1fe6060f1SDimitry Andric //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===// 2fe6060f1SDimitry Andric // 3fe6060f1SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4fe6060f1SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5fe6060f1SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6fe6060f1SDimitry Andric // 7fe6060f1SDimitry Andric //===----------------------------------------------------------------------===// 8fe6060f1SDimitry Andric // 9fe6060f1SDimitry Andric // \file 10fe6060f1SDimitry Andric // This file implements the Sparse Conditional Constant Propagation (SCCP) 11fe6060f1SDimitry Andric // utility. 12fe6060f1SDimitry Andric // 13fe6060f1SDimitry Andric //===----------------------------------------------------------------------===// 14fe6060f1SDimitry Andric 15fe6060f1SDimitry Andric #include "llvm/Transforms/Utils/SCCPSolver.h" 16fe6060f1SDimitry Andric #include "llvm/Analysis/ConstantFolding.h" 17fe6060f1SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 1881ad6265SDimitry Andric #include "llvm/Analysis/ValueLattice.h" 19bdd1243dSDimitry Andric #include "llvm/Analysis/ValueLatticeUtils.h" 2006c3fb27SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 2181ad6265SDimitry Andric #include "llvm/IR/InstVisitor.h" 22fe6060f1SDimitry Andric #include "llvm/Support/Casting.h" 23fe6060f1SDimitry Andric #include "llvm/Support/Debug.h" 24fe6060f1SDimitry Andric #include "llvm/Support/ErrorHandling.h" 25fe6060f1SDimitry Andric #include "llvm/Support/raw_ostream.h" 26bdd1243dSDimitry Andric #include "llvm/Transforms/Utils/Local.h" 27fe6060f1SDimitry Andric #include <cassert> 28fe6060f1SDimitry Andric #include <utility> 29fe6060f1SDimitry Andric #include <vector> 30fe6060f1SDimitry Andric 31fe6060f1SDimitry Andric using namespace llvm; 32fe6060f1SDimitry Andric 33fe6060f1SDimitry Andric #define DEBUG_TYPE "sccp" 34fe6060f1SDimitry Andric 35fe6060f1SDimitry Andric // The maximum number of range extensions allowed for operations requiring 36fe6060f1SDimitry Andric // widening. 37fe6060f1SDimitry Andric static const unsigned MaxNumRangeExtensions = 10; 38fe6060f1SDimitry Andric 39fe6060f1SDimitry Andric /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. 40fe6060f1SDimitry Andric static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { 41fe6060f1SDimitry Andric return ValueLatticeElement::MergeOptions().setMaxWidenSteps( 42fe6060f1SDimitry Andric MaxNumRangeExtensions); 43fe6060f1SDimitry Andric } 44fe6060f1SDimitry Andric 4506c3fb27SDimitry Andric static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty, 4606c3fb27SDimitry Andric bool UndefAllowed = true) { 4706c3fb27SDimitry Andric assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector"); 4806c3fb27SDimitry Andric if (LV.isConstantRange(UndefAllowed)) 4906c3fb27SDimitry Andric return LV.getConstantRange(); 5006c3fb27SDimitry Andric return ConstantRange::getFull(Ty->getScalarSizeInBits()); 5106c3fb27SDimitry Andric } 5206c3fb27SDimitry Andric 53bdd1243dSDimitry Andric namespace llvm { 54fe6060f1SDimitry Andric 55bdd1243dSDimitry Andric bool SCCPSolver::isConstant(const ValueLatticeElement &LV) { 56fe6060f1SDimitry Andric return LV.isConstant() || 57fe6060f1SDimitry Andric (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 58fe6060f1SDimitry Andric } 59fe6060f1SDimitry Andric 60bdd1243dSDimitry Andric bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) { 61bdd1243dSDimitry Andric return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV); 62fe6060f1SDimitry Andric } 63fe6060f1SDimitry Andric 64bdd1243dSDimitry Andric static bool canRemoveInstruction(Instruction *I) { 65bdd1243dSDimitry Andric if (wouldInstructionBeTriviallyDead(I)) 66bdd1243dSDimitry Andric return true; 67fe6060f1SDimitry Andric 68bdd1243dSDimitry Andric // Some instructions can be handled but are rejected above. Catch 69bdd1243dSDimitry Andric // those cases by falling through to here. 70bdd1243dSDimitry Andric // TODO: Mark globals as being constant earlier, so 71bdd1243dSDimitry Andric // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads 72bdd1243dSDimitry Andric // TODO: are safe to remove. 73bdd1243dSDimitry Andric return isa<LoadInst>(I); 74bdd1243dSDimitry Andric } 75bdd1243dSDimitry Andric 76bdd1243dSDimitry Andric bool SCCPSolver::tryToReplaceWithConstant(Value *V) { 7706c3fb27SDimitry Andric Constant *Const = getConstantOrNull(V); 7806c3fb27SDimitry Andric if (!Const) 79bdd1243dSDimitry Andric return false; 80bdd1243dSDimitry Andric // Replacing `musttail` instructions with constant breaks `musttail` invariant 81bdd1243dSDimitry Andric // unless the call itself can be removed. 82bdd1243dSDimitry Andric // Calls with "clang.arc.attachedcall" implicitly use the return value and 83bdd1243dSDimitry Andric // those uses cannot be updated with a constant. 84bdd1243dSDimitry Andric CallBase *CB = dyn_cast<CallBase>(V); 85bdd1243dSDimitry Andric if (CB && ((CB->isMustTailCall() && 86bdd1243dSDimitry Andric !canRemoveInstruction(CB)) || 87bdd1243dSDimitry Andric CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) { 88bdd1243dSDimitry Andric Function *F = CB->getCalledFunction(); 89bdd1243dSDimitry Andric 90bdd1243dSDimitry Andric // Don't zap returns of the callee 91bdd1243dSDimitry Andric if (F) 92bdd1243dSDimitry Andric addToMustPreserveReturnsInFunctions(F); 93bdd1243dSDimitry Andric 94bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB 95bdd1243dSDimitry Andric << " as a constant\n"); 96bdd1243dSDimitry Andric return false; 97bdd1243dSDimitry Andric } 98bdd1243dSDimitry Andric 99bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); 100bdd1243dSDimitry Andric 101bdd1243dSDimitry Andric // Replaces all of the uses of a variable with uses of the constant. 102bdd1243dSDimitry Andric V->replaceAllUsesWith(Const); 103bdd1243dSDimitry Andric return true; 104bdd1243dSDimitry Andric } 105bdd1243dSDimitry Andric 10606c3fb27SDimitry Andric /// Try to use \p Inst's value range from \p Solver to infer the NUW flag. 10706c3fb27SDimitry Andric static bool refineInstruction(SCCPSolver &Solver, 10806c3fb27SDimitry Andric const SmallPtrSetImpl<Value *> &InsertedValues, 10906c3fb27SDimitry Andric Instruction &Inst) { 110*5f757f3fSDimitry Andric bool Changed = false; 11106c3fb27SDimitry Andric auto GetRange = [&Solver, &InsertedValues](Value *Op) { 11206c3fb27SDimitry Andric if (auto *Const = dyn_cast<ConstantInt>(Op)) 11306c3fb27SDimitry Andric return ConstantRange(Const->getValue()); 11406c3fb27SDimitry Andric if (isa<Constant>(Op) || InsertedValues.contains(Op)) { 11506c3fb27SDimitry Andric unsigned Bitwidth = Op->getType()->getScalarSizeInBits(); 11606c3fb27SDimitry Andric return ConstantRange::getFull(Bitwidth); 11706c3fb27SDimitry Andric } 11806c3fb27SDimitry Andric return getConstantRange(Solver.getLatticeValueFor(Op), Op->getType(), 11906c3fb27SDimitry Andric /*UndefAllowed=*/false); 12006c3fb27SDimitry Andric }; 121*5f757f3fSDimitry Andric 122*5f757f3fSDimitry Andric if (isa<OverflowingBinaryOperator>(Inst)) { 12306c3fb27SDimitry Andric auto RangeA = GetRange(Inst.getOperand(0)); 12406c3fb27SDimitry Andric auto RangeB = GetRange(Inst.getOperand(1)); 12506c3fb27SDimitry Andric if (!Inst.hasNoUnsignedWrap()) { 12606c3fb27SDimitry Andric auto NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( 12706c3fb27SDimitry Andric Instruction::BinaryOps(Inst.getOpcode()), RangeB, 12806c3fb27SDimitry Andric OverflowingBinaryOperator::NoUnsignedWrap); 12906c3fb27SDimitry Andric if (NUWRange.contains(RangeA)) { 13006c3fb27SDimitry Andric Inst.setHasNoUnsignedWrap(); 13106c3fb27SDimitry Andric Changed = true; 13206c3fb27SDimitry Andric } 13306c3fb27SDimitry Andric } 13406c3fb27SDimitry Andric if (!Inst.hasNoSignedWrap()) { 13506c3fb27SDimitry Andric auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( 136*5f757f3fSDimitry Andric Instruction::BinaryOps(Inst.getOpcode()), RangeB, 137*5f757f3fSDimitry Andric OverflowingBinaryOperator::NoSignedWrap); 13806c3fb27SDimitry Andric if (NSWRange.contains(RangeA)) { 13906c3fb27SDimitry Andric Inst.setHasNoSignedWrap(); 14006c3fb27SDimitry Andric Changed = true; 14106c3fb27SDimitry Andric } 14206c3fb27SDimitry Andric } 143*5f757f3fSDimitry Andric } else if (isa<ZExtInst>(Inst) && !Inst.hasNonNeg()) { 144*5f757f3fSDimitry Andric auto Range = GetRange(Inst.getOperand(0)); 145*5f757f3fSDimitry Andric if (Range.isAllNonNegative()) { 146*5f757f3fSDimitry Andric Inst.setNonNeg(); 147*5f757f3fSDimitry Andric Changed = true; 148*5f757f3fSDimitry Andric } 149*5f757f3fSDimitry Andric } 15006c3fb27SDimitry Andric 15106c3fb27SDimitry Andric return Changed; 15206c3fb27SDimitry Andric } 15306c3fb27SDimitry Andric 154bdd1243dSDimitry Andric /// Try to replace signed instructions with their unsigned equivalent. 155bdd1243dSDimitry Andric static bool replaceSignedInst(SCCPSolver &Solver, 156bdd1243dSDimitry Andric SmallPtrSetImpl<Value *> &InsertedValues, 157bdd1243dSDimitry Andric Instruction &Inst) { 158bdd1243dSDimitry Andric // Determine if a signed value is known to be >= 0. 159bdd1243dSDimitry Andric auto isNonNegative = [&Solver](Value *V) { 160bdd1243dSDimitry Andric // If this value was constant-folded, it may not have a solver entry. 161bdd1243dSDimitry Andric // Handle integers. Otherwise, return false. 162bdd1243dSDimitry Andric if (auto *C = dyn_cast<Constant>(V)) { 163bdd1243dSDimitry Andric auto *CInt = dyn_cast<ConstantInt>(C); 164bdd1243dSDimitry Andric return CInt && !CInt->isNegative(); 165bdd1243dSDimitry Andric } 166bdd1243dSDimitry Andric const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); 167bdd1243dSDimitry Andric return IV.isConstantRange(/*UndefAllowed=*/false) && 168bdd1243dSDimitry Andric IV.getConstantRange().isAllNonNegative(); 169bdd1243dSDimitry Andric }; 170bdd1243dSDimitry Andric 171bdd1243dSDimitry Andric Instruction *NewInst = nullptr; 172bdd1243dSDimitry Andric switch (Inst.getOpcode()) { 173bdd1243dSDimitry Andric // Note: We do not fold sitofp -> uitofp here because that could be more 174bdd1243dSDimitry Andric // expensive in codegen and may not be reversible in the backend. 175bdd1243dSDimitry Andric case Instruction::SExt: { 176bdd1243dSDimitry Andric // If the source value is not negative, this is a zext. 177bdd1243dSDimitry Andric Value *Op0 = Inst.getOperand(0); 178bdd1243dSDimitry Andric if (InsertedValues.count(Op0) || !isNonNegative(Op0)) 179bdd1243dSDimitry Andric return false; 180bdd1243dSDimitry Andric NewInst = new ZExtInst(Op0, Inst.getType(), "", &Inst); 181*5f757f3fSDimitry Andric NewInst->setNonNeg(); 182bdd1243dSDimitry Andric break; 183bdd1243dSDimitry Andric } 184bdd1243dSDimitry Andric case Instruction::AShr: { 185bdd1243dSDimitry Andric // If the shifted value is not negative, this is a logical shift right. 186bdd1243dSDimitry Andric Value *Op0 = Inst.getOperand(0); 187bdd1243dSDimitry Andric if (InsertedValues.count(Op0) || !isNonNegative(Op0)) 188bdd1243dSDimitry Andric return false; 189bdd1243dSDimitry Andric NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", &Inst); 190*5f757f3fSDimitry Andric NewInst->setIsExact(Inst.isExact()); 191bdd1243dSDimitry Andric break; 192bdd1243dSDimitry Andric } 193bdd1243dSDimitry Andric case Instruction::SDiv: 194bdd1243dSDimitry Andric case Instruction::SRem: { 195bdd1243dSDimitry Andric // If both operands are not negative, this is the same as udiv/urem. 196bdd1243dSDimitry Andric Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1); 197bdd1243dSDimitry Andric if (InsertedValues.count(Op0) || InsertedValues.count(Op1) || 198bdd1243dSDimitry Andric !isNonNegative(Op0) || !isNonNegative(Op1)) 199bdd1243dSDimitry Andric return false; 200bdd1243dSDimitry Andric auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv 201bdd1243dSDimitry Andric : Instruction::URem; 202bdd1243dSDimitry Andric NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", &Inst); 203*5f757f3fSDimitry Andric if (Inst.getOpcode() == Instruction::SDiv) 204*5f757f3fSDimitry Andric NewInst->setIsExact(Inst.isExact()); 205bdd1243dSDimitry Andric break; 206bdd1243dSDimitry Andric } 207bdd1243dSDimitry Andric default: 208bdd1243dSDimitry Andric return false; 209bdd1243dSDimitry Andric } 210bdd1243dSDimitry Andric 211bdd1243dSDimitry Andric // Wire up the new instruction and update state. 212bdd1243dSDimitry Andric assert(NewInst && "Expected replacement instruction"); 213bdd1243dSDimitry Andric NewInst->takeName(&Inst); 214bdd1243dSDimitry Andric InsertedValues.insert(NewInst); 215bdd1243dSDimitry Andric Inst.replaceAllUsesWith(NewInst); 216bdd1243dSDimitry Andric Solver.removeLatticeValueFor(&Inst); 217bdd1243dSDimitry Andric Inst.eraseFromParent(); 218bdd1243dSDimitry Andric return true; 219bdd1243dSDimitry Andric } 220bdd1243dSDimitry Andric 221bdd1243dSDimitry Andric bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB, 222bdd1243dSDimitry Andric SmallPtrSetImpl<Value *> &InsertedValues, 223bdd1243dSDimitry Andric Statistic &InstRemovedStat, 224bdd1243dSDimitry Andric Statistic &InstReplacedStat) { 225bdd1243dSDimitry Andric bool MadeChanges = false; 226bdd1243dSDimitry Andric for (Instruction &Inst : make_early_inc_range(BB)) { 227bdd1243dSDimitry Andric if (Inst.getType()->isVoidTy()) 228bdd1243dSDimitry Andric continue; 229bdd1243dSDimitry Andric if (tryToReplaceWithConstant(&Inst)) { 230bdd1243dSDimitry Andric if (canRemoveInstruction(&Inst)) 231bdd1243dSDimitry Andric Inst.eraseFromParent(); 232bdd1243dSDimitry Andric 233bdd1243dSDimitry Andric MadeChanges = true; 234bdd1243dSDimitry Andric ++InstRemovedStat; 235bdd1243dSDimitry Andric } else if (replaceSignedInst(*this, InsertedValues, Inst)) { 236bdd1243dSDimitry Andric MadeChanges = true; 237bdd1243dSDimitry Andric ++InstReplacedStat; 23806c3fb27SDimitry Andric } else if (refineInstruction(*this, InsertedValues, Inst)) { 23906c3fb27SDimitry Andric MadeChanges = true; 240bdd1243dSDimitry Andric } 241bdd1243dSDimitry Andric } 242bdd1243dSDimitry Andric return MadeChanges; 243bdd1243dSDimitry Andric } 244bdd1243dSDimitry Andric 245bdd1243dSDimitry Andric bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU, 246bdd1243dSDimitry Andric BasicBlock *&NewUnreachableBB) const { 247bdd1243dSDimitry Andric SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors; 248bdd1243dSDimitry Andric bool HasNonFeasibleEdges = false; 249bdd1243dSDimitry Andric for (BasicBlock *Succ : successors(BB)) { 250bdd1243dSDimitry Andric if (isEdgeFeasible(BB, Succ)) 251bdd1243dSDimitry Andric FeasibleSuccessors.insert(Succ); 252bdd1243dSDimitry Andric else 253bdd1243dSDimitry Andric HasNonFeasibleEdges = true; 254bdd1243dSDimitry Andric } 255bdd1243dSDimitry Andric 256bdd1243dSDimitry Andric // All edges feasible, nothing to do. 257bdd1243dSDimitry Andric if (!HasNonFeasibleEdges) 258bdd1243dSDimitry Andric return false; 259bdd1243dSDimitry Andric 260bdd1243dSDimitry Andric // SCCP can only determine non-feasible edges for br, switch and indirectbr. 261bdd1243dSDimitry Andric Instruction *TI = BB->getTerminator(); 262bdd1243dSDimitry Andric assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) || 263bdd1243dSDimitry Andric isa<IndirectBrInst>(TI)) && 264bdd1243dSDimitry Andric "Terminator must be a br, switch or indirectbr"); 265bdd1243dSDimitry Andric 266bdd1243dSDimitry Andric if (FeasibleSuccessors.size() == 0) { 267bdd1243dSDimitry Andric // Branch on undef/poison, replace with unreachable. 268bdd1243dSDimitry Andric SmallPtrSet<BasicBlock *, 8> SeenSuccs; 269bdd1243dSDimitry Andric SmallVector<DominatorTree::UpdateType, 8> Updates; 270bdd1243dSDimitry Andric for (BasicBlock *Succ : successors(BB)) { 271bdd1243dSDimitry Andric Succ->removePredecessor(BB); 272bdd1243dSDimitry Andric if (SeenSuccs.insert(Succ).second) 273bdd1243dSDimitry Andric Updates.push_back({DominatorTree::Delete, BB, Succ}); 274bdd1243dSDimitry Andric } 275bdd1243dSDimitry Andric TI->eraseFromParent(); 276bdd1243dSDimitry Andric new UnreachableInst(BB->getContext(), BB); 277bdd1243dSDimitry Andric DTU.applyUpdatesPermissive(Updates); 278bdd1243dSDimitry Andric } else if (FeasibleSuccessors.size() == 1) { 279bdd1243dSDimitry Andric // Replace with an unconditional branch to the only feasible successor. 280bdd1243dSDimitry Andric BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin(); 281bdd1243dSDimitry Andric SmallVector<DominatorTree::UpdateType, 8> Updates; 282bdd1243dSDimitry Andric bool HaveSeenOnlyFeasibleSuccessor = false; 283bdd1243dSDimitry Andric for (BasicBlock *Succ : successors(BB)) { 284bdd1243dSDimitry Andric if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) { 285bdd1243dSDimitry Andric // Don't remove the edge to the only feasible successor the first time 286bdd1243dSDimitry Andric // we see it. We still do need to remove any multi-edges to it though. 287bdd1243dSDimitry Andric HaveSeenOnlyFeasibleSuccessor = true; 288bdd1243dSDimitry Andric continue; 289bdd1243dSDimitry Andric } 290bdd1243dSDimitry Andric 291bdd1243dSDimitry Andric Succ->removePredecessor(BB); 292bdd1243dSDimitry Andric Updates.push_back({DominatorTree::Delete, BB, Succ}); 293bdd1243dSDimitry Andric } 294bdd1243dSDimitry Andric 295bdd1243dSDimitry Andric BranchInst::Create(OnlyFeasibleSuccessor, BB); 296bdd1243dSDimitry Andric TI->eraseFromParent(); 297bdd1243dSDimitry Andric DTU.applyUpdatesPermissive(Updates); 298bdd1243dSDimitry Andric } else if (FeasibleSuccessors.size() > 1) { 299bdd1243dSDimitry Andric SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI)); 300bdd1243dSDimitry Andric SmallVector<DominatorTree::UpdateType, 8> Updates; 301bdd1243dSDimitry Andric 302bdd1243dSDimitry Andric // If the default destination is unfeasible it will never be taken. Replace 303bdd1243dSDimitry Andric // it with a new block with a single Unreachable instruction. 304bdd1243dSDimitry Andric BasicBlock *DefaultDest = SI->getDefaultDest(); 305bdd1243dSDimitry Andric if (!FeasibleSuccessors.contains(DefaultDest)) { 306bdd1243dSDimitry Andric if (!NewUnreachableBB) { 307bdd1243dSDimitry Andric NewUnreachableBB = 308bdd1243dSDimitry Andric BasicBlock::Create(DefaultDest->getContext(), "default.unreachable", 309bdd1243dSDimitry Andric DefaultDest->getParent(), DefaultDest); 310bdd1243dSDimitry Andric new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB); 311bdd1243dSDimitry Andric } 312bdd1243dSDimitry Andric 313bdd1243dSDimitry Andric SI->setDefaultDest(NewUnreachableBB); 314bdd1243dSDimitry Andric Updates.push_back({DominatorTree::Delete, BB, DefaultDest}); 315bdd1243dSDimitry Andric Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB}); 316bdd1243dSDimitry Andric } 317bdd1243dSDimitry Andric 318bdd1243dSDimitry Andric for (auto CI = SI->case_begin(); CI != SI->case_end();) { 319bdd1243dSDimitry Andric if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) { 320bdd1243dSDimitry Andric ++CI; 321bdd1243dSDimitry Andric continue; 322bdd1243dSDimitry Andric } 323bdd1243dSDimitry Andric 324bdd1243dSDimitry Andric BasicBlock *Succ = CI->getCaseSuccessor(); 325bdd1243dSDimitry Andric Succ->removePredecessor(BB); 326bdd1243dSDimitry Andric Updates.push_back({DominatorTree::Delete, BB, Succ}); 327bdd1243dSDimitry Andric SI.removeCase(CI); 328bdd1243dSDimitry Andric // Don't increment CI, as we removed a case. 329bdd1243dSDimitry Andric } 330bdd1243dSDimitry Andric 331bdd1243dSDimitry Andric DTU.applyUpdatesPermissive(Updates); 332bdd1243dSDimitry Andric } else { 333bdd1243dSDimitry Andric llvm_unreachable("Must have at least one feasible successor"); 334bdd1243dSDimitry Andric } 335bdd1243dSDimitry Andric return true; 336bdd1243dSDimitry Andric } 337fe6060f1SDimitry Andric 338fe6060f1SDimitry Andric /// Helper class for SCCPSolver. This implements the instruction visitor and 339fe6060f1SDimitry Andric /// holds all the state. 340fe6060f1SDimitry Andric class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> { 341fe6060f1SDimitry Andric const DataLayout &DL; 342fe6060f1SDimitry Andric std::function<const TargetLibraryInfo &(Function &)> GetTLI; 343fe6060f1SDimitry Andric SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. 344fe6060f1SDimitry Andric DenseMap<Value *, ValueLatticeElement> 345fe6060f1SDimitry Andric ValueState; // The state each value is in. 346fe6060f1SDimitry Andric 347fe6060f1SDimitry Andric /// StructValueState - This maintains ValueState for values that have 348fe6060f1SDimitry Andric /// StructType, for example for formal arguments, calls, insertelement, etc. 349fe6060f1SDimitry Andric DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState; 350fe6060f1SDimitry Andric 351fe6060f1SDimitry Andric /// GlobalValue - If we are tracking any values for the contents of a global 352fe6060f1SDimitry Andric /// variable, we keep a mapping from the constant accessor to the element of 353fe6060f1SDimitry Andric /// the global, to the currently known value. If the value becomes 354fe6060f1SDimitry Andric /// overdefined, it's entry is simply removed from this map. 355fe6060f1SDimitry Andric DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals; 356fe6060f1SDimitry Andric 357fe6060f1SDimitry Andric /// TrackedRetVals - If we are tracking arguments into and the return 358fe6060f1SDimitry Andric /// value out of a function, it will have an entry in this map, indicating 359fe6060f1SDimitry Andric /// what the known return value for the function is. 360fe6060f1SDimitry Andric MapVector<Function *, ValueLatticeElement> TrackedRetVals; 361fe6060f1SDimitry Andric 362fe6060f1SDimitry Andric /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 363fe6060f1SDimitry Andric /// that return multiple values. 364fe6060f1SDimitry Andric MapVector<std::pair<Function *, unsigned>, ValueLatticeElement> 365fe6060f1SDimitry Andric TrackedMultipleRetVals; 366fe6060f1SDimitry Andric 36706c3fb27SDimitry Andric /// The set of values whose lattice has been invalidated. 36806c3fb27SDimitry Andric /// Populated by resetLatticeValueFor(), cleared after resolving undefs. 36906c3fb27SDimitry Andric DenseSet<Value *> Invalidated; 37006c3fb27SDimitry Andric 371fe6060f1SDimitry Andric /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 372fe6060f1SDimitry Andric /// represented here for efficient lookup. 373fe6060f1SDimitry Andric SmallPtrSet<Function *, 16> MRVFunctionsTracked; 374fe6060f1SDimitry Andric 375fe6060f1SDimitry Andric /// A list of functions whose return cannot be modified. 376fe6060f1SDimitry Andric SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions; 377fe6060f1SDimitry Andric 378fe6060f1SDimitry Andric /// TrackingIncomingArguments - This is the set of functions for whose 379fe6060f1SDimitry Andric /// arguments we make optimistic assumptions about and try to prove as 380fe6060f1SDimitry Andric /// constants. 381fe6060f1SDimitry Andric SmallPtrSet<Function *, 16> TrackingIncomingArguments; 382fe6060f1SDimitry Andric 383fe6060f1SDimitry Andric /// The reason for two worklists is that overdefined is the lowest state 384fe6060f1SDimitry Andric /// on the lattice, and moving things to overdefined as fast as possible 385fe6060f1SDimitry Andric /// makes SCCP converge much faster. 386fe6060f1SDimitry Andric /// 387fe6060f1SDimitry Andric /// By having a separate worklist, we accomplish this because everything 388fe6060f1SDimitry Andric /// possibly overdefined will become overdefined at the soonest possible 389fe6060f1SDimitry Andric /// point. 390fe6060f1SDimitry Andric SmallVector<Value *, 64> OverdefinedInstWorkList; 391fe6060f1SDimitry Andric SmallVector<Value *, 64> InstWorkList; 392fe6060f1SDimitry Andric 393fe6060f1SDimitry Andric // The BasicBlock work list 394fe6060f1SDimitry Andric SmallVector<BasicBlock *, 64> BBWorkList; 395fe6060f1SDimitry Andric 396fe6060f1SDimitry Andric /// KnownFeasibleEdges - Entries in this set are edges which have already had 397fe6060f1SDimitry Andric /// PHI nodes retriggered. 398fe6060f1SDimitry Andric using Edge = std::pair<BasicBlock *, BasicBlock *>; 399fe6060f1SDimitry Andric DenseSet<Edge> KnownFeasibleEdges; 400fe6060f1SDimitry Andric 40106c3fb27SDimitry Andric DenseMap<Function *, std::unique_ptr<PredicateInfo>> FnPredicateInfo; 40206c3fb27SDimitry Andric 403fe6060f1SDimitry Andric DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; 404fe6060f1SDimitry Andric 405fe6060f1SDimitry Andric LLVMContext &Ctx; 406fe6060f1SDimitry Andric 407fe6060f1SDimitry Andric private: 40806c3fb27SDimitry Andric ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const { 40906c3fb27SDimitry Andric return dyn_cast_or_null<ConstantInt>(getConstant(IV, Ty)); 410fe6060f1SDimitry Andric } 411fe6060f1SDimitry Andric 412fe6060f1SDimitry Andric // pushToWorkList - Helper for markConstant/markOverdefined 413fe6060f1SDimitry Andric void pushToWorkList(ValueLatticeElement &IV, Value *V); 414fe6060f1SDimitry Andric 415fe6060f1SDimitry Andric // Helper to push \p V to the worklist, after updating it to \p IV. Also 416fe6060f1SDimitry Andric // prints a debug message with the updated value. 417fe6060f1SDimitry Andric void pushToWorkListMsg(ValueLatticeElement &IV, Value *V); 418fe6060f1SDimitry Andric 419fe6060f1SDimitry Andric // markConstant - Make a value be marked as "constant". If the value 420fe6060f1SDimitry Andric // is not already a constant, add it to the instruction work list so that 421fe6060f1SDimitry Andric // the users of the instruction are updated later. 422fe6060f1SDimitry Andric bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, 423fe6060f1SDimitry Andric bool MayIncludeUndef = false); 424fe6060f1SDimitry Andric 425fe6060f1SDimitry Andric bool markConstant(Value *V, Constant *C) { 426fe6060f1SDimitry Andric assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 427fe6060f1SDimitry Andric return markConstant(ValueState[V], V, C); 428fe6060f1SDimitry Andric } 429fe6060f1SDimitry Andric 430fe6060f1SDimitry Andric // markOverdefined - Make a value be marked as "overdefined". If the 431fe6060f1SDimitry Andric // value is not already overdefined, add it to the overdefined instruction 432fe6060f1SDimitry Andric // work list so that the users of the instruction are updated later. 433fe6060f1SDimitry Andric bool markOverdefined(ValueLatticeElement &IV, Value *V); 434fe6060f1SDimitry Andric 435fe6060f1SDimitry Andric /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV 436fe6060f1SDimitry Andric /// changes. 437fe6060f1SDimitry Andric bool mergeInValue(ValueLatticeElement &IV, Value *V, 438fe6060f1SDimitry Andric ValueLatticeElement MergeWithV, 439fe6060f1SDimitry Andric ValueLatticeElement::MergeOptions Opts = { 440fe6060f1SDimitry Andric /*MayIncludeUndef=*/false, /*CheckWiden=*/false}); 441fe6060f1SDimitry Andric 442fe6060f1SDimitry Andric bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, 443fe6060f1SDimitry Andric ValueLatticeElement::MergeOptions Opts = { 444fe6060f1SDimitry Andric /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { 445fe6060f1SDimitry Andric assert(!V->getType()->isStructTy() && 446fe6060f1SDimitry Andric "non-structs should use markConstant"); 447fe6060f1SDimitry Andric return mergeInValue(ValueState[V], V, MergeWithV, Opts); 448fe6060f1SDimitry Andric } 449fe6060f1SDimitry Andric 450fe6060f1SDimitry Andric /// getValueState - Return the ValueLatticeElement object that corresponds to 451fe6060f1SDimitry Andric /// the value. This function handles the case when the value hasn't been seen 452fe6060f1SDimitry Andric /// yet by properly seeding constants etc. 453fe6060f1SDimitry Andric ValueLatticeElement &getValueState(Value *V) { 454fe6060f1SDimitry Andric assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 455fe6060f1SDimitry Andric 456fe6060f1SDimitry Andric auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement())); 457fe6060f1SDimitry Andric ValueLatticeElement &LV = I.first->second; 458fe6060f1SDimitry Andric 459fe6060f1SDimitry Andric if (!I.second) 460fe6060f1SDimitry Andric return LV; // Common case, already in the map. 461fe6060f1SDimitry Andric 462fe6060f1SDimitry Andric if (auto *C = dyn_cast<Constant>(V)) 463fe6060f1SDimitry Andric LV.markConstant(C); // Constants are constant 464fe6060f1SDimitry Andric 465fe6060f1SDimitry Andric // All others are unknown by default. 466fe6060f1SDimitry Andric return LV; 467fe6060f1SDimitry Andric } 468fe6060f1SDimitry Andric 469fe6060f1SDimitry Andric /// getStructValueState - Return the ValueLatticeElement object that 470fe6060f1SDimitry Andric /// corresponds to the value/field pair. This function handles the case when 471fe6060f1SDimitry Andric /// the value hasn't been seen yet by properly seeding constants etc. 472fe6060f1SDimitry Andric ValueLatticeElement &getStructValueState(Value *V, unsigned i) { 473fe6060f1SDimitry Andric assert(V->getType()->isStructTy() && "Should use getValueState"); 474fe6060f1SDimitry Andric assert(i < cast<StructType>(V->getType())->getNumElements() && 475fe6060f1SDimitry Andric "Invalid element #"); 476fe6060f1SDimitry Andric 477fe6060f1SDimitry Andric auto I = StructValueState.insert( 478fe6060f1SDimitry Andric std::make_pair(std::make_pair(V, i), ValueLatticeElement())); 479fe6060f1SDimitry Andric ValueLatticeElement &LV = I.first->second; 480fe6060f1SDimitry Andric 481fe6060f1SDimitry Andric if (!I.second) 482fe6060f1SDimitry Andric return LV; // Common case, already in the map. 483fe6060f1SDimitry Andric 484fe6060f1SDimitry Andric if (auto *C = dyn_cast<Constant>(V)) { 485fe6060f1SDimitry Andric Constant *Elt = C->getAggregateElement(i); 486fe6060f1SDimitry Andric 487fe6060f1SDimitry Andric if (!Elt) 488fe6060f1SDimitry Andric LV.markOverdefined(); // Unknown sort of constant. 489fe6060f1SDimitry Andric else 490fe6060f1SDimitry Andric LV.markConstant(Elt); // Constants are constant. 491fe6060f1SDimitry Andric } 492fe6060f1SDimitry Andric 493fe6060f1SDimitry Andric // All others are underdefined by default. 494fe6060f1SDimitry Andric return LV; 495fe6060f1SDimitry Andric } 496fe6060f1SDimitry Andric 49706c3fb27SDimitry Andric /// Traverse the use-def chain of \p Call, marking itself and its users as 49806c3fb27SDimitry Andric /// "unknown" on the way. 49906c3fb27SDimitry Andric void invalidate(CallBase *Call) { 50006c3fb27SDimitry Andric SmallVector<Instruction *, 64> ToInvalidate; 50106c3fb27SDimitry Andric ToInvalidate.push_back(Call); 50206c3fb27SDimitry Andric 50306c3fb27SDimitry Andric while (!ToInvalidate.empty()) { 50406c3fb27SDimitry Andric Instruction *Inst = ToInvalidate.pop_back_val(); 50506c3fb27SDimitry Andric 50606c3fb27SDimitry Andric if (!Invalidated.insert(Inst).second) 50706c3fb27SDimitry Andric continue; 50806c3fb27SDimitry Andric 50906c3fb27SDimitry Andric if (!BBExecutable.count(Inst->getParent())) 51006c3fb27SDimitry Andric continue; 51106c3fb27SDimitry Andric 51206c3fb27SDimitry Andric Value *V = nullptr; 51306c3fb27SDimitry Andric // For return instructions we need to invalidate the tracked returns map. 51406c3fb27SDimitry Andric // Anything else has its lattice in the value map. 51506c3fb27SDimitry Andric if (auto *RetInst = dyn_cast<ReturnInst>(Inst)) { 51606c3fb27SDimitry Andric Function *F = RetInst->getParent()->getParent(); 51706c3fb27SDimitry Andric if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) { 51806c3fb27SDimitry Andric It->second = ValueLatticeElement(); 51906c3fb27SDimitry Andric V = F; 52006c3fb27SDimitry Andric } else if (MRVFunctionsTracked.count(F)) { 52106c3fb27SDimitry Andric auto *STy = cast<StructType>(F->getReturnType()); 52206c3fb27SDimitry Andric for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 52306c3fb27SDimitry Andric TrackedMultipleRetVals[{F, I}] = ValueLatticeElement(); 52406c3fb27SDimitry Andric V = F; 52506c3fb27SDimitry Andric } 52606c3fb27SDimitry Andric } else if (auto *STy = dyn_cast<StructType>(Inst->getType())) { 52706c3fb27SDimitry Andric for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 52806c3fb27SDimitry Andric if (auto It = StructValueState.find({Inst, I}); 52906c3fb27SDimitry Andric It != StructValueState.end()) { 53006c3fb27SDimitry Andric It->second = ValueLatticeElement(); 53106c3fb27SDimitry Andric V = Inst; 53206c3fb27SDimitry Andric } 53306c3fb27SDimitry Andric } 53406c3fb27SDimitry Andric } else if (auto It = ValueState.find(Inst); It != ValueState.end()) { 53506c3fb27SDimitry Andric It->second = ValueLatticeElement(); 53606c3fb27SDimitry Andric V = Inst; 53706c3fb27SDimitry Andric } 53806c3fb27SDimitry Andric 53906c3fb27SDimitry Andric if (V) { 54006c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n"); 54106c3fb27SDimitry Andric 54206c3fb27SDimitry Andric for (User *U : V->users()) 54306c3fb27SDimitry Andric if (auto *UI = dyn_cast<Instruction>(U)) 54406c3fb27SDimitry Andric ToInvalidate.push_back(UI); 54506c3fb27SDimitry Andric 54606c3fb27SDimitry Andric auto It = AdditionalUsers.find(V); 54706c3fb27SDimitry Andric if (It != AdditionalUsers.end()) 54806c3fb27SDimitry Andric for (User *U : It->second) 54906c3fb27SDimitry Andric if (auto *UI = dyn_cast<Instruction>(U)) 55006c3fb27SDimitry Andric ToInvalidate.push_back(UI); 55106c3fb27SDimitry Andric } 55206c3fb27SDimitry Andric } 55306c3fb27SDimitry Andric } 55406c3fb27SDimitry Andric 555fe6060f1SDimitry Andric /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 556fe6060f1SDimitry Andric /// work list if it is not already executable. 557fe6060f1SDimitry Andric bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 558fe6060f1SDimitry Andric 559fe6060f1SDimitry Andric // getFeasibleSuccessors - Return a vector of booleans to indicate which 560fe6060f1SDimitry Andric // successors are reachable from a given terminator instruction. 561fe6060f1SDimitry Andric void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); 562fe6060f1SDimitry Andric 563fe6060f1SDimitry Andric // OperandChangedState - This method is invoked on all of the users of an 564fe6060f1SDimitry Andric // instruction that was just changed state somehow. Based on this 565fe6060f1SDimitry Andric // information, we need to update the specified user of this instruction. 566fe6060f1SDimitry Andric void operandChangedState(Instruction *I) { 567fe6060f1SDimitry Andric if (BBExecutable.count(I->getParent())) // Inst is executable? 568fe6060f1SDimitry Andric visit(*I); 569fe6060f1SDimitry Andric } 570fe6060f1SDimitry Andric 571fe6060f1SDimitry Andric // Add U as additional user of V. 572fe6060f1SDimitry Andric void addAdditionalUser(Value *V, User *U) { 573fe6060f1SDimitry Andric auto Iter = AdditionalUsers.insert({V, {}}); 574fe6060f1SDimitry Andric Iter.first->second.insert(U); 575fe6060f1SDimitry Andric } 576fe6060f1SDimitry Andric 577fe6060f1SDimitry Andric // Mark I's users as changed, including AdditionalUsers. 578fe6060f1SDimitry Andric void markUsersAsChanged(Value *I) { 579fe6060f1SDimitry Andric // Functions include their arguments in the use-list. Changed function 580fe6060f1SDimitry Andric // values mean that the result of the function changed. We only need to 581fe6060f1SDimitry Andric // update the call sites with the new function result and do not have to 582fe6060f1SDimitry Andric // propagate the call arguments. 583fe6060f1SDimitry Andric if (isa<Function>(I)) { 584fe6060f1SDimitry Andric for (User *U : I->users()) { 585fe6060f1SDimitry Andric if (auto *CB = dyn_cast<CallBase>(U)) 586fe6060f1SDimitry Andric handleCallResult(*CB); 587fe6060f1SDimitry Andric } 588fe6060f1SDimitry Andric } else { 589fe6060f1SDimitry Andric for (User *U : I->users()) 590fe6060f1SDimitry Andric if (auto *UI = dyn_cast<Instruction>(U)) 591fe6060f1SDimitry Andric operandChangedState(UI); 592fe6060f1SDimitry Andric } 593fe6060f1SDimitry Andric 594fe6060f1SDimitry Andric auto Iter = AdditionalUsers.find(I); 595fe6060f1SDimitry Andric if (Iter != AdditionalUsers.end()) { 596fe6060f1SDimitry Andric // Copy additional users before notifying them of changes, because new 597fe6060f1SDimitry Andric // users may be added, potentially invalidating the iterator. 598fe6060f1SDimitry Andric SmallVector<Instruction *, 2> ToNotify; 599fe6060f1SDimitry Andric for (User *U : Iter->second) 600fe6060f1SDimitry Andric if (auto *UI = dyn_cast<Instruction>(U)) 601fe6060f1SDimitry Andric ToNotify.push_back(UI); 602fe6060f1SDimitry Andric for (Instruction *UI : ToNotify) 603fe6060f1SDimitry Andric operandChangedState(UI); 604fe6060f1SDimitry Andric } 605fe6060f1SDimitry Andric } 606fe6060f1SDimitry Andric void handleCallOverdefined(CallBase &CB); 607fe6060f1SDimitry Andric void handleCallResult(CallBase &CB); 608fe6060f1SDimitry Andric void handleCallArguments(CallBase &CB); 609bdd1243dSDimitry Andric void handleExtractOfWithOverflow(ExtractValueInst &EVI, 610bdd1243dSDimitry Andric const WithOverflowInst *WO, unsigned Idx); 611fe6060f1SDimitry Andric 612fe6060f1SDimitry Andric private: 613fe6060f1SDimitry Andric friend class InstVisitor<SCCPInstVisitor>; 614fe6060f1SDimitry Andric 615fe6060f1SDimitry Andric // visit implementations - Something changed in this instruction. Either an 616fe6060f1SDimitry Andric // operand made a transition, or the instruction is newly executable. Change 617fe6060f1SDimitry Andric // the value type of I to reflect these changes if appropriate. 618fe6060f1SDimitry Andric void visitPHINode(PHINode &I); 619fe6060f1SDimitry Andric 620fe6060f1SDimitry Andric // Terminators 621fe6060f1SDimitry Andric 622fe6060f1SDimitry Andric void visitReturnInst(ReturnInst &I); 623fe6060f1SDimitry Andric void visitTerminator(Instruction &TI); 624fe6060f1SDimitry Andric 625fe6060f1SDimitry Andric void visitCastInst(CastInst &I); 626fe6060f1SDimitry Andric void visitSelectInst(SelectInst &I); 627fe6060f1SDimitry Andric void visitUnaryOperator(Instruction &I); 62806c3fb27SDimitry Andric void visitFreezeInst(FreezeInst &I); 629fe6060f1SDimitry Andric void visitBinaryOperator(Instruction &I); 630fe6060f1SDimitry Andric void visitCmpInst(CmpInst &I); 631fe6060f1SDimitry Andric void visitExtractValueInst(ExtractValueInst &EVI); 632fe6060f1SDimitry Andric void visitInsertValueInst(InsertValueInst &IVI); 633fe6060f1SDimitry Andric 634fe6060f1SDimitry Andric void visitCatchSwitchInst(CatchSwitchInst &CPI) { 635fe6060f1SDimitry Andric markOverdefined(&CPI); 636fe6060f1SDimitry Andric visitTerminator(CPI); 637fe6060f1SDimitry Andric } 638fe6060f1SDimitry Andric 639fe6060f1SDimitry Andric // Instructions that cannot be folded away. 640fe6060f1SDimitry Andric 641fe6060f1SDimitry Andric void visitStoreInst(StoreInst &I); 642fe6060f1SDimitry Andric void visitLoadInst(LoadInst &I); 643fe6060f1SDimitry Andric void visitGetElementPtrInst(GetElementPtrInst &I); 644fe6060f1SDimitry Andric 645fe6060f1SDimitry Andric void visitInvokeInst(InvokeInst &II) { 646fe6060f1SDimitry Andric visitCallBase(II); 647fe6060f1SDimitry Andric visitTerminator(II); 648fe6060f1SDimitry Andric } 649fe6060f1SDimitry Andric 650fe6060f1SDimitry Andric void visitCallBrInst(CallBrInst &CBI) { 651fe6060f1SDimitry Andric visitCallBase(CBI); 652fe6060f1SDimitry Andric visitTerminator(CBI); 653fe6060f1SDimitry Andric } 654fe6060f1SDimitry Andric 655fe6060f1SDimitry Andric void visitCallBase(CallBase &CB); 656fe6060f1SDimitry Andric void visitResumeInst(ResumeInst &I) { /*returns void*/ 657fe6060f1SDimitry Andric } 658fe6060f1SDimitry Andric void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ 659fe6060f1SDimitry Andric } 660fe6060f1SDimitry Andric void visitFenceInst(FenceInst &I) { /*returns void*/ 661fe6060f1SDimitry Andric } 662fe6060f1SDimitry Andric 663fe6060f1SDimitry Andric void visitInstruction(Instruction &I); 664fe6060f1SDimitry Andric 665fe6060f1SDimitry Andric public: 66606c3fb27SDimitry Andric void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC) { 66706c3fb27SDimitry Andric FnPredicateInfo.insert({&F, std::make_unique<PredicateInfo>(F, DT, AC)}); 668fe6060f1SDimitry Andric } 669fe6060f1SDimitry Andric 670fe6060f1SDimitry Andric void visitCallInst(CallInst &I) { visitCallBase(I); } 671fe6060f1SDimitry Andric 672fe6060f1SDimitry Andric bool markBlockExecutable(BasicBlock *BB); 673fe6060f1SDimitry Andric 674fe6060f1SDimitry Andric const PredicateBase *getPredicateInfoFor(Instruction *I) { 67506c3fb27SDimitry Andric auto It = FnPredicateInfo.find(I->getParent()->getParent()); 67606c3fb27SDimitry Andric if (It == FnPredicateInfo.end()) 677fe6060f1SDimitry Andric return nullptr; 67806c3fb27SDimitry Andric return It->second->getPredicateInfoFor(I); 679fe6060f1SDimitry Andric } 680fe6060f1SDimitry Andric 681fe6060f1SDimitry Andric SCCPInstVisitor(const DataLayout &DL, 682fe6060f1SDimitry Andric std::function<const TargetLibraryInfo &(Function &)> GetTLI, 683fe6060f1SDimitry Andric LLVMContext &Ctx) 684fe6060f1SDimitry Andric : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {} 685fe6060f1SDimitry Andric 686fe6060f1SDimitry Andric void trackValueOfGlobalVariable(GlobalVariable *GV) { 687fe6060f1SDimitry Andric // We only track the contents of scalar globals. 688fe6060f1SDimitry Andric if (GV->getValueType()->isSingleValueType()) { 689fe6060f1SDimitry Andric ValueLatticeElement &IV = TrackedGlobals[GV]; 690fe6060f1SDimitry Andric IV.markConstant(GV->getInitializer()); 691fe6060f1SDimitry Andric } 692fe6060f1SDimitry Andric } 693fe6060f1SDimitry Andric 694fe6060f1SDimitry Andric void addTrackedFunction(Function *F) { 695fe6060f1SDimitry Andric // Add an entry, F -> undef. 696fe6060f1SDimitry Andric if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 697fe6060f1SDimitry Andric MRVFunctionsTracked.insert(F); 698fe6060f1SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 699fe6060f1SDimitry Andric TrackedMultipleRetVals.insert( 700fe6060f1SDimitry Andric std::make_pair(std::make_pair(F, i), ValueLatticeElement())); 701fe6060f1SDimitry Andric } else if (!F->getReturnType()->isVoidTy()) 702fe6060f1SDimitry Andric TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement())); 703fe6060f1SDimitry Andric } 704fe6060f1SDimitry Andric 705fe6060f1SDimitry Andric void addToMustPreserveReturnsInFunctions(Function *F) { 706fe6060f1SDimitry Andric MustPreserveReturnsInFunctions.insert(F); 707fe6060f1SDimitry Andric } 708fe6060f1SDimitry Andric 709fe6060f1SDimitry Andric bool mustPreserveReturn(Function *F) { 710fe6060f1SDimitry Andric return MustPreserveReturnsInFunctions.count(F); 711fe6060f1SDimitry Andric } 712fe6060f1SDimitry Andric 713fe6060f1SDimitry Andric void addArgumentTrackedFunction(Function *F) { 714fe6060f1SDimitry Andric TrackingIncomingArguments.insert(F); 715fe6060f1SDimitry Andric } 716fe6060f1SDimitry Andric 717fe6060f1SDimitry Andric bool isArgumentTrackedFunction(Function *F) { 718fe6060f1SDimitry Andric return TrackingIncomingArguments.count(F); 719fe6060f1SDimitry Andric } 720fe6060f1SDimitry Andric 721fe6060f1SDimitry Andric void solve(); 722fe6060f1SDimitry Andric 72306c3fb27SDimitry Andric bool resolvedUndef(Instruction &I); 72406c3fb27SDimitry Andric 725fe6060f1SDimitry Andric bool resolvedUndefsIn(Function &F); 726fe6060f1SDimitry Andric 727fe6060f1SDimitry Andric bool isBlockExecutable(BasicBlock *BB) const { 728fe6060f1SDimitry Andric return BBExecutable.count(BB); 729fe6060f1SDimitry Andric } 730fe6060f1SDimitry Andric 731fe6060f1SDimitry Andric bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; 732fe6060f1SDimitry Andric 733fe6060f1SDimitry Andric std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const { 734fe6060f1SDimitry Andric std::vector<ValueLatticeElement> StructValues; 735fe6060f1SDimitry Andric auto *STy = dyn_cast<StructType>(V->getType()); 736fe6060f1SDimitry Andric assert(STy && "getStructLatticeValueFor() can be called only on structs"); 737fe6060f1SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 738fe6060f1SDimitry Andric auto I = StructValueState.find(std::make_pair(V, i)); 739fe6060f1SDimitry Andric assert(I != StructValueState.end() && "Value not in valuemap!"); 740fe6060f1SDimitry Andric StructValues.push_back(I->second); 741fe6060f1SDimitry Andric } 742fe6060f1SDimitry Andric return StructValues; 743fe6060f1SDimitry Andric } 744fe6060f1SDimitry Andric 745fe6060f1SDimitry Andric void removeLatticeValueFor(Value *V) { ValueState.erase(V); } 746fe6060f1SDimitry Andric 74706c3fb27SDimitry Andric /// Invalidate the Lattice Value of \p Call and its users after specializing 74806c3fb27SDimitry Andric /// the call. Then recompute it. 74906c3fb27SDimitry Andric void resetLatticeValueFor(CallBase *Call) { 75006c3fb27SDimitry Andric // Calls to void returning functions do not need invalidation. 75106c3fb27SDimitry Andric Function *F = Call->getCalledFunction(); 75206c3fb27SDimitry Andric (void)F; 75306c3fb27SDimitry Andric assert(!F->getReturnType()->isVoidTy() && 75406c3fb27SDimitry Andric (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) && 75506c3fb27SDimitry Andric "All non void specializations should be tracked"); 75606c3fb27SDimitry Andric invalidate(Call); 75706c3fb27SDimitry Andric handleCallResult(*Call); 75806c3fb27SDimitry Andric } 75906c3fb27SDimitry Andric 760fe6060f1SDimitry Andric const ValueLatticeElement &getLatticeValueFor(Value *V) const { 761fe6060f1SDimitry Andric assert(!V->getType()->isStructTy() && 762fe6060f1SDimitry Andric "Should use getStructLatticeValueFor"); 763fe6060f1SDimitry Andric DenseMap<Value *, ValueLatticeElement>::const_iterator I = 764fe6060f1SDimitry Andric ValueState.find(V); 765fe6060f1SDimitry Andric assert(I != ValueState.end() && 766fe6060f1SDimitry Andric "V not found in ValueState nor Paramstate map!"); 767fe6060f1SDimitry Andric return I->second; 768fe6060f1SDimitry Andric } 769fe6060f1SDimitry Andric 770fe6060f1SDimitry Andric const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() { 771fe6060f1SDimitry Andric return TrackedRetVals; 772fe6060f1SDimitry Andric } 773fe6060f1SDimitry Andric 774fe6060f1SDimitry Andric const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() { 775fe6060f1SDimitry Andric return TrackedGlobals; 776fe6060f1SDimitry Andric } 777fe6060f1SDimitry Andric 778fe6060f1SDimitry Andric const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 779fe6060f1SDimitry Andric return MRVFunctionsTracked; 780fe6060f1SDimitry Andric } 781fe6060f1SDimitry Andric 782fe6060f1SDimitry Andric void markOverdefined(Value *V) { 783fe6060f1SDimitry Andric if (auto *STy = dyn_cast<StructType>(V->getType())) 784fe6060f1SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 785fe6060f1SDimitry Andric markOverdefined(getStructValueState(V, i), V); 786fe6060f1SDimitry Andric else 787fe6060f1SDimitry Andric markOverdefined(ValueState[V], V); 788fe6060f1SDimitry Andric } 789fe6060f1SDimitry Andric 790fe6060f1SDimitry Andric bool isStructLatticeConstant(Function *F, StructType *STy); 791fe6060f1SDimitry Andric 79206c3fb27SDimitry Andric Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const; 79306c3fb27SDimitry Andric 79406c3fb27SDimitry Andric Constant *getConstantOrNull(Value *V) const; 795fe6060f1SDimitry Andric 796fe6060f1SDimitry Andric SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() { 797fe6060f1SDimitry Andric return TrackingIncomingArguments; 798fe6060f1SDimitry Andric } 799fe6060f1SDimitry Andric 80006c3fb27SDimitry Andric void setLatticeValueForSpecializationArguments(Function *F, 80181ad6265SDimitry Andric const SmallVectorImpl<ArgInfo> &Args); 802fe6060f1SDimitry Andric 803fe6060f1SDimitry Andric void markFunctionUnreachable(Function *F) { 804fe6060f1SDimitry Andric for (auto &BB : *F) 805fe6060f1SDimitry Andric BBExecutable.erase(&BB); 806fe6060f1SDimitry Andric } 807bdd1243dSDimitry Andric 808bdd1243dSDimitry Andric void solveWhileResolvedUndefsIn(Module &M) { 809bdd1243dSDimitry Andric bool ResolvedUndefs = true; 810bdd1243dSDimitry Andric while (ResolvedUndefs) { 811bdd1243dSDimitry Andric solve(); 812bdd1243dSDimitry Andric ResolvedUndefs = false; 813bdd1243dSDimitry Andric for (Function &F : M) 814bdd1243dSDimitry Andric ResolvedUndefs |= resolvedUndefsIn(F); 815bdd1243dSDimitry Andric } 816bdd1243dSDimitry Andric } 817bdd1243dSDimitry Andric 818bdd1243dSDimitry Andric void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) { 819bdd1243dSDimitry Andric bool ResolvedUndefs = true; 820bdd1243dSDimitry Andric while (ResolvedUndefs) { 821bdd1243dSDimitry Andric solve(); 822bdd1243dSDimitry Andric ResolvedUndefs = false; 823bdd1243dSDimitry Andric for (Function *F : WorkList) 824bdd1243dSDimitry Andric ResolvedUndefs |= resolvedUndefsIn(*F); 825bdd1243dSDimitry Andric } 826bdd1243dSDimitry Andric } 82706c3fb27SDimitry Andric 82806c3fb27SDimitry Andric void solveWhileResolvedUndefs() { 82906c3fb27SDimitry Andric bool ResolvedUndefs = true; 83006c3fb27SDimitry Andric while (ResolvedUndefs) { 83106c3fb27SDimitry Andric solve(); 83206c3fb27SDimitry Andric ResolvedUndefs = false; 83306c3fb27SDimitry Andric for (Value *V : Invalidated) 83406c3fb27SDimitry Andric if (auto *I = dyn_cast<Instruction>(V)) 83506c3fb27SDimitry Andric ResolvedUndefs |= resolvedUndef(*I); 83606c3fb27SDimitry Andric } 83706c3fb27SDimitry Andric Invalidated.clear(); 83806c3fb27SDimitry Andric } 839fe6060f1SDimitry Andric }; 840fe6060f1SDimitry Andric 841fe6060f1SDimitry Andric } // namespace llvm 842fe6060f1SDimitry Andric 843fe6060f1SDimitry Andric bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) { 844fe6060f1SDimitry Andric if (!BBExecutable.insert(BB).second) 845fe6060f1SDimitry Andric return false; 846fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 847fe6060f1SDimitry Andric BBWorkList.push_back(BB); // Add the block to the work list! 848fe6060f1SDimitry Andric return true; 849fe6060f1SDimitry Andric } 850fe6060f1SDimitry Andric 851fe6060f1SDimitry Andric void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) { 85206c3fb27SDimitry Andric if (IV.isOverdefined()) { 85306c3fb27SDimitry Andric if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V) 85406c3fb27SDimitry Andric OverdefinedInstWorkList.push_back(V); 85506c3fb27SDimitry Andric return; 85606c3fb27SDimitry Andric } 85706c3fb27SDimitry Andric if (InstWorkList.empty() || InstWorkList.back() != V) 858fe6060f1SDimitry Andric InstWorkList.push_back(V); 859fe6060f1SDimitry Andric } 860fe6060f1SDimitry Andric 861fe6060f1SDimitry Andric void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) { 862fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); 863fe6060f1SDimitry Andric pushToWorkList(IV, V); 864fe6060f1SDimitry Andric } 865fe6060f1SDimitry Andric 866fe6060f1SDimitry Andric bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V, 867fe6060f1SDimitry Andric Constant *C, bool MayIncludeUndef) { 868fe6060f1SDimitry Andric if (!IV.markConstant(C, MayIncludeUndef)) 869fe6060f1SDimitry Andric return false; 870fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 871fe6060f1SDimitry Andric pushToWorkList(IV, V); 872fe6060f1SDimitry Andric return true; 873fe6060f1SDimitry Andric } 874fe6060f1SDimitry Andric 875fe6060f1SDimitry Andric bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) { 876fe6060f1SDimitry Andric if (!IV.markOverdefined()) 877fe6060f1SDimitry Andric return false; 878fe6060f1SDimitry Andric 879fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "markOverdefined: "; 880fe6060f1SDimitry Andric if (auto *F = dyn_cast<Function>(V)) dbgs() 881fe6060f1SDimitry Andric << "Function '" << F->getName() << "'\n"; 882fe6060f1SDimitry Andric else dbgs() << *V << '\n'); 883fe6060f1SDimitry Andric // Only instructions go on the work list 884fe6060f1SDimitry Andric pushToWorkList(IV, V); 885fe6060f1SDimitry Andric return true; 886fe6060f1SDimitry Andric } 887fe6060f1SDimitry Andric 888fe6060f1SDimitry Andric bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) { 889fe6060f1SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 890fe6060f1SDimitry Andric const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 891fe6060f1SDimitry Andric assert(It != TrackedMultipleRetVals.end()); 892fe6060f1SDimitry Andric ValueLatticeElement LV = It->second; 893bdd1243dSDimitry Andric if (!SCCPSolver::isConstant(LV)) 894fe6060f1SDimitry Andric return false; 895fe6060f1SDimitry Andric } 896fe6060f1SDimitry Andric return true; 897fe6060f1SDimitry Andric } 898fe6060f1SDimitry Andric 89906c3fb27SDimitry Andric Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV, 90006c3fb27SDimitry Andric Type *Ty) const { 90106c3fb27SDimitry Andric if (LV.isConstant()) { 90206c3fb27SDimitry Andric Constant *C = LV.getConstant(); 90306c3fb27SDimitry Andric assert(C->getType() == Ty && "Type mismatch"); 90406c3fb27SDimitry Andric return C; 90506c3fb27SDimitry Andric } 906fe6060f1SDimitry Andric 907fe6060f1SDimitry Andric if (LV.isConstantRange()) { 908fe6060f1SDimitry Andric const auto &CR = LV.getConstantRange(); 909fe6060f1SDimitry Andric if (CR.getSingleElement()) 91006c3fb27SDimitry Andric return ConstantInt::get(Ty, *CR.getSingleElement()); 911fe6060f1SDimitry Andric } 912fe6060f1SDimitry Andric return nullptr; 913fe6060f1SDimitry Andric } 914fe6060f1SDimitry Andric 91506c3fb27SDimitry Andric Constant *SCCPInstVisitor::getConstantOrNull(Value *V) const { 91606c3fb27SDimitry Andric Constant *Const = nullptr; 91706c3fb27SDimitry Andric if (V->getType()->isStructTy()) { 91806c3fb27SDimitry Andric std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V); 91906c3fb27SDimitry Andric if (any_of(LVs, SCCPSolver::isOverdefined)) 92006c3fb27SDimitry Andric return nullptr; 92106c3fb27SDimitry Andric std::vector<Constant *> ConstVals; 92206c3fb27SDimitry Andric auto *ST = cast<StructType>(V->getType()); 92306c3fb27SDimitry Andric for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) { 92406c3fb27SDimitry Andric ValueLatticeElement LV = LVs[I]; 92506c3fb27SDimitry Andric ConstVals.push_back(SCCPSolver::isConstant(LV) 92606c3fb27SDimitry Andric ? getConstant(LV, ST->getElementType(I)) 92706c3fb27SDimitry Andric : UndefValue::get(ST->getElementType(I))); 92806c3fb27SDimitry Andric } 92906c3fb27SDimitry Andric Const = ConstantStruct::get(ST, ConstVals); 93006c3fb27SDimitry Andric } else { 93106c3fb27SDimitry Andric const ValueLatticeElement &LV = getLatticeValueFor(V); 93206c3fb27SDimitry Andric if (SCCPSolver::isOverdefined(LV)) 93306c3fb27SDimitry Andric return nullptr; 93406c3fb27SDimitry Andric Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType()) 93506c3fb27SDimitry Andric : UndefValue::get(V->getType()); 93606c3fb27SDimitry Andric } 93706c3fb27SDimitry Andric assert(Const && "Constant is nullptr here!"); 93806c3fb27SDimitry Andric return Const; 939bdd1243dSDimitry Andric } 940bdd1243dSDimitry Andric 94106c3fb27SDimitry Andric void SCCPInstVisitor::setLatticeValueForSpecializationArguments(Function *F, 94206c3fb27SDimitry Andric const SmallVectorImpl<ArgInfo> &Args) { 94381ad6265SDimitry Andric assert(!Args.empty() && "Specialization without arguments"); 94481ad6265SDimitry Andric assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() && 945fe6060f1SDimitry Andric "Functions should have the same number of arguments"); 946fe6060f1SDimitry Andric 94781ad6265SDimitry Andric auto Iter = Args.begin(); 94806c3fb27SDimitry Andric Function::arg_iterator NewArg = F->arg_begin(); 94906c3fb27SDimitry Andric Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin(); 95081ad6265SDimitry Andric for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) { 951fe6060f1SDimitry Andric 95281ad6265SDimitry Andric LLVM_DEBUG(dbgs() << "SCCP: Marking argument " 95381ad6265SDimitry Andric << NewArg->getNameOrAsOperand() << "\n"); 95481ad6265SDimitry Andric 95506c3fb27SDimitry Andric // Mark the argument constants in the new function 95606c3fb27SDimitry Andric // or copy the lattice state over from the old function. 95706c3fb27SDimitry Andric if (Iter != Args.end() && Iter->Formal == &*OldArg) { 95806c3fb27SDimitry Andric if (auto *STy = dyn_cast<StructType>(NewArg->getType())) { 95906c3fb27SDimitry Andric for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 96006c3fb27SDimitry Andric ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}]; 96106c3fb27SDimitry Andric NewValue.markConstant(Iter->Actual->getAggregateElement(I)); 96206c3fb27SDimitry Andric } 96306c3fb27SDimitry Andric } else { 96406c3fb27SDimitry Andric ValueState[&*NewArg].markConstant(Iter->Actual); 96506c3fb27SDimitry Andric } 96681ad6265SDimitry Andric ++Iter; 96706c3fb27SDimitry Andric } else { 96806c3fb27SDimitry Andric if (auto *STy = dyn_cast<StructType>(NewArg->getType())) { 96906c3fb27SDimitry Andric for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 97006c3fb27SDimitry Andric ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}]; 97106c3fb27SDimitry Andric NewValue = StructValueState[{&*OldArg, I}]; 97206c3fb27SDimitry Andric } 97306c3fb27SDimitry Andric } else { 97406c3fb27SDimitry Andric ValueLatticeElement &NewValue = ValueState[&*NewArg]; 97506c3fb27SDimitry Andric NewValue = ValueState[&*OldArg]; 97606c3fb27SDimitry Andric } 97781ad6265SDimitry Andric } 978fe6060f1SDimitry Andric } 979fe6060f1SDimitry Andric } 980fe6060f1SDimitry Andric 981fe6060f1SDimitry Andric void SCCPInstVisitor::visitInstruction(Instruction &I) { 982fe6060f1SDimitry Andric // All the instructions we don't do any special handling for just 983fe6060f1SDimitry Andric // go to overdefined. 984fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); 985fe6060f1SDimitry Andric markOverdefined(&I); 986fe6060f1SDimitry Andric } 987fe6060f1SDimitry Andric 988fe6060f1SDimitry Andric bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V, 989fe6060f1SDimitry Andric ValueLatticeElement MergeWithV, 990fe6060f1SDimitry Andric ValueLatticeElement::MergeOptions Opts) { 991fe6060f1SDimitry Andric if (IV.mergeIn(MergeWithV, Opts)) { 992fe6060f1SDimitry Andric pushToWorkList(IV, V); 993fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " 994fe6060f1SDimitry Andric << IV << "\n"); 995fe6060f1SDimitry Andric return true; 996fe6060f1SDimitry Andric } 997fe6060f1SDimitry Andric return false; 998fe6060f1SDimitry Andric } 999fe6060f1SDimitry Andric 1000fe6060f1SDimitry Andric bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 1001fe6060f1SDimitry Andric if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 1002fe6060f1SDimitry Andric return false; // This edge is already known to be executable! 1003fe6060f1SDimitry Andric 1004fe6060f1SDimitry Andric if (!markBlockExecutable(Dest)) { 1005fe6060f1SDimitry Andric // If the destination is already executable, we just made an *edge* 1006fe6060f1SDimitry Andric // feasible that wasn't before. Revisit the PHI nodes in the block 1007fe6060f1SDimitry Andric // because they have potentially new operands. 1008fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 1009fe6060f1SDimitry Andric << " -> " << Dest->getName() << '\n'); 1010fe6060f1SDimitry Andric 1011fe6060f1SDimitry Andric for (PHINode &PN : Dest->phis()) 1012fe6060f1SDimitry Andric visitPHINode(PN); 1013fe6060f1SDimitry Andric } 1014fe6060f1SDimitry Andric return true; 1015fe6060f1SDimitry Andric } 1016fe6060f1SDimitry Andric 1017fe6060f1SDimitry Andric // getFeasibleSuccessors - Return a vector of booleans to indicate which 1018fe6060f1SDimitry Andric // successors are reachable from a given terminator instruction. 1019fe6060f1SDimitry Andric void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI, 1020fe6060f1SDimitry Andric SmallVectorImpl<bool> &Succs) { 1021fe6060f1SDimitry Andric Succs.resize(TI.getNumSuccessors()); 1022fe6060f1SDimitry Andric if (auto *BI = dyn_cast<BranchInst>(&TI)) { 1023fe6060f1SDimitry Andric if (BI->isUnconditional()) { 1024fe6060f1SDimitry Andric Succs[0] = true; 1025fe6060f1SDimitry Andric return; 1026fe6060f1SDimitry Andric } 1027fe6060f1SDimitry Andric 1028fe6060f1SDimitry Andric ValueLatticeElement BCValue = getValueState(BI->getCondition()); 102906c3fb27SDimitry Andric ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType()); 1030fe6060f1SDimitry Andric if (!CI) { 1031fe6060f1SDimitry Andric // Overdefined condition variables, and branches on unfoldable constant 1032fe6060f1SDimitry Andric // conditions, mean the branch could go either way. 1033fe6060f1SDimitry Andric if (!BCValue.isUnknownOrUndef()) 1034fe6060f1SDimitry Andric Succs[0] = Succs[1] = true; 1035fe6060f1SDimitry Andric return; 1036fe6060f1SDimitry Andric } 1037fe6060f1SDimitry Andric 1038fe6060f1SDimitry Andric // Constant condition variables mean the branch can only go a single way. 1039fe6060f1SDimitry Andric Succs[CI->isZero()] = true; 1040fe6060f1SDimitry Andric return; 1041fe6060f1SDimitry Andric } 1042fe6060f1SDimitry Andric 1043*5f757f3fSDimitry Andric // We cannot analyze special terminators, so consider all successors 1044*5f757f3fSDimitry Andric // executable. 1045*5f757f3fSDimitry Andric if (TI.isSpecialTerminator()) { 1046fe6060f1SDimitry Andric Succs.assign(TI.getNumSuccessors(), true); 1047fe6060f1SDimitry Andric return; 1048fe6060f1SDimitry Andric } 1049fe6060f1SDimitry Andric 1050fe6060f1SDimitry Andric if (auto *SI = dyn_cast<SwitchInst>(&TI)) { 1051fe6060f1SDimitry Andric if (!SI->getNumCases()) { 1052fe6060f1SDimitry Andric Succs[0] = true; 1053fe6060f1SDimitry Andric return; 1054fe6060f1SDimitry Andric } 1055fe6060f1SDimitry Andric const ValueLatticeElement &SCValue = getValueState(SI->getCondition()); 105606c3fb27SDimitry Andric if (ConstantInt *CI = 105706c3fb27SDimitry Andric getConstantInt(SCValue, SI->getCondition()->getType())) { 1058fe6060f1SDimitry Andric Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; 1059fe6060f1SDimitry Andric return; 1060fe6060f1SDimitry Andric } 1061fe6060f1SDimitry Andric 1062fe6060f1SDimitry Andric // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM 1063fe6060f1SDimitry Andric // is ready. 1064fe6060f1SDimitry Andric if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { 1065fe6060f1SDimitry Andric const ConstantRange &Range = SCValue.getConstantRange(); 1066fe6060f1SDimitry Andric for (const auto &Case : SI->cases()) { 1067fe6060f1SDimitry Andric const APInt &CaseValue = Case.getCaseValue()->getValue(); 1068fe6060f1SDimitry Andric if (Range.contains(CaseValue)) 1069fe6060f1SDimitry Andric Succs[Case.getSuccessorIndex()] = true; 1070fe6060f1SDimitry Andric } 1071fe6060f1SDimitry Andric 1072fe6060f1SDimitry Andric // TODO: Determine whether default case is reachable. 1073fe6060f1SDimitry Andric Succs[SI->case_default()->getSuccessorIndex()] = true; 1074fe6060f1SDimitry Andric return; 1075fe6060f1SDimitry Andric } 1076fe6060f1SDimitry Andric 1077fe6060f1SDimitry Andric // Overdefined or unknown condition? All destinations are executable! 1078fe6060f1SDimitry Andric if (!SCValue.isUnknownOrUndef()) 1079fe6060f1SDimitry Andric Succs.assign(TI.getNumSuccessors(), true); 1080fe6060f1SDimitry Andric return; 1081fe6060f1SDimitry Andric } 1082fe6060f1SDimitry Andric 1083fe6060f1SDimitry Andric // In case of indirect branch and its address is a blockaddress, we mark 1084fe6060f1SDimitry Andric // the target as executable. 1085fe6060f1SDimitry Andric if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { 1086fe6060f1SDimitry Andric // Casts are folded by visitCastInst. 1087fe6060f1SDimitry Andric ValueLatticeElement IBRValue = getValueState(IBR->getAddress()); 108806c3fb27SDimitry Andric BlockAddress *Addr = dyn_cast_or_null<BlockAddress>( 108906c3fb27SDimitry Andric getConstant(IBRValue, IBR->getAddress()->getType())); 1090fe6060f1SDimitry Andric if (!Addr) { // Overdefined or unknown condition? 1091fe6060f1SDimitry Andric // All destinations are executable! 1092fe6060f1SDimitry Andric if (!IBRValue.isUnknownOrUndef()) 1093fe6060f1SDimitry Andric Succs.assign(TI.getNumSuccessors(), true); 1094fe6060f1SDimitry Andric return; 1095fe6060f1SDimitry Andric } 1096fe6060f1SDimitry Andric 1097fe6060f1SDimitry Andric BasicBlock *T = Addr->getBasicBlock(); 1098fe6060f1SDimitry Andric assert(Addr->getFunction() == T->getParent() && 1099fe6060f1SDimitry Andric "Block address of a different function ?"); 1100fe6060f1SDimitry Andric for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { 1101fe6060f1SDimitry Andric // This is the target. 1102fe6060f1SDimitry Andric if (IBR->getDestination(i) == T) { 1103fe6060f1SDimitry Andric Succs[i] = true; 1104fe6060f1SDimitry Andric return; 1105fe6060f1SDimitry Andric } 1106fe6060f1SDimitry Andric } 1107fe6060f1SDimitry Andric 1108fe6060f1SDimitry Andric // If we didn't find our destination in the IBR successor list, then we 1109fe6060f1SDimitry Andric // have undefined behavior. Its ok to assume no successor is executable. 1110fe6060f1SDimitry Andric return; 1111fe6060f1SDimitry Andric } 1112fe6060f1SDimitry Andric 1113fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); 1114fe6060f1SDimitry Andric llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 1115fe6060f1SDimitry Andric } 1116fe6060f1SDimitry Andric 1117fe6060f1SDimitry Andric // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 1118fe6060f1SDimitry Andric // block to the 'To' basic block is currently feasible. 1119fe6060f1SDimitry Andric bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 1120fe6060f1SDimitry Andric // Check if we've called markEdgeExecutable on the edge yet. (We could 1121fe6060f1SDimitry Andric // be more aggressive and try to consider edges which haven't been marked 1122fe6060f1SDimitry Andric // yet, but there isn't any need.) 1123fe6060f1SDimitry Andric return KnownFeasibleEdges.count(Edge(From, To)); 1124fe6060f1SDimitry Andric } 1125fe6060f1SDimitry Andric 1126fe6060f1SDimitry Andric // visit Implementations - Something changed in this instruction, either an 1127fe6060f1SDimitry Andric // operand made a transition, or the instruction is newly executable. Change 1128fe6060f1SDimitry Andric // the value type of I to reflect these changes if appropriate. This method 1129fe6060f1SDimitry Andric // makes sure to do the following actions: 1130fe6060f1SDimitry Andric // 1131fe6060f1SDimitry Andric // 1. If a phi node merges two constants in, and has conflicting value coming 1132fe6060f1SDimitry Andric // from different branches, or if the PHI node merges in an overdefined 1133fe6060f1SDimitry Andric // value, then the PHI node becomes overdefined. 1134fe6060f1SDimitry Andric // 2. If a phi node merges only constants in, and they all agree on value, the 1135fe6060f1SDimitry Andric // PHI node becomes a constant value equal to that. 1136fe6060f1SDimitry Andric // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 1137fe6060f1SDimitry Andric // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 1138fe6060f1SDimitry Andric // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 1139fe6060f1SDimitry Andric // 6. If a conditional branch has a value that is constant, make the selected 1140fe6060f1SDimitry Andric // destination executable 1141fe6060f1SDimitry Andric // 7. If a conditional branch has a value that is overdefined, make all 1142fe6060f1SDimitry Andric // successors executable. 1143fe6060f1SDimitry Andric void SCCPInstVisitor::visitPHINode(PHINode &PN) { 1144fe6060f1SDimitry Andric // If this PN returns a struct, just mark the result overdefined. 1145fe6060f1SDimitry Andric // TODO: We could do a lot better than this if code actually uses this. 1146fe6060f1SDimitry Andric if (PN.getType()->isStructTy()) 1147fe6060f1SDimitry Andric return (void)markOverdefined(&PN); 1148fe6060f1SDimitry Andric 1149fe6060f1SDimitry Andric if (getValueState(&PN).isOverdefined()) 1150fe6060f1SDimitry Andric return; // Quick exit 1151fe6060f1SDimitry Andric 1152fe6060f1SDimitry Andric // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 1153fe6060f1SDimitry Andric // and slow us down a lot. Just mark them overdefined. 1154fe6060f1SDimitry Andric if (PN.getNumIncomingValues() > 64) 1155fe6060f1SDimitry Andric return (void)markOverdefined(&PN); 1156fe6060f1SDimitry Andric 1157fe6060f1SDimitry Andric unsigned NumActiveIncoming = 0; 1158fe6060f1SDimitry Andric 1159fe6060f1SDimitry Andric // Look at all of the executable operands of the PHI node. If any of them 1160fe6060f1SDimitry Andric // are overdefined, the PHI becomes overdefined as well. If they are all 1161fe6060f1SDimitry Andric // constant, and they agree with each other, the PHI becomes the identical 1162fe6060f1SDimitry Andric // constant. If they are constant and don't agree, the PHI is a constant 1163fe6060f1SDimitry Andric // range. If there are no executable operands, the PHI remains unknown. 1164fe6060f1SDimitry Andric ValueLatticeElement PhiState = getValueState(&PN); 1165fe6060f1SDimitry Andric for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1166fe6060f1SDimitry Andric if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 1167fe6060f1SDimitry Andric continue; 1168fe6060f1SDimitry Andric 1169fe6060f1SDimitry Andric ValueLatticeElement IV = getValueState(PN.getIncomingValue(i)); 1170fe6060f1SDimitry Andric PhiState.mergeIn(IV); 1171fe6060f1SDimitry Andric NumActiveIncoming++; 1172fe6060f1SDimitry Andric if (PhiState.isOverdefined()) 1173fe6060f1SDimitry Andric break; 1174fe6060f1SDimitry Andric } 1175fe6060f1SDimitry Andric 1176fe6060f1SDimitry Andric // We allow up to 1 range extension per active incoming value and one 1177fe6060f1SDimitry Andric // additional extension. Note that we manually adjust the number of range 1178fe6060f1SDimitry Andric // extensions to match the number of active incoming values. This helps to 1179fe6060f1SDimitry Andric // limit multiple extensions caused by the same incoming value, if other 1180fe6060f1SDimitry Andric // incoming values are equal. 1181fe6060f1SDimitry Andric mergeInValue(&PN, PhiState, 1182fe6060f1SDimitry Andric ValueLatticeElement::MergeOptions().setMaxWidenSteps( 1183fe6060f1SDimitry Andric NumActiveIncoming + 1)); 1184fe6060f1SDimitry Andric ValueLatticeElement &PhiStateRef = getValueState(&PN); 1185fe6060f1SDimitry Andric PhiStateRef.setNumRangeExtensions( 1186fe6060f1SDimitry Andric std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions())); 1187fe6060f1SDimitry Andric } 1188fe6060f1SDimitry Andric 1189fe6060f1SDimitry Andric void SCCPInstVisitor::visitReturnInst(ReturnInst &I) { 1190fe6060f1SDimitry Andric if (I.getNumOperands() == 0) 1191fe6060f1SDimitry Andric return; // ret void 1192fe6060f1SDimitry Andric 1193fe6060f1SDimitry Andric Function *F = I.getParent()->getParent(); 1194fe6060f1SDimitry Andric Value *ResultOp = I.getOperand(0); 1195fe6060f1SDimitry Andric 1196fe6060f1SDimitry Andric // If we are tracking the return value of this function, merge it in. 1197fe6060f1SDimitry Andric if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 1198fe6060f1SDimitry Andric auto TFRVI = TrackedRetVals.find(F); 1199fe6060f1SDimitry Andric if (TFRVI != TrackedRetVals.end()) { 1200fe6060f1SDimitry Andric mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 1201fe6060f1SDimitry Andric return; 1202fe6060f1SDimitry Andric } 1203fe6060f1SDimitry Andric } 1204fe6060f1SDimitry Andric 1205fe6060f1SDimitry Andric // Handle functions that return multiple values. 1206fe6060f1SDimitry Andric if (!TrackedMultipleRetVals.empty()) { 1207fe6060f1SDimitry Andric if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) 1208fe6060f1SDimitry Andric if (MRVFunctionsTracked.count(F)) 1209fe6060f1SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1210fe6060f1SDimitry Andric mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 1211fe6060f1SDimitry Andric getStructValueState(ResultOp, i)); 1212fe6060f1SDimitry Andric } 1213fe6060f1SDimitry Andric } 1214fe6060f1SDimitry Andric 1215fe6060f1SDimitry Andric void SCCPInstVisitor::visitTerminator(Instruction &TI) { 1216fe6060f1SDimitry Andric SmallVector<bool, 16> SuccFeasible; 1217fe6060f1SDimitry Andric getFeasibleSuccessors(TI, SuccFeasible); 1218fe6060f1SDimitry Andric 1219fe6060f1SDimitry Andric BasicBlock *BB = TI.getParent(); 1220fe6060f1SDimitry Andric 1221fe6060f1SDimitry Andric // Mark all feasible successors executable. 1222fe6060f1SDimitry Andric for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 1223fe6060f1SDimitry Andric if (SuccFeasible[i]) 1224fe6060f1SDimitry Andric markEdgeExecutable(BB, TI.getSuccessor(i)); 1225fe6060f1SDimitry Andric } 1226fe6060f1SDimitry Andric 1227fe6060f1SDimitry Andric void SCCPInstVisitor::visitCastInst(CastInst &I) { 1228fe6060f1SDimitry Andric // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1229fe6060f1SDimitry Andric // discover a concrete value later. 1230fe6060f1SDimitry Andric if (ValueState[&I].isOverdefined()) 1231fe6060f1SDimitry Andric return; 1232fe6060f1SDimitry Andric 1233fe6060f1SDimitry Andric ValueLatticeElement OpSt = getValueState(I.getOperand(0)); 1234349cc55cSDimitry Andric if (OpSt.isUnknownOrUndef()) 1235349cc55cSDimitry Andric return; 1236349cc55cSDimitry Andric 123706c3fb27SDimitry Andric if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) { 1238fe6060f1SDimitry Andric // Fold the constant as we build. 1239*5f757f3fSDimitry Andric if (Constant *C = 1240*5f757f3fSDimitry Andric ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL)) 1241*5f757f3fSDimitry Andric return (void)markConstant(&I, C); 1242*5f757f3fSDimitry Andric } 1243*5f757f3fSDimitry Andric 1244*5f757f3fSDimitry Andric if (I.getDestTy()->isIntegerTy() && I.getSrcTy()->isIntOrIntVectorTy()) { 1245fe6060f1SDimitry Andric auto &LV = getValueState(&I); 1246bdd1243dSDimitry Andric ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy()); 1247349cc55cSDimitry Andric 1248fe6060f1SDimitry Andric Type *DestTy = I.getDestTy(); 1249fe6060f1SDimitry Andric // Vectors where all elements have the same known constant range are treated 1250fe6060f1SDimitry Andric // as a single constant range in the lattice. When bitcasting such vectors, 1251fe6060f1SDimitry Andric // there is a mis-match between the width of the lattice value (single 1252fe6060f1SDimitry Andric // constant range) and the original operands (vector). Go to overdefined in 1253fe6060f1SDimitry Andric // that case. 1254fe6060f1SDimitry Andric if (I.getOpcode() == Instruction::BitCast && 1255fe6060f1SDimitry Andric I.getOperand(0)->getType()->isVectorTy() && 1256fe6060f1SDimitry Andric OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy)) 1257fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1258fe6060f1SDimitry Andric 1259fe6060f1SDimitry Andric ConstantRange Res = 1260fe6060f1SDimitry Andric OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy)); 1261fe6060f1SDimitry Andric mergeInValue(LV, &I, ValueLatticeElement::getRange(Res)); 1262349cc55cSDimitry Andric } else 1263fe6060f1SDimitry Andric markOverdefined(&I); 1264fe6060f1SDimitry Andric } 1265fe6060f1SDimitry Andric 1266bdd1243dSDimitry Andric void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI, 1267bdd1243dSDimitry Andric const WithOverflowInst *WO, 1268bdd1243dSDimitry Andric unsigned Idx) { 1269bdd1243dSDimitry Andric Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 1270bdd1243dSDimitry Andric ValueLatticeElement L = getValueState(LHS); 1271bdd1243dSDimitry Andric ValueLatticeElement R = getValueState(RHS); 1272bdd1243dSDimitry Andric addAdditionalUser(LHS, &EVI); 1273bdd1243dSDimitry Andric addAdditionalUser(RHS, &EVI); 1274bdd1243dSDimitry Andric if (L.isUnknownOrUndef() || R.isUnknownOrUndef()) 1275bdd1243dSDimitry Andric return; // Wait to resolve. 1276bdd1243dSDimitry Andric 1277bdd1243dSDimitry Andric Type *Ty = LHS->getType(); 1278bdd1243dSDimitry Andric ConstantRange LR = getConstantRange(L, Ty); 1279bdd1243dSDimitry Andric ConstantRange RR = getConstantRange(R, Ty); 1280bdd1243dSDimitry Andric if (Idx == 0) { 1281bdd1243dSDimitry Andric ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR); 1282bdd1243dSDimitry Andric mergeInValue(&EVI, ValueLatticeElement::getRange(Res)); 1283bdd1243dSDimitry Andric } else { 1284bdd1243dSDimitry Andric assert(Idx == 1 && "Index can only be 0 or 1"); 1285bdd1243dSDimitry Andric ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 1286bdd1243dSDimitry Andric WO->getBinaryOp(), RR, WO->getNoWrapKind()); 1287bdd1243dSDimitry Andric if (NWRegion.contains(LR)) 1288bdd1243dSDimitry Andric return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType())); 1289bdd1243dSDimitry Andric markOverdefined(&EVI); 1290bdd1243dSDimitry Andric } 1291bdd1243dSDimitry Andric } 1292bdd1243dSDimitry Andric 1293fe6060f1SDimitry Andric void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) { 1294fe6060f1SDimitry Andric // If this returns a struct, mark all elements over defined, we don't track 1295fe6060f1SDimitry Andric // structs in structs. 1296fe6060f1SDimitry Andric if (EVI.getType()->isStructTy()) 1297fe6060f1SDimitry Andric return (void)markOverdefined(&EVI); 1298fe6060f1SDimitry Andric 1299fe6060f1SDimitry Andric // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1300fe6060f1SDimitry Andric // discover a concrete value later. 1301fe6060f1SDimitry Andric if (ValueState[&EVI].isOverdefined()) 1302fe6060f1SDimitry Andric return (void)markOverdefined(&EVI); 1303fe6060f1SDimitry Andric 1304fe6060f1SDimitry Andric // If this is extracting from more than one level of struct, we don't know. 1305fe6060f1SDimitry Andric if (EVI.getNumIndices() != 1) 1306fe6060f1SDimitry Andric return (void)markOverdefined(&EVI); 1307fe6060f1SDimitry Andric 1308fe6060f1SDimitry Andric Value *AggVal = EVI.getAggregateOperand(); 1309fe6060f1SDimitry Andric if (AggVal->getType()->isStructTy()) { 1310fe6060f1SDimitry Andric unsigned i = *EVI.idx_begin(); 1311bdd1243dSDimitry Andric if (auto *WO = dyn_cast<WithOverflowInst>(AggVal)) 1312bdd1243dSDimitry Andric return handleExtractOfWithOverflow(EVI, WO, i); 1313fe6060f1SDimitry Andric ValueLatticeElement EltVal = getStructValueState(AggVal, i); 1314fe6060f1SDimitry Andric mergeInValue(getValueState(&EVI), &EVI, EltVal); 1315fe6060f1SDimitry Andric } else { 1316fe6060f1SDimitry Andric // Otherwise, must be extracting from an array. 1317fe6060f1SDimitry Andric return (void)markOverdefined(&EVI); 1318fe6060f1SDimitry Andric } 1319fe6060f1SDimitry Andric } 1320fe6060f1SDimitry Andric 1321fe6060f1SDimitry Andric void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) { 1322fe6060f1SDimitry Andric auto *STy = dyn_cast<StructType>(IVI.getType()); 1323fe6060f1SDimitry Andric if (!STy) 1324fe6060f1SDimitry Andric return (void)markOverdefined(&IVI); 1325fe6060f1SDimitry Andric 1326fe6060f1SDimitry Andric // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1327fe6060f1SDimitry Andric // discover a concrete value later. 1328bdd1243dSDimitry Andric if (SCCPSolver::isOverdefined(ValueState[&IVI])) 1329fe6060f1SDimitry Andric return (void)markOverdefined(&IVI); 1330fe6060f1SDimitry Andric 1331fe6060f1SDimitry Andric // If this has more than one index, we can't handle it, drive all results to 1332fe6060f1SDimitry Andric // undef. 1333fe6060f1SDimitry Andric if (IVI.getNumIndices() != 1) 1334fe6060f1SDimitry Andric return (void)markOverdefined(&IVI); 1335fe6060f1SDimitry Andric 1336fe6060f1SDimitry Andric Value *Aggr = IVI.getAggregateOperand(); 1337fe6060f1SDimitry Andric unsigned Idx = *IVI.idx_begin(); 1338fe6060f1SDimitry Andric 1339fe6060f1SDimitry Andric // Compute the result based on what we're inserting. 1340fe6060f1SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1341fe6060f1SDimitry Andric // This passes through all values that aren't the inserted element. 1342fe6060f1SDimitry Andric if (i != Idx) { 1343fe6060f1SDimitry Andric ValueLatticeElement EltVal = getStructValueState(Aggr, i); 1344fe6060f1SDimitry Andric mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 1345fe6060f1SDimitry Andric continue; 1346fe6060f1SDimitry Andric } 1347fe6060f1SDimitry Andric 1348fe6060f1SDimitry Andric Value *Val = IVI.getInsertedValueOperand(); 1349fe6060f1SDimitry Andric if (Val->getType()->isStructTy()) 1350fe6060f1SDimitry Andric // We don't track structs in structs. 1351fe6060f1SDimitry Andric markOverdefined(getStructValueState(&IVI, i), &IVI); 1352fe6060f1SDimitry Andric else { 1353fe6060f1SDimitry Andric ValueLatticeElement InVal = getValueState(Val); 1354fe6060f1SDimitry Andric mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 1355fe6060f1SDimitry Andric } 1356fe6060f1SDimitry Andric } 1357fe6060f1SDimitry Andric } 1358fe6060f1SDimitry Andric 1359fe6060f1SDimitry Andric void SCCPInstVisitor::visitSelectInst(SelectInst &I) { 1360fe6060f1SDimitry Andric // If this select returns a struct, just mark the result overdefined. 1361fe6060f1SDimitry Andric // TODO: We could do a lot better than this if code actually uses this. 1362fe6060f1SDimitry Andric if (I.getType()->isStructTy()) 1363fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1364fe6060f1SDimitry Andric 1365fe6060f1SDimitry Andric // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1366fe6060f1SDimitry Andric // discover a concrete value later. 1367fe6060f1SDimitry Andric if (ValueState[&I].isOverdefined()) 1368fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1369fe6060f1SDimitry Andric 1370fe6060f1SDimitry Andric ValueLatticeElement CondValue = getValueState(I.getCondition()); 1371fe6060f1SDimitry Andric if (CondValue.isUnknownOrUndef()) 1372fe6060f1SDimitry Andric return; 1373fe6060f1SDimitry Andric 137406c3fb27SDimitry Andric if (ConstantInt *CondCB = 137506c3fb27SDimitry Andric getConstantInt(CondValue, I.getCondition()->getType())) { 1376fe6060f1SDimitry Andric Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 1377fe6060f1SDimitry Andric mergeInValue(&I, getValueState(OpVal)); 1378fe6060f1SDimitry Andric return; 1379fe6060f1SDimitry Andric } 1380fe6060f1SDimitry Andric 1381fe6060f1SDimitry Andric // Otherwise, the condition is overdefined or a constant we can't evaluate. 1382fe6060f1SDimitry Andric // See if we can produce something better than overdefined based on the T/F 1383fe6060f1SDimitry Andric // value. 1384fe6060f1SDimitry Andric ValueLatticeElement TVal = getValueState(I.getTrueValue()); 1385fe6060f1SDimitry Andric ValueLatticeElement FVal = getValueState(I.getFalseValue()); 1386fe6060f1SDimitry Andric 1387fe6060f1SDimitry Andric bool Changed = ValueState[&I].mergeIn(TVal); 1388fe6060f1SDimitry Andric Changed |= ValueState[&I].mergeIn(FVal); 1389fe6060f1SDimitry Andric if (Changed) 1390fe6060f1SDimitry Andric pushToWorkListMsg(ValueState[&I], &I); 1391fe6060f1SDimitry Andric } 1392fe6060f1SDimitry Andric 1393fe6060f1SDimitry Andric // Handle Unary Operators. 1394fe6060f1SDimitry Andric void SCCPInstVisitor::visitUnaryOperator(Instruction &I) { 1395fe6060f1SDimitry Andric ValueLatticeElement V0State = getValueState(I.getOperand(0)); 1396fe6060f1SDimitry Andric 1397fe6060f1SDimitry Andric ValueLatticeElement &IV = ValueState[&I]; 1398fe6060f1SDimitry Andric // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1399fe6060f1SDimitry Andric // discover a concrete value later. 1400bdd1243dSDimitry Andric if (SCCPSolver::isOverdefined(IV)) 1401fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1402fe6060f1SDimitry Andric 1403753f127fSDimitry Andric // If something is unknown/undef, wait for it to resolve. 1404753f127fSDimitry Andric if (V0State.isUnknownOrUndef()) 1405fe6060f1SDimitry Andric return; 1406753f127fSDimitry Andric 1407bdd1243dSDimitry Andric if (SCCPSolver::isConstant(V0State)) 140806c3fb27SDimitry Andric if (Constant *C = ConstantFoldUnaryOpOperand( 140906c3fb27SDimitry Andric I.getOpcode(), getConstant(V0State, I.getType()), DL)) 1410fe6060f1SDimitry Andric return (void)markConstant(IV, &I, C); 1411fe6060f1SDimitry Andric 1412fe6060f1SDimitry Andric markOverdefined(&I); 1413fe6060f1SDimitry Andric } 1414fe6060f1SDimitry Andric 141506c3fb27SDimitry Andric void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) { 141606c3fb27SDimitry Andric // If this freeze returns a struct, just mark the result overdefined. 141706c3fb27SDimitry Andric // TODO: We could do a lot better than this. 141806c3fb27SDimitry Andric if (I.getType()->isStructTy()) 141906c3fb27SDimitry Andric return (void)markOverdefined(&I); 142006c3fb27SDimitry Andric 142106c3fb27SDimitry Andric ValueLatticeElement V0State = getValueState(I.getOperand(0)); 142206c3fb27SDimitry Andric ValueLatticeElement &IV = ValueState[&I]; 142306c3fb27SDimitry Andric // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 142406c3fb27SDimitry Andric // discover a concrete value later. 142506c3fb27SDimitry Andric if (SCCPSolver::isOverdefined(IV)) 142606c3fb27SDimitry Andric return (void)markOverdefined(&I); 142706c3fb27SDimitry Andric 142806c3fb27SDimitry Andric // If something is unknown/undef, wait for it to resolve. 142906c3fb27SDimitry Andric if (V0State.isUnknownOrUndef()) 143006c3fb27SDimitry Andric return; 143106c3fb27SDimitry Andric 143206c3fb27SDimitry Andric if (SCCPSolver::isConstant(V0State) && 143306c3fb27SDimitry Andric isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType()))) 143406c3fb27SDimitry Andric return (void)markConstant(IV, &I, getConstant(V0State, I.getType())); 143506c3fb27SDimitry Andric 143606c3fb27SDimitry Andric markOverdefined(&I); 143706c3fb27SDimitry Andric } 143806c3fb27SDimitry Andric 1439fe6060f1SDimitry Andric // Handle Binary Operators. 1440fe6060f1SDimitry Andric void SCCPInstVisitor::visitBinaryOperator(Instruction &I) { 1441fe6060f1SDimitry Andric ValueLatticeElement V1State = getValueState(I.getOperand(0)); 1442fe6060f1SDimitry Andric ValueLatticeElement V2State = getValueState(I.getOperand(1)); 1443fe6060f1SDimitry Andric 1444fe6060f1SDimitry Andric ValueLatticeElement &IV = ValueState[&I]; 1445fe6060f1SDimitry Andric if (IV.isOverdefined()) 1446fe6060f1SDimitry Andric return; 1447fe6060f1SDimitry Andric 1448fe6060f1SDimitry Andric // If something is undef, wait for it to resolve. 1449fe6060f1SDimitry Andric if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) 1450fe6060f1SDimitry Andric return; 1451fe6060f1SDimitry Andric 1452fe6060f1SDimitry Andric if (V1State.isOverdefined() && V2State.isOverdefined()) 1453fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1454fe6060f1SDimitry Andric 1455fe6060f1SDimitry Andric // If either of the operands is a constant, try to fold it to a constant. 1456fe6060f1SDimitry Andric // TODO: Use information from notconstant better. 1457fe6060f1SDimitry Andric if ((V1State.isConstant() || V2State.isConstant())) { 145806c3fb27SDimitry Andric Value *V1 = SCCPSolver::isConstant(V1State) 145906c3fb27SDimitry Andric ? getConstant(V1State, I.getOperand(0)->getType()) 1460bdd1243dSDimitry Andric : I.getOperand(0); 146106c3fb27SDimitry Andric Value *V2 = SCCPSolver::isConstant(V2State) 146206c3fb27SDimitry Andric ? getConstant(V2State, I.getOperand(1)->getType()) 1463bdd1243dSDimitry Andric : I.getOperand(1); 146481ad6265SDimitry Andric Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL)); 1465fe6060f1SDimitry Andric auto *C = dyn_cast_or_null<Constant>(R); 1466fe6060f1SDimitry Andric if (C) { 1467fe6060f1SDimitry Andric // Conservatively assume that the result may be based on operands that may 1468fe6060f1SDimitry Andric // be undef. Note that we use mergeInValue to combine the constant with 1469fe6060f1SDimitry Andric // the existing lattice value for I, as different constants might be found 1470fe6060f1SDimitry Andric // after one of the operands go to overdefined, e.g. due to one operand 1471fe6060f1SDimitry Andric // being a special floating value. 1472fe6060f1SDimitry Andric ValueLatticeElement NewV; 1473fe6060f1SDimitry Andric NewV.markConstant(C, /*MayIncludeUndef=*/true); 1474fe6060f1SDimitry Andric return (void)mergeInValue(&I, NewV); 1475fe6060f1SDimitry Andric } 1476fe6060f1SDimitry Andric } 1477fe6060f1SDimitry Andric 1478fe6060f1SDimitry Andric // Only use ranges for binary operators on integers. 1479fe6060f1SDimitry Andric if (!I.getType()->isIntegerTy()) 1480fe6060f1SDimitry Andric return markOverdefined(&I); 1481fe6060f1SDimitry Andric 1482fe6060f1SDimitry Andric // Try to simplify to a constant range. 1483bdd1243dSDimitry Andric ConstantRange A = getConstantRange(V1State, I.getType()); 1484bdd1243dSDimitry Andric ConstantRange B = getConstantRange(V2State, I.getType()); 1485fe6060f1SDimitry Andric ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B); 1486fe6060f1SDimitry Andric mergeInValue(&I, ValueLatticeElement::getRange(R)); 1487fe6060f1SDimitry Andric 1488fe6060f1SDimitry Andric // TODO: Currently we do not exploit special values that produce something 1489fe6060f1SDimitry Andric // better than overdefined with an overdefined operand for vector or floating 1490fe6060f1SDimitry Andric // point types, like and <4 x i32> overdefined, zeroinitializer. 1491fe6060f1SDimitry Andric } 1492fe6060f1SDimitry Andric 1493fe6060f1SDimitry Andric // Handle ICmpInst instruction. 1494fe6060f1SDimitry Andric void SCCPInstVisitor::visitCmpInst(CmpInst &I) { 1495fe6060f1SDimitry Andric // Do not cache this lookup, getValueState calls later in the function might 1496fe6060f1SDimitry Andric // invalidate the reference. 1497bdd1243dSDimitry Andric if (SCCPSolver::isOverdefined(ValueState[&I])) 1498fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1499fe6060f1SDimitry Andric 1500fe6060f1SDimitry Andric Value *Op1 = I.getOperand(0); 1501fe6060f1SDimitry Andric Value *Op2 = I.getOperand(1); 1502fe6060f1SDimitry Andric 1503fe6060f1SDimitry Andric // For parameters, use ParamState which includes constant range info if 1504fe6060f1SDimitry Andric // available. 1505fe6060f1SDimitry Andric auto V1State = getValueState(Op1); 1506fe6060f1SDimitry Andric auto V2State = getValueState(Op2); 1507fe6060f1SDimitry Andric 1508bdd1243dSDimitry Andric Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL); 1509fe6060f1SDimitry Andric if (C) { 1510fe6060f1SDimitry Andric ValueLatticeElement CV; 1511fe6060f1SDimitry Andric CV.markConstant(C); 1512fe6060f1SDimitry Andric mergeInValue(&I, CV); 1513fe6060f1SDimitry Andric return; 1514fe6060f1SDimitry Andric } 1515fe6060f1SDimitry Andric 1516fe6060f1SDimitry Andric // If operands are still unknown, wait for it to resolve. 1517fe6060f1SDimitry Andric if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && 1518bdd1243dSDimitry Andric !SCCPSolver::isConstant(ValueState[&I])) 1519fe6060f1SDimitry Andric return; 1520fe6060f1SDimitry Andric 1521fe6060f1SDimitry Andric markOverdefined(&I); 1522fe6060f1SDimitry Andric } 1523fe6060f1SDimitry Andric 1524fe6060f1SDimitry Andric // Handle getelementptr instructions. If all operands are constants then we 1525fe6060f1SDimitry Andric // can turn this into a getelementptr ConstantExpr. 1526fe6060f1SDimitry Andric void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 1527bdd1243dSDimitry Andric if (SCCPSolver::isOverdefined(ValueState[&I])) 1528fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1529fe6060f1SDimitry Andric 1530fe6060f1SDimitry Andric SmallVector<Constant *, 8> Operands; 1531fe6060f1SDimitry Andric Operands.reserve(I.getNumOperands()); 1532fe6060f1SDimitry Andric 1533fe6060f1SDimitry Andric for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1534fe6060f1SDimitry Andric ValueLatticeElement State = getValueState(I.getOperand(i)); 1535fe6060f1SDimitry Andric if (State.isUnknownOrUndef()) 1536fe6060f1SDimitry Andric return; // Operands are not resolved yet. 1537fe6060f1SDimitry Andric 1538bdd1243dSDimitry Andric if (SCCPSolver::isOverdefined(State)) 1539fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1540fe6060f1SDimitry Andric 154106c3fb27SDimitry Andric if (Constant *C = getConstant(State, I.getOperand(i)->getType())) { 1542fe6060f1SDimitry Andric Operands.push_back(C); 1543fe6060f1SDimitry Andric continue; 1544fe6060f1SDimitry Andric } 1545fe6060f1SDimitry Andric 1546fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1547fe6060f1SDimitry Andric } 1548fe6060f1SDimitry Andric 1549*5f757f3fSDimitry Andric if (Constant *C = ConstantFoldInstOperands(&I, Operands, DL)) 1550fe6060f1SDimitry Andric markConstant(&I, C); 1551fe6060f1SDimitry Andric } 1552fe6060f1SDimitry Andric 1553fe6060f1SDimitry Andric void SCCPInstVisitor::visitStoreInst(StoreInst &SI) { 1554fe6060f1SDimitry Andric // If this store is of a struct, ignore it. 1555fe6060f1SDimitry Andric if (SI.getOperand(0)->getType()->isStructTy()) 1556fe6060f1SDimitry Andric return; 1557fe6060f1SDimitry Andric 1558fe6060f1SDimitry Andric if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1559fe6060f1SDimitry Andric return; 1560fe6060f1SDimitry Andric 1561fe6060f1SDimitry Andric GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1562fe6060f1SDimitry Andric auto I = TrackedGlobals.find(GV); 1563fe6060f1SDimitry Andric if (I == TrackedGlobals.end()) 1564fe6060f1SDimitry Andric return; 1565fe6060f1SDimitry Andric 1566fe6060f1SDimitry Andric // Get the value we are storing into the global, then merge it. 1567fe6060f1SDimitry Andric mergeInValue(I->second, GV, getValueState(SI.getOperand(0)), 1568fe6060f1SDimitry Andric ValueLatticeElement::MergeOptions().setCheckWiden(false)); 1569fe6060f1SDimitry Andric if (I->second.isOverdefined()) 1570fe6060f1SDimitry Andric TrackedGlobals.erase(I); // No need to keep tracking this! 1571fe6060f1SDimitry Andric } 1572fe6060f1SDimitry Andric 1573fe6060f1SDimitry Andric static ValueLatticeElement getValueFromMetadata(const Instruction *I) { 1574fe6060f1SDimitry Andric if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1575fe6060f1SDimitry Andric if (I->getType()->isIntegerTy()) 1576fe6060f1SDimitry Andric return ValueLatticeElement::getRange( 1577fe6060f1SDimitry Andric getConstantRangeFromMetadata(*Ranges)); 1578fe6060f1SDimitry Andric if (I->hasMetadata(LLVMContext::MD_nonnull)) 1579fe6060f1SDimitry Andric return ValueLatticeElement::getNot( 1580fe6060f1SDimitry Andric ConstantPointerNull::get(cast<PointerType>(I->getType()))); 1581fe6060f1SDimitry Andric return ValueLatticeElement::getOverdefined(); 1582fe6060f1SDimitry Andric } 1583fe6060f1SDimitry Andric 1584fe6060f1SDimitry Andric // Handle load instructions. If the operand is a constant pointer to a constant 1585fe6060f1SDimitry Andric // global, we can replace the load with the loaded constant value! 1586fe6060f1SDimitry Andric void SCCPInstVisitor::visitLoadInst(LoadInst &I) { 1587fe6060f1SDimitry Andric // If this load is of a struct or the load is volatile, just mark the result 1588fe6060f1SDimitry Andric // as overdefined. 1589fe6060f1SDimitry Andric if (I.getType()->isStructTy() || I.isVolatile()) 1590fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1591fe6060f1SDimitry Andric 1592fe6060f1SDimitry Andric // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1593fe6060f1SDimitry Andric // discover a concrete value later. 1594fe6060f1SDimitry Andric if (ValueState[&I].isOverdefined()) 1595fe6060f1SDimitry Andric return (void)markOverdefined(&I); 1596fe6060f1SDimitry Andric 1597fe6060f1SDimitry Andric ValueLatticeElement PtrVal = getValueState(I.getOperand(0)); 1598fe6060f1SDimitry Andric if (PtrVal.isUnknownOrUndef()) 1599fe6060f1SDimitry Andric return; // The pointer is not resolved yet! 1600fe6060f1SDimitry Andric 1601fe6060f1SDimitry Andric ValueLatticeElement &IV = ValueState[&I]; 1602fe6060f1SDimitry Andric 1603bdd1243dSDimitry Andric if (SCCPSolver::isConstant(PtrVal)) { 160406c3fb27SDimitry Andric Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType()); 1605fe6060f1SDimitry Andric 1606fe6060f1SDimitry Andric // load null is undefined. 1607fe6060f1SDimitry Andric if (isa<ConstantPointerNull>(Ptr)) { 1608fe6060f1SDimitry Andric if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) 1609fe6060f1SDimitry Andric return (void)markOverdefined(IV, &I); 1610fe6060f1SDimitry Andric else 1611fe6060f1SDimitry Andric return; 1612fe6060f1SDimitry Andric } 1613fe6060f1SDimitry Andric 1614fe6060f1SDimitry Andric // Transform load (constant global) into the value loaded. 1615fe6060f1SDimitry Andric if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { 1616fe6060f1SDimitry Andric if (!TrackedGlobals.empty()) { 1617fe6060f1SDimitry Andric // If we are tracking this global, merge in the known value for it. 1618fe6060f1SDimitry Andric auto It = TrackedGlobals.find(GV); 1619fe6060f1SDimitry Andric if (It != TrackedGlobals.end()) { 1620fe6060f1SDimitry Andric mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts()); 1621fe6060f1SDimitry Andric return; 1622fe6060f1SDimitry Andric } 1623fe6060f1SDimitry Andric } 1624fe6060f1SDimitry Andric } 1625fe6060f1SDimitry Andric 1626fe6060f1SDimitry Andric // Transform load from a constant into a constant if possible. 1627753f127fSDimitry Andric if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) 1628fe6060f1SDimitry Andric return (void)markConstant(IV, &I, C); 1629fe6060f1SDimitry Andric } 1630fe6060f1SDimitry Andric 1631fe6060f1SDimitry Andric // Fall back to metadata. 1632fe6060f1SDimitry Andric mergeInValue(&I, getValueFromMetadata(&I)); 1633fe6060f1SDimitry Andric } 1634fe6060f1SDimitry Andric 1635fe6060f1SDimitry Andric void SCCPInstVisitor::visitCallBase(CallBase &CB) { 1636fe6060f1SDimitry Andric handleCallResult(CB); 1637fe6060f1SDimitry Andric handleCallArguments(CB); 1638fe6060f1SDimitry Andric } 1639fe6060f1SDimitry Andric 1640fe6060f1SDimitry Andric void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) { 1641fe6060f1SDimitry Andric Function *F = CB.getCalledFunction(); 1642fe6060f1SDimitry Andric 1643fe6060f1SDimitry Andric // Void return and not tracking callee, just bail. 1644fe6060f1SDimitry Andric if (CB.getType()->isVoidTy()) 1645fe6060f1SDimitry Andric return; 1646fe6060f1SDimitry Andric 1647fe6060f1SDimitry Andric // Always mark struct return as overdefined. 1648fe6060f1SDimitry Andric if (CB.getType()->isStructTy()) 1649fe6060f1SDimitry Andric return (void)markOverdefined(&CB); 1650fe6060f1SDimitry Andric 1651fe6060f1SDimitry Andric // Otherwise, if we have a single return value case, and if the function is 1652fe6060f1SDimitry Andric // a declaration, maybe we can constant fold it. 1653fe6060f1SDimitry Andric if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) { 1654fe6060f1SDimitry Andric SmallVector<Constant *, 8> Operands; 1655349cc55cSDimitry Andric for (const Use &A : CB.args()) { 1656349cc55cSDimitry Andric if (A.get()->getType()->isStructTy()) 1657fe6060f1SDimitry Andric return markOverdefined(&CB); // Can't handle struct args. 1658bdd1243dSDimitry Andric if (A.get()->getType()->isMetadataTy()) 1659bdd1243dSDimitry Andric continue; // Carried in CB, not allowed in Operands. 1660349cc55cSDimitry Andric ValueLatticeElement State = getValueState(A); 1661fe6060f1SDimitry Andric 1662fe6060f1SDimitry Andric if (State.isUnknownOrUndef()) 1663fe6060f1SDimitry Andric return; // Operands are not resolved yet. 1664bdd1243dSDimitry Andric if (SCCPSolver::isOverdefined(State)) 1665fe6060f1SDimitry Andric return (void)markOverdefined(&CB); 1666bdd1243dSDimitry Andric assert(SCCPSolver::isConstant(State) && "Unknown state!"); 166706c3fb27SDimitry Andric Operands.push_back(getConstant(State, A->getType())); 1668fe6060f1SDimitry Andric } 1669fe6060f1SDimitry Andric 1670bdd1243dSDimitry Andric if (SCCPSolver::isOverdefined(getValueState(&CB))) 1671fe6060f1SDimitry Andric return (void)markOverdefined(&CB); 1672fe6060f1SDimitry Andric 1673fe6060f1SDimitry Andric // If we can constant fold this, mark the result of the call as a 1674fe6060f1SDimitry Andric // constant. 1675753f127fSDimitry Andric if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) 1676fe6060f1SDimitry Andric return (void)markConstant(&CB, C); 1677fe6060f1SDimitry Andric } 1678fe6060f1SDimitry Andric 1679fe6060f1SDimitry Andric // Fall back to metadata. 1680fe6060f1SDimitry Andric mergeInValue(&CB, getValueFromMetadata(&CB)); 1681fe6060f1SDimitry Andric } 1682fe6060f1SDimitry Andric 1683fe6060f1SDimitry Andric void SCCPInstVisitor::handleCallArguments(CallBase &CB) { 1684fe6060f1SDimitry Andric Function *F = CB.getCalledFunction(); 1685fe6060f1SDimitry Andric // If this is a local function that doesn't have its address taken, mark its 1686fe6060f1SDimitry Andric // entry block executable and merge in the actual arguments to the call into 1687fe6060f1SDimitry Andric // the formal arguments of the function. 1688bdd1243dSDimitry Andric if (TrackingIncomingArguments.count(F)) { 1689fe6060f1SDimitry Andric markBlockExecutable(&F->front()); 1690fe6060f1SDimitry Andric 1691fe6060f1SDimitry Andric // Propagate information from this call site into the callee. 1692fe6060f1SDimitry Andric auto CAI = CB.arg_begin(); 1693fe6060f1SDimitry Andric for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 1694fe6060f1SDimitry Andric ++AI, ++CAI) { 1695fe6060f1SDimitry Andric // If this argument is byval, and if the function is not readonly, there 1696fe6060f1SDimitry Andric // will be an implicit copy formed of the input aggregate. 1697fe6060f1SDimitry Andric if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1698fe6060f1SDimitry Andric markOverdefined(&*AI); 1699fe6060f1SDimitry Andric continue; 1700fe6060f1SDimitry Andric } 1701fe6060f1SDimitry Andric 1702fe6060f1SDimitry Andric if (auto *STy = dyn_cast<StructType>(AI->getType())) { 1703fe6060f1SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1704fe6060f1SDimitry Andric ValueLatticeElement CallArg = getStructValueState(*CAI, i); 1705fe6060f1SDimitry Andric mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg, 1706fe6060f1SDimitry Andric getMaxWidenStepsOpts()); 1707fe6060f1SDimitry Andric } 1708fe6060f1SDimitry Andric } else 1709fe6060f1SDimitry Andric mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts()); 1710fe6060f1SDimitry Andric } 1711fe6060f1SDimitry Andric } 1712fe6060f1SDimitry Andric } 1713fe6060f1SDimitry Andric 1714fe6060f1SDimitry Andric void SCCPInstVisitor::handleCallResult(CallBase &CB) { 1715fe6060f1SDimitry Andric Function *F = CB.getCalledFunction(); 1716fe6060f1SDimitry Andric 1717fe6060f1SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(&CB)) { 1718fe6060f1SDimitry Andric if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 1719fe6060f1SDimitry Andric if (ValueState[&CB].isOverdefined()) 1720fe6060f1SDimitry Andric return; 1721fe6060f1SDimitry Andric 1722fe6060f1SDimitry Andric Value *CopyOf = CB.getOperand(0); 1723fe6060f1SDimitry Andric ValueLatticeElement CopyOfVal = getValueState(CopyOf); 1724fe6060f1SDimitry Andric const auto *PI = getPredicateInfoFor(&CB); 1725fe6060f1SDimitry Andric assert(PI && "Missing predicate info for ssa.copy"); 1726fe6060f1SDimitry Andric 1727bdd1243dSDimitry Andric const std::optional<PredicateConstraint> &Constraint = 1728bdd1243dSDimitry Andric PI->getConstraint(); 1729fe6060f1SDimitry Andric if (!Constraint) { 1730fe6060f1SDimitry Andric mergeInValue(ValueState[&CB], &CB, CopyOfVal); 1731fe6060f1SDimitry Andric return; 1732fe6060f1SDimitry Andric } 1733fe6060f1SDimitry Andric 1734fe6060f1SDimitry Andric CmpInst::Predicate Pred = Constraint->Predicate; 1735fe6060f1SDimitry Andric Value *OtherOp = Constraint->OtherOp; 1736fe6060f1SDimitry Andric 1737fe6060f1SDimitry Andric // Wait until OtherOp is resolved. 1738fe6060f1SDimitry Andric if (getValueState(OtherOp).isUnknown()) { 1739fe6060f1SDimitry Andric addAdditionalUser(OtherOp, &CB); 1740fe6060f1SDimitry Andric return; 1741fe6060f1SDimitry Andric } 1742fe6060f1SDimitry Andric 1743fe6060f1SDimitry Andric ValueLatticeElement CondVal = getValueState(OtherOp); 1744fe6060f1SDimitry Andric ValueLatticeElement &IV = ValueState[&CB]; 1745fe6060f1SDimitry Andric if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { 1746fe6060f1SDimitry Andric auto ImposedCR = 1747fe6060f1SDimitry Andric ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType())); 1748fe6060f1SDimitry Andric 1749fe6060f1SDimitry Andric // Get the range imposed by the condition. 1750fe6060f1SDimitry Andric if (CondVal.isConstantRange()) 1751fe6060f1SDimitry Andric ImposedCR = ConstantRange::makeAllowedICmpRegion( 1752fe6060f1SDimitry Andric Pred, CondVal.getConstantRange()); 1753fe6060f1SDimitry Andric 1754fe6060f1SDimitry Andric // Combine range info for the original value with the new range from the 1755fe6060f1SDimitry Andric // condition. 1756bdd1243dSDimitry Andric auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType()); 1757fe6060f1SDimitry Andric auto NewCR = ImposedCR.intersectWith(CopyOfCR); 1758fe6060f1SDimitry Andric // If the existing information is != x, do not use the information from 1759fe6060f1SDimitry Andric // a chained predicate, as the != x information is more likely to be 1760fe6060f1SDimitry Andric // helpful in practice. 1761fe6060f1SDimitry Andric if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement()) 1762fe6060f1SDimitry Andric NewCR = CopyOfCR; 1763fe6060f1SDimitry Andric 176481ad6265SDimitry Andric // The new range is based on a branch condition. That guarantees that 176581ad6265SDimitry Andric // neither of the compare operands can be undef in the branch targets, 176681ad6265SDimitry Andric // unless we have conditions that are always true/false (e.g. icmp ule 176781ad6265SDimitry Andric // i32, %a, i32_max). For the latter overdefined/empty range will be 176881ad6265SDimitry Andric // inferred, but the branch will get folded accordingly anyways. 1769fe6060f1SDimitry Andric addAdditionalUser(OtherOp, &CB); 177081ad6265SDimitry Andric mergeInValue( 177181ad6265SDimitry Andric IV, &CB, 177281ad6265SDimitry Andric ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false)); 1773fe6060f1SDimitry Andric return; 1774bdd1243dSDimitry Andric } else if (Pred == CmpInst::ICMP_EQ && 1775bdd1243dSDimitry Andric (CondVal.isConstant() || CondVal.isNotConstant())) { 1776fe6060f1SDimitry Andric // For non-integer values or integer constant expressions, only 1777bdd1243dSDimitry Andric // propagate equal constants or not-constants. 1778fe6060f1SDimitry Andric addAdditionalUser(OtherOp, &CB); 1779fe6060f1SDimitry Andric mergeInValue(IV, &CB, CondVal); 1780fe6060f1SDimitry Andric return; 178181ad6265SDimitry Andric } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) { 1782fe6060f1SDimitry Andric // Propagate inequalities. 1783fe6060f1SDimitry Andric addAdditionalUser(OtherOp, &CB); 1784fe6060f1SDimitry Andric mergeInValue(IV, &CB, 1785fe6060f1SDimitry Andric ValueLatticeElement::getNot(CondVal.getConstant())); 1786fe6060f1SDimitry Andric return; 1787fe6060f1SDimitry Andric } 1788fe6060f1SDimitry Andric 1789fe6060f1SDimitry Andric return (void)mergeInValue(IV, &CB, CopyOfVal); 1790fe6060f1SDimitry Andric } 1791fe6060f1SDimitry Andric 1792fe6060f1SDimitry Andric if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1793fe6060f1SDimitry Andric // Compute result range for intrinsics supported by ConstantRange. 1794fe6060f1SDimitry Andric // Do this even if we don't know a range for all operands, as we may 1795fe6060f1SDimitry Andric // still know something about the result range, e.g. of abs(x). 1796fe6060f1SDimitry Andric SmallVector<ConstantRange, 2> OpRanges; 1797fe6060f1SDimitry Andric for (Value *Op : II->args()) { 1798fe6060f1SDimitry Andric const ValueLatticeElement &State = getValueState(Op); 179906c3fb27SDimitry Andric if (State.isUnknownOrUndef()) 180006c3fb27SDimitry Andric return; 1801bdd1243dSDimitry Andric OpRanges.push_back(getConstantRange(State, Op->getType())); 1802fe6060f1SDimitry Andric } 1803fe6060f1SDimitry Andric 1804fe6060f1SDimitry Andric ConstantRange Result = 1805fe6060f1SDimitry Andric ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges); 1806fe6060f1SDimitry Andric return (void)mergeInValue(II, ValueLatticeElement::getRange(Result)); 1807fe6060f1SDimitry Andric } 1808fe6060f1SDimitry Andric } 1809fe6060f1SDimitry Andric 1810fe6060f1SDimitry Andric // The common case is that we aren't tracking the callee, either because we 1811fe6060f1SDimitry Andric // are not doing interprocedural analysis or the callee is indirect, or is 1812fe6060f1SDimitry Andric // external. Handle these cases first. 1813fe6060f1SDimitry Andric if (!F || F->isDeclaration()) 1814fe6060f1SDimitry Andric return handleCallOverdefined(CB); 1815fe6060f1SDimitry Andric 1816fe6060f1SDimitry Andric // If this is a single/zero retval case, see if we're tracking the function. 1817fe6060f1SDimitry Andric if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 1818fe6060f1SDimitry Andric if (!MRVFunctionsTracked.count(F)) 1819fe6060f1SDimitry Andric return handleCallOverdefined(CB); // Not tracking this callee. 1820fe6060f1SDimitry Andric 1821fe6060f1SDimitry Andric // If we are tracking this callee, propagate the result of the function 1822fe6060f1SDimitry Andric // into this call site. 1823fe6060f1SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1824fe6060f1SDimitry Andric mergeInValue(getStructValueState(&CB, i), &CB, 1825fe6060f1SDimitry Andric TrackedMultipleRetVals[std::make_pair(F, i)], 1826fe6060f1SDimitry Andric getMaxWidenStepsOpts()); 1827fe6060f1SDimitry Andric } else { 1828fe6060f1SDimitry Andric auto TFRVI = TrackedRetVals.find(F); 1829fe6060f1SDimitry Andric if (TFRVI == TrackedRetVals.end()) 1830fe6060f1SDimitry Andric return handleCallOverdefined(CB); // Not tracking this callee. 1831fe6060f1SDimitry Andric 1832fe6060f1SDimitry Andric // If so, propagate the return value of the callee into this call result. 1833fe6060f1SDimitry Andric mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts()); 1834fe6060f1SDimitry Andric } 1835fe6060f1SDimitry Andric } 1836fe6060f1SDimitry Andric 1837fe6060f1SDimitry Andric void SCCPInstVisitor::solve() { 1838fe6060f1SDimitry Andric // Process the work lists until they are empty! 1839fe6060f1SDimitry Andric while (!BBWorkList.empty() || !InstWorkList.empty() || 1840fe6060f1SDimitry Andric !OverdefinedInstWorkList.empty()) { 1841fe6060f1SDimitry Andric // Process the overdefined instruction's work list first, which drives other 1842fe6060f1SDimitry Andric // things to overdefined more quickly. 1843fe6060f1SDimitry Andric while (!OverdefinedInstWorkList.empty()) { 1844fe6060f1SDimitry Andric Value *I = OverdefinedInstWorkList.pop_back_val(); 184506c3fb27SDimitry Andric Invalidated.erase(I); 1846fe6060f1SDimitry Andric 1847fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1848fe6060f1SDimitry Andric 1849fe6060f1SDimitry Andric // "I" got into the work list because it either made the transition from 1850fe6060f1SDimitry Andric // bottom to constant, or to overdefined. 1851fe6060f1SDimitry Andric // 1852fe6060f1SDimitry Andric // Anything on this worklist that is overdefined need not be visited 1853fe6060f1SDimitry Andric // since all of its users will have already been marked as overdefined 1854fe6060f1SDimitry Andric // Update all of the users of this instruction's value. 1855fe6060f1SDimitry Andric // 1856fe6060f1SDimitry Andric markUsersAsChanged(I); 1857fe6060f1SDimitry Andric } 1858fe6060f1SDimitry Andric 1859fe6060f1SDimitry Andric // Process the instruction work list. 1860fe6060f1SDimitry Andric while (!InstWorkList.empty()) { 1861fe6060f1SDimitry Andric Value *I = InstWorkList.pop_back_val(); 186206c3fb27SDimitry Andric Invalidated.erase(I); 1863fe6060f1SDimitry Andric 1864fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1865fe6060f1SDimitry Andric 1866fe6060f1SDimitry Andric // "I" got into the work list because it made the transition from undef to 1867fe6060f1SDimitry Andric // constant. 1868fe6060f1SDimitry Andric // 1869fe6060f1SDimitry Andric // Anything on this worklist that is overdefined need not be visited 1870fe6060f1SDimitry Andric // since all of its users will have already been marked as overdefined. 1871fe6060f1SDimitry Andric // Update all of the users of this instruction's value. 1872fe6060f1SDimitry Andric // 1873fe6060f1SDimitry Andric if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1874fe6060f1SDimitry Andric markUsersAsChanged(I); 1875fe6060f1SDimitry Andric } 1876fe6060f1SDimitry Andric 1877fe6060f1SDimitry Andric // Process the basic block work list. 1878fe6060f1SDimitry Andric while (!BBWorkList.empty()) { 1879fe6060f1SDimitry Andric BasicBlock *BB = BBWorkList.pop_back_val(); 1880fe6060f1SDimitry Andric 1881fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1882fe6060f1SDimitry Andric 1883fe6060f1SDimitry Andric // Notify all instructions in this basic block that they are newly 1884fe6060f1SDimitry Andric // executable. 1885fe6060f1SDimitry Andric visit(BB); 1886fe6060f1SDimitry Andric } 1887fe6060f1SDimitry Andric } 1888fe6060f1SDimitry Andric } 1889fe6060f1SDimitry Andric 189006c3fb27SDimitry Andric bool SCCPInstVisitor::resolvedUndef(Instruction &I) { 189106c3fb27SDimitry Andric // Look for instructions which produce undef values. 189206c3fb27SDimitry Andric if (I.getType()->isVoidTy()) 189306c3fb27SDimitry Andric return false; 189406c3fb27SDimitry Andric 189506c3fb27SDimitry Andric if (auto *STy = dyn_cast<StructType>(I.getType())) { 189606c3fb27SDimitry Andric // Only a few things that can be structs matter for undef. 189706c3fb27SDimitry Andric 189806c3fb27SDimitry Andric // Tracked calls must never be marked overdefined in resolvedUndefsIn. 189906c3fb27SDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I)) 190006c3fb27SDimitry Andric if (Function *F = CB->getCalledFunction()) 190106c3fb27SDimitry Andric if (MRVFunctionsTracked.count(F)) 190206c3fb27SDimitry Andric return false; 190306c3fb27SDimitry Andric 190406c3fb27SDimitry Andric // extractvalue and insertvalue don't need to be marked; they are 190506c3fb27SDimitry Andric // tracked as precisely as their operands. 190606c3fb27SDimitry Andric if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 190706c3fb27SDimitry Andric return false; 190806c3fb27SDimitry Andric // Send the results of everything else to overdefined. We could be 190906c3fb27SDimitry Andric // more precise than this but it isn't worth bothering. 191006c3fb27SDimitry Andric for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 191106c3fb27SDimitry Andric ValueLatticeElement &LV = getStructValueState(&I, i); 191206c3fb27SDimitry Andric if (LV.isUnknown()) { 191306c3fb27SDimitry Andric markOverdefined(LV, &I); 191406c3fb27SDimitry Andric return true; 191506c3fb27SDimitry Andric } 191606c3fb27SDimitry Andric } 191706c3fb27SDimitry Andric return false; 191806c3fb27SDimitry Andric } 191906c3fb27SDimitry Andric 192006c3fb27SDimitry Andric ValueLatticeElement &LV = getValueState(&I); 192106c3fb27SDimitry Andric if (!LV.isUnknown()) 192206c3fb27SDimitry Andric return false; 192306c3fb27SDimitry Andric 192406c3fb27SDimitry Andric // There are two reasons a call can have an undef result 192506c3fb27SDimitry Andric // 1. It could be tracked. 192606c3fb27SDimitry Andric // 2. It could be constant-foldable. 192706c3fb27SDimitry Andric // Because of the way we solve return values, tracked calls must 192806c3fb27SDimitry Andric // never be marked overdefined in resolvedUndefsIn. 192906c3fb27SDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I)) 193006c3fb27SDimitry Andric if (Function *F = CB->getCalledFunction()) 193106c3fb27SDimitry Andric if (TrackedRetVals.count(F)) 193206c3fb27SDimitry Andric return false; 193306c3fb27SDimitry Andric 193406c3fb27SDimitry Andric if (isa<LoadInst>(I)) { 193506c3fb27SDimitry Andric // A load here means one of two things: a load of undef from a global, 193606c3fb27SDimitry Andric // a load from an unknown pointer. Either way, having it return undef 193706c3fb27SDimitry Andric // is okay. 193806c3fb27SDimitry Andric return false; 193906c3fb27SDimitry Andric } 194006c3fb27SDimitry Andric 194106c3fb27SDimitry Andric markOverdefined(&I); 194206c3fb27SDimitry Andric return true; 194306c3fb27SDimitry Andric } 194406c3fb27SDimitry Andric 194581ad6265SDimitry Andric /// While solving the dataflow for a function, we don't compute a result for 194681ad6265SDimitry Andric /// operations with an undef operand, to allow undef to be lowered to a 194781ad6265SDimitry Andric /// constant later. For example, constant folding of "zext i8 undef to i16" 194881ad6265SDimitry Andric /// would result in "i16 0", and if undef is later lowered to "i8 1", then the 194981ad6265SDimitry Andric /// zext result would become "i16 1" and would result into an overdefined 195081ad6265SDimitry Andric /// lattice value once merged with the previous result. Not computing the 195181ad6265SDimitry Andric /// result of the zext (treating undef the same as unknown) allows us to handle 195281ad6265SDimitry Andric /// a later undef->constant lowering more optimally. 1953fe6060f1SDimitry Andric /// 195481ad6265SDimitry Andric /// However, if the operand remains undef when the solver returns, we do need 195581ad6265SDimitry Andric /// to assign some result to the instruction (otherwise we would treat it as 195681ad6265SDimitry Andric /// unreachable). For simplicity, we mark any instructions that are still 195781ad6265SDimitry Andric /// unknown as overdefined. 1958fe6060f1SDimitry Andric bool SCCPInstVisitor::resolvedUndefsIn(Function &F) { 1959fe6060f1SDimitry Andric bool MadeChange = false; 1960fe6060f1SDimitry Andric for (BasicBlock &BB : F) { 1961fe6060f1SDimitry Andric if (!BBExecutable.count(&BB)) 1962fe6060f1SDimitry Andric continue; 1963fe6060f1SDimitry Andric 196406c3fb27SDimitry Andric for (Instruction &I : BB) 196506c3fb27SDimitry Andric MadeChange |= resolvedUndef(I); 1966fe6060f1SDimitry Andric } 1967fe6060f1SDimitry Andric 1968bdd1243dSDimitry Andric LLVM_DEBUG(if (MadeChange) dbgs() 1969bdd1243dSDimitry Andric << "\nResolved undefs in " << F.getName() << '\n'); 1970bdd1243dSDimitry Andric 1971fe6060f1SDimitry Andric return MadeChange; 1972fe6060f1SDimitry Andric } 1973fe6060f1SDimitry Andric 1974fe6060f1SDimitry Andric //===----------------------------------------------------------------------===// 1975fe6060f1SDimitry Andric // 1976fe6060f1SDimitry Andric // SCCPSolver implementations 1977fe6060f1SDimitry Andric // 1978fe6060f1SDimitry Andric SCCPSolver::SCCPSolver( 1979fe6060f1SDimitry Andric const DataLayout &DL, 1980fe6060f1SDimitry Andric std::function<const TargetLibraryInfo &(Function &)> GetTLI, 1981fe6060f1SDimitry Andric LLVMContext &Ctx) 1982fe6060f1SDimitry Andric : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {} 1983fe6060f1SDimitry Andric 198481ad6265SDimitry Andric SCCPSolver::~SCCPSolver() = default; 1985fe6060f1SDimitry Andric 198606c3fb27SDimitry Andric void SCCPSolver::addPredicateInfo(Function &F, DominatorTree &DT, 198706c3fb27SDimitry Andric AssumptionCache &AC) { 198806c3fb27SDimitry Andric Visitor->addPredicateInfo(F, DT, AC); 1989fe6060f1SDimitry Andric } 1990fe6060f1SDimitry Andric 1991fe6060f1SDimitry Andric bool SCCPSolver::markBlockExecutable(BasicBlock *BB) { 1992fe6060f1SDimitry Andric return Visitor->markBlockExecutable(BB); 1993fe6060f1SDimitry Andric } 1994fe6060f1SDimitry Andric 1995fe6060f1SDimitry Andric const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) { 1996fe6060f1SDimitry Andric return Visitor->getPredicateInfoFor(I); 1997fe6060f1SDimitry Andric } 1998fe6060f1SDimitry Andric 1999fe6060f1SDimitry Andric void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) { 2000fe6060f1SDimitry Andric Visitor->trackValueOfGlobalVariable(GV); 2001fe6060f1SDimitry Andric } 2002fe6060f1SDimitry Andric 2003fe6060f1SDimitry Andric void SCCPSolver::addTrackedFunction(Function *F) { 2004fe6060f1SDimitry Andric Visitor->addTrackedFunction(F); 2005fe6060f1SDimitry Andric } 2006fe6060f1SDimitry Andric 2007fe6060f1SDimitry Andric void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) { 2008fe6060f1SDimitry Andric Visitor->addToMustPreserveReturnsInFunctions(F); 2009fe6060f1SDimitry Andric } 2010fe6060f1SDimitry Andric 2011fe6060f1SDimitry Andric bool SCCPSolver::mustPreserveReturn(Function *F) { 2012fe6060f1SDimitry Andric return Visitor->mustPreserveReturn(F); 2013fe6060f1SDimitry Andric } 2014fe6060f1SDimitry Andric 2015fe6060f1SDimitry Andric void SCCPSolver::addArgumentTrackedFunction(Function *F) { 2016fe6060f1SDimitry Andric Visitor->addArgumentTrackedFunction(F); 2017fe6060f1SDimitry Andric } 2018fe6060f1SDimitry Andric 2019fe6060f1SDimitry Andric bool SCCPSolver::isArgumentTrackedFunction(Function *F) { 2020fe6060f1SDimitry Andric return Visitor->isArgumentTrackedFunction(F); 2021fe6060f1SDimitry Andric } 2022fe6060f1SDimitry Andric 2023fe6060f1SDimitry Andric void SCCPSolver::solve() { Visitor->solve(); } 2024fe6060f1SDimitry Andric 2025fe6060f1SDimitry Andric bool SCCPSolver::resolvedUndefsIn(Function &F) { 2026fe6060f1SDimitry Andric return Visitor->resolvedUndefsIn(F); 2027fe6060f1SDimitry Andric } 2028fe6060f1SDimitry Andric 2029bdd1243dSDimitry Andric void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) { 2030bdd1243dSDimitry Andric Visitor->solveWhileResolvedUndefsIn(M); 2031bdd1243dSDimitry Andric } 2032bdd1243dSDimitry Andric 2033bdd1243dSDimitry Andric void 2034bdd1243dSDimitry Andric SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) { 2035bdd1243dSDimitry Andric Visitor->solveWhileResolvedUndefsIn(WorkList); 2036bdd1243dSDimitry Andric } 2037bdd1243dSDimitry Andric 203806c3fb27SDimitry Andric void SCCPSolver::solveWhileResolvedUndefs() { 203906c3fb27SDimitry Andric Visitor->solveWhileResolvedUndefs(); 204006c3fb27SDimitry Andric } 204106c3fb27SDimitry Andric 2042fe6060f1SDimitry Andric bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const { 2043fe6060f1SDimitry Andric return Visitor->isBlockExecutable(BB); 2044fe6060f1SDimitry Andric } 2045fe6060f1SDimitry Andric 2046fe6060f1SDimitry Andric bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 2047fe6060f1SDimitry Andric return Visitor->isEdgeFeasible(From, To); 2048fe6060f1SDimitry Andric } 2049fe6060f1SDimitry Andric 2050fe6060f1SDimitry Andric std::vector<ValueLatticeElement> 2051fe6060f1SDimitry Andric SCCPSolver::getStructLatticeValueFor(Value *V) const { 2052fe6060f1SDimitry Andric return Visitor->getStructLatticeValueFor(V); 2053fe6060f1SDimitry Andric } 2054fe6060f1SDimitry Andric 2055fe6060f1SDimitry Andric void SCCPSolver::removeLatticeValueFor(Value *V) { 2056fe6060f1SDimitry Andric return Visitor->removeLatticeValueFor(V); 2057fe6060f1SDimitry Andric } 2058fe6060f1SDimitry Andric 205906c3fb27SDimitry Andric void SCCPSolver::resetLatticeValueFor(CallBase *Call) { 206006c3fb27SDimitry Andric Visitor->resetLatticeValueFor(Call); 206106c3fb27SDimitry Andric } 206206c3fb27SDimitry Andric 2063fe6060f1SDimitry Andric const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const { 2064fe6060f1SDimitry Andric return Visitor->getLatticeValueFor(V); 2065fe6060f1SDimitry Andric } 2066fe6060f1SDimitry Andric 2067fe6060f1SDimitry Andric const MapVector<Function *, ValueLatticeElement> & 2068fe6060f1SDimitry Andric SCCPSolver::getTrackedRetVals() { 2069fe6060f1SDimitry Andric return Visitor->getTrackedRetVals(); 2070fe6060f1SDimitry Andric } 2071fe6060f1SDimitry Andric 2072fe6060f1SDimitry Andric const DenseMap<GlobalVariable *, ValueLatticeElement> & 2073fe6060f1SDimitry Andric SCCPSolver::getTrackedGlobals() { 2074fe6060f1SDimitry Andric return Visitor->getTrackedGlobals(); 2075fe6060f1SDimitry Andric } 2076fe6060f1SDimitry Andric 2077fe6060f1SDimitry Andric const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() { 2078fe6060f1SDimitry Andric return Visitor->getMRVFunctionsTracked(); 2079fe6060f1SDimitry Andric } 2080fe6060f1SDimitry Andric 2081fe6060f1SDimitry Andric void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); } 2082fe6060f1SDimitry Andric 2083fe6060f1SDimitry Andric bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) { 2084fe6060f1SDimitry Andric return Visitor->isStructLatticeConstant(F, STy); 2085fe6060f1SDimitry Andric } 2086fe6060f1SDimitry Andric 208706c3fb27SDimitry Andric Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV, 208806c3fb27SDimitry Andric Type *Ty) const { 208906c3fb27SDimitry Andric return Visitor->getConstant(LV, Ty); 209006c3fb27SDimitry Andric } 209106c3fb27SDimitry Andric 209206c3fb27SDimitry Andric Constant *SCCPSolver::getConstantOrNull(Value *V) const { 209306c3fb27SDimitry Andric return Visitor->getConstantOrNull(V); 2094fe6060f1SDimitry Andric } 2095fe6060f1SDimitry Andric 2096fe6060f1SDimitry Andric SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() { 2097fe6060f1SDimitry Andric return Visitor->getArgumentTrackedFunctions(); 2098fe6060f1SDimitry Andric } 2099fe6060f1SDimitry Andric 210006c3fb27SDimitry Andric void SCCPSolver::setLatticeValueForSpecializationArguments(Function *F, 210106c3fb27SDimitry Andric const SmallVectorImpl<ArgInfo> &Args) { 210206c3fb27SDimitry Andric Visitor->setLatticeValueForSpecializationArguments(F, Args); 2103fe6060f1SDimitry Andric } 2104fe6060f1SDimitry Andric 2105fe6060f1SDimitry Andric void SCCPSolver::markFunctionUnreachable(Function *F) { 2106fe6060f1SDimitry Andric Visitor->markFunctionUnreachable(F); 2107fe6060f1SDimitry Andric } 2108fe6060f1SDimitry Andric 2109fe6060f1SDimitry Andric void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); } 2110fe6060f1SDimitry Andric 2111fe6060f1SDimitry Andric void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); } 2112