15ffd83dbSDimitry Andric //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 25ffd83dbSDimitry Andric // 35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 65ffd83dbSDimitry Andric // 75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 85ffd83dbSDimitry Andric // 95ffd83dbSDimitry Andric // This file contains the implementation of the scalar evolution expander, 105ffd83dbSDimitry Andric // which is used to generate the code corresponding to a given scalar evolution 115ffd83dbSDimitry Andric // expression. 125ffd83dbSDimitry Andric // 135ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 145ffd83dbSDimitry Andric 155ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 165ffd83dbSDimitry Andric #include "llvm/ADT/STLExtras.h" 17bdd1243dSDimitry Andric #include "llvm/ADT/ScopeExit.h" 185ffd83dbSDimitry Andric #include "llvm/ADT/SmallSet.h" 195ffd83dbSDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 205ffd83dbSDimitry Andric #include "llvm/Analysis/LoopInfo.h" 215ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 224824e7fdSDimitry Andric #include "llvm/Analysis/ValueTracking.h" 235ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h" 245ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h" 255ffd83dbSDimitry Andric #include "llvm/IR/IntrinsicInst.h" 265ffd83dbSDimitry Andric #include "llvm/IR/PatternMatch.h" 275ffd83dbSDimitry Andric #include "llvm/Support/CommandLine.h" 285ffd83dbSDimitry Andric #include "llvm/Support/raw_ostream.h" 29e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h" 305ffd83dbSDimitry Andric 31fe6060f1SDimitry Andric #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33fe6060f1SDimitry Andric #else 34fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35fe6060f1SDimitry Andric #endif 36fe6060f1SDimitry Andric 375ffd83dbSDimitry Andric using namespace llvm; 385ffd83dbSDimitry Andric 395ffd83dbSDimitry Andric cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 405ffd83dbSDimitry Andric "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 415ffd83dbSDimitry Andric cl::desc("When performing SCEV expansion only if it is cheap to do, this " 425ffd83dbSDimitry Andric "controls the budget that is considered cheap (default = 4)")); 435ffd83dbSDimitry Andric 445ffd83dbSDimitry Andric using namespace PatternMatch; 455ffd83dbSDimitry Andric 465ffd83dbSDimitry Andric /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47e8d8bef9SDimitry Andric /// reusing an existing cast if a suitable one (= dominating IP) exists, or 485ffd83dbSDimitry Andric /// creating a new one. 495ffd83dbSDimitry Andric Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 505ffd83dbSDimitry Andric Instruction::CastOps Op, 515ffd83dbSDimitry Andric BasicBlock::iterator IP) { 525ffd83dbSDimitry Andric // This function must be called with the builder having a valid insertion 535ffd83dbSDimitry Andric // point. It doesn't need to be the actual IP where the uses of the returned 545ffd83dbSDimitry Andric // cast will be added, but it must dominate such IP. 555ffd83dbSDimitry Andric // We use this precondition to produce a cast that will dominate all its 565ffd83dbSDimitry Andric // uses. In particular, this is crucial for the case where the builder's 575ffd83dbSDimitry Andric // insertion point *is* the point where we were asked to put the cast. 585ffd83dbSDimitry Andric // Since we don't know the builder's insertion point is actually 595ffd83dbSDimitry Andric // where the uses will be added (only that it dominates it), we are 605ffd83dbSDimitry Andric // not allowed to move it. 615ffd83dbSDimitry Andric BasicBlock::iterator BIP = Builder.GetInsertPoint(); 625ffd83dbSDimitry Andric 63fe6060f1SDimitry Andric Value *Ret = nullptr; 645ffd83dbSDimitry Andric 655ffd83dbSDimitry Andric // Check to see if there is already a cast! 66e8d8bef9SDimitry Andric for (User *U : V->users()) { 67e8d8bef9SDimitry Andric if (U->getType() != Ty) 68e8d8bef9SDimitry Andric continue; 69e8d8bef9SDimitry Andric CastInst *CI = dyn_cast<CastInst>(U); 70e8d8bef9SDimitry Andric if (!CI || CI->getOpcode() != Op) 71e8d8bef9SDimitry Andric continue; 72e8d8bef9SDimitry Andric 73e8d8bef9SDimitry Andric // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74e8d8bef9SDimitry Andric // the cast must also properly dominate the Builder's insertion point. 75e8d8bef9SDimitry Andric if (IP->getParent() == CI->getParent() && &*BIP != CI && 76e8d8bef9SDimitry Andric (&*IP == CI || CI->comesBefore(&*IP))) { 775ffd83dbSDimitry Andric Ret = CI; 785ffd83dbSDimitry Andric break; 795ffd83dbSDimitry Andric } 80e8d8bef9SDimitry Andric } 815ffd83dbSDimitry Andric 825ffd83dbSDimitry Andric // Create a new cast. 83e8d8bef9SDimitry Andric if (!Ret) { 84fe6060f1SDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 85fe6060f1SDimitry Andric Builder.SetInsertPoint(&*IP); 86fe6060f1SDimitry Andric Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87e8d8bef9SDimitry Andric } 885ffd83dbSDimitry Andric 895ffd83dbSDimitry Andric // We assert at the end of the function since IP might point to an 905ffd83dbSDimitry Andric // instruction with different dominance properties than a cast 915ffd83dbSDimitry Andric // (an invoke for example) and not dominate BIP (but the cast does). 92fe6060f1SDimitry Andric assert(!isa<Instruction>(Ret) || 93fe6060f1SDimitry Andric SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 945ffd83dbSDimitry Andric 955ffd83dbSDimitry Andric return Ret; 965ffd83dbSDimitry Andric } 975ffd83dbSDimitry Andric 98e8d8bef9SDimitry Andric BasicBlock::iterator 99fe6060f1SDimitry Andric SCEVExpander::findInsertPointAfter(Instruction *I, 100fe6060f1SDimitry Andric Instruction *MustDominate) const { 1015ffd83dbSDimitry Andric BasicBlock::iterator IP = ++I->getIterator(); 1025ffd83dbSDimitry Andric if (auto *II = dyn_cast<InvokeInst>(I)) 1035ffd83dbSDimitry Andric IP = II->getNormalDest()->begin(); 1045ffd83dbSDimitry Andric 1055ffd83dbSDimitry Andric while (isa<PHINode>(IP)) 1065ffd83dbSDimitry Andric ++IP; 1075ffd83dbSDimitry Andric 1085ffd83dbSDimitry Andric if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 1095ffd83dbSDimitry Andric ++IP; 1105ffd83dbSDimitry Andric } else if (isa<CatchSwitchInst>(IP)) { 111e8d8bef9SDimitry Andric IP = MustDominate->getParent()->getFirstInsertionPt(); 1125ffd83dbSDimitry Andric } else { 1135ffd83dbSDimitry Andric assert(!IP->isEHPad() && "unexpected eh pad!"); 1145ffd83dbSDimitry Andric } 1155ffd83dbSDimitry Andric 116e8d8bef9SDimitry Andric // Adjust insert point to be after instructions inserted by the expander, so 117e8d8bef9SDimitry Andric // we can re-use already inserted instructions. Avoid skipping past the 118e8d8bef9SDimitry Andric // original \p MustDominate, in case it is an inserted instruction. 119e8d8bef9SDimitry Andric while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120e8d8bef9SDimitry Andric ++IP; 121e8d8bef9SDimitry Andric 1225ffd83dbSDimitry Andric return IP; 1235ffd83dbSDimitry Andric } 1245ffd83dbSDimitry Andric 125fe6060f1SDimitry Andric BasicBlock::iterator 126fe6060f1SDimitry Andric SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127fe6060f1SDimitry Andric // Cast the argument at the beginning of the entry block, after 128fe6060f1SDimitry Andric // any bitcasts of other arguments. 129fe6060f1SDimitry Andric if (Argument *A = dyn_cast<Argument>(V)) { 130fe6060f1SDimitry Andric BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131fe6060f1SDimitry Andric while ((isa<BitCastInst>(IP) && 132fe6060f1SDimitry Andric isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133fe6060f1SDimitry Andric cast<BitCastInst>(IP)->getOperand(0) != A) || 134fe6060f1SDimitry Andric isa<DbgInfoIntrinsic>(IP)) 135fe6060f1SDimitry Andric ++IP; 136fe6060f1SDimitry Andric return IP; 137fe6060f1SDimitry Andric } 138fe6060f1SDimitry Andric 139fe6060f1SDimitry Andric // Cast the instruction immediately after the instruction. 140fe6060f1SDimitry Andric if (Instruction *I = dyn_cast<Instruction>(V)) 141fe6060f1SDimitry Andric return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142fe6060f1SDimitry Andric 143fe6060f1SDimitry Andric // Otherwise, this must be some kind of a constant, 144fe6060f1SDimitry Andric // so let's plop this cast into the function's entry block. 145fe6060f1SDimitry Andric assert(isa<Constant>(V) && 146fe6060f1SDimitry Andric "Expected the cast argument to be a global/constant"); 147fe6060f1SDimitry Andric return Builder.GetInsertBlock() 148fe6060f1SDimitry Andric ->getParent() 149fe6060f1SDimitry Andric ->getEntryBlock() 150fe6060f1SDimitry Andric .getFirstInsertionPt(); 151fe6060f1SDimitry Andric } 152fe6060f1SDimitry Andric 1535ffd83dbSDimitry Andric /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 1545ffd83dbSDimitry Andric /// which must be possible with a noop cast, doing what we can to share 1555ffd83dbSDimitry Andric /// the casts. 1565ffd83dbSDimitry Andric Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 1575ffd83dbSDimitry Andric Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 1585ffd83dbSDimitry Andric assert((Op == Instruction::BitCast || 1595ffd83dbSDimitry Andric Op == Instruction::PtrToInt || 1605ffd83dbSDimitry Andric Op == Instruction::IntToPtr) && 1615ffd83dbSDimitry Andric "InsertNoopCastOfTo cannot perform non-noop casts!"); 1625ffd83dbSDimitry Andric assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 1635ffd83dbSDimitry Andric "InsertNoopCastOfTo cannot change sizes!"); 1645ffd83dbSDimitry Andric 165e8d8bef9SDimitry Andric // inttoptr only works for integral pointers. For non-integral pointers, we 166*06c3fb27SDimitry Andric // can create a GEP on null with the integral value as index. Note that 167e8d8bef9SDimitry Andric // it is safe to use GEP of null instead of inttoptr here, because only 168e8d8bef9SDimitry Andric // expressions already based on a GEP of null should be converted to pointers 169e8d8bef9SDimitry Andric // during expansion. 170e8d8bef9SDimitry Andric if (Op == Instruction::IntToPtr) { 171e8d8bef9SDimitry Andric auto *PtrTy = cast<PointerType>(Ty); 172e8d8bef9SDimitry Andric if (DL.isNonIntegralPointerType(PtrTy)) { 173e8d8bef9SDimitry Andric auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 17404eeddc0SDimitry Andric assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 175e8d8bef9SDimitry Andric "alloc size of i8 must by 1 byte for the GEP to be correct"); 176*06c3fb27SDimitry Andric return Builder.CreateGEP( 177*06c3fb27SDimitry Andric Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "scevgep"); 178e8d8bef9SDimitry Andric } 179e8d8bef9SDimitry Andric } 1805ffd83dbSDimitry Andric // Short-circuit unnecessary bitcasts. 1815ffd83dbSDimitry Andric if (Op == Instruction::BitCast) { 1825ffd83dbSDimitry Andric if (V->getType() == Ty) 1835ffd83dbSDimitry Andric return V; 1845ffd83dbSDimitry Andric if (CastInst *CI = dyn_cast<CastInst>(V)) { 1855ffd83dbSDimitry Andric if (CI->getOperand(0)->getType() == Ty) 1865ffd83dbSDimitry Andric return CI->getOperand(0); 1875ffd83dbSDimitry Andric } 1885ffd83dbSDimitry Andric } 1895ffd83dbSDimitry Andric // Short-circuit unnecessary inttoptr<->ptrtoint casts. 1905ffd83dbSDimitry Andric if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 1915ffd83dbSDimitry Andric SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 1925ffd83dbSDimitry Andric if (CastInst *CI = dyn_cast<CastInst>(V)) 1935ffd83dbSDimitry Andric if ((CI->getOpcode() == Instruction::PtrToInt || 1945ffd83dbSDimitry Andric CI->getOpcode() == Instruction::IntToPtr) && 1955ffd83dbSDimitry Andric SE.getTypeSizeInBits(CI->getType()) == 1965ffd83dbSDimitry Andric SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 1975ffd83dbSDimitry Andric return CI->getOperand(0); 1985ffd83dbSDimitry Andric if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1995ffd83dbSDimitry Andric if ((CE->getOpcode() == Instruction::PtrToInt || 2005ffd83dbSDimitry Andric CE->getOpcode() == Instruction::IntToPtr) && 2015ffd83dbSDimitry Andric SE.getTypeSizeInBits(CE->getType()) == 2025ffd83dbSDimitry Andric SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 2035ffd83dbSDimitry Andric return CE->getOperand(0); 2045ffd83dbSDimitry Andric } 2055ffd83dbSDimitry Andric 2065ffd83dbSDimitry Andric // Fold a cast of a constant. 2075ffd83dbSDimitry Andric if (Constant *C = dyn_cast<Constant>(V)) 2085ffd83dbSDimitry Andric return ConstantExpr::getCast(Op, C, Ty); 2095ffd83dbSDimitry Andric 210fe6060f1SDimitry Andric // Try to reuse existing cast, or insert one. 211fe6060f1SDimitry Andric return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 2125ffd83dbSDimitry Andric } 2135ffd83dbSDimitry Andric 2145ffd83dbSDimitry Andric /// InsertBinop - Insert the specified binary operator, doing a small amount 2155ffd83dbSDimitry Andric /// of work to avoid inserting an obviously redundant operation, and hoisting 2165ffd83dbSDimitry Andric /// to an outer loop when the opportunity is there and it is safe. 2175ffd83dbSDimitry Andric Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 2185ffd83dbSDimitry Andric Value *LHS, Value *RHS, 2195ffd83dbSDimitry Andric SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 2205ffd83dbSDimitry Andric // Fold a binop with constant operands. 2215ffd83dbSDimitry Andric if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2225ffd83dbSDimitry Andric if (Constant *CRHS = dyn_cast<Constant>(RHS)) 223753f127fSDimitry Andric if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 224753f127fSDimitry Andric return Res; 2255ffd83dbSDimitry Andric 2265ffd83dbSDimitry Andric // Do a quick scan to see if we have this binop nearby. If so, reuse it. 2275ffd83dbSDimitry Andric unsigned ScanLimit = 6; 2285ffd83dbSDimitry Andric BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 2295ffd83dbSDimitry Andric // Scanning starts from the last instruction before the insertion point. 2305ffd83dbSDimitry Andric BasicBlock::iterator IP = Builder.GetInsertPoint(); 2315ffd83dbSDimitry Andric if (IP != BlockBegin) { 2325ffd83dbSDimitry Andric --IP; 2335ffd83dbSDimitry Andric for (; ScanLimit; --IP, --ScanLimit) { 2345ffd83dbSDimitry Andric // Don't count dbg.value against the ScanLimit, to avoid perturbing the 2355ffd83dbSDimitry Andric // generated code. 2365ffd83dbSDimitry Andric if (isa<DbgInfoIntrinsic>(IP)) 2375ffd83dbSDimitry Andric ScanLimit++; 2385ffd83dbSDimitry Andric 2395ffd83dbSDimitry Andric auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 2405ffd83dbSDimitry Andric // Ensure that no-wrap flags match. 2415ffd83dbSDimitry Andric if (isa<OverflowingBinaryOperator>(I)) { 2425ffd83dbSDimitry Andric if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 2435ffd83dbSDimitry Andric return true; 2445ffd83dbSDimitry Andric if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 2455ffd83dbSDimitry Andric return true; 2465ffd83dbSDimitry Andric } 2475ffd83dbSDimitry Andric // Conservatively, do not use any instruction which has any of exact 2485ffd83dbSDimitry Andric // flags installed. 2495ffd83dbSDimitry Andric if (isa<PossiblyExactOperator>(I) && I->isExact()) 2505ffd83dbSDimitry Andric return true; 2515ffd83dbSDimitry Andric return false; 2525ffd83dbSDimitry Andric }; 2535ffd83dbSDimitry Andric if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 2545ffd83dbSDimitry Andric IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 2555ffd83dbSDimitry Andric return &*IP; 2565ffd83dbSDimitry Andric if (IP == BlockBegin) break; 2575ffd83dbSDimitry Andric } 2585ffd83dbSDimitry Andric } 2595ffd83dbSDimitry Andric 2605ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 2615ffd83dbSDimitry Andric DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 2625ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 2635ffd83dbSDimitry Andric 2645ffd83dbSDimitry Andric if (IsSafeToHoist) { 2655ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 2665ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 2675ffd83dbSDimitry Andric if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 2685ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 2695ffd83dbSDimitry Andric if (!Preheader) break; 2705ffd83dbSDimitry Andric 2715ffd83dbSDimitry Andric // Ok, move up a level. 2725ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 2735ffd83dbSDimitry Andric } 2745ffd83dbSDimitry Andric } 2755ffd83dbSDimitry Andric 2765ffd83dbSDimitry Andric // If we haven't found this binop, insert it. 27781ad6265SDimitry Andric // TODO: Use the Builder, which will make CreateBinOp below fold with 27881ad6265SDimitry Andric // InstSimplifyFolder. 27981ad6265SDimitry Andric Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 2805ffd83dbSDimitry Andric BO->setDebugLoc(Loc); 2815ffd83dbSDimitry Andric if (Flags & SCEV::FlagNUW) 2825ffd83dbSDimitry Andric BO->setHasNoUnsignedWrap(); 2835ffd83dbSDimitry Andric if (Flags & SCEV::FlagNSW) 2845ffd83dbSDimitry Andric BO->setHasNoSignedWrap(); 2855ffd83dbSDimitry Andric 2865ffd83dbSDimitry Andric return BO; 2875ffd83dbSDimitry Andric } 2885ffd83dbSDimitry Andric 2895ffd83dbSDimitry Andric /// expandAddToGEP - Expand an addition expression with a pointer type into 2905ffd83dbSDimitry Andric /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 2915ffd83dbSDimitry Andric /// BasicAliasAnalysis and other passes analyze the result. See the rules 2925ffd83dbSDimitry Andric /// for getelementptr vs. inttoptr in 2935ffd83dbSDimitry Andric /// http://llvm.org/docs/LangRef.html#pointeraliasing 2945ffd83dbSDimitry Andric /// for details. 2955ffd83dbSDimitry Andric /// 2965ffd83dbSDimitry Andric /// Design note: The correctness of using getelementptr here depends on 2975ffd83dbSDimitry Andric /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 2985ffd83dbSDimitry Andric /// they may introduce pointer arithmetic which may not be safely converted 2995ffd83dbSDimitry Andric /// into getelementptr. 3005ffd83dbSDimitry Andric /// 3015ffd83dbSDimitry Andric /// Design note: It might seem desirable for this function to be more 3025ffd83dbSDimitry Andric /// loop-aware. If some of the indices are loop-invariant while others 3035ffd83dbSDimitry Andric /// aren't, it might seem desirable to emit multiple GEPs, keeping the 3045ffd83dbSDimitry Andric /// loop-invariant portions of the overall computation outside the loop. 3055ffd83dbSDimitry Andric /// However, there are a few reasons this is not done here. Hoisting simple 3065ffd83dbSDimitry Andric /// arithmetic is a low-level optimization that often isn't very 3075ffd83dbSDimitry Andric /// important until late in the optimization process. In fact, passes 3085ffd83dbSDimitry Andric /// like InstructionCombining will combine GEPs, even if it means 3095ffd83dbSDimitry Andric /// pushing loop-invariant computation down into loops, so even if the 3105ffd83dbSDimitry Andric /// GEPs were split here, the work would quickly be undone. The 3115ffd83dbSDimitry Andric /// LoopStrengthReduction pass, which is usually run quite late (and 3125ffd83dbSDimitry Andric /// after the last InstructionCombining pass), takes care of hoisting 3135ffd83dbSDimitry Andric /// loop-invariant portions of expressions, after considering what 3145ffd83dbSDimitry Andric /// can be folded using target addressing modes. 3155ffd83dbSDimitry Andric /// 316*06c3fb27SDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Type *Ty, Value *V) { 3175ffd83dbSDimitry Andric assert(!isa<Instruction>(V) || 3185ffd83dbSDimitry Andric SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 3195ffd83dbSDimitry Andric 320*06c3fb27SDimitry Andric Value *Idx = expandCodeForImpl(Offset, Ty); 3215ffd83dbSDimitry Andric 3225ffd83dbSDimitry Andric // Fold a GEP with constant operands. 3235ffd83dbSDimitry Andric if (Constant *CLHS = dyn_cast<Constant>(V)) 3245ffd83dbSDimitry Andric if (Constant *CRHS = dyn_cast<Constant>(Idx)) 325bdd1243dSDimitry Andric return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS); 3265ffd83dbSDimitry Andric 3275ffd83dbSDimitry Andric // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 3285ffd83dbSDimitry Andric unsigned ScanLimit = 6; 3295ffd83dbSDimitry Andric BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 3305ffd83dbSDimitry Andric // Scanning starts from the last instruction before the insertion point. 3315ffd83dbSDimitry Andric BasicBlock::iterator IP = Builder.GetInsertPoint(); 3325ffd83dbSDimitry Andric if (IP != BlockBegin) { 3335ffd83dbSDimitry Andric --IP; 3345ffd83dbSDimitry Andric for (; ScanLimit; --IP, --ScanLimit) { 3355ffd83dbSDimitry Andric // Don't count dbg.value against the ScanLimit, to avoid perturbing the 3365ffd83dbSDimitry Andric // generated code. 3375ffd83dbSDimitry Andric if (isa<DbgInfoIntrinsic>(IP)) 3385ffd83dbSDimitry Andric ScanLimit++; 3395ffd83dbSDimitry Andric if (IP->getOpcode() == Instruction::GetElementPtr && 34081ad6265SDimitry Andric IP->getOperand(0) == V && IP->getOperand(1) == Idx && 34181ad6265SDimitry Andric cast<GEPOperator>(&*IP)->getSourceElementType() == 34281ad6265SDimitry Andric Type::getInt8Ty(Ty->getContext())) 3435ffd83dbSDimitry Andric return &*IP; 3445ffd83dbSDimitry Andric if (IP == BlockBegin) break; 3455ffd83dbSDimitry Andric } 3465ffd83dbSDimitry Andric } 3475ffd83dbSDimitry Andric 3485ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 3495ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 3505ffd83dbSDimitry Andric 3515ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 3525ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 3535ffd83dbSDimitry Andric if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 3545ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 3555ffd83dbSDimitry Andric if (!Preheader) break; 3565ffd83dbSDimitry Andric 3575ffd83dbSDimitry Andric // Ok, move up a level. 3585ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 3595ffd83dbSDimitry Andric } 3605ffd83dbSDimitry Andric 3615ffd83dbSDimitry Andric // Emit a GEP. 362*06c3fb27SDimitry Andric return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep"); 3635ffd83dbSDimitry Andric } 3645ffd83dbSDimitry Andric 3655ffd83dbSDimitry Andric /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 3665ffd83dbSDimitry Andric /// SCEV expansion. If they are nested, this is the most nested. If they are 3675ffd83dbSDimitry Andric /// neighboring, pick the later. 3685ffd83dbSDimitry Andric static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 3695ffd83dbSDimitry Andric DominatorTree &DT) { 3705ffd83dbSDimitry Andric if (!A) return B; 3715ffd83dbSDimitry Andric if (!B) return A; 3725ffd83dbSDimitry Andric if (A->contains(B)) return B; 3735ffd83dbSDimitry Andric if (B->contains(A)) return A; 3745ffd83dbSDimitry Andric if (DT.dominates(A->getHeader(), B->getHeader())) return B; 3755ffd83dbSDimitry Andric if (DT.dominates(B->getHeader(), A->getHeader())) return A; 3765ffd83dbSDimitry Andric return A; // Arbitrarily break the tie. 3775ffd83dbSDimitry Andric } 3785ffd83dbSDimitry Andric 3795ffd83dbSDimitry Andric /// getRelevantLoop - Get the most relevant loop associated with the given 3805ffd83dbSDimitry Andric /// expression, according to PickMostRelevantLoop. 3815ffd83dbSDimitry Andric const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 3825ffd83dbSDimitry Andric // Test whether we've already computed the most relevant loop for this SCEV. 3835ffd83dbSDimitry Andric auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 3845ffd83dbSDimitry Andric if (!Pair.second) 3855ffd83dbSDimitry Andric return Pair.first->second; 3865ffd83dbSDimitry Andric 387bdd1243dSDimitry Andric switch (S->getSCEVType()) { 388bdd1243dSDimitry Andric case scConstant: 389*06c3fb27SDimitry Andric case scVScale: 390bdd1243dSDimitry Andric return nullptr; // A constant has no relevant loops. 391bdd1243dSDimitry Andric case scTruncate: 392bdd1243dSDimitry Andric case scZeroExtend: 393bdd1243dSDimitry Andric case scSignExtend: 394bdd1243dSDimitry Andric case scPtrToInt: 395bdd1243dSDimitry Andric case scAddExpr: 396bdd1243dSDimitry Andric case scMulExpr: 397bdd1243dSDimitry Andric case scUDivExpr: 398bdd1243dSDimitry Andric case scAddRecExpr: 399bdd1243dSDimitry Andric case scUMaxExpr: 400bdd1243dSDimitry Andric case scSMaxExpr: 401bdd1243dSDimitry Andric case scUMinExpr: 402bdd1243dSDimitry Andric case scSMinExpr: 403bdd1243dSDimitry Andric case scSequentialUMinExpr: { 404bdd1243dSDimitry Andric const Loop *L = nullptr; 405bdd1243dSDimitry Andric if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 406bdd1243dSDimitry Andric L = AR->getLoop(); 407bdd1243dSDimitry Andric for (const SCEV *Op : S->operands()) 408bdd1243dSDimitry Andric L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 409bdd1243dSDimitry Andric return RelevantLoops[S] = L; 410bdd1243dSDimitry Andric } 411bdd1243dSDimitry Andric case scUnknown: { 412bdd1243dSDimitry Andric const SCEVUnknown *U = cast<SCEVUnknown>(S); 4135ffd83dbSDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 4145ffd83dbSDimitry Andric return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 4155ffd83dbSDimitry Andric // A non-instruction has no relevant loops. 4165ffd83dbSDimitry Andric return nullptr; 4175ffd83dbSDimitry Andric } 418bdd1243dSDimitry Andric case scCouldNotCompute: 419bdd1243dSDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4205ffd83dbSDimitry Andric } 4215ffd83dbSDimitry Andric llvm_unreachable("Unexpected SCEV type!"); 4225ffd83dbSDimitry Andric } 4235ffd83dbSDimitry Andric 4245ffd83dbSDimitry Andric namespace { 4255ffd83dbSDimitry Andric 4265ffd83dbSDimitry Andric /// LoopCompare - Compare loops by PickMostRelevantLoop. 4275ffd83dbSDimitry Andric class LoopCompare { 4285ffd83dbSDimitry Andric DominatorTree &DT; 4295ffd83dbSDimitry Andric public: 4305ffd83dbSDimitry Andric explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 4315ffd83dbSDimitry Andric 4325ffd83dbSDimitry Andric bool operator()(std::pair<const Loop *, const SCEV *> LHS, 4335ffd83dbSDimitry Andric std::pair<const Loop *, const SCEV *> RHS) const { 4345ffd83dbSDimitry Andric // Keep pointer operands sorted at the end. 4355ffd83dbSDimitry Andric if (LHS.second->getType()->isPointerTy() != 4365ffd83dbSDimitry Andric RHS.second->getType()->isPointerTy()) 4375ffd83dbSDimitry Andric return LHS.second->getType()->isPointerTy(); 4385ffd83dbSDimitry Andric 4395ffd83dbSDimitry Andric // Compare loops with PickMostRelevantLoop. 4405ffd83dbSDimitry Andric if (LHS.first != RHS.first) 4415ffd83dbSDimitry Andric return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 4425ffd83dbSDimitry Andric 4435ffd83dbSDimitry Andric // If one operand is a non-constant negative and the other is not, 4445ffd83dbSDimitry Andric // put the non-constant negative on the right so that a sub can 4455ffd83dbSDimitry Andric // be used instead of a negate and add. 4465ffd83dbSDimitry Andric if (LHS.second->isNonConstantNegative()) { 4475ffd83dbSDimitry Andric if (!RHS.second->isNonConstantNegative()) 4485ffd83dbSDimitry Andric return false; 4495ffd83dbSDimitry Andric } else if (RHS.second->isNonConstantNegative()) 4505ffd83dbSDimitry Andric return true; 4515ffd83dbSDimitry Andric 4525ffd83dbSDimitry Andric // Otherwise they are equivalent according to this comparison. 4535ffd83dbSDimitry Andric return false; 4545ffd83dbSDimitry Andric } 4555ffd83dbSDimitry Andric }; 4565ffd83dbSDimitry Andric 4575ffd83dbSDimitry Andric } 4585ffd83dbSDimitry Andric 4595ffd83dbSDimitry Andric Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 4605ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 4615ffd83dbSDimitry Andric 4625ffd83dbSDimitry Andric // Collect all the add operands in a loop, along with their associated loops. 4635ffd83dbSDimitry Andric // Iterate in reverse so that constants are emitted last, all else equal, and 4645ffd83dbSDimitry Andric // so that pointer operands are inserted first, which the code below relies on 4655ffd83dbSDimitry Andric // to form more involved GEPs. 4665ffd83dbSDimitry Andric SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 467349cc55cSDimitry Andric for (const SCEV *Op : reverse(S->operands())) 468349cc55cSDimitry Andric OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 4695ffd83dbSDimitry Andric 4705ffd83dbSDimitry Andric // Sort by loop. Use a stable sort so that constants follow non-constants and 4715ffd83dbSDimitry Andric // pointer operands precede non-pointer operands. 4725ffd83dbSDimitry Andric llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 4735ffd83dbSDimitry Andric 4745ffd83dbSDimitry Andric // Emit instructions to add all the operands. Hoist as much as possible 4755ffd83dbSDimitry Andric // out of loops, and form meaningful getelementptrs where possible. 4765ffd83dbSDimitry Andric Value *Sum = nullptr; 4775ffd83dbSDimitry Andric for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 4785ffd83dbSDimitry Andric const Loop *CurLoop = I->first; 4795ffd83dbSDimitry Andric const SCEV *Op = I->second; 4805ffd83dbSDimitry Andric if (!Sum) { 4815ffd83dbSDimitry Andric // This is the first operand. Just expand it. 4825ffd83dbSDimitry Andric Sum = expand(Op); 4835ffd83dbSDimitry Andric ++I; 484349cc55cSDimitry Andric continue; 485349cc55cSDimitry Andric } 486349cc55cSDimitry Andric 487349cc55cSDimitry Andric assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 488*06c3fb27SDimitry Andric if (isa<PointerType>(Sum->getType())) { 4895ffd83dbSDimitry Andric // The running sum expression is a pointer. Try to form a getelementptr 4905ffd83dbSDimitry Andric // at this level with that as the base. 4915ffd83dbSDimitry Andric SmallVector<const SCEV *, 4> NewOps; 4925ffd83dbSDimitry Andric for (; I != E && I->first == CurLoop; ++I) { 4935ffd83dbSDimitry Andric // If the operand is SCEVUnknown and not instructions, peek through 4945ffd83dbSDimitry Andric // it, to enable more of it to be folded into the GEP. 4955ffd83dbSDimitry Andric const SCEV *X = I->second; 4965ffd83dbSDimitry Andric if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 4975ffd83dbSDimitry Andric if (!isa<Instruction>(U->getValue())) 4985ffd83dbSDimitry Andric X = SE.getSCEV(U->getValue()); 4995ffd83dbSDimitry Andric NewOps.push_back(X); 5005ffd83dbSDimitry Andric } 501*06c3fb27SDimitry Andric Sum = expandAddToGEP(SE.getAddExpr(NewOps), Ty, Sum); 5025ffd83dbSDimitry Andric } else if (Op->isNonConstantNegative()) { 5035ffd83dbSDimitry Andric // Instead of doing a negate and add, just do a subtract. 504bdd1243dSDimitry Andric Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty); 5055ffd83dbSDimitry Andric Sum = InsertNoopCastOfTo(Sum, Ty); 5065ffd83dbSDimitry Andric Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 5075ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5085ffd83dbSDimitry Andric ++I; 5095ffd83dbSDimitry Andric } else { 5105ffd83dbSDimitry Andric // A simple add. 511bdd1243dSDimitry Andric Value *W = expandCodeForImpl(Op, Ty); 5125ffd83dbSDimitry Andric Sum = InsertNoopCastOfTo(Sum, Ty); 5135ffd83dbSDimitry Andric // Canonicalize a constant to the RHS. 5145ffd83dbSDimitry Andric if (isa<Constant>(Sum)) std::swap(Sum, W); 5155ffd83dbSDimitry Andric Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 5165ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5175ffd83dbSDimitry Andric ++I; 5185ffd83dbSDimitry Andric } 5195ffd83dbSDimitry Andric } 5205ffd83dbSDimitry Andric 5215ffd83dbSDimitry Andric return Sum; 5225ffd83dbSDimitry Andric } 5235ffd83dbSDimitry Andric 5245ffd83dbSDimitry Andric Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 5255ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 5265ffd83dbSDimitry Andric 5275ffd83dbSDimitry Andric // Collect all the mul operands in a loop, along with their associated loops. 5285ffd83dbSDimitry Andric // Iterate in reverse so that constants are emitted last, all else equal. 5295ffd83dbSDimitry Andric SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 530349cc55cSDimitry Andric for (const SCEV *Op : reverse(S->operands())) 531349cc55cSDimitry Andric OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 5325ffd83dbSDimitry Andric 5335ffd83dbSDimitry Andric // Sort by loop. Use a stable sort so that constants follow non-constants. 5345ffd83dbSDimitry Andric llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 5355ffd83dbSDimitry Andric 5365ffd83dbSDimitry Andric // Emit instructions to mul all the operands. Hoist as much as possible 5375ffd83dbSDimitry Andric // out of loops. 5385ffd83dbSDimitry Andric Value *Prod = nullptr; 5395ffd83dbSDimitry Andric auto I = OpsAndLoops.begin(); 5405ffd83dbSDimitry Andric 5415ffd83dbSDimitry Andric // Expand the calculation of X pow N in the following manner: 5425ffd83dbSDimitry Andric // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 5435ffd83dbSDimitry Andric // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 5445ffd83dbSDimitry Andric const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 5455ffd83dbSDimitry Andric auto E = I; 5465ffd83dbSDimitry Andric // Calculate how many times the same operand from the same loop is included 5475ffd83dbSDimitry Andric // into this power. 5485ffd83dbSDimitry Andric uint64_t Exponent = 0; 5495ffd83dbSDimitry Andric const uint64_t MaxExponent = UINT64_MAX >> 1; 5505ffd83dbSDimitry Andric // No one sane will ever try to calculate such huge exponents, but if we 5515ffd83dbSDimitry Andric // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 5525ffd83dbSDimitry Andric // below when the power of 2 exceeds our Exponent, and we want it to be 5535ffd83dbSDimitry Andric // 1u << 31 at most to not deal with unsigned overflow. 5545ffd83dbSDimitry Andric while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 5555ffd83dbSDimitry Andric ++Exponent; 5565ffd83dbSDimitry Andric ++E; 5575ffd83dbSDimitry Andric } 5585ffd83dbSDimitry Andric assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 5595ffd83dbSDimitry Andric 5605ffd83dbSDimitry Andric // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 5615ffd83dbSDimitry Andric // that are needed into the result. 562bdd1243dSDimitry Andric Value *P = expandCodeForImpl(I->second, Ty); 5635ffd83dbSDimitry Andric Value *Result = nullptr; 5645ffd83dbSDimitry Andric if (Exponent & 1) 5655ffd83dbSDimitry Andric Result = P; 5665ffd83dbSDimitry Andric for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 5675ffd83dbSDimitry Andric P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 5685ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5695ffd83dbSDimitry Andric if (Exponent & BinExp) 5705ffd83dbSDimitry Andric Result = Result ? InsertBinop(Instruction::Mul, Result, P, 5715ffd83dbSDimitry Andric SCEV::FlagAnyWrap, 5725ffd83dbSDimitry Andric /*IsSafeToHoist*/ true) 5735ffd83dbSDimitry Andric : P; 5745ffd83dbSDimitry Andric } 5755ffd83dbSDimitry Andric 5765ffd83dbSDimitry Andric I = E; 5775ffd83dbSDimitry Andric assert(Result && "Nothing was expanded?"); 5785ffd83dbSDimitry Andric return Result; 5795ffd83dbSDimitry Andric }; 5805ffd83dbSDimitry Andric 5815ffd83dbSDimitry Andric while (I != OpsAndLoops.end()) { 5825ffd83dbSDimitry Andric if (!Prod) { 5835ffd83dbSDimitry Andric // This is the first operand. Just expand it. 5845ffd83dbSDimitry Andric Prod = ExpandOpBinPowN(); 5855ffd83dbSDimitry Andric } else if (I->second->isAllOnesValue()) { 5865ffd83dbSDimitry Andric // Instead of doing a multiply by negative one, just do a negate. 5875ffd83dbSDimitry Andric Prod = InsertNoopCastOfTo(Prod, Ty); 5885ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 5895ffd83dbSDimitry Andric SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 5905ffd83dbSDimitry Andric ++I; 5915ffd83dbSDimitry Andric } else { 5925ffd83dbSDimitry Andric // A simple mul. 5935ffd83dbSDimitry Andric Value *W = ExpandOpBinPowN(); 5945ffd83dbSDimitry Andric Prod = InsertNoopCastOfTo(Prod, Ty); 5955ffd83dbSDimitry Andric // Canonicalize a constant to the RHS. 5965ffd83dbSDimitry Andric if (isa<Constant>(Prod)) std::swap(Prod, W); 5975ffd83dbSDimitry Andric const APInt *RHS; 5985ffd83dbSDimitry Andric if (match(W, m_Power2(RHS))) { 5995ffd83dbSDimitry Andric // Canonicalize Prod*(1<<C) to Prod<<C. 6005ffd83dbSDimitry Andric assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 6015ffd83dbSDimitry Andric auto NWFlags = S->getNoWrapFlags(); 6025ffd83dbSDimitry Andric // clear nsw flag if shl will produce poison value. 6035ffd83dbSDimitry Andric if (RHS->logBase2() == RHS->getBitWidth() - 1) 6045ffd83dbSDimitry Andric NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 6055ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Shl, Prod, 6065ffd83dbSDimitry Andric ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 6075ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 6085ffd83dbSDimitry Andric } else { 6095ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 6105ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 6115ffd83dbSDimitry Andric } 6125ffd83dbSDimitry Andric } 6135ffd83dbSDimitry Andric } 6145ffd83dbSDimitry Andric 6155ffd83dbSDimitry Andric return Prod; 6165ffd83dbSDimitry Andric } 6175ffd83dbSDimitry Andric 6185ffd83dbSDimitry Andric Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 6195ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 6205ffd83dbSDimitry Andric 621bdd1243dSDimitry Andric Value *LHS = expandCodeForImpl(S->getLHS(), Ty); 6225ffd83dbSDimitry Andric if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 6235ffd83dbSDimitry Andric const APInt &RHS = SC->getAPInt(); 6245ffd83dbSDimitry Andric if (RHS.isPowerOf2()) 6255ffd83dbSDimitry Andric return InsertBinop(Instruction::LShr, LHS, 6265ffd83dbSDimitry Andric ConstantInt::get(Ty, RHS.logBase2()), 6275ffd83dbSDimitry Andric SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 6285ffd83dbSDimitry Andric } 6295ffd83dbSDimitry Andric 630bdd1243dSDimitry Andric Value *RHS = expandCodeForImpl(S->getRHS(), Ty); 6315ffd83dbSDimitry Andric return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 6325ffd83dbSDimitry Andric /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 6335ffd83dbSDimitry Andric } 6345ffd83dbSDimitry Andric 6355ffd83dbSDimitry Andric /// Determine if this is a well-behaved chain of instructions leading back to 6365ffd83dbSDimitry Andric /// the PHI. If so, it may be reused by expanded expressions. 6375ffd83dbSDimitry Andric bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 6385ffd83dbSDimitry Andric const Loop *L) { 6395ffd83dbSDimitry Andric if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 6405ffd83dbSDimitry Andric (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 6415ffd83dbSDimitry Andric return false; 6425ffd83dbSDimitry Andric // If any of the operands don't dominate the insert position, bail. 6435ffd83dbSDimitry Andric // Addrec operands are always loop-invariant, so this can only happen 6445ffd83dbSDimitry Andric // if there are instructions which haven't been hoisted. 6455ffd83dbSDimitry Andric if (L == IVIncInsertLoop) { 646fe6060f1SDimitry Andric for (Use &Op : llvm::drop_begin(IncV->operands())) 647fe6060f1SDimitry Andric if (Instruction *OInst = dyn_cast<Instruction>(Op)) 6485ffd83dbSDimitry Andric if (!SE.DT.dominates(OInst, IVIncInsertPos)) 6495ffd83dbSDimitry Andric return false; 6505ffd83dbSDimitry Andric } 6515ffd83dbSDimitry Andric // Advance to the next instruction. 6525ffd83dbSDimitry Andric IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 6535ffd83dbSDimitry Andric if (!IncV) 6545ffd83dbSDimitry Andric return false; 6555ffd83dbSDimitry Andric 6565ffd83dbSDimitry Andric if (IncV->mayHaveSideEffects()) 6575ffd83dbSDimitry Andric return false; 6585ffd83dbSDimitry Andric 6595ffd83dbSDimitry Andric if (IncV == PN) 6605ffd83dbSDimitry Andric return true; 6615ffd83dbSDimitry Andric 6625ffd83dbSDimitry Andric return isNormalAddRecExprPHI(PN, IncV, L); 6635ffd83dbSDimitry Andric } 6645ffd83dbSDimitry Andric 6655ffd83dbSDimitry Andric /// getIVIncOperand returns an induction variable increment's induction 6665ffd83dbSDimitry Andric /// variable operand. 6675ffd83dbSDimitry Andric /// 6685ffd83dbSDimitry Andric /// If allowScale is set, any type of GEP is allowed as long as the nonIV 6695ffd83dbSDimitry Andric /// operands dominate InsertPos. 6705ffd83dbSDimitry Andric /// 6715ffd83dbSDimitry Andric /// If allowScale is not set, ensure that a GEP increment conforms to one of the 6725ffd83dbSDimitry Andric /// simple patterns generated by getAddRecExprPHILiterally and 6735ffd83dbSDimitry Andric /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 6745ffd83dbSDimitry Andric Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 6755ffd83dbSDimitry Andric Instruction *InsertPos, 6765ffd83dbSDimitry Andric bool allowScale) { 6775ffd83dbSDimitry Andric if (IncV == InsertPos) 6785ffd83dbSDimitry Andric return nullptr; 6795ffd83dbSDimitry Andric 6805ffd83dbSDimitry Andric switch (IncV->getOpcode()) { 6815ffd83dbSDimitry Andric default: 6825ffd83dbSDimitry Andric return nullptr; 6835ffd83dbSDimitry Andric // Check for a simple Add/Sub or GEP of a loop invariant step. 6845ffd83dbSDimitry Andric case Instruction::Add: 6855ffd83dbSDimitry Andric case Instruction::Sub: { 6865ffd83dbSDimitry Andric Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 6875ffd83dbSDimitry Andric if (!OInst || SE.DT.dominates(OInst, InsertPos)) 6885ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 6895ffd83dbSDimitry Andric return nullptr; 6905ffd83dbSDimitry Andric } 6915ffd83dbSDimitry Andric case Instruction::BitCast: 6925ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 6935ffd83dbSDimitry Andric case Instruction::GetElementPtr: 694fe6060f1SDimitry Andric for (Use &U : llvm::drop_begin(IncV->operands())) { 695fe6060f1SDimitry Andric if (isa<Constant>(U)) 6965ffd83dbSDimitry Andric continue; 697fe6060f1SDimitry Andric if (Instruction *OInst = dyn_cast<Instruction>(U)) { 6985ffd83dbSDimitry Andric if (!SE.DT.dominates(OInst, InsertPos)) 6995ffd83dbSDimitry Andric return nullptr; 7005ffd83dbSDimitry Andric } 7015ffd83dbSDimitry Andric if (allowScale) { 7025ffd83dbSDimitry Andric // allow any kind of GEP as long as it can be hoisted. 7035ffd83dbSDimitry Andric continue; 7045ffd83dbSDimitry Andric } 705*06c3fb27SDimitry Andric // GEPs produced by SCEVExpander use i8 element type. 706*06c3fb27SDimitry Andric if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 7075ffd83dbSDimitry Andric return nullptr; 7085ffd83dbSDimitry Andric break; 7095ffd83dbSDimitry Andric } 7105ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 7115ffd83dbSDimitry Andric } 7125ffd83dbSDimitry Andric } 7135ffd83dbSDimitry Andric 7145ffd83dbSDimitry Andric /// If the insert point of the current builder or any of the builders on the 7155ffd83dbSDimitry Andric /// stack of saved builders has 'I' as its insert point, update it to point to 7165ffd83dbSDimitry Andric /// the instruction after 'I'. This is intended to be used when the instruction 7175ffd83dbSDimitry Andric /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 7185ffd83dbSDimitry Andric /// different block, the inconsistent insert point (with a mismatched 7195ffd83dbSDimitry Andric /// Instruction and Block) can lead to an instruction being inserted in a block 7205ffd83dbSDimitry Andric /// other than its parent. 7215ffd83dbSDimitry Andric void SCEVExpander::fixupInsertPoints(Instruction *I) { 7225ffd83dbSDimitry Andric BasicBlock::iterator It(*I); 7235ffd83dbSDimitry Andric BasicBlock::iterator NewInsertPt = std::next(It); 7245ffd83dbSDimitry Andric if (Builder.GetInsertPoint() == It) 7255ffd83dbSDimitry Andric Builder.SetInsertPoint(&*NewInsertPt); 7265ffd83dbSDimitry Andric for (auto *InsertPtGuard : InsertPointGuards) 7275ffd83dbSDimitry Andric if (InsertPtGuard->GetInsertPoint() == It) 7285ffd83dbSDimitry Andric InsertPtGuard->SetInsertPoint(NewInsertPt); 7295ffd83dbSDimitry Andric } 7305ffd83dbSDimitry Andric 7315ffd83dbSDimitry Andric /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 7325ffd83dbSDimitry Andric /// it available to other uses in this loop. Recursively hoist any operands, 7335ffd83dbSDimitry Andric /// until we reach a value that dominates InsertPos. 734bdd1243dSDimitry Andric bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 735bdd1243dSDimitry Andric bool RecomputePoisonFlags) { 736bdd1243dSDimitry Andric auto FixupPoisonFlags = [this](Instruction *I) { 737bdd1243dSDimitry Andric // Drop flags that are potentially inferred from old context and infer flags 738bdd1243dSDimitry Andric // in new context. 739bdd1243dSDimitry Andric I->dropPoisonGeneratingFlags(); 740bdd1243dSDimitry Andric if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 741bdd1243dSDimitry Andric if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 742bdd1243dSDimitry Andric auto *BO = cast<BinaryOperator>(I); 743bdd1243dSDimitry Andric BO->setHasNoUnsignedWrap( 744bdd1243dSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 745bdd1243dSDimitry Andric BO->setHasNoSignedWrap( 746bdd1243dSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 747bdd1243dSDimitry Andric } 748bdd1243dSDimitry Andric }; 749bdd1243dSDimitry Andric 750bdd1243dSDimitry Andric if (SE.DT.dominates(IncV, InsertPos)) { 751bdd1243dSDimitry Andric if (RecomputePoisonFlags) 752bdd1243dSDimitry Andric FixupPoisonFlags(IncV); 7535ffd83dbSDimitry Andric return true; 754bdd1243dSDimitry Andric } 7555ffd83dbSDimitry Andric 7565ffd83dbSDimitry Andric // InsertPos must itself dominate IncV so that IncV's new position satisfies 7575ffd83dbSDimitry Andric // its existing users. 7585ffd83dbSDimitry Andric if (isa<PHINode>(InsertPos) || 7595ffd83dbSDimitry Andric !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 7605ffd83dbSDimitry Andric return false; 7615ffd83dbSDimitry Andric 7625ffd83dbSDimitry Andric if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 7635ffd83dbSDimitry Andric return false; 7645ffd83dbSDimitry Andric 7655ffd83dbSDimitry Andric // Check that the chain of IV operands leading back to Phi can be hoisted. 7665ffd83dbSDimitry Andric SmallVector<Instruction*, 4> IVIncs; 7675ffd83dbSDimitry Andric for(;;) { 7685ffd83dbSDimitry Andric Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 7695ffd83dbSDimitry Andric if (!Oper) 7705ffd83dbSDimitry Andric return false; 7715ffd83dbSDimitry Andric // IncV is safe to hoist. 7725ffd83dbSDimitry Andric IVIncs.push_back(IncV); 7735ffd83dbSDimitry Andric IncV = Oper; 7745ffd83dbSDimitry Andric if (SE.DT.dominates(IncV, InsertPos)) 7755ffd83dbSDimitry Andric break; 7765ffd83dbSDimitry Andric } 7770eae32dcSDimitry Andric for (Instruction *I : llvm::reverse(IVIncs)) { 7780eae32dcSDimitry Andric fixupInsertPoints(I); 7790eae32dcSDimitry Andric I->moveBefore(InsertPos); 780bdd1243dSDimitry Andric if (RecomputePoisonFlags) 781bdd1243dSDimitry Andric FixupPoisonFlags(I); 7825ffd83dbSDimitry Andric } 7835ffd83dbSDimitry Andric return true; 7845ffd83dbSDimitry Andric } 7855ffd83dbSDimitry Andric 7865ffd83dbSDimitry Andric /// Determine if this cyclic phi is in a form that would have been generated by 7875ffd83dbSDimitry Andric /// LSR. We don't care if the phi was actually expanded in this pass, as long 7885ffd83dbSDimitry Andric /// as it is in a low-cost form, for example, no implied multiplication. This 7895ffd83dbSDimitry Andric /// should match any patterns generated by getAddRecExprPHILiterally and 7905ffd83dbSDimitry Andric /// expandAddtoGEP. 7915ffd83dbSDimitry Andric bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 7925ffd83dbSDimitry Andric const Loop *L) { 7935ffd83dbSDimitry Andric for(Instruction *IVOper = IncV; 7945ffd83dbSDimitry Andric (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 7955ffd83dbSDimitry Andric /*allowScale=*/false));) { 7965ffd83dbSDimitry Andric if (IVOper == PN) 7975ffd83dbSDimitry Andric return true; 7985ffd83dbSDimitry Andric } 7995ffd83dbSDimitry Andric return false; 8005ffd83dbSDimitry Andric } 8015ffd83dbSDimitry Andric 8025ffd83dbSDimitry Andric /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 8035ffd83dbSDimitry Andric /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 8045ffd83dbSDimitry Andric /// need to materialize IV increments elsewhere to handle difficult situations. 8055ffd83dbSDimitry Andric Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 8065ffd83dbSDimitry Andric Type *ExpandTy, Type *IntTy, 8075ffd83dbSDimitry Andric bool useSubtract) { 8085ffd83dbSDimitry Andric Value *IncV; 8095ffd83dbSDimitry Andric // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 8105ffd83dbSDimitry Andric if (ExpandTy->isPointerTy()) { 811*06c3fb27SDimitry Andric IncV = expandAddToGEP(SE.getSCEV(StepV), IntTy, PN); 8125ffd83dbSDimitry Andric } else { 8135ffd83dbSDimitry Andric IncV = useSubtract ? 8145ffd83dbSDimitry Andric Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 8155ffd83dbSDimitry Andric Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 8165ffd83dbSDimitry Andric } 8175ffd83dbSDimitry Andric return IncV; 8185ffd83dbSDimitry Andric } 8195ffd83dbSDimitry Andric 8205ffd83dbSDimitry Andric /// Check whether we can cheaply express the requested SCEV in terms of 8215ffd83dbSDimitry Andric /// the available PHI SCEV by truncation and/or inversion of the step. 8225ffd83dbSDimitry Andric static bool canBeCheaplyTransformed(ScalarEvolution &SE, 8235ffd83dbSDimitry Andric const SCEVAddRecExpr *Phi, 8245ffd83dbSDimitry Andric const SCEVAddRecExpr *Requested, 8255ffd83dbSDimitry Andric bool &InvertStep) { 826fe6060f1SDimitry Andric // We can't transform to match a pointer PHI. 827fe6060f1SDimitry Andric if (Phi->getType()->isPointerTy()) 828fe6060f1SDimitry Andric return false; 829fe6060f1SDimitry Andric 8305ffd83dbSDimitry Andric Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 8315ffd83dbSDimitry Andric Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 8325ffd83dbSDimitry Andric 8335ffd83dbSDimitry Andric if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 8345ffd83dbSDimitry Andric return false; 8355ffd83dbSDimitry Andric 8365ffd83dbSDimitry Andric // Try truncate it if necessary. 8375ffd83dbSDimitry Andric Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 8385ffd83dbSDimitry Andric if (!Phi) 8395ffd83dbSDimitry Andric return false; 8405ffd83dbSDimitry Andric 8415ffd83dbSDimitry Andric // Check whether truncation will help. 8425ffd83dbSDimitry Andric if (Phi == Requested) { 8435ffd83dbSDimitry Andric InvertStep = false; 8445ffd83dbSDimitry Andric return true; 8455ffd83dbSDimitry Andric } 8465ffd83dbSDimitry Andric 8475ffd83dbSDimitry Andric // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 848fe6060f1SDimitry Andric if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 8495ffd83dbSDimitry Andric InvertStep = true; 8505ffd83dbSDimitry Andric return true; 8515ffd83dbSDimitry Andric } 8525ffd83dbSDimitry Andric 8535ffd83dbSDimitry Andric return false; 8545ffd83dbSDimitry Andric } 8555ffd83dbSDimitry Andric 8565ffd83dbSDimitry Andric static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 8575ffd83dbSDimitry Andric if (!isa<IntegerType>(AR->getType())) 8585ffd83dbSDimitry Andric return false; 8595ffd83dbSDimitry Andric 8605ffd83dbSDimitry Andric unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 8615ffd83dbSDimitry Andric Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 8625ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 8635ffd83dbSDimitry Andric const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 8645ffd83dbSDimitry Andric SE.getSignExtendExpr(AR, WideTy)); 8655ffd83dbSDimitry Andric const SCEV *ExtendAfterOp = 8665ffd83dbSDimitry Andric SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 8675ffd83dbSDimitry Andric return ExtendAfterOp == OpAfterExtend; 8685ffd83dbSDimitry Andric } 8695ffd83dbSDimitry Andric 8705ffd83dbSDimitry Andric static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 8715ffd83dbSDimitry Andric if (!isa<IntegerType>(AR->getType())) 8725ffd83dbSDimitry Andric return false; 8735ffd83dbSDimitry Andric 8745ffd83dbSDimitry Andric unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 8755ffd83dbSDimitry Andric Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 8765ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 8775ffd83dbSDimitry Andric const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 8785ffd83dbSDimitry Andric SE.getZeroExtendExpr(AR, WideTy)); 8795ffd83dbSDimitry Andric const SCEV *ExtendAfterOp = 8805ffd83dbSDimitry Andric SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 8815ffd83dbSDimitry Andric return ExtendAfterOp == OpAfterExtend; 8825ffd83dbSDimitry Andric } 8835ffd83dbSDimitry Andric 8845ffd83dbSDimitry Andric /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 8855ffd83dbSDimitry Andric /// the base addrec, which is the addrec without any non-loop-dominating 8865ffd83dbSDimitry Andric /// values, and return the PHI. 8875ffd83dbSDimitry Andric PHINode * 8885ffd83dbSDimitry Andric SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 8895ffd83dbSDimitry Andric const Loop *L, 8905ffd83dbSDimitry Andric Type *ExpandTy, 8915ffd83dbSDimitry Andric Type *IntTy, 8925ffd83dbSDimitry Andric Type *&TruncTy, 8935ffd83dbSDimitry Andric bool &InvertStep) { 8945ffd83dbSDimitry Andric assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 8955ffd83dbSDimitry Andric 8965ffd83dbSDimitry Andric // Reuse a previously-inserted PHI, if present. 8975ffd83dbSDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 8985ffd83dbSDimitry Andric if (LatchBlock) { 8995ffd83dbSDimitry Andric PHINode *AddRecPhiMatch = nullptr; 9005ffd83dbSDimitry Andric Instruction *IncV = nullptr; 9015ffd83dbSDimitry Andric TruncTy = nullptr; 9025ffd83dbSDimitry Andric InvertStep = false; 9035ffd83dbSDimitry Andric 9045ffd83dbSDimitry Andric // Only try partially matching scevs that need truncation and/or 9055ffd83dbSDimitry Andric // step-inversion if we know this loop is outside the current loop. 9065ffd83dbSDimitry Andric bool TryNonMatchingSCEV = 9075ffd83dbSDimitry Andric IVIncInsertLoop && 9085ffd83dbSDimitry Andric SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 9095ffd83dbSDimitry Andric 9105ffd83dbSDimitry Andric for (PHINode &PN : L->getHeader()->phis()) { 9115ffd83dbSDimitry Andric if (!SE.isSCEVable(PN.getType())) 9125ffd83dbSDimitry Andric continue; 9135ffd83dbSDimitry Andric 914e8d8bef9SDimitry Andric // We should not look for a incomplete PHI. Getting SCEV for a incomplete 915e8d8bef9SDimitry Andric // PHI has no meaning at all. 916e8d8bef9SDimitry Andric if (!PN.isComplete()) { 917fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 918e8d8bef9SDimitry Andric DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 919e8d8bef9SDimitry Andric continue; 920e8d8bef9SDimitry Andric } 921e8d8bef9SDimitry Andric 9225ffd83dbSDimitry Andric const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 9235ffd83dbSDimitry Andric if (!PhiSCEV) 9245ffd83dbSDimitry Andric continue; 9255ffd83dbSDimitry Andric 9265ffd83dbSDimitry Andric bool IsMatchingSCEV = PhiSCEV == Normalized; 9275ffd83dbSDimitry Andric // We only handle truncation and inversion of phi recurrences for the 9285ffd83dbSDimitry Andric // expanded expression if the expanded expression's loop dominates the 9295ffd83dbSDimitry Andric // loop we insert to. Check now, so we can bail out early. 9305ffd83dbSDimitry Andric if (!IsMatchingSCEV && !TryNonMatchingSCEV) 9315ffd83dbSDimitry Andric continue; 9325ffd83dbSDimitry Andric 9335ffd83dbSDimitry Andric // TODO: this possibly can be reworked to avoid this cast at all. 9345ffd83dbSDimitry Andric Instruction *TempIncV = 9355ffd83dbSDimitry Andric dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 9365ffd83dbSDimitry Andric if (!TempIncV) 9375ffd83dbSDimitry Andric continue; 9385ffd83dbSDimitry Andric 9395ffd83dbSDimitry Andric // Check whether we can reuse this PHI node. 9405ffd83dbSDimitry Andric if (LSRMode) { 9415ffd83dbSDimitry Andric if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 9425ffd83dbSDimitry Andric continue; 9435ffd83dbSDimitry Andric } else { 9445ffd83dbSDimitry Andric if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 9455ffd83dbSDimitry Andric continue; 9465ffd83dbSDimitry Andric } 9475ffd83dbSDimitry Andric 9485ffd83dbSDimitry Andric // Stop if we have found an exact match SCEV. 9495ffd83dbSDimitry Andric if (IsMatchingSCEV) { 9505ffd83dbSDimitry Andric IncV = TempIncV; 9515ffd83dbSDimitry Andric TruncTy = nullptr; 9525ffd83dbSDimitry Andric InvertStep = false; 9535ffd83dbSDimitry Andric AddRecPhiMatch = &PN; 9545ffd83dbSDimitry Andric break; 9555ffd83dbSDimitry Andric } 9565ffd83dbSDimitry Andric 9575ffd83dbSDimitry Andric // Try whether the phi can be translated into the requested form 9585ffd83dbSDimitry Andric // (truncated and/or offset by a constant). 9595ffd83dbSDimitry Andric if ((!TruncTy || InvertStep) && 9605ffd83dbSDimitry Andric canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 9615ffd83dbSDimitry Andric // Record the phi node. But don't stop we might find an exact match 9625ffd83dbSDimitry Andric // later. 9635ffd83dbSDimitry Andric AddRecPhiMatch = &PN; 9645ffd83dbSDimitry Andric IncV = TempIncV; 9655ffd83dbSDimitry Andric TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 9665ffd83dbSDimitry Andric } 9675ffd83dbSDimitry Andric } 9685ffd83dbSDimitry Andric 9695ffd83dbSDimitry Andric if (AddRecPhiMatch) { 9705ffd83dbSDimitry Andric // Ok, the add recurrence looks usable. 9715ffd83dbSDimitry Andric // Remember this PHI, even in post-inc mode. 9725ffd83dbSDimitry Andric InsertedValues.insert(AddRecPhiMatch); 9735ffd83dbSDimitry Andric // Remember the increment. 9745ffd83dbSDimitry Andric rememberInstruction(IncV); 975e8d8bef9SDimitry Andric // Those values were not actually inserted but re-used. 976e8d8bef9SDimitry Andric ReusedValues.insert(AddRecPhiMatch); 977e8d8bef9SDimitry Andric ReusedValues.insert(IncV); 9785ffd83dbSDimitry Andric return AddRecPhiMatch; 9795ffd83dbSDimitry Andric } 9805ffd83dbSDimitry Andric } 9815ffd83dbSDimitry Andric 9825ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 9835ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 9845ffd83dbSDimitry Andric 9855ffd83dbSDimitry Andric // Another AddRec may need to be recursively expanded below. For example, if 9865ffd83dbSDimitry Andric // this AddRec is quadratic, the StepV may itself be an AddRec in this 9875ffd83dbSDimitry Andric // loop. Remove this loop from the PostIncLoops set before expanding such 9885ffd83dbSDimitry Andric // AddRecs. Otherwise, we cannot find a valid position for the step 9895ffd83dbSDimitry Andric // (i.e. StepV can never dominate its loop header). Ideally, we could do 9905ffd83dbSDimitry Andric // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 9915ffd83dbSDimitry Andric // so it's not worth implementing SmallPtrSet::swap. 9925ffd83dbSDimitry Andric PostIncLoopSet SavedPostIncLoops = PostIncLoops; 9935ffd83dbSDimitry Andric PostIncLoops.clear(); 9945ffd83dbSDimitry Andric 9955ffd83dbSDimitry Andric // Expand code for the start value into the loop preheader. 9965ffd83dbSDimitry Andric assert(L->getLoopPreheader() && 9975ffd83dbSDimitry Andric "Can't expand add recurrences without a loop preheader!"); 998e8d8bef9SDimitry Andric Value *StartV = 999e8d8bef9SDimitry Andric expandCodeForImpl(Normalized->getStart(), ExpandTy, 1000bdd1243dSDimitry Andric L->getLoopPreheader()->getTerminator()); 10015ffd83dbSDimitry Andric 10025ffd83dbSDimitry Andric // StartV must have been be inserted into L's preheader to dominate the new 10035ffd83dbSDimitry Andric // phi. 10045ffd83dbSDimitry Andric assert(!isa<Instruction>(StartV) || 10055ffd83dbSDimitry Andric SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 10065ffd83dbSDimitry Andric L->getHeader())); 10075ffd83dbSDimitry Andric 10085ffd83dbSDimitry Andric // Expand code for the step value. Do this before creating the PHI so that PHI 10095ffd83dbSDimitry Andric // reuse code doesn't see an incomplete PHI. 10105ffd83dbSDimitry Andric const SCEV *Step = Normalized->getStepRecurrence(SE); 10115ffd83dbSDimitry Andric // If the stride is negative, insert a sub instead of an add for the increment 10125ffd83dbSDimitry Andric // (unless it's a constant, because subtracts of constants are canonicalized 10135ffd83dbSDimitry Andric // to adds). 10145ffd83dbSDimitry Andric bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 10155ffd83dbSDimitry Andric if (useSubtract) 10165ffd83dbSDimitry Andric Step = SE.getNegativeSCEV(Step); 10175ffd83dbSDimitry Andric // Expand the step somewhere that dominates the loop header. 1018e8d8bef9SDimitry Andric Value *StepV = expandCodeForImpl( 1019bdd1243dSDimitry Andric Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 10205ffd83dbSDimitry Andric 10215ffd83dbSDimitry Andric // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 10225ffd83dbSDimitry Andric // we actually do emit an addition. It does not apply if we emit a 10235ffd83dbSDimitry Andric // subtraction. 10245ffd83dbSDimitry Andric bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 10255ffd83dbSDimitry Andric bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 10265ffd83dbSDimitry Andric 10275ffd83dbSDimitry Andric // Create the PHI. 10285ffd83dbSDimitry Andric BasicBlock *Header = L->getHeader(); 10295ffd83dbSDimitry Andric Builder.SetInsertPoint(Header, Header->begin()); 10305ffd83dbSDimitry Andric pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 10315ffd83dbSDimitry Andric PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 10325ffd83dbSDimitry Andric Twine(IVName) + ".iv"); 10335ffd83dbSDimitry Andric 10345ffd83dbSDimitry Andric // Create the step instructions and populate the PHI. 10355ffd83dbSDimitry Andric for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 10365ffd83dbSDimitry Andric BasicBlock *Pred = *HPI; 10375ffd83dbSDimitry Andric 10385ffd83dbSDimitry Andric // Add a start value. 10395ffd83dbSDimitry Andric if (!L->contains(Pred)) { 10405ffd83dbSDimitry Andric PN->addIncoming(StartV, Pred); 10415ffd83dbSDimitry Andric continue; 10425ffd83dbSDimitry Andric } 10435ffd83dbSDimitry Andric 10445ffd83dbSDimitry Andric // Create a step value and add it to the PHI. 10455ffd83dbSDimitry Andric // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 10465ffd83dbSDimitry Andric // instructions at IVIncInsertPos. 10475ffd83dbSDimitry Andric Instruction *InsertPos = L == IVIncInsertLoop ? 10485ffd83dbSDimitry Andric IVIncInsertPos : Pred->getTerminator(); 10495ffd83dbSDimitry Andric Builder.SetInsertPoint(InsertPos); 10505ffd83dbSDimitry Andric Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 10515ffd83dbSDimitry Andric 10525ffd83dbSDimitry Andric if (isa<OverflowingBinaryOperator>(IncV)) { 10535ffd83dbSDimitry Andric if (IncrementIsNUW) 10545ffd83dbSDimitry Andric cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 10555ffd83dbSDimitry Andric if (IncrementIsNSW) 10565ffd83dbSDimitry Andric cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 10575ffd83dbSDimitry Andric } 10585ffd83dbSDimitry Andric PN->addIncoming(IncV, Pred); 10595ffd83dbSDimitry Andric } 10605ffd83dbSDimitry Andric 10615ffd83dbSDimitry Andric // After expanding subexpressions, restore the PostIncLoops set so the caller 10625ffd83dbSDimitry Andric // can ensure that IVIncrement dominates the current uses. 10635ffd83dbSDimitry Andric PostIncLoops = SavedPostIncLoops; 10645ffd83dbSDimitry Andric 1065fe6060f1SDimitry Andric // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1066fe6060f1SDimitry Andric // effective when we are able to use an IV inserted here, so record it. 10675ffd83dbSDimitry Andric InsertedValues.insert(PN); 1068fe6060f1SDimitry Andric InsertedIVs.push_back(PN); 10695ffd83dbSDimitry Andric return PN; 10705ffd83dbSDimitry Andric } 10715ffd83dbSDimitry Andric 10725ffd83dbSDimitry Andric Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 10735ffd83dbSDimitry Andric Type *STy = S->getType(); 10745ffd83dbSDimitry Andric Type *IntTy = SE.getEffectiveSCEVType(STy); 10755ffd83dbSDimitry Andric const Loop *L = S->getLoop(); 10765ffd83dbSDimitry Andric 10775ffd83dbSDimitry Andric // Determine a normalized form of this expression, which is the expression 10785ffd83dbSDimitry Andric // before any post-inc adjustment is made. 10795ffd83dbSDimitry Andric const SCEVAddRecExpr *Normalized = S; 10805ffd83dbSDimitry Andric if (PostIncLoops.count(L)) { 10815ffd83dbSDimitry Andric PostIncLoopSet Loops; 10825ffd83dbSDimitry Andric Loops.insert(L); 1083*06c3fb27SDimitry Andric Normalized = cast<SCEVAddRecExpr>( 1084*06c3fb27SDimitry Andric normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 10855ffd83dbSDimitry Andric } 10865ffd83dbSDimitry Andric 10875ffd83dbSDimitry Andric // Strip off any non-loop-dominating component from the addrec start. 10885ffd83dbSDimitry Andric const SCEV *Start = Normalized->getStart(); 10895ffd83dbSDimitry Andric const SCEV *PostLoopOffset = nullptr; 10905ffd83dbSDimitry Andric if (!SE.properlyDominates(Start, L->getHeader())) { 10915ffd83dbSDimitry Andric PostLoopOffset = Start; 10925ffd83dbSDimitry Andric Start = SE.getConstant(Normalized->getType(), 0); 10935ffd83dbSDimitry Andric Normalized = cast<SCEVAddRecExpr>( 10945ffd83dbSDimitry Andric SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 10955ffd83dbSDimitry Andric Normalized->getLoop(), 10965ffd83dbSDimitry Andric Normalized->getNoWrapFlags(SCEV::FlagNW))); 10975ffd83dbSDimitry Andric } 10985ffd83dbSDimitry Andric 10995ffd83dbSDimitry Andric // Strip off any non-loop-dominating component from the addrec step. 11005ffd83dbSDimitry Andric const SCEV *Step = Normalized->getStepRecurrence(SE); 11015ffd83dbSDimitry Andric const SCEV *PostLoopScale = nullptr; 11025ffd83dbSDimitry Andric if (!SE.dominates(Step, L->getHeader())) { 11035ffd83dbSDimitry Andric PostLoopScale = Step; 11045ffd83dbSDimitry Andric Step = SE.getConstant(Normalized->getType(), 1); 11055ffd83dbSDimitry Andric if (!Start->isZero()) { 11065ffd83dbSDimitry Andric // The normalization below assumes that Start is constant zero, so if 11075ffd83dbSDimitry Andric // it isn't re-associate Start to PostLoopOffset. 11085ffd83dbSDimitry Andric assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 11095ffd83dbSDimitry Andric PostLoopOffset = Start; 11105ffd83dbSDimitry Andric Start = SE.getConstant(Normalized->getType(), 0); 11115ffd83dbSDimitry Andric } 11125ffd83dbSDimitry Andric Normalized = 11135ffd83dbSDimitry Andric cast<SCEVAddRecExpr>(SE.getAddRecExpr( 11145ffd83dbSDimitry Andric Start, Step, Normalized->getLoop(), 11155ffd83dbSDimitry Andric Normalized->getNoWrapFlags(SCEV::FlagNW))); 11165ffd83dbSDimitry Andric } 11175ffd83dbSDimitry Andric 11185ffd83dbSDimitry Andric // Expand the core addrec. If we need post-loop scaling, force it to 11195ffd83dbSDimitry Andric // expand to an integer type to avoid the need for additional casting. 11205ffd83dbSDimitry Andric Type *ExpandTy = PostLoopScale ? IntTy : STy; 11215ffd83dbSDimitry Andric // We can't use a pointer type for the addrec if the pointer type is 11225ffd83dbSDimitry Andric // non-integral. 11235ffd83dbSDimitry Andric Type *AddRecPHIExpandTy = 11245ffd83dbSDimitry Andric DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 11255ffd83dbSDimitry Andric 11265ffd83dbSDimitry Andric // In some cases, we decide to reuse an existing phi node but need to truncate 11275ffd83dbSDimitry Andric // it and/or invert the step. 11285ffd83dbSDimitry Andric Type *TruncTy = nullptr; 11295ffd83dbSDimitry Andric bool InvertStep = false; 11305ffd83dbSDimitry Andric PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 11315ffd83dbSDimitry Andric IntTy, TruncTy, InvertStep); 11325ffd83dbSDimitry Andric 11335ffd83dbSDimitry Andric // Accommodate post-inc mode, if necessary. 11345ffd83dbSDimitry Andric Value *Result; 11355ffd83dbSDimitry Andric if (!PostIncLoops.count(L)) 11365ffd83dbSDimitry Andric Result = PN; 11375ffd83dbSDimitry Andric else { 11385ffd83dbSDimitry Andric // In PostInc mode, use the post-incremented value. 11395ffd83dbSDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 11405ffd83dbSDimitry Andric assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 11415ffd83dbSDimitry Andric Result = PN->getIncomingValueForBlock(LatchBlock); 11425ffd83dbSDimitry Andric 1143e8d8bef9SDimitry Andric // We might be introducing a new use of the post-inc IV that is not poison 1144e8d8bef9SDimitry Andric // safe, in which case we should drop poison generating flags. Only keep 1145e8d8bef9SDimitry Andric // those flags for which SCEV has proven that they always hold. 1146e8d8bef9SDimitry Andric if (isa<OverflowingBinaryOperator>(Result)) { 1147e8d8bef9SDimitry Andric auto *I = cast<Instruction>(Result); 1148e8d8bef9SDimitry Andric if (!S->hasNoUnsignedWrap()) 1149e8d8bef9SDimitry Andric I->setHasNoUnsignedWrap(false); 1150e8d8bef9SDimitry Andric if (!S->hasNoSignedWrap()) 1151e8d8bef9SDimitry Andric I->setHasNoSignedWrap(false); 1152e8d8bef9SDimitry Andric } 1153e8d8bef9SDimitry Andric 11545ffd83dbSDimitry Andric // For an expansion to use the postinc form, the client must call 11555ffd83dbSDimitry Andric // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 11565ffd83dbSDimitry Andric // or dominated by IVIncInsertPos. 11575ffd83dbSDimitry Andric if (isa<Instruction>(Result) && 11585ffd83dbSDimitry Andric !SE.DT.dominates(cast<Instruction>(Result), 11595ffd83dbSDimitry Andric &*Builder.GetInsertPoint())) { 11605ffd83dbSDimitry Andric // The induction variable's postinc expansion does not dominate this use. 11615ffd83dbSDimitry Andric // IVUsers tries to prevent this case, so it is rare. However, it can 11625ffd83dbSDimitry Andric // happen when an IVUser outside the loop is not dominated by the latch 11635ffd83dbSDimitry Andric // block. Adjusting IVIncInsertPos before expansion begins cannot handle 11645ffd83dbSDimitry Andric // all cases. Consider a phi outside whose operand is replaced during 11655ffd83dbSDimitry Andric // expansion with the value of the postinc user. Without fundamentally 11665ffd83dbSDimitry Andric // changing the way postinc users are tracked, the only remedy is 11675ffd83dbSDimitry Andric // inserting an extra IV increment. StepV might fold into PostLoopOffset, 11685ffd83dbSDimitry Andric // but hopefully expandCodeFor handles that. 11695ffd83dbSDimitry Andric bool useSubtract = 11705ffd83dbSDimitry Andric !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 11715ffd83dbSDimitry Andric if (useSubtract) 11725ffd83dbSDimitry Andric Step = SE.getNegativeSCEV(Step); 11735ffd83dbSDimitry Andric Value *StepV; 11745ffd83dbSDimitry Andric { 11755ffd83dbSDimitry Andric // Expand the step somewhere that dominates the loop header. 11765ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 1177e8d8bef9SDimitry Andric StepV = expandCodeForImpl( 1178bdd1243dSDimitry Andric Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 11795ffd83dbSDimitry Andric } 11805ffd83dbSDimitry Andric Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 11815ffd83dbSDimitry Andric } 11825ffd83dbSDimitry Andric } 11835ffd83dbSDimitry Andric 11845ffd83dbSDimitry Andric // We have decided to reuse an induction variable of a dominating loop. Apply 11855ffd83dbSDimitry Andric // truncation and/or inversion of the step. 11865ffd83dbSDimitry Andric if (TruncTy) { 11875ffd83dbSDimitry Andric Type *ResTy = Result->getType(); 11885ffd83dbSDimitry Andric // Normalize the result type. 11895ffd83dbSDimitry Andric if (ResTy != SE.getEffectiveSCEVType(ResTy)) 11905ffd83dbSDimitry Andric Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 11915ffd83dbSDimitry Andric // Truncate the result. 1192e8d8bef9SDimitry Andric if (TruncTy != Result->getType()) 11935ffd83dbSDimitry Andric Result = Builder.CreateTrunc(Result, TruncTy); 1194e8d8bef9SDimitry Andric 11955ffd83dbSDimitry Andric // Invert the result. 1196e8d8bef9SDimitry Andric if (InvertStep) 1197e8d8bef9SDimitry Andric Result = Builder.CreateSub( 1198bdd1243dSDimitry Andric expandCodeForImpl(Normalized->getStart(), TruncTy), Result); 11995ffd83dbSDimitry Andric } 12005ffd83dbSDimitry Andric 12015ffd83dbSDimitry Andric // Re-apply any non-loop-dominating scale. 12025ffd83dbSDimitry Andric if (PostLoopScale) { 12035ffd83dbSDimitry Andric assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 12045ffd83dbSDimitry Andric Result = InsertNoopCastOfTo(Result, IntTy); 12055ffd83dbSDimitry Andric Result = Builder.CreateMul(Result, 1206bdd1243dSDimitry Andric expandCodeForImpl(PostLoopScale, IntTy)); 12075ffd83dbSDimitry Andric } 12085ffd83dbSDimitry Andric 12095ffd83dbSDimitry Andric // Re-apply any non-loop-dominating offset. 12105ffd83dbSDimitry Andric if (PostLoopOffset) { 1211*06c3fb27SDimitry Andric if (isa<PointerType>(ExpandTy)) { 12125ffd83dbSDimitry Andric if (Result->getType()->isIntegerTy()) { 1213bdd1243dSDimitry Andric Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy); 1214*06c3fb27SDimitry Andric Result = expandAddToGEP(SE.getUnknown(Result), IntTy, Base); 12155ffd83dbSDimitry Andric } else { 1216*06c3fb27SDimitry Andric Result = expandAddToGEP(PostLoopOffset, IntTy, Result); 12175ffd83dbSDimitry Andric } 12185ffd83dbSDimitry Andric } else { 12195ffd83dbSDimitry Andric Result = InsertNoopCastOfTo(Result, IntTy); 1220e8d8bef9SDimitry Andric Result = Builder.CreateAdd( 1221bdd1243dSDimitry Andric Result, expandCodeForImpl(PostLoopOffset, IntTy)); 12225ffd83dbSDimitry Andric } 12235ffd83dbSDimitry Andric } 12245ffd83dbSDimitry Andric 12255ffd83dbSDimitry Andric return Result; 12265ffd83dbSDimitry Andric } 12275ffd83dbSDimitry Andric 12285ffd83dbSDimitry Andric Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 12295ffd83dbSDimitry Andric // In canonical mode we compute the addrec as an expression of a canonical IV 12305ffd83dbSDimitry Andric // using evaluateAtIteration and expand the resulting SCEV expression. This 1231bdd1243dSDimitry Andric // way we avoid introducing new IVs to carry on the computation of the addrec 12325ffd83dbSDimitry Andric // throughout the loop. 12335ffd83dbSDimitry Andric // 12345ffd83dbSDimitry Andric // For nested addrecs evaluateAtIteration might need a canonical IV of a 12355ffd83dbSDimitry Andric // type wider than the addrec itself. Emitting a canonical IV of the 12365ffd83dbSDimitry Andric // proper type might produce non-legal types, for example expanding an i64 12375ffd83dbSDimitry Andric // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 12385ffd83dbSDimitry Andric // back to non-canonical mode for nested addrecs. 12395ffd83dbSDimitry Andric if (!CanonicalMode || (S->getNumOperands() > 2)) 12405ffd83dbSDimitry Andric return expandAddRecExprLiterally(S); 12415ffd83dbSDimitry Andric 12425ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 12435ffd83dbSDimitry Andric const Loop *L = S->getLoop(); 12445ffd83dbSDimitry Andric 12455ffd83dbSDimitry Andric // First check for an existing canonical IV in a suitable type. 12465ffd83dbSDimitry Andric PHINode *CanonicalIV = nullptr; 12475ffd83dbSDimitry Andric if (PHINode *PN = L->getCanonicalInductionVariable()) 12485ffd83dbSDimitry Andric if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 12495ffd83dbSDimitry Andric CanonicalIV = PN; 12505ffd83dbSDimitry Andric 12515ffd83dbSDimitry Andric // Rewrite an AddRec in terms of the canonical induction variable, if 12525ffd83dbSDimitry Andric // its type is more narrow. 12535ffd83dbSDimitry Andric if (CanonicalIV && 1254fe6060f1SDimitry Andric SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1255fe6060f1SDimitry Andric !S->getType()->isPointerTy()) { 12565ffd83dbSDimitry Andric SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 12575ffd83dbSDimitry Andric for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1258bdd1243dSDimitry Andric NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 12595ffd83dbSDimitry Andric Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 12605ffd83dbSDimitry Andric S->getNoWrapFlags(SCEV::FlagNW))); 12615ffd83dbSDimitry Andric BasicBlock::iterator NewInsertPt = 1262e8d8bef9SDimitry Andric findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1263e8d8bef9SDimitry Andric V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1264bdd1243dSDimitry Andric &*NewInsertPt); 12655ffd83dbSDimitry Andric return V; 12665ffd83dbSDimitry Andric } 12675ffd83dbSDimitry Andric 12685ffd83dbSDimitry Andric // {X,+,F} --> X + {0,+,F} 12695ffd83dbSDimitry Andric if (!S->getStart()->isZero()) { 1270*06c3fb27SDimitry Andric if (isa<PointerType>(S->getType())) { 1271349cc55cSDimitry Andric Value *StartV = expand(SE.getPointerBase(S)); 1272*06c3fb27SDimitry Andric return expandAddToGEP(SE.removePointerBase(S), Ty, StartV); 1273349cc55cSDimitry Andric } 1274349cc55cSDimitry Andric 1275e8d8bef9SDimitry Andric SmallVector<const SCEV *, 4> NewOps(S->operands()); 12765ffd83dbSDimitry Andric NewOps[0] = SE.getConstant(Ty, 0); 12775ffd83dbSDimitry Andric const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 12785ffd83dbSDimitry Andric S->getNoWrapFlags(SCEV::FlagNW)); 12795ffd83dbSDimitry Andric 12805ffd83dbSDimitry Andric // Just do a normal add. Pre-expand the operands to suppress folding. 12815ffd83dbSDimitry Andric // 12825ffd83dbSDimitry Andric // The LHS and RHS values are factored out of the expand call to make the 12835ffd83dbSDimitry Andric // output independent of the argument evaluation order. 12845ffd83dbSDimitry Andric const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 12855ffd83dbSDimitry Andric const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 12865ffd83dbSDimitry Andric return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 12875ffd83dbSDimitry Andric } 12885ffd83dbSDimitry Andric 12895ffd83dbSDimitry Andric // If we don't yet have a canonical IV, create one. 12905ffd83dbSDimitry Andric if (!CanonicalIV) { 12915ffd83dbSDimitry Andric // Create and insert the PHI node for the induction variable in the 12925ffd83dbSDimitry Andric // specified loop. 12935ffd83dbSDimitry Andric BasicBlock *Header = L->getHeader(); 12945ffd83dbSDimitry Andric pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 12955ffd83dbSDimitry Andric CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 12965ffd83dbSDimitry Andric &Header->front()); 12975ffd83dbSDimitry Andric rememberInstruction(CanonicalIV); 12985ffd83dbSDimitry Andric 12995ffd83dbSDimitry Andric SmallSet<BasicBlock *, 4> PredSeen; 13005ffd83dbSDimitry Andric Constant *One = ConstantInt::get(Ty, 1); 13015ffd83dbSDimitry Andric for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 13025ffd83dbSDimitry Andric BasicBlock *HP = *HPI; 13035ffd83dbSDimitry Andric if (!PredSeen.insert(HP).second) { 13045ffd83dbSDimitry Andric // There must be an incoming value for each predecessor, even the 13055ffd83dbSDimitry Andric // duplicates! 13065ffd83dbSDimitry Andric CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 13075ffd83dbSDimitry Andric continue; 13085ffd83dbSDimitry Andric } 13095ffd83dbSDimitry Andric 13105ffd83dbSDimitry Andric if (L->contains(HP)) { 13115ffd83dbSDimitry Andric // Insert a unit add instruction right before the terminator 13125ffd83dbSDimitry Andric // corresponding to the back-edge. 13135ffd83dbSDimitry Andric Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 13145ffd83dbSDimitry Andric "indvar.next", 13155ffd83dbSDimitry Andric HP->getTerminator()); 13165ffd83dbSDimitry Andric Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 13175ffd83dbSDimitry Andric rememberInstruction(Add); 13185ffd83dbSDimitry Andric CanonicalIV->addIncoming(Add, HP); 13195ffd83dbSDimitry Andric } else { 13205ffd83dbSDimitry Andric CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 13215ffd83dbSDimitry Andric } 13225ffd83dbSDimitry Andric } 13235ffd83dbSDimitry Andric } 13245ffd83dbSDimitry Andric 13255ffd83dbSDimitry Andric // {0,+,1} --> Insert a canonical induction variable into the loop! 13265ffd83dbSDimitry Andric if (S->isAffine() && S->getOperand(1)->isOne()) { 13275ffd83dbSDimitry Andric assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 13285ffd83dbSDimitry Andric "IVs with types different from the canonical IV should " 13295ffd83dbSDimitry Andric "already have been handled!"); 13305ffd83dbSDimitry Andric return CanonicalIV; 13315ffd83dbSDimitry Andric } 13325ffd83dbSDimitry Andric 13335ffd83dbSDimitry Andric // {0,+,F} --> {0,+,1} * F 13345ffd83dbSDimitry Andric 13355ffd83dbSDimitry Andric // If this is a simple linear addrec, emit it now as a special case. 13365ffd83dbSDimitry Andric if (S->isAffine()) // {0,+,F} --> i*F 13375ffd83dbSDimitry Andric return 13385ffd83dbSDimitry Andric expand(SE.getTruncateOrNoop( 13395ffd83dbSDimitry Andric SE.getMulExpr(SE.getUnknown(CanonicalIV), 13405ffd83dbSDimitry Andric SE.getNoopOrAnyExtend(S->getOperand(1), 13415ffd83dbSDimitry Andric CanonicalIV->getType())), 13425ffd83dbSDimitry Andric Ty)); 13435ffd83dbSDimitry Andric 13445ffd83dbSDimitry Andric // If this is a chain of recurrences, turn it into a closed form, using the 13455ffd83dbSDimitry Andric // folders, then expandCodeFor the closed form. This allows the folders to 13465ffd83dbSDimitry Andric // simplify the expression without having to build a bunch of special code 13475ffd83dbSDimitry Andric // into this folder. 13485ffd83dbSDimitry Andric const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 13495ffd83dbSDimitry Andric 13505ffd83dbSDimitry Andric // Promote S up to the canonical IV type, if the cast is foldable. 13515ffd83dbSDimitry Andric const SCEV *NewS = S; 13525ffd83dbSDimitry Andric const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 13535ffd83dbSDimitry Andric if (isa<SCEVAddRecExpr>(Ext)) 13545ffd83dbSDimitry Andric NewS = Ext; 13555ffd83dbSDimitry Andric 13565ffd83dbSDimitry Andric const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 13575ffd83dbSDimitry Andric 13585ffd83dbSDimitry Andric // Truncate the result down to the original type, if needed. 13595ffd83dbSDimitry Andric const SCEV *T = SE.getTruncateOrNoop(V, Ty); 13605ffd83dbSDimitry Andric return expand(T); 13615ffd83dbSDimitry Andric } 13625ffd83dbSDimitry Andric 1363e8d8bef9SDimitry Andric Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1364e8d8bef9SDimitry Andric Value *V = 1365bdd1243dSDimitry Andric expandCodeForImpl(S->getOperand(), S->getOperand()->getType()); 1366fe6060f1SDimitry Andric return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1367fe6060f1SDimitry Andric GetOptimalInsertionPointForCastOf(V)); 1368e8d8bef9SDimitry Andric } 1369e8d8bef9SDimitry Andric 13705ffd83dbSDimitry Andric Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 13715ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1372e8d8bef9SDimitry Andric Value *V = expandCodeForImpl( 1373bdd1243dSDimitry Andric S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1374bdd1243dSDimitry Andric ); 1375e8d8bef9SDimitry Andric return Builder.CreateTrunc(V, Ty); 13765ffd83dbSDimitry Andric } 13775ffd83dbSDimitry Andric 13785ffd83dbSDimitry Andric Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 13795ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1380e8d8bef9SDimitry Andric Value *V = expandCodeForImpl( 1381bdd1243dSDimitry Andric S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1382bdd1243dSDimitry Andric ); 1383e8d8bef9SDimitry Andric return Builder.CreateZExt(V, Ty); 13845ffd83dbSDimitry Andric } 13855ffd83dbSDimitry Andric 13865ffd83dbSDimitry Andric Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 13875ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1388e8d8bef9SDimitry Andric Value *V = expandCodeForImpl( 1389bdd1243dSDimitry Andric S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1390bdd1243dSDimitry Andric ); 1391e8d8bef9SDimitry Andric return Builder.CreateSExt(V, Ty); 13925ffd83dbSDimitry Andric } 13935ffd83dbSDimitry Andric 139481ad6265SDimitry Andric Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 139581ad6265SDimitry Andric Intrinsic::ID IntrinID, Twine Name, 139681ad6265SDimitry Andric bool IsSequential) { 13975ffd83dbSDimitry Andric Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 13985ffd83dbSDimitry Andric Type *Ty = LHS->getType(); 139981ad6265SDimitry Andric if (IsSequential) 140081ad6265SDimitry Andric LHS = Builder.CreateFreeze(LHS); 14015ffd83dbSDimitry Andric for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1402bdd1243dSDimitry Andric Value *RHS = expandCodeForImpl(S->getOperand(i), Ty); 140381ad6265SDimitry Andric if (IsSequential && i != 0) 140481ad6265SDimitry Andric RHS = Builder.CreateFreeze(RHS); 1405fe6060f1SDimitry Andric Value *Sel; 1406fe6060f1SDimitry Andric if (Ty->isIntegerTy()) 140781ad6265SDimitry Andric Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 140881ad6265SDimitry Andric /*FMFSource=*/nullptr, Name); 1409fe6060f1SDimitry Andric else { 141081ad6265SDimitry Andric Value *ICmp = 141181ad6265SDimitry Andric Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 141281ad6265SDimitry Andric Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1413fe6060f1SDimitry Andric } 14145ffd83dbSDimitry Andric LHS = Sel; 14155ffd83dbSDimitry Andric } 14165ffd83dbSDimitry Andric return LHS; 14175ffd83dbSDimitry Andric } 14185ffd83dbSDimitry Andric 141904eeddc0SDimitry Andric Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 142081ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 142104eeddc0SDimitry Andric } 142204eeddc0SDimitry Andric 142304eeddc0SDimitry Andric Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 142481ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 142504eeddc0SDimitry Andric } 142604eeddc0SDimitry Andric 142704eeddc0SDimitry Andric Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 142881ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 142904eeddc0SDimitry Andric } 143004eeddc0SDimitry Andric 143104eeddc0SDimitry Andric Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 143281ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 143304eeddc0SDimitry Andric } 143404eeddc0SDimitry Andric 143504eeddc0SDimitry Andric Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 143681ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 143704eeddc0SDimitry Andric } 143804eeddc0SDimitry Andric 1439*06c3fb27SDimitry Andric Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1440*06c3fb27SDimitry Andric return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1441*06c3fb27SDimitry Andric } 1442*06c3fb27SDimitry Andric 1443e8d8bef9SDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1444bdd1243dSDimitry Andric Instruction *IP) { 14455ffd83dbSDimitry Andric setInsertPoint(IP); 1446bdd1243dSDimitry Andric Value *V = expandCodeForImpl(SH, Ty); 1447e8d8bef9SDimitry Andric return V; 14485ffd83dbSDimitry Andric } 14495ffd83dbSDimitry Andric 1450bdd1243dSDimitry Andric Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) { 14515ffd83dbSDimitry Andric // Expand the code for this SCEV. 14525ffd83dbSDimitry Andric Value *V = expand(SH); 1453e8d8bef9SDimitry Andric 14545ffd83dbSDimitry Andric if (Ty) { 14555ffd83dbSDimitry Andric assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 14565ffd83dbSDimitry Andric "non-trivial casts should be done with the SCEVs directly!"); 14575ffd83dbSDimitry Andric V = InsertNoopCastOfTo(V, Ty); 14585ffd83dbSDimitry Andric } 14595ffd83dbSDimitry Andric return V; 14605ffd83dbSDimitry Andric } 14615ffd83dbSDimitry Andric 146281ad6265SDimitry Andric Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 14635ffd83dbSDimitry Andric const Instruction *InsertPt) { 14645ffd83dbSDimitry Andric // If the expansion is not in CanonicalMode, and the SCEV contains any 14655ffd83dbSDimitry Andric // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 146681ad6265SDimitry Andric if (!CanonicalMode && SE.containsAddRecurrence(S)) 146781ad6265SDimitry Andric return nullptr; 146881ad6265SDimitry Andric 146981ad6265SDimitry Andric // If S is a constant, it may be worse to reuse an existing Value. 147081ad6265SDimitry Andric if (isa<SCEVConstant>(S)) 147181ad6265SDimitry Andric return nullptr; 147281ad6265SDimitry Andric 1473349cc55cSDimitry Andric // Choose a Value from the set which dominates the InsertPt. 1474349cc55cSDimitry Andric // InsertPt should be inside the Value's parent loop so as not to break 14755ffd83dbSDimitry Andric // the LCSSA form. 147681ad6265SDimitry Andric for (Value *V : SE.getSCEVValues(S)) { 147781ad6265SDimitry Andric Instruction *EntInst = dyn_cast<Instruction>(V); 1478349cc55cSDimitry Andric if (!EntInst) 1479349cc55cSDimitry Andric continue; 1480349cc55cSDimitry Andric 1481349cc55cSDimitry Andric assert(EntInst->getFunction() == InsertPt->getFunction()); 1482349cc55cSDimitry Andric if (S->getType() == V->getType() && 14835ffd83dbSDimitry Andric SE.DT.dominates(EntInst, InsertPt) && 14845ffd83dbSDimitry Andric (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 14854824e7fdSDimitry Andric SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 148681ad6265SDimitry Andric return V; 14875ffd83dbSDimitry Andric } 148881ad6265SDimitry Andric return nullptr; 14895ffd83dbSDimitry Andric } 14905ffd83dbSDimitry Andric 14915ffd83dbSDimitry Andric // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 14925ffd83dbSDimitry Andric // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 14935ffd83dbSDimitry Andric // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 14945ffd83dbSDimitry Andric // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 14955ffd83dbSDimitry Andric // the expansion will try to reuse Value from ExprValueMap, and only when it 14965ffd83dbSDimitry Andric // fails, expand the SCEV literally. 14975ffd83dbSDimitry Andric Value *SCEVExpander::expand(const SCEV *S) { 14985ffd83dbSDimitry Andric // Compute an insertion point for this SCEV object. Hoist the instructions 14995ffd83dbSDimitry Andric // as far out in the loop nest as possible. 15005ffd83dbSDimitry Andric Instruction *InsertPt = &*Builder.GetInsertPoint(); 15015ffd83dbSDimitry Andric 15025ffd83dbSDimitry Andric // We can move insertion point only if there is no div or rem operations 15035ffd83dbSDimitry Andric // otherwise we are risky to move it over the check for zero denominator. 15045ffd83dbSDimitry Andric auto SafeToHoist = [](const SCEV *S) { 15055ffd83dbSDimitry Andric return !SCEVExprContains(S, [](const SCEV *S) { 15065ffd83dbSDimitry Andric if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 15075ffd83dbSDimitry Andric if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 15085ffd83dbSDimitry Andric // Division by non-zero constants can be hoisted. 15095ffd83dbSDimitry Andric return SC->getValue()->isZero(); 15105ffd83dbSDimitry Andric // All other divisions should not be moved as they may be 15115ffd83dbSDimitry Andric // divisions by zero and should be kept within the 15125ffd83dbSDimitry Andric // conditions of the surrounding loops that guard their 15135ffd83dbSDimitry Andric // execution (see PR35406). 15145ffd83dbSDimitry Andric return true; 15155ffd83dbSDimitry Andric } 15165ffd83dbSDimitry Andric return false; 15175ffd83dbSDimitry Andric }); 15185ffd83dbSDimitry Andric }; 15195ffd83dbSDimitry Andric if (SafeToHoist(S)) { 15205ffd83dbSDimitry Andric for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 15215ffd83dbSDimitry Andric L = L->getParentLoop()) { 15225ffd83dbSDimitry Andric if (SE.isLoopInvariant(S, L)) { 15235ffd83dbSDimitry Andric if (!L) break; 15245ffd83dbSDimitry Andric if (BasicBlock *Preheader = L->getLoopPreheader()) 15255ffd83dbSDimitry Andric InsertPt = Preheader->getTerminator(); 15265ffd83dbSDimitry Andric else 15275ffd83dbSDimitry Andric // LSR sets the insertion point for AddRec start/step values to the 15285ffd83dbSDimitry Andric // block start to simplify value reuse, even though it's an invalid 15295ffd83dbSDimitry Andric // position. SCEVExpander must correct for this in all cases. 15305ffd83dbSDimitry Andric InsertPt = &*L->getHeader()->getFirstInsertionPt(); 15315ffd83dbSDimitry Andric } else { 15325ffd83dbSDimitry Andric // If the SCEV is computable at this level, insert it into the header 15335ffd83dbSDimitry Andric // after the PHIs (and after any other instructions that we've inserted 15345ffd83dbSDimitry Andric // there) so that it is guaranteed to dominate any user inside the loop. 15355ffd83dbSDimitry Andric if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 15365ffd83dbSDimitry Andric InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1537e8d8bef9SDimitry Andric 15385ffd83dbSDimitry Andric while (InsertPt->getIterator() != Builder.GetInsertPoint() && 15395ffd83dbSDimitry Andric (isInsertedInstruction(InsertPt) || 1540e8d8bef9SDimitry Andric isa<DbgInfoIntrinsic>(InsertPt))) { 15415ffd83dbSDimitry Andric InsertPt = &*std::next(InsertPt->getIterator()); 1542e8d8bef9SDimitry Andric } 15435ffd83dbSDimitry Andric break; 15445ffd83dbSDimitry Andric } 15455ffd83dbSDimitry Andric } 15465ffd83dbSDimitry Andric } 15475ffd83dbSDimitry Andric 15485ffd83dbSDimitry Andric // Check to see if we already expanded this here. 15495ffd83dbSDimitry Andric auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 15505ffd83dbSDimitry Andric if (I != InsertedExpressions.end()) 15515ffd83dbSDimitry Andric return I->second; 15525ffd83dbSDimitry Andric 15535ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 15545ffd83dbSDimitry Andric Builder.SetInsertPoint(InsertPt); 15555ffd83dbSDimitry Andric 15565ffd83dbSDimitry Andric // Expand the expression into instructions. 155781ad6265SDimitry Andric Value *V = FindValueInExprValueMap(S, InsertPt); 1558bdd1243dSDimitry Andric if (!V) { 15595ffd83dbSDimitry Andric V = visit(S); 1560bdd1243dSDimitry Andric V = fixupLCSSAFormFor(V); 1561bdd1243dSDimitry Andric } else { 15624824e7fdSDimitry Andric // If we're reusing an existing instruction, we are effectively CSEing two 15634824e7fdSDimitry Andric // copies of the instruction (with potentially different flags). As such, 15644824e7fdSDimitry Andric // we need to drop any poison generating flags unless we can prove that 15654824e7fdSDimitry Andric // said flags must be valid for all new users. 15664824e7fdSDimitry Andric if (auto *I = dyn_cast<Instruction>(V)) 15674824e7fdSDimitry Andric if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)) 15684824e7fdSDimitry Andric I->dropPoisonGeneratingFlags(); 15694824e7fdSDimitry Andric } 15705ffd83dbSDimitry Andric // Remember the expanded value for this SCEV at this location. 15715ffd83dbSDimitry Andric // 15725ffd83dbSDimitry Andric // This is independent of PostIncLoops. The mapped value simply materializes 15735ffd83dbSDimitry Andric // the expression at this insertion point. If the mapped value happened to be 15745ffd83dbSDimitry Andric // a postinc expansion, it could be reused by a non-postinc user, but only if 15755ffd83dbSDimitry Andric // its insertion point was already at the head of the loop. 15765ffd83dbSDimitry Andric InsertedExpressions[std::make_pair(S, InsertPt)] = V; 15775ffd83dbSDimitry Andric return V; 15785ffd83dbSDimitry Andric } 15795ffd83dbSDimitry Andric 15805ffd83dbSDimitry Andric void SCEVExpander::rememberInstruction(Value *I) { 1581e8d8bef9SDimitry Andric auto DoInsert = [this](Value *V) { 15825ffd83dbSDimitry Andric if (!PostIncLoops.empty()) 1583e8d8bef9SDimitry Andric InsertedPostIncValues.insert(V); 15845ffd83dbSDimitry Andric else 1585e8d8bef9SDimitry Andric InsertedValues.insert(V); 1586e8d8bef9SDimitry Andric }; 1587e8d8bef9SDimitry Andric DoInsert(I); 15885ffd83dbSDimitry Andric } 15895ffd83dbSDimitry Andric 15905ffd83dbSDimitry Andric /// replaceCongruentIVs - Check for congruent phis in this loop header and 15915ffd83dbSDimitry Andric /// replace them with their most canonical representative. Return the number of 15925ffd83dbSDimitry Andric /// phis eliminated. 15935ffd83dbSDimitry Andric /// 15945ffd83dbSDimitry Andric /// This does not depend on any SCEVExpander state but should be used in 15955ffd83dbSDimitry Andric /// the same context that SCEVExpander is used. 15965ffd83dbSDimitry Andric unsigned 15975ffd83dbSDimitry Andric SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 15985ffd83dbSDimitry Andric SmallVectorImpl<WeakTrackingVH> &DeadInsts, 15995ffd83dbSDimitry Andric const TargetTransformInfo *TTI) { 16005ffd83dbSDimitry Andric // Find integer phis in order of increasing width. 16015ffd83dbSDimitry Andric SmallVector<PHINode*, 8> Phis; 16025ffd83dbSDimitry Andric for (PHINode &PN : L->getHeader()->phis()) 16035ffd83dbSDimitry Andric Phis.push_back(&PN); 16045ffd83dbSDimitry Andric 16055ffd83dbSDimitry Andric if (TTI) 1606349cc55cSDimitry Andric // Use stable_sort to preserve order of equivalent PHIs, so the order 1607349cc55cSDimitry Andric // of the sorted Phis is the same from run to run on the same loop. 1608349cc55cSDimitry Andric llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 16095ffd83dbSDimitry Andric // Put pointers at the back and make sure pointer < pointer = false. 16105ffd83dbSDimitry Andric if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 16115ffd83dbSDimitry Andric return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1612bdd1243dSDimitry Andric return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1613bdd1243dSDimitry Andric LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 16145ffd83dbSDimitry Andric }); 16155ffd83dbSDimitry Andric 16165ffd83dbSDimitry Andric unsigned NumElim = 0; 16175ffd83dbSDimitry Andric DenseMap<const SCEV *, PHINode *> ExprToIVMap; 16185ffd83dbSDimitry Andric // Process phis from wide to narrow. Map wide phis to their truncation 16195ffd83dbSDimitry Andric // so narrow phis can reuse them. 16205ffd83dbSDimitry Andric for (PHINode *Phi : Phis) { 16215ffd83dbSDimitry Andric auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 162281ad6265SDimitry Andric if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 16235ffd83dbSDimitry Andric return V; 16245ffd83dbSDimitry Andric if (!SE.isSCEVable(PN->getType())) 16255ffd83dbSDimitry Andric return nullptr; 16265ffd83dbSDimitry Andric auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 16275ffd83dbSDimitry Andric if (!Const) 16285ffd83dbSDimitry Andric return nullptr; 16295ffd83dbSDimitry Andric return Const->getValue(); 16305ffd83dbSDimitry Andric }; 16315ffd83dbSDimitry Andric 16325ffd83dbSDimitry Andric // Fold constant phis. They may be congruent to other constant phis and 16335ffd83dbSDimitry Andric // would confuse the logic below that expects proper IVs. 16345ffd83dbSDimitry Andric if (Value *V = SimplifyPHINode(Phi)) { 16355ffd83dbSDimitry Andric if (V->getType() != Phi->getType()) 16365ffd83dbSDimitry Andric continue; 1637bdd1243dSDimitry Andric SE.forgetValue(Phi); 16385ffd83dbSDimitry Andric Phi->replaceAllUsesWith(V); 16395ffd83dbSDimitry Andric DeadInsts.emplace_back(Phi); 16405ffd83dbSDimitry Andric ++NumElim; 1641fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 1642fe6060f1SDimitry Andric dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1643fe6060f1SDimitry Andric << '\n'); 16445ffd83dbSDimitry Andric continue; 16455ffd83dbSDimitry Andric } 16465ffd83dbSDimitry Andric 16475ffd83dbSDimitry Andric if (!SE.isSCEVable(Phi->getType())) 16485ffd83dbSDimitry Andric continue; 16495ffd83dbSDimitry Andric 16505ffd83dbSDimitry Andric PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 16515ffd83dbSDimitry Andric if (!OrigPhiRef) { 16525ffd83dbSDimitry Andric OrigPhiRef = Phi; 16535ffd83dbSDimitry Andric if (Phi->getType()->isIntegerTy() && TTI && 16545ffd83dbSDimitry Andric TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1655*06c3fb27SDimitry Andric // Make sure we only rewrite using simple induction variables; 1656*06c3fb27SDimitry Andric // otherwise, we can make the trip count of a loop unanalyzable 1657*06c3fb27SDimitry Andric // to SCEV. 1658*06c3fb27SDimitry Andric const SCEV *PhiExpr = SE.getSCEV(Phi); 1659*06c3fb27SDimitry Andric if (isa<SCEVAddRecExpr>(PhiExpr)) { 16605ffd83dbSDimitry Andric // This phi can be freely truncated to the narrowest phi type. Map the 16615ffd83dbSDimitry Andric // truncated expression to it so it will be reused for narrow types. 16625ffd83dbSDimitry Andric const SCEV *TruncExpr = 1663*06c3fb27SDimitry Andric SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 16645ffd83dbSDimitry Andric ExprToIVMap[TruncExpr] = Phi; 16655ffd83dbSDimitry Andric } 1666*06c3fb27SDimitry Andric } 16675ffd83dbSDimitry Andric continue; 16685ffd83dbSDimitry Andric } 16695ffd83dbSDimitry Andric 16705ffd83dbSDimitry Andric // Replacing a pointer phi with an integer phi or vice-versa doesn't make 16715ffd83dbSDimitry Andric // sense. 16725ffd83dbSDimitry Andric if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 16735ffd83dbSDimitry Andric continue; 16745ffd83dbSDimitry Andric 16755ffd83dbSDimitry Andric if (BasicBlock *LatchBlock = L->getLoopLatch()) { 16765ffd83dbSDimitry Andric Instruction *OrigInc = dyn_cast<Instruction>( 16775ffd83dbSDimitry Andric OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 16785ffd83dbSDimitry Andric Instruction *IsomorphicInc = 16795ffd83dbSDimitry Andric dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 16805ffd83dbSDimitry Andric 16815ffd83dbSDimitry Andric if (OrigInc && IsomorphicInc) { 16825ffd83dbSDimitry Andric // If this phi has the same width but is more canonical, replace the 16835ffd83dbSDimitry Andric // original with it. As part of the "more canonical" determination, 16845ffd83dbSDimitry Andric // respect a prior decision to use an IV chain. 16855ffd83dbSDimitry Andric if (OrigPhiRef->getType() == Phi->getType() && 16865ffd83dbSDimitry Andric !(ChainedPhis.count(Phi) || 16875ffd83dbSDimitry Andric isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 16885ffd83dbSDimitry Andric (ChainedPhis.count(Phi) || 16895ffd83dbSDimitry Andric isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 16905ffd83dbSDimitry Andric std::swap(OrigPhiRef, Phi); 16915ffd83dbSDimitry Andric std::swap(OrigInc, IsomorphicInc); 16925ffd83dbSDimitry Andric } 16935ffd83dbSDimitry Andric // Replacing the congruent phi is sufficient because acyclic 16945ffd83dbSDimitry Andric // redundancy elimination, CSE/GVN, should handle the 16955ffd83dbSDimitry Andric // rest. However, once SCEV proves that a phi is congruent, 16965ffd83dbSDimitry Andric // it's often the head of an IV user cycle that is isomorphic 16975ffd83dbSDimitry Andric // with the original phi. It's worth eagerly cleaning up the 16985ffd83dbSDimitry Andric // common case of a single IV increment so that DeleteDeadPHIs 16995ffd83dbSDimitry Andric // can remove cycles that had postinc uses. 1700bdd1243dSDimitry Andric // Because we may potentially introduce a new use of OrigIV that didn't 1701bdd1243dSDimitry Andric // exist before at this point, its poison flags need readjustment. 17025ffd83dbSDimitry Andric const SCEV *TruncExpr = 17035ffd83dbSDimitry Andric SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 17045ffd83dbSDimitry Andric if (OrigInc != IsomorphicInc && 17055ffd83dbSDimitry Andric TruncExpr == SE.getSCEV(IsomorphicInc) && 17065ffd83dbSDimitry Andric SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1707bdd1243dSDimitry Andric hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 1708fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 1709fe6060f1SDimitry Andric DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 17105ffd83dbSDimitry Andric << *IsomorphicInc << '\n'); 17115ffd83dbSDimitry Andric Value *NewInc = OrigInc; 17125ffd83dbSDimitry Andric if (OrigInc->getType() != IsomorphicInc->getType()) { 17135ffd83dbSDimitry Andric Instruction *IP = nullptr; 17145ffd83dbSDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 17155ffd83dbSDimitry Andric IP = &*PN->getParent()->getFirstInsertionPt(); 17165ffd83dbSDimitry Andric else 17175ffd83dbSDimitry Andric IP = OrigInc->getNextNode(); 17185ffd83dbSDimitry Andric 17195ffd83dbSDimitry Andric IRBuilder<> Builder(IP); 17205ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 17215ffd83dbSDimitry Andric NewInc = Builder.CreateTruncOrBitCast( 17225ffd83dbSDimitry Andric OrigInc, IsomorphicInc->getType(), IVName); 17235ffd83dbSDimitry Andric } 17245ffd83dbSDimitry Andric IsomorphicInc->replaceAllUsesWith(NewInc); 17255ffd83dbSDimitry Andric DeadInsts.emplace_back(IsomorphicInc); 17265ffd83dbSDimitry Andric } 17275ffd83dbSDimitry Andric } 17285ffd83dbSDimitry Andric } 1729fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 1730fe6060f1SDimitry Andric dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1731fe6060f1SDimitry Andric << '\n'); 1732fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 1733fe6060f1SDimitry Andric DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 17345ffd83dbSDimitry Andric ++NumElim; 17355ffd83dbSDimitry Andric Value *NewIV = OrigPhiRef; 17365ffd83dbSDimitry Andric if (OrigPhiRef->getType() != Phi->getType()) { 17375ffd83dbSDimitry Andric IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 17385ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 17395ffd83dbSDimitry Andric NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 17405ffd83dbSDimitry Andric } 17415ffd83dbSDimitry Andric Phi->replaceAllUsesWith(NewIV); 17425ffd83dbSDimitry Andric DeadInsts.emplace_back(Phi); 17435ffd83dbSDimitry Andric } 17445ffd83dbSDimitry Andric return NumElim; 17455ffd83dbSDimitry Andric } 17465ffd83dbSDimitry Andric 174781ad6265SDimitry Andric Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S, 174881ad6265SDimitry Andric const Instruction *At, 17495ffd83dbSDimitry Andric Loop *L) { 17505ffd83dbSDimitry Andric using namespace llvm::PatternMatch; 17515ffd83dbSDimitry Andric 17525ffd83dbSDimitry Andric SmallVector<BasicBlock *, 4> ExitingBlocks; 17535ffd83dbSDimitry Andric L->getExitingBlocks(ExitingBlocks); 17545ffd83dbSDimitry Andric 17555ffd83dbSDimitry Andric // Look for suitable value in simple conditions at the loop exits. 17565ffd83dbSDimitry Andric for (BasicBlock *BB : ExitingBlocks) { 17575ffd83dbSDimitry Andric ICmpInst::Predicate Pred; 17585ffd83dbSDimitry Andric Instruction *LHS, *RHS; 17595ffd83dbSDimitry Andric 17605ffd83dbSDimitry Andric if (!match(BB->getTerminator(), 17615ffd83dbSDimitry Andric m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 17625ffd83dbSDimitry Andric m_BasicBlock(), m_BasicBlock()))) 17635ffd83dbSDimitry Andric continue; 17645ffd83dbSDimitry Andric 17655ffd83dbSDimitry Andric if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 176681ad6265SDimitry Andric return LHS; 17675ffd83dbSDimitry Andric 17685ffd83dbSDimitry Andric if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 176981ad6265SDimitry Andric return RHS; 17705ffd83dbSDimitry Andric } 17715ffd83dbSDimitry Andric 17725ffd83dbSDimitry Andric // Use expand's logic which is used for reusing a previous Value in 17734824e7fdSDimitry Andric // ExprValueMap. Note that we don't currently model the cost of 17744824e7fdSDimitry Andric // needing to drop poison generating flags on the instruction if we 17754824e7fdSDimitry Andric // want to reuse it. We effectively assume that has zero cost. 177681ad6265SDimitry Andric return FindValueInExprValueMap(S, At); 17775ffd83dbSDimitry Andric } 17785ffd83dbSDimitry Andric 1779fe6060f1SDimitry Andric template<typename T> static InstructionCost costAndCollectOperands( 1780e8d8bef9SDimitry Andric const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1781e8d8bef9SDimitry Andric TargetTransformInfo::TargetCostKind CostKind, 1782e8d8bef9SDimitry Andric SmallVectorImpl<SCEVOperand> &Worklist) { 1783e8d8bef9SDimitry Andric 1784e8d8bef9SDimitry Andric const T *S = cast<T>(WorkItem.S); 1785fe6060f1SDimitry Andric InstructionCost Cost = 0; 1786e8d8bef9SDimitry Andric // Object to help map SCEV operands to expanded IR instructions. 1787e8d8bef9SDimitry Andric struct OperationIndices { 1788e8d8bef9SDimitry Andric OperationIndices(unsigned Opc, size_t min, size_t max) : 1789e8d8bef9SDimitry Andric Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1790e8d8bef9SDimitry Andric unsigned Opcode; 1791e8d8bef9SDimitry Andric size_t MinIdx; 1792e8d8bef9SDimitry Andric size_t MaxIdx; 1793e8d8bef9SDimitry Andric }; 1794e8d8bef9SDimitry Andric 1795e8d8bef9SDimitry Andric // Collect the operations of all the instructions that will be needed to 1796e8d8bef9SDimitry Andric // expand the SCEVExpr. This is so that when we come to cost the operands, 1797e8d8bef9SDimitry Andric // we know what the generated user(s) will be. 1798e8d8bef9SDimitry Andric SmallVector<OperationIndices, 2> Operations; 1799e8d8bef9SDimitry Andric 1800fe6060f1SDimitry Andric auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1801e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, 0, 0); 1802e8d8bef9SDimitry Andric return TTI.getCastInstrCost(Opcode, S->getType(), 1803e8d8bef9SDimitry Andric S->getOperand(0)->getType(), 1804e8d8bef9SDimitry Andric TTI::CastContextHint::None, CostKind); 1805e8d8bef9SDimitry Andric }; 1806e8d8bef9SDimitry Andric 1807e8d8bef9SDimitry Andric auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1808fe6060f1SDimitry Andric unsigned MinIdx = 0, 1809fe6060f1SDimitry Andric unsigned MaxIdx = 1) -> InstructionCost { 1810e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1811e8d8bef9SDimitry Andric return NumRequired * 1812e8d8bef9SDimitry Andric TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1813e8d8bef9SDimitry Andric }; 1814e8d8bef9SDimitry Andric 1815fe6060f1SDimitry Andric auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1816fe6060f1SDimitry Andric unsigned MaxIdx) -> InstructionCost { 1817e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1818bdd1243dSDimitry Andric Type *OpType = S->getType(); 1819e8d8bef9SDimitry Andric return NumRequired * TTI.getCmpSelInstrCost( 1820e8d8bef9SDimitry Andric Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1821e8d8bef9SDimitry Andric CmpInst::BAD_ICMP_PREDICATE, CostKind); 1822e8d8bef9SDimitry Andric }; 1823e8d8bef9SDimitry Andric 1824e8d8bef9SDimitry Andric switch (S->getSCEVType()) { 1825e8d8bef9SDimitry Andric case scCouldNotCompute: 1826e8d8bef9SDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1827e8d8bef9SDimitry Andric case scUnknown: 1828e8d8bef9SDimitry Andric case scConstant: 1829*06c3fb27SDimitry Andric case scVScale: 1830e8d8bef9SDimitry Andric return 0; 1831e8d8bef9SDimitry Andric case scPtrToInt: 1832e8d8bef9SDimitry Andric Cost = CastCost(Instruction::PtrToInt); 1833e8d8bef9SDimitry Andric break; 1834e8d8bef9SDimitry Andric case scTruncate: 1835e8d8bef9SDimitry Andric Cost = CastCost(Instruction::Trunc); 1836e8d8bef9SDimitry Andric break; 1837e8d8bef9SDimitry Andric case scZeroExtend: 1838e8d8bef9SDimitry Andric Cost = CastCost(Instruction::ZExt); 1839e8d8bef9SDimitry Andric break; 1840e8d8bef9SDimitry Andric case scSignExtend: 1841e8d8bef9SDimitry Andric Cost = CastCost(Instruction::SExt); 1842e8d8bef9SDimitry Andric break; 1843e8d8bef9SDimitry Andric case scUDivExpr: { 1844e8d8bef9SDimitry Andric unsigned Opcode = Instruction::UDiv; 1845e8d8bef9SDimitry Andric if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1846e8d8bef9SDimitry Andric if (SC->getAPInt().isPowerOf2()) 1847e8d8bef9SDimitry Andric Opcode = Instruction::LShr; 1848e8d8bef9SDimitry Andric Cost = ArithCost(Opcode, 1); 1849e8d8bef9SDimitry Andric break; 1850e8d8bef9SDimitry Andric } 1851e8d8bef9SDimitry Andric case scAddExpr: 1852e8d8bef9SDimitry Andric Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1853e8d8bef9SDimitry Andric break; 1854e8d8bef9SDimitry Andric case scMulExpr: 1855e8d8bef9SDimitry Andric // TODO: this is a very pessimistic cost modelling for Mul, 1856e8d8bef9SDimitry Andric // because of Bin Pow algorithm actually used by the expander, 1857e8d8bef9SDimitry Andric // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1858e8d8bef9SDimitry Andric Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1859e8d8bef9SDimitry Andric break; 1860e8d8bef9SDimitry Andric case scSMaxExpr: 1861e8d8bef9SDimitry Andric case scUMaxExpr: 1862e8d8bef9SDimitry Andric case scSMinExpr: 186304eeddc0SDimitry Andric case scUMinExpr: 186404eeddc0SDimitry Andric case scSequentialUMinExpr: { 1865fe6060f1SDimitry Andric // FIXME: should this ask the cost for Intrinsic's? 186604eeddc0SDimitry Andric // The reduction tree. 1867e8d8bef9SDimitry Andric Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1868e8d8bef9SDimitry Andric Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 186904eeddc0SDimitry Andric switch (S->getSCEVType()) { 187004eeddc0SDimitry Andric case scSequentialUMinExpr: { 187104eeddc0SDimitry Andric // The safety net against poison. 187204eeddc0SDimitry Andric // FIXME: this is broken. 187304eeddc0SDimitry Andric Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 187404eeddc0SDimitry Andric Cost += ArithCost(Instruction::Or, 187504eeddc0SDimitry Andric S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 187604eeddc0SDimitry Andric Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 187704eeddc0SDimitry Andric break; 187804eeddc0SDimitry Andric } 187904eeddc0SDimitry Andric default: 188004eeddc0SDimitry Andric assert(!isa<SCEVSequentialMinMaxExpr>(S) && 188104eeddc0SDimitry Andric "Unhandled SCEV expression type?"); 188204eeddc0SDimitry Andric break; 188304eeddc0SDimitry Andric } 1884e8d8bef9SDimitry Andric break; 1885e8d8bef9SDimitry Andric } 1886e8d8bef9SDimitry Andric case scAddRecExpr: { 1887e8d8bef9SDimitry Andric // In this polynominal, we may have some zero operands, and we shouldn't 1888bdd1243dSDimitry Andric // really charge for those. So how many non-zero coefficients are there? 1889e8d8bef9SDimitry Andric int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1890e8d8bef9SDimitry Andric return !Op->isZero(); 1891e8d8bef9SDimitry Andric }); 1892e8d8bef9SDimitry Andric 1893e8d8bef9SDimitry Andric assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1894e8d8bef9SDimitry Andric assert(!(*std::prev(S->operands().end()))->isZero() && 1895e8d8bef9SDimitry Andric "Last operand should not be zero"); 1896e8d8bef9SDimitry Andric 1897bdd1243dSDimitry Andric // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1898e8d8bef9SDimitry Andric int NumNonZeroDegreeNonOneTerms = 1899e8d8bef9SDimitry Andric llvm::count_if(S->operands(), [](const SCEV *Op) { 1900e8d8bef9SDimitry Andric auto *SConst = dyn_cast<SCEVConstant>(Op); 1901e8d8bef9SDimitry Andric return !SConst || SConst->getAPInt().ugt(1); 1902e8d8bef9SDimitry Andric }); 1903e8d8bef9SDimitry Andric 1904e8d8bef9SDimitry Andric // Much like with normal add expr, the polynominal will require 1905e8d8bef9SDimitry Andric // one less addition than the number of it's terms. 1906fe6060f1SDimitry Andric InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1907e8d8bef9SDimitry Andric /*MinIdx*/ 1, /*MaxIdx*/ 1); 1908e8d8bef9SDimitry Andric // Here, *each* one of those will require a multiplication. 1909fe6060f1SDimitry Andric InstructionCost MulCost = 1910fe6060f1SDimitry Andric ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1911e8d8bef9SDimitry Andric Cost = AddCost + MulCost; 1912e8d8bef9SDimitry Andric 1913e8d8bef9SDimitry Andric // What is the degree of this polynominal? 1914e8d8bef9SDimitry Andric int PolyDegree = S->getNumOperands() - 1; 1915e8d8bef9SDimitry Andric assert(PolyDegree >= 1 && "Should be at least affine."); 1916e8d8bef9SDimitry Andric 1917e8d8bef9SDimitry Andric // The final term will be: 1918e8d8bef9SDimitry Andric // Op_{PolyDegree} * x ^ {PolyDegree} 1919e8d8bef9SDimitry Andric // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1920e8d8bef9SDimitry Andric // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1921e8d8bef9SDimitry Andric // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1922e8d8bef9SDimitry Andric // FIXME: this is conservatively correct, but might be overly pessimistic. 1923e8d8bef9SDimitry Andric Cost += MulCost * (PolyDegree - 1); 1924e8d8bef9SDimitry Andric break; 1925e8d8bef9SDimitry Andric } 1926e8d8bef9SDimitry Andric } 1927e8d8bef9SDimitry Andric 1928e8d8bef9SDimitry Andric for (auto &CostOp : Operations) { 1929e8d8bef9SDimitry Andric for (auto SCEVOp : enumerate(S->operands())) { 1930e8d8bef9SDimitry Andric // Clamp the index to account for multiple IR operations being chained. 1931e8d8bef9SDimitry Andric size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1932e8d8bef9SDimitry Andric size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1933e8d8bef9SDimitry Andric Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1934e8d8bef9SDimitry Andric } 1935e8d8bef9SDimitry Andric } 1936e8d8bef9SDimitry Andric return Cost; 1937e8d8bef9SDimitry Andric } 1938e8d8bef9SDimitry Andric 19395ffd83dbSDimitry Andric bool SCEVExpander::isHighCostExpansionHelper( 1940e8d8bef9SDimitry Andric const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1941fe6060f1SDimitry Andric InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1942e8d8bef9SDimitry Andric SmallPtrSetImpl<const SCEV *> &Processed, 1943e8d8bef9SDimitry Andric SmallVectorImpl<SCEVOperand> &Worklist) { 1944fe6060f1SDimitry Andric if (Cost > Budget) 19455ffd83dbSDimitry Andric return true; // Already run out of budget, give up. 19465ffd83dbSDimitry Andric 1947e8d8bef9SDimitry Andric const SCEV *S = WorkItem.S; 19485ffd83dbSDimitry Andric // Was the cost of expansion of this expression already accounted for? 1949e8d8bef9SDimitry Andric if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 19505ffd83dbSDimitry Andric return false; // We have already accounted for this expression. 19515ffd83dbSDimitry Andric 19525ffd83dbSDimitry Andric // If we can find an existing value for this scev available at the point "At" 19535ffd83dbSDimitry Andric // then consider the expression cheap. 19545ffd83dbSDimitry Andric if (getRelatedExistingExpansion(S, &At, L)) 19555ffd83dbSDimitry Andric return false; // Consider the expression to be free. 19565ffd83dbSDimitry Andric 19575ffd83dbSDimitry Andric TargetTransformInfo::TargetCostKind CostKind = 1958e8d8bef9SDimitry Andric L->getHeader()->getParent()->hasMinSize() 1959e8d8bef9SDimitry Andric ? TargetTransformInfo::TCK_CodeSize 1960e8d8bef9SDimitry Andric : TargetTransformInfo::TCK_RecipThroughput; 19615ffd83dbSDimitry Andric 19625ffd83dbSDimitry Andric switch (S->getSCEVType()) { 1963e8d8bef9SDimitry Andric case scCouldNotCompute: 1964e8d8bef9SDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1965e8d8bef9SDimitry Andric case scUnknown: 1966*06c3fb27SDimitry Andric case scVScale: 1967e8d8bef9SDimitry Andric // Assume to be zero-cost. 1968e8d8bef9SDimitry Andric return false; 1969e8d8bef9SDimitry Andric case scConstant: { 1970e8d8bef9SDimitry Andric // Only evalulate the costs of constants when optimizing for size. 1971e8d8bef9SDimitry Andric if (CostKind != TargetTransformInfo::TCK_CodeSize) 197204eeddc0SDimitry Andric return false; 1973e8d8bef9SDimitry Andric const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 1974e8d8bef9SDimitry Andric Type *Ty = S->getType(); 1975fe6060f1SDimitry Andric Cost += TTI.getIntImmCostInst( 1976e8d8bef9SDimitry Andric WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 1977fe6060f1SDimitry Andric return Cost > Budget; 1978e8d8bef9SDimitry Andric } 19795ffd83dbSDimitry Andric case scTruncate: 1980e8d8bef9SDimitry Andric case scPtrToInt: 19815ffd83dbSDimitry Andric case scZeroExtend: 1982e8d8bef9SDimitry Andric case scSignExtend: { 1983fe6060f1SDimitry Andric Cost += 1984e8d8bef9SDimitry Andric costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 19855ffd83dbSDimitry Andric return false; // Will answer upon next entry into this function. 19865ffd83dbSDimitry Andric } 1987e8d8bef9SDimitry Andric case scUDivExpr: { 19885ffd83dbSDimitry Andric // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 19895ffd83dbSDimitry Andric // HowManyLessThans produced to compute a precise expression, rather than a 19905ffd83dbSDimitry Andric // UDiv from the user's code. If we can't find a UDiv in the code with some 19915ffd83dbSDimitry Andric // simple searching, we need to account for it's cost. 19925ffd83dbSDimitry Andric 19935ffd83dbSDimitry Andric // At the beginning of this function we already tried to find existing 19945ffd83dbSDimitry Andric // value for plain 'S'. Now try to lookup 'S + 1' since it is common 19955ffd83dbSDimitry Andric // pattern involving division. This is just a simple search heuristic. 19965ffd83dbSDimitry Andric if (getRelatedExistingExpansion( 19975ffd83dbSDimitry Andric SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 19985ffd83dbSDimitry Andric return false; // Consider it to be free. 19995ffd83dbSDimitry Andric 2000fe6060f1SDimitry Andric Cost += 2001e8d8bef9SDimitry Andric costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 20025ffd83dbSDimitry Andric return false; // Will answer upon next entry into this function. 20035ffd83dbSDimitry Andric } 20045ffd83dbSDimitry Andric case scAddExpr: 20055ffd83dbSDimitry Andric case scMulExpr: 20065ffd83dbSDimitry Andric case scUMaxExpr: 2007e8d8bef9SDimitry Andric case scSMaxExpr: 20085ffd83dbSDimitry Andric case scUMinExpr: 200904eeddc0SDimitry Andric case scSMinExpr: 201004eeddc0SDimitry Andric case scSequentialUMinExpr: { 2011e8d8bef9SDimitry Andric assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 20125ffd83dbSDimitry Andric "Nary expr should have more than 1 operand."); 20135ffd83dbSDimitry Andric // The simple nary expr will require one less op (or pair of ops) 20145ffd83dbSDimitry Andric // than the number of it's terms. 2015fe6060f1SDimitry Andric Cost += 2016e8d8bef9SDimitry Andric costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2017fe6060f1SDimitry Andric return Cost > Budget; 20185ffd83dbSDimitry Andric } 2019e8d8bef9SDimitry Andric case scAddRecExpr: { 2020e8d8bef9SDimitry Andric assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2021e8d8bef9SDimitry Andric "Polynomial should be at least linear"); 2022fe6060f1SDimitry Andric Cost += costAndCollectOperands<SCEVAddRecExpr>( 2023e8d8bef9SDimitry Andric WorkItem, TTI, CostKind, Worklist); 2024fe6060f1SDimitry Andric return Cost > Budget; 2025e8d8bef9SDimitry Andric } 2026e8d8bef9SDimitry Andric } 2027e8d8bef9SDimitry Andric llvm_unreachable("Unknown SCEV kind!"); 20285ffd83dbSDimitry Andric } 20295ffd83dbSDimitry Andric 20305ffd83dbSDimitry Andric Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 20315ffd83dbSDimitry Andric Instruction *IP) { 20325ffd83dbSDimitry Andric assert(IP); 20335ffd83dbSDimitry Andric switch (Pred->getKind()) { 20345ffd83dbSDimitry Andric case SCEVPredicate::P_Union: 20355ffd83dbSDimitry Andric return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 203681ad6265SDimitry Andric case SCEVPredicate::P_Compare: 203781ad6265SDimitry Andric return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 20385ffd83dbSDimitry Andric case SCEVPredicate::P_Wrap: { 20395ffd83dbSDimitry Andric auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 20405ffd83dbSDimitry Andric return expandWrapPredicate(AddRecPred, IP); 20415ffd83dbSDimitry Andric } 20425ffd83dbSDimitry Andric } 20435ffd83dbSDimitry Andric llvm_unreachable("Unknown SCEV predicate type"); 20445ffd83dbSDimitry Andric } 20455ffd83dbSDimitry Andric 204681ad6265SDimitry Andric Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 20475ffd83dbSDimitry Andric Instruction *IP) { 2048e8d8bef9SDimitry Andric Value *Expr0 = 2049bdd1243dSDimitry Andric expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2050e8d8bef9SDimitry Andric Value *Expr1 = 2051bdd1243dSDimitry Andric expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP); 20525ffd83dbSDimitry Andric 20535ffd83dbSDimitry Andric Builder.SetInsertPoint(IP); 205481ad6265SDimitry Andric auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 205581ad6265SDimitry Andric auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 20565ffd83dbSDimitry Andric return I; 20575ffd83dbSDimitry Andric } 20585ffd83dbSDimitry Andric 20595ffd83dbSDimitry Andric Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 20605ffd83dbSDimitry Andric Instruction *Loc, bool Signed) { 20615ffd83dbSDimitry Andric assert(AR->isAffine() && "Cannot generate RT check for " 20625ffd83dbSDimitry Andric "non-affine expression"); 20635ffd83dbSDimitry Andric 206481ad6265SDimitry Andric // FIXME: It is highly suspicious that we're ignoring the predicates here. 206581ad6265SDimitry Andric SmallVector<const SCEVPredicate *, 4> Pred; 20665ffd83dbSDimitry Andric const SCEV *ExitCount = 20675ffd83dbSDimitry Andric SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 20685ffd83dbSDimitry Andric 2069e8d8bef9SDimitry Andric assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 20705ffd83dbSDimitry Andric 20715ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 20725ffd83dbSDimitry Andric const SCEV *Start = AR->getStart(); 20735ffd83dbSDimitry Andric 20745ffd83dbSDimitry Andric Type *ARTy = AR->getType(); 20755ffd83dbSDimitry Andric unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 20765ffd83dbSDimitry Andric unsigned DstBits = SE.getTypeSizeInBits(ARTy); 20775ffd83dbSDimitry Andric 20785ffd83dbSDimitry Andric // The expression {Start,+,Step} has nusw/nssw if 20795ffd83dbSDimitry Andric // Step < 0, Start - |Step| * Backedge <= Start 20805ffd83dbSDimitry Andric // Step >= 0, Start + |Step| * Backedge > Start 20815ffd83dbSDimitry Andric // and |Step| * Backedge doesn't unsigned overflow. 20825ffd83dbSDimitry Andric 20835ffd83dbSDimitry Andric IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 20845ffd83dbSDimitry Andric Builder.SetInsertPoint(Loc); 2085bdd1243dSDimitry Andric Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc); 20865ffd83dbSDimitry Andric 20875ffd83dbSDimitry Andric IntegerType *Ty = 20885ffd83dbSDimitry Andric IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 20895ffd83dbSDimitry Andric 2090bdd1243dSDimitry Andric Value *StepValue = expandCodeForImpl(Step, Ty, Loc); 2091e8d8bef9SDimitry Andric Value *NegStepValue = 2092bdd1243dSDimitry Andric expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc); 2093bdd1243dSDimitry Andric Value *StartValue = expandCodeForImpl(Start, ARTy, Loc); 20945ffd83dbSDimitry Andric 20955ffd83dbSDimitry Andric ConstantInt *Zero = 2096349cc55cSDimitry Andric ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 20975ffd83dbSDimitry Andric 20985ffd83dbSDimitry Andric Builder.SetInsertPoint(Loc); 20995ffd83dbSDimitry Andric // Compute |Step| 21005ffd83dbSDimitry Andric Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 21015ffd83dbSDimitry Andric Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 21025ffd83dbSDimitry Andric 210304eeddc0SDimitry Andric // Compute |Step| * Backedge 210404eeddc0SDimitry Andric // Compute: 210504eeddc0SDimitry Andric // 1. Start + |Step| * Backedge < Start 210604eeddc0SDimitry Andric // 2. Start - |Step| * Backedge > Start 210704eeddc0SDimitry Andric // 210804eeddc0SDimitry Andric // And select either 1. or 2. depending on whether step is positive or 210904eeddc0SDimitry Andric // negative. If Step is known to be positive or negative, only create 211004eeddc0SDimitry Andric // either 1. or 2. 211104eeddc0SDimitry Andric auto ComputeEndCheck = [&]() -> Value * { 211204eeddc0SDimitry Andric // Checking <u 0 is always false. 211304eeddc0SDimitry Andric if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 211404eeddc0SDimitry Andric return ConstantInt::getFalse(Loc->getContext()); 211504eeddc0SDimitry Andric 21165ffd83dbSDimitry Andric // Get the backedge taken count and truncate or extended to the AR type. 21175ffd83dbSDimitry Andric Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 21185ffd83dbSDimitry Andric 2119349cc55cSDimitry Andric Value *MulV, *OfMul; 2120349cc55cSDimitry Andric if (Step->isOne()) { 2121349cc55cSDimitry Andric // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2122349cc55cSDimitry Andric // needed, there is never an overflow, so to avoid artificially inflating 2123349cc55cSDimitry Andric // the cost of the check, directly emit the optimized IR. 2124349cc55cSDimitry Andric MulV = TruncTripCount; 2125349cc55cSDimitry Andric OfMul = ConstantInt::getFalse(MulV->getContext()); 2126349cc55cSDimitry Andric } else { 2127349cc55cSDimitry Andric auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2128349cc55cSDimitry Andric Intrinsic::umul_with_overflow, Ty); 212904eeddc0SDimitry Andric CallInst *Mul = 213004eeddc0SDimitry Andric Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2131349cc55cSDimitry Andric MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2132349cc55cSDimitry Andric OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2133349cc55cSDimitry Andric } 21345ffd83dbSDimitry Andric 21355ffd83dbSDimitry Andric Value *Add = nullptr, *Sub = nullptr; 213604eeddc0SDimitry Andric bool NeedPosCheck = !SE.isKnownNegative(Step); 213704eeddc0SDimitry Andric bool NeedNegCheck = !SE.isKnownPositive(Step); 213804eeddc0SDimitry Andric 2139349cc55cSDimitry Andric if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2140349cc55cSDimitry Andric StartValue = InsertNoopCastOfTo( 2141349cc55cSDimitry Andric StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace())); 2142349cc55cSDimitry Andric Value *NegMulV = Builder.CreateNeg(MulV); 214304eeddc0SDimitry Andric if (NeedPosCheck) 2144349cc55cSDimitry Andric Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 214504eeddc0SDimitry Andric if (NeedNegCheck) 2146349cc55cSDimitry Andric Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 21475ffd83dbSDimitry Andric } else { 214804eeddc0SDimitry Andric if (NeedPosCheck) 21495ffd83dbSDimitry Andric Add = Builder.CreateAdd(StartValue, MulV); 215004eeddc0SDimitry Andric if (NeedNegCheck) 21515ffd83dbSDimitry Andric Sub = Builder.CreateSub(StartValue, MulV); 21525ffd83dbSDimitry Andric } 21535ffd83dbSDimitry Andric 215404eeddc0SDimitry Andric Value *EndCompareLT = nullptr; 215504eeddc0SDimitry Andric Value *EndCompareGT = nullptr; 215604eeddc0SDimitry Andric Value *EndCheck = nullptr; 215704eeddc0SDimitry Andric if (NeedPosCheck) 215804eeddc0SDimitry Andric EndCheck = EndCompareLT = Builder.CreateICmp( 21595ffd83dbSDimitry Andric Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 216004eeddc0SDimitry Andric if (NeedNegCheck) 216104eeddc0SDimitry Andric EndCheck = EndCompareGT = Builder.CreateICmp( 216204eeddc0SDimitry Andric Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 216304eeddc0SDimitry Andric if (NeedPosCheck && NeedNegCheck) { 21645ffd83dbSDimitry Andric // Select the answer based on the sign of Step. 216504eeddc0SDimitry Andric EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 216604eeddc0SDimitry Andric } 216704eeddc0SDimitry Andric return Builder.CreateOr(EndCheck, OfMul); 216804eeddc0SDimitry Andric }; 216904eeddc0SDimitry Andric Value *EndCheck = ComputeEndCheck(); 21705ffd83dbSDimitry Andric 21715ffd83dbSDimitry Andric // If the backedge taken count type is larger than the AR type, 21725ffd83dbSDimitry Andric // check that we don't drop any bits by truncating it. If we are 21735ffd83dbSDimitry Andric // dropping bits, then we have overflow (unless the step is zero). 21745ffd83dbSDimitry Andric if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 21755ffd83dbSDimitry Andric auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 21765ffd83dbSDimitry Andric auto *BackedgeCheck = 21775ffd83dbSDimitry Andric Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 21785ffd83dbSDimitry Andric ConstantInt::get(Loc->getContext(), MaxVal)); 21795ffd83dbSDimitry Andric BackedgeCheck = Builder.CreateAnd( 21805ffd83dbSDimitry Andric BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 21815ffd83dbSDimitry Andric 21825ffd83dbSDimitry Andric EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 21835ffd83dbSDimitry Andric } 21845ffd83dbSDimitry Andric 218504eeddc0SDimitry Andric return EndCheck; 21865ffd83dbSDimitry Andric } 21875ffd83dbSDimitry Andric 21885ffd83dbSDimitry Andric Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 21895ffd83dbSDimitry Andric Instruction *IP) { 21905ffd83dbSDimitry Andric const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 21915ffd83dbSDimitry Andric Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 21925ffd83dbSDimitry Andric 21935ffd83dbSDimitry Andric // Add a check for NUSW 21945ffd83dbSDimitry Andric if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 21955ffd83dbSDimitry Andric NUSWCheck = generateOverflowCheck(A, IP, false); 21965ffd83dbSDimitry Andric 21975ffd83dbSDimitry Andric // Add a check for NSSW 21985ffd83dbSDimitry Andric if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 21995ffd83dbSDimitry Andric NSSWCheck = generateOverflowCheck(A, IP, true); 22005ffd83dbSDimitry Andric 22015ffd83dbSDimitry Andric if (NUSWCheck && NSSWCheck) 22025ffd83dbSDimitry Andric return Builder.CreateOr(NUSWCheck, NSSWCheck); 22035ffd83dbSDimitry Andric 22045ffd83dbSDimitry Andric if (NUSWCheck) 22055ffd83dbSDimitry Andric return NUSWCheck; 22065ffd83dbSDimitry Andric 22075ffd83dbSDimitry Andric if (NSSWCheck) 22085ffd83dbSDimitry Andric return NSSWCheck; 22095ffd83dbSDimitry Andric 22105ffd83dbSDimitry Andric return ConstantInt::getFalse(IP->getContext()); 22115ffd83dbSDimitry Andric } 22125ffd83dbSDimitry Andric 22135ffd83dbSDimitry Andric Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 22145ffd83dbSDimitry Andric Instruction *IP) { 22155ffd83dbSDimitry Andric // Loop over all checks in this set. 221604eeddc0SDimitry Andric SmallVector<Value *> Checks; 2217bdd1243dSDimitry Andric for (const auto *Pred : Union->getPredicates()) { 221804eeddc0SDimitry Andric Checks.push_back(expandCodeForPredicate(Pred, IP)); 22195ffd83dbSDimitry Andric Builder.SetInsertPoint(IP); 22205ffd83dbSDimitry Andric } 22215ffd83dbSDimitry Andric 222204eeddc0SDimitry Andric if (Checks.empty()) 222304eeddc0SDimitry Andric return ConstantInt::getFalse(IP->getContext()); 222404eeddc0SDimitry Andric return Builder.CreateOr(Checks); 22255ffd83dbSDimitry Andric } 22265ffd83dbSDimitry Andric 2227bdd1243dSDimitry Andric Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2228bdd1243dSDimitry Andric auto *DefI = dyn_cast<Instruction>(V); 2229bdd1243dSDimitry Andric if (!PreserveLCSSA || !DefI) 2230bdd1243dSDimitry Andric return V; 2231e8d8bef9SDimitry Andric 2232bdd1243dSDimitry Andric Instruction *InsertPt = &*Builder.GetInsertPoint(); 2233bdd1243dSDimitry Andric Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2234bdd1243dSDimitry Andric Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2235e8d8bef9SDimitry Andric if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2236bdd1243dSDimitry Andric return V; 2237e8d8bef9SDimitry Andric 2238bdd1243dSDimitry Andric // Create a temporary instruction to at the current insertion point, so we 2239bdd1243dSDimitry Andric // can hand it off to the helper to create LCSSA PHIs if required for the 2240bdd1243dSDimitry Andric // new use. 2241bdd1243dSDimitry Andric // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2242bdd1243dSDimitry Andric // would accept a insertion point and return an LCSSA phi for that 2243bdd1243dSDimitry Andric // insertion point, so there is no need to insert & remove the temporary 2244bdd1243dSDimitry Andric // instruction. 2245bdd1243dSDimitry Andric Type *ToTy; 2246bdd1243dSDimitry Andric if (DefI->getType()->isIntegerTy()) 2247bdd1243dSDimitry Andric ToTy = DefI->getType()->getPointerTo(); 2248bdd1243dSDimitry Andric else 2249bdd1243dSDimitry Andric ToTy = Type::getInt32Ty(DefI->getContext()); 2250bdd1243dSDimitry Andric Instruction *User = 2251bdd1243dSDimitry Andric CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2252bdd1243dSDimitry Andric auto RemoveUserOnExit = 2253bdd1243dSDimitry Andric make_scope_exit([User]() { User->eraseFromParent(); }); 2254bdd1243dSDimitry Andric 2255bdd1243dSDimitry Andric SmallVector<Instruction *, 1> ToUpdate; 2256bdd1243dSDimitry Andric ToUpdate.push_back(DefI); 2257e8d8bef9SDimitry Andric SmallVector<PHINode *, 16> PHIsToRemove; 2258*06c3fb27SDimitry Andric SmallVector<PHINode *, 16> InsertedPHIs; 2259*06c3fb27SDimitry Andric formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2260*06c3fb27SDimitry Andric &InsertedPHIs); 2261*06c3fb27SDimitry Andric for (PHINode *PN : InsertedPHIs) 2262*06c3fb27SDimitry Andric rememberInstruction(PN); 2263e8d8bef9SDimitry Andric for (PHINode *PN : PHIsToRemove) { 2264e8d8bef9SDimitry Andric if (!PN->use_empty()) 2265e8d8bef9SDimitry Andric continue; 2266e8d8bef9SDimitry Andric InsertedValues.erase(PN); 2267e8d8bef9SDimitry Andric InsertedPostIncValues.erase(PN); 2268e8d8bef9SDimitry Andric PN->eraseFromParent(); 2269e8d8bef9SDimitry Andric } 2270e8d8bef9SDimitry Andric 2271bdd1243dSDimitry Andric return User->getOperand(0); 2272e8d8bef9SDimitry Andric } 2273e8d8bef9SDimitry Andric 22745ffd83dbSDimitry Andric namespace { 22755ffd83dbSDimitry Andric // Search for a SCEV subexpression that is not safe to expand. Any expression 22765ffd83dbSDimitry Andric // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 22775ffd83dbSDimitry Andric // UDiv expressions. We don't know if the UDiv is derived from an IR divide 22785ffd83dbSDimitry Andric // instruction, but the important thing is that we prove the denominator is 22795ffd83dbSDimitry Andric // nonzero before expansion. 22805ffd83dbSDimitry Andric // 22815ffd83dbSDimitry Andric // IVUsers already checks that IV-derived expressions are safe. So this check is 22825ffd83dbSDimitry Andric // only needed when the expression includes some subexpression that is not IV 22835ffd83dbSDimitry Andric // derived. 22845ffd83dbSDimitry Andric // 2285fcaf7f86SDimitry Andric // Currently, we only allow division by a value provably non-zero here. 22865ffd83dbSDimitry Andric // 22875ffd83dbSDimitry Andric // We cannot generally expand recurrences unless the step dominates the loop 22885ffd83dbSDimitry Andric // header. The expander handles the special case of affine recurrences by 22895ffd83dbSDimitry Andric // scaling the recurrence outside the loop, but this technique isn't generally 22905ffd83dbSDimitry Andric // applicable. Expanding a nested recurrence outside a loop requires computing 22915ffd83dbSDimitry Andric // binomial coefficients. This could be done, but the recurrence has to be in a 22925ffd83dbSDimitry Andric // perfectly reduced form, which can't be guaranteed. 22935ffd83dbSDimitry Andric struct SCEVFindUnsafe { 22945ffd83dbSDimitry Andric ScalarEvolution &SE; 2295349cc55cSDimitry Andric bool CanonicalMode; 229681ad6265SDimitry Andric bool IsUnsafe = false; 22975ffd83dbSDimitry Andric 2298349cc55cSDimitry Andric SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 229981ad6265SDimitry Andric : SE(SE), CanonicalMode(CanonicalMode) {} 23005ffd83dbSDimitry Andric 23015ffd83dbSDimitry Andric bool follow(const SCEV *S) { 23025ffd83dbSDimitry Andric if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2303fcaf7f86SDimitry Andric if (!SE.isKnownNonZero(D->getRHS())) { 23045ffd83dbSDimitry Andric IsUnsafe = true; 23055ffd83dbSDimitry Andric return false; 23065ffd83dbSDimitry Andric } 23075ffd83dbSDimitry Andric } 23085ffd83dbSDimitry Andric if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 23095ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 23105ffd83dbSDimitry Andric if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 23115ffd83dbSDimitry Andric IsUnsafe = true; 23125ffd83dbSDimitry Andric return false; 23135ffd83dbSDimitry Andric } 2314349cc55cSDimitry Andric 2315349cc55cSDimitry Andric // For non-affine addrecs or in non-canonical mode we need a preheader 2316349cc55cSDimitry Andric // to insert into. 2317349cc55cSDimitry Andric if (!AR->getLoop()->getLoopPreheader() && 2318349cc55cSDimitry Andric (!CanonicalMode || !AR->isAffine())) { 2319349cc55cSDimitry Andric IsUnsafe = true; 2320349cc55cSDimitry Andric return false; 2321349cc55cSDimitry Andric } 23225ffd83dbSDimitry Andric } 23235ffd83dbSDimitry Andric return true; 23245ffd83dbSDimitry Andric } 23255ffd83dbSDimitry Andric bool isDone() const { return IsUnsafe; } 23265ffd83dbSDimitry Andric }; 2327fcaf7f86SDimitry Andric } // namespace 23285ffd83dbSDimitry Andric 2329fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2330349cc55cSDimitry Andric SCEVFindUnsafe Search(SE, CanonicalMode); 23315ffd83dbSDimitry Andric visitAll(S, Search); 23325ffd83dbSDimitry Andric return !Search.IsUnsafe; 23335ffd83dbSDimitry Andric } 23345ffd83dbSDimitry Andric 2335fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2336fcaf7f86SDimitry Andric const Instruction *InsertionPoint) const { 2337fcaf7f86SDimitry Andric if (!isSafeToExpand(S)) 23385ffd83dbSDimitry Andric return false; 23395ffd83dbSDimitry Andric // We have to prove that the expanded site of S dominates InsertionPoint. 23405ffd83dbSDimitry Andric // This is easy when not in the same block, but hard when S is an instruction 23415ffd83dbSDimitry Andric // to be expanded somewhere inside the same block as our insertion point. 23425ffd83dbSDimitry Andric // What we really need here is something analogous to an OrderedBasicBlock, 23435ffd83dbSDimitry Andric // but for the moment, we paper over the problem by handling two common and 23445ffd83dbSDimitry Andric // cheap to check cases. 23455ffd83dbSDimitry Andric if (SE.properlyDominates(S, InsertionPoint->getParent())) 23465ffd83dbSDimitry Andric return true; 23475ffd83dbSDimitry Andric if (SE.dominates(S, InsertionPoint->getParent())) { 23485ffd83dbSDimitry Andric if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 23495ffd83dbSDimitry Andric return true; 23505ffd83dbSDimitry Andric if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2351fe6060f1SDimitry Andric if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 23525ffd83dbSDimitry Andric return true; 23535ffd83dbSDimitry Andric } 23545ffd83dbSDimitry Andric return false; 23555ffd83dbSDimitry Andric } 2356e8d8bef9SDimitry Andric 2357fe6060f1SDimitry Andric void SCEVExpanderCleaner::cleanup() { 2358e8d8bef9SDimitry Andric // Result is used, nothing to remove. 2359e8d8bef9SDimitry Andric if (ResultUsed) 2360e8d8bef9SDimitry Andric return; 2361e8d8bef9SDimitry Andric 2362e8d8bef9SDimitry Andric auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2363e8d8bef9SDimitry Andric #ifndef NDEBUG 2364e8d8bef9SDimitry Andric SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2365e8d8bef9SDimitry Andric InsertedInstructions.end()); 2366e8d8bef9SDimitry Andric (void)InsertedSet; 2367e8d8bef9SDimitry Andric #endif 2368e8d8bef9SDimitry Andric // Remove sets with value handles. 2369e8d8bef9SDimitry Andric Expander.clear(); 2370e8d8bef9SDimitry Andric 2371e8d8bef9SDimitry Andric // Remove all inserted instructions. 237204eeddc0SDimitry Andric for (Instruction *I : reverse(InsertedInstructions)) { 2373e8d8bef9SDimitry Andric #ifndef NDEBUG 2374e8d8bef9SDimitry Andric assert(all_of(I->users(), 2375e8d8bef9SDimitry Andric [&InsertedSet](Value *U) { 2376e8d8bef9SDimitry Andric return InsertedSet.contains(cast<Instruction>(U)); 2377e8d8bef9SDimitry Andric }) && 2378e8d8bef9SDimitry Andric "removed instruction should only be used by instructions inserted " 2379e8d8bef9SDimitry Andric "during expansion"); 2380e8d8bef9SDimitry Andric #endif 2381e8d8bef9SDimitry Andric assert(!I->getType()->isVoidTy() && 2382e8d8bef9SDimitry Andric "inserted instruction should have non-void types"); 2383bdd1243dSDimitry Andric I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2384e8d8bef9SDimitry Andric I->eraseFromParent(); 2385e8d8bef9SDimitry Andric } 2386e8d8bef9SDimitry Andric } 2387