xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/IteratedDominanceFrontier.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugProgramInstruction.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "mem2reg"
58 
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
63 
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65   // Only allow direct and non-volatile loads and stores...
66   for (const User *U : AI->users()) {
67     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68       // Note that atomic loads can be transformed; atomic semantics do
69       // not have any meaning for a local alloca.
70       if (LI->isVolatile() || LI->getType() != AI->getAllocatedType())
71         return false;
72     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73       if (SI->getValueOperand() == AI ||
74           SI->getValueOperand()->getType() != AI->getAllocatedType())
75         return false; // Don't allow a store OF the AI, only INTO the AI.
76       // Note that atomic stores can be transformed; atomic semantics do
77       // not have any meaning for a local alloca.
78       if (SI->isVolatile())
79         return false;
80     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
81       if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
82         return false;
83     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
84       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
85         return false;
86     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
87       if (!GEPI->hasAllZeroIndices())
88         return false;
89       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
90         return false;
91     } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
92       if (!onlyUsedByLifetimeMarkers(ASCI))
93         return false;
94     } else {
95       return false;
96     }
97   }
98 
99   return true;
100 }
101 
102 namespace {
103 
104 /// Helper for updating assignment tracking debug info when promoting allocas.
105 class AssignmentTrackingInfo {
106   /// DbgAssignIntrinsics linked to the alloca with at most one per variable
107   /// fragment. (i.e. not be a comprehensive set if there are multiple
108   /// dbg.assigns for one variable fragment).
109   SmallVector<DbgVariableIntrinsic *> DbgAssigns;
110 
111 public:
112   void init(AllocaInst *AI) {
113     SmallSet<DebugVariable, 2> Vars;
114     for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) {
115       if (Vars.insert(DebugVariable(DAI)).second)
116         DbgAssigns.push_back(DAI);
117     }
118   }
119 
120   /// Update assignment tracking debug info given for the to-be-deleted store
121   /// \p ToDelete that stores to this alloca.
122   void updateForDeletedStore(
123       StoreInst *ToDelete, DIBuilder &DIB,
124       SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete) const {
125     // There's nothing to do if the alloca doesn't have any variables using
126     // assignment tracking.
127     if (DbgAssigns.empty())
128       return;
129 
130     // Insert a dbg.value where the linked dbg.assign is and remember to delete
131     // the dbg.assign later. Demoting to dbg.value isn't necessary for
132     // correctness but does reduce compile time and memory usage by reducing
133     // unnecessary function-local metadata. Remember that we've seen a
134     // dbg.assign for each variable fragment for the untracked store handling
135     // (after this loop).
136     SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore;
137     for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(ToDelete)) {
138       VarHasDbgAssignForStore.insert(DebugVariableAggregate(DAI));
139       DbgAssignsToDelete->insert(DAI);
140       DIB.insertDbgValueIntrinsic(DAI->getValue(), DAI->getVariable(),
141                                   DAI->getExpression(), DAI->getDebugLoc(),
142                                   DAI);
143     }
144 
145     // It's possible for variables using assignment tracking to have no
146     // dbg.assign linked to this store. These are variables in DbgAssigns that
147     // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign
148     // to mark the assignment - and the store is going to be deleted - insert a
149     // dbg.value to do that now. An untracked store may be either one that
150     // cannot be represented using assignment tracking (non-const offset or
151     // size) or one that is trackable but has had its DIAssignID attachment
152     // dropped accidentally.
153     for (auto *DAI : DbgAssigns) {
154       if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(DAI)))
155         continue;
156       ConvertDebugDeclareToDebugValue(DAI, ToDelete, DIB);
157     }
158   }
159 
160   /// Update assignment tracking debug info given for the newly inserted PHI \p
161   /// NewPhi.
162   void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const {
163     // Regardless of the position of dbg.assigns relative to stores, the
164     // incoming values into a new PHI should be the same for the (imaginary)
165     // debug-phi.
166     for (auto *DAI : DbgAssigns)
167       ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB);
168   }
169 
170   void clear() { DbgAssigns.clear(); }
171   bool empty() { return DbgAssigns.empty(); }
172 };
173 
174 struct AllocaInfo {
175   using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
176   using DPUserVec = SmallVector<DPValue *, 1>;
177 
178   SmallVector<BasicBlock *, 32> DefiningBlocks;
179   SmallVector<BasicBlock *, 32> UsingBlocks;
180 
181   StoreInst *OnlyStore;
182   BasicBlock *OnlyBlock;
183   bool OnlyUsedInOneBlock;
184 
185   /// Debug users of the alloca - does not include dbg.assign intrinsics.
186   DbgUserVec DbgUsers;
187   DPUserVec DPUsers;
188   /// Helper to update assignment tracking debug info.
189   AssignmentTrackingInfo AssignmentTracking;
190 
191   void clear() {
192     DefiningBlocks.clear();
193     UsingBlocks.clear();
194     OnlyStore = nullptr;
195     OnlyBlock = nullptr;
196     OnlyUsedInOneBlock = true;
197     DbgUsers.clear();
198     DPUsers.clear();
199     AssignmentTracking.clear();
200   }
201 
202   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
203   /// by the rest of the pass to reason about the uses of this alloca.
204   void AnalyzeAlloca(AllocaInst *AI) {
205     clear();
206 
207     // As we scan the uses of the alloca instruction, keep track of stores,
208     // and decide whether all of the loads and stores to the alloca are within
209     // the same basic block.
210     for (User *U : AI->users()) {
211       Instruction *User = cast<Instruction>(U);
212 
213       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
214         // Remember the basic blocks which define new values for the alloca
215         DefiningBlocks.push_back(SI->getParent());
216         OnlyStore = SI;
217       } else {
218         LoadInst *LI = cast<LoadInst>(User);
219         // Otherwise it must be a load instruction, keep track of variable
220         // reads.
221         UsingBlocks.push_back(LI->getParent());
222       }
223 
224       if (OnlyUsedInOneBlock) {
225         if (!OnlyBlock)
226           OnlyBlock = User->getParent();
227         else if (OnlyBlock != User->getParent())
228           OnlyUsedInOneBlock = false;
229       }
230     }
231     DbgUserVec AllDbgUsers;
232     findDbgUsers(AllDbgUsers, AI, &DPUsers);
233     std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(),
234                  std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) {
235                    return !isa<DbgAssignIntrinsic>(DII);
236                  });
237     AssignmentTracking.init(AI);
238   }
239 };
240 
241 /// Data package used by RenamePass().
242 struct RenamePassData {
243   using ValVector = std::vector<Value *>;
244   using LocationVector = std::vector<DebugLoc>;
245 
246   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
247       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
248 
249   BasicBlock *BB;
250   BasicBlock *Pred;
251   ValVector Values;
252   LocationVector Locations;
253 };
254 
255 /// This assigns and keeps a per-bb relative ordering of load/store
256 /// instructions in the block that directly load or store an alloca.
257 ///
258 /// This functionality is important because it avoids scanning large basic
259 /// blocks multiple times when promoting many allocas in the same block.
260 class LargeBlockInfo {
261   /// For each instruction that we track, keep the index of the
262   /// instruction.
263   ///
264   /// The index starts out as the number of the instruction from the start of
265   /// the block.
266   DenseMap<const Instruction *, unsigned> InstNumbers;
267 
268 public:
269 
270   /// This code only looks at accesses to allocas.
271   static bool isInterestingInstruction(const Instruction *I) {
272     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
273            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
274   }
275 
276   /// Get or calculate the index of the specified instruction.
277   unsigned getInstructionIndex(const Instruction *I) {
278     assert(isInterestingInstruction(I) &&
279            "Not a load/store to/from an alloca?");
280 
281     // If we already have this instruction number, return it.
282     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
283     if (It != InstNumbers.end())
284       return It->second;
285 
286     // Scan the whole block to get the instruction.  This accumulates
287     // information for every interesting instruction in the block, in order to
288     // avoid gratuitus rescans.
289     const BasicBlock *BB = I->getParent();
290     unsigned InstNo = 0;
291     for (const Instruction &BBI : *BB)
292       if (isInterestingInstruction(&BBI))
293         InstNumbers[&BBI] = InstNo++;
294     It = InstNumbers.find(I);
295 
296     assert(It != InstNumbers.end() && "Didn't insert instruction?");
297     return It->second;
298   }
299 
300   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
301 
302   void clear() { InstNumbers.clear(); }
303 };
304 
305 struct PromoteMem2Reg {
306   /// The alloca instructions being promoted.
307   std::vector<AllocaInst *> Allocas;
308 
309   DominatorTree &DT;
310   DIBuilder DIB;
311 
312   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
313   AssumptionCache *AC;
314 
315   const SimplifyQuery SQ;
316 
317   /// Reverse mapping of Allocas.
318   DenseMap<AllocaInst *, unsigned> AllocaLookup;
319 
320   /// The PhiNodes we're adding.
321   ///
322   /// That map is used to simplify some Phi nodes as we iterate over it, so
323   /// it should have deterministic iterators.  We could use a MapVector, but
324   /// since we already maintain a map from BasicBlock* to a stable numbering
325   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
326   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
327 
328   /// For each PHI node, keep track of which entry in Allocas it corresponds
329   /// to.
330   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
331 
332   /// For each alloca, we keep track of the dbg.declare intrinsic that
333   /// describes it, if any, so that we can convert it to a dbg.value
334   /// intrinsic if the alloca gets promoted.
335   SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
336   SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers;
337 
338   /// For each alloca, keep an instance of a helper class that gives us an easy
339   /// way to update assignment tracking debug info if the alloca is promoted.
340   SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo;
341   /// A set of dbg.assigns to delete because they've been demoted to
342   /// dbg.values. Call cleanUpDbgAssigns to delete them.
343   SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete;
344 
345   /// The set of basic blocks the renamer has already visited.
346   SmallPtrSet<BasicBlock *, 16> Visited;
347 
348   /// Contains a stable numbering of basic blocks to avoid non-determinstic
349   /// behavior.
350   DenseMap<BasicBlock *, unsigned> BBNumbers;
351 
352   /// Lazily compute the number of predecessors a block has.
353   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
354 
355 public:
356   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
357                  AssumptionCache *AC)
358       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
359         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
360         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
361                    nullptr, &DT, AC) {}
362 
363   void run();
364 
365 private:
366   void RemoveFromAllocasList(unsigned &AllocaIdx) {
367     Allocas[AllocaIdx] = Allocas.back();
368     Allocas.pop_back();
369     --AllocaIdx;
370   }
371 
372   unsigned getNumPreds(const BasicBlock *BB) {
373     unsigned &NP = BBNumPreds[BB];
374     if (NP == 0)
375       NP = pred_size(BB) + 1;
376     return NP - 1;
377   }
378 
379   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
380                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
381                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
382   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
383                   RenamePassData::ValVector &IncVals,
384                   RenamePassData::LocationVector &IncLocs,
385                   std::vector<RenamePassData> &Worklist);
386   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
387 
388   /// Delete dbg.assigns that have been demoted to dbg.values.
389   void cleanUpDbgAssigns() {
390     for (auto *DAI : DbgAssignsToDelete)
391       DAI->eraseFromParent();
392     DbgAssignsToDelete.clear();
393   }
394 };
395 
396 } // end anonymous namespace
397 
398 /// Given a LoadInst LI this adds assume(LI != null) after it.
399 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
400   Function *AssumeIntrinsic =
401       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
402   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
403                                        Constant::getNullValue(LI->getType()));
404   LoadNotNull->insertAfter(LI);
405   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
406   CI->insertAfter(LoadNotNull);
407   AC->registerAssumption(cast<AssumeInst>(CI));
408 }
409 
410 static void convertMetadataToAssumes(LoadInst *LI, Value *Val,
411                                      const DataLayout &DL, AssumptionCache *AC,
412                                      const DominatorTree *DT) {
413   // If the load was marked as nonnull we don't want to lose that information
414   // when we erase this Load. So we preserve it with an assume. As !nonnull
415   // returns poison while assume violations are immediate undefined behavior,
416   // we can only do this if the value is known non-poison.
417   if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
418       LI->getMetadata(LLVMContext::MD_noundef) &&
419       !isKnownNonZero(Val, DL, 0, AC, LI, DT))
420     addAssumeNonNull(AC, LI);
421 }
422 
423 static void removeIntrinsicUsers(AllocaInst *AI) {
424   // Knowing that this alloca is promotable, we know that it's safe to kill all
425   // instructions except for load and store.
426 
427   for (Use &U : llvm::make_early_inc_range(AI->uses())) {
428     Instruction *I = cast<Instruction>(U.getUser());
429     if (isa<LoadInst>(I) || isa<StoreInst>(I))
430       continue;
431 
432     // Drop the use of AI in droppable instructions.
433     if (I->isDroppable()) {
434       I->dropDroppableUse(U);
435       continue;
436     }
437 
438     if (!I->getType()->isVoidTy()) {
439       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
440       // Follow the use/def chain to erase them now instead of leaving it for
441       // dead code elimination later.
442       for (Use &UU : llvm::make_early_inc_range(I->uses())) {
443         Instruction *Inst = cast<Instruction>(UU.getUser());
444 
445         // Drop the use of I in droppable instructions.
446         if (Inst->isDroppable()) {
447           Inst->dropDroppableUse(UU);
448           continue;
449         }
450         Inst->eraseFromParent();
451       }
452     }
453     I->eraseFromParent();
454   }
455 }
456 
457 /// Rewrite as many loads as possible given a single store.
458 ///
459 /// When there is only a single store, we can use the domtree to trivially
460 /// replace all of the dominated loads with the stored value. Do so, and return
461 /// true if this has successfully promoted the alloca entirely. If this returns
462 /// false there were some loads which were not dominated by the single store
463 /// and thus must be phi-ed with undef. We fall back to the standard alloca
464 /// promotion algorithm in that case.
465 static bool rewriteSingleStoreAlloca(
466     AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, const DataLayout &DL,
467     DominatorTree &DT, AssumptionCache *AC,
468     SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete) {
469   StoreInst *OnlyStore = Info.OnlyStore;
470   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
471   BasicBlock *StoreBB = OnlyStore->getParent();
472   int StoreIndex = -1;
473 
474   // Clear out UsingBlocks.  We will reconstruct it here if needed.
475   Info.UsingBlocks.clear();
476 
477   for (User *U : make_early_inc_range(AI->users())) {
478     Instruction *UserInst = cast<Instruction>(U);
479     if (UserInst == OnlyStore)
480       continue;
481     LoadInst *LI = cast<LoadInst>(UserInst);
482 
483     // Okay, if we have a load from the alloca, we want to replace it with the
484     // only value stored to the alloca.  We can do this if the value is
485     // dominated by the store.  If not, we use the rest of the mem2reg machinery
486     // to insert the phi nodes as needed.
487     if (!StoringGlobalVal) { // Non-instructions are always dominated.
488       if (LI->getParent() == StoreBB) {
489         // If we have a use that is in the same block as the store, compare the
490         // indices of the two instructions to see which one came first.  If the
491         // load came before the store, we can't handle it.
492         if (StoreIndex == -1)
493           StoreIndex = LBI.getInstructionIndex(OnlyStore);
494 
495         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
496           // Can't handle this load, bail out.
497           Info.UsingBlocks.push_back(StoreBB);
498           continue;
499         }
500       } else if (!DT.dominates(StoreBB, LI->getParent())) {
501         // If the load and store are in different blocks, use BB dominance to
502         // check their relationships.  If the store doesn't dom the use, bail
503         // out.
504         Info.UsingBlocks.push_back(LI->getParent());
505         continue;
506       }
507     }
508 
509     // Otherwise, we *can* safely rewrite this load.
510     Value *ReplVal = OnlyStore->getOperand(0);
511     // If the replacement value is the load, this must occur in unreachable
512     // code.
513     if (ReplVal == LI)
514       ReplVal = PoisonValue::get(LI->getType());
515 
516     convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
517     LI->replaceAllUsesWith(ReplVal);
518     LI->eraseFromParent();
519     LBI.deleteValue(LI);
520   }
521 
522   // Finally, after the scan, check to see if the store is all that is left.
523   if (!Info.UsingBlocks.empty())
524     return false; // If not, we'll have to fall back for the remainder.
525 
526   DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
527   // Update assignment tracking info for the store we're going to delete.
528   Info.AssignmentTracking.updateForDeletedStore(Info.OnlyStore, DIB,
529                                                 DbgAssignsToDelete);
530 
531   // Record debuginfo for the store and remove the declaration's
532   // debuginfo.
533   auto ConvertDebugInfoForStore = [&](auto &Container) {
534     for (auto *DbgItem : Container) {
535       if (DbgItem->isAddressOfVariable()) {
536         ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB);
537         DbgItem->eraseFromParent();
538       } else if (DbgItem->getExpression()->startsWithDeref()) {
539         DbgItem->eraseFromParent();
540       }
541     }
542   };
543   ConvertDebugInfoForStore(Info.DbgUsers);
544   ConvertDebugInfoForStore(Info.DPUsers);
545 
546   // Remove dbg.assigns linked to the alloca as these are now redundant.
547   at::deleteAssignmentMarkers(AI);
548 
549   // Remove the (now dead) store and alloca.
550   Info.OnlyStore->eraseFromParent();
551   LBI.deleteValue(Info.OnlyStore);
552 
553   AI->eraseFromParent();
554   return true;
555 }
556 
557 /// Many allocas are only used within a single basic block.  If this is the
558 /// case, avoid traversing the CFG and inserting a lot of potentially useless
559 /// PHI nodes by just performing a single linear pass over the basic block
560 /// using the Alloca.
561 ///
562 /// If we cannot promote this alloca (because it is read before it is written),
563 /// return false.  This is necessary in cases where, due to control flow, the
564 /// alloca is undefined only on some control flow paths.  e.g. code like
565 /// this is correct in LLVM IR:
566 ///  // A is an alloca with no stores so far
567 ///  for (...) {
568 ///    int t = *A;
569 ///    if (!first_iteration)
570 ///      use(t);
571 ///    *A = 42;
572 ///  }
573 static bool promoteSingleBlockAlloca(
574     AllocaInst *AI, const AllocaInfo &Info, LargeBlockInfo &LBI,
575     const DataLayout &DL, DominatorTree &DT, AssumptionCache *AC,
576     SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete) {
577   // The trickiest case to handle is when we have large blocks. Because of this,
578   // this code is optimized assuming that large blocks happen.  This does not
579   // significantly pessimize the small block case.  This uses LargeBlockInfo to
580   // make it efficient to get the index of various operations in the block.
581 
582   // Walk the use-def list of the alloca, getting the locations of all stores.
583   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
584   StoresByIndexTy StoresByIndex;
585 
586   for (User *U : AI->users())
587     if (StoreInst *SI = dyn_cast<StoreInst>(U))
588       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
589 
590   // Sort the stores by their index, making it efficient to do a lookup with a
591   // binary search.
592   llvm::sort(StoresByIndex, less_first());
593 
594   // Walk all of the loads from this alloca, replacing them with the nearest
595   // store above them, if any.
596   for (User *U : make_early_inc_range(AI->users())) {
597     LoadInst *LI = dyn_cast<LoadInst>(U);
598     if (!LI)
599       continue;
600 
601     unsigned LoadIdx = LBI.getInstructionIndex(LI);
602 
603     // Find the nearest store that has a lower index than this load.
604     StoresByIndexTy::iterator I = llvm::lower_bound(
605         StoresByIndex,
606         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
607         less_first());
608     Value *ReplVal;
609     if (I == StoresByIndex.begin()) {
610       if (StoresByIndex.empty())
611         // If there are no stores, the load takes the undef value.
612         ReplVal = UndefValue::get(LI->getType());
613       else
614         // There is no store before this load, bail out (load may be affected
615         // by the following stores - see main comment).
616         return false;
617     } else {
618       // Otherwise, there was a store before this load, the load takes its
619       // value.
620       ReplVal = std::prev(I)->second->getOperand(0);
621     }
622 
623     convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
624 
625     // If the replacement value is the load, this must occur in unreachable
626     // code.
627     if (ReplVal == LI)
628       ReplVal = PoisonValue::get(LI->getType());
629 
630     LI->replaceAllUsesWith(ReplVal);
631     LI->eraseFromParent();
632     LBI.deleteValue(LI);
633   }
634 
635   // Remove the (now dead) stores and alloca.
636   DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
637   while (!AI->use_empty()) {
638     StoreInst *SI = cast<StoreInst>(AI->user_back());
639     // Update assignment tracking info for the store we're going to delete.
640     Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete);
641 
642     // Record debuginfo for the store before removing it.
643     auto DbgUpdateForStore = [&](auto &Container) {
644       for (auto *DbgItem : Container) {
645         if (DbgItem->isAddressOfVariable()) {
646           ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB);
647         }
648       }
649     };
650     DbgUpdateForStore(Info.DbgUsers);
651     DbgUpdateForStore(Info.DPUsers);
652 
653     SI->eraseFromParent();
654     LBI.deleteValue(SI);
655   }
656 
657   // Remove dbg.assigns linked to the alloca as these are now redundant.
658   at::deleteAssignmentMarkers(AI);
659   AI->eraseFromParent();
660 
661   // The alloca's debuginfo can be removed as well.
662   auto DbgUpdateForAlloca = [&](auto &Container) {
663     for (auto *DbgItem : Container)
664       if (DbgItem->isAddressOfVariable() ||
665           DbgItem->getExpression()->startsWithDeref())
666         DbgItem->eraseFromParent();
667   };
668   DbgUpdateForAlloca(Info.DbgUsers);
669   DbgUpdateForAlloca(Info.DPUsers);
670 
671   ++NumLocalPromoted;
672   return true;
673 }
674 
675 void PromoteMem2Reg::run() {
676   Function &F = *DT.getRoot()->getParent();
677 
678   AllocaDbgUsers.resize(Allocas.size());
679   AllocaATInfo.resize(Allocas.size());
680   AllocaDPUsers.resize(Allocas.size());
681 
682   AllocaInfo Info;
683   LargeBlockInfo LBI;
684   ForwardIDFCalculator IDF(DT);
685 
686   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
687     AllocaInst *AI = Allocas[AllocaNum];
688 
689     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
690     assert(AI->getParent()->getParent() == &F &&
691            "All allocas should be in the same function, which is same as DF!");
692 
693     removeIntrinsicUsers(AI);
694 
695     if (AI->use_empty()) {
696       // If there are no uses of the alloca, just delete it now.
697       AI->eraseFromParent();
698 
699       // Remove the alloca from the Allocas list, since it has been processed
700       RemoveFromAllocasList(AllocaNum);
701       ++NumDeadAlloca;
702       continue;
703     }
704 
705     // Calculate the set of read and write-locations for each alloca.  This is
706     // analogous to finding the 'uses' and 'definitions' of each variable.
707     Info.AnalyzeAlloca(AI);
708 
709     // If there is only a single store to this value, replace any loads of
710     // it that are directly dominated by the definition with the value stored.
711     if (Info.DefiningBlocks.size() == 1) {
712       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC,
713                                    &DbgAssignsToDelete)) {
714         // The alloca has been processed, move on.
715         RemoveFromAllocasList(AllocaNum);
716         ++NumSingleStore;
717         continue;
718       }
719     }
720 
721     // If the alloca is only read and written in one basic block, just perform a
722     // linear sweep over the block to eliminate it.
723     if (Info.OnlyUsedInOneBlock &&
724         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC,
725                                  &DbgAssignsToDelete)) {
726       // The alloca has been processed, move on.
727       RemoveFromAllocasList(AllocaNum);
728       continue;
729     }
730 
731     // If we haven't computed a numbering for the BB's in the function, do so
732     // now.
733     if (BBNumbers.empty()) {
734       unsigned ID = 0;
735       for (auto &BB : F)
736         BBNumbers[&BB] = ID++;
737     }
738 
739     // Remember the dbg.declare intrinsic describing this alloca, if any.
740     if (!Info.DbgUsers.empty())
741       AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
742     if (!Info.AssignmentTracking.empty())
743       AllocaATInfo[AllocaNum] = Info.AssignmentTracking;
744     if (!Info.DPUsers.empty())
745       AllocaDPUsers[AllocaNum] = Info.DPUsers;
746 
747     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
748     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
749 
750     // Unique the set of defining blocks for efficient lookup.
751     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
752                                             Info.DefiningBlocks.end());
753 
754     // Determine which blocks the value is live in.  These are blocks which lead
755     // to uses.
756     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
757     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
758 
759     // At this point, we're committed to promoting the alloca using IDF's, and
760     // the standard SSA construction algorithm.  Determine which blocks need phi
761     // nodes and see if we can optimize out some work by avoiding insertion of
762     // dead phi nodes.
763     IDF.setLiveInBlocks(LiveInBlocks);
764     IDF.setDefiningBlocks(DefBlocks);
765     SmallVector<BasicBlock *, 32> PHIBlocks;
766     IDF.calculate(PHIBlocks);
767     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
768       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
769     });
770 
771     unsigned CurrentVersion = 0;
772     for (BasicBlock *BB : PHIBlocks)
773       QueuePhiNode(BB, AllocaNum, CurrentVersion);
774   }
775 
776   if (Allocas.empty()) {
777     cleanUpDbgAssigns();
778     return; // All of the allocas must have been trivial!
779   }
780   LBI.clear();
781 
782   // Set the incoming values for the basic block to be null values for all of
783   // the alloca's.  We do this in case there is a load of a value that has not
784   // been stored yet.  In this case, it will get this null value.
785   RenamePassData::ValVector Values(Allocas.size());
786   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
787     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
788 
789   // When handling debug info, treat all incoming values as if they have unknown
790   // locations until proven otherwise.
791   RenamePassData::LocationVector Locations(Allocas.size());
792 
793   // Walks all basic blocks in the function performing the SSA rename algorithm
794   // and inserting the phi nodes we marked as necessary
795   std::vector<RenamePassData> RenamePassWorkList;
796   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
797                                   std::move(Locations));
798   do {
799     RenamePassData RPD = std::move(RenamePassWorkList.back());
800     RenamePassWorkList.pop_back();
801     // RenamePass may add new worklist entries.
802     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
803   } while (!RenamePassWorkList.empty());
804 
805   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
806   Visited.clear();
807 
808   // Remove the allocas themselves from the function.
809   for (Instruction *A : Allocas) {
810     // Remove dbg.assigns linked to the alloca as these are now redundant.
811     at::deleteAssignmentMarkers(A);
812     // If there are any uses of the alloca instructions left, they must be in
813     // unreachable basic blocks that were not processed by walking the dominator
814     // tree. Just delete the users now.
815     if (!A->use_empty())
816       A->replaceAllUsesWith(PoisonValue::get(A->getType()));
817     A->eraseFromParent();
818   }
819 
820   // Remove alloca's dbg.declare intrinsics from the function.
821   auto RemoveDbgDeclares = [&](auto &Container) {
822     for (auto &DbgUsers : Container) {
823       for (auto *DbgItem : DbgUsers)
824         if (DbgItem->isAddressOfVariable() ||
825             DbgItem->getExpression()->startsWithDeref())
826           DbgItem->eraseFromParent();
827     }
828   };
829   RemoveDbgDeclares(AllocaDbgUsers);
830   RemoveDbgDeclares(AllocaDPUsers);
831 
832   // Loop over all of the PHI nodes and see if there are any that we can get
833   // rid of because they merge all of the same incoming values.  This can
834   // happen due to undef values coming into the PHI nodes.  This process is
835   // iterative, because eliminating one PHI node can cause others to be removed.
836   bool EliminatedAPHI = true;
837   while (EliminatedAPHI) {
838     EliminatedAPHI = false;
839 
840     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
841     // simplify and RAUW them as we go.  If it was not, we could add uses to
842     // the values we replace with in a non-deterministic order, thus creating
843     // non-deterministic def->use chains.
844     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
845              I = NewPhiNodes.begin(),
846              E = NewPhiNodes.end();
847          I != E;) {
848       PHINode *PN = I->second;
849 
850       // If this PHI node merges one value and/or undefs, get the value.
851       if (Value *V = simplifyInstruction(PN, SQ)) {
852         PN->replaceAllUsesWith(V);
853         PN->eraseFromParent();
854         NewPhiNodes.erase(I++);
855         EliminatedAPHI = true;
856         continue;
857       }
858       ++I;
859     }
860   }
861 
862   // At this point, the renamer has added entries to PHI nodes for all reachable
863   // code.  Unfortunately, there may be unreachable blocks which the renamer
864   // hasn't traversed.  If this is the case, the PHI nodes may not
865   // have incoming values for all predecessors.  Loop over all PHI nodes we have
866   // created, inserting poison values if they are missing any incoming values.
867   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
868            I = NewPhiNodes.begin(),
869            E = NewPhiNodes.end();
870        I != E; ++I) {
871     // We want to do this once per basic block.  As such, only process a block
872     // when we find the PHI that is the first entry in the block.
873     PHINode *SomePHI = I->second;
874     BasicBlock *BB = SomePHI->getParent();
875     if (&BB->front() != SomePHI)
876       continue;
877 
878     // Only do work here if there the PHI nodes are missing incoming values.  We
879     // know that all PHI nodes that were inserted in a block will have the same
880     // number of incoming values, so we can just check any of them.
881     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
882       continue;
883 
884     // Get the preds for BB.
885     SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
886 
887     // Ok, now we know that all of the PHI nodes are missing entries for some
888     // basic blocks.  Start by sorting the incoming predecessors for efficient
889     // access.
890     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
891       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
892     };
893     llvm::sort(Preds, CompareBBNumbers);
894 
895     // Now we loop through all BB's which have entries in SomePHI and remove
896     // them from the Preds list.
897     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
898       // Do a log(n) search of the Preds list for the entry we want.
899       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
900           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
901       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
902              "PHI node has entry for a block which is not a predecessor!");
903 
904       // Remove the entry
905       Preds.erase(EntIt);
906     }
907 
908     // At this point, the blocks left in the preds list must have dummy
909     // entries inserted into every PHI nodes for the block.  Update all the phi
910     // nodes in this block that we are inserting (there could be phis before
911     // mem2reg runs).
912     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
913     BasicBlock::iterator BBI = BB->begin();
914     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
915            SomePHI->getNumIncomingValues() == NumBadPreds) {
916       Value *PoisonVal = PoisonValue::get(SomePHI->getType());
917       for (BasicBlock *Pred : Preds)
918         SomePHI->addIncoming(PoisonVal, Pred);
919     }
920   }
921 
922   NewPhiNodes.clear();
923   cleanUpDbgAssigns();
924 }
925 
926 /// Determine which blocks the value is live in.
927 ///
928 /// These are blocks which lead to uses.  Knowing this allows us to avoid
929 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
930 /// inserted phi nodes would be dead).
931 void PromoteMem2Reg::ComputeLiveInBlocks(
932     AllocaInst *AI, AllocaInfo &Info,
933     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
934     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
935   // To determine liveness, we must iterate through the predecessors of blocks
936   // where the def is live.  Blocks are added to the worklist if we need to
937   // check their predecessors.  Start with all the using blocks.
938   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
939                                                     Info.UsingBlocks.end());
940 
941   // If any of the using blocks is also a definition block, check to see if the
942   // definition occurs before or after the use.  If it happens before the use,
943   // the value isn't really live-in.
944   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
945     BasicBlock *BB = LiveInBlockWorklist[i];
946     if (!DefBlocks.count(BB))
947       continue;
948 
949     // Okay, this is a block that both uses and defines the value.  If the first
950     // reference to the alloca is a def (store), then we know it isn't live-in.
951     for (BasicBlock::iterator I = BB->begin();; ++I) {
952       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
953         if (SI->getOperand(1) != AI)
954           continue;
955 
956         // We found a store to the alloca before a load.  The alloca is not
957         // actually live-in here.
958         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
959         LiveInBlockWorklist.pop_back();
960         --i;
961         --e;
962         break;
963       }
964 
965       if (LoadInst *LI = dyn_cast<LoadInst>(I))
966         // Okay, we found a load before a store to the alloca.  It is actually
967         // live into this block.
968         if (LI->getOperand(0) == AI)
969           break;
970     }
971   }
972 
973   // Now that we have a set of blocks where the phi is live-in, recursively add
974   // their predecessors until we find the full region the value is live.
975   while (!LiveInBlockWorklist.empty()) {
976     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
977 
978     // The block really is live in here, insert it into the set.  If already in
979     // the set, then it has already been processed.
980     if (!LiveInBlocks.insert(BB).second)
981       continue;
982 
983     // Since the value is live into BB, it is either defined in a predecessor or
984     // live into it to.  Add the preds to the worklist unless they are a
985     // defining block.
986     for (BasicBlock *P : predecessors(BB)) {
987       // The value is not live into a predecessor if it defines the value.
988       if (DefBlocks.count(P))
989         continue;
990 
991       // Otherwise it is, add to the worklist.
992       LiveInBlockWorklist.push_back(P);
993     }
994   }
995 }
996 
997 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
998 ///
999 /// Returns true if there wasn't already a phi-node for that variable
1000 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
1001                                   unsigned &Version) {
1002   // Look up the basic-block in question.
1003   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
1004 
1005   // If the BB already has a phi node added for the i'th alloca then we're done!
1006   if (PN)
1007     return false;
1008 
1009   // Create a PhiNode using the dereferenced type... and add the phi-node to the
1010   // BasicBlock.
1011   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
1012                        Allocas[AllocaNo]->getName() + "." + Twine(Version++));
1013   PN->insertBefore(BB->begin());
1014   ++NumPHIInsert;
1015   PhiToAllocaMap[PN] = AllocaNo;
1016   return true;
1017 }
1018 
1019 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
1020 /// create a merged location incorporating \p DL, or to set \p DL directly.
1021 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
1022                                            bool ApplyMergedLoc) {
1023   if (ApplyMergedLoc)
1024     PN->applyMergedLocation(PN->getDebugLoc(), DL);
1025   else
1026     PN->setDebugLoc(DL);
1027 }
1028 
1029 /// Recursively traverse the CFG of the function, renaming loads and
1030 /// stores to the allocas which we are promoting.
1031 ///
1032 /// IncomingVals indicates what value each Alloca contains on exit from the
1033 /// predecessor block Pred.
1034 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1035                                 RenamePassData::ValVector &IncomingVals,
1036                                 RenamePassData::LocationVector &IncomingLocs,
1037                                 std::vector<RenamePassData> &Worklist) {
1038 NextIteration:
1039   // If we are inserting any phi nodes into this BB, they will already be in the
1040   // block.
1041   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1042     // If we have PHI nodes to update, compute the number of edges from Pred to
1043     // BB.
1044     if (PhiToAllocaMap.count(APN)) {
1045       // We want to be able to distinguish between PHI nodes being inserted by
1046       // this invocation of mem2reg from those phi nodes that already existed in
1047       // the IR before mem2reg was run.  We determine that APN is being inserted
1048       // because it is missing incoming edges.  All other PHI nodes being
1049       // inserted by this pass of mem2reg will have the same number of incoming
1050       // operands so far.  Remember this count.
1051       unsigned NewPHINumOperands = APN->getNumOperands();
1052 
1053       unsigned NumEdges = llvm::count(successors(Pred), BB);
1054       assert(NumEdges && "Must be at least one edge from Pred to BB!");
1055 
1056       // Add entries for all the phis.
1057       BasicBlock::iterator PNI = BB->begin();
1058       do {
1059         unsigned AllocaNo = PhiToAllocaMap[APN];
1060 
1061         // Update the location of the phi node.
1062         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
1063                                        APN->getNumIncomingValues() > 0);
1064 
1065         // Add N incoming values to the PHI node.
1066         for (unsigned i = 0; i != NumEdges; ++i)
1067           APN->addIncoming(IncomingVals[AllocaNo], Pred);
1068 
1069         // The currently active variable for this block is now the PHI.
1070         IncomingVals[AllocaNo] = APN;
1071         AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB);
1072         auto ConvertDbgDeclares = [&](auto &Container) {
1073           for (auto *DbgItem : Container)
1074             if (DbgItem->isAddressOfVariable())
1075               ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB);
1076         };
1077         ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]);
1078         ConvertDbgDeclares(AllocaDPUsers[AllocaNo]);
1079 
1080         // Get the next phi node.
1081         ++PNI;
1082         APN = dyn_cast<PHINode>(PNI);
1083         if (!APN)
1084           break;
1085 
1086         // Verify that it is missing entries.  If not, it is not being inserted
1087         // by this mem2reg invocation so we want to ignore it.
1088       } while (APN->getNumOperands() == NewPHINumOperands);
1089     }
1090   }
1091 
1092   // Don't revisit blocks.
1093   if (!Visited.insert(BB).second)
1094     return;
1095 
1096   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
1097     Instruction *I = &*II++; // get the instruction, increment iterator
1098 
1099     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1100       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1101       if (!Src)
1102         continue;
1103 
1104       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1105       if (AI == AllocaLookup.end())
1106         continue;
1107 
1108       Value *V = IncomingVals[AI->second];
1109       convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT);
1110 
1111       // Anything using the load now uses the current value.
1112       LI->replaceAllUsesWith(V);
1113       LI->eraseFromParent();
1114     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1115       // Delete this instruction and mark the name as the current holder of the
1116       // value
1117       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1118       if (!Dest)
1119         continue;
1120 
1121       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1122       if (ai == AllocaLookup.end())
1123         continue;
1124 
1125       // what value were we writing?
1126       unsigned AllocaNo = ai->second;
1127       IncomingVals[AllocaNo] = SI->getOperand(0);
1128 
1129       // Record debuginfo for the store before removing it.
1130       IncomingLocs[AllocaNo] = SI->getDebugLoc();
1131       AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB,
1132                                                    &DbgAssignsToDelete);
1133       auto ConvertDbgDeclares = [&](auto &Container) {
1134         for (auto *DbgItem : Container)
1135           if (DbgItem->isAddressOfVariable())
1136             ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB);
1137       };
1138       ConvertDbgDeclares(AllocaDbgUsers[ai->second]);
1139       ConvertDbgDeclares(AllocaDPUsers[ai->second]);
1140       SI->eraseFromParent();
1141     }
1142   }
1143 
1144   // 'Recurse' to our successors.
1145   succ_iterator I = succ_begin(BB), E = succ_end(BB);
1146   if (I == E)
1147     return;
1148 
1149   // Keep track of the successors so we don't visit the same successor twice
1150   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1151 
1152   // Handle the first successor without using the worklist.
1153   VisitedSuccs.insert(*I);
1154   Pred = BB;
1155   BB = *I;
1156   ++I;
1157 
1158   for (; I != E; ++I)
1159     if (VisitedSuccs.insert(*I).second)
1160       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1161 
1162   goto NextIteration;
1163 }
1164 
1165 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1166                            AssumptionCache *AC) {
1167   // If there is nothing to do, bail out...
1168   if (Allocas.empty())
1169     return;
1170 
1171   PromoteMem2Reg(Allocas, DT, AC).run();
1172 }
1173