xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
15ffd83dbSDimitry Andric //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
25ffd83dbSDimitry Andric //
35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
65ffd83dbSDimitry Andric //
75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
85ffd83dbSDimitry Andric //
95ffd83dbSDimitry Andric // This file contains the implementation of the scalar evolution expander,
105ffd83dbSDimitry Andric // which is used to generate the code corresponding to a given scalar evolution
115ffd83dbSDimitry Andric // expression.
125ffd83dbSDimitry Andric //
135ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
145ffd83dbSDimitry Andric 
155ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
165ffd83dbSDimitry Andric #include "llvm/ADT/STLExtras.h"
17bdd1243dSDimitry Andric #include "llvm/ADT/ScopeExit.h"
185ffd83dbSDimitry Andric #include "llvm/ADT/SmallSet.h"
195ffd83dbSDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
205ffd83dbSDimitry Andric #include "llvm/Analysis/LoopInfo.h"
215ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
224824e7fdSDimitry Andric #include "llvm/Analysis/ValueTracking.h"
235ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h"
245ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h"
255ffd83dbSDimitry Andric #include "llvm/IR/IntrinsicInst.h"
265ffd83dbSDimitry Andric #include "llvm/IR/PatternMatch.h"
275ffd83dbSDimitry Andric #include "llvm/Support/CommandLine.h"
285ffd83dbSDimitry Andric #include "llvm/Support/raw_ostream.h"
29e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
305ffd83dbSDimitry Andric 
31fe6060f1SDimitry Andric #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33fe6060f1SDimitry Andric #else
34fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35fe6060f1SDimitry Andric #endif
36fe6060f1SDimitry Andric 
375ffd83dbSDimitry Andric using namespace llvm;
385ffd83dbSDimitry Andric 
395ffd83dbSDimitry Andric cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
405ffd83dbSDimitry Andric     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
415ffd83dbSDimitry Andric     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
425ffd83dbSDimitry Andric              "controls the budget that is considered cheap (default = 4)"));
435ffd83dbSDimitry Andric 
445ffd83dbSDimitry Andric using namespace PatternMatch;
455ffd83dbSDimitry Andric 
465ffd83dbSDimitry Andric /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
47e8d8bef9SDimitry Andric /// reusing an existing cast if a suitable one (= dominating IP) exists, or
485ffd83dbSDimitry Andric /// creating a new one.
495ffd83dbSDimitry Andric Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
505ffd83dbSDimitry Andric                                        Instruction::CastOps Op,
515ffd83dbSDimitry Andric                                        BasicBlock::iterator IP) {
525ffd83dbSDimitry Andric   // This function must be called with the builder having a valid insertion
535ffd83dbSDimitry Andric   // point. It doesn't need to be the actual IP where the uses of the returned
545ffd83dbSDimitry Andric   // cast will be added, but it must dominate such IP.
555ffd83dbSDimitry Andric   // We use this precondition to produce a cast that will dominate all its
565ffd83dbSDimitry Andric   // uses. In particular, this is crucial for the case where the builder's
575ffd83dbSDimitry Andric   // insertion point *is* the point where we were asked to put the cast.
585ffd83dbSDimitry Andric   // Since we don't know the builder's insertion point is actually
595ffd83dbSDimitry Andric   // where the uses will be added (only that it dominates it), we are
605ffd83dbSDimitry Andric   // not allowed to move it.
615ffd83dbSDimitry Andric   BasicBlock::iterator BIP = Builder.GetInsertPoint();
625ffd83dbSDimitry Andric 
63fe6060f1SDimitry Andric   Value *Ret = nullptr;
645ffd83dbSDimitry Andric 
655ffd83dbSDimitry Andric   // Check to see if there is already a cast!
66e8d8bef9SDimitry Andric   for (User *U : V->users()) {
67e8d8bef9SDimitry Andric     if (U->getType() != Ty)
68e8d8bef9SDimitry Andric       continue;
69e8d8bef9SDimitry Andric     CastInst *CI = dyn_cast<CastInst>(U);
70e8d8bef9SDimitry Andric     if (!CI || CI->getOpcode() != Op)
71e8d8bef9SDimitry Andric       continue;
72e8d8bef9SDimitry Andric 
73e8d8bef9SDimitry Andric     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
74e8d8bef9SDimitry Andric     // the cast must also properly dominate the Builder's insertion point.
75e8d8bef9SDimitry Andric     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
76e8d8bef9SDimitry Andric         (&*IP == CI || CI->comesBefore(&*IP))) {
775ffd83dbSDimitry Andric       Ret = CI;
785ffd83dbSDimitry Andric       break;
795ffd83dbSDimitry Andric     }
80e8d8bef9SDimitry Andric   }
815ffd83dbSDimitry Andric 
825ffd83dbSDimitry Andric   // Create a new cast.
83e8d8bef9SDimitry Andric   if (!Ret) {
84fe6060f1SDimitry Andric     SCEVInsertPointGuard Guard(Builder, this);
85fe6060f1SDimitry Andric     Builder.SetInsertPoint(&*IP);
86fe6060f1SDimitry Andric     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
87e8d8bef9SDimitry Andric   }
885ffd83dbSDimitry Andric 
895ffd83dbSDimitry Andric   // We assert at the end of the function since IP might point to an
905ffd83dbSDimitry Andric   // instruction with different dominance properties than a cast
915ffd83dbSDimitry Andric   // (an invoke for example) and not dominate BIP (but the cast does).
92fe6060f1SDimitry Andric   assert(!isa<Instruction>(Ret) ||
93fe6060f1SDimitry Andric          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
945ffd83dbSDimitry Andric 
955ffd83dbSDimitry Andric   return Ret;
965ffd83dbSDimitry Andric }
975ffd83dbSDimitry Andric 
98e8d8bef9SDimitry Andric BasicBlock::iterator
99fe6060f1SDimitry Andric SCEVExpander::findInsertPointAfter(Instruction *I,
100fe6060f1SDimitry Andric                                    Instruction *MustDominate) const {
1015ffd83dbSDimitry Andric   BasicBlock::iterator IP = ++I->getIterator();
1025ffd83dbSDimitry Andric   if (auto *II = dyn_cast<InvokeInst>(I))
1035ffd83dbSDimitry Andric     IP = II->getNormalDest()->begin();
1045ffd83dbSDimitry Andric 
1055ffd83dbSDimitry Andric   while (isa<PHINode>(IP))
1065ffd83dbSDimitry Andric     ++IP;
1075ffd83dbSDimitry Andric 
1085ffd83dbSDimitry Andric   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
1095ffd83dbSDimitry Andric     ++IP;
1105ffd83dbSDimitry Andric   } else if (isa<CatchSwitchInst>(IP)) {
111e8d8bef9SDimitry Andric     IP = MustDominate->getParent()->getFirstInsertionPt();
1125ffd83dbSDimitry Andric   } else {
1135ffd83dbSDimitry Andric     assert(!IP->isEHPad() && "unexpected eh pad!");
1145ffd83dbSDimitry Andric   }
1155ffd83dbSDimitry Andric 
116e8d8bef9SDimitry Andric   // Adjust insert point to be after instructions inserted by the expander, so
117e8d8bef9SDimitry Andric   // we can re-use already inserted instructions. Avoid skipping past the
118e8d8bef9SDimitry Andric   // original \p MustDominate, in case it is an inserted instruction.
119e8d8bef9SDimitry Andric   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
120e8d8bef9SDimitry Andric     ++IP;
121e8d8bef9SDimitry Andric 
1225ffd83dbSDimitry Andric   return IP;
1235ffd83dbSDimitry Andric }
1245ffd83dbSDimitry Andric 
125fe6060f1SDimitry Andric BasicBlock::iterator
126fe6060f1SDimitry Andric SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
127fe6060f1SDimitry Andric   // Cast the argument at the beginning of the entry block, after
128fe6060f1SDimitry Andric   // any bitcasts of other arguments.
129fe6060f1SDimitry Andric   if (Argument *A = dyn_cast<Argument>(V)) {
130fe6060f1SDimitry Andric     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
131fe6060f1SDimitry Andric     while ((isa<BitCastInst>(IP) &&
132fe6060f1SDimitry Andric             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
133fe6060f1SDimitry Andric             cast<BitCastInst>(IP)->getOperand(0) != A) ||
134fe6060f1SDimitry Andric            isa<DbgInfoIntrinsic>(IP))
135fe6060f1SDimitry Andric       ++IP;
136fe6060f1SDimitry Andric     return IP;
137fe6060f1SDimitry Andric   }
138fe6060f1SDimitry Andric 
139fe6060f1SDimitry Andric   // Cast the instruction immediately after the instruction.
140fe6060f1SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(V))
141fe6060f1SDimitry Andric     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
142fe6060f1SDimitry Andric 
143fe6060f1SDimitry Andric   // Otherwise, this must be some kind of a constant,
144fe6060f1SDimitry Andric   // so let's plop this cast into the function's entry block.
145fe6060f1SDimitry Andric   assert(isa<Constant>(V) &&
146fe6060f1SDimitry Andric          "Expected the cast argument to be a global/constant");
147fe6060f1SDimitry Andric   return Builder.GetInsertBlock()
148fe6060f1SDimitry Andric       ->getParent()
149fe6060f1SDimitry Andric       ->getEntryBlock()
150fe6060f1SDimitry Andric       .getFirstInsertionPt();
151fe6060f1SDimitry Andric }
152fe6060f1SDimitry Andric 
1535ffd83dbSDimitry Andric /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
1545ffd83dbSDimitry Andric /// which must be possible with a noop cast, doing what we can to share
1555ffd83dbSDimitry Andric /// the casts.
1565ffd83dbSDimitry Andric Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
1575ffd83dbSDimitry Andric   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
1585ffd83dbSDimitry Andric   assert((Op == Instruction::BitCast ||
1595ffd83dbSDimitry Andric           Op == Instruction::PtrToInt ||
1605ffd83dbSDimitry Andric           Op == Instruction::IntToPtr) &&
1615ffd83dbSDimitry Andric          "InsertNoopCastOfTo cannot perform non-noop casts!");
1625ffd83dbSDimitry Andric   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
1635ffd83dbSDimitry Andric          "InsertNoopCastOfTo cannot change sizes!");
1645ffd83dbSDimitry Andric 
165e8d8bef9SDimitry Andric   // inttoptr only works for integral pointers. For non-integral pointers, we
166*06c3fb27SDimitry Andric   // can create a GEP on null with the integral value as index. Note that
167e8d8bef9SDimitry Andric   // it is safe to use GEP of null instead of inttoptr here, because only
168e8d8bef9SDimitry Andric   // expressions already based on a GEP of null should be converted to pointers
169e8d8bef9SDimitry Andric   // during expansion.
170e8d8bef9SDimitry Andric   if (Op == Instruction::IntToPtr) {
171e8d8bef9SDimitry Andric     auto *PtrTy = cast<PointerType>(Ty);
172e8d8bef9SDimitry Andric     if (DL.isNonIntegralPointerType(PtrTy)) {
173e8d8bef9SDimitry Andric       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
17404eeddc0SDimitry Andric       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
175e8d8bef9SDimitry Andric              "alloc size of i8 must by 1 byte for the GEP to be correct");
176*06c3fb27SDimitry Andric       return Builder.CreateGEP(
177*06c3fb27SDimitry Andric           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "scevgep");
178e8d8bef9SDimitry Andric     }
179e8d8bef9SDimitry Andric   }
1805ffd83dbSDimitry Andric   // Short-circuit unnecessary bitcasts.
1815ffd83dbSDimitry Andric   if (Op == Instruction::BitCast) {
1825ffd83dbSDimitry Andric     if (V->getType() == Ty)
1835ffd83dbSDimitry Andric       return V;
1845ffd83dbSDimitry Andric     if (CastInst *CI = dyn_cast<CastInst>(V)) {
1855ffd83dbSDimitry Andric       if (CI->getOperand(0)->getType() == Ty)
1865ffd83dbSDimitry Andric         return CI->getOperand(0);
1875ffd83dbSDimitry Andric     }
1885ffd83dbSDimitry Andric   }
1895ffd83dbSDimitry Andric   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
1905ffd83dbSDimitry Andric   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
1915ffd83dbSDimitry Andric       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
1925ffd83dbSDimitry Andric     if (CastInst *CI = dyn_cast<CastInst>(V))
1935ffd83dbSDimitry Andric       if ((CI->getOpcode() == Instruction::PtrToInt ||
1945ffd83dbSDimitry Andric            CI->getOpcode() == Instruction::IntToPtr) &&
1955ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CI->getType()) ==
1965ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
1975ffd83dbSDimitry Andric         return CI->getOperand(0);
1985ffd83dbSDimitry Andric     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1995ffd83dbSDimitry Andric       if ((CE->getOpcode() == Instruction::PtrToInt ||
2005ffd83dbSDimitry Andric            CE->getOpcode() == Instruction::IntToPtr) &&
2015ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CE->getType()) ==
2025ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
2035ffd83dbSDimitry Andric         return CE->getOperand(0);
2045ffd83dbSDimitry Andric   }
2055ffd83dbSDimitry Andric 
2065ffd83dbSDimitry Andric   // Fold a cast of a constant.
2075ffd83dbSDimitry Andric   if (Constant *C = dyn_cast<Constant>(V))
2085ffd83dbSDimitry Andric     return ConstantExpr::getCast(Op, C, Ty);
2095ffd83dbSDimitry Andric 
210fe6060f1SDimitry Andric   // Try to reuse existing cast, or insert one.
211fe6060f1SDimitry Andric   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
2125ffd83dbSDimitry Andric }
2135ffd83dbSDimitry Andric 
2145ffd83dbSDimitry Andric /// InsertBinop - Insert the specified binary operator, doing a small amount
2155ffd83dbSDimitry Andric /// of work to avoid inserting an obviously redundant operation, and hoisting
2165ffd83dbSDimitry Andric /// to an outer loop when the opportunity is there and it is safe.
2175ffd83dbSDimitry Andric Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
2185ffd83dbSDimitry Andric                                  Value *LHS, Value *RHS,
2195ffd83dbSDimitry Andric                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
2205ffd83dbSDimitry Andric   // Fold a binop with constant operands.
2215ffd83dbSDimitry Andric   if (Constant *CLHS = dyn_cast<Constant>(LHS))
2225ffd83dbSDimitry Andric     if (Constant *CRHS = dyn_cast<Constant>(RHS))
223753f127fSDimitry Andric       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
224753f127fSDimitry Andric         return Res;
2255ffd83dbSDimitry Andric 
2265ffd83dbSDimitry Andric   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
2275ffd83dbSDimitry Andric   unsigned ScanLimit = 6;
2285ffd83dbSDimitry Andric   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
2295ffd83dbSDimitry Andric   // Scanning starts from the last instruction before the insertion point.
2305ffd83dbSDimitry Andric   BasicBlock::iterator IP = Builder.GetInsertPoint();
2315ffd83dbSDimitry Andric   if (IP != BlockBegin) {
2325ffd83dbSDimitry Andric     --IP;
2335ffd83dbSDimitry Andric     for (; ScanLimit; --IP, --ScanLimit) {
2345ffd83dbSDimitry Andric       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
2355ffd83dbSDimitry Andric       // generated code.
2365ffd83dbSDimitry Andric       if (isa<DbgInfoIntrinsic>(IP))
2375ffd83dbSDimitry Andric         ScanLimit++;
2385ffd83dbSDimitry Andric 
2395ffd83dbSDimitry Andric       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
2405ffd83dbSDimitry Andric         // Ensure that no-wrap flags match.
2415ffd83dbSDimitry Andric         if (isa<OverflowingBinaryOperator>(I)) {
2425ffd83dbSDimitry Andric           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
2435ffd83dbSDimitry Andric             return true;
2445ffd83dbSDimitry Andric           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
2455ffd83dbSDimitry Andric             return true;
2465ffd83dbSDimitry Andric         }
2475ffd83dbSDimitry Andric         // Conservatively, do not use any instruction which has any of exact
2485ffd83dbSDimitry Andric         // flags installed.
2495ffd83dbSDimitry Andric         if (isa<PossiblyExactOperator>(I) && I->isExact())
2505ffd83dbSDimitry Andric           return true;
2515ffd83dbSDimitry Andric         return false;
2525ffd83dbSDimitry Andric       };
2535ffd83dbSDimitry Andric       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
2545ffd83dbSDimitry Andric           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
2555ffd83dbSDimitry Andric         return &*IP;
2565ffd83dbSDimitry Andric       if (IP == BlockBegin) break;
2575ffd83dbSDimitry Andric     }
2585ffd83dbSDimitry Andric   }
2595ffd83dbSDimitry Andric 
2605ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
2615ffd83dbSDimitry Andric   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
2625ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
2635ffd83dbSDimitry Andric 
2645ffd83dbSDimitry Andric   if (IsSafeToHoist) {
2655ffd83dbSDimitry Andric     // Move the insertion point out of as many loops as we can.
2665ffd83dbSDimitry Andric     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
2675ffd83dbSDimitry Andric       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
2685ffd83dbSDimitry Andric       BasicBlock *Preheader = L->getLoopPreheader();
2695ffd83dbSDimitry Andric       if (!Preheader) break;
2705ffd83dbSDimitry Andric 
2715ffd83dbSDimitry Andric       // Ok, move up a level.
2725ffd83dbSDimitry Andric       Builder.SetInsertPoint(Preheader->getTerminator());
2735ffd83dbSDimitry Andric     }
2745ffd83dbSDimitry Andric   }
2755ffd83dbSDimitry Andric 
2765ffd83dbSDimitry Andric   // If we haven't found this binop, insert it.
27781ad6265SDimitry Andric   // TODO: Use the Builder, which will make CreateBinOp below fold with
27881ad6265SDimitry Andric   // InstSimplifyFolder.
27981ad6265SDimitry Andric   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
2805ffd83dbSDimitry Andric   BO->setDebugLoc(Loc);
2815ffd83dbSDimitry Andric   if (Flags & SCEV::FlagNUW)
2825ffd83dbSDimitry Andric     BO->setHasNoUnsignedWrap();
2835ffd83dbSDimitry Andric   if (Flags & SCEV::FlagNSW)
2845ffd83dbSDimitry Andric     BO->setHasNoSignedWrap();
2855ffd83dbSDimitry Andric 
2865ffd83dbSDimitry Andric   return BO;
2875ffd83dbSDimitry Andric }
2885ffd83dbSDimitry Andric 
2895ffd83dbSDimitry Andric /// expandAddToGEP - Expand an addition expression with a pointer type into
2905ffd83dbSDimitry Andric /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
2915ffd83dbSDimitry Andric /// BasicAliasAnalysis and other passes analyze the result. See the rules
2925ffd83dbSDimitry Andric /// for getelementptr vs. inttoptr in
2935ffd83dbSDimitry Andric /// http://llvm.org/docs/LangRef.html#pointeraliasing
2945ffd83dbSDimitry Andric /// for details.
2955ffd83dbSDimitry Andric ///
2965ffd83dbSDimitry Andric /// Design note: The correctness of using getelementptr here depends on
2975ffd83dbSDimitry Andric /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
2985ffd83dbSDimitry Andric /// they may introduce pointer arithmetic which may not be safely converted
2995ffd83dbSDimitry Andric /// into getelementptr.
3005ffd83dbSDimitry Andric ///
3015ffd83dbSDimitry Andric /// Design note: It might seem desirable for this function to be more
3025ffd83dbSDimitry Andric /// loop-aware. If some of the indices are loop-invariant while others
3035ffd83dbSDimitry Andric /// aren't, it might seem desirable to emit multiple GEPs, keeping the
3045ffd83dbSDimitry Andric /// loop-invariant portions of the overall computation outside the loop.
3055ffd83dbSDimitry Andric /// However, there are a few reasons this is not done here. Hoisting simple
3065ffd83dbSDimitry Andric /// arithmetic is a low-level optimization that often isn't very
3075ffd83dbSDimitry Andric /// important until late in the optimization process. In fact, passes
3085ffd83dbSDimitry Andric /// like InstructionCombining will combine GEPs, even if it means
3095ffd83dbSDimitry Andric /// pushing loop-invariant computation down into loops, so even if the
3105ffd83dbSDimitry Andric /// GEPs were split here, the work would quickly be undone. The
3115ffd83dbSDimitry Andric /// LoopStrengthReduction pass, which is usually run quite late (and
3125ffd83dbSDimitry Andric /// after the last InstructionCombining pass), takes care of hoisting
3135ffd83dbSDimitry Andric /// loop-invariant portions of expressions, after considering what
3145ffd83dbSDimitry Andric /// can be folded using target addressing modes.
3155ffd83dbSDimitry Andric ///
316*06c3fb27SDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Type *Ty, Value *V) {
3175ffd83dbSDimitry Andric   assert(!isa<Instruction>(V) ||
3185ffd83dbSDimitry Andric          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
3195ffd83dbSDimitry Andric 
320*06c3fb27SDimitry Andric   Value *Idx = expandCodeForImpl(Offset, Ty);
3215ffd83dbSDimitry Andric 
3225ffd83dbSDimitry Andric   // Fold a GEP with constant operands.
3235ffd83dbSDimitry Andric   if (Constant *CLHS = dyn_cast<Constant>(V))
3245ffd83dbSDimitry Andric     if (Constant *CRHS = dyn_cast<Constant>(Idx))
325bdd1243dSDimitry Andric       return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS);
3265ffd83dbSDimitry Andric 
3275ffd83dbSDimitry Andric   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
3285ffd83dbSDimitry Andric   unsigned ScanLimit = 6;
3295ffd83dbSDimitry Andric   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
3305ffd83dbSDimitry Andric   // Scanning starts from the last instruction before the insertion point.
3315ffd83dbSDimitry Andric   BasicBlock::iterator IP = Builder.GetInsertPoint();
3325ffd83dbSDimitry Andric   if (IP != BlockBegin) {
3335ffd83dbSDimitry Andric     --IP;
3345ffd83dbSDimitry Andric     for (; ScanLimit; --IP, --ScanLimit) {
3355ffd83dbSDimitry Andric       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
3365ffd83dbSDimitry Andric       // generated code.
3375ffd83dbSDimitry Andric       if (isa<DbgInfoIntrinsic>(IP))
3385ffd83dbSDimitry Andric         ScanLimit++;
3395ffd83dbSDimitry Andric       if (IP->getOpcode() == Instruction::GetElementPtr &&
34081ad6265SDimitry Andric           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
34181ad6265SDimitry Andric           cast<GEPOperator>(&*IP)->getSourceElementType() ==
34281ad6265SDimitry Andric               Type::getInt8Ty(Ty->getContext()))
3435ffd83dbSDimitry Andric         return &*IP;
3445ffd83dbSDimitry Andric       if (IP == BlockBegin) break;
3455ffd83dbSDimitry Andric     }
3465ffd83dbSDimitry Andric   }
3475ffd83dbSDimitry Andric 
3485ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
3495ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
3505ffd83dbSDimitry Andric 
3515ffd83dbSDimitry Andric   // Move the insertion point out of as many loops as we can.
3525ffd83dbSDimitry Andric   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
3535ffd83dbSDimitry Andric     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
3545ffd83dbSDimitry Andric     BasicBlock *Preheader = L->getLoopPreheader();
3555ffd83dbSDimitry Andric     if (!Preheader) break;
3565ffd83dbSDimitry Andric 
3575ffd83dbSDimitry Andric     // Ok, move up a level.
3585ffd83dbSDimitry Andric     Builder.SetInsertPoint(Preheader->getTerminator());
3595ffd83dbSDimitry Andric   }
3605ffd83dbSDimitry Andric 
3615ffd83dbSDimitry Andric   // Emit a GEP.
362*06c3fb27SDimitry Andric   return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep");
3635ffd83dbSDimitry Andric }
3645ffd83dbSDimitry Andric 
3655ffd83dbSDimitry Andric /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
3665ffd83dbSDimitry Andric /// SCEV expansion. If they are nested, this is the most nested. If they are
3675ffd83dbSDimitry Andric /// neighboring, pick the later.
3685ffd83dbSDimitry Andric static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
3695ffd83dbSDimitry Andric                                         DominatorTree &DT) {
3705ffd83dbSDimitry Andric   if (!A) return B;
3715ffd83dbSDimitry Andric   if (!B) return A;
3725ffd83dbSDimitry Andric   if (A->contains(B)) return B;
3735ffd83dbSDimitry Andric   if (B->contains(A)) return A;
3745ffd83dbSDimitry Andric   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
3755ffd83dbSDimitry Andric   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
3765ffd83dbSDimitry Andric   return A; // Arbitrarily break the tie.
3775ffd83dbSDimitry Andric }
3785ffd83dbSDimitry Andric 
3795ffd83dbSDimitry Andric /// getRelevantLoop - Get the most relevant loop associated with the given
3805ffd83dbSDimitry Andric /// expression, according to PickMostRelevantLoop.
3815ffd83dbSDimitry Andric const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
3825ffd83dbSDimitry Andric   // Test whether we've already computed the most relevant loop for this SCEV.
3835ffd83dbSDimitry Andric   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
3845ffd83dbSDimitry Andric   if (!Pair.second)
3855ffd83dbSDimitry Andric     return Pair.first->second;
3865ffd83dbSDimitry Andric 
387bdd1243dSDimitry Andric   switch (S->getSCEVType()) {
388bdd1243dSDimitry Andric   case scConstant:
389*06c3fb27SDimitry Andric   case scVScale:
390bdd1243dSDimitry Andric     return nullptr; // A constant has no relevant loops.
391bdd1243dSDimitry Andric   case scTruncate:
392bdd1243dSDimitry Andric   case scZeroExtend:
393bdd1243dSDimitry Andric   case scSignExtend:
394bdd1243dSDimitry Andric   case scPtrToInt:
395bdd1243dSDimitry Andric   case scAddExpr:
396bdd1243dSDimitry Andric   case scMulExpr:
397bdd1243dSDimitry Andric   case scUDivExpr:
398bdd1243dSDimitry Andric   case scAddRecExpr:
399bdd1243dSDimitry Andric   case scUMaxExpr:
400bdd1243dSDimitry Andric   case scSMaxExpr:
401bdd1243dSDimitry Andric   case scUMinExpr:
402bdd1243dSDimitry Andric   case scSMinExpr:
403bdd1243dSDimitry Andric   case scSequentialUMinExpr: {
404bdd1243dSDimitry Andric     const Loop *L = nullptr;
405bdd1243dSDimitry Andric     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
406bdd1243dSDimitry Andric       L = AR->getLoop();
407bdd1243dSDimitry Andric     for (const SCEV *Op : S->operands())
408bdd1243dSDimitry Andric       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
409bdd1243dSDimitry Andric     return RelevantLoops[S] = L;
410bdd1243dSDimitry Andric   }
411bdd1243dSDimitry Andric   case scUnknown: {
412bdd1243dSDimitry Andric     const SCEVUnknown *U = cast<SCEVUnknown>(S);
4135ffd83dbSDimitry Andric     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
4145ffd83dbSDimitry Andric       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
4155ffd83dbSDimitry Andric     // A non-instruction has no relevant loops.
4165ffd83dbSDimitry Andric     return nullptr;
4175ffd83dbSDimitry Andric   }
418bdd1243dSDimitry Andric   case scCouldNotCompute:
419bdd1243dSDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4205ffd83dbSDimitry Andric   }
4215ffd83dbSDimitry Andric   llvm_unreachable("Unexpected SCEV type!");
4225ffd83dbSDimitry Andric }
4235ffd83dbSDimitry Andric 
4245ffd83dbSDimitry Andric namespace {
4255ffd83dbSDimitry Andric 
4265ffd83dbSDimitry Andric /// LoopCompare - Compare loops by PickMostRelevantLoop.
4275ffd83dbSDimitry Andric class LoopCompare {
4285ffd83dbSDimitry Andric   DominatorTree &DT;
4295ffd83dbSDimitry Andric public:
4305ffd83dbSDimitry Andric   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
4315ffd83dbSDimitry Andric 
4325ffd83dbSDimitry Andric   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
4335ffd83dbSDimitry Andric                   std::pair<const Loop *, const SCEV *> RHS) const {
4345ffd83dbSDimitry Andric     // Keep pointer operands sorted at the end.
4355ffd83dbSDimitry Andric     if (LHS.second->getType()->isPointerTy() !=
4365ffd83dbSDimitry Andric         RHS.second->getType()->isPointerTy())
4375ffd83dbSDimitry Andric       return LHS.second->getType()->isPointerTy();
4385ffd83dbSDimitry Andric 
4395ffd83dbSDimitry Andric     // Compare loops with PickMostRelevantLoop.
4405ffd83dbSDimitry Andric     if (LHS.first != RHS.first)
4415ffd83dbSDimitry Andric       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
4425ffd83dbSDimitry Andric 
4435ffd83dbSDimitry Andric     // If one operand is a non-constant negative and the other is not,
4445ffd83dbSDimitry Andric     // put the non-constant negative on the right so that a sub can
4455ffd83dbSDimitry Andric     // be used instead of a negate and add.
4465ffd83dbSDimitry Andric     if (LHS.second->isNonConstantNegative()) {
4475ffd83dbSDimitry Andric       if (!RHS.second->isNonConstantNegative())
4485ffd83dbSDimitry Andric         return false;
4495ffd83dbSDimitry Andric     } else if (RHS.second->isNonConstantNegative())
4505ffd83dbSDimitry Andric       return true;
4515ffd83dbSDimitry Andric 
4525ffd83dbSDimitry Andric     // Otherwise they are equivalent according to this comparison.
4535ffd83dbSDimitry Andric     return false;
4545ffd83dbSDimitry Andric   }
4555ffd83dbSDimitry Andric };
4565ffd83dbSDimitry Andric 
4575ffd83dbSDimitry Andric }
4585ffd83dbSDimitry Andric 
4595ffd83dbSDimitry Andric Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
4605ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
4615ffd83dbSDimitry Andric 
4625ffd83dbSDimitry Andric   // Collect all the add operands in a loop, along with their associated loops.
4635ffd83dbSDimitry Andric   // Iterate in reverse so that constants are emitted last, all else equal, and
4645ffd83dbSDimitry Andric   // so that pointer operands are inserted first, which the code below relies on
4655ffd83dbSDimitry Andric   // to form more involved GEPs.
4665ffd83dbSDimitry Andric   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
467349cc55cSDimitry Andric   for (const SCEV *Op : reverse(S->operands()))
468349cc55cSDimitry Andric     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
4695ffd83dbSDimitry Andric 
4705ffd83dbSDimitry Andric   // Sort by loop. Use a stable sort so that constants follow non-constants and
4715ffd83dbSDimitry Andric   // pointer operands precede non-pointer operands.
4725ffd83dbSDimitry Andric   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
4735ffd83dbSDimitry Andric 
4745ffd83dbSDimitry Andric   // Emit instructions to add all the operands. Hoist as much as possible
4755ffd83dbSDimitry Andric   // out of loops, and form meaningful getelementptrs where possible.
4765ffd83dbSDimitry Andric   Value *Sum = nullptr;
4775ffd83dbSDimitry Andric   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
4785ffd83dbSDimitry Andric     const Loop *CurLoop = I->first;
4795ffd83dbSDimitry Andric     const SCEV *Op = I->second;
4805ffd83dbSDimitry Andric     if (!Sum) {
4815ffd83dbSDimitry Andric       // This is the first operand. Just expand it.
4825ffd83dbSDimitry Andric       Sum = expand(Op);
4835ffd83dbSDimitry Andric       ++I;
484349cc55cSDimitry Andric       continue;
485349cc55cSDimitry Andric     }
486349cc55cSDimitry Andric 
487349cc55cSDimitry Andric     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
488*06c3fb27SDimitry Andric     if (isa<PointerType>(Sum->getType())) {
4895ffd83dbSDimitry Andric       // The running sum expression is a pointer. Try to form a getelementptr
4905ffd83dbSDimitry Andric       // at this level with that as the base.
4915ffd83dbSDimitry Andric       SmallVector<const SCEV *, 4> NewOps;
4925ffd83dbSDimitry Andric       for (; I != E && I->first == CurLoop; ++I) {
4935ffd83dbSDimitry Andric         // If the operand is SCEVUnknown and not instructions, peek through
4945ffd83dbSDimitry Andric         // it, to enable more of it to be folded into the GEP.
4955ffd83dbSDimitry Andric         const SCEV *X = I->second;
4965ffd83dbSDimitry Andric         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
4975ffd83dbSDimitry Andric           if (!isa<Instruction>(U->getValue()))
4985ffd83dbSDimitry Andric             X = SE.getSCEV(U->getValue());
4995ffd83dbSDimitry Andric         NewOps.push_back(X);
5005ffd83dbSDimitry Andric       }
501*06c3fb27SDimitry Andric       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Ty, Sum);
5025ffd83dbSDimitry Andric     } else if (Op->isNonConstantNegative()) {
5035ffd83dbSDimitry Andric       // Instead of doing a negate and add, just do a subtract.
504bdd1243dSDimitry Andric       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty);
5055ffd83dbSDimitry Andric       Sum = InsertNoopCastOfTo(Sum, Ty);
5065ffd83dbSDimitry Andric       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
5075ffd83dbSDimitry Andric                         /*IsSafeToHoist*/ true);
5085ffd83dbSDimitry Andric       ++I;
5095ffd83dbSDimitry Andric     } else {
5105ffd83dbSDimitry Andric       // A simple add.
511bdd1243dSDimitry Andric       Value *W = expandCodeForImpl(Op, Ty);
5125ffd83dbSDimitry Andric       Sum = InsertNoopCastOfTo(Sum, Ty);
5135ffd83dbSDimitry Andric       // Canonicalize a constant to the RHS.
5145ffd83dbSDimitry Andric       if (isa<Constant>(Sum)) std::swap(Sum, W);
5155ffd83dbSDimitry Andric       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
5165ffd83dbSDimitry Andric                         /*IsSafeToHoist*/ true);
5175ffd83dbSDimitry Andric       ++I;
5185ffd83dbSDimitry Andric     }
5195ffd83dbSDimitry Andric   }
5205ffd83dbSDimitry Andric 
5215ffd83dbSDimitry Andric   return Sum;
5225ffd83dbSDimitry Andric }
5235ffd83dbSDimitry Andric 
5245ffd83dbSDimitry Andric Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
5255ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
5265ffd83dbSDimitry Andric 
5275ffd83dbSDimitry Andric   // Collect all the mul operands in a loop, along with their associated loops.
5285ffd83dbSDimitry Andric   // Iterate in reverse so that constants are emitted last, all else equal.
5295ffd83dbSDimitry Andric   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
530349cc55cSDimitry Andric   for (const SCEV *Op : reverse(S->operands()))
531349cc55cSDimitry Andric     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
5325ffd83dbSDimitry Andric 
5335ffd83dbSDimitry Andric   // Sort by loop. Use a stable sort so that constants follow non-constants.
5345ffd83dbSDimitry Andric   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
5355ffd83dbSDimitry Andric 
5365ffd83dbSDimitry Andric   // Emit instructions to mul all the operands. Hoist as much as possible
5375ffd83dbSDimitry Andric   // out of loops.
5385ffd83dbSDimitry Andric   Value *Prod = nullptr;
5395ffd83dbSDimitry Andric   auto I = OpsAndLoops.begin();
5405ffd83dbSDimitry Andric 
5415ffd83dbSDimitry Andric   // Expand the calculation of X pow N in the following manner:
5425ffd83dbSDimitry Andric   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
5435ffd83dbSDimitry Andric   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
5445ffd83dbSDimitry Andric   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
5455ffd83dbSDimitry Andric     auto E = I;
5465ffd83dbSDimitry Andric     // Calculate how many times the same operand from the same loop is included
5475ffd83dbSDimitry Andric     // into this power.
5485ffd83dbSDimitry Andric     uint64_t Exponent = 0;
5495ffd83dbSDimitry Andric     const uint64_t MaxExponent = UINT64_MAX >> 1;
5505ffd83dbSDimitry Andric     // No one sane will ever try to calculate such huge exponents, but if we
5515ffd83dbSDimitry Andric     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
5525ffd83dbSDimitry Andric     // below when the power of 2 exceeds our Exponent, and we want it to be
5535ffd83dbSDimitry Andric     // 1u << 31 at most to not deal with unsigned overflow.
5545ffd83dbSDimitry Andric     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
5555ffd83dbSDimitry Andric       ++Exponent;
5565ffd83dbSDimitry Andric       ++E;
5575ffd83dbSDimitry Andric     }
5585ffd83dbSDimitry Andric     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
5595ffd83dbSDimitry Andric 
5605ffd83dbSDimitry Andric     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
5615ffd83dbSDimitry Andric     // that are needed into the result.
562bdd1243dSDimitry Andric     Value *P = expandCodeForImpl(I->second, Ty);
5635ffd83dbSDimitry Andric     Value *Result = nullptr;
5645ffd83dbSDimitry Andric     if (Exponent & 1)
5655ffd83dbSDimitry Andric       Result = P;
5665ffd83dbSDimitry Andric     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
5675ffd83dbSDimitry Andric       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
5685ffd83dbSDimitry Andric                       /*IsSafeToHoist*/ true);
5695ffd83dbSDimitry Andric       if (Exponent & BinExp)
5705ffd83dbSDimitry Andric         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
5715ffd83dbSDimitry Andric                                       SCEV::FlagAnyWrap,
5725ffd83dbSDimitry Andric                                       /*IsSafeToHoist*/ true)
5735ffd83dbSDimitry Andric                         : P;
5745ffd83dbSDimitry Andric     }
5755ffd83dbSDimitry Andric 
5765ffd83dbSDimitry Andric     I = E;
5775ffd83dbSDimitry Andric     assert(Result && "Nothing was expanded?");
5785ffd83dbSDimitry Andric     return Result;
5795ffd83dbSDimitry Andric   };
5805ffd83dbSDimitry Andric 
5815ffd83dbSDimitry Andric   while (I != OpsAndLoops.end()) {
5825ffd83dbSDimitry Andric     if (!Prod) {
5835ffd83dbSDimitry Andric       // This is the first operand. Just expand it.
5845ffd83dbSDimitry Andric       Prod = ExpandOpBinPowN();
5855ffd83dbSDimitry Andric     } else if (I->second->isAllOnesValue()) {
5865ffd83dbSDimitry Andric       // Instead of doing a multiply by negative one, just do a negate.
5875ffd83dbSDimitry Andric       Prod = InsertNoopCastOfTo(Prod, Ty);
5885ffd83dbSDimitry Andric       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
5895ffd83dbSDimitry Andric                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
5905ffd83dbSDimitry Andric       ++I;
5915ffd83dbSDimitry Andric     } else {
5925ffd83dbSDimitry Andric       // A simple mul.
5935ffd83dbSDimitry Andric       Value *W = ExpandOpBinPowN();
5945ffd83dbSDimitry Andric       Prod = InsertNoopCastOfTo(Prod, Ty);
5955ffd83dbSDimitry Andric       // Canonicalize a constant to the RHS.
5965ffd83dbSDimitry Andric       if (isa<Constant>(Prod)) std::swap(Prod, W);
5975ffd83dbSDimitry Andric       const APInt *RHS;
5985ffd83dbSDimitry Andric       if (match(W, m_Power2(RHS))) {
5995ffd83dbSDimitry Andric         // Canonicalize Prod*(1<<C) to Prod<<C.
6005ffd83dbSDimitry Andric         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
6015ffd83dbSDimitry Andric         auto NWFlags = S->getNoWrapFlags();
6025ffd83dbSDimitry Andric         // clear nsw flag if shl will produce poison value.
6035ffd83dbSDimitry Andric         if (RHS->logBase2() == RHS->getBitWidth() - 1)
6045ffd83dbSDimitry Andric           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
6055ffd83dbSDimitry Andric         Prod = InsertBinop(Instruction::Shl, Prod,
6065ffd83dbSDimitry Andric                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
6075ffd83dbSDimitry Andric                            /*IsSafeToHoist*/ true);
6085ffd83dbSDimitry Andric       } else {
6095ffd83dbSDimitry Andric         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
6105ffd83dbSDimitry Andric                            /*IsSafeToHoist*/ true);
6115ffd83dbSDimitry Andric       }
6125ffd83dbSDimitry Andric     }
6135ffd83dbSDimitry Andric   }
6145ffd83dbSDimitry Andric 
6155ffd83dbSDimitry Andric   return Prod;
6165ffd83dbSDimitry Andric }
6175ffd83dbSDimitry Andric 
6185ffd83dbSDimitry Andric Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
6195ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
6205ffd83dbSDimitry Andric 
621bdd1243dSDimitry Andric   Value *LHS = expandCodeForImpl(S->getLHS(), Ty);
6225ffd83dbSDimitry Andric   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
6235ffd83dbSDimitry Andric     const APInt &RHS = SC->getAPInt();
6245ffd83dbSDimitry Andric     if (RHS.isPowerOf2())
6255ffd83dbSDimitry Andric       return InsertBinop(Instruction::LShr, LHS,
6265ffd83dbSDimitry Andric                          ConstantInt::get(Ty, RHS.logBase2()),
6275ffd83dbSDimitry Andric                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
6285ffd83dbSDimitry Andric   }
6295ffd83dbSDimitry Andric 
630bdd1243dSDimitry Andric   Value *RHS = expandCodeForImpl(S->getRHS(), Ty);
6315ffd83dbSDimitry Andric   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
6325ffd83dbSDimitry Andric                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
6335ffd83dbSDimitry Andric }
6345ffd83dbSDimitry Andric 
6355ffd83dbSDimitry Andric /// Determine if this is a well-behaved chain of instructions leading back to
6365ffd83dbSDimitry Andric /// the PHI. If so, it may be reused by expanded expressions.
6375ffd83dbSDimitry Andric bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
6385ffd83dbSDimitry Andric                                          const Loop *L) {
6395ffd83dbSDimitry Andric   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
6405ffd83dbSDimitry Andric       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
6415ffd83dbSDimitry Andric     return false;
6425ffd83dbSDimitry Andric   // If any of the operands don't dominate the insert position, bail.
6435ffd83dbSDimitry Andric   // Addrec operands are always loop-invariant, so this can only happen
6445ffd83dbSDimitry Andric   // if there are instructions which haven't been hoisted.
6455ffd83dbSDimitry Andric   if (L == IVIncInsertLoop) {
646fe6060f1SDimitry Andric     for (Use &Op : llvm::drop_begin(IncV->operands()))
647fe6060f1SDimitry Andric       if (Instruction *OInst = dyn_cast<Instruction>(Op))
6485ffd83dbSDimitry Andric         if (!SE.DT.dominates(OInst, IVIncInsertPos))
6495ffd83dbSDimitry Andric           return false;
6505ffd83dbSDimitry Andric   }
6515ffd83dbSDimitry Andric   // Advance to the next instruction.
6525ffd83dbSDimitry Andric   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
6535ffd83dbSDimitry Andric   if (!IncV)
6545ffd83dbSDimitry Andric     return false;
6555ffd83dbSDimitry Andric 
6565ffd83dbSDimitry Andric   if (IncV->mayHaveSideEffects())
6575ffd83dbSDimitry Andric     return false;
6585ffd83dbSDimitry Andric 
6595ffd83dbSDimitry Andric   if (IncV == PN)
6605ffd83dbSDimitry Andric     return true;
6615ffd83dbSDimitry Andric 
6625ffd83dbSDimitry Andric   return isNormalAddRecExprPHI(PN, IncV, L);
6635ffd83dbSDimitry Andric }
6645ffd83dbSDimitry Andric 
6655ffd83dbSDimitry Andric /// getIVIncOperand returns an induction variable increment's induction
6665ffd83dbSDimitry Andric /// variable operand.
6675ffd83dbSDimitry Andric ///
6685ffd83dbSDimitry Andric /// If allowScale is set, any type of GEP is allowed as long as the nonIV
6695ffd83dbSDimitry Andric /// operands dominate InsertPos.
6705ffd83dbSDimitry Andric ///
6715ffd83dbSDimitry Andric /// If allowScale is not set, ensure that a GEP increment conforms to one of the
6725ffd83dbSDimitry Andric /// simple patterns generated by getAddRecExprPHILiterally and
6735ffd83dbSDimitry Andric /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
6745ffd83dbSDimitry Andric Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
6755ffd83dbSDimitry Andric                                            Instruction *InsertPos,
6765ffd83dbSDimitry Andric                                            bool allowScale) {
6775ffd83dbSDimitry Andric   if (IncV == InsertPos)
6785ffd83dbSDimitry Andric     return nullptr;
6795ffd83dbSDimitry Andric 
6805ffd83dbSDimitry Andric   switch (IncV->getOpcode()) {
6815ffd83dbSDimitry Andric   default:
6825ffd83dbSDimitry Andric     return nullptr;
6835ffd83dbSDimitry Andric   // Check for a simple Add/Sub or GEP of a loop invariant step.
6845ffd83dbSDimitry Andric   case Instruction::Add:
6855ffd83dbSDimitry Andric   case Instruction::Sub: {
6865ffd83dbSDimitry Andric     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
6875ffd83dbSDimitry Andric     if (!OInst || SE.DT.dominates(OInst, InsertPos))
6885ffd83dbSDimitry Andric       return dyn_cast<Instruction>(IncV->getOperand(0));
6895ffd83dbSDimitry Andric     return nullptr;
6905ffd83dbSDimitry Andric   }
6915ffd83dbSDimitry Andric   case Instruction::BitCast:
6925ffd83dbSDimitry Andric     return dyn_cast<Instruction>(IncV->getOperand(0));
6935ffd83dbSDimitry Andric   case Instruction::GetElementPtr:
694fe6060f1SDimitry Andric     for (Use &U : llvm::drop_begin(IncV->operands())) {
695fe6060f1SDimitry Andric       if (isa<Constant>(U))
6965ffd83dbSDimitry Andric         continue;
697fe6060f1SDimitry Andric       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
6985ffd83dbSDimitry Andric         if (!SE.DT.dominates(OInst, InsertPos))
6995ffd83dbSDimitry Andric           return nullptr;
7005ffd83dbSDimitry Andric       }
7015ffd83dbSDimitry Andric       if (allowScale) {
7025ffd83dbSDimitry Andric         // allow any kind of GEP as long as it can be hoisted.
7035ffd83dbSDimitry Andric         continue;
7045ffd83dbSDimitry Andric       }
705*06c3fb27SDimitry Andric       // GEPs produced by SCEVExpander use i8 element type.
706*06c3fb27SDimitry Andric       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
7075ffd83dbSDimitry Andric         return nullptr;
7085ffd83dbSDimitry Andric       break;
7095ffd83dbSDimitry Andric     }
7105ffd83dbSDimitry Andric     return dyn_cast<Instruction>(IncV->getOperand(0));
7115ffd83dbSDimitry Andric   }
7125ffd83dbSDimitry Andric }
7135ffd83dbSDimitry Andric 
7145ffd83dbSDimitry Andric /// If the insert point of the current builder or any of the builders on the
7155ffd83dbSDimitry Andric /// stack of saved builders has 'I' as its insert point, update it to point to
7165ffd83dbSDimitry Andric /// the instruction after 'I'.  This is intended to be used when the instruction
7175ffd83dbSDimitry Andric /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
7185ffd83dbSDimitry Andric /// different block, the inconsistent insert point (with a mismatched
7195ffd83dbSDimitry Andric /// Instruction and Block) can lead to an instruction being inserted in a block
7205ffd83dbSDimitry Andric /// other than its parent.
7215ffd83dbSDimitry Andric void SCEVExpander::fixupInsertPoints(Instruction *I) {
7225ffd83dbSDimitry Andric   BasicBlock::iterator It(*I);
7235ffd83dbSDimitry Andric   BasicBlock::iterator NewInsertPt = std::next(It);
7245ffd83dbSDimitry Andric   if (Builder.GetInsertPoint() == It)
7255ffd83dbSDimitry Andric     Builder.SetInsertPoint(&*NewInsertPt);
7265ffd83dbSDimitry Andric   for (auto *InsertPtGuard : InsertPointGuards)
7275ffd83dbSDimitry Andric     if (InsertPtGuard->GetInsertPoint() == It)
7285ffd83dbSDimitry Andric       InsertPtGuard->SetInsertPoint(NewInsertPt);
7295ffd83dbSDimitry Andric }
7305ffd83dbSDimitry Andric 
7315ffd83dbSDimitry Andric /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
7325ffd83dbSDimitry Andric /// it available to other uses in this loop. Recursively hoist any operands,
7335ffd83dbSDimitry Andric /// until we reach a value that dominates InsertPos.
734bdd1243dSDimitry Andric bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
735bdd1243dSDimitry Andric                               bool RecomputePoisonFlags) {
736bdd1243dSDimitry Andric   auto FixupPoisonFlags = [this](Instruction *I) {
737bdd1243dSDimitry Andric     // Drop flags that are potentially inferred from old context and infer flags
738bdd1243dSDimitry Andric     // in new context.
739bdd1243dSDimitry Andric     I->dropPoisonGeneratingFlags();
740bdd1243dSDimitry Andric     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
741bdd1243dSDimitry Andric       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
742bdd1243dSDimitry Andric         auto *BO = cast<BinaryOperator>(I);
743bdd1243dSDimitry Andric         BO->setHasNoUnsignedWrap(
744bdd1243dSDimitry Andric             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
745bdd1243dSDimitry Andric         BO->setHasNoSignedWrap(
746bdd1243dSDimitry Andric             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
747bdd1243dSDimitry Andric       }
748bdd1243dSDimitry Andric   };
749bdd1243dSDimitry Andric 
750bdd1243dSDimitry Andric   if (SE.DT.dominates(IncV, InsertPos)) {
751bdd1243dSDimitry Andric     if (RecomputePoisonFlags)
752bdd1243dSDimitry Andric       FixupPoisonFlags(IncV);
7535ffd83dbSDimitry Andric     return true;
754bdd1243dSDimitry Andric   }
7555ffd83dbSDimitry Andric 
7565ffd83dbSDimitry Andric   // InsertPos must itself dominate IncV so that IncV's new position satisfies
7575ffd83dbSDimitry Andric   // its existing users.
7585ffd83dbSDimitry Andric   if (isa<PHINode>(InsertPos) ||
7595ffd83dbSDimitry Andric       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
7605ffd83dbSDimitry Andric     return false;
7615ffd83dbSDimitry Andric 
7625ffd83dbSDimitry Andric   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
7635ffd83dbSDimitry Andric     return false;
7645ffd83dbSDimitry Andric 
7655ffd83dbSDimitry Andric   // Check that the chain of IV operands leading back to Phi can be hoisted.
7665ffd83dbSDimitry Andric   SmallVector<Instruction*, 4> IVIncs;
7675ffd83dbSDimitry Andric   for(;;) {
7685ffd83dbSDimitry Andric     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
7695ffd83dbSDimitry Andric     if (!Oper)
7705ffd83dbSDimitry Andric       return false;
7715ffd83dbSDimitry Andric     // IncV is safe to hoist.
7725ffd83dbSDimitry Andric     IVIncs.push_back(IncV);
7735ffd83dbSDimitry Andric     IncV = Oper;
7745ffd83dbSDimitry Andric     if (SE.DT.dominates(IncV, InsertPos))
7755ffd83dbSDimitry Andric       break;
7765ffd83dbSDimitry Andric   }
7770eae32dcSDimitry Andric   for (Instruction *I : llvm::reverse(IVIncs)) {
7780eae32dcSDimitry Andric     fixupInsertPoints(I);
7790eae32dcSDimitry Andric     I->moveBefore(InsertPos);
780bdd1243dSDimitry Andric     if (RecomputePoisonFlags)
781bdd1243dSDimitry Andric       FixupPoisonFlags(I);
7825ffd83dbSDimitry Andric   }
7835ffd83dbSDimitry Andric   return true;
7845ffd83dbSDimitry Andric }
7855ffd83dbSDimitry Andric 
7865ffd83dbSDimitry Andric /// Determine if this cyclic phi is in a form that would have been generated by
7875ffd83dbSDimitry Andric /// LSR. We don't care if the phi was actually expanded in this pass, as long
7885ffd83dbSDimitry Andric /// as it is in a low-cost form, for example, no implied multiplication. This
7895ffd83dbSDimitry Andric /// should match any patterns generated by getAddRecExprPHILiterally and
7905ffd83dbSDimitry Andric /// expandAddtoGEP.
7915ffd83dbSDimitry Andric bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
7925ffd83dbSDimitry Andric                                            const Loop *L) {
7935ffd83dbSDimitry Andric   for(Instruction *IVOper = IncV;
7945ffd83dbSDimitry Andric       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
7955ffd83dbSDimitry Andric                                 /*allowScale=*/false));) {
7965ffd83dbSDimitry Andric     if (IVOper == PN)
7975ffd83dbSDimitry Andric       return true;
7985ffd83dbSDimitry Andric   }
7995ffd83dbSDimitry Andric   return false;
8005ffd83dbSDimitry Andric }
8015ffd83dbSDimitry Andric 
8025ffd83dbSDimitry Andric /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
8035ffd83dbSDimitry Andric /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
8045ffd83dbSDimitry Andric /// need to materialize IV increments elsewhere to handle difficult situations.
8055ffd83dbSDimitry Andric Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
8065ffd83dbSDimitry Andric                                  Type *ExpandTy, Type *IntTy,
8075ffd83dbSDimitry Andric                                  bool useSubtract) {
8085ffd83dbSDimitry Andric   Value *IncV;
8095ffd83dbSDimitry Andric   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
8105ffd83dbSDimitry Andric   if (ExpandTy->isPointerTy()) {
811*06c3fb27SDimitry Andric     IncV = expandAddToGEP(SE.getSCEV(StepV), IntTy, PN);
8125ffd83dbSDimitry Andric   } else {
8135ffd83dbSDimitry Andric     IncV = useSubtract ?
8145ffd83dbSDimitry Andric       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
8155ffd83dbSDimitry Andric       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
8165ffd83dbSDimitry Andric   }
8175ffd83dbSDimitry Andric   return IncV;
8185ffd83dbSDimitry Andric }
8195ffd83dbSDimitry Andric 
8205ffd83dbSDimitry Andric /// Check whether we can cheaply express the requested SCEV in terms of
8215ffd83dbSDimitry Andric /// the available PHI SCEV by truncation and/or inversion of the step.
8225ffd83dbSDimitry Andric static bool canBeCheaplyTransformed(ScalarEvolution &SE,
8235ffd83dbSDimitry Andric                                     const SCEVAddRecExpr *Phi,
8245ffd83dbSDimitry Andric                                     const SCEVAddRecExpr *Requested,
8255ffd83dbSDimitry Andric                                     bool &InvertStep) {
826fe6060f1SDimitry Andric   // We can't transform to match a pointer PHI.
827fe6060f1SDimitry Andric   if (Phi->getType()->isPointerTy())
828fe6060f1SDimitry Andric     return false;
829fe6060f1SDimitry Andric 
8305ffd83dbSDimitry Andric   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
8315ffd83dbSDimitry Andric   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
8325ffd83dbSDimitry Andric 
8335ffd83dbSDimitry Andric   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
8345ffd83dbSDimitry Andric     return false;
8355ffd83dbSDimitry Andric 
8365ffd83dbSDimitry Andric   // Try truncate it if necessary.
8375ffd83dbSDimitry Andric   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
8385ffd83dbSDimitry Andric   if (!Phi)
8395ffd83dbSDimitry Andric     return false;
8405ffd83dbSDimitry Andric 
8415ffd83dbSDimitry Andric   // Check whether truncation will help.
8425ffd83dbSDimitry Andric   if (Phi == Requested) {
8435ffd83dbSDimitry Andric     InvertStep = false;
8445ffd83dbSDimitry Andric     return true;
8455ffd83dbSDimitry Andric   }
8465ffd83dbSDimitry Andric 
8475ffd83dbSDimitry Andric   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
848fe6060f1SDimitry Andric   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
8495ffd83dbSDimitry Andric     InvertStep = true;
8505ffd83dbSDimitry Andric     return true;
8515ffd83dbSDimitry Andric   }
8525ffd83dbSDimitry Andric 
8535ffd83dbSDimitry Andric   return false;
8545ffd83dbSDimitry Andric }
8555ffd83dbSDimitry Andric 
8565ffd83dbSDimitry Andric static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
8575ffd83dbSDimitry Andric   if (!isa<IntegerType>(AR->getType()))
8585ffd83dbSDimitry Andric     return false;
8595ffd83dbSDimitry Andric 
8605ffd83dbSDimitry Andric   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
8615ffd83dbSDimitry Andric   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
8625ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
8635ffd83dbSDimitry Andric   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
8645ffd83dbSDimitry Andric                                             SE.getSignExtendExpr(AR, WideTy));
8655ffd83dbSDimitry Andric   const SCEV *ExtendAfterOp =
8665ffd83dbSDimitry Andric     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
8675ffd83dbSDimitry Andric   return ExtendAfterOp == OpAfterExtend;
8685ffd83dbSDimitry Andric }
8695ffd83dbSDimitry Andric 
8705ffd83dbSDimitry Andric static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
8715ffd83dbSDimitry Andric   if (!isa<IntegerType>(AR->getType()))
8725ffd83dbSDimitry Andric     return false;
8735ffd83dbSDimitry Andric 
8745ffd83dbSDimitry Andric   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
8755ffd83dbSDimitry Andric   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
8765ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
8775ffd83dbSDimitry Andric   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
8785ffd83dbSDimitry Andric                                             SE.getZeroExtendExpr(AR, WideTy));
8795ffd83dbSDimitry Andric   const SCEV *ExtendAfterOp =
8805ffd83dbSDimitry Andric     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
8815ffd83dbSDimitry Andric   return ExtendAfterOp == OpAfterExtend;
8825ffd83dbSDimitry Andric }
8835ffd83dbSDimitry Andric 
8845ffd83dbSDimitry Andric /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
8855ffd83dbSDimitry Andric /// the base addrec, which is the addrec without any non-loop-dominating
8865ffd83dbSDimitry Andric /// values, and return the PHI.
8875ffd83dbSDimitry Andric PHINode *
8885ffd83dbSDimitry Andric SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
8895ffd83dbSDimitry Andric                                         const Loop *L,
8905ffd83dbSDimitry Andric                                         Type *ExpandTy,
8915ffd83dbSDimitry Andric                                         Type *IntTy,
8925ffd83dbSDimitry Andric                                         Type *&TruncTy,
8935ffd83dbSDimitry Andric                                         bool &InvertStep) {
8945ffd83dbSDimitry Andric   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
8955ffd83dbSDimitry Andric 
8965ffd83dbSDimitry Andric   // Reuse a previously-inserted PHI, if present.
8975ffd83dbSDimitry Andric   BasicBlock *LatchBlock = L->getLoopLatch();
8985ffd83dbSDimitry Andric   if (LatchBlock) {
8995ffd83dbSDimitry Andric     PHINode *AddRecPhiMatch = nullptr;
9005ffd83dbSDimitry Andric     Instruction *IncV = nullptr;
9015ffd83dbSDimitry Andric     TruncTy = nullptr;
9025ffd83dbSDimitry Andric     InvertStep = false;
9035ffd83dbSDimitry Andric 
9045ffd83dbSDimitry Andric     // Only try partially matching scevs that need truncation and/or
9055ffd83dbSDimitry Andric     // step-inversion if we know this loop is outside the current loop.
9065ffd83dbSDimitry Andric     bool TryNonMatchingSCEV =
9075ffd83dbSDimitry Andric         IVIncInsertLoop &&
9085ffd83dbSDimitry Andric         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
9095ffd83dbSDimitry Andric 
9105ffd83dbSDimitry Andric     for (PHINode &PN : L->getHeader()->phis()) {
9115ffd83dbSDimitry Andric       if (!SE.isSCEVable(PN.getType()))
9125ffd83dbSDimitry Andric         continue;
9135ffd83dbSDimitry Andric 
914e8d8bef9SDimitry Andric       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
915e8d8bef9SDimitry Andric       // PHI has no meaning at all.
916e8d8bef9SDimitry Andric       if (!PN.isComplete()) {
917fe6060f1SDimitry Andric         SCEV_DEBUG_WITH_TYPE(
918e8d8bef9SDimitry Andric             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
919e8d8bef9SDimitry Andric         continue;
920e8d8bef9SDimitry Andric       }
921e8d8bef9SDimitry Andric 
9225ffd83dbSDimitry Andric       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
9235ffd83dbSDimitry Andric       if (!PhiSCEV)
9245ffd83dbSDimitry Andric         continue;
9255ffd83dbSDimitry Andric 
9265ffd83dbSDimitry Andric       bool IsMatchingSCEV = PhiSCEV == Normalized;
9275ffd83dbSDimitry Andric       // We only handle truncation and inversion of phi recurrences for the
9285ffd83dbSDimitry Andric       // expanded expression if the expanded expression's loop dominates the
9295ffd83dbSDimitry Andric       // loop we insert to. Check now, so we can bail out early.
9305ffd83dbSDimitry Andric       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
9315ffd83dbSDimitry Andric           continue;
9325ffd83dbSDimitry Andric 
9335ffd83dbSDimitry Andric       // TODO: this possibly can be reworked to avoid this cast at all.
9345ffd83dbSDimitry Andric       Instruction *TempIncV =
9355ffd83dbSDimitry Andric           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
9365ffd83dbSDimitry Andric       if (!TempIncV)
9375ffd83dbSDimitry Andric         continue;
9385ffd83dbSDimitry Andric 
9395ffd83dbSDimitry Andric       // Check whether we can reuse this PHI node.
9405ffd83dbSDimitry Andric       if (LSRMode) {
9415ffd83dbSDimitry Andric         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
9425ffd83dbSDimitry Andric           continue;
9435ffd83dbSDimitry Andric       } else {
9445ffd83dbSDimitry Andric         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
9455ffd83dbSDimitry Andric           continue;
9465ffd83dbSDimitry Andric       }
9475ffd83dbSDimitry Andric 
9485ffd83dbSDimitry Andric       // Stop if we have found an exact match SCEV.
9495ffd83dbSDimitry Andric       if (IsMatchingSCEV) {
9505ffd83dbSDimitry Andric         IncV = TempIncV;
9515ffd83dbSDimitry Andric         TruncTy = nullptr;
9525ffd83dbSDimitry Andric         InvertStep = false;
9535ffd83dbSDimitry Andric         AddRecPhiMatch = &PN;
9545ffd83dbSDimitry Andric         break;
9555ffd83dbSDimitry Andric       }
9565ffd83dbSDimitry Andric 
9575ffd83dbSDimitry Andric       // Try whether the phi can be translated into the requested form
9585ffd83dbSDimitry Andric       // (truncated and/or offset by a constant).
9595ffd83dbSDimitry Andric       if ((!TruncTy || InvertStep) &&
9605ffd83dbSDimitry Andric           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
9615ffd83dbSDimitry Andric         // Record the phi node. But don't stop we might find an exact match
9625ffd83dbSDimitry Andric         // later.
9635ffd83dbSDimitry Andric         AddRecPhiMatch = &PN;
9645ffd83dbSDimitry Andric         IncV = TempIncV;
9655ffd83dbSDimitry Andric         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
9665ffd83dbSDimitry Andric       }
9675ffd83dbSDimitry Andric     }
9685ffd83dbSDimitry Andric 
9695ffd83dbSDimitry Andric     if (AddRecPhiMatch) {
9705ffd83dbSDimitry Andric       // Ok, the add recurrence looks usable.
9715ffd83dbSDimitry Andric       // Remember this PHI, even in post-inc mode.
9725ffd83dbSDimitry Andric       InsertedValues.insert(AddRecPhiMatch);
9735ffd83dbSDimitry Andric       // Remember the increment.
9745ffd83dbSDimitry Andric       rememberInstruction(IncV);
975e8d8bef9SDimitry Andric       // Those values were not actually inserted but re-used.
976e8d8bef9SDimitry Andric       ReusedValues.insert(AddRecPhiMatch);
977e8d8bef9SDimitry Andric       ReusedValues.insert(IncV);
9785ffd83dbSDimitry Andric       return AddRecPhiMatch;
9795ffd83dbSDimitry Andric     }
9805ffd83dbSDimitry Andric   }
9815ffd83dbSDimitry Andric 
9825ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
9835ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
9845ffd83dbSDimitry Andric 
9855ffd83dbSDimitry Andric   // Another AddRec may need to be recursively expanded below. For example, if
9865ffd83dbSDimitry Andric   // this AddRec is quadratic, the StepV may itself be an AddRec in this
9875ffd83dbSDimitry Andric   // loop. Remove this loop from the PostIncLoops set before expanding such
9885ffd83dbSDimitry Andric   // AddRecs. Otherwise, we cannot find a valid position for the step
9895ffd83dbSDimitry Andric   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
9905ffd83dbSDimitry Andric   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
9915ffd83dbSDimitry Andric   // so it's not worth implementing SmallPtrSet::swap.
9925ffd83dbSDimitry Andric   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
9935ffd83dbSDimitry Andric   PostIncLoops.clear();
9945ffd83dbSDimitry Andric 
9955ffd83dbSDimitry Andric   // Expand code for the start value into the loop preheader.
9965ffd83dbSDimitry Andric   assert(L->getLoopPreheader() &&
9975ffd83dbSDimitry Andric          "Can't expand add recurrences without a loop preheader!");
998e8d8bef9SDimitry Andric   Value *StartV =
999e8d8bef9SDimitry Andric       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1000bdd1243dSDimitry Andric                         L->getLoopPreheader()->getTerminator());
10015ffd83dbSDimitry Andric 
10025ffd83dbSDimitry Andric   // StartV must have been be inserted into L's preheader to dominate the new
10035ffd83dbSDimitry Andric   // phi.
10045ffd83dbSDimitry Andric   assert(!isa<Instruction>(StartV) ||
10055ffd83dbSDimitry Andric          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
10065ffd83dbSDimitry Andric                                  L->getHeader()));
10075ffd83dbSDimitry Andric 
10085ffd83dbSDimitry Andric   // Expand code for the step value. Do this before creating the PHI so that PHI
10095ffd83dbSDimitry Andric   // reuse code doesn't see an incomplete PHI.
10105ffd83dbSDimitry Andric   const SCEV *Step = Normalized->getStepRecurrence(SE);
10115ffd83dbSDimitry Andric   // If the stride is negative, insert a sub instead of an add for the increment
10125ffd83dbSDimitry Andric   // (unless it's a constant, because subtracts of constants are canonicalized
10135ffd83dbSDimitry Andric   // to adds).
10145ffd83dbSDimitry Andric   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
10155ffd83dbSDimitry Andric   if (useSubtract)
10165ffd83dbSDimitry Andric     Step = SE.getNegativeSCEV(Step);
10175ffd83dbSDimitry Andric   // Expand the step somewhere that dominates the loop header.
1018e8d8bef9SDimitry Andric   Value *StepV = expandCodeForImpl(
1019bdd1243dSDimitry Andric       Step, IntTy, &*L->getHeader()->getFirstInsertionPt());
10205ffd83dbSDimitry Andric 
10215ffd83dbSDimitry Andric   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
10225ffd83dbSDimitry Andric   // we actually do emit an addition.  It does not apply if we emit a
10235ffd83dbSDimitry Andric   // subtraction.
10245ffd83dbSDimitry Andric   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
10255ffd83dbSDimitry Andric   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
10265ffd83dbSDimitry Andric 
10275ffd83dbSDimitry Andric   // Create the PHI.
10285ffd83dbSDimitry Andric   BasicBlock *Header = L->getHeader();
10295ffd83dbSDimitry Andric   Builder.SetInsertPoint(Header, Header->begin());
10305ffd83dbSDimitry Andric   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
10315ffd83dbSDimitry Andric   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
10325ffd83dbSDimitry Andric                                   Twine(IVName) + ".iv");
10335ffd83dbSDimitry Andric 
10345ffd83dbSDimitry Andric   // Create the step instructions and populate the PHI.
10355ffd83dbSDimitry Andric   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
10365ffd83dbSDimitry Andric     BasicBlock *Pred = *HPI;
10375ffd83dbSDimitry Andric 
10385ffd83dbSDimitry Andric     // Add a start value.
10395ffd83dbSDimitry Andric     if (!L->contains(Pred)) {
10405ffd83dbSDimitry Andric       PN->addIncoming(StartV, Pred);
10415ffd83dbSDimitry Andric       continue;
10425ffd83dbSDimitry Andric     }
10435ffd83dbSDimitry Andric 
10445ffd83dbSDimitry Andric     // Create a step value and add it to the PHI.
10455ffd83dbSDimitry Andric     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
10465ffd83dbSDimitry Andric     // instructions at IVIncInsertPos.
10475ffd83dbSDimitry Andric     Instruction *InsertPos = L == IVIncInsertLoop ?
10485ffd83dbSDimitry Andric       IVIncInsertPos : Pred->getTerminator();
10495ffd83dbSDimitry Andric     Builder.SetInsertPoint(InsertPos);
10505ffd83dbSDimitry Andric     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
10515ffd83dbSDimitry Andric 
10525ffd83dbSDimitry Andric     if (isa<OverflowingBinaryOperator>(IncV)) {
10535ffd83dbSDimitry Andric       if (IncrementIsNUW)
10545ffd83dbSDimitry Andric         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
10555ffd83dbSDimitry Andric       if (IncrementIsNSW)
10565ffd83dbSDimitry Andric         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
10575ffd83dbSDimitry Andric     }
10585ffd83dbSDimitry Andric     PN->addIncoming(IncV, Pred);
10595ffd83dbSDimitry Andric   }
10605ffd83dbSDimitry Andric 
10615ffd83dbSDimitry Andric   // After expanding subexpressions, restore the PostIncLoops set so the caller
10625ffd83dbSDimitry Andric   // can ensure that IVIncrement dominates the current uses.
10635ffd83dbSDimitry Andric   PostIncLoops = SavedPostIncLoops;
10645ffd83dbSDimitry Andric 
1065fe6060f1SDimitry Andric   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1066fe6060f1SDimitry Andric   // effective when we are able to use an IV inserted here, so record it.
10675ffd83dbSDimitry Andric   InsertedValues.insert(PN);
1068fe6060f1SDimitry Andric   InsertedIVs.push_back(PN);
10695ffd83dbSDimitry Andric   return PN;
10705ffd83dbSDimitry Andric }
10715ffd83dbSDimitry Andric 
10725ffd83dbSDimitry Andric Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
10735ffd83dbSDimitry Andric   Type *STy = S->getType();
10745ffd83dbSDimitry Andric   Type *IntTy = SE.getEffectiveSCEVType(STy);
10755ffd83dbSDimitry Andric   const Loop *L = S->getLoop();
10765ffd83dbSDimitry Andric 
10775ffd83dbSDimitry Andric   // Determine a normalized form of this expression, which is the expression
10785ffd83dbSDimitry Andric   // before any post-inc adjustment is made.
10795ffd83dbSDimitry Andric   const SCEVAddRecExpr *Normalized = S;
10805ffd83dbSDimitry Andric   if (PostIncLoops.count(L)) {
10815ffd83dbSDimitry Andric     PostIncLoopSet Loops;
10825ffd83dbSDimitry Andric     Loops.insert(L);
1083*06c3fb27SDimitry Andric     Normalized = cast<SCEVAddRecExpr>(
1084*06c3fb27SDimitry Andric         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
10855ffd83dbSDimitry Andric   }
10865ffd83dbSDimitry Andric 
10875ffd83dbSDimitry Andric   // Strip off any non-loop-dominating component from the addrec start.
10885ffd83dbSDimitry Andric   const SCEV *Start = Normalized->getStart();
10895ffd83dbSDimitry Andric   const SCEV *PostLoopOffset = nullptr;
10905ffd83dbSDimitry Andric   if (!SE.properlyDominates(Start, L->getHeader())) {
10915ffd83dbSDimitry Andric     PostLoopOffset = Start;
10925ffd83dbSDimitry Andric     Start = SE.getConstant(Normalized->getType(), 0);
10935ffd83dbSDimitry Andric     Normalized = cast<SCEVAddRecExpr>(
10945ffd83dbSDimitry Andric       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
10955ffd83dbSDimitry Andric                        Normalized->getLoop(),
10965ffd83dbSDimitry Andric                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
10975ffd83dbSDimitry Andric   }
10985ffd83dbSDimitry Andric 
10995ffd83dbSDimitry Andric   // Strip off any non-loop-dominating component from the addrec step.
11005ffd83dbSDimitry Andric   const SCEV *Step = Normalized->getStepRecurrence(SE);
11015ffd83dbSDimitry Andric   const SCEV *PostLoopScale = nullptr;
11025ffd83dbSDimitry Andric   if (!SE.dominates(Step, L->getHeader())) {
11035ffd83dbSDimitry Andric     PostLoopScale = Step;
11045ffd83dbSDimitry Andric     Step = SE.getConstant(Normalized->getType(), 1);
11055ffd83dbSDimitry Andric     if (!Start->isZero()) {
11065ffd83dbSDimitry Andric         // The normalization below assumes that Start is constant zero, so if
11075ffd83dbSDimitry Andric         // it isn't re-associate Start to PostLoopOffset.
11085ffd83dbSDimitry Andric         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
11095ffd83dbSDimitry Andric         PostLoopOffset = Start;
11105ffd83dbSDimitry Andric         Start = SE.getConstant(Normalized->getType(), 0);
11115ffd83dbSDimitry Andric     }
11125ffd83dbSDimitry Andric     Normalized =
11135ffd83dbSDimitry Andric       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
11145ffd83dbSDimitry Andric                              Start, Step, Normalized->getLoop(),
11155ffd83dbSDimitry Andric                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
11165ffd83dbSDimitry Andric   }
11175ffd83dbSDimitry Andric 
11185ffd83dbSDimitry Andric   // Expand the core addrec. If we need post-loop scaling, force it to
11195ffd83dbSDimitry Andric   // expand to an integer type to avoid the need for additional casting.
11205ffd83dbSDimitry Andric   Type *ExpandTy = PostLoopScale ? IntTy : STy;
11215ffd83dbSDimitry Andric   // We can't use a pointer type for the addrec if the pointer type is
11225ffd83dbSDimitry Andric   // non-integral.
11235ffd83dbSDimitry Andric   Type *AddRecPHIExpandTy =
11245ffd83dbSDimitry Andric       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
11255ffd83dbSDimitry Andric 
11265ffd83dbSDimitry Andric   // In some cases, we decide to reuse an existing phi node but need to truncate
11275ffd83dbSDimitry Andric   // it and/or invert the step.
11285ffd83dbSDimitry Andric   Type *TruncTy = nullptr;
11295ffd83dbSDimitry Andric   bool InvertStep = false;
11305ffd83dbSDimitry Andric   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
11315ffd83dbSDimitry Andric                                           IntTy, TruncTy, InvertStep);
11325ffd83dbSDimitry Andric 
11335ffd83dbSDimitry Andric   // Accommodate post-inc mode, if necessary.
11345ffd83dbSDimitry Andric   Value *Result;
11355ffd83dbSDimitry Andric   if (!PostIncLoops.count(L))
11365ffd83dbSDimitry Andric     Result = PN;
11375ffd83dbSDimitry Andric   else {
11385ffd83dbSDimitry Andric     // In PostInc mode, use the post-incremented value.
11395ffd83dbSDimitry Andric     BasicBlock *LatchBlock = L->getLoopLatch();
11405ffd83dbSDimitry Andric     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
11415ffd83dbSDimitry Andric     Result = PN->getIncomingValueForBlock(LatchBlock);
11425ffd83dbSDimitry Andric 
1143e8d8bef9SDimitry Andric     // We might be introducing a new use of the post-inc IV that is not poison
1144e8d8bef9SDimitry Andric     // safe, in which case we should drop poison generating flags. Only keep
1145e8d8bef9SDimitry Andric     // those flags for which SCEV has proven that they always hold.
1146e8d8bef9SDimitry Andric     if (isa<OverflowingBinaryOperator>(Result)) {
1147e8d8bef9SDimitry Andric       auto *I = cast<Instruction>(Result);
1148e8d8bef9SDimitry Andric       if (!S->hasNoUnsignedWrap())
1149e8d8bef9SDimitry Andric         I->setHasNoUnsignedWrap(false);
1150e8d8bef9SDimitry Andric       if (!S->hasNoSignedWrap())
1151e8d8bef9SDimitry Andric         I->setHasNoSignedWrap(false);
1152e8d8bef9SDimitry Andric     }
1153e8d8bef9SDimitry Andric 
11545ffd83dbSDimitry Andric     // For an expansion to use the postinc form, the client must call
11555ffd83dbSDimitry Andric     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
11565ffd83dbSDimitry Andric     // or dominated by IVIncInsertPos.
11575ffd83dbSDimitry Andric     if (isa<Instruction>(Result) &&
11585ffd83dbSDimitry Andric         !SE.DT.dominates(cast<Instruction>(Result),
11595ffd83dbSDimitry Andric                          &*Builder.GetInsertPoint())) {
11605ffd83dbSDimitry Andric       // The induction variable's postinc expansion does not dominate this use.
11615ffd83dbSDimitry Andric       // IVUsers tries to prevent this case, so it is rare. However, it can
11625ffd83dbSDimitry Andric       // happen when an IVUser outside the loop is not dominated by the latch
11635ffd83dbSDimitry Andric       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
11645ffd83dbSDimitry Andric       // all cases. Consider a phi outside whose operand is replaced during
11655ffd83dbSDimitry Andric       // expansion with the value of the postinc user. Without fundamentally
11665ffd83dbSDimitry Andric       // changing the way postinc users are tracked, the only remedy is
11675ffd83dbSDimitry Andric       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
11685ffd83dbSDimitry Andric       // but hopefully expandCodeFor handles that.
11695ffd83dbSDimitry Andric       bool useSubtract =
11705ffd83dbSDimitry Andric         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
11715ffd83dbSDimitry Andric       if (useSubtract)
11725ffd83dbSDimitry Andric         Step = SE.getNegativeSCEV(Step);
11735ffd83dbSDimitry Andric       Value *StepV;
11745ffd83dbSDimitry Andric       {
11755ffd83dbSDimitry Andric         // Expand the step somewhere that dominates the loop header.
11765ffd83dbSDimitry Andric         SCEVInsertPointGuard Guard(Builder, this);
1177e8d8bef9SDimitry Andric         StepV = expandCodeForImpl(
1178bdd1243dSDimitry Andric             Step, IntTy, &*L->getHeader()->getFirstInsertionPt());
11795ffd83dbSDimitry Andric       }
11805ffd83dbSDimitry Andric       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
11815ffd83dbSDimitry Andric     }
11825ffd83dbSDimitry Andric   }
11835ffd83dbSDimitry Andric 
11845ffd83dbSDimitry Andric   // We have decided to reuse an induction variable of a dominating loop. Apply
11855ffd83dbSDimitry Andric   // truncation and/or inversion of the step.
11865ffd83dbSDimitry Andric   if (TruncTy) {
11875ffd83dbSDimitry Andric     Type *ResTy = Result->getType();
11885ffd83dbSDimitry Andric     // Normalize the result type.
11895ffd83dbSDimitry Andric     if (ResTy != SE.getEffectiveSCEVType(ResTy))
11905ffd83dbSDimitry Andric       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
11915ffd83dbSDimitry Andric     // Truncate the result.
1192e8d8bef9SDimitry Andric     if (TruncTy != Result->getType())
11935ffd83dbSDimitry Andric       Result = Builder.CreateTrunc(Result, TruncTy);
1194e8d8bef9SDimitry Andric 
11955ffd83dbSDimitry Andric     // Invert the result.
1196e8d8bef9SDimitry Andric     if (InvertStep)
1197e8d8bef9SDimitry Andric       Result = Builder.CreateSub(
1198bdd1243dSDimitry Andric           expandCodeForImpl(Normalized->getStart(), TruncTy), Result);
11995ffd83dbSDimitry Andric   }
12005ffd83dbSDimitry Andric 
12015ffd83dbSDimitry Andric   // Re-apply any non-loop-dominating scale.
12025ffd83dbSDimitry Andric   if (PostLoopScale) {
12035ffd83dbSDimitry Andric     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
12045ffd83dbSDimitry Andric     Result = InsertNoopCastOfTo(Result, IntTy);
12055ffd83dbSDimitry Andric     Result = Builder.CreateMul(Result,
1206bdd1243dSDimitry Andric                                expandCodeForImpl(PostLoopScale, IntTy));
12075ffd83dbSDimitry Andric   }
12085ffd83dbSDimitry Andric 
12095ffd83dbSDimitry Andric   // Re-apply any non-loop-dominating offset.
12105ffd83dbSDimitry Andric   if (PostLoopOffset) {
1211*06c3fb27SDimitry Andric     if (isa<PointerType>(ExpandTy)) {
12125ffd83dbSDimitry Andric       if (Result->getType()->isIntegerTy()) {
1213bdd1243dSDimitry Andric         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy);
1214*06c3fb27SDimitry Andric         Result = expandAddToGEP(SE.getUnknown(Result), IntTy, Base);
12155ffd83dbSDimitry Andric       } else {
1216*06c3fb27SDimitry Andric         Result = expandAddToGEP(PostLoopOffset, IntTy, Result);
12175ffd83dbSDimitry Andric       }
12185ffd83dbSDimitry Andric     } else {
12195ffd83dbSDimitry Andric       Result = InsertNoopCastOfTo(Result, IntTy);
1220e8d8bef9SDimitry Andric       Result = Builder.CreateAdd(
1221bdd1243dSDimitry Andric           Result, expandCodeForImpl(PostLoopOffset, IntTy));
12225ffd83dbSDimitry Andric     }
12235ffd83dbSDimitry Andric   }
12245ffd83dbSDimitry Andric 
12255ffd83dbSDimitry Andric   return Result;
12265ffd83dbSDimitry Andric }
12275ffd83dbSDimitry Andric 
12285ffd83dbSDimitry Andric Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
12295ffd83dbSDimitry Andric   // In canonical mode we compute the addrec as an expression of a canonical IV
12305ffd83dbSDimitry Andric   // using evaluateAtIteration and expand the resulting SCEV expression. This
1231bdd1243dSDimitry Andric   // way we avoid introducing new IVs to carry on the computation of the addrec
12325ffd83dbSDimitry Andric   // throughout the loop.
12335ffd83dbSDimitry Andric   //
12345ffd83dbSDimitry Andric   // For nested addrecs evaluateAtIteration might need a canonical IV of a
12355ffd83dbSDimitry Andric   // type wider than the addrec itself. Emitting a canonical IV of the
12365ffd83dbSDimitry Andric   // proper type might produce non-legal types, for example expanding an i64
12375ffd83dbSDimitry Andric   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
12385ffd83dbSDimitry Andric   // back to non-canonical mode for nested addrecs.
12395ffd83dbSDimitry Andric   if (!CanonicalMode || (S->getNumOperands() > 2))
12405ffd83dbSDimitry Andric     return expandAddRecExprLiterally(S);
12415ffd83dbSDimitry Andric 
12425ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
12435ffd83dbSDimitry Andric   const Loop *L = S->getLoop();
12445ffd83dbSDimitry Andric 
12455ffd83dbSDimitry Andric   // First check for an existing canonical IV in a suitable type.
12465ffd83dbSDimitry Andric   PHINode *CanonicalIV = nullptr;
12475ffd83dbSDimitry Andric   if (PHINode *PN = L->getCanonicalInductionVariable())
12485ffd83dbSDimitry Andric     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
12495ffd83dbSDimitry Andric       CanonicalIV = PN;
12505ffd83dbSDimitry Andric 
12515ffd83dbSDimitry Andric   // Rewrite an AddRec in terms of the canonical induction variable, if
12525ffd83dbSDimitry Andric   // its type is more narrow.
12535ffd83dbSDimitry Andric   if (CanonicalIV &&
1254fe6060f1SDimitry Andric       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1255fe6060f1SDimitry Andric       !S->getType()->isPointerTy()) {
12565ffd83dbSDimitry Andric     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
12575ffd83dbSDimitry Andric     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1258bdd1243dSDimitry Andric       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
12595ffd83dbSDimitry Andric     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
12605ffd83dbSDimitry Andric                                        S->getNoWrapFlags(SCEV::FlagNW)));
12615ffd83dbSDimitry Andric     BasicBlock::iterator NewInsertPt =
1262e8d8bef9SDimitry Andric         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1263e8d8bef9SDimitry Andric     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1264bdd1243dSDimitry Andric                           &*NewInsertPt);
12655ffd83dbSDimitry Andric     return V;
12665ffd83dbSDimitry Andric   }
12675ffd83dbSDimitry Andric 
12685ffd83dbSDimitry Andric   // {X,+,F} --> X + {0,+,F}
12695ffd83dbSDimitry Andric   if (!S->getStart()->isZero()) {
1270*06c3fb27SDimitry Andric     if (isa<PointerType>(S->getType())) {
1271349cc55cSDimitry Andric       Value *StartV = expand(SE.getPointerBase(S));
1272*06c3fb27SDimitry Andric       return expandAddToGEP(SE.removePointerBase(S), Ty, StartV);
1273349cc55cSDimitry Andric     }
1274349cc55cSDimitry Andric 
1275e8d8bef9SDimitry Andric     SmallVector<const SCEV *, 4> NewOps(S->operands());
12765ffd83dbSDimitry Andric     NewOps[0] = SE.getConstant(Ty, 0);
12775ffd83dbSDimitry Andric     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
12785ffd83dbSDimitry Andric                                         S->getNoWrapFlags(SCEV::FlagNW));
12795ffd83dbSDimitry Andric 
12805ffd83dbSDimitry Andric     // Just do a normal add. Pre-expand the operands to suppress folding.
12815ffd83dbSDimitry Andric     //
12825ffd83dbSDimitry Andric     // The LHS and RHS values are factored out of the expand call to make the
12835ffd83dbSDimitry Andric     // output independent of the argument evaluation order.
12845ffd83dbSDimitry Andric     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
12855ffd83dbSDimitry Andric     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
12865ffd83dbSDimitry Andric     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
12875ffd83dbSDimitry Andric   }
12885ffd83dbSDimitry Andric 
12895ffd83dbSDimitry Andric   // If we don't yet have a canonical IV, create one.
12905ffd83dbSDimitry Andric   if (!CanonicalIV) {
12915ffd83dbSDimitry Andric     // Create and insert the PHI node for the induction variable in the
12925ffd83dbSDimitry Andric     // specified loop.
12935ffd83dbSDimitry Andric     BasicBlock *Header = L->getHeader();
12945ffd83dbSDimitry Andric     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
12955ffd83dbSDimitry Andric     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
12965ffd83dbSDimitry Andric                                   &Header->front());
12975ffd83dbSDimitry Andric     rememberInstruction(CanonicalIV);
12985ffd83dbSDimitry Andric 
12995ffd83dbSDimitry Andric     SmallSet<BasicBlock *, 4> PredSeen;
13005ffd83dbSDimitry Andric     Constant *One = ConstantInt::get(Ty, 1);
13015ffd83dbSDimitry Andric     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
13025ffd83dbSDimitry Andric       BasicBlock *HP = *HPI;
13035ffd83dbSDimitry Andric       if (!PredSeen.insert(HP).second) {
13045ffd83dbSDimitry Andric         // There must be an incoming value for each predecessor, even the
13055ffd83dbSDimitry Andric         // duplicates!
13065ffd83dbSDimitry Andric         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
13075ffd83dbSDimitry Andric         continue;
13085ffd83dbSDimitry Andric       }
13095ffd83dbSDimitry Andric 
13105ffd83dbSDimitry Andric       if (L->contains(HP)) {
13115ffd83dbSDimitry Andric         // Insert a unit add instruction right before the terminator
13125ffd83dbSDimitry Andric         // corresponding to the back-edge.
13135ffd83dbSDimitry Andric         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
13145ffd83dbSDimitry Andric                                                      "indvar.next",
13155ffd83dbSDimitry Andric                                                      HP->getTerminator());
13165ffd83dbSDimitry Andric         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
13175ffd83dbSDimitry Andric         rememberInstruction(Add);
13185ffd83dbSDimitry Andric         CanonicalIV->addIncoming(Add, HP);
13195ffd83dbSDimitry Andric       } else {
13205ffd83dbSDimitry Andric         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
13215ffd83dbSDimitry Andric       }
13225ffd83dbSDimitry Andric     }
13235ffd83dbSDimitry Andric   }
13245ffd83dbSDimitry Andric 
13255ffd83dbSDimitry Andric   // {0,+,1} --> Insert a canonical induction variable into the loop!
13265ffd83dbSDimitry Andric   if (S->isAffine() && S->getOperand(1)->isOne()) {
13275ffd83dbSDimitry Andric     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
13285ffd83dbSDimitry Andric            "IVs with types different from the canonical IV should "
13295ffd83dbSDimitry Andric            "already have been handled!");
13305ffd83dbSDimitry Andric     return CanonicalIV;
13315ffd83dbSDimitry Andric   }
13325ffd83dbSDimitry Andric 
13335ffd83dbSDimitry Andric   // {0,+,F} --> {0,+,1} * F
13345ffd83dbSDimitry Andric 
13355ffd83dbSDimitry Andric   // If this is a simple linear addrec, emit it now as a special case.
13365ffd83dbSDimitry Andric   if (S->isAffine())    // {0,+,F} --> i*F
13375ffd83dbSDimitry Andric     return
13385ffd83dbSDimitry Andric       expand(SE.getTruncateOrNoop(
13395ffd83dbSDimitry Andric         SE.getMulExpr(SE.getUnknown(CanonicalIV),
13405ffd83dbSDimitry Andric                       SE.getNoopOrAnyExtend(S->getOperand(1),
13415ffd83dbSDimitry Andric                                             CanonicalIV->getType())),
13425ffd83dbSDimitry Andric         Ty));
13435ffd83dbSDimitry Andric 
13445ffd83dbSDimitry Andric   // If this is a chain of recurrences, turn it into a closed form, using the
13455ffd83dbSDimitry Andric   // folders, then expandCodeFor the closed form.  This allows the folders to
13465ffd83dbSDimitry Andric   // simplify the expression without having to build a bunch of special code
13475ffd83dbSDimitry Andric   // into this folder.
13485ffd83dbSDimitry Andric   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
13495ffd83dbSDimitry Andric 
13505ffd83dbSDimitry Andric   // Promote S up to the canonical IV type, if the cast is foldable.
13515ffd83dbSDimitry Andric   const SCEV *NewS = S;
13525ffd83dbSDimitry Andric   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
13535ffd83dbSDimitry Andric   if (isa<SCEVAddRecExpr>(Ext))
13545ffd83dbSDimitry Andric     NewS = Ext;
13555ffd83dbSDimitry Andric 
13565ffd83dbSDimitry Andric   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
13575ffd83dbSDimitry Andric 
13585ffd83dbSDimitry Andric   // Truncate the result down to the original type, if needed.
13595ffd83dbSDimitry Andric   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
13605ffd83dbSDimitry Andric   return expand(T);
13615ffd83dbSDimitry Andric }
13625ffd83dbSDimitry Andric 
1363e8d8bef9SDimitry Andric Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1364e8d8bef9SDimitry Andric   Value *V =
1365bdd1243dSDimitry Andric       expandCodeForImpl(S->getOperand(), S->getOperand()->getType());
1366fe6060f1SDimitry Andric   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1367fe6060f1SDimitry Andric                            GetOptimalInsertionPointForCastOf(V));
1368e8d8bef9SDimitry Andric }
1369e8d8bef9SDimitry Andric 
13705ffd83dbSDimitry Andric Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
13715ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1372e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1373bdd1243dSDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1374bdd1243dSDimitry Andric       );
1375e8d8bef9SDimitry Andric   return Builder.CreateTrunc(V, Ty);
13765ffd83dbSDimitry Andric }
13775ffd83dbSDimitry Andric 
13785ffd83dbSDimitry Andric Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
13795ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1380e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1381bdd1243dSDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1382bdd1243dSDimitry Andric       );
1383e8d8bef9SDimitry Andric   return Builder.CreateZExt(V, Ty);
13845ffd83dbSDimitry Andric }
13855ffd83dbSDimitry Andric 
13865ffd83dbSDimitry Andric Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
13875ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1388e8d8bef9SDimitry Andric   Value *V = expandCodeForImpl(
1389bdd1243dSDimitry Andric       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1390bdd1243dSDimitry Andric       );
1391e8d8bef9SDimitry Andric   return Builder.CreateSExt(V, Ty);
13925ffd83dbSDimitry Andric }
13935ffd83dbSDimitry Andric 
139481ad6265SDimitry Andric Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
139581ad6265SDimitry Andric                                       Intrinsic::ID IntrinID, Twine Name,
139681ad6265SDimitry Andric                                       bool IsSequential) {
13975ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
13985ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
139981ad6265SDimitry Andric   if (IsSequential)
140081ad6265SDimitry Andric     LHS = Builder.CreateFreeze(LHS);
14015ffd83dbSDimitry Andric   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1402bdd1243dSDimitry Andric     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty);
140381ad6265SDimitry Andric     if (IsSequential && i != 0)
140481ad6265SDimitry Andric       RHS = Builder.CreateFreeze(RHS);
1405fe6060f1SDimitry Andric     Value *Sel;
1406fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
140781ad6265SDimitry Andric       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
140881ad6265SDimitry Andric                                     /*FMFSource=*/nullptr, Name);
1409fe6060f1SDimitry Andric     else {
141081ad6265SDimitry Andric       Value *ICmp =
141181ad6265SDimitry Andric           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
141281ad6265SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1413fe6060f1SDimitry Andric     }
14145ffd83dbSDimitry Andric     LHS = Sel;
14155ffd83dbSDimitry Andric   }
14165ffd83dbSDimitry Andric   return LHS;
14175ffd83dbSDimitry Andric }
14185ffd83dbSDimitry Andric 
141904eeddc0SDimitry Andric Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
142081ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
142104eeddc0SDimitry Andric }
142204eeddc0SDimitry Andric 
142304eeddc0SDimitry Andric Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
142481ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
142504eeddc0SDimitry Andric }
142604eeddc0SDimitry Andric 
142704eeddc0SDimitry Andric Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
142881ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
142904eeddc0SDimitry Andric }
143004eeddc0SDimitry Andric 
143104eeddc0SDimitry Andric Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
143281ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
143304eeddc0SDimitry Andric }
143404eeddc0SDimitry Andric 
143504eeddc0SDimitry Andric Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
143681ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
143704eeddc0SDimitry Andric }
143804eeddc0SDimitry Andric 
1439*06c3fb27SDimitry Andric Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
1440*06c3fb27SDimitry Andric   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
1441*06c3fb27SDimitry Andric }
1442*06c3fb27SDimitry Andric 
1443e8d8bef9SDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1444bdd1243dSDimitry Andric                                        Instruction *IP) {
14455ffd83dbSDimitry Andric   setInsertPoint(IP);
1446bdd1243dSDimitry Andric   Value *V = expandCodeForImpl(SH, Ty);
1447e8d8bef9SDimitry Andric   return V;
14485ffd83dbSDimitry Andric }
14495ffd83dbSDimitry Andric 
1450bdd1243dSDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) {
14515ffd83dbSDimitry Andric   // Expand the code for this SCEV.
14525ffd83dbSDimitry Andric   Value *V = expand(SH);
1453e8d8bef9SDimitry Andric 
14545ffd83dbSDimitry Andric   if (Ty) {
14555ffd83dbSDimitry Andric     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
14565ffd83dbSDimitry Andric            "non-trivial casts should be done with the SCEVs directly!");
14575ffd83dbSDimitry Andric     V = InsertNoopCastOfTo(V, Ty);
14585ffd83dbSDimitry Andric   }
14595ffd83dbSDimitry Andric   return V;
14605ffd83dbSDimitry Andric }
14615ffd83dbSDimitry Andric 
146281ad6265SDimitry Andric Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
14635ffd83dbSDimitry Andric                                              const Instruction *InsertPt) {
14645ffd83dbSDimitry Andric   // If the expansion is not in CanonicalMode, and the SCEV contains any
14655ffd83dbSDimitry Andric   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
146681ad6265SDimitry Andric   if (!CanonicalMode && SE.containsAddRecurrence(S))
146781ad6265SDimitry Andric     return nullptr;
146881ad6265SDimitry Andric 
146981ad6265SDimitry Andric   // If S is a constant, it may be worse to reuse an existing Value.
147081ad6265SDimitry Andric   if (isa<SCEVConstant>(S))
147181ad6265SDimitry Andric     return nullptr;
147281ad6265SDimitry Andric 
1473349cc55cSDimitry Andric   // Choose a Value from the set which dominates the InsertPt.
1474349cc55cSDimitry Andric   // InsertPt should be inside the Value's parent loop so as not to break
14755ffd83dbSDimitry Andric   // the LCSSA form.
147681ad6265SDimitry Andric   for (Value *V : SE.getSCEVValues(S)) {
147781ad6265SDimitry Andric     Instruction *EntInst = dyn_cast<Instruction>(V);
1478349cc55cSDimitry Andric     if (!EntInst)
1479349cc55cSDimitry Andric       continue;
1480349cc55cSDimitry Andric 
1481349cc55cSDimitry Andric     assert(EntInst->getFunction() == InsertPt->getFunction());
1482349cc55cSDimitry Andric     if (S->getType() == V->getType() &&
14835ffd83dbSDimitry Andric         SE.DT.dominates(EntInst, InsertPt) &&
14845ffd83dbSDimitry Andric         (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
14854824e7fdSDimitry Andric          SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
148681ad6265SDimitry Andric       return V;
14875ffd83dbSDimitry Andric   }
148881ad6265SDimitry Andric   return nullptr;
14895ffd83dbSDimitry Andric }
14905ffd83dbSDimitry Andric 
14915ffd83dbSDimitry Andric // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
14925ffd83dbSDimitry Andric // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
14935ffd83dbSDimitry Andric // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
14945ffd83dbSDimitry Andric // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
14955ffd83dbSDimitry Andric // the expansion will try to reuse Value from ExprValueMap, and only when it
14965ffd83dbSDimitry Andric // fails, expand the SCEV literally.
14975ffd83dbSDimitry Andric Value *SCEVExpander::expand(const SCEV *S) {
14985ffd83dbSDimitry Andric   // Compute an insertion point for this SCEV object. Hoist the instructions
14995ffd83dbSDimitry Andric   // as far out in the loop nest as possible.
15005ffd83dbSDimitry Andric   Instruction *InsertPt = &*Builder.GetInsertPoint();
15015ffd83dbSDimitry Andric 
15025ffd83dbSDimitry Andric   // We can move insertion point only if there is no div or rem operations
15035ffd83dbSDimitry Andric   // otherwise we are risky to move it over the check for zero denominator.
15045ffd83dbSDimitry Andric   auto SafeToHoist = [](const SCEV *S) {
15055ffd83dbSDimitry Andric     return !SCEVExprContains(S, [](const SCEV *S) {
15065ffd83dbSDimitry Andric               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
15075ffd83dbSDimitry Andric                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
15085ffd83dbSDimitry Andric                   // Division by non-zero constants can be hoisted.
15095ffd83dbSDimitry Andric                   return SC->getValue()->isZero();
15105ffd83dbSDimitry Andric                 // All other divisions should not be moved as they may be
15115ffd83dbSDimitry Andric                 // divisions by zero and should be kept within the
15125ffd83dbSDimitry Andric                 // conditions of the surrounding loops that guard their
15135ffd83dbSDimitry Andric                 // execution (see PR35406).
15145ffd83dbSDimitry Andric                 return true;
15155ffd83dbSDimitry Andric               }
15165ffd83dbSDimitry Andric               return false;
15175ffd83dbSDimitry Andric             });
15185ffd83dbSDimitry Andric   };
15195ffd83dbSDimitry Andric   if (SafeToHoist(S)) {
15205ffd83dbSDimitry Andric     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
15215ffd83dbSDimitry Andric          L = L->getParentLoop()) {
15225ffd83dbSDimitry Andric       if (SE.isLoopInvariant(S, L)) {
15235ffd83dbSDimitry Andric         if (!L) break;
15245ffd83dbSDimitry Andric         if (BasicBlock *Preheader = L->getLoopPreheader())
15255ffd83dbSDimitry Andric           InsertPt = Preheader->getTerminator();
15265ffd83dbSDimitry Andric         else
15275ffd83dbSDimitry Andric           // LSR sets the insertion point for AddRec start/step values to the
15285ffd83dbSDimitry Andric           // block start to simplify value reuse, even though it's an invalid
15295ffd83dbSDimitry Andric           // position. SCEVExpander must correct for this in all cases.
15305ffd83dbSDimitry Andric           InsertPt = &*L->getHeader()->getFirstInsertionPt();
15315ffd83dbSDimitry Andric       } else {
15325ffd83dbSDimitry Andric         // If the SCEV is computable at this level, insert it into the header
15335ffd83dbSDimitry Andric         // after the PHIs (and after any other instructions that we've inserted
15345ffd83dbSDimitry Andric         // there) so that it is guaranteed to dominate any user inside the loop.
15355ffd83dbSDimitry Andric         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
15365ffd83dbSDimitry Andric           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1537e8d8bef9SDimitry Andric 
15385ffd83dbSDimitry Andric         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
15395ffd83dbSDimitry Andric                (isInsertedInstruction(InsertPt) ||
1540e8d8bef9SDimitry Andric                 isa<DbgInfoIntrinsic>(InsertPt))) {
15415ffd83dbSDimitry Andric           InsertPt = &*std::next(InsertPt->getIterator());
1542e8d8bef9SDimitry Andric         }
15435ffd83dbSDimitry Andric         break;
15445ffd83dbSDimitry Andric       }
15455ffd83dbSDimitry Andric     }
15465ffd83dbSDimitry Andric   }
15475ffd83dbSDimitry Andric 
15485ffd83dbSDimitry Andric   // Check to see if we already expanded this here.
15495ffd83dbSDimitry Andric   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
15505ffd83dbSDimitry Andric   if (I != InsertedExpressions.end())
15515ffd83dbSDimitry Andric     return I->second;
15525ffd83dbSDimitry Andric 
15535ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
15545ffd83dbSDimitry Andric   Builder.SetInsertPoint(InsertPt);
15555ffd83dbSDimitry Andric 
15565ffd83dbSDimitry Andric   // Expand the expression into instructions.
155781ad6265SDimitry Andric   Value *V = FindValueInExprValueMap(S, InsertPt);
1558bdd1243dSDimitry Andric   if (!V) {
15595ffd83dbSDimitry Andric     V = visit(S);
1560bdd1243dSDimitry Andric     V = fixupLCSSAFormFor(V);
1561bdd1243dSDimitry Andric   } else {
15624824e7fdSDimitry Andric     // If we're reusing an existing instruction, we are effectively CSEing two
15634824e7fdSDimitry Andric     // copies of the instruction (with potentially different flags).  As such,
15644824e7fdSDimitry Andric     // we need to drop any poison generating flags unless we can prove that
15654824e7fdSDimitry Andric     // said flags must be valid for all new users.
15664824e7fdSDimitry Andric     if (auto *I = dyn_cast<Instruction>(V))
15674824e7fdSDimitry Andric       if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))
15684824e7fdSDimitry Andric         I->dropPoisonGeneratingFlags();
15694824e7fdSDimitry Andric   }
15705ffd83dbSDimitry Andric   // Remember the expanded value for this SCEV at this location.
15715ffd83dbSDimitry Andric   //
15725ffd83dbSDimitry Andric   // This is independent of PostIncLoops. The mapped value simply materializes
15735ffd83dbSDimitry Andric   // the expression at this insertion point. If the mapped value happened to be
15745ffd83dbSDimitry Andric   // a postinc expansion, it could be reused by a non-postinc user, but only if
15755ffd83dbSDimitry Andric   // its insertion point was already at the head of the loop.
15765ffd83dbSDimitry Andric   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
15775ffd83dbSDimitry Andric   return V;
15785ffd83dbSDimitry Andric }
15795ffd83dbSDimitry Andric 
15805ffd83dbSDimitry Andric void SCEVExpander::rememberInstruction(Value *I) {
1581e8d8bef9SDimitry Andric   auto DoInsert = [this](Value *V) {
15825ffd83dbSDimitry Andric     if (!PostIncLoops.empty())
1583e8d8bef9SDimitry Andric       InsertedPostIncValues.insert(V);
15845ffd83dbSDimitry Andric     else
1585e8d8bef9SDimitry Andric       InsertedValues.insert(V);
1586e8d8bef9SDimitry Andric   };
1587e8d8bef9SDimitry Andric   DoInsert(I);
15885ffd83dbSDimitry Andric }
15895ffd83dbSDimitry Andric 
15905ffd83dbSDimitry Andric /// replaceCongruentIVs - Check for congruent phis in this loop header and
15915ffd83dbSDimitry Andric /// replace them with their most canonical representative. Return the number of
15925ffd83dbSDimitry Andric /// phis eliminated.
15935ffd83dbSDimitry Andric ///
15945ffd83dbSDimitry Andric /// This does not depend on any SCEVExpander state but should be used in
15955ffd83dbSDimitry Andric /// the same context that SCEVExpander is used.
15965ffd83dbSDimitry Andric unsigned
15975ffd83dbSDimitry Andric SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
15985ffd83dbSDimitry Andric                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
15995ffd83dbSDimitry Andric                                   const TargetTransformInfo *TTI) {
16005ffd83dbSDimitry Andric   // Find integer phis in order of increasing width.
16015ffd83dbSDimitry Andric   SmallVector<PHINode*, 8> Phis;
16025ffd83dbSDimitry Andric   for (PHINode &PN : L->getHeader()->phis())
16035ffd83dbSDimitry Andric     Phis.push_back(&PN);
16045ffd83dbSDimitry Andric 
16055ffd83dbSDimitry Andric   if (TTI)
1606349cc55cSDimitry Andric     // Use stable_sort to preserve order of equivalent PHIs, so the order
1607349cc55cSDimitry Andric     // of the sorted Phis is the same from run to run on the same loop.
1608349cc55cSDimitry Andric     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
16095ffd83dbSDimitry Andric       // Put pointers at the back and make sure pointer < pointer = false.
16105ffd83dbSDimitry Andric       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
16115ffd83dbSDimitry Andric         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1612bdd1243dSDimitry Andric       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1613bdd1243dSDimitry Andric              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
16145ffd83dbSDimitry Andric     });
16155ffd83dbSDimitry Andric 
16165ffd83dbSDimitry Andric   unsigned NumElim = 0;
16175ffd83dbSDimitry Andric   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
16185ffd83dbSDimitry Andric   // Process phis from wide to narrow. Map wide phis to their truncation
16195ffd83dbSDimitry Andric   // so narrow phis can reuse them.
16205ffd83dbSDimitry Andric   for (PHINode *Phi : Phis) {
16215ffd83dbSDimitry Andric     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
162281ad6265SDimitry Andric       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
16235ffd83dbSDimitry Andric         return V;
16245ffd83dbSDimitry Andric       if (!SE.isSCEVable(PN->getType()))
16255ffd83dbSDimitry Andric         return nullptr;
16265ffd83dbSDimitry Andric       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
16275ffd83dbSDimitry Andric       if (!Const)
16285ffd83dbSDimitry Andric         return nullptr;
16295ffd83dbSDimitry Andric       return Const->getValue();
16305ffd83dbSDimitry Andric     };
16315ffd83dbSDimitry Andric 
16325ffd83dbSDimitry Andric     // Fold constant phis. They may be congruent to other constant phis and
16335ffd83dbSDimitry Andric     // would confuse the logic below that expects proper IVs.
16345ffd83dbSDimitry Andric     if (Value *V = SimplifyPHINode(Phi)) {
16355ffd83dbSDimitry Andric       if (V->getType() != Phi->getType())
16365ffd83dbSDimitry Andric         continue;
1637bdd1243dSDimitry Andric       SE.forgetValue(Phi);
16385ffd83dbSDimitry Andric       Phi->replaceAllUsesWith(V);
16395ffd83dbSDimitry Andric       DeadInsts.emplace_back(Phi);
16405ffd83dbSDimitry Andric       ++NumElim;
1641fe6060f1SDimitry Andric       SCEV_DEBUG_WITH_TYPE(DebugType,
1642fe6060f1SDimitry Andric                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1643fe6060f1SDimitry Andric                                   << '\n');
16445ffd83dbSDimitry Andric       continue;
16455ffd83dbSDimitry Andric     }
16465ffd83dbSDimitry Andric 
16475ffd83dbSDimitry Andric     if (!SE.isSCEVable(Phi->getType()))
16485ffd83dbSDimitry Andric       continue;
16495ffd83dbSDimitry Andric 
16505ffd83dbSDimitry Andric     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
16515ffd83dbSDimitry Andric     if (!OrigPhiRef) {
16525ffd83dbSDimitry Andric       OrigPhiRef = Phi;
16535ffd83dbSDimitry Andric       if (Phi->getType()->isIntegerTy() && TTI &&
16545ffd83dbSDimitry Andric           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1655*06c3fb27SDimitry Andric         // Make sure we only rewrite using simple induction variables;
1656*06c3fb27SDimitry Andric         // otherwise, we can make the trip count of a loop unanalyzable
1657*06c3fb27SDimitry Andric         // to SCEV.
1658*06c3fb27SDimitry Andric         const SCEV *PhiExpr = SE.getSCEV(Phi);
1659*06c3fb27SDimitry Andric         if (isa<SCEVAddRecExpr>(PhiExpr)) {
16605ffd83dbSDimitry Andric           // This phi can be freely truncated to the narrowest phi type. Map the
16615ffd83dbSDimitry Andric           // truncated expression to it so it will be reused for narrow types.
16625ffd83dbSDimitry Andric           const SCEV *TruncExpr =
1663*06c3fb27SDimitry Andric               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
16645ffd83dbSDimitry Andric           ExprToIVMap[TruncExpr] = Phi;
16655ffd83dbSDimitry Andric         }
1666*06c3fb27SDimitry Andric       }
16675ffd83dbSDimitry Andric       continue;
16685ffd83dbSDimitry Andric     }
16695ffd83dbSDimitry Andric 
16705ffd83dbSDimitry Andric     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
16715ffd83dbSDimitry Andric     // sense.
16725ffd83dbSDimitry Andric     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
16735ffd83dbSDimitry Andric       continue;
16745ffd83dbSDimitry Andric 
16755ffd83dbSDimitry Andric     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
16765ffd83dbSDimitry Andric       Instruction *OrigInc = dyn_cast<Instruction>(
16775ffd83dbSDimitry Andric           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
16785ffd83dbSDimitry Andric       Instruction *IsomorphicInc =
16795ffd83dbSDimitry Andric           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
16805ffd83dbSDimitry Andric 
16815ffd83dbSDimitry Andric       if (OrigInc && IsomorphicInc) {
16825ffd83dbSDimitry Andric         // If this phi has the same width but is more canonical, replace the
16835ffd83dbSDimitry Andric         // original with it. As part of the "more canonical" determination,
16845ffd83dbSDimitry Andric         // respect a prior decision to use an IV chain.
16855ffd83dbSDimitry Andric         if (OrigPhiRef->getType() == Phi->getType() &&
16865ffd83dbSDimitry Andric             !(ChainedPhis.count(Phi) ||
16875ffd83dbSDimitry Andric               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
16885ffd83dbSDimitry Andric             (ChainedPhis.count(Phi) ||
16895ffd83dbSDimitry Andric              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
16905ffd83dbSDimitry Andric           std::swap(OrigPhiRef, Phi);
16915ffd83dbSDimitry Andric           std::swap(OrigInc, IsomorphicInc);
16925ffd83dbSDimitry Andric         }
16935ffd83dbSDimitry Andric         // Replacing the congruent phi is sufficient because acyclic
16945ffd83dbSDimitry Andric         // redundancy elimination, CSE/GVN, should handle the
16955ffd83dbSDimitry Andric         // rest. However, once SCEV proves that a phi is congruent,
16965ffd83dbSDimitry Andric         // it's often the head of an IV user cycle that is isomorphic
16975ffd83dbSDimitry Andric         // with the original phi. It's worth eagerly cleaning up the
16985ffd83dbSDimitry Andric         // common case of a single IV increment so that DeleteDeadPHIs
16995ffd83dbSDimitry Andric         // can remove cycles that had postinc uses.
1700bdd1243dSDimitry Andric         // Because we may potentially introduce a new use of OrigIV that didn't
1701bdd1243dSDimitry Andric         // exist before at this point, its poison flags need readjustment.
17025ffd83dbSDimitry Andric         const SCEV *TruncExpr =
17035ffd83dbSDimitry Andric             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
17045ffd83dbSDimitry Andric         if (OrigInc != IsomorphicInc &&
17055ffd83dbSDimitry Andric             TruncExpr == SE.getSCEV(IsomorphicInc) &&
17065ffd83dbSDimitry Andric             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1707bdd1243dSDimitry Andric             hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) {
1708fe6060f1SDimitry Andric           SCEV_DEBUG_WITH_TYPE(
1709fe6060f1SDimitry Andric               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
17105ffd83dbSDimitry Andric                                 << *IsomorphicInc << '\n');
17115ffd83dbSDimitry Andric           Value *NewInc = OrigInc;
17125ffd83dbSDimitry Andric           if (OrigInc->getType() != IsomorphicInc->getType()) {
17135ffd83dbSDimitry Andric             Instruction *IP = nullptr;
17145ffd83dbSDimitry Andric             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
17155ffd83dbSDimitry Andric               IP = &*PN->getParent()->getFirstInsertionPt();
17165ffd83dbSDimitry Andric             else
17175ffd83dbSDimitry Andric               IP = OrigInc->getNextNode();
17185ffd83dbSDimitry Andric 
17195ffd83dbSDimitry Andric             IRBuilder<> Builder(IP);
17205ffd83dbSDimitry Andric             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
17215ffd83dbSDimitry Andric             NewInc = Builder.CreateTruncOrBitCast(
17225ffd83dbSDimitry Andric                 OrigInc, IsomorphicInc->getType(), IVName);
17235ffd83dbSDimitry Andric           }
17245ffd83dbSDimitry Andric           IsomorphicInc->replaceAllUsesWith(NewInc);
17255ffd83dbSDimitry Andric           DeadInsts.emplace_back(IsomorphicInc);
17265ffd83dbSDimitry Andric         }
17275ffd83dbSDimitry Andric       }
17285ffd83dbSDimitry Andric     }
1729fe6060f1SDimitry Andric     SCEV_DEBUG_WITH_TYPE(DebugType,
1730fe6060f1SDimitry Andric                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1731fe6060f1SDimitry Andric                                 << '\n');
1732fe6060f1SDimitry Andric     SCEV_DEBUG_WITH_TYPE(
1733fe6060f1SDimitry Andric         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
17345ffd83dbSDimitry Andric     ++NumElim;
17355ffd83dbSDimitry Andric     Value *NewIV = OrigPhiRef;
17365ffd83dbSDimitry Andric     if (OrigPhiRef->getType() != Phi->getType()) {
17375ffd83dbSDimitry Andric       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
17385ffd83dbSDimitry Andric       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
17395ffd83dbSDimitry Andric       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
17405ffd83dbSDimitry Andric     }
17415ffd83dbSDimitry Andric     Phi->replaceAllUsesWith(NewIV);
17425ffd83dbSDimitry Andric     DeadInsts.emplace_back(Phi);
17435ffd83dbSDimitry Andric   }
17445ffd83dbSDimitry Andric   return NumElim;
17455ffd83dbSDimitry Andric }
17465ffd83dbSDimitry Andric 
174781ad6265SDimitry Andric Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S,
174881ad6265SDimitry Andric                                                  const Instruction *At,
17495ffd83dbSDimitry Andric                                                  Loop *L) {
17505ffd83dbSDimitry Andric   using namespace llvm::PatternMatch;
17515ffd83dbSDimitry Andric 
17525ffd83dbSDimitry Andric   SmallVector<BasicBlock *, 4> ExitingBlocks;
17535ffd83dbSDimitry Andric   L->getExitingBlocks(ExitingBlocks);
17545ffd83dbSDimitry Andric 
17555ffd83dbSDimitry Andric   // Look for suitable value in simple conditions at the loop exits.
17565ffd83dbSDimitry Andric   for (BasicBlock *BB : ExitingBlocks) {
17575ffd83dbSDimitry Andric     ICmpInst::Predicate Pred;
17585ffd83dbSDimitry Andric     Instruction *LHS, *RHS;
17595ffd83dbSDimitry Andric 
17605ffd83dbSDimitry Andric     if (!match(BB->getTerminator(),
17615ffd83dbSDimitry Andric                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
17625ffd83dbSDimitry Andric                     m_BasicBlock(), m_BasicBlock())))
17635ffd83dbSDimitry Andric       continue;
17645ffd83dbSDimitry Andric 
17655ffd83dbSDimitry Andric     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
176681ad6265SDimitry Andric       return LHS;
17675ffd83dbSDimitry Andric 
17685ffd83dbSDimitry Andric     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
176981ad6265SDimitry Andric       return RHS;
17705ffd83dbSDimitry Andric   }
17715ffd83dbSDimitry Andric 
17725ffd83dbSDimitry Andric   // Use expand's logic which is used for reusing a previous Value in
17734824e7fdSDimitry Andric   // ExprValueMap.  Note that we don't currently model the cost of
17744824e7fdSDimitry Andric   // needing to drop poison generating flags on the instruction if we
17754824e7fdSDimitry Andric   // want to reuse it.  We effectively assume that has zero cost.
177681ad6265SDimitry Andric   return FindValueInExprValueMap(S, At);
17775ffd83dbSDimitry Andric }
17785ffd83dbSDimitry Andric 
1779fe6060f1SDimitry Andric template<typename T> static InstructionCost costAndCollectOperands(
1780e8d8bef9SDimitry Andric   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1781e8d8bef9SDimitry Andric   TargetTransformInfo::TargetCostKind CostKind,
1782e8d8bef9SDimitry Andric   SmallVectorImpl<SCEVOperand> &Worklist) {
1783e8d8bef9SDimitry Andric 
1784e8d8bef9SDimitry Andric   const T *S = cast<T>(WorkItem.S);
1785fe6060f1SDimitry Andric   InstructionCost Cost = 0;
1786e8d8bef9SDimitry Andric   // Object to help map SCEV operands to expanded IR instructions.
1787e8d8bef9SDimitry Andric   struct OperationIndices {
1788e8d8bef9SDimitry Andric     OperationIndices(unsigned Opc, size_t min, size_t max) :
1789e8d8bef9SDimitry Andric       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1790e8d8bef9SDimitry Andric     unsigned Opcode;
1791e8d8bef9SDimitry Andric     size_t MinIdx;
1792e8d8bef9SDimitry Andric     size_t MaxIdx;
1793e8d8bef9SDimitry Andric   };
1794e8d8bef9SDimitry Andric 
1795e8d8bef9SDimitry Andric   // Collect the operations of all the instructions that will be needed to
1796e8d8bef9SDimitry Andric   // expand the SCEVExpr. This is so that when we come to cost the operands,
1797e8d8bef9SDimitry Andric   // we know what the generated user(s) will be.
1798e8d8bef9SDimitry Andric   SmallVector<OperationIndices, 2> Operations;
1799e8d8bef9SDimitry Andric 
1800fe6060f1SDimitry Andric   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1801e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, 0, 0);
1802e8d8bef9SDimitry Andric     return TTI.getCastInstrCost(Opcode, S->getType(),
1803e8d8bef9SDimitry Andric                                 S->getOperand(0)->getType(),
1804e8d8bef9SDimitry Andric                                 TTI::CastContextHint::None, CostKind);
1805e8d8bef9SDimitry Andric   };
1806e8d8bef9SDimitry Andric 
1807e8d8bef9SDimitry Andric   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1808fe6060f1SDimitry Andric                        unsigned MinIdx = 0,
1809fe6060f1SDimitry Andric                        unsigned MaxIdx = 1) -> InstructionCost {
1810e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1811e8d8bef9SDimitry Andric     return NumRequired *
1812e8d8bef9SDimitry Andric       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1813e8d8bef9SDimitry Andric   };
1814e8d8bef9SDimitry Andric 
1815fe6060f1SDimitry Andric   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1816fe6060f1SDimitry Andric                         unsigned MaxIdx) -> InstructionCost {
1817e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1818bdd1243dSDimitry Andric     Type *OpType = S->getType();
1819e8d8bef9SDimitry Andric     return NumRequired * TTI.getCmpSelInstrCost(
1820e8d8bef9SDimitry Andric                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1821e8d8bef9SDimitry Andric                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1822e8d8bef9SDimitry Andric   };
1823e8d8bef9SDimitry Andric 
1824e8d8bef9SDimitry Andric   switch (S->getSCEVType()) {
1825e8d8bef9SDimitry Andric   case scCouldNotCompute:
1826e8d8bef9SDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1827e8d8bef9SDimitry Andric   case scUnknown:
1828e8d8bef9SDimitry Andric   case scConstant:
1829*06c3fb27SDimitry Andric   case scVScale:
1830e8d8bef9SDimitry Andric     return 0;
1831e8d8bef9SDimitry Andric   case scPtrToInt:
1832e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::PtrToInt);
1833e8d8bef9SDimitry Andric     break;
1834e8d8bef9SDimitry Andric   case scTruncate:
1835e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::Trunc);
1836e8d8bef9SDimitry Andric     break;
1837e8d8bef9SDimitry Andric   case scZeroExtend:
1838e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::ZExt);
1839e8d8bef9SDimitry Andric     break;
1840e8d8bef9SDimitry Andric   case scSignExtend:
1841e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::SExt);
1842e8d8bef9SDimitry Andric     break;
1843e8d8bef9SDimitry Andric   case scUDivExpr: {
1844e8d8bef9SDimitry Andric     unsigned Opcode = Instruction::UDiv;
1845e8d8bef9SDimitry Andric     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1846e8d8bef9SDimitry Andric       if (SC->getAPInt().isPowerOf2())
1847e8d8bef9SDimitry Andric         Opcode = Instruction::LShr;
1848e8d8bef9SDimitry Andric     Cost = ArithCost(Opcode, 1);
1849e8d8bef9SDimitry Andric     break;
1850e8d8bef9SDimitry Andric   }
1851e8d8bef9SDimitry Andric   case scAddExpr:
1852e8d8bef9SDimitry Andric     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1853e8d8bef9SDimitry Andric     break;
1854e8d8bef9SDimitry Andric   case scMulExpr:
1855e8d8bef9SDimitry Andric     // TODO: this is a very pessimistic cost modelling for Mul,
1856e8d8bef9SDimitry Andric     // because of Bin Pow algorithm actually used by the expander,
1857e8d8bef9SDimitry Andric     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1858e8d8bef9SDimitry Andric     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1859e8d8bef9SDimitry Andric     break;
1860e8d8bef9SDimitry Andric   case scSMaxExpr:
1861e8d8bef9SDimitry Andric   case scUMaxExpr:
1862e8d8bef9SDimitry Andric   case scSMinExpr:
186304eeddc0SDimitry Andric   case scUMinExpr:
186404eeddc0SDimitry Andric   case scSequentialUMinExpr: {
1865fe6060f1SDimitry Andric     // FIXME: should this ask the cost for Intrinsic's?
186604eeddc0SDimitry Andric     // The reduction tree.
1867e8d8bef9SDimitry Andric     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1868e8d8bef9SDimitry Andric     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
186904eeddc0SDimitry Andric     switch (S->getSCEVType()) {
187004eeddc0SDimitry Andric     case scSequentialUMinExpr: {
187104eeddc0SDimitry Andric       // The safety net against poison.
187204eeddc0SDimitry Andric       // FIXME: this is broken.
187304eeddc0SDimitry Andric       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
187404eeddc0SDimitry Andric       Cost += ArithCost(Instruction::Or,
187504eeddc0SDimitry Andric                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
187604eeddc0SDimitry Andric       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
187704eeddc0SDimitry Andric       break;
187804eeddc0SDimitry Andric     }
187904eeddc0SDimitry Andric     default:
188004eeddc0SDimitry Andric       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
188104eeddc0SDimitry Andric              "Unhandled SCEV expression type?");
188204eeddc0SDimitry Andric       break;
188304eeddc0SDimitry Andric     }
1884e8d8bef9SDimitry Andric     break;
1885e8d8bef9SDimitry Andric   }
1886e8d8bef9SDimitry Andric   case scAddRecExpr: {
1887e8d8bef9SDimitry Andric     // In this polynominal, we may have some zero operands, and we shouldn't
1888bdd1243dSDimitry Andric     // really charge for those. So how many non-zero coefficients are there?
1889e8d8bef9SDimitry Andric     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1890e8d8bef9SDimitry Andric                                     return !Op->isZero();
1891e8d8bef9SDimitry Andric                                   });
1892e8d8bef9SDimitry Andric 
1893e8d8bef9SDimitry Andric     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1894e8d8bef9SDimitry Andric     assert(!(*std::prev(S->operands().end()))->isZero() &&
1895e8d8bef9SDimitry Andric            "Last operand should not be zero");
1896e8d8bef9SDimitry Andric 
1897bdd1243dSDimitry Andric     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1898e8d8bef9SDimitry Andric     int NumNonZeroDegreeNonOneTerms =
1899e8d8bef9SDimitry Andric       llvm::count_if(S->operands(), [](const SCEV *Op) {
1900e8d8bef9SDimitry Andric                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1901e8d8bef9SDimitry Andric                       return !SConst || SConst->getAPInt().ugt(1);
1902e8d8bef9SDimitry Andric                     });
1903e8d8bef9SDimitry Andric 
1904e8d8bef9SDimitry Andric     // Much like with normal add expr, the polynominal will require
1905e8d8bef9SDimitry Andric     // one less addition than the number of it's terms.
1906fe6060f1SDimitry Andric     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1907e8d8bef9SDimitry Andric                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1908e8d8bef9SDimitry Andric     // Here, *each* one of those will require a multiplication.
1909fe6060f1SDimitry Andric     InstructionCost MulCost =
1910fe6060f1SDimitry Andric         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1911e8d8bef9SDimitry Andric     Cost = AddCost + MulCost;
1912e8d8bef9SDimitry Andric 
1913e8d8bef9SDimitry Andric     // What is the degree of this polynominal?
1914e8d8bef9SDimitry Andric     int PolyDegree = S->getNumOperands() - 1;
1915e8d8bef9SDimitry Andric     assert(PolyDegree >= 1 && "Should be at least affine.");
1916e8d8bef9SDimitry Andric 
1917e8d8bef9SDimitry Andric     // The final term will be:
1918e8d8bef9SDimitry Andric     //   Op_{PolyDegree} * x ^ {PolyDegree}
1919e8d8bef9SDimitry Andric     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1920e8d8bef9SDimitry Andric     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1921e8d8bef9SDimitry Andric     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1922e8d8bef9SDimitry Andric     // FIXME: this is conservatively correct, but might be overly pessimistic.
1923e8d8bef9SDimitry Andric     Cost += MulCost * (PolyDegree - 1);
1924e8d8bef9SDimitry Andric     break;
1925e8d8bef9SDimitry Andric   }
1926e8d8bef9SDimitry Andric   }
1927e8d8bef9SDimitry Andric 
1928e8d8bef9SDimitry Andric   for (auto &CostOp : Operations) {
1929e8d8bef9SDimitry Andric     for (auto SCEVOp : enumerate(S->operands())) {
1930e8d8bef9SDimitry Andric       // Clamp the index to account for multiple IR operations being chained.
1931e8d8bef9SDimitry Andric       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1932e8d8bef9SDimitry Andric       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1933e8d8bef9SDimitry Andric       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1934e8d8bef9SDimitry Andric     }
1935e8d8bef9SDimitry Andric   }
1936e8d8bef9SDimitry Andric   return Cost;
1937e8d8bef9SDimitry Andric }
1938e8d8bef9SDimitry Andric 
19395ffd83dbSDimitry Andric bool SCEVExpander::isHighCostExpansionHelper(
1940e8d8bef9SDimitry Andric     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1941fe6060f1SDimitry Andric     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1942e8d8bef9SDimitry Andric     SmallPtrSetImpl<const SCEV *> &Processed,
1943e8d8bef9SDimitry Andric     SmallVectorImpl<SCEVOperand> &Worklist) {
1944fe6060f1SDimitry Andric   if (Cost > Budget)
19455ffd83dbSDimitry Andric     return true; // Already run out of budget, give up.
19465ffd83dbSDimitry Andric 
1947e8d8bef9SDimitry Andric   const SCEV *S = WorkItem.S;
19485ffd83dbSDimitry Andric   // Was the cost of expansion of this expression already accounted for?
1949e8d8bef9SDimitry Andric   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
19505ffd83dbSDimitry Andric     return false; // We have already accounted for this expression.
19515ffd83dbSDimitry Andric 
19525ffd83dbSDimitry Andric   // If we can find an existing value for this scev available at the point "At"
19535ffd83dbSDimitry Andric   // then consider the expression cheap.
19545ffd83dbSDimitry Andric   if (getRelatedExistingExpansion(S, &At, L))
19555ffd83dbSDimitry Andric     return false; // Consider the expression to be free.
19565ffd83dbSDimitry Andric 
19575ffd83dbSDimitry Andric   TargetTransformInfo::TargetCostKind CostKind =
1958e8d8bef9SDimitry Andric       L->getHeader()->getParent()->hasMinSize()
1959e8d8bef9SDimitry Andric           ? TargetTransformInfo::TCK_CodeSize
1960e8d8bef9SDimitry Andric           : TargetTransformInfo::TCK_RecipThroughput;
19615ffd83dbSDimitry Andric 
19625ffd83dbSDimitry Andric   switch (S->getSCEVType()) {
1963e8d8bef9SDimitry Andric   case scCouldNotCompute:
1964e8d8bef9SDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1965e8d8bef9SDimitry Andric   case scUnknown:
1966*06c3fb27SDimitry Andric   case scVScale:
1967e8d8bef9SDimitry Andric     // Assume to be zero-cost.
1968e8d8bef9SDimitry Andric     return false;
1969e8d8bef9SDimitry Andric   case scConstant: {
1970e8d8bef9SDimitry Andric     // Only evalulate the costs of constants when optimizing for size.
1971e8d8bef9SDimitry Andric     if (CostKind != TargetTransformInfo::TCK_CodeSize)
197204eeddc0SDimitry Andric       return false;
1973e8d8bef9SDimitry Andric     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
1974e8d8bef9SDimitry Andric     Type *Ty = S->getType();
1975fe6060f1SDimitry Andric     Cost += TTI.getIntImmCostInst(
1976e8d8bef9SDimitry Andric         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
1977fe6060f1SDimitry Andric     return Cost > Budget;
1978e8d8bef9SDimitry Andric   }
19795ffd83dbSDimitry Andric   case scTruncate:
1980e8d8bef9SDimitry Andric   case scPtrToInt:
19815ffd83dbSDimitry Andric   case scZeroExtend:
1982e8d8bef9SDimitry Andric   case scSignExtend: {
1983fe6060f1SDimitry Andric     Cost +=
1984e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
19855ffd83dbSDimitry Andric     return false; // Will answer upon next entry into this function.
19865ffd83dbSDimitry Andric   }
1987e8d8bef9SDimitry Andric   case scUDivExpr: {
19885ffd83dbSDimitry Andric     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
19895ffd83dbSDimitry Andric     // HowManyLessThans produced to compute a precise expression, rather than a
19905ffd83dbSDimitry Andric     // UDiv from the user's code. If we can't find a UDiv in the code with some
19915ffd83dbSDimitry Andric     // simple searching, we need to account for it's cost.
19925ffd83dbSDimitry Andric 
19935ffd83dbSDimitry Andric     // At the beginning of this function we already tried to find existing
19945ffd83dbSDimitry Andric     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
19955ffd83dbSDimitry Andric     // pattern involving division. This is just a simple search heuristic.
19965ffd83dbSDimitry Andric     if (getRelatedExistingExpansion(
19975ffd83dbSDimitry Andric             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
19985ffd83dbSDimitry Andric       return false; // Consider it to be free.
19995ffd83dbSDimitry Andric 
2000fe6060f1SDimitry Andric     Cost +=
2001e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
20025ffd83dbSDimitry Andric     return false; // Will answer upon next entry into this function.
20035ffd83dbSDimitry Andric   }
20045ffd83dbSDimitry Andric   case scAddExpr:
20055ffd83dbSDimitry Andric   case scMulExpr:
20065ffd83dbSDimitry Andric   case scUMaxExpr:
2007e8d8bef9SDimitry Andric   case scSMaxExpr:
20085ffd83dbSDimitry Andric   case scUMinExpr:
200904eeddc0SDimitry Andric   case scSMinExpr:
201004eeddc0SDimitry Andric   case scSequentialUMinExpr: {
2011e8d8bef9SDimitry Andric     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
20125ffd83dbSDimitry Andric            "Nary expr should have more than 1 operand.");
20135ffd83dbSDimitry Andric     // The simple nary expr will require one less op (or pair of ops)
20145ffd83dbSDimitry Andric     // than the number of it's terms.
2015fe6060f1SDimitry Andric     Cost +=
2016e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2017fe6060f1SDimitry Andric     return Cost > Budget;
20185ffd83dbSDimitry Andric   }
2019e8d8bef9SDimitry Andric   case scAddRecExpr: {
2020e8d8bef9SDimitry Andric     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2021e8d8bef9SDimitry Andric            "Polynomial should be at least linear");
2022fe6060f1SDimitry Andric     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2023e8d8bef9SDimitry Andric         WorkItem, TTI, CostKind, Worklist);
2024fe6060f1SDimitry Andric     return Cost > Budget;
2025e8d8bef9SDimitry Andric   }
2026e8d8bef9SDimitry Andric   }
2027e8d8bef9SDimitry Andric   llvm_unreachable("Unknown SCEV kind!");
20285ffd83dbSDimitry Andric }
20295ffd83dbSDimitry Andric 
20305ffd83dbSDimitry Andric Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
20315ffd83dbSDimitry Andric                                             Instruction *IP) {
20325ffd83dbSDimitry Andric   assert(IP);
20335ffd83dbSDimitry Andric   switch (Pred->getKind()) {
20345ffd83dbSDimitry Andric   case SCEVPredicate::P_Union:
20355ffd83dbSDimitry Andric     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
203681ad6265SDimitry Andric   case SCEVPredicate::P_Compare:
203781ad6265SDimitry Andric     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
20385ffd83dbSDimitry Andric   case SCEVPredicate::P_Wrap: {
20395ffd83dbSDimitry Andric     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
20405ffd83dbSDimitry Andric     return expandWrapPredicate(AddRecPred, IP);
20415ffd83dbSDimitry Andric   }
20425ffd83dbSDimitry Andric   }
20435ffd83dbSDimitry Andric   llvm_unreachable("Unknown SCEV predicate type");
20445ffd83dbSDimitry Andric }
20455ffd83dbSDimitry Andric 
204681ad6265SDimitry Andric Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
20475ffd83dbSDimitry Andric                                             Instruction *IP) {
2048e8d8bef9SDimitry Andric   Value *Expr0 =
2049bdd1243dSDimitry Andric       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2050e8d8bef9SDimitry Andric   Value *Expr1 =
2051bdd1243dSDimitry Andric       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP);
20525ffd83dbSDimitry Andric 
20535ffd83dbSDimitry Andric   Builder.SetInsertPoint(IP);
205481ad6265SDimitry Andric   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
205581ad6265SDimitry Andric   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
20565ffd83dbSDimitry Andric   return I;
20575ffd83dbSDimitry Andric }
20585ffd83dbSDimitry Andric 
20595ffd83dbSDimitry Andric Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
20605ffd83dbSDimitry Andric                                            Instruction *Loc, bool Signed) {
20615ffd83dbSDimitry Andric   assert(AR->isAffine() && "Cannot generate RT check for "
20625ffd83dbSDimitry Andric                            "non-affine expression");
20635ffd83dbSDimitry Andric 
206481ad6265SDimitry Andric   // FIXME: It is highly suspicious that we're ignoring the predicates here.
206581ad6265SDimitry Andric   SmallVector<const SCEVPredicate *, 4> Pred;
20665ffd83dbSDimitry Andric   const SCEV *ExitCount =
20675ffd83dbSDimitry Andric       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
20685ffd83dbSDimitry Andric 
2069e8d8bef9SDimitry Andric   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
20705ffd83dbSDimitry Andric 
20715ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
20725ffd83dbSDimitry Andric   const SCEV *Start = AR->getStart();
20735ffd83dbSDimitry Andric 
20745ffd83dbSDimitry Andric   Type *ARTy = AR->getType();
20755ffd83dbSDimitry Andric   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
20765ffd83dbSDimitry Andric   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
20775ffd83dbSDimitry Andric 
20785ffd83dbSDimitry Andric   // The expression {Start,+,Step} has nusw/nssw if
20795ffd83dbSDimitry Andric   //   Step < 0, Start - |Step| * Backedge <= Start
20805ffd83dbSDimitry Andric   //   Step >= 0, Start + |Step| * Backedge > Start
20815ffd83dbSDimitry Andric   // and |Step| * Backedge doesn't unsigned overflow.
20825ffd83dbSDimitry Andric 
20835ffd83dbSDimitry Andric   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
20845ffd83dbSDimitry Andric   Builder.SetInsertPoint(Loc);
2085bdd1243dSDimitry Andric   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc);
20865ffd83dbSDimitry Andric 
20875ffd83dbSDimitry Andric   IntegerType *Ty =
20885ffd83dbSDimitry Andric       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
20895ffd83dbSDimitry Andric 
2090bdd1243dSDimitry Andric   Value *StepValue = expandCodeForImpl(Step, Ty, Loc);
2091e8d8bef9SDimitry Andric   Value *NegStepValue =
2092bdd1243dSDimitry Andric       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc);
2093bdd1243dSDimitry Andric   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc);
20945ffd83dbSDimitry Andric 
20955ffd83dbSDimitry Andric   ConstantInt *Zero =
2096349cc55cSDimitry Andric       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
20975ffd83dbSDimitry Andric 
20985ffd83dbSDimitry Andric   Builder.SetInsertPoint(Loc);
20995ffd83dbSDimitry Andric   // Compute |Step|
21005ffd83dbSDimitry Andric   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
21015ffd83dbSDimitry Andric   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
21025ffd83dbSDimitry Andric 
210304eeddc0SDimitry Andric   // Compute |Step| * Backedge
210404eeddc0SDimitry Andric   // Compute:
210504eeddc0SDimitry Andric   //   1. Start + |Step| * Backedge < Start
210604eeddc0SDimitry Andric   //   2. Start - |Step| * Backedge > Start
210704eeddc0SDimitry Andric   //
210804eeddc0SDimitry Andric   // And select either 1. or 2. depending on whether step is positive or
210904eeddc0SDimitry Andric   // negative. If Step is known to be positive or negative, only create
211004eeddc0SDimitry Andric   // either 1. or 2.
211104eeddc0SDimitry Andric   auto ComputeEndCheck = [&]() -> Value * {
211204eeddc0SDimitry Andric     // Checking <u 0 is always false.
211304eeddc0SDimitry Andric     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
211404eeddc0SDimitry Andric       return ConstantInt::getFalse(Loc->getContext());
211504eeddc0SDimitry Andric 
21165ffd83dbSDimitry Andric     // Get the backedge taken count and truncate or extended to the AR type.
21175ffd83dbSDimitry Andric     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
21185ffd83dbSDimitry Andric 
2119349cc55cSDimitry Andric     Value *MulV, *OfMul;
2120349cc55cSDimitry Andric     if (Step->isOne()) {
2121349cc55cSDimitry Andric       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2122349cc55cSDimitry Andric       // needed, there is never an overflow, so to avoid artificially inflating
2123349cc55cSDimitry Andric       // the cost of the check, directly emit the optimized IR.
2124349cc55cSDimitry Andric       MulV = TruncTripCount;
2125349cc55cSDimitry Andric       OfMul = ConstantInt::getFalse(MulV->getContext());
2126349cc55cSDimitry Andric     } else {
2127349cc55cSDimitry Andric       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2128349cc55cSDimitry Andric                                              Intrinsic::umul_with_overflow, Ty);
212904eeddc0SDimitry Andric       CallInst *Mul =
213004eeddc0SDimitry Andric           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2131349cc55cSDimitry Andric       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2132349cc55cSDimitry Andric       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2133349cc55cSDimitry Andric     }
21345ffd83dbSDimitry Andric 
21355ffd83dbSDimitry Andric     Value *Add = nullptr, *Sub = nullptr;
213604eeddc0SDimitry Andric     bool NeedPosCheck = !SE.isKnownNegative(Step);
213704eeddc0SDimitry Andric     bool NeedNegCheck = !SE.isKnownPositive(Step);
213804eeddc0SDimitry Andric 
2139349cc55cSDimitry Andric     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2140349cc55cSDimitry Andric       StartValue = InsertNoopCastOfTo(
2141349cc55cSDimitry Andric           StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2142349cc55cSDimitry Andric       Value *NegMulV = Builder.CreateNeg(MulV);
214304eeddc0SDimitry Andric       if (NeedPosCheck)
2144349cc55cSDimitry Andric         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
214504eeddc0SDimitry Andric       if (NeedNegCheck)
2146349cc55cSDimitry Andric         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
21475ffd83dbSDimitry Andric     } else {
214804eeddc0SDimitry Andric       if (NeedPosCheck)
21495ffd83dbSDimitry Andric         Add = Builder.CreateAdd(StartValue, MulV);
215004eeddc0SDimitry Andric       if (NeedNegCheck)
21515ffd83dbSDimitry Andric         Sub = Builder.CreateSub(StartValue, MulV);
21525ffd83dbSDimitry Andric     }
21535ffd83dbSDimitry Andric 
215404eeddc0SDimitry Andric     Value *EndCompareLT = nullptr;
215504eeddc0SDimitry Andric     Value *EndCompareGT = nullptr;
215604eeddc0SDimitry Andric     Value *EndCheck = nullptr;
215704eeddc0SDimitry Andric     if (NeedPosCheck)
215804eeddc0SDimitry Andric       EndCheck = EndCompareLT = Builder.CreateICmp(
21595ffd83dbSDimitry Andric           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
216004eeddc0SDimitry Andric     if (NeedNegCheck)
216104eeddc0SDimitry Andric       EndCheck = EndCompareGT = Builder.CreateICmp(
216204eeddc0SDimitry Andric           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
216304eeddc0SDimitry Andric     if (NeedPosCheck && NeedNegCheck) {
21645ffd83dbSDimitry Andric       // Select the answer based on the sign of Step.
216504eeddc0SDimitry Andric       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
216604eeddc0SDimitry Andric     }
216704eeddc0SDimitry Andric     return Builder.CreateOr(EndCheck, OfMul);
216804eeddc0SDimitry Andric   };
216904eeddc0SDimitry Andric   Value *EndCheck = ComputeEndCheck();
21705ffd83dbSDimitry Andric 
21715ffd83dbSDimitry Andric   // If the backedge taken count type is larger than the AR type,
21725ffd83dbSDimitry Andric   // check that we don't drop any bits by truncating it. If we are
21735ffd83dbSDimitry Andric   // dropping bits, then we have overflow (unless the step is zero).
21745ffd83dbSDimitry Andric   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
21755ffd83dbSDimitry Andric     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
21765ffd83dbSDimitry Andric     auto *BackedgeCheck =
21775ffd83dbSDimitry Andric         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
21785ffd83dbSDimitry Andric                            ConstantInt::get(Loc->getContext(), MaxVal));
21795ffd83dbSDimitry Andric     BackedgeCheck = Builder.CreateAnd(
21805ffd83dbSDimitry Andric         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
21815ffd83dbSDimitry Andric 
21825ffd83dbSDimitry Andric     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
21835ffd83dbSDimitry Andric   }
21845ffd83dbSDimitry Andric 
218504eeddc0SDimitry Andric   return EndCheck;
21865ffd83dbSDimitry Andric }
21875ffd83dbSDimitry Andric 
21885ffd83dbSDimitry Andric Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
21895ffd83dbSDimitry Andric                                          Instruction *IP) {
21905ffd83dbSDimitry Andric   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
21915ffd83dbSDimitry Andric   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
21925ffd83dbSDimitry Andric 
21935ffd83dbSDimitry Andric   // Add a check for NUSW
21945ffd83dbSDimitry Andric   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
21955ffd83dbSDimitry Andric     NUSWCheck = generateOverflowCheck(A, IP, false);
21965ffd83dbSDimitry Andric 
21975ffd83dbSDimitry Andric   // Add a check for NSSW
21985ffd83dbSDimitry Andric   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
21995ffd83dbSDimitry Andric     NSSWCheck = generateOverflowCheck(A, IP, true);
22005ffd83dbSDimitry Andric 
22015ffd83dbSDimitry Andric   if (NUSWCheck && NSSWCheck)
22025ffd83dbSDimitry Andric     return Builder.CreateOr(NUSWCheck, NSSWCheck);
22035ffd83dbSDimitry Andric 
22045ffd83dbSDimitry Andric   if (NUSWCheck)
22055ffd83dbSDimitry Andric     return NUSWCheck;
22065ffd83dbSDimitry Andric 
22075ffd83dbSDimitry Andric   if (NSSWCheck)
22085ffd83dbSDimitry Andric     return NSSWCheck;
22095ffd83dbSDimitry Andric 
22105ffd83dbSDimitry Andric   return ConstantInt::getFalse(IP->getContext());
22115ffd83dbSDimitry Andric }
22125ffd83dbSDimitry Andric 
22135ffd83dbSDimitry Andric Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
22145ffd83dbSDimitry Andric                                           Instruction *IP) {
22155ffd83dbSDimitry Andric   // Loop over all checks in this set.
221604eeddc0SDimitry Andric   SmallVector<Value *> Checks;
2217bdd1243dSDimitry Andric   for (const auto *Pred : Union->getPredicates()) {
221804eeddc0SDimitry Andric     Checks.push_back(expandCodeForPredicate(Pred, IP));
22195ffd83dbSDimitry Andric     Builder.SetInsertPoint(IP);
22205ffd83dbSDimitry Andric   }
22215ffd83dbSDimitry Andric 
222204eeddc0SDimitry Andric   if (Checks.empty())
222304eeddc0SDimitry Andric     return ConstantInt::getFalse(IP->getContext());
222404eeddc0SDimitry Andric   return Builder.CreateOr(Checks);
22255ffd83dbSDimitry Andric }
22265ffd83dbSDimitry Andric 
2227bdd1243dSDimitry Andric Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2228bdd1243dSDimitry Andric   auto *DefI = dyn_cast<Instruction>(V);
2229bdd1243dSDimitry Andric   if (!PreserveLCSSA || !DefI)
2230bdd1243dSDimitry Andric     return V;
2231e8d8bef9SDimitry Andric 
2232bdd1243dSDimitry Andric   Instruction *InsertPt = &*Builder.GetInsertPoint();
2233bdd1243dSDimitry Andric   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2234bdd1243dSDimitry Andric   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2235e8d8bef9SDimitry Andric   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2236bdd1243dSDimitry Andric     return V;
2237e8d8bef9SDimitry Andric 
2238bdd1243dSDimitry Andric   // Create a temporary instruction to at the current insertion point, so we
2239bdd1243dSDimitry Andric   // can hand it off to the helper to create LCSSA PHIs if required for the
2240bdd1243dSDimitry Andric   // new use.
2241bdd1243dSDimitry Andric   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2242bdd1243dSDimitry Andric   // would accept a insertion point and return an LCSSA phi for that
2243bdd1243dSDimitry Andric   // insertion point, so there is no need to insert & remove the temporary
2244bdd1243dSDimitry Andric   // instruction.
2245bdd1243dSDimitry Andric   Type *ToTy;
2246bdd1243dSDimitry Andric   if (DefI->getType()->isIntegerTy())
2247bdd1243dSDimitry Andric     ToTy = DefI->getType()->getPointerTo();
2248bdd1243dSDimitry Andric   else
2249bdd1243dSDimitry Andric     ToTy = Type::getInt32Ty(DefI->getContext());
2250bdd1243dSDimitry Andric   Instruction *User =
2251bdd1243dSDimitry Andric       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2252bdd1243dSDimitry Andric   auto RemoveUserOnExit =
2253bdd1243dSDimitry Andric       make_scope_exit([User]() { User->eraseFromParent(); });
2254bdd1243dSDimitry Andric 
2255bdd1243dSDimitry Andric   SmallVector<Instruction *, 1> ToUpdate;
2256bdd1243dSDimitry Andric   ToUpdate.push_back(DefI);
2257e8d8bef9SDimitry Andric   SmallVector<PHINode *, 16> PHIsToRemove;
2258*06c3fb27SDimitry Andric   SmallVector<PHINode *, 16> InsertedPHIs;
2259*06c3fb27SDimitry Andric   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
2260*06c3fb27SDimitry Andric                            &InsertedPHIs);
2261*06c3fb27SDimitry Andric   for (PHINode *PN : InsertedPHIs)
2262*06c3fb27SDimitry Andric     rememberInstruction(PN);
2263e8d8bef9SDimitry Andric   for (PHINode *PN : PHIsToRemove) {
2264e8d8bef9SDimitry Andric     if (!PN->use_empty())
2265e8d8bef9SDimitry Andric       continue;
2266e8d8bef9SDimitry Andric     InsertedValues.erase(PN);
2267e8d8bef9SDimitry Andric     InsertedPostIncValues.erase(PN);
2268e8d8bef9SDimitry Andric     PN->eraseFromParent();
2269e8d8bef9SDimitry Andric   }
2270e8d8bef9SDimitry Andric 
2271bdd1243dSDimitry Andric   return User->getOperand(0);
2272e8d8bef9SDimitry Andric }
2273e8d8bef9SDimitry Andric 
22745ffd83dbSDimitry Andric namespace {
22755ffd83dbSDimitry Andric // Search for a SCEV subexpression that is not safe to expand.  Any expression
22765ffd83dbSDimitry Andric // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
22775ffd83dbSDimitry Andric // UDiv expressions. We don't know if the UDiv is derived from an IR divide
22785ffd83dbSDimitry Andric // instruction, but the important thing is that we prove the denominator is
22795ffd83dbSDimitry Andric // nonzero before expansion.
22805ffd83dbSDimitry Andric //
22815ffd83dbSDimitry Andric // IVUsers already checks that IV-derived expressions are safe. So this check is
22825ffd83dbSDimitry Andric // only needed when the expression includes some subexpression that is not IV
22835ffd83dbSDimitry Andric // derived.
22845ffd83dbSDimitry Andric //
2285fcaf7f86SDimitry Andric // Currently, we only allow division by a value provably non-zero here.
22865ffd83dbSDimitry Andric //
22875ffd83dbSDimitry Andric // We cannot generally expand recurrences unless the step dominates the loop
22885ffd83dbSDimitry Andric // header. The expander handles the special case of affine recurrences by
22895ffd83dbSDimitry Andric // scaling the recurrence outside the loop, but this technique isn't generally
22905ffd83dbSDimitry Andric // applicable. Expanding a nested recurrence outside a loop requires computing
22915ffd83dbSDimitry Andric // binomial coefficients. This could be done, but the recurrence has to be in a
22925ffd83dbSDimitry Andric // perfectly reduced form, which can't be guaranteed.
22935ffd83dbSDimitry Andric struct SCEVFindUnsafe {
22945ffd83dbSDimitry Andric   ScalarEvolution &SE;
2295349cc55cSDimitry Andric   bool CanonicalMode;
229681ad6265SDimitry Andric   bool IsUnsafe = false;
22975ffd83dbSDimitry Andric 
2298349cc55cSDimitry Andric   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
229981ad6265SDimitry Andric       : SE(SE), CanonicalMode(CanonicalMode) {}
23005ffd83dbSDimitry Andric 
23015ffd83dbSDimitry Andric   bool follow(const SCEV *S) {
23025ffd83dbSDimitry Andric     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2303fcaf7f86SDimitry Andric       if (!SE.isKnownNonZero(D->getRHS())) {
23045ffd83dbSDimitry Andric         IsUnsafe = true;
23055ffd83dbSDimitry Andric         return false;
23065ffd83dbSDimitry Andric       }
23075ffd83dbSDimitry Andric     }
23085ffd83dbSDimitry Andric     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
23095ffd83dbSDimitry Andric       const SCEV *Step = AR->getStepRecurrence(SE);
23105ffd83dbSDimitry Andric       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
23115ffd83dbSDimitry Andric         IsUnsafe = true;
23125ffd83dbSDimitry Andric         return false;
23135ffd83dbSDimitry Andric       }
2314349cc55cSDimitry Andric 
2315349cc55cSDimitry Andric       // For non-affine addrecs or in non-canonical mode we need a preheader
2316349cc55cSDimitry Andric       // to insert into.
2317349cc55cSDimitry Andric       if (!AR->getLoop()->getLoopPreheader() &&
2318349cc55cSDimitry Andric           (!CanonicalMode || !AR->isAffine())) {
2319349cc55cSDimitry Andric         IsUnsafe = true;
2320349cc55cSDimitry Andric         return false;
2321349cc55cSDimitry Andric       }
23225ffd83dbSDimitry Andric     }
23235ffd83dbSDimitry Andric     return true;
23245ffd83dbSDimitry Andric   }
23255ffd83dbSDimitry Andric   bool isDone() const { return IsUnsafe; }
23265ffd83dbSDimitry Andric };
2327fcaf7f86SDimitry Andric } // namespace
23285ffd83dbSDimitry Andric 
2329fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2330349cc55cSDimitry Andric   SCEVFindUnsafe Search(SE, CanonicalMode);
23315ffd83dbSDimitry Andric   visitAll(S, Search);
23325ffd83dbSDimitry Andric   return !Search.IsUnsafe;
23335ffd83dbSDimitry Andric }
23345ffd83dbSDimitry Andric 
2335fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2336fcaf7f86SDimitry Andric                                     const Instruction *InsertionPoint) const {
2337fcaf7f86SDimitry Andric   if (!isSafeToExpand(S))
23385ffd83dbSDimitry Andric     return false;
23395ffd83dbSDimitry Andric   // We have to prove that the expanded site of S dominates InsertionPoint.
23405ffd83dbSDimitry Andric   // This is easy when not in the same block, but hard when S is an instruction
23415ffd83dbSDimitry Andric   // to be expanded somewhere inside the same block as our insertion point.
23425ffd83dbSDimitry Andric   // What we really need here is something analogous to an OrderedBasicBlock,
23435ffd83dbSDimitry Andric   // but for the moment, we paper over the problem by handling two common and
23445ffd83dbSDimitry Andric   // cheap to check cases.
23455ffd83dbSDimitry Andric   if (SE.properlyDominates(S, InsertionPoint->getParent()))
23465ffd83dbSDimitry Andric     return true;
23475ffd83dbSDimitry Andric   if (SE.dominates(S, InsertionPoint->getParent())) {
23485ffd83dbSDimitry Andric     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
23495ffd83dbSDimitry Andric       return true;
23505ffd83dbSDimitry Andric     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2351fe6060f1SDimitry Andric       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
23525ffd83dbSDimitry Andric         return true;
23535ffd83dbSDimitry Andric   }
23545ffd83dbSDimitry Andric   return false;
23555ffd83dbSDimitry Andric }
2356e8d8bef9SDimitry Andric 
2357fe6060f1SDimitry Andric void SCEVExpanderCleaner::cleanup() {
2358e8d8bef9SDimitry Andric   // Result is used, nothing to remove.
2359e8d8bef9SDimitry Andric   if (ResultUsed)
2360e8d8bef9SDimitry Andric     return;
2361e8d8bef9SDimitry Andric 
2362e8d8bef9SDimitry Andric   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2363e8d8bef9SDimitry Andric #ifndef NDEBUG
2364e8d8bef9SDimitry Andric   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2365e8d8bef9SDimitry Andric                                             InsertedInstructions.end());
2366e8d8bef9SDimitry Andric   (void)InsertedSet;
2367e8d8bef9SDimitry Andric #endif
2368e8d8bef9SDimitry Andric   // Remove sets with value handles.
2369e8d8bef9SDimitry Andric   Expander.clear();
2370e8d8bef9SDimitry Andric 
2371e8d8bef9SDimitry Andric   // Remove all inserted instructions.
237204eeddc0SDimitry Andric   for (Instruction *I : reverse(InsertedInstructions)) {
2373e8d8bef9SDimitry Andric #ifndef NDEBUG
2374e8d8bef9SDimitry Andric     assert(all_of(I->users(),
2375e8d8bef9SDimitry Andric                   [&InsertedSet](Value *U) {
2376e8d8bef9SDimitry Andric                     return InsertedSet.contains(cast<Instruction>(U));
2377e8d8bef9SDimitry Andric                   }) &&
2378e8d8bef9SDimitry Andric            "removed instruction should only be used by instructions inserted "
2379e8d8bef9SDimitry Andric            "during expansion");
2380e8d8bef9SDimitry Andric #endif
2381e8d8bef9SDimitry Andric     assert(!I->getType()->isVoidTy() &&
2382e8d8bef9SDimitry Andric            "inserted instruction should have non-void types");
2383bdd1243dSDimitry Andric     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2384e8d8bef9SDimitry Andric     I->eraseFromParent();
2385e8d8bef9SDimitry Andric   }
2386e8d8bef9SDimitry Andric }
2387