry Andric     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
18305ffd83dbSDimitry Andric            "non-trivial casts should be done with the SCEVs directly!");
18315ffd83dbSDimitry Andric     V = InsertNoopCastOfTo(V, Ty);
18325ffd83dbSDimitry Andric   }
18335ffd83dbSDimitry Andric   return V;
18345ffd83dbSDimitry Andric }
18355ffd83dbSDimitry Andric 
1836*349cc55cSDimitry Andric /// Check whether value has nuw/nsw/exact set but SCEV does not.
1837*349cc55cSDimitry Andric /// TODO: In reality it is better to check the poison recursively
1838*349cc55cSDimitry Andric /// but this is better than nothing.
1839*349cc55cSDimitry Andric static bool SCEVLostPoisonFlags(const SCEV *S, const Instruction *I) {
1840*349cc55cSDimitry Andric   if (isa<OverflowingBinaryOperator>(I)) {
1841*349cc55cSDimitry Andric     if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
1842*349cc55cSDimitry Andric       if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
1843*349cc55cSDimitry Andric         return true;
1844*349cc55cSDimitry Andric       if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
1845*349cc55cSDimitry Andric         return true;
1846*349cc55cSDimitry Andric     }
1847*349cc55cSDimitry Andric   } else if (isa<PossiblyExactOperator>(I) && I->isExact())
1848*349cc55cSDimitry Andric     return true;
1849*349cc55cSDimitry Andric   return false;
1850*349cc55cSDimitry Andric }
1851*349cc55cSDimitry Andric 
18525ffd83dbSDimitry Andric ScalarEvolution::ValueOffsetPair
18535ffd83dbSDimitry Andric SCEVExpander::FindValueInExprValueMap(const SCEV *S,
18545ffd83dbSDimitry Andric                                       const Instruction *InsertPt) {
1855fe6060f1SDimitry Andric   auto *Set = SE.getSCEVValues(S);
18565ffd83dbSDimitry Andric   // If the expansion is not in CanonicalMode, and the SCEV contains any
18575ffd83dbSDimitry Andric   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
18585ffd83dbSDimitry Andric   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
18595ffd83dbSDimitry Andric     // If S is scConstant, it may be worse to reuse an existing Value.
18605ffd83dbSDimitry Andric     if (S->getSCEVType() != scConstant && Set) {
1861*349cc55cSDimitry Andric       // Choose a Value from the set which dominates the InsertPt.
1862*349cc55cSDimitry Andric       // InsertPt should be inside the Value's parent loop so as not to break
18635ffd83dbSDimitry Andric       // the LCSSA form.
18645ffd83dbSDimitry Andric       for (auto const &VOPair : *Set) {
18655ffd83dbSDimitry Andric         Value *V = VOPair.first;
18665ffd83dbSDimitry Andric         ConstantInt *Offset = VOPair.second;
1867*349cc55cSDimitry Andric         Instruction *EntInst = dyn_cast_or_null<Instruction>(V);
1868*349cc55cSDimitry Andric         if (!EntInst)
1869*349cc55cSDimitry Andric           continue;
1870*349cc55cSDimitry Andric 
1871*349cc55cSDimitry Andric         assert(EntInst->getFunction() == InsertPt->getFunction());
1872*349cc55cSDimitry Andric         if (S->getType() == V->getType() &&
18735ffd83dbSDimitry Andric             SE.DT.dominates(EntInst, InsertPt) &&
18745ffd83dbSDimitry Andric             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1875*349cc55cSDimitry Andric              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)) &&
1876*349cc55cSDimitry Andric             !SCEVLostPoisonFlags(S, EntInst))
18775ffd83dbSDimitry Andric           return {V, Offset};
18785ffd83dbSDimitry Andric       }
18795ffd83dbSDimitry Andric     }
18805ffd83dbSDimitry Andric   }
18815ffd83dbSDimitry Andric   return {nullptr, nullptr};
18825ffd83dbSDimitry Andric }
18835ffd83dbSDimitry Andric 
18845ffd83dbSDimitry Andric // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
18855ffd83dbSDimitry Andric // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
18865ffd83dbSDimitry Andric // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
18875ffd83dbSDimitry Andric // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
18885ffd83dbSDimitry Andric // the expansion will try to reuse Value from ExprValueMap, and only when it
18895ffd83dbSDimitry Andric // fails, expand the SCEV literally.
18905ffd83dbSDimitry Andric Value *SCEVExpander::expand(const SCEV *S) {
18915ffd83dbSDimitry Andric   // Compute an insertion point for this SCEV object. Hoist the instructions
18925ffd83dbSDimitry Andric   // as far out in the loop nest as possible.
18935ffd83dbSDimitry Andric   Instruction *InsertPt = &*Builder.GetInsertPoint();
18945ffd83dbSDimitry Andric 
18955ffd83dbSDimitry Andric   // We can move insertion point only if there is no div or rem operations
18965ffd83dbSDimitry Andric   // otherwise we are risky to move it over the check for zero denominator.
18975ffd83dbSDimitry Andric   auto SafeToHoist = [](const SCEV *S) {
18985ffd83dbSDimitry Andric     return !SCEVExprContains(S, [](const SCEV *S) {
18995ffd83dbSDimitry Andric               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
19005ffd83dbSDimitry Andric                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
19015ffd83dbSDimitry Andric                   // Division by non-zero constants can be hoisted.
19025ffd83dbSDimitry Andric                   return SC->getValue()->isZero();
19035ffd83dbSDimitry Andric                 // All other divisions should not be moved as they may be
19045ffd83dbSDimitry Andric                 // divisions by zero and should be kept within the
19055ffd83dbSDimitry Andric                 // conditions of the surrounding loops that guard their
19065ffd83dbSDimitry Andric                 // execution (see PR35406).
19075ffd83dbSDimitry Andric                 return true;
19085ffd83dbSDimitry Andric               }
19095ffd83dbSDimitry Andric               return false;
19105ffd83dbSDimitry Andric             });
19115ffd83dbSDimitry Andric   };
19125ffd83dbSDimitry Andric   if (SafeToHoist(S)) {
19135ffd83dbSDimitry Andric     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
19145ffd83dbSDimitry Andric          L = L->getParentLoop()) {
19155ffd83dbSDimitry Andric       if (SE.isLoopInvariant(S, L)) {
19165ffd83dbSDimitry Andric         if (!L) break;
19175ffd83dbSDimitry Andric         if (BasicBlock *Preheader = L->getLoopPreheader())
19185ffd83dbSDimitry Andric           InsertPt = Preheader->getTerminator();
19195ffd83dbSDimitry Andric         else
19205ffd83dbSDimitry Andric           // LSR sets the insertion point for AddRec start/step values to the
19215ffd83dbSDimitry Andric           // block start to simplify value reuse, even though it's an invalid
19225ffd83dbSDimitry Andric           // position. SCEVExpander must correct for this in all cases.
19235ffd83dbSDimitry Andric           InsertPt = &*L->getHeader()->getFirstInsertionPt();
19245ffd83dbSDimitry Andric       } else {
19255ffd83dbSDimitry Andric         // If the SCEV is computable at this level, insert it into the header
19265ffd83dbSDimitry Andric         // after the PHIs (and after any other instructions that we've inserted
19275ffd83dbSDimitry Andric         // there) so that it is guaranteed to dominate any user inside the loop.
19285ffd83dbSDimitry Andric         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
19295ffd83dbSDimitry Andric           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1930e8d8bef9SDimitry Andric 
19315ffd83dbSDimitry Andric         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
19325ffd83dbSDimitry Andric                (isInsertedInstruction(InsertPt) ||
1933e8d8bef9SDimitry Andric                 isa<DbgInfoIntrinsic>(InsertPt))) {
19345ffd83dbSDimitry Andric           InsertPt = &*std::next(InsertPt->getIterator());
1935e8d8bef9SDimitry Andric         }
19365ffd83dbSDimitry Andric         break;
19375ffd83dbSDimitry Andric       }
19385ffd83dbSDimitry Andric     }
19395ffd83dbSDimitry Andric   }
19405ffd83dbSDimitry Andric 
19415ffd83dbSDimitry Andric   // Check to see if we already expanded this here.
19425ffd83dbSDimitry Andric   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
19435ffd83dbSDimitry Andric   if (I != InsertedExpressions.end())
19445ffd83dbSDimitry Andric     return I->second;
19455ffd83dbSDimitry Andric 
19465ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
19475ffd83dbSDimitry Andric   Builder.SetInsertPoint(InsertPt);
19485ffd83dbSDimitry Andric 
19495ffd83dbSDimitry Andric   // Expand the expression into instructions.
19505ffd83dbSDimitry Andric   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
19515ffd83dbSDimitry Andric   Value *V = VO.first;
19525ffd83dbSDimitry Andric 
19535ffd83dbSDimitry Andric   if (!V)
19545ffd83dbSDimitry Andric     V = visit(S);
19555ffd83dbSDimitry Andric   else if (VO.second) {
19565ffd83dbSDimitry Andric     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
19575ffd83dbSDimitry Andric       Type *Ety = Vty->getPointerElementType();
19585ffd83dbSDimitry Andric       int64_t Offset = VO.second->getSExtValue();
19595ffd83dbSDimitry Andric       int64_t ESize = SE.getTypeSizeInBits(Ety);
19605ffd83dbSDimitry Andric       if ((Offset * 8) % ESize == 0) {
19615ffd83dbSDimitry Andric         ConstantInt *Idx =
19625ffd83dbSDimitry Andric             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
19635ffd83dbSDimitry Andric         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
19645ffd83dbSDimitry Andric       } else {
19655ffd83dbSDimitry Andric         ConstantInt *Idx =
19665ffd83dbSDimitry Andric             ConstantInt::getSigned(VO.second->getType(), -Offset);
19675ffd83dbSDimitry Andric         unsigned AS = Vty->getAddressSpace();
19685ffd83dbSDimitry Andric         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
19695ffd83dbSDimitry Andric         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
19705ffd83dbSDimitry Andric                               "uglygep");
19715ffd83dbSDimitry Andric         V = Builder.CreateBitCast(V, Vty);
19725ffd83dbSDimitry Andric       }
19735ffd83dbSDimitry Andric     } else {
19745ffd83dbSDimitry Andric       V = Builder.CreateSub(V, VO.second);
19755ffd83dbSDimitry Andric     }
19765ffd83dbSDimitry Andric   }
19775ffd83dbSDimitry Andric   // Remember the expanded value for this SCEV at this location.
19785ffd83dbSDimitry Andric   //
19795ffd83dbSDimitry Andric   // This is independent of PostIncLoops. The mapped value simply materializes
19805ffd83dbSDimitry Andric   // the expression at this insertion point. If the mapped value happened to be
19815ffd83dbSDimitry Andric   // a postinc expansion, it could be reused by a non-postinc user, but only if
19825ffd83dbSDimitry Andric   // its insertion point was already at the head of the loop.
19835ffd83dbSDimitry Andric   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
19845ffd83dbSDimitry Andric   return V;
19855ffd83dbSDimitry Andric }
19865ffd83dbSDimitry Andric 
19875ffd83dbSDimitry Andric void SCEVExpander::rememberInstruction(Value *I) {
1988e8d8bef9SDimitry Andric   auto DoInsert = [this](Value *V) {
19895ffd83dbSDimitry Andric     if (!PostIncLoops.empty())
1990e8d8bef9SDimitry Andric       InsertedPostIncValues.insert(V);
19915ffd83dbSDimitry Andric     else
1992e8d8bef9SDimitry Andric       InsertedValues.insert(V);
1993e8d8bef9SDimitry Andric   };
1994e8d8bef9SDimitry Andric   DoInsert(I);
1995e8d8bef9SDimitry Andric 
1996e8d8bef9SDimitry Andric   if (!PreserveLCSSA)
1997e8d8bef9SDimitry Andric     return;
1998e8d8bef9SDimitry Andric 
1999e8d8bef9SDimitry Andric   if (auto *Inst = dyn_cast<Instruction>(I)) {
2000e8d8bef9SDimitry Andric     // A new instruction has been added, which might introduce new uses outside
2001e8d8bef9SDimitry Andric     // a defining loop. Fix LCSSA from for each operand of the new instruction,
2002e8d8bef9SDimitry Andric     // if required.
2003e8d8bef9SDimitry Andric     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
2004e8d8bef9SDimitry Andric          OpIdx++)
2005e8d8bef9SDimitry Andric       fixupLCSSAFormFor(Inst, OpIdx);
20065ffd83dbSDimitry Andric   }
20075ffd83dbSDimitry Andric }
20085ffd83dbSDimitry Andric 
20095ffd83dbSDimitry Andric /// replaceCongruentIVs - Check for congruent phis in this loop header and
20105ffd83dbSDimitry Andric /// replace them with their most canonical representative. Return the number of
20115ffd83dbSDimitry Andric /// phis eliminated.
20125ffd83dbSDimitry Andric ///
20135ffd83dbSDimitry Andric /// This does not depend on any SCEVExpander state but should be used in
20145ffd83dbSDimitry Andric /// the same context that SCEVExpander is used.
20155ffd83dbSDimitry Andric unsigned
20165ffd83dbSDimitry Andric SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
20175ffd83dbSDimitry Andric                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
20185ffd83dbSDimitry Andric                                   const TargetTransformInfo *TTI) {
20195ffd83dbSDimitry Andric   // Find integer phis in order of increasing width.
20205ffd83dbSDimitry Andric   SmallVector<PHINode*, 8> Phis;
20215ffd83dbSDimitry Andric   for (PHINode &PN : L->getHeader()->phis())
20225ffd83dbSDimitry Andric     Phis.push_back(&PN);
20235ffd83dbSDimitry Andric 
20245ffd83dbSDimitry Andric   if (TTI)
2025*349cc55cSDimitry Andric     // Use stable_sort to preserve order of equivalent PHIs, so the order
2026*349cc55cSDimitry Andric     // of the sorted Phis is the same from run to run on the same loop.
2027*349cc55cSDimitry Andric     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
20285ffd83dbSDimitry Andric       // Put pointers at the back and make sure pointer < pointer = false.
20295ffd83dbSDimitry Andric       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
20305ffd83dbSDimitry Andric         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2031e8d8bef9SDimitry Andric       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2032e8d8bef9SDimitry Andric              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
20335ffd83dbSDimitry Andric     });
20345ffd83dbSDimitry Andric 
20355ffd83dbSDimitry Andric   unsigned NumElim = 0;
20365ffd83dbSDimitry Andric   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
20375ffd83dbSDimitry Andric   // Process phis from wide to narrow. Map wide phis to their truncation
20385ffd83dbSDimitry Andric   // so narrow phis can reuse them.
20395ffd83dbSDimitry Andric   for (PHINode *Phi : Phis) {
20405ffd83dbSDimitry Andric     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
20415ffd83dbSDimitry Andric       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
20425ffd83dbSDimitry Andric         return V;
20435ffd83dbSDimitry Andric       if (!SE.isSCEVable(PN->getType()))
20445ffd83dbSDimitry Andric         return nullptr;
20455ffd83dbSDimitry Andric       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
20465ffd83dbSDimitry Andric       if (!Const)
20475ffd83dbSDimitry Andric         return nullptr;
20485ffd83dbSDimitry Andric       return Const->getValue();
20495ffd83dbSDimitry Andric     };
20505ffd83dbSDimitry Andric 
20515ffd83dbSDimitry Andric     // Fold constant phis. They may be congruent to other constant phis and
20525ffd83dbSDimitry Andric     // would confuse the logic below that expects proper IVs.
20535ffd83dbSDimitry Andric     if (Value *V = SimplifyPHINode(Phi)) {
20545ffd83dbSDimitry Andric       if (V->getType() != Phi->getType())
20555ffd83dbSDimitry Andric         continue;
20565ffd83dbSDimitry Andric       Phi->replaceAllUsesWith(V);
20575ffd83dbSDimitry Andric       DeadInsts.emplace_back(Phi);
20585ffd83dbSDimitry Andric       ++NumElim;
2059fe6060f1SDimitry Andric       SCEV_DEBUG_WITH_TYPE(DebugType,
2060fe6060f1SDimitry Andric                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
2061fe6060f1SDimitry Andric                                   << '\n');
20625ffd83dbSDimitry Andric       continue;
20635ffd83dbSDimitry Andric     }
20645ffd83dbSDimitry Andric 
20655ffd83dbSDimitry Andric     if (!SE.isSCEVable(Phi->getType()))
20665ffd83dbSDimitry Andric       continue;
20675ffd83dbSDimitry Andric 
20685ffd83dbSDimitry Andric     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
20695ffd83dbSDimitry Andric     if (!OrigPhiRef) {
20705ffd83dbSDimitry Andric       OrigPhiRef = Phi;
20715ffd83dbSDimitry Andric       if (Phi->getType()->isIntegerTy() && TTI &&
20725ffd83dbSDimitry Andric           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
20735ffd83dbSDimitry Andric         // This phi can be freely truncated to the narrowest phi type. Map the
20745ffd83dbSDimitry Andric         // truncated expression to it so it will be reused for narrow types.
20755ffd83dbSDimitry Andric         const SCEV *TruncExpr =
20765ffd83dbSDimitry Andric           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
20775ffd83dbSDimitry Andric         ExprToIVMap[TruncExpr] = Phi;
20785ffd83dbSDimitry Andric       }
20795ffd83dbSDimitry Andric       continue;
20805ffd83dbSDimitry Andric     }
20815ffd83dbSDimitry Andric 
20825ffd83dbSDimitry Andric     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
20835ffd83dbSDimitry Andric     // sense.
20845ffd83dbSDimitry Andric     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
20855ffd83dbSDimitry Andric       continue;
20865ffd83dbSDimitry Andric 
20875ffd83dbSDimitry Andric     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
20885ffd83dbSDimitry Andric       Instruction *OrigInc = dyn_cast<Instruction>(
20895ffd83dbSDimitry Andric           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
20905ffd83dbSDimitry Andric       Instruction *IsomorphicInc =
20915ffd83dbSDimitry Andric           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
20925ffd83dbSDimitry Andric 
20935ffd83dbSDimitry Andric       if (OrigInc && IsomorphicInc) {
20945ffd83dbSDimitry Andric         // If this phi has the same width but is more canonical, replace the
20955ffd83dbSDimitry Andric         // original with it. As part of the "more canonical" determination,
20965ffd83dbSDimitry Andric         // respect a prior decision to use an IV chain.
20975ffd83dbSDimitry Andric         if (OrigPhiRef->getType() == Phi->getType() &&
20985ffd83dbSDimitry Andric             !(ChainedPhis.count(Phi) ||
20995ffd83dbSDimitry Andric               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
21005ffd83dbSDimitry Andric             (ChainedPhis.count(Phi) ||
21015ffd83dbSDimitry Andric              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
21025ffd83dbSDimitry Andric           std::swap(OrigPhiRef, Phi);
21035ffd83dbSDimitry Andric           std::swap(OrigInc, IsomorphicInc);
21045ffd83dbSDimitry Andric         }
21055ffd83dbSDimitry Andric         // Replacing the congruent phi is sufficient because acyclic
21065ffd83dbSDimitry Andric         // redundancy elimination, CSE/GVN, should handle the
21075ffd83dbSDimitry Andric         // rest. However, once SCEV proves that a phi is congruent,
21085ffd83dbSDimitry Andric         // it's often the head of an IV user cycle that is isomorphic
21095ffd83dbSDimitry Andric         // with the original phi. It's worth eagerly cleaning up the
21105ffd83dbSDimitry Andric         // common case of a single IV increment so that DeleteDeadPHIs
21115ffd83dbSDimitry Andric         // can remove cycles that had postinc uses.
21125ffd83dbSDimitry Andric         const SCEV *TruncExpr =
21135ffd83dbSDimitry Andric             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
21145ffd83dbSDimitry Andric         if (OrigInc != IsomorphicInc &&
21155ffd83dbSDimitry Andric             TruncExpr == SE.getSCEV(IsomorphicInc) &&
21165ffd83dbSDimitry Andric             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
21175ffd83dbSDimitry Andric             hoistIVInc(OrigInc, IsomorphicInc)) {
2118fe6060f1SDimitry Andric           SCEV_DEBUG_WITH_TYPE(
2119fe6060f1SDimitry Andric               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
21205ffd83dbSDimitry Andric                                 << *IsomorphicInc << '\n');
21215ffd83dbSDimitry Andric           Value *NewInc = OrigInc;
21225ffd83dbSDimitry Andric           if (OrigInc->getType() != IsomorphicInc->getType()) {
21235ffd83dbSDimitry Andric             Instruction *IP = nullptr;
21245ffd83dbSDimitry Andric             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
21255ffd83dbSDimitry Andric               IP = &*PN->getParent()->getFirstInsertionPt();
21265ffd83dbSDimitry Andric             else
21275ffd83dbSDimitry Andric               IP = OrigInc->getNextNode();
21285ffd83dbSDimitry Andric 
21295ffd83dbSDimitry Andric             IRBuilder<> Builder(IP);
21305ffd83dbSDimitry Andric             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
21315ffd83dbSDimitry Andric             NewInc = Builder.CreateTruncOrBitCast(
21325ffd83dbSDimitry Andric                 OrigInc, IsomorphicInc->getType(), IVName);
21335ffd83dbSDimitry Andric           }
21345ffd83dbSDimitry Andric           IsomorphicInc->replaceAllUsesWith(NewInc);
21355ffd83dbSDimitry Andric           DeadInsts.emplace_back(IsomorphicInc);
21365ffd83dbSDimitry Andric         }
21375ffd83dbSDimitry Andric       }
21385ffd83dbSDimitry Andric     }
2139fe6060f1SDimitry Andric     SCEV_DEBUG_WITH_TYPE(DebugType,
2140fe6060f1SDimitry Andric                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2141fe6060f1SDimitry Andric                                 << '\n');
2142fe6060f1SDimitry Andric     SCEV_DEBUG_WITH_TYPE(
2143fe6060f1SDimitry Andric         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
21445ffd83dbSDimitry Andric     ++NumElim;
21455ffd83dbSDimitry Andric     Value *NewIV = OrigPhiRef;
21465ffd83dbSDimitry Andric     if (OrigPhiRef->getType() != Phi->getType()) {
21475ffd83dbSDimitry Andric       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
21485ffd83dbSDimitry Andric       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
21495ffd83dbSDimitry Andric       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
21505ffd83dbSDimitry Andric     }
21515ffd83dbSDimitry Andric     Phi->replaceAllUsesWith(NewIV);
21525ffd83dbSDimitry Andric     DeadInsts.emplace_back(Phi);
21535ffd83dbSDimitry Andric   }
21545ffd83dbSDimitry Andric   return NumElim;
21555ffd83dbSDimitry Andric }
21565ffd83dbSDimitry Andric 
21575ffd83dbSDimitry Andric Optional<ScalarEvolution::ValueOffsetPair>
21585ffd83dbSDimitry Andric SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
21595ffd83dbSDimitry Andric                                           Loop *L) {
21605ffd83dbSDimitry Andric   using namespace llvm::PatternMatch;
21615ffd83dbSDimitry Andric 
21625ffd83dbSDimitry Andric   SmallVector<BasicBlock *, 4> ExitingBlocks;
21635ffd83dbSDimitry Andric   L->getExitingBlocks(ExitingBlocks);
21645ffd83dbSDimitry Andric 
21655ffd83dbSDimitry Andric   // Look for suitable value in simple conditions at the loop exits.
21665ffd83dbSDimitry Andric   for (BasicBlock *BB : ExitingBlocks) {
21675ffd83dbSDimitry Andric     ICmpInst::Predicate Pred;
21685ffd83dbSDimitry Andric     Instruction *LHS, *RHS;
21695ffd83dbSDimitry Andric 
21705ffd83dbSDimitry Andric     if (!match(BB->getTerminator(),
21715ffd83dbSDimitry Andric                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
21725ffd83dbSDimitry Andric                     m_BasicBlock(), m_BasicBlock())))
21735ffd83dbSDimitry Andric       continue;
21745ffd83dbSDimitry Andric 
21755ffd83dbSDimitry Andric     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
21765ffd83dbSDimitry Andric       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
21775ffd83dbSDimitry Andric 
21785ffd83dbSDimitry Andric     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
21795ffd83dbSDimitry Andric       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
21805ffd83dbSDimitry Andric   }
21815ffd83dbSDimitry Andric 
21825ffd83dbSDimitry Andric   // Use expand's logic which is used for reusing a previous Value in
21835ffd83dbSDimitry Andric   // ExprValueMap.
21845ffd83dbSDimitry Andric   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
21855ffd83dbSDimitry Andric   if (VO.first)
21865ffd83dbSDimitry Andric     return VO;
21875ffd83dbSDimitry Andric 
21885ffd83dbSDimitry Andric   // There is potential to make this significantly smarter, but this simple
21895ffd83dbSDimitry Andric   // heuristic already gets some interesting cases.
21905ffd83dbSDimitry Andric 
21915ffd83dbSDimitry Andric   // Can not find suitable value.
21925ffd83dbSDimitry Andric   return None;
21935ffd83dbSDimitry Andric }
21945ffd83dbSDimitry Andric 
2195fe6060f1SDimitry Andric template<typename T> static InstructionCost costAndCollectOperands(
2196e8d8bef9SDimitry Andric   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2197e8d8bef9SDimitry Andric   TargetTransformInfo::TargetCostKind CostKind,
2198e8d8bef9SDimitry Andric   SmallVectorImpl<SCEVOperand> &Worklist) {
2199e8d8bef9SDimitry Andric 
2200e8d8bef9SDimitry Andric   const T *S = cast<T>(WorkItem.S);
2201fe6060f1SDimitry Andric   InstructionCost Cost = 0;
2202e8d8bef9SDimitry Andric   // Object to help map SCEV operands to expanded IR instructions.
2203e8d8bef9SDimitry Andric   struct OperationIndices {
2204e8d8bef9SDimitry Andric     OperationIndices(unsigned Opc, size_t min, size_t max) :
2205e8d8bef9SDimitry Andric       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2206e8d8bef9SDimitry Andric     unsigned Opcode;
2207e8d8bef9SDimitry Andric     size_t MinIdx;
2208e8d8bef9SDimitry Andric     size_t MaxIdx;
2209e8d8bef9SDimitry Andric   };
2210e8d8bef9SDimitry Andric 
2211e8d8bef9SDimitry Andric   // Collect the operations of all the instructions that will be needed to
2212e8d8bef9SDimitry Andric   // expand the SCEVExpr. This is so that when we come to cost the operands,
2213e8d8bef9SDimitry Andric   // we know what the generated user(s) will be.
2214e8d8bef9SDimitry Andric   SmallVector<OperationIndices, 2> Operations;
2215e8d8bef9SDimitry Andric 
2216fe6060f1SDimitry Andric   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2217e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, 0, 0);
2218e8d8bef9SDimitry Andric     return TTI.getCastInstrCost(Opcode, S->getType(),
2219e8d8bef9SDimitry Andric                                 S->getOperand(0)->getType(),
2220e8d8bef9SDimitry Andric                                 TTI::CastContextHint::None, CostKind);
2221e8d8bef9SDimitry Andric   };
2222e8d8bef9SDimitry Andric 
2223e8d8bef9SDimitry Andric   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2224fe6060f1SDimitry Andric                        unsigned MinIdx = 0,
2225fe6060f1SDimitry Andric                        unsigned MaxIdx = 1) -> InstructionCost {
2226e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2227e8d8bef9SDimitry Andric     return NumRequired *
2228e8d8bef9SDimitry Andric       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2229e8d8bef9SDimitry Andric   };
2230e8d8bef9SDimitry Andric 
2231fe6060f1SDimitry Andric   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2232fe6060f1SDimitry Andric                         unsigned MaxIdx) -> InstructionCost {
2233e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2234e8d8bef9SDimitry Andric     Type *OpType = S->getOperand(0)->getType();
2235e8d8bef9SDimitry Andric     return NumRequired * TTI.getCmpSelInstrCost(
2236e8d8bef9SDimitry Andric                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2237e8d8bef9SDimitry Andric                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2238e8d8bef9SDimitry Andric   };
2239e8d8bef9SDimitry Andric 
2240e8d8bef9SDimitry Andric   switch (S->getSCEVType()) {
2241e8d8bef9SDimitry Andric   case scCouldNotCompute:
2242e8d8bef9SDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2243e8d8bef9SDimitry Andric   case scUnknown:
2244e8d8bef9SDimitry Andric   case scConstant:
2245e8d8bef9SDimitry Andric     return 0;
2246e8d8bef9SDimitry Andric   case scPtrToInt:
2247e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::PtrToInt);
2248e8d8bef9SDimitry Andric     break;
2249e8d8bef9SDimitry Andric   case scTruncate:
2250e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::Trunc);
2251e8d8bef9SDimitry Andric     break;
2252e8d8bef9SDimitry Andric   case scZeroExtend:
2253e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::ZExt);
2254e8d8bef9SDimitry Andric     break;
2255e8d8bef9SDimitry Andric   case scSignExtend:
2256e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::SExt);
2257e8d8bef9SDimitry Andric     break;
2258e8d8bef9SDimitry Andric   case scUDivExpr: {
2259e8d8bef9SDimitry Andric     unsigned Opcode = Instruction::UDiv;
2260e8d8bef9SDimitry Andric     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2261e8d8bef9SDimitry Andric       if (SC->getAPInt().isPowerOf2())
2262e8d8bef9SDimitry Andric         Opcode = Instruction::LShr;
2263e8d8bef9SDimitry Andric     Cost = ArithCost(Opcode, 1);
2264e8d8bef9SDimitry Andric     break;
2265e8d8bef9SDimitry Andric   }
2266e8d8bef9SDimitry Andric   case scAddExpr:
2267e8d8bef9SDimitry Andric     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2268e8d8bef9SDimitry Andric     break;
2269e8d8bef9SDimitry Andric   case scMulExpr:
2270e8d8bef9SDimitry Andric     // TODO: this is a very pessimistic cost modelling for Mul,
2271e8d8bef9SDimitry Andric     // because of Bin Pow algorithm actually used by the expander,
2272e8d8bef9SDimitry Andric     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2273e8d8bef9SDimitry Andric     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2274e8d8bef9SDimitry Andric     break;
2275e8d8bef9SDimitry Andric   case scSMaxExpr:
2276e8d8bef9SDimitry Andric   case scUMaxExpr:
2277e8d8bef9SDimitry Andric   case scSMinExpr:
2278e8d8bef9SDimitry Andric   case scUMinExpr: {
2279fe6060f1SDimitry Andric     // FIXME: should this ask the cost for Intrinsic's?
2280e8d8bef9SDimitry Andric     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2281e8d8bef9SDimitry Andric     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2282e8d8bef9SDimitry Andric     break;
2283e8d8bef9SDimitry Andric   }
2284e8d8bef9SDimitry Andric   case scAddRecExpr: {
2285e8d8bef9SDimitry Andric     // In this polynominal, we may have some zero operands, and we shouldn't
2286e8d8bef9SDimitry Andric     // really charge for those. So how many non-zero coeffients are there?
2287e8d8bef9SDimitry Andric     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2288e8d8bef9SDimitry Andric                                     return !Op->isZero();
2289e8d8bef9SDimitry Andric                                   });
2290e8d8bef9SDimitry Andric 
2291e8d8bef9SDimitry Andric     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2292e8d8bef9SDimitry Andric     assert(!(*std::prev(S->operands().end()))->isZero() &&
2293e8d8bef9SDimitry Andric            "Last operand should not be zero");
2294e8d8bef9SDimitry Andric 
2295e8d8bef9SDimitry Andric     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2296e8d8bef9SDimitry Andric     int NumNonZeroDegreeNonOneTerms =
2297e8d8bef9SDimitry Andric       llvm::count_if(S->operands(), [](const SCEV *Op) {
2298e8d8bef9SDimitry Andric                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2299e8d8bef9SDimitry Andric                       return !SConst || SConst->getAPInt().ugt(1);
2300e8d8bef9SDimitry Andric                     });
2301e8d8bef9SDimitry Andric 
2302e8d8bef9SDimitry Andric     // Much like with normal add expr, the polynominal will require
2303e8d8bef9SDimitry Andric     // one less addition than the number of it's terms.
2304fe6060f1SDimitry Andric     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2305e8d8bef9SDimitry Andric                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2306e8d8bef9SDimitry Andric     // Here, *each* one of those will require a multiplication.
2307fe6060f1SDimitry Andric     InstructionCost MulCost =
2308fe6060f1SDimitry Andric         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2309e8d8bef9SDimitry Andric     Cost = AddCost + MulCost;
2310e8d8bef9SDimitry Andric 
2311e8d8bef9SDimitry Andric     // What is the degree of this polynominal?
2312e8d8bef9SDimitry Andric     int PolyDegree = S->getNumOperands() - 1;
2313e8d8bef9SDimitry Andric     assert(PolyDegree >= 1 && "Should be at least affine.");
2314e8d8bef9SDimitry Andric 
2315e8d8bef9SDimitry Andric     // The final term will be:
2316e8d8bef9SDimitry Andric     //   Op_{PolyDegree} * x ^ {PolyDegree}
2317e8d8bef9SDimitry Andric     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2318e8d8bef9SDimitry Andric     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2319e8d8bef9SDimitry Andric     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2320e8d8bef9SDimitry Andric     // FIXME: this is conservatively correct, but might be overly pessimistic.
2321e8d8bef9SDimitry Andric     Cost += MulCost * (PolyDegree - 1);
2322e8d8bef9SDimitry Andric     break;
2323e8d8bef9SDimitry Andric   }
2324e8d8bef9SDimitry Andric   }
2325e8d8bef9SDimitry Andric 
2326e8d8bef9SDimitry Andric   for (auto &CostOp : Operations) {
2327e8d8bef9SDimitry Andric     for (auto SCEVOp : enumerate(S->operands())) {
2328e8d8bef9SDimitry Andric       // Clamp the index to account for multiple IR operations being chained.
2329e8d8bef9SDimitry Andric       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2330e8d8bef9SDimitry Andric       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2331e8d8bef9SDimitry Andric       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2332e8d8bef9SDimitry Andric     }
2333e8d8bef9SDimitry Andric   }
2334e8d8bef9SDimitry Andric   return Cost;
2335e8d8bef9SDimitry Andric }
2336e8d8bef9SDimitry Andric 
23375ffd83dbSDimitry Andric bool SCEVExpander::isHighCostExpansionHelper(
2338e8d8bef9SDimitry Andric     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2339fe6060f1SDimitry Andric     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2340e8d8bef9SDimitry Andric     SmallPtrSetImpl<const SCEV *> &Processed,
2341e8d8bef9SDimitry Andric     SmallVectorImpl<SCEVOperand> &Worklist) {
2342fe6060f1SDimitry Andric   if (Cost > Budget)
23435ffd83dbSDimitry Andric     return true; // Already run out of budget, give up.
23445ffd83dbSDimitry Andric 
2345e8d8bef9SDimitry Andric   const SCEV *S = WorkItem.S;
23465ffd83dbSDimitry Andric   // Was the cost of expansion of this expression already accounted for?
2347e8d8bef9SDimitry Andric   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
23485ffd83dbSDimitry Andric     return false; // We have already accounted for this expression.
23495ffd83dbSDimitry Andric 
23505ffd83dbSDimitry Andric   // If we can find an existing value for this scev available at the point "At"
23515ffd83dbSDimitry Andric   // then consider the expression cheap.
23525ffd83dbSDimitry Andric   if (getRelatedExistingExpansion(S, &At, L))
23535ffd83dbSDimitry Andric     return false; // Consider the expression to be free.
23545ffd83dbSDimitry Andric 
23555ffd83dbSDimitry Andric   TargetTransformInfo::TargetCostKind CostKind =
2356e8d8bef9SDimitry Andric       L->getHeader()->getParent()->hasMinSize()
2357e8d8bef9SDimitry Andric           ? TargetTransformInfo::TCK_CodeSize
2358e8d8bef9SDimitry Andric           : TargetTransformInfo::TCK_RecipThroughput;
23595ffd83dbSDimitry Andric 
23605ffd83dbSDimitry Andric   switch (S->getSCEVType()) {
2361e8d8bef9SDimitry Andric   case scCouldNotCompute:
2362e8d8bef9SDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2363e8d8bef9SDimitry Andric   case scUnknown:
2364e8d8bef9SDimitry Andric     // Assume to be zero-cost.
2365e8d8bef9SDimitry Andric     return false;
2366e8d8bef9SDimitry Andric   case scConstant: {
2367e8d8bef9SDimitry Andric     // Only evalulate the costs of constants when optimizing for size.
2368e8d8bef9SDimitry Andric     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2369e8d8bef9SDimitry Andric       return 0;
2370e8d8bef9SDimitry Andric     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2371e8d8bef9SDimitry Andric     Type *Ty = S->getType();
2372fe6060f1SDimitry Andric     Cost += TTI.getIntImmCostInst(
2373e8d8bef9SDimitry Andric         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2374fe6060f1SDimitry Andric     return Cost > Budget;
2375e8d8bef9SDimitry Andric   }
23765ffd83dbSDimitry Andric   case scTruncate:
2377e8d8bef9SDimitry Andric   case scPtrToInt:
23785ffd83dbSDimitry Andric   case scZeroExtend:
2379e8d8bef9SDimitry Andric   case scSignExtend: {
2380fe6060f1SDimitry Andric     Cost +=
2381e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
23825ffd83dbSDimitry Andric     return false; // Will answer upon next entry into this function.
23835ffd83dbSDimitry Andric   }
2384e8d8bef9SDimitry Andric   case scUDivExpr: {
23855ffd83dbSDimitry Andric     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
23865ffd83dbSDimitry Andric     // HowManyLessThans produced to compute a precise expression, rather than a
23875ffd83dbSDimitry Andric     // UDiv from the user's code. If we can't find a UDiv in the code with some
23885ffd83dbSDimitry Andric     // simple searching, we need to account for it's cost.
23895ffd83dbSDimitry Andric 
23905ffd83dbSDimitry Andric     // At the beginning of this function we already tried to find existing
23915ffd83dbSDimitry Andric     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
23925ffd83dbSDimitry Andric     // pattern involving division. This is just a simple search heuristic.
23935ffd83dbSDimitry Andric     if (getRelatedExistingExpansion(
23945ffd83dbSDimitry Andric             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
23955ffd83dbSDimitry Andric       return false; // Consider it to be free.
23965ffd83dbSDimitry Andric 
2397fe6060f1SDimitry Andric     Cost +=
2398e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
23995ffd83dbSDimitry Andric     return false; // Will answer upon next entry into this function.
24005ffd83dbSDimitry Andric   }
24015ffd83dbSDimitry Andric   case scAddExpr:
24025ffd83dbSDimitry Andric   case scMulExpr:
24035ffd83dbSDimitry Andric   case scUMaxExpr:
2404e8d8bef9SDimitry Andric   case scSMaxExpr:
24055ffd83dbSDimitry Andric   case scUMinExpr:
2406e8d8bef9SDimitry Andric   case scSMinExpr: {
2407e8d8bef9SDimitry Andric     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
24085ffd83dbSDimitry Andric            "Nary expr should have more than 1 operand.");
24095ffd83dbSDimitry Andric     // The simple nary expr will require one less op (or pair of ops)
24105ffd83dbSDimitry Andric     // than the number of it's terms.
2411fe6060f1SDimitry Andric     Cost +=
2412e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2413fe6060f1SDimitry Andric     return Cost > Budget;
24145ffd83dbSDimitry Andric   }
2415e8d8bef9SDimitry Andric   case scAddRecExpr: {
2416e8d8bef9SDimitry Andric     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2417e8d8bef9SDimitry Andric            "Polynomial should be at least linear");
2418fe6060f1SDimitry Andric     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2419e8d8bef9SDimitry Andric         WorkItem, TTI, CostKind, Worklist);
2420fe6060f1SDimitry Andric     return Cost > Budget;
2421e8d8bef9SDimitry Andric   }
2422e8d8bef9SDimitry Andric   }
2423e8d8bef9SDimitry Andric   llvm_unreachable("Unknown SCEV kind!");
24245ffd83dbSDimitry Andric }
24255ffd83dbSDimitry Andric 
24265ffd83dbSDimitry Andric Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
24275ffd83dbSDimitry Andric                                             Instruction *IP) {
24285ffd83dbSDimitry Andric   assert(IP);
24295ffd83dbSDimitry Andric   switch (Pred->getKind()) {
24305ffd83dbSDimitry Andric   case SCEVPredicate::P_Union:
24315ffd83dbSDimitry Andric     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
24325ffd83dbSDimitry Andric   case SCEVPredicate::P_Equal:
24335ffd83dbSDimitry Andric     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
24345ffd83dbSDimitry Andric   case SCEVPredicate::P_Wrap: {
24355ffd83dbSDimitry Andric     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
24365ffd83dbSDimitry Andric     return expandWrapPredicate(AddRecPred, IP);
24375ffd83dbSDimitry Andric   }
24385ffd83dbSDimitry Andric   }
24395ffd83dbSDimitry Andric   llvm_unreachable("Unknown SCEV predicate type");
24405ffd83dbSDimitry Andric }
24415ffd83dbSDimitry Andric 
24425ffd83dbSDimitry Andric Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
24435ffd83dbSDimitry Andric                                           Instruction *IP) {
2444e8d8bef9SDimitry Andric   Value *Expr0 =
2445e8d8bef9SDimitry Andric       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2446e8d8bef9SDimitry Andric   Value *Expr1 =
2447e8d8bef9SDimitry Andric       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
24485ffd83dbSDimitry Andric 
24495ffd83dbSDimitry Andric   Builder.SetInsertPoint(IP);
24505ffd83dbSDimitry Andric   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
24515ffd83dbSDimitry Andric   return I;
24525ffd83dbSDimitry Andric }
24535ffd83dbSDimitry Andric 
24545ffd83dbSDimitry Andric Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
24555ffd83dbSDimitry Andric                                            Instruction *Loc, bool Signed) {
24565ffd83dbSDimitry Andric   assert(AR->isAffine() && "Cannot generate RT check for "
24575ffd83dbSDimitry Andric                            "non-affine expression");
24585ffd83dbSDimitry Andric 
24595ffd83dbSDimitry Andric   SCEVUnionPredicate Pred;
24605ffd83dbSDimitry Andric   const SCEV *ExitCount =
24615ffd83dbSDimitry Andric       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
24625ffd83dbSDimitry Andric 
2463e8d8bef9SDimitry Andric   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
24645ffd83dbSDimitry Andric 
24655ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
24665ffd83dbSDimitry Andric   const SCEV *Start = AR->getStart();
24675ffd83dbSDimitry Andric 
24685ffd83dbSDimitry Andric   Type *ARTy = AR->getType();
24695ffd83dbSDimitry Andric   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
24705ffd83dbSDimitry Andric   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
24715ffd83dbSDimitry Andric 
24725ffd83dbSDimitry Andric   // The expression {Start,+,Step} has nusw/nssw if
24735ffd83dbSDimitry Andric   //   Step < 0, Start - |Step| * Backedge <= Start
24745ffd83dbSDimitry Andric   //   Step >= 0, Start + |Step| * Backedge > Start
24755ffd83dbSDimitry Andric   // and |Step| * Backedge doesn't unsigned overflow.
24765ffd83dbSDimitry Andric 
24775ffd83dbSDimitry Andric   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
24785ffd83dbSDimitry Andric   Builder.SetInsertPoint(Loc);
2479e8d8bef9SDimitry Andric   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
24805ffd83dbSDimitry Andric 
24815ffd83dbSDimitry Andric   IntegerType *Ty =
24825ffd83dbSDimitry Andric       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
24835ffd83dbSDimitry Andric 
2484e8d8bef9SDimitry Andric   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2485e8d8bef9SDimitry Andric   Value *NegStepValue =
2486e8d8bef9SDimitry Andric       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2487*349cc55cSDimitry Andric   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false);
24885ffd83dbSDimitry Andric 
24895ffd83dbSDimitry Andric   ConstantInt *Zero =
2490*349cc55cSDimitry Andric       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
24915ffd83dbSDimitry Andric 
24925ffd83dbSDimitry Andric   Builder.SetInsertPoint(Loc);
24935ffd83dbSDimitry Andric   // Compute |Step|
24945ffd83dbSDimitry Andric   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
24955ffd83dbSDimitry Andric   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
24965ffd83dbSDimitry Andric 
24975ffd83dbSDimitry Andric   // Get the backedge taken count and truncate or extended to the AR type.
24985ffd83dbSDimitry Andric   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
24995ffd83dbSDimitry Andric 
25005ffd83dbSDimitry Andric   // Compute |Step| * Backedge
2501*349cc55cSDimitry Andric   Value *MulV, *OfMul;
2502*349cc55cSDimitry Andric   if (Step->isOne()) {
2503*349cc55cSDimitry Andric     // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2504*349cc55cSDimitry Andric     // needed, there is never an overflow, so to avoid artificially inflating
2505*349cc55cSDimitry Andric     // the cost of the check, directly emit the optimized IR.
2506*349cc55cSDimitry Andric     MulV = TruncTripCount;
2507*349cc55cSDimitry Andric     OfMul = ConstantInt::getFalse(MulV->getContext());
2508*349cc55cSDimitry Andric   } else {
2509*349cc55cSDimitry Andric     auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2510*349cc55cSDimitry Andric                                            Intrinsic::umul_with_overflow, Ty);
25115ffd83dbSDimitry Andric     CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2512*349cc55cSDimitry Andric     MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2513*349cc55cSDimitry Andric     OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2514*349cc55cSDimitry Andric   }
25155ffd83dbSDimitry Andric 
25165ffd83dbSDimitry Andric   // Compute:
25175ffd83dbSDimitry Andric   //   Start + |Step| * Backedge < Start
25185ffd83dbSDimitry Andric   //   Start - |Step| * Backedge > Start
25195ffd83dbSDimitry Andric   Value *Add = nullptr, *Sub = nullptr;
2520*349cc55cSDimitry Andric   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2521*349cc55cSDimitry Andric     StartValue = InsertNoopCastOfTo(
2522*349cc55cSDimitry Andric         StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2523*349cc55cSDimitry Andric     Value *NegMulV = Builder.CreateNeg(MulV);
2524*349cc55cSDimitry Andric     Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2525*349cc55cSDimitry Andric     Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
25265ffd83dbSDimitry Andric   } else {
25275ffd83dbSDimitry Andric     Add = Builder.CreateAdd(StartValue, MulV);
25285ffd83dbSDimitry Andric     Sub = Builder.CreateSub(StartValue, MulV);
25295ffd83dbSDimitry Andric   }
25305ffd83dbSDimitry Andric 
25315ffd83dbSDimitry Andric   Value *EndCompareGT = Builder.CreateICmp(
25325ffd83dbSDimitry Andric       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
25335ffd83dbSDimitry Andric 
25345ffd83dbSDimitry Andric   Value *EndCompareLT = Builder.CreateICmp(
25355ffd83dbSDimitry Andric       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
25365ffd83dbSDimitry Andric 
25375ffd83dbSDimitry Andric   // Select the answer based on the sign of Step.
25385ffd83dbSDimitry Andric   Value *EndCheck =
25395ffd83dbSDimitry Andric       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
25405ffd83dbSDimitry Andric 
25415ffd83dbSDimitry Andric   // If the backedge taken count type is larger than the AR type,
25425ffd83dbSDimitry Andric   // check that we don't drop any bits by truncating it. If we are
25435ffd83dbSDimitry Andric   // dropping bits, then we have overflow (unless the step is zero).
25445ffd83dbSDimitry Andric   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
25455ffd83dbSDimitry Andric     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
25465ffd83dbSDimitry Andric     auto *BackedgeCheck =
25475ffd83dbSDimitry Andric         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
25485ffd83dbSDimitry Andric                            ConstantInt::get(Loc->getContext(), MaxVal));
25495ffd83dbSDimitry Andric     BackedgeCheck = Builder.CreateAnd(
25505ffd83dbSDimitry Andric         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
25515ffd83dbSDimitry Andric 
25525ffd83dbSDimitry Andric     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
25535ffd83dbSDimitry Andric   }
25545ffd83dbSDimitry Andric 
2555e8d8bef9SDimitry Andric   return Builder.CreateOr(EndCheck, OfMul);
25565ffd83dbSDimitry Andric }
25575ffd83dbSDimitry Andric 
25585ffd83dbSDimitry Andric Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
25595ffd83dbSDimitry Andric                                          Instruction *IP) {
25605ffd83dbSDimitry Andric   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
25615ffd83dbSDimitry Andric   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
25625ffd83dbSDimitry Andric 
25635ffd83dbSDimitry Andric   // Add a check for NUSW
25645ffd83dbSDimitry Andric   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
25655ffd83dbSDimitry Andric     NUSWCheck = generateOverflowCheck(A, IP, false);
25665ffd83dbSDimitry Andric 
25675ffd83dbSDimitry Andric   // Add a check for NSSW
25685ffd83dbSDimitry Andric   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
25695ffd83dbSDimitry Andric     NSSWCheck = generateOverflowCheck(A, IP, true);
25705ffd83dbSDimitry Andric 
25715ffd83dbSDimitry Andric   if (NUSWCheck && NSSWCheck)
25725ffd83dbSDimitry Andric     return Builder.CreateOr(NUSWCheck, NSSWCheck);
25735ffd83dbSDimitry Andric 
25745ffd83dbSDimitry Andric   if (NUSWCheck)
25755ffd83dbSDimitry Andric     return NUSWCheck;
25765ffd83dbSDimitry Andric 
25775ffd83dbSDimitry Andric   if (NSSWCheck)
25785ffd83dbSDimitry Andric     return NSSWCheck;
25795ffd83dbSDimitry Andric 
25805ffd83dbSDimitry Andric   return ConstantInt::getFalse(IP->getContext());
25815ffd83dbSDimitry Andric }
25825ffd83dbSDimitry Andric 
25835ffd83dbSDimitry Andric Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
25845ffd83dbSDimitry Andric                                           Instruction *IP) {
25855ffd83dbSDimitry Andric   auto *BoolType = IntegerType::get(IP->getContext(), 1);
25865ffd83dbSDimitry Andric   Value *Check = ConstantInt::getNullValue(BoolType);
25875ffd83dbSDimitry Andric 
25885ffd83dbSDimitry Andric   // Loop over all checks in this set.
25895ffd83dbSDimitry Andric   for (auto Pred : Union->getPredicates()) {
25905ffd83dbSDimitry Andric     auto *NextCheck = expandCodeForPredicate(Pred, IP);
25915ffd83dbSDimitry Andric     Builder.SetInsertPoint(IP);
25925ffd83dbSDimitry Andric     Check = Builder.CreateOr(Check, NextCheck);
25935ffd83dbSDimitry Andric   }
25945ffd83dbSDimitry Andric 
25955ffd83dbSDimitry Andric   return Check;
25965ffd83dbSDimitry Andric }
25975ffd83dbSDimitry Andric 
2598e8d8bef9SDimitry Andric Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2599e8d8bef9SDimitry Andric   assert(PreserveLCSSA);
2600e8d8bef9SDimitry Andric   SmallVector<Instruction *, 1> ToUpdate;
2601e8d8bef9SDimitry Andric 
2602e8d8bef9SDimitry Andric   auto *OpV = User->getOperand(OpIdx);
2603e8d8bef9SDimitry Andric   auto *OpI = dyn_cast<Instruction>(OpV);
2604e8d8bef9SDimitry Andric   if (!OpI)
2605e8d8bef9SDimitry Andric     return OpV;
2606e8d8bef9SDimitry Andric 
2607e8d8bef9SDimitry Andric   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2608e8d8bef9SDimitry Andric   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2609e8d8bef9SDimitry Andric   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2610e8d8bef9SDimitry Andric     return OpV;
2611e8d8bef9SDimitry Andric 
2612e8d8bef9SDimitry Andric   ToUpdate.push_back(OpI);
2613e8d8bef9SDimitry Andric   SmallVector<PHINode *, 16> PHIsToRemove;
2614e8d8bef9SDimitry Andric   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2615e8d8bef9SDimitry Andric   for (PHINode *PN : PHIsToRemove) {
2616e8d8bef9SDimitry Andric     if (!PN->use_empty())
2617e8d8bef9SDimitry Andric       continue;
2618e8d8bef9SDimitry Andric     InsertedValues.erase(PN);
2619e8d8bef9SDimitry Andric     InsertedPostIncValues.erase(PN);
2620e8d8bef9SDimitry Andric     PN->eraseFromParent();
2621e8d8bef9SDimitry Andric   }
2622e8d8bef9SDimitry Andric 
2623e8d8bef9SDimitry Andric   return User->getOperand(OpIdx);
2624e8d8bef9SDimitry Andric }
2625e8d8bef9SDimitry Andric 
26265ffd83dbSDimitry Andric namespace {
26275ffd83dbSDimitry Andric // Search for a SCEV subexpression that is not safe to expand.  Any expression
26285ffd83dbSDimitry Andric // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
26295ffd83dbSDimitry Andric // UDiv expressions. We don't know if the UDiv is derived from an IR divide
26305ffd83dbSDimitry Andric // instruction, but the important thing is that we prove the denominator is
26315ffd83dbSDimitry Andric // nonzero before expansion.
26325ffd83dbSDimitry Andric //
26335ffd83dbSDimitry Andric // IVUsers already checks that IV-derived expressions are safe. So this check is
26345ffd83dbSDimitry Andric // only needed when the expression includes some subexpression that is not IV
26355ffd83dbSDimitry Andric // derived.
26365ffd83dbSDimitry Andric //
26375ffd83dbSDimitry Andric // Currently, we only allow division by a nonzero constant here. If this is
26385ffd83dbSDimitry Andric // inadequate, we could easily allow division by SCEVUnknown by using
26395ffd83dbSDimitry Andric // ValueTracking to check isKnownNonZero().
26405ffd83dbSDimitry Andric //
26415ffd83dbSDimitry Andric // We cannot generally expand recurrences unless the step dominates the loop
26425ffd83dbSDimitry Andric // header. The expander handles the special case of affine recurrences by
26435ffd83dbSDimitry Andric // scaling the recurrence outside the loop, but this technique isn't generally
26445ffd83dbSDimitry Andric // applicable. Expanding a nested recurrence outside a loop requires computing
26455ffd83dbSDimitry Andric // binomial coefficients. This could be done, but the recurrence has to be in a
26465ffd83dbSDimitry Andric // perfectly reduced form, which can't be guaranteed.
26475ffd83dbSDimitry Andric struct SCEVFindUnsafe {
26485ffd83dbSDimitry Andric   ScalarEvolution &SE;
2649*349cc55cSDimitry Andric   bool CanonicalMode;
26505ffd83dbSDimitry Andric   bool IsUnsafe;
26515ffd83dbSDimitry Andric 
2652*349cc55cSDimitry Andric   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2653*349cc55cSDimitry Andric       : SE(SE), CanonicalMode(CanonicalMode), IsUnsafe(false) {}
26545ffd83dbSDimitry Andric 
26555ffd83dbSDimitry Andric   bool follow(const SCEV *S) {
26565ffd83dbSDimitry Andric     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
26575ffd83dbSDimitry Andric       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
26585ffd83dbSDimitry Andric       if (!SC || SC->getValue()->isZero()) {
26595ffd83dbSDimitry Andric         IsUnsafe = true;
26605ffd83dbSDimitry Andric         return false;
26615ffd83dbSDimitry Andric       }
26625ffd83dbSDimitry Andric     }
26635ffd83dbSDimitry Andric     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
26645ffd83dbSDimitry Andric       const SCEV *Step = AR->getStepRecurrence(SE);
26655ffd83dbSDimitry Andric       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
26665ffd83dbSDimitry Andric         IsUnsafe = true;
26675ffd83dbSDimitry Andric         return false;
26685ffd83dbSDimitry Andric       }
2669*349cc55cSDimitry Andric 
2670*349cc55cSDimitry Andric       // For non-affine addrecs or in non-canonical mode we need a preheader
2671*349cc55cSDimitry Andric       // to insert into.
2672*349cc55cSDimitry Andric       if (!AR->getLoop()->getLoopPreheader() &&
2673*349cc55cSDimitry Andric           (!CanonicalMode || !AR->isAffine())) {
2674*349cc55cSDimitry Andric         IsUnsafe = true;
2675*349cc55cSDimitry Andric         return false;
2676*349cc55cSDimitry Andric       }
26775ffd83dbSDimitry Andric     }
26785ffd83dbSDimitry Andric     return true;
26795ffd83dbSDimitry Andric   }
26805ffd83dbSDimitry Andric   bool isDone() const { return IsUnsafe; }
26815ffd83dbSDimitry Andric };
26825ffd83dbSDimitry Andric }
26835ffd83dbSDimitry Andric 
26845ffd83dbSDimitry Andric namespace llvm {
2685*349cc55cSDimitry Andric bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, bool CanonicalMode) {
2686*349cc55cSDimitry Andric   SCEVFindUnsafe Search(SE, CanonicalMode);
26875ffd83dbSDimitry Andric   visitAll(S, Search);
26885ffd83dbSDimitry Andric   return !Search.IsUnsafe;
26895ffd83dbSDimitry Andric }
26905ffd83dbSDimitry Andric 
26915ffd83dbSDimitry Andric bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
26925ffd83dbSDimitry Andric                       ScalarEvolution &SE) {
26935ffd83dbSDimitry Andric   if (!isSafeToExpand(S, SE))
26945ffd83dbSDimitry Andric     return false;
26955ffd83dbSDimitry Andric   // We have to prove that the expanded site of S dominates InsertionPoint.
26965ffd83dbSDimitry Andric   // This is easy when not in the same block, but hard when S is an instruction
26975ffd83dbSDimitry Andric   // to be expanded somewhere inside the same block as our insertion point.
26985ffd83dbSDimitry Andric   // What we really need here is something analogous to an OrderedBasicBlock,
26995ffd83dbSDimitry Andric   // but for the moment, we paper over the problem by handling two common and
27005ffd83dbSDimitry Andric   // cheap to check cases.
27015ffd83dbSDimitry Andric   if (SE.properlyDominates(S, InsertionPoint->getParent()))
27025ffd83dbSDimitry Andric     return true;
27035ffd83dbSDimitry Andric   if (SE.dominates(S, InsertionPoint->getParent())) {
27045ffd83dbSDimitry Andric     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
27055ffd83dbSDimitry Andric       return true;
27065ffd83dbSDimitry Andric     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2707fe6060f1SDimitry Andric       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
27085ffd83dbSDimitry Andric         return true;
27095ffd83dbSDimitry Andric   }
27105ffd83dbSDimitry Andric   return false;
27115ffd83dbSDimitry Andric }
2712e8d8bef9SDimitry Andric 
2713fe6060f1SDimitry Andric void SCEVExpanderCleaner::cleanup() {
2714e8d8bef9SDimitry Andric   // Result is used, nothing to remove.
2715e8d8bef9SDimitry Andric   if (ResultUsed)
2716e8d8bef9SDimitry Andric     return;
2717e8d8bef9SDimitry Andric 
2718e8d8bef9SDimitry Andric   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2719e8d8bef9SDimitry Andric #ifndef NDEBUG
2720e8d8bef9SDimitry Andric   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2721e8d8bef9SDimitry Andric                                             InsertedInstructions.end());
2722e8d8bef9SDimitry Andric   (void)InsertedSet;
2723e8d8bef9SDimitry Andric #endif
2724e8d8bef9SDimitry Andric   // Remove sets with value handles.
2725e8d8bef9SDimitry Andric   Expander.clear();
2726e8d8bef9SDimitry Andric 
2727e8d8bef9SDimitry Andric   // Sort so that earlier instructions do not dominate later instructions.
2728e8d8bef9SDimitry Andric   stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2729e8d8bef9SDimitry Andric     return DT.dominates(B, A);
2730e8d8bef9SDimitry Andric   });
2731e8d8bef9SDimitry Andric   // Remove all inserted instructions.
2732e8d8bef9SDimitry Andric   for (Instruction *I : InsertedInstructions) {
2733e8d8bef9SDimitry Andric 
2734e8d8bef9SDimitry Andric #ifndef NDEBUG
2735e8d8bef9SDimitry Andric     assert(all_of(I->users(),
2736e8d8bef9SDimitry Andric                   [&InsertedSet](Value *U) {
2737e8d8bef9SDimitry Andric                     return InsertedSet.contains(cast<Instruction>(U));
2738e8d8bef9SDimitry Andric                   }) &&
2739e8d8bef9SDimitry Andric            "removed instruction should only be used by instructions inserted "
2740e8d8bef9SDimitry Andric            "during expansion");
2741e8d8bef9SDimitry Andric #endif
2742e8d8bef9SDimitry Andric     assert(!I->getType()->isVoidTy() &&
2743e8d8bef9SDimitry Andric            "inserted instruction should have non-void types");
2744e8d8bef9SDimitry Andric     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2745e8d8bef9SDimitry Andric     I->eraseFromParent();
2746e8d8bef9SDimitry Andric   }
2747e8d8bef9SDimitry Andric }
27485ffd83dbSDimitry Andric }
2749