xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp (revision 349cc55c9796c4596a5b9904cd3281af295f878f)
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "mem2reg"
58 
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
63 
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65   // Only allow direct and non-volatile loads and stores...
66   for (const User *U : AI->users()) {
67     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68       // Note that atomic loads can be transformed; atomic semantics do
69       // not have any meaning for a local alloca.
70       if (LI->isVolatile())
71         return false;
72     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73       if (SI->getValueOperand() == AI ||
74           SI->getValueOperand()->getType() != AI->getAllocatedType())
75         return false; // Don't allow a store OF the AI, only INTO the AI.
76       // Note that atomic stores can be transformed; atomic semantics do
77       // not have any meaning for a local alloca.
78       if (SI->isVolatile())
79         return false;
80     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
81       if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
82         return false;
83     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
84       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
85         return false;
86     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
87       if (!GEPI->hasAllZeroIndices())
88         return false;
89       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
90         return false;
91     } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
92       if (!onlyUsedByLifetimeMarkers(ASCI))
93         return false;
94     } else {
95       return false;
96     }
97   }
98 
99   return true;
100 }
101 
102 namespace {
103 
104 struct AllocaInfo {
105   using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
106 
107   SmallVector<BasicBlock *, 32> DefiningBlocks;
108   SmallVector<BasicBlock *, 32> UsingBlocks;
109 
110   StoreInst *OnlyStore;
111   BasicBlock *OnlyBlock;
112   bool OnlyUsedInOneBlock;
113 
114   DbgUserVec DbgUsers;
115 
116   void clear() {
117     DefiningBlocks.clear();
118     UsingBlocks.clear();
119     OnlyStore = nullptr;
120     OnlyBlock = nullptr;
121     OnlyUsedInOneBlock = true;
122     DbgUsers.clear();
123   }
124 
125   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
126   /// by the rest of the pass to reason about the uses of this alloca.
127   void AnalyzeAlloca(AllocaInst *AI) {
128     clear();
129 
130     // As we scan the uses of the alloca instruction, keep track of stores,
131     // and decide whether all of the loads and stores to the alloca are within
132     // the same basic block.
133     for (User *U : AI->users()) {
134       Instruction *User = cast<Instruction>(U);
135 
136       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
137         // Remember the basic blocks which define new values for the alloca
138         DefiningBlocks.push_back(SI->getParent());
139         OnlyStore = SI;
140       } else {
141         LoadInst *LI = cast<LoadInst>(User);
142         // Otherwise it must be a load instruction, keep track of variable
143         // reads.
144         UsingBlocks.push_back(LI->getParent());
145       }
146 
147       if (OnlyUsedInOneBlock) {
148         if (!OnlyBlock)
149           OnlyBlock = User->getParent();
150         else if (OnlyBlock != User->getParent())
151           OnlyUsedInOneBlock = false;
152       }
153     }
154 
155     findDbgUsers(DbgUsers, AI);
156   }
157 };
158 
159 /// Data package used by RenamePass().
160 struct RenamePassData {
161   using ValVector = std::vector<Value *>;
162   using LocationVector = std::vector<DebugLoc>;
163 
164   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
165       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
166 
167   BasicBlock *BB;
168   BasicBlock *Pred;
169   ValVector Values;
170   LocationVector Locations;
171 };
172 
173 /// This assigns and keeps a per-bb relative ordering of load/store
174 /// instructions in the block that directly load or store an alloca.
175 ///
176 /// This functionality is important because it avoids scanning large basic
177 /// blocks multiple times when promoting many allocas in the same block.
178 class LargeBlockInfo {
179   /// For each instruction that we track, keep the index of the
180   /// instruction.
181   ///
182   /// The index starts out as the number of the instruction from the start of
183   /// the block.
184   DenseMap<const Instruction *, unsigned> InstNumbers;
185 
186 public:
187 
188   /// This code only looks at accesses to allocas.
189   static bool isInterestingInstruction(const Instruction *I) {
190     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
191            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
192   }
193 
194   /// Get or calculate the index of the specified instruction.
195   unsigned getInstructionIndex(const Instruction *I) {
196     assert(isInterestingInstruction(I) &&
197            "Not a load/store to/from an alloca?");
198 
199     // If we already have this instruction number, return it.
200     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
201     if (It != InstNumbers.end())
202       return It->second;
203 
204     // Scan the whole block to get the instruction.  This accumulates
205     // information for every interesting instruction in the block, in order to
206     // avoid gratuitus rescans.
207     const BasicBlock *BB = I->getParent();
208     unsigned InstNo = 0;
209     for (const Instruction &BBI : *BB)
210       if (isInterestingInstruction(&BBI))
211         InstNumbers[&BBI] = InstNo++;
212     It = InstNumbers.find(I);
213 
214     assert(It != InstNumbers.end() && "Didn't insert instruction?");
215     return It->second;
216   }
217 
218   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
219 
220   void clear() { InstNumbers.clear(); }
221 };
222 
223 struct PromoteMem2Reg {
224   /// The alloca instructions being promoted.
225   std::vector<AllocaInst *> Allocas;
226 
227   DominatorTree &DT;
228   DIBuilder DIB;
229 
230   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
231   AssumptionCache *AC;
232 
233   const SimplifyQuery SQ;
234 
235   /// Reverse mapping of Allocas.
236   DenseMap<AllocaInst *, unsigned> AllocaLookup;
237 
238   /// The PhiNodes we're adding.
239   ///
240   /// That map is used to simplify some Phi nodes as we iterate over it, so
241   /// it should have deterministic iterators.  We could use a MapVector, but
242   /// since we already maintain a map from BasicBlock* to a stable numbering
243   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
244   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
245 
246   /// For each PHI node, keep track of which entry in Allocas it corresponds
247   /// to.
248   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
249 
250   /// For each alloca, we keep track of the dbg.declare intrinsic that
251   /// describes it, if any, so that we can convert it to a dbg.value
252   /// intrinsic if the alloca gets promoted.
253   SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
254 
255   /// The set of basic blocks the renamer has already visited.
256   SmallPtrSet<BasicBlock *, 16> Visited;
257 
258   /// Contains a stable numbering of basic blocks to avoid non-determinstic
259   /// behavior.
260   DenseMap<BasicBlock *, unsigned> BBNumbers;
261 
262   /// Lazily compute the number of predecessors a block has.
263   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
264 
265 public:
266   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
267                  AssumptionCache *AC)
268       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
269         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
270         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
271                    nullptr, &DT, AC) {}
272 
273   void run();
274 
275 private:
276   void RemoveFromAllocasList(unsigned &AllocaIdx) {
277     Allocas[AllocaIdx] = Allocas.back();
278     Allocas.pop_back();
279     --AllocaIdx;
280   }
281 
282   unsigned getNumPreds(const BasicBlock *BB) {
283     unsigned &NP = BBNumPreds[BB];
284     if (NP == 0)
285       NP = pred_size(BB) + 1;
286     return NP - 1;
287   }
288 
289   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
290                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
291                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
292   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
293                   RenamePassData::ValVector &IncVals,
294                   RenamePassData::LocationVector &IncLocs,
295                   std::vector<RenamePassData> &Worklist);
296   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
297 };
298 
299 } // end anonymous namespace
300 
301 /// Given a LoadInst LI this adds assume(LI != null) after it.
302 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
303   Function *AssumeIntrinsic =
304       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
305   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
306                                        Constant::getNullValue(LI->getType()));
307   LoadNotNull->insertAfter(LI);
308   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
309   CI->insertAfter(LoadNotNull);
310   AC->registerAssumption(cast<AssumeInst>(CI));
311 }
312 
313 static void removeIntrinsicUsers(AllocaInst *AI) {
314   // Knowing that this alloca is promotable, we know that it's safe to kill all
315   // instructions except for load and store.
316 
317   for (Use &U : llvm::make_early_inc_range(AI->uses())) {
318     Instruction *I = cast<Instruction>(U.getUser());
319     if (isa<LoadInst>(I) || isa<StoreInst>(I))
320       continue;
321 
322     // Drop the use of AI in droppable instructions.
323     if (I->isDroppable()) {
324       I->dropDroppableUse(U);
325       continue;
326     }
327 
328     if (!I->getType()->isVoidTy()) {
329       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
330       // Follow the use/def chain to erase them now instead of leaving it for
331       // dead code elimination later.
332       for (Use &UU : llvm::make_early_inc_range(I->uses())) {
333         Instruction *Inst = cast<Instruction>(UU.getUser());
334 
335         // Drop the use of I in droppable instructions.
336         if (Inst->isDroppable()) {
337           Inst->dropDroppableUse(UU);
338           continue;
339         }
340         Inst->eraseFromParent();
341       }
342     }
343     I->eraseFromParent();
344   }
345 }
346 
347 /// Rewrite as many loads as possible given a single store.
348 ///
349 /// When there is only a single store, we can use the domtree to trivially
350 /// replace all of the dominated loads with the stored value. Do so, and return
351 /// true if this has successfully promoted the alloca entirely. If this returns
352 /// false there were some loads which were not dominated by the single store
353 /// and thus must be phi-ed with undef. We fall back to the standard alloca
354 /// promotion algorithm in that case.
355 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
356                                      LargeBlockInfo &LBI, const DataLayout &DL,
357                                      DominatorTree &DT, AssumptionCache *AC) {
358   StoreInst *OnlyStore = Info.OnlyStore;
359   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
360   BasicBlock *StoreBB = OnlyStore->getParent();
361   int StoreIndex = -1;
362 
363   // Clear out UsingBlocks.  We will reconstruct it here if needed.
364   Info.UsingBlocks.clear();
365 
366   for (User *U : make_early_inc_range(AI->users())) {
367     Instruction *UserInst = cast<Instruction>(U);
368     if (UserInst == OnlyStore)
369       continue;
370     LoadInst *LI = cast<LoadInst>(UserInst);
371 
372     // Okay, if we have a load from the alloca, we want to replace it with the
373     // only value stored to the alloca.  We can do this if the value is
374     // dominated by the store.  If not, we use the rest of the mem2reg machinery
375     // to insert the phi nodes as needed.
376     if (!StoringGlobalVal) { // Non-instructions are always dominated.
377       if (LI->getParent() == StoreBB) {
378         // If we have a use that is in the same block as the store, compare the
379         // indices of the two instructions to see which one came first.  If the
380         // load came before the store, we can't handle it.
381         if (StoreIndex == -1)
382           StoreIndex = LBI.getInstructionIndex(OnlyStore);
383 
384         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
385           // Can't handle this load, bail out.
386           Info.UsingBlocks.push_back(StoreBB);
387           continue;
388         }
389       } else if (!DT.dominates(StoreBB, LI->getParent())) {
390         // If the load and store are in different blocks, use BB dominance to
391         // check their relationships.  If the store doesn't dom the use, bail
392         // out.
393         Info.UsingBlocks.push_back(LI->getParent());
394         continue;
395       }
396     }
397 
398     // Otherwise, we *can* safely rewrite this load.
399     Value *ReplVal = OnlyStore->getOperand(0);
400     // If the replacement value is the load, this must occur in unreachable
401     // code.
402     if (ReplVal == LI)
403       ReplVal = PoisonValue::get(LI->getType());
404 
405     // If the load was marked as nonnull we don't want to lose
406     // that information when we erase this Load. So we preserve
407     // it with an assume.
408     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
409         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
410       addAssumeNonNull(AC, LI);
411 
412     LI->replaceAllUsesWith(ReplVal);
413     LI->eraseFromParent();
414     LBI.deleteValue(LI);
415   }
416 
417   // Finally, after the scan, check to see if the store is all that is left.
418   if (!Info.UsingBlocks.empty())
419     return false; // If not, we'll have to fall back for the remainder.
420 
421   // Record debuginfo for the store and remove the declaration's
422   // debuginfo.
423   for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
424     if (DII->isAddressOfVariable()) {
425       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
426       ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
427       DII->eraseFromParent();
428     } else if (DII->getExpression()->startsWithDeref()) {
429       DII->eraseFromParent();
430     }
431   }
432   // Remove the (now dead) store and alloca.
433   Info.OnlyStore->eraseFromParent();
434   LBI.deleteValue(Info.OnlyStore);
435 
436   AI->eraseFromParent();
437   return true;
438 }
439 
440 /// Many allocas are only used within a single basic block.  If this is the
441 /// case, avoid traversing the CFG and inserting a lot of potentially useless
442 /// PHI nodes by just performing a single linear pass over the basic block
443 /// using the Alloca.
444 ///
445 /// If we cannot promote this alloca (because it is read before it is written),
446 /// return false.  This is necessary in cases where, due to control flow, the
447 /// alloca is undefined only on some control flow paths.  e.g. code like
448 /// this is correct in LLVM IR:
449 ///  // A is an alloca with no stores so far
450 ///  for (...) {
451 ///    int t = *A;
452 ///    if (!first_iteration)
453 ///      use(t);
454 ///    *A = 42;
455 ///  }
456 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
457                                      LargeBlockInfo &LBI,
458                                      const DataLayout &DL,
459                                      DominatorTree &DT,
460                                      AssumptionCache *AC) {
461   // The trickiest case to handle is when we have large blocks. Because of this,
462   // this code is optimized assuming that large blocks happen.  This does not
463   // significantly pessimize the small block case.  This uses LargeBlockInfo to
464   // make it efficient to get the index of various operations in the block.
465 
466   // Walk the use-def list of the alloca, getting the locations of all stores.
467   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
468   StoresByIndexTy StoresByIndex;
469 
470   for (User *U : AI->users())
471     if (StoreInst *SI = dyn_cast<StoreInst>(U))
472       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
473 
474   // Sort the stores by their index, making it efficient to do a lookup with a
475   // binary search.
476   llvm::sort(StoresByIndex, less_first());
477 
478   // Walk all of the loads from this alloca, replacing them with the nearest
479   // store above them, if any.
480   for (User *U : make_early_inc_range(AI->users())) {
481     LoadInst *LI = dyn_cast<LoadInst>(U);
482     if (!LI)
483       continue;
484 
485     unsigned LoadIdx = LBI.getInstructionIndex(LI);
486 
487     // Find the nearest store that has a lower index than this load.
488     StoresByIndexTy::iterator I = llvm::lower_bound(
489         StoresByIndex,
490         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
491         less_first());
492     if (I == StoresByIndex.begin()) {
493       if (StoresByIndex.empty())
494         // If there are no stores, the load takes the undef value.
495         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
496       else
497         // There is no store before this load, bail out (load may be affected
498         // by the following stores - see main comment).
499         return false;
500     } else {
501       // Otherwise, there was a store before this load, the load takes its value.
502       // Note, if the load was marked as nonnull we don't want to lose that
503       // information when we erase it. So we preserve it with an assume.
504       Value *ReplVal = std::prev(I)->second->getOperand(0);
505       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
506           !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
507         addAssumeNonNull(AC, LI);
508 
509       // If the replacement value is the load, this must occur in unreachable
510       // code.
511       if (ReplVal == LI)
512         ReplVal = PoisonValue::get(LI->getType());
513 
514       LI->replaceAllUsesWith(ReplVal);
515     }
516 
517     LI->eraseFromParent();
518     LBI.deleteValue(LI);
519   }
520 
521   // Remove the (now dead) stores and alloca.
522   while (!AI->use_empty()) {
523     StoreInst *SI = cast<StoreInst>(AI->user_back());
524     // Record debuginfo for the store before removing it.
525     for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
526       if (DII->isAddressOfVariable()) {
527         DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
528         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
529       }
530     }
531     SI->eraseFromParent();
532     LBI.deleteValue(SI);
533   }
534 
535   AI->eraseFromParent();
536 
537   // The alloca's debuginfo can be removed as well.
538   for (DbgVariableIntrinsic *DII : Info.DbgUsers)
539     if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
540       DII->eraseFromParent();
541 
542   ++NumLocalPromoted;
543   return true;
544 }
545 
546 void PromoteMem2Reg::run() {
547   Function &F = *DT.getRoot()->getParent();
548 
549   AllocaDbgUsers.resize(Allocas.size());
550 
551   AllocaInfo Info;
552   LargeBlockInfo LBI;
553   ForwardIDFCalculator IDF(DT);
554 
555   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
556     AllocaInst *AI = Allocas[AllocaNum];
557 
558     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
559     assert(AI->getParent()->getParent() == &F &&
560            "All allocas should be in the same function, which is same as DF!");
561 
562     removeIntrinsicUsers(AI);
563 
564     if (AI->use_empty()) {
565       // If there are no uses of the alloca, just delete it now.
566       AI->eraseFromParent();
567 
568       // Remove the alloca from the Allocas list, since it has been processed
569       RemoveFromAllocasList(AllocaNum);
570       ++NumDeadAlloca;
571       continue;
572     }
573 
574     // Calculate the set of read and write-locations for each alloca.  This is
575     // analogous to finding the 'uses' and 'definitions' of each variable.
576     Info.AnalyzeAlloca(AI);
577 
578     // If there is only a single store to this value, replace any loads of
579     // it that are directly dominated by the definition with the value stored.
580     if (Info.DefiningBlocks.size() == 1) {
581       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
582         // The alloca has been processed, move on.
583         RemoveFromAllocasList(AllocaNum);
584         ++NumSingleStore;
585         continue;
586       }
587     }
588 
589     // If the alloca is only read and written in one basic block, just perform a
590     // linear sweep over the block to eliminate it.
591     if (Info.OnlyUsedInOneBlock &&
592         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
593       // The alloca has been processed, move on.
594       RemoveFromAllocasList(AllocaNum);
595       continue;
596     }
597 
598     // If we haven't computed a numbering for the BB's in the function, do so
599     // now.
600     if (BBNumbers.empty()) {
601       unsigned ID = 0;
602       for (auto &BB : F)
603         BBNumbers[&BB] = ID++;
604     }
605 
606     // Remember the dbg.declare intrinsic describing this alloca, if any.
607     if (!Info.DbgUsers.empty())
608       AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
609 
610     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
611     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
612 
613     // Unique the set of defining blocks for efficient lookup.
614     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
615                                             Info.DefiningBlocks.end());
616 
617     // Determine which blocks the value is live in.  These are blocks which lead
618     // to uses.
619     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
620     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
621 
622     // At this point, we're committed to promoting the alloca using IDF's, and
623     // the standard SSA construction algorithm.  Determine which blocks need phi
624     // nodes and see if we can optimize out some work by avoiding insertion of
625     // dead phi nodes.
626     IDF.setLiveInBlocks(LiveInBlocks);
627     IDF.setDefiningBlocks(DefBlocks);
628     SmallVector<BasicBlock *, 32> PHIBlocks;
629     IDF.calculate(PHIBlocks);
630     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
631       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
632     });
633 
634     unsigned CurrentVersion = 0;
635     for (BasicBlock *BB : PHIBlocks)
636       QueuePhiNode(BB, AllocaNum, CurrentVersion);
637   }
638 
639   if (Allocas.empty())
640     return; // All of the allocas must have been trivial!
641 
642   LBI.clear();
643 
644   // Set the incoming values for the basic block to be null values for all of
645   // the alloca's.  We do this in case there is a load of a value that has not
646   // been stored yet.  In this case, it will get this null value.
647   RenamePassData::ValVector Values(Allocas.size());
648   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
649     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
650 
651   // When handling debug info, treat all incoming values as if they have unknown
652   // locations until proven otherwise.
653   RenamePassData::LocationVector Locations(Allocas.size());
654 
655   // Walks all basic blocks in the function performing the SSA rename algorithm
656   // and inserting the phi nodes we marked as necessary
657   std::vector<RenamePassData> RenamePassWorkList;
658   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
659                                   std::move(Locations));
660   do {
661     RenamePassData RPD = std::move(RenamePassWorkList.back());
662     RenamePassWorkList.pop_back();
663     // RenamePass may add new worklist entries.
664     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
665   } while (!RenamePassWorkList.empty());
666 
667   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
668   Visited.clear();
669 
670   // Remove the allocas themselves from the function.
671   for (Instruction *A : Allocas) {
672     // If there are any uses of the alloca instructions left, they must be in
673     // unreachable basic blocks that were not processed by walking the dominator
674     // tree. Just delete the users now.
675     if (!A->use_empty())
676       A->replaceAllUsesWith(PoisonValue::get(A->getType()));
677     A->eraseFromParent();
678   }
679 
680   // Remove alloca's dbg.declare instrinsics from the function.
681   for (auto &DbgUsers : AllocaDbgUsers) {
682     for (auto *DII : DbgUsers)
683       if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
684         DII->eraseFromParent();
685   }
686 
687   // Loop over all of the PHI nodes and see if there are any that we can get
688   // rid of because they merge all of the same incoming values.  This can
689   // happen due to undef values coming into the PHI nodes.  This process is
690   // iterative, because eliminating one PHI node can cause others to be removed.
691   bool EliminatedAPHI = true;
692   while (EliminatedAPHI) {
693     EliminatedAPHI = false;
694 
695     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
696     // simplify and RAUW them as we go.  If it was not, we could add uses to
697     // the values we replace with in a non-deterministic order, thus creating
698     // non-deterministic def->use chains.
699     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
700              I = NewPhiNodes.begin(),
701              E = NewPhiNodes.end();
702          I != E;) {
703       PHINode *PN = I->second;
704 
705       // If this PHI node merges one value and/or undefs, get the value.
706       if (Value *V = SimplifyInstruction(PN, SQ)) {
707         PN->replaceAllUsesWith(V);
708         PN->eraseFromParent();
709         NewPhiNodes.erase(I++);
710         EliminatedAPHI = true;
711         continue;
712       }
713       ++I;
714     }
715   }
716 
717   // At this point, the renamer has added entries to PHI nodes for all reachable
718   // code.  Unfortunately, there may be unreachable blocks which the renamer
719   // hasn't traversed.  If this is the case, the PHI nodes may not
720   // have incoming values for all predecessors.  Loop over all PHI nodes we have
721   // created, inserting undef values if they are missing any incoming values.
722   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
723            I = NewPhiNodes.begin(),
724            E = NewPhiNodes.end();
725        I != E; ++I) {
726     // We want to do this once per basic block.  As such, only process a block
727     // when we find the PHI that is the first entry in the block.
728     PHINode *SomePHI = I->second;
729     BasicBlock *BB = SomePHI->getParent();
730     if (&BB->front() != SomePHI)
731       continue;
732 
733     // Only do work here if there the PHI nodes are missing incoming values.  We
734     // know that all PHI nodes that were inserted in a block will have the same
735     // number of incoming values, so we can just check any of them.
736     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
737       continue;
738 
739     // Get the preds for BB.
740     SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
741 
742     // Ok, now we know that all of the PHI nodes are missing entries for some
743     // basic blocks.  Start by sorting the incoming predecessors for efficient
744     // access.
745     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
746       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
747     };
748     llvm::sort(Preds, CompareBBNumbers);
749 
750     // Now we loop through all BB's which have entries in SomePHI and remove
751     // them from the Preds list.
752     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
753       // Do a log(n) search of the Preds list for the entry we want.
754       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
755           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
756       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
757              "PHI node has entry for a block which is not a predecessor!");
758 
759       // Remove the entry
760       Preds.erase(EntIt);
761     }
762 
763     // At this point, the blocks left in the preds list must have dummy
764     // entries inserted into every PHI nodes for the block.  Update all the phi
765     // nodes in this block that we are inserting (there could be phis before
766     // mem2reg runs).
767     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
768     BasicBlock::iterator BBI = BB->begin();
769     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
770            SomePHI->getNumIncomingValues() == NumBadPreds) {
771       Value *UndefVal = UndefValue::get(SomePHI->getType());
772       for (BasicBlock *Pred : Preds)
773         SomePHI->addIncoming(UndefVal, Pred);
774     }
775   }
776 
777   NewPhiNodes.clear();
778 }
779 
780 /// Determine which blocks the value is live in.
781 ///
782 /// These are blocks which lead to uses.  Knowing this allows us to avoid
783 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
784 /// inserted phi nodes would be dead).
785 void PromoteMem2Reg::ComputeLiveInBlocks(
786     AllocaInst *AI, AllocaInfo &Info,
787     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
788     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
789   // To determine liveness, we must iterate through the predecessors of blocks
790   // where the def is live.  Blocks are added to the worklist if we need to
791   // check their predecessors.  Start with all the using blocks.
792   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
793                                                     Info.UsingBlocks.end());
794 
795   // If any of the using blocks is also a definition block, check to see if the
796   // definition occurs before or after the use.  If it happens before the use,
797   // the value isn't really live-in.
798   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
799     BasicBlock *BB = LiveInBlockWorklist[i];
800     if (!DefBlocks.count(BB))
801       continue;
802 
803     // Okay, this is a block that both uses and defines the value.  If the first
804     // reference to the alloca is a def (store), then we know it isn't live-in.
805     for (BasicBlock::iterator I = BB->begin();; ++I) {
806       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
807         if (SI->getOperand(1) != AI)
808           continue;
809 
810         // We found a store to the alloca before a load.  The alloca is not
811         // actually live-in here.
812         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
813         LiveInBlockWorklist.pop_back();
814         --i;
815         --e;
816         break;
817       }
818 
819       if (LoadInst *LI = dyn_cast<LoadInst>(I))
820         // Okay, we found a load before a store to the alloca.  It is actually
821         // live into this block.
822         if (LI->getOperand(0) == AI)
823           break;
824     }
825   }
826 
827   // Now that we have a set of blocks where the phi is live-in, recursively add
828   // their predecessors until we find the full region the value is live.
829   while (!LiveInBlockWorklist.empty()) {
830     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
831 
832     // The block really is live in here, insert it into the set.  If already in
833     // the set, then it has already been processed.
834     if (!LiveInBlocks.insert(BB).second)
835       continue;
836 
837     // Since the value is live into BB, it is either defined in a predecessor or
838     // live into it to.  Add the preds to the worklist unless they are a
839     // defining block.
840     for (BasicBlock *P : predecessors(BB)) {
841       // The value is not live into a predecessor if it defines the value.
842       if (DefBlocks.count(P))
843         continue;
844 
845       // Otherwise it is, add to the worklist.
846       LiveInBlockWorklist.push_back(P);
847     }
848   }
849 }
850 
851 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
852 ///
853 /// Returns true if there wasn't already a phi-node for that variable
854 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
855                                   unsigned &Version) {
856   // Look up the basic-block in question.
857   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
858 
859   // If the BB already has a phi node added for the i'th alloca then we're done!
860   if (PN)
861     return false;
862 
863   // Create a PhiNode using the dereferenced type... and add the phi-node to the
864   // BasicBlock.
865   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
866                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
867                        &BB->front());
868   ++NumPHIInsert;
869   PhiToAllocaMap[PN] = AllocaNo;
870   return true;
871 }
872 
873 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
874 /// create a merged location incorporating \p DL, or to set \p DL directly.
875 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
876                                            bool ApplyMergedLoc) {
877   if (ApplyMergedLoc)
878     PN->applyMergedLocation(PN->getDebugLoc(), DL);
879   else
880     PN->setDebugLoc(DL);
881 }
882 
883 /// Recursively traverse the CFG of the function, renaming loads and
884 /// stores to the allocas which we are promoting.
885 ///
886 /// IncomingVals indicates what value each Alloca contains on exit from the
887 /// predecessor block Pred.
888 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
889                                 RenamePassData::ValVector &IncomingVals,
890                                 RenamePassData::LocationVector &IncomingLocs,
891                                 std::vector<RenamePassData> &Worklist) {
892 NextIteration:
893   // If we are inserting any phi nodes into this BB, they will already be in the
894   // block.
895   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
896     // If we have PHI nodes to update, compute the number of edges from Pred to
897     // BB.
898     if (PhiToAllocaMap.count(APN)) {
899       // We want to be able to distinguish between PHI nodes being inserted by
900       // this invocation of mem2reg from those phi nodes that already existed in
901       // the IR before mem2reg was run.  We determine that APN is being inserted
902       // because it is missing incoming edges.  All other PHI nodes being
903       // inserted by this pass of mem2reg will have the same number of incoming
904       // operands so far.  Remember this count.
905       unsigned NewPHINumOperands = APN->getNumOperands();
906 
907       unsigned NumEdges = llvm::count(successors(Pred), BB);
908       assert(NumEdges && "Must be at least one edge from Pred to BB!");
909 
910       // Add entries for all the phis.
911       BasicBlock::iterator PNI = BB->begin();
912       do {
913         unsigned AllocaNo = PhiToAllocaMap[APN];
914 
915         // Update the location of the phi node.
916         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
917                                        APN->getNumIncomingValues() > 0);
918 
919         // Add N incoming values to the PHI node.
920         for (unsigned i = 0; i != NumEdges; ++i)
921           APN->addIncoming(IncomingVals[AllocaNo], Pred);
922 
923         // The currently active variable for this block is now the PHI.
924         IncomingVals[AllocaNo] = APN;
925         for (DbgVariableIntrinsic *DII : AllocaDbgUsers[AllocaNo])
926           if (DII->isAddressOfVariable())
927             ConvertDebugDeclareToDebugValue(DII, APN, DIB);
928 
929         // Get the next phi node.
930         ++PNI;
931         APN = dyn_cast<PHINode>(PNI);
932         if (!APN)
933           break;
934 
935         // Verify that it is missing entries.  If not, it is not being inserted
936         // by this mem2reg invocation so we want to ignore it.
937       } while (APN->getNumOperands() == NewPHINumOperands);
938     }
939   }
940 
941   // Don't revisit blocks.
942   if (!Visited.insert(BB).second)
943     return;
944 
945   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
946     Instruction *I = &*II++; // get the instruction, increment iterator
947 
948     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
949       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
950       if (!Src)
951         continue;
952 
953       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
954       if (AI == AllocaLookup.end())
955         continue;
956 
957       Value *V = IncomingVals[AI->second];
958 
959       // If the load was marked as nonnull we don't want to lose
960       // that information when we erase this Load. So we preserve
961       // it with an assume.
962       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
963           !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
964         addAssumeNonNull(AC, LI);
965 
966       // Anything using the load now uses the current value.
967       LI->replaceAllUsesWith(V);
968       BB->getInstList().erase(LI);
969     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
970       // Delete this instruction and mark the name as the current holder of the
971       // value
972       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
973       if (!Dest)
974         continue;
975 
976       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
977       if (ai == AllocaLookup.end())
978         continue;
979 
980       // what value were we writing?
981       unsigned AllocaNo = ai->second;
982       IncomingVals[AllocaNo] = SI->getOperand(0);
983 
984       // Record debuginfo for the store before removing it.
985       IncomingLocs[AllocaNo] = SI->getDebugLoc();
986       for (DbgVariableIntrinsic *DII : AllocaDbgUsers[ai->second])
987         if (DII->isAddressOfVariable())
988           ConvertDebugDeclareToDebugValue(DII, SI, DIB);
989       BB->getInstList().erase(SI);
990     }
991   }
992 
993   // 'Recurse' to our successors.
994   succ_iterator I = succ_begin(BB), E = succ_end(BB);
995   if (I == E)
996     return;
997 
998   // Keep track of the successors so we don't visit the same successor twice
999   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1000 
1001   // Handle the first successor without using the worklist.
1002   VisitedSuccs.insert(*I);
1003   Pred = BB;
1004   BB = *I;
1005   ++I;
1006 
1007   for (; I != E; ++I)
1008     if (VisitedSuccs.insert(*I).second)
1009       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1010 
1011   goto NextIteration;
1012 }
1013 
1014 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1015                            AssumptionCache *AC) {
1016   // If there is nothing to do, bail out...
1017   if (Allocas.empty())
1018     return;
1019 
1020   PromoteMem2Reg(Allocas, DT, AC).run();
1021 }
1022