xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "mem2reg"
58 
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
63 
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65   // Only allow direct and non-volatile loads and stores...
66   for (const User *U : AI->users()) {
67     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68       // Note that atomic loads can be transformed; atomic semantics do
69       // not have any meaning for a local alloca.
70       if (LI->isVolatile())
71         return false;
72     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73       if (SI->getOperand(0) == AI)
74         return false; // Don't allow a store OF the AI, only INTO the AI.
75       // Note that atomic stores can be transformed; atomic semantics do
76       // not have any meaning for a local alloca.
77       if (SI->isVolatile())
78         return false;
79     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80       if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
81         return false;
82     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
83       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
84         return false;
85     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
86       if (!GEPI->hasAllZeroIndices())
87         return false;
88       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
89         return false;
90     } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
91       if (!onlyUsedByLifetimeMarkers(ASCI))
92         return false;
93     } else {
94       return false;
95     }
96   }
97 
98   return true;
99 }
100 
101 namespace {
102 
103 struct AllocaInfo {
104   using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
105 
106   SmallVector<BasicBlock *, 32> DefiningBlocks;
107   SmallVector<BasicBlock *, 32> UsingBlocks;
108 
109   StoreInst *OnlyStore;
110   BasicBlock *OnlyBlock;
111   bool OnlyUsedInOneBlock;
112 
113   DbgUserVec DbgUsers;
114 
115   void clear() {
116     DefiningBlocks.clear();
117     UsingBlocks.clear();
118     OnlyStore = nullptr;
119     OnlyBlock = nullptr;
120     OnlyUsedInOneBlock = true;
121     DbgUsers.clear();
122   }
123 
124   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
125   /// by the rest of the pass to reason about the uses of this alloca.
126   void AnalyzeAlloca(AllocaInst *AI) {
127     clear();
128 
129     // As we scan the uses of the alloca instruction, keep track of stores,
130     // and decide whether all of the loads and stores to the alloca are within
131     // the same basic block.
132     for (User *U : AI->users()) {
133       Instruction *User = cast<Instruction>(U);
134 
135       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
136         // Remember the basic blocks which define new values for the alloca
137         DefiningBlocks.push_back(SI->getParent());
138         OnlyStore = SI;
139       } else {
140         LoadInst *LI = cast<LoadInst>(User);
141         // Otherwise it must be a load instruction, keep track of variable
142         // reads.
143         UsingBlocks.push_back(LI->getParent());
144       }
145 
146       if (OnlyUsedInOneBlock) {
147         if (!OnlyBlock)
148           OnlyBlock = User->getParent();
149         else if (OnlyBlock != User->getParent())
150           OnlyUsedInOneBlock = false;
151       }
152     }
153 
154     findDbgUsers(DbgUsers, AI);
155   }
156 };
157 
158 /// Data package used by RenamePass().
159 struct RenamePassData {
160   using ValVector = std::vector<Value *>;
161   using LocationVector = std::vector<DebugLoc>;
162 
163   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
164       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
165 
166   BasicBlock *BB;
167   BasicBlock *Pred;
168   ValVector Values;
169   LocationVector Locations;
170 };
171 
172 /// This assigns and keeps a per-bb relative ordering of load/store
173 /// instructions in the block that directly load or store an alloca.
174 ///
175 /// This functionality is important because it avoids scanning large basic
176 /// blocks multiple times when promoting many allocas in the same block.
177 class LargeBlockInfo {
178   /// For each instruction that we track, keep the index of the
179   /// instruction.
180   ///
181   /// The index starts out as the number of the instruction from the start of
182   /// the block.
183   DenseMap<const Instruction *, unsigned> InstNumbers;
184 
185 public:
186 
187   /// This code only looks at accesses to allocas.
188   static bool isInterestingInstruction(const Instruction *I) {
189     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
190            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
191   }
192 
193   /// Get or calculate the index of the specified instruction.
194   unsigned getInstructionIndex(const Instruction *I) {
195     assert(isInterestingInstruction(I) &&
196            "Not a load/store to/from an alloca?");
197 
198     // If we already have this instruction number, return it.
199     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
200     if (It != InstNumbers.end())
201       return It->second;
202 
203     // Scan the whole block to get the instruction.  This accumulates
204     // information for every interesting instruction in the block, in order to
205     // avoid gratuitus rescans.
206     const BasicBlock *BB = I->getParent();
207     unsigned InstNo = 0;
208     for (const Instruction &BBI : *BB)
209       if (isInterestingInstruction(&BBI))
210         InstNumbers[&BBI] = InstNo++;
211     It = InstNumbers.find(I);
212 
213     assert(It != InstNumbers.end() && "Didn't insert instruction?");
214     return It->second;
215   }
216 
217   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
218 
219   void clear() { InstNumbers.clear(); }
220 };
221 
222 struct PromoteMem2Reg {
223   /// The alloca instructions being promoted.
224   std::vector<AllocaInst *> Allocas;
225 
226   DominatorTree &DT;
227   DIBuilder DIB;
228 
229   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
230   AssumptionCache *AC;
231 
232   const SimplifyQuery SQ;
233 
234   /// Reverse mapping of Allocas.
235   DenseMap<AllocaInst *, unsigned> AllocaLookup;
236 
237   /// The PhiNodes we're adding.
238   ///
239   /// That map is used to simplify some Phi nodes as we iterate over it, so
240   /// it should have deterministic iterators.  We could use a MapVector, but
241   /// since we already maintain a map from BasicBlock* to a stable numbering
242   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
243   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
244 
245   /// For each PHI node, keep track of which entry in Allocas it corresponds
246   /// to.
247   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
248 
249   /// For each alloca, we keep track of the dbg.declare intrinsic that
250   /// describes it, if any, so that we can convert it to a dbg.value
251   /// intrinsic if the alloca gets promoted.
252   SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
253 
254   /// The set of basic blocks the renamer has already visited.
255   SmallPtrSet<BasicBlock *, 16> Visited;
256 
257   /// Contains a stable numbering of basic blocks to avoid non-determinstic
258   /// behavior.
259   DenseMap<BasicBlock *, unsigned> BBNumbers;
260 
261   /// Lazily compute the number of predecessors a block has.
262   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
263 
264 public:
265   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
266                  AssumptionCache *AC)
267       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
268         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
269         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
270                    nullptr, &DT, AC) {}
271 
272   void run();
273 
274 private:
275   void RemoveFromAllocasList(unsigned &AllocaIdx) {
276     Allocas[AllocaIdx] = Allocas.back();
277     Allocas.pop_back();
278     --AllocaIdx;
279   }
280 
281   unsigned getNumPreds(const BasicBlock *BB) {
282     unsigned &NP = BBNumPreds[BB];
283     if (NP == 0)
284       NP = pred_size(BB) + 1;
285     return NP - 1;
286   }
287 
288   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
289                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
290                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
291   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
292                   RenamePassData::ValVector &IncVals,
293                   RenamePassData::LocationVector &IncLocs,
294                   std::vector<RenamePassData> &Worklist);
295   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
296 };
297 
298 } // end anonymous namespace
299 
300 /// Given a LoadInst LI this adds assume(LI != null) after it.
301 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
302   Function *AssumeIntrinsic =
303       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
304   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
305                                        Constant::getNullValue(LI->getType()));
306   LoadNotNull->insertAfter(LI);
307   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
308   CI->insertAfter(LoadNotNull);
309   AC->registerAssumption(CI);
310 }
311 
312 static void removeIntrinsicUsers(AllocaInst *AI) {
313   // Knowing that this alloca is promotable, we know that it's safe to kill all
314   // instructions except for load and store.
315 
316   for (auto UI = AI->use_begin(), UE = AI->use_end(); UI != UE;) {
317     Instruction *I = cast<Instruction>(UI->getUser());
318     Use &U = *UI;
319     ++UI;
320     if (isa<LoadInst>(I) || isa<StoreInst>(I))
321       continue;
322 
323     // Drop the use of AI in droppable instructions.
324     if (I->isDroppable()) {
325       I->dropDroppableUse(U);
326       continue;
327     }
328 
329     if (!I->getType()->isVoidTy()) {
330       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
331       // Follow the use/def chain to erase them now instead of leaving it for
332       // dead code elimination later.
333       for (auto UUI = I->use_begin(), UUE = I->use_end(); UUI != UUE;) {
334         Instruction *Inst = cast<Instruction>(UUI->getUser());
335         Use &UU = *UUI;
336         ++UUI;
337 
338         // Drop the use of I in droppable instructions.
339         if (Inst->isDroppable()) {
340           Inst->dropDroppableUse(UU);
341           continue;
342         }
343         Inst->eraseFromParent();
344       }
345     }
346     I->eraseFromParent();
347   }
348 }
349 
350 /// Rewrite as many loads as possible given a single store.
351 ///
352 /// When there is only a single store, we can use the domtree to trivially
353 /// replace all of the dominated loads with the stored value. Do so, and return
354 /// true if this has successfully promoted the alloca entirely. If this returns
355 /// false there were some loads which were not dominated by the single store
356 /// and thus must be phi-ed with undef. We fall back to the standard alloca
357 /// promotion algorithm in that case.
358 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
359                                      LargeBlockInfo &LBI, const DataLayout &DL,
360                                      DominatorTree &DT, AssumptionCache *AC) {
361   StoreInst *OnlyStore = Info.OnlyStore;
362   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
363   BasicBlock *StoreBB = OnlyStore->getParent();
364   int StoreIndex = -1;
365 
366   // Clear out UsingBlocks.  We will reconstruct it here if needed.
367   Info.UsingBlocks.clear();
368 
369   for (User *U : make_early_inc_range(AI->users())) {
370     Instruction *UserInst = cast<Instruction>(U);
371     if (UserInst == OnlyStore)
372       continue;
373     LoadInst *LI = cast<LoadInst>(UserInst);
374 
375     // Okay, if we have a load from the alloca, we want to replace it with the
376     // only value stored to the alloca.  We can do this if the value is
377     // dominated by the store.  If not, we use the rest of the mem2reg machinery
378     // to insert the phi nodes as needed.
379     if (!StoringGlobalVal) { // Non-instructions are always dominated.
380       if (LI->getParent() == StoreBB) {
381         // If we have a use that is in the same block as the store, compare the
382         // indices of the two instructions to see which one came first.  If the
383         // load came before the store, we can't handle it.
384         if (StoreIndex == -1)
385           StoreIndex = LBI.getInstructionIndex(OnlyStore);
386 
387         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
388           // Can't handle this load, bail out.
389           Info.UsingBlocks.push_back(StoreBB);
390           continue;
391         }
392       } else if (!DT.dominates(StoreBB, LI->getParent())) {
393         // If the load and store are in different blocks, use BB dominance to
394         // check their relationships.  If the store doesn't dom the use, bail
395         // out.
396         Info.UsingBlocks.push_back(LI->getParent());
397         continue;
398       }
399     }
400 
401     // Otherwise, we *can* safely rewrite this load.
402     Value *ReplVal = OnlyStore->getOperand(0);
403     // If the replacement value is the load, this must occur in unreachable
404     // code.
405     if (ReplVal == LI)
406       ReplVal = UndefValue::get(LI->getType());
407 
408     // If the load was marked as nonnull we don't want to lose
409     // that information when we erase this Load. So we preserve
410     // it with an assume.
411     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
412         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
413       addAssumeNonNull(AC, LI);
414 
415     LI->replaceAllUsesWith(ReplVal);
416     LI->eraseFromParent();
417     LBI.deleteValue(LI);
418   }
419 
420   // Finally, after the scan, check to see if the store is all that is left.
421   if (!Info.UsingBlocks.empty())
422     return false; // If not, we'll have to fall back for the remainder.
423 
424   // Record debuginfo for the store and remove the declaration's
425   // debuginfo.
426   for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
427     if (DII->isAddressOfVariable()) {
428       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
429       ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
430       DII->eraseFromParent();
431     } else if (DII->getExpression()->startsWithDeref()) {
432       DII->eraseFromParent();
433     }
434   }
435   // Remove the (now dead) store and alloca.
436   Info.OnlyStore->eraseFromParent();
437   LBI.deleteValue(Info.OnlyStore);
438 
439   AI->eraseFromParent();
440   return true;
441 }
442 
443 /// Many allocas are only used within a single basic block.  If this is the
444 /// case, avoid traversing the CFG and inserting a lot of potentially useless
445 /// PHI nodes by just performing a single linear pass over the basic block
446 /// using the Alloca.
447 ///
448 /// If we cannot promote this alloca (because it is read before it is written),
449 /// return false.  This is necessary in cases where, due to control flow, the
450 /// alloca is undefined only on some control flow paths.  e.g. code like
451 /// this is correct in LLVM IR:
452 ///  // A is an alloca with no stores so far
453 ///  for (...) {
454 ///    int t = *A;
455 ///    if (!first_iteration)
456 ///      use(t);
457 ///    *A = 42;
458 ///  }
459 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
460                                      LargeBlockInfo &LBI,
461                                      const DataLayout &DL,
462                                      DominatorTree &DT,
463                                      AssumptionCache *AC) {
464   // The trickiest case to handle is when we have large blocks. Because of this,
465   // this code is optimized assuming that large blocks happen.  This does not
466   // significantly pessimize the small block case.  This uses LargeBlockInfo to
467   // make it efficient to get the index of various operations in the block.
468 
469   // Walk the use-def list of the alloca, getting the locations of all stores.
470   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
471   StoresByIndexTy StoresByIndex;
472 
473   for (User *U : AI->users())
474     if (StoreInst *SI = dyn_cast<StoreInst>(U))
475       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
476 
477   // Sort the stores by their index, making it efficient to do a lookup with a
478   // binary search.
479   llvm::sort(StoresByIndex, less_first());
480 
481   // Walk all of the loads from this alloca, replacing them with the nearest
482   // store above them, if any.
483   for (User *U : make_early_inc_range(AI->users())) {
484     LoadInst *LI = dyn_cast<LoadInst>(U);
485     if (!LI)
486       continue;
487 
488     unsigned LoadIdx = LBI.getInstructionIndex(LI);
489 
490     // Find the nearest store that has a lower index than this load.
491     StoresByIndexTy::iterator I = llvm::lower_bound(
492         StoresByIndex,
493         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
494         less_first());
495     if (I == StoresByIndex.begin()) {
496       if (StoresByIndex.empty())
497         // If there are no stores, the load takes the undef value.
498         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
499       else
500         // There is no store before this load, bail out (load may be affected
501         // by the following stores - see main comment).
502         return false;
503     } else {
504       // Otherwise, there was a store before this load, the load takes its value.
505       // Note, if the load was marked as nonnull we don't want to lose that
506       // information when we erase it. So we preserve it with an assume.
507       Value *ReplVal = std::prev(I)->second->getOperand(0);
508       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
509           !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
510         addAssumeNonNull(AC, LI);
511 
512       // If the replacement value is the load, this must occur in unreachable
513       // code.
514       if (ReplVal == LI)
515         ReplVal = UndefValue::get(LI->getType());
516 
517       LI->replaceAllUsesWith(ReplVal);
518     }
519 
520     LI->eraseFromParent();
521     LBI.deleteValue(LI);
522   }
523 
524   // Remove the (now dead) stores and alloca.
525   while (!AI->use_empty()) {
526     StoreInst *SI = cast<StoreInst>(AI->user_back());
527     // Record debuginfo for the store before removing it.
528     for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
529       if (DII->isAddressOfVariable()) {
530         DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
531         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
532       }
533     }
534     SI->eraseFromParent();
535     LBI.deleteValue(SI);
536   }
537 
538   AI->eraseFromParent();
539 
540   // The alloca's debuginfo can be removed as well.
541   for (DbgVariableIntrinsic *DII : Info.DbgUsers)
542     if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
543       DII->eraseFromParent();
544 
545   ++NumLocalPromoted;
546   return true;
547 }
548 
549 void PromoteMem2Reg::run() {
550   Function &F = *DT.getRoot()->getParent();
551 
552   AllocaDbgUsers.resize(Allocas.size());
553 
554   AllocaInfo Info;
555   LargeBlockInfo LBI;
556   ForwardIDFCalculator IDF(DT);
557 
558   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
559     AllocaInst *AI = Allocas[AllocaNum];
560 
561     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
562     assert(AI->getParent()->getParent() == &F &&
563            "All allocas should be in the same function, which is same as DF!");
564 
565     removeIntrinsicUsers(AI);
566 
567     if (AI->use_empty()) {
568       // If there are no uses of the alloca, just delete it now.
569       AI->eraseFromParent();
570 
571       // Remove the alloca from the Allocas list, since it has been processed
572       RemoveFromAllocasList(AllocaNum);
573       ++NumDeadAlloca;
574       continue;
575     }
576 
577     // Calculate the set of read and write-locations for each alloca.  This is
578     // analogous to finding the 'uses' and 'definitions' of each variable.
579     Info.AnalyzeAlloca(AI);
580 
581     // If there is only a single store to this value, replace any loads of
582     // it that are directly dominated by the definition with the value stored.
583     if (Info.DefiningBlocks.size() == 1) {
584       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
585         // The alloca has been processed, move on.
586         RemoveFromAllocasList(AllocaNum);
587         ++NumSingleStore;
588         continue;
589       }
590     }
591 
592     // If the alloca is only read and written in one basic block, just perform a
593     // linear sweep over the block to eliminate it.
594     if (Info.OnlyUsedInOneBlock &&
595         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
596       // The alloca has been processed, move on.
597       RemoveFromAllocasList(AllocaNum);
598       continue;
599     }
600 
601     // If we haven't computed a numbering for the BB's in the function, do so
602     // now.
603     if (BBNumbers.empty()) {
604       unsigned ID = 0;
605       for (auto &BB : F)
606         BBNumbers[&BB] = ID++;
607     }
608 
609     // Remember the dbg.declare intrinsic describing this alloca, if any.
610     if (!Info.DbgUsers.empty())
611       AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
612 
613     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
614     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
615 
616     // Unique the set of defining blocks for efficient lookup.
617     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
618                                             Info.DefiningBlocks.end());
619 
620     // Determine which blocks the value is live in.  These are blocks which lead
621     // to uses.
622     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
623     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
624 
625     // At this point, we're committed to promoting the alloca using IDF's, and
626     // the standard SSA construction algorithm.  Determine which blocks need phi
627     // nodes and see if we can optimize out some work by avoiding insertion of
628     // dead phi nodes.
629     IDF.setLiveInBlocks(LiveInBlocks);
630     IDF.setDefiningBlocks(DefBlocks);
631     SmallVector<BasicBlock *, 32> PHIBlocks;
632     IDF.calculate(PHIBlocks);
633     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
634       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
635     });
636 
637     unsigned CurrentVersion = 0;
638     for (BasicBlock *BB : PHIBlocks)
639       QueuePhiNode(BB, AllocaNum, CurrentVersion);
640   }
641 
642   if (Allocas.empty())
643     return; // All of the allocas must have been trivial!
644 
645   LBI.clear();
646 
647   // Set the incoming values for the basic block to be null values for all of
648   // the alloca's.  We do this in case there is a load of a value that has not
649   // been stored yet.  In this case, it will get this null value.
650   RenamePassData::ValVector Values(Allocas.size());
651   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
652     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
653 
654   // When handling debug info, treat all incoming values as if they have unknown
655   // locations until proven otherwise.
656   RenamePassData::LocationVector Locations(Allocas.size());
657 
658   // Walks all basic blocks in the function performing the SSA rename algorithm
659   // and inserting the phi nodes we marked as necessary
660   std::vector<RenamePassData> RenamePassWorkList;
661   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
662                                   std::move(Locations));
663   do {
664     RenamePassData RPD = std::move(RenamePassWorkList.back());
665     RenamePassWorkList.pop_back();
666     // RenamePass may add new worklist entries.
667     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
668   } while (!RenamePassWorkList.empty());
669 
670   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
671   Visited.clear();
672 
673   // Remove the allocas themselves from the function.
674   for (Instruction *A : Allocas) {
675     // If there are any uses of the alloca instructions left, they must be in
676     // unreachable basic blocks that were not processed by walking the dominator
677     // tree. Just delete the users now.
678     if (!A->use_empty())
679       A->replaceAllUsesWith(UndefValue::get(A->getType()));
680     A->eraseFromParent();
681   }
682 
683   // Remove alloca's dbg.declare instrinsics from the function.
684   for (auto &DbgUsers : AllocaDbgUsers) {
685     for (auto *DII : DbgUsers)
686       if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
687         DII->eraseFromParent();
688   }
689 
690   // Loop over all of the PHI nodes and see if there are any that we can get
691   // rid of because they merge all of the same incoming values.  This can
692   // happen due to undef values coming into the PHI nodes.  This process is
693   // iterative, because eliminating one PHI node can cause others to be removed.
694   bool EliminatedAPHI = true;
695   while (EliminatedAPHI) {
696     EliminatedAPHI = false;
697 
698     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
699     // simplify and RAUW them as we go.  If it was not, we could add uses to
700     // the values we replace with in a non-deterministic order, thus creating
701     // non-deterministic def->use chains.
702     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
703              I = NewPhiNodes.begin(),
704              E = NewPhiNodes.end();
705          I != E;) {
706       PHINode *PN = I->second;
707 
708       // If this PHI node merges one value and/or undefs, get the value.
709       if (Value *V = SimplifyInstruction(PN, SQ)) {
710         PN->replaceAllUsesWith(V);
711         PN->eraseFromParent();
712         NewPhiNodes.erase(I++);
713         EliminatedAPHI = true;
714         continue;
715       }
716       ++I;
717     }
718   }
719 
720   // At this point, the renamer has added entries to PHI nodes for all reachable
721   // code.  Unfortunately, there may be unreachable blocks which the renamer
722   // hasn't traversed.  If this is the case, the PHI nodes may not
723   // have incoming values for all predecessors.  Loop over all PHI nodes we have
724   // created, inserting undef values if they are missing any incoming values.
725   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
726            I = NewPhiNodes.begin(),
727            E = NewPhiNodes.end();
728        I != E; ++I) {
729     // We want to do this once per basic block.  As such, only process a block
730     // when we find the PHI that is the first entry in the block.
731     PHINode *SomePHI = I->second;
732     BasicBlock *BB = SomePHI->getParent();
733     if (&BB->front() != SomePHI)
734       continue;
735 
736     // Only do work here if there the PHI nodes are missing incoming values.  We
737     // know that all PHI nodes that were inserted in a block will have the same
738     // number of incoming values, so we can just check any of them.
739     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
740       continue;
741 
742     // Get the preds for BB.
743     SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
744 
745     // Ok, now we know that all of the PHI nodes are missing entries for some
746     // basic blocks.  Start by sorting the incoming predecessors for efficient
747     // access.
748     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
749       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
750     };
751     llvm::sort(Preds, CompareBBNumbers);
752 
753     // Now we loop through all BB's which have entries in SomePHI and remove
754     // them from the Preds list.
755     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
756       // Do a log(n) search of the Preds list for the entry we want.
757       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
758           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
759       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
760              "PHI node has entry for a block which is not a predecessor!");
761 
762       // Remove the entry
763       Preds.erase(EntIt);
764     }
765 
766     // At this point, the blocks left in the preds list must have dummy
767     // entries inserted into every PHI nodes for the block.  Update all the phi
768     // nodes in this block that we are inserting (there could be phis before
769     // mem2reg runs).
770     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
771     BasicBlock::iterator BBI = BB->begin();
772     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
773            SomePHI->getNumIncomingValues() == NumBadPreds) {
774       Value *UndefVal = UndefValue::get(SomePHI->getType());
775       for (BasicBlock *Pred : Preds)
776         SomePHI->addIncoming(UndefVal, Pred);
777     }
778   }
779 
780   NewPhiNodes.clear();
781 }
782 
783 /// Determine which blocks the value is live in.
784 ///
785 /// These are blocks which lead to uses.  Knowing this allows us to avoid
786 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
787 /// inserted phi nodes would be dead).
788 void PromoteMem2Reg::ComputeLiveInBlocks(
789     AllocaInst *AI, AllocaInfo &Info,
790     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
791     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
792   // To determine liveness, we must iterate through the predecessors of blocks
793   // where the def is live.  Blocks are added to the worklist if we need to
794   // check their predecessors.  Start with all the using blocks.
795   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
796                                                     Info.UsingBlocks.end());
797 
798   // If any of the using blocks is also a definition block, check to see if the
799   // definition occurs before or after the use.  If it happens before the use,
800   // the value isn't really live-in.
801   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
802     BasicBlock *BB = LiveInBlockWorklist[i];
803     if (!DefBlocks.count(BB))
804       continue;
805 
806     // Okay, this is a block that both uses and defines the value.  If the first
807     // reference to the alloca is a def (store), then we know it isn't live-in.
808     for (BasicBlock::iterator I = BB->begin();; ++I) {
809       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
810         if (SI->getOperand(1) != AI)
811           continue;
812 
813         // We found a store to the alloca before a load.  The alloca is not
814         // actually live-in here.
815         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
816         LiveInBlockWorklist.pop_back();
817         --i;
818         --e;
819         break;
820       }
821 
822       if (LoadInst *LI = dyn_cast<LoadInst>(I))
823         // Okay, we found a load before a store to the alloca.  It is actually
824         // live into this block.
825         if (LI->getOperand(0) == AI)
826           break;
827     }
828   }
829 
830   // Now that we have a set of blocks where the phi is live-in, recursively add
831   // their predecessors until we find the full region the value is live.
832   while (!LiveInBlockWorklist.empty()) {
833     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
834 
835     // The block really is live in here, insert it into the set.  If already in
836     // the set, then it has already been processed.
837     if (!LiveInBlocks.insert(BB).second)
838       continue;
839 
840     // Since the value is live into BB, it is either defined in a predecessor or
841     // live into it to.  Add the preds to the worklist unless they are a
842     // defining block.
843     for (BasicBlock *P : predecessors(BB)) {
844       // The value is not live into a predecessor if it defines the value.
845       if (DefBlocks.count(P))
846         continue;
847 
848       // Otherwise it is, add to the worklist.
849       LiveInBlockWorklist.push_back(P);
850     }
851   }
852 }
853 
854 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
855 ///
856 /// Returns true if there wasn't already a phi-node for that variable
857 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
858                                   unsigned &Version) {
859   // Look up the basic-block in question.
860   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
861 
862   // If the BB already has a phi node added for the i'th alloca then we're done!
863   if (PN)
864     return false;
865 
866   // Create a PhiNode using the dereferenced type... and add the phi-node to the
867   // BasicBlock.
868   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
869                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
870                        &BB->front());
871   ++NumPHIInsert;
872   PhiToAllocaMap[PN] = AllocaNo;
873   return true;
874 }
875 
876 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
877 /// create a merged location incorporating \p DL, or to set \p DL directly.
878 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
879                                            bool ApplyMergedLoc) {
880   if (ApplyMergedLoc)
881     PN->applyMergedLocation(PN->getDebugLoc(), DL);
882   else
883     PN->setDebugLoc(DL);
884 }
885 
886 /// Recursively traverse the CFG of the function, renaming loads and
887 /// stores to the allocas which we are promoting.
888 ///
889 /// IncomingVals indicates what value each Alloca contains on exit from the
890 /// predecessor block Pred.
891 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
892                                 RenamePassData::ValVector &IncomingVals,
893                                 RenamePassData::LocationVector &IncomingLocs,
894                                 std::vector<RenamePassData> &Worklist) {
895 NextIteration:
896   // If we are inserting any phi nodes into this BB, they will already be in the
897   // block.
898   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
899     // If we have PHI nodes to update, compute the number of edges from Pred to
900     // BB.
901     if (PhiToAllocaMap.count(APN)) {
902       // We want to be able to distinguish between PHI nodes being inserted by
903       // this invocation of mem2reg from those phi nodes that already existed in
904       // the IR before mem2reg was run.  We determine that APN is being inserted
905       // because it is missing incoming edges.  All other PHI nodes being
906       // inserted by this pass of mem2reg will have the same number of incoming
907       // operands so far.  Remember this count.
908       unsigned NewPHINumOperands = APN->getNumOperands();
909 
910       unsigned NumEdges = llvm::count(successors(Pred), BB);
911       assert(NumEdges && "Must be at least one edge from Pred to BB!");
912 
913       // Add entries for all the phis.
914       BasicBlock::iterator PNI = BB->begin();
915       do {
916         unsigned AllocaNo = PhiToAllocaMap[APN];
917 
918         // Update the location of the phi node.
919         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
920                                        APN->getNumIncomingValues() > 0);
921 
922         // Add N incoming values to the PHI node.
923         for (unsigned i = 0; i != NumEdges; ++i)
924           APN->addIncoming(IncomingVals[AllocaNo], Pred);
925 
926         // The currently active variable for this block is now the PHI.
927         IncomingVals[AllocaNo] = APN;
928         for (DbgVariableIntrinsic *DII : AllocaDbgUsers[AllocaNo])
929           if (DII->isAddressOfVariable())
930             ConvertDebugDeclareToDebugValue(DII, APN, DIB);
931 
932         // Get the next phi node.
933         ++PNI;
934         APN = dyn_cast<PHINode>(PNI);
935         if (!APN)
936           break;
937 
938         // Verify that it is missing entries.  If not, it is not being inserted
939         // by this mem2reg invocation so we want to ignore it.
940       } while (APN->getNumOperands() == NewPHINumOperands);
941     }
942   }
943 
944   // Don't revisit blocks.
945   if (!Visited.insert(BB).second)
946     return;
947 
948   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
949     Instruction *I = &*II++; // get the instruction, increment iterator
950 
951     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
952       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
953       if (!Src)
954         continue;
955 
956       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
957       if (AI == AllocaLookup.end())
958         continue;
959 
960       Value *V = IncomingVals[AI->second];
961 
962       // If the load was marked as nonnull we don't want to lose
963       // that information when we erase this Load. So we preserve
964       // it with an assume.
965       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
966           !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
967         addAssumeNonNull(AC, LI);
968 
969       // Anything using the load now uses the current value.
970       LI->replaceAllUsesWith(V);
971       BB->getInstList().erase(LI);
972     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
973       // Delete this instruction and mark the name as the current holder of the
974       // value
975       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
976       if (!Dest)
977         continue;
978 
979       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
980       if (ai == AllocaLookup.end())
981         continue;
982 
983       // what value were we writing?
984       unsigned AllocaNo = ai->second;
985       IncomingVals[AllocaNo] = SI->getOperand(0);
986 
987       // Record debuginfo for the store before removing it.
988       IncomingLocs[AllocaNo] = SI->getDebugLoc();
989       for (DbgVariableIntrinsic *DII : AllocaDbgUsers[ai->second])
990         if (DII->isAddressOfVariable())
991           ConvertDebugDeclareToDebugValue(DII, SI, DIB);
992       BB->getInstList().erase(SI);
993     }
994   }
995 
996   // 'Recurse' to our successors.
997   succ_iterator I = succ_begin(BB), E = succ_end(BB);
998   if (I == E)
999     return;
1000 
1001   // Keep track of the successors so we don't visit the same successor twice
1002   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1003 
1004   // Handle the first successor without using the worklist.
1005   VisitedSuccs.insert(*I);
1006   Pred = BB;
1007   BB = *I;
1008   ++I;
1009 
1010   for (; I != E; ++I)
1011     if (VisitedSuccs.insert(*I).second)
1012       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1013 
1014   goto NextIteration;
1015 }
1016 
1017 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1018                            AssumptionCache *AC) {
1019   // If there is nothing to do, bail out...
1020   if (Allocas.empty())
1021     return;
1022 
1023   PromoteMem2Reg(Allocas, DT, AC).run();
1024 }
1025