10b57cec5SDimitry Andric //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file promotes memory references to be register references. It promotes 100b57cec5SDimitry Andric // alloca instructions which only have loads and stores as uses. An alloca is 110b57cec5SDimitry Andric // transformed by using iterated dominator frontiers to place PHI nodes, then 120b57cec5SDimitry Andric // traversing the function in depth-first order to rewrite loads and stores as 130b57cec5SDimitry Andric // appropriate. 140b57cec5SDimitry Andric // 150b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 160b57cec5SDimitry Andric 170b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 180b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 190b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 200b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 210b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 220b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h" 230b57cec5SDimitry Andric #include "llvm/ADT/Twine.h" 240b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 250b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 260b57cec5SDimitry Andric #include "llvm/Analysis/IteratedDominanceFrontier.h" 270b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 280b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 290b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 300b57cec5SDimitry Andric #include "llvm/IR/Constant.h" 310b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 320b57cec5SDimitry Andric #include "llvm/IR/DIBuilder.h" 331fd87a68SDimitry Andric #include "llvm/IR/DebugInfo.h" 345f757f3fSDimitry Andric #include "llvm/IR/DebugProgramInstruction.h" 350b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 360b57cec5SDimitry Andric #include "llvm/IR/Function.h" 370b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 380b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 390b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 400b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 410b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 420b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h" 430b57cec5SDimitry Andric #include "llvm/IR/Module.h" 44*0fca6ea1SDimitry Andric #include "llvm/IR/Operator.h" 450b57cec5SDimitry Andric #include "llvm/IR/Type.h" 460b57cec5SDimitry Andric #include "llvm/IR/User.h" 470b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 481fd87a68SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 490b57cec5SDimitry Andric #include "llvm/Transforms/Utils/PromoteMemToReg.h" 500b57cec5SDimitry Andric #include <algorithm> 510b57cec5SDimitry Andric #include <cassert> 520b57cec5SDimitry Andric #include <iterator> 530b57cec5SDimitry Andric #include <utility> 540b57cec5SDimitry Andric #include <vector> 550b57cec5SDimitry Andric 560b57cec5SDimitry Andric using namespace llvm; 570b57cec5SDimitry Andric 580b57cec5SDimitry Andric #define DEBUG_TYPE "mem2reg" 590b57cec5SDimitry Andric 600b57cec5SDimitry Andric STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 610b57cec5SDimitry Andric STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 620b57cec5SDimitry Andric STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 630b57cec5SDimitry Andric STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 640b57cec5SDimitry Andric 650b57cec5SDimitry Andric bool llvm::isAllocaPromotable(const AllocaInst *AI) { 660b57cec5SDimitry Andric // Only allow direct and non-volatile loads and stores... 670b57cec5SDimitry Andric for (const User *U : AI->users()) { 680b57cec5SDimitry Andric if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 690b57cec5SDimitry Andric // Note that atomic loads can be transformed; atomic semantics do 700b57cec5SDimitry Andric // not have any meaning for a local alloca. 7181ad6265SDimitry Andric if (LI->isVolatile() || LI->getType() != AI->getAllocatedType()) 720b57cec5SDimitry Andric return false; 730b57cec5SDimitry Andric } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 74349cc55cSDimitry Andric if (SI->getValueOperand() == AI || 75349cc55cSDimitry Andric SI->getValueOperand()->getType() != AI->getAllocatedType()) 760b57cec5SDimitry Andric return false; // Don't allow a store OF the AI, only INTO the AI. 770b57cec5SDimitry Andric // Note that atomic stores can be transformed; atomic semantics do 780b57cec5SDimitry Andric // not have any meaning for a local alloca. 790b57cec5SDimitry Andric if (SI->isVolatile()) 800b57cec5SDimitry Andric return false; 810b57cec5SDimitry Andric } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 82e8d8bef9SDimitry Andric if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 830b57cec5SDimitry Andric return false; 840b57cec5SDimitry Andric } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 85e8d8bef9SDimitry Andric if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI)) 860b57cec5SDimitry Andric return false; 870b57cec5SDimitry Andric } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 880b57cec5SDimitry Andric if (!GEPI->hasAllZeroIndices()) 890b57cec5SDimitry Andric return false; 90e8d8bef9SDimitry Andric if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI)) 91e8d8bef9SDimitry Andric return false; 92e8d8bef9SDimitry Andric } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) { 93e8d8bef9SDimitry Andric if (!onlyUsedByLifetimeMarkers(ASCI)) 940b57cec5SDimitry Andric return false; 950b57cec5SDimitry Andric } else { 960b57cec5SDimitry Andric return false; 970b57cec5SDimitry Andric } 980b57cec5SDimitry Andric } 990b57cec5SDimitry Andric 1000b57cec5SDimitry Andric return true; 1010b57cec5SDimitry Andric } 1020b57cec5SDimitry Andric 1030b57cec5SDimitry Andric namespace { 1040b57cec5SDimitry Andric 105*0fca6ea1SDimitry Andric static void createDebugValue(DIBuilder &DIB, Value *NewValue, 1067a6dacacSDimitry Andric DILocalVariable *Variable, 1077a6dacacSDimitry Andric DIExpression *Expression, const DILocation *DI, 108*0fca6ea1SDimitry Andric DbgVariableRecord *InsertBefore) { 109*0fca6ea1SDimitry Andric // FIXME: Merge these two functions now that DIBuilder supports 110*0fca6ea1SDimitry Andric // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an 111*0fca6ea1SDimitry Andric // insert point for that to work. 1127a6dacacSDimitry Andric (void)DIB; 113*0fca6ea1SDimitry Andric DbgVariableRecord::createDbgVariableRecord(NewValue, Variable, Expression, DI, 1147a6dacacSDimitry Andric *InsertBefore); 1157a6dacacSDimitry Andric } 116*0fca6ea1SDimitry Andric static void createDebugValue(DIBuilder &DIB, Value *NewValue, 1177a6dacacSDimitry Andric DILocalVariable *Variable, 118*0fca6ea1SDimitry Andric DIExpression *Expression, const DILocation *DI, 1197a6dacacSDimitry Andric Instruction *InsertBefore) { 120*0fca6ea1SDimitry Andric DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore); 1217a6dacacSDimitry Andric } 1227a6dacacSDimitry Andric 123bdd1243dSDimitry Andric /// Helper for updating assignment tracking debug info when promoting allocas. 124bdd1243dSDimitry Andric class AssignmentTrackingInfo { 125bdd1243dSDimitry Andric /// DbgAssignIntrinsics linked to the alloca with at most one per variable 126bdd1243dSDimitry Andric /// fragment. (i.e. not be a comprehensive set if there are multiple 127bdd1243dSDimitry Andric /// dbg.assigns for one variable fragment). 128bdd1243dSDimitry Andric SmallVector<DbgVariableIntrinsic *> DbgAssigns; 129*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *> DVRAssigns; 130bdd1243dSDimitry Andric 131bdd1243dSDimitry Andric public: 132bdd1243dSDimitry Andric void init(AllocaInst *AI) { 133bdd1243dSDimitry Andric SmallSet<DebugVariable, 2> Vars; 134bdd1243dSDimitry Andric for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) { 135bdd1243dSDimitry Andric if (Vars.insert(DebugVariable(DAI)).second) 136bdd1243dSDimitry Andric DbgAssigns.push_back(DAI); 137bdd1243dSDimitry Andric } 138*0fca6ea1SDimitry Andric for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(AI)) { 139*0fca6ea1SDimitry Andric if (Vars.insert(DebugVariable(DVR)).second) 140*0fca6ea1SDimitry Andric DVRAssigns.push_back(DVR); 1417a6dacacSDimitry Andric } 142bdd1243dSDimitry Andric } 143bdd1243dSDimitry Andric 144bdd1243dSDimitry Andric /// Update assignment tracking debug info given for the to-be-deleted store 145bdd1243dSDimitry Andric /// \p ToDelete that stores to this alloca. 146*0fca6ea1SDimitry Andric void updateForDeletedStore( 147*0fca6ea1SDimitry Andric StoreInst *ToDelete, DIBuilder &DIB, 1487a6dacacSDimitry Andric SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 149*0fca6ea1SDimitry Andric SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) const { 150bdd1243dSDimitry Andric // There's nothing to do if the alloca doesn't have any variables using 151bdd1243dSDimitry Andric // assignment tracking. 152*0fca6ea1SDimitry Andric if (DbgAssigns.empty() && DVRAssigns.empty()) 153bdd1243dSDimitry Andric return; 154bdd1243dSDimitry Andric 15506c3fb27SDimitry Andric // Insert a dbg.value where the linked dbg.assign is and remember to delete 15606c3fb27SDimitry Andric // the dbg.assign later. Demoting to dbg.value isn't necessary for 15706c3fb27SDimitry Andric // correctness but does reduce compile time and memory usage by reducing 15806c3fb27SDimitry Andric // unnecessary function-local metadata. Remember that we've seen a 15906c3fb27SDimitry Andric // dbg.assign for each variable fragment for the untracked store handling 16006c3fb27SDimitry Andric // (after this loop). 16106c3fb27SDimitry Andric SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore; 1627a6dacacSDimitry Andric auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) { 1637a6dacacSDimitry Andric VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign)); 1647a6dacacSDimitry Andric AssignList->insert(DbgAssign); 1657a6dacacSDimitry Andric createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(), 1667a6dacacSDimitry Andric DbgAssign->getExpression(), DbgAssign->getDebugLoc(), 1677a6dacacSDimitry Andric DbgAssign); 1687a6dacacSDimitry Andric }; 1697a6dacacSDimitry Andric for (auto *Assign : at::getAssignmentMarkers(ToDelete)) 1707a6dacacSDimitry Andric InsertValueForAssign(Assign, DbgAssignsToDelete); 171*0fca6ea1SDimitry Andric for (auto *Assign : at::getDVRAssignmentMarkers(ToDelete)) 172*0fca6ea1SDimitry Andric InsertValueForAssign(Assign, DVRAssignsToDelete); 173bdd1243dSDimitry Andric 174bdd1243dSDimitry Andric // It's possible for variables using assignment tracking to have no 175bdd1243dSDimitry Andric // dbg.assign linked to this store. These are variables in DbgAssigns that 176bdd1243dSDimitry Andric // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign 177bdd1243dSDimitry Andric // to mark the assignment - and the store is going to be deleted - insert a 178bdd1243dSDimitry Andric // dbg.value to do that now. An untracked store may be either one that 179bdd1243dSDimitry Andric // cannot be represented using assignment tracking (non-const offset or 180bdd1243dSDimitry Andric // size) or one that is trackable but has had its DIAssignID attachment 181bdd1243dSDimitry Andric // dropped accidentally. 1827a6dacacSDimitry Andric auto ConvertUnlinkedAssignToValue = [&](auto *Assign) { 1837a6dacacSDimitry Andric if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign))) 1847a6dacacSDimitry Andric return; 1857a6dacacSDimitry Andric ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB); 1867a6dacacSDimitry Andric }; 1877a6dacacSDimitry Andric for_each(DbgAssigns, ConvertUnlinkedAssignToValue); 188*0fca6ea1SDimitry Andric for_each(DVRAssigns, ConvertUnlinkedAssignToValue); 189bdd1243dSDimitry Andric } 190bdd1243dSDimitry Andric 191bdd1243dSDimitry Andric /// Update assignment tracking debug info given for the newly inserted PHI \p 192bdd1243dSDimitry Andric /// NewPhi. 193bdd1243dSDimitry Andric void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const { 194bdd1243dSDimitry Andric // Regardless of the position of dbg.assigns relative to stores, the 195bdd1243dSDimitry Andric // incoming values into a new PHI should be the same for the (imaginary) 196bdd1243dSDimitry Andric // debug-phi. 197bdd1243dSDimitry Andric for (auto *DAI : DbgAssigns) 198bdd1243dSDimitry Andric ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB); 199*0fca6ea1SDimitry Andric for (auto *DVR : DVRAssigns) 200*0fca6ea1SDimitry Andric ConvertDebugDeclareToDebugValue(DVR, NewPhi, DIB); 201bdd1243dSDimitry Andric } 202bdd1243dSDimitry Andric 2037a6dacacSDimitry Andric void clear() { 2047a6dacacSDimitry Andric DbgAssigns.clear(); 205*0fca6ea1SDimitry Andric DVRAssigns.clear(); 2067a6dacacSDimitry Andric } 207*0fca6ea1SDimitry Andric bool empty() { return DbgAssigns.empty() && DVRAssigns.empty(); } 208bdd1243dSDimitry Andric }; 209bdd1243dSDimitry Andric 2100b57cec5SDimitry Andric struct AllocaInfo { 211e8d8bef9SDimitry Andric using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>; 212*0fca6ea1SDimitry Andric using DPUserVec = SmallVector<DbgVariableRecord *, 1>; 213e8d8bef9SDimitry Andric 2140b57cec5SDimitry Andric SmallVector<BasicBlock *, 32> DefiningBlocks; 2150b57cec5SDimitry Andric SmallVector<BasicBlock *, 32> UsingBlocks; 2160b57cec5SDimitry Andric 2170b57cec5SDimitry Andric StoreInst *OnlyStore; 2180b57cec5SDimitry Andric BasicBlock *OnlyBlock; 2190b57cec5SDimitry Andric bool OnlyUsedInOneBlock; 2200b57cec5SDimitry Andric 221bdd1243dSDimitry Andric /// Debug users of the alloca - does not include dbg.assign intrinsics. 222e8d8bef9SDimitry Andric DbgUserVec DbgUsers; 2235f757f3fSDimitry Andric DPUserVec DPUsers; 224bdd1243dSDimitry Andric /// Helper to update assignment tracking debug info. 225bdd1243dSDimitry Andric AssignmentTrackingInfo AssignmentTracking; 2260b57cec5SDimitry Andric 2270b57cec5SDimitry Andric void clear() { 2280b57cec5SDimitry Andric DefiningBlocks.clear(); 2290b57cec5SDimitry Andric UsingBlocks.clear(); 2300b57cec5SDimitry Andric OnlyStore = nullptr; 2310b57cec5SDimitry Andric OnlyBlock = nullptr; 2320b57cec5SDimitry Andric OnlyUsedInOneBlock = true; 233e8d8bef9SDimitry Andric DbgUsers.clear(); 2345f757f3fSDimitry Andric DPUsers.clear(); 235bdd1243dSDimitry Andric AssignmentTracking.clear(); 2360b57cec5SDimitry Andric } 2370b57cec5SDimitry Andric 2380b57cec5SDimitry Andric /// Scan the uses of the specified alloca, filling in the AllocaInfo used 2390b57cec5SDimitry Andric /// by the rest of the pass to reason about the uses of this alloca. 2400b57cec5SDimitry Andric void AnalyzeAlloca(AllocaInst *AI) { 2410b57cec5SDimitry Andric clear(); 2420b57cec5SDimitry Andric 2430b57cec5SDimitry Andric // As we scan the uses of the alloca instruction, keep track of stores, 2440b57cec5SDimitry Andric // and decide whether all of the loads and stores to the alloca are within 2450b57cec5SDimitry Andric // the same basic block. 246e8d8bef9SDimitry Andric for (User *U : AI->users()) { 247e8d8bef9SDimitry Andric Instruction *User = cast<Instruction>(U); 2480b57cec5SDimitry Andric 2490b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 2500b57cec5SDimitry Andric // Remember the basic blocks which define new values for the alloca 2510b57cec5SDimitry Andric DefiningBlocks.push_back(SI->getParent()); 2520b57cec5SDimitry Andric OnlyStore = SI; 2530b57cec5SDimitry Andric } else { 2540b57cec5SDimitry Andric LoadInst *LI = cast<LoadInst>(User); 2550b57cec5SDimitry Andric // Otherwise it must be a load instruction, keep track of variable 2560b57cec5SDimitry Andric // reads. 2570b57cec5SDimitry Andric UsingBlocks.push_back(LI->getParent()); 2580b57cec5SDimitry Andric } 2590b57cec5SDimitry Andric 2600b57cec5SDimitry Andric if (OnlyUsedInOneBlock) { 2610b57cec5SDimitry Andric if (!OnlyBlock) 2620b57cec5SDimitry Andric OnlyBlock = User->getParent(); 2630b57cec5SDimitry Andric else if (OnlyBlock != User->getParent()) 2640b57cec5SDimitry Andric OnlyUsedInOneBlock = false; 2650b57cec5SDimitry Andric } 2660b57cec5SDimitry Andric } 267bdd1243dSDimitry Andric DbgUserVec AllDbgUsers; 268*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *> AllDPUsers; 2697a6dacacSDimitry Andric findDbgUsers(AllDbgUsers, AI, &AllDPUsers); 270bdd1243dSDimitry Andric std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(), 271bdd1243dSDimitry Andric std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) { 272bdd1243dSDimitry Andric return !isa<DbgAssignIntrinsic>(DII); 273bdd1243dSDimitry Andric }); 2747a6dacacSDimitry Andric std::copy_if(AllDPUsers.begin(), AllDPUsers.end(), 2757a6dacacSDimitry Andric std::back_inserter(DPUsers), 276*0fca6ea1SDimitry Andric [](DbgVariableRecord *DVR) { return !DVR->isDbgAssign(); }); 277bdd1243dSDimitry Andric AssignmentTracking.init(AI); 2780b57cec5SDimitry Andric } 2790b57cec5SDimitry Andric }; 2800b57cec5SDimitry Andric 2810b57cec5SDimitry Andric /// Data package used by RenamePass(). 2820b57cec5SDimitry Andric struct RenamePassData { 2830b57cec5SDimitry Andric using ValVector = std::vector<Value *>; 2840b57cec5SDimitry Andric using LocationVector = std::vector<DebugLoc>; 2850b57cec5SDimitry Andric 2860b57cec5SDimitry Andric RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 2870b57cec5SDimitry Andric : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 2880b57cec5SDimitry Andric 2890b57cec5SDimitry Andric BasicBlock *BB; 2900b57cec5SDimitry Andric BasicBlock *Pred; 2910b57cec5SDimitry Andric ValVector Values; 2920b57cec5SDimitry Andric LocationVector Locations; 2930b57cec5SDimitry Andric }; 2940b57cec5SDimitry Andric 2950b57cec5SDimitry Andric /// This assigns and keeps a per-bb relative ordering of load/store 2960b57cec5SDimitry Andric /// instructions in the block that directly load or store an alloca. 2970b57cec5SDimitry Andric /// 2980b57cec5SDimitry Andric /// This functionality is important because it avoids scanning large basic 2990b57cec5SDimitry Andric /// blocks multiple times when promoting many allocas in the same block. 3000b57cec5SDimitry Andric class LargeBlockInfo { 3010b57cec5SDimitry Andric /// For each instruction that we track, keep the index of the 3020b57cec5SDimitry Andric /// instruction. 3030b57cec5SDimitry Andric /// 3040b57cec5SDimitry Andric /// The index starts out as the number of the instruction from the start of 3050b57cec5SDimitry Andric /// the block. 3060b57cec5SDimitry Andric DenseMap<const Instruction *, unsigned> InstNumbers; 3070b57cec5SDimitry Andric 3080b57cec5SDimitry Andric public: 3090b57cec5SDimitry Andric 3100b57cec5SDimitry Andric /// This code only looks at accesses to allocas. 3110b57cec5SDimitry Andric static bool isInterestingInstruction(const Instruction *I) { 3120b57cec5SDimitry Andric return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 3130b57cec5SDimitry Andric (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 3140b57cec5SDimitry Andric } 3150b57cec5SDimitry Andric 3160b57cec5SDimitry Andric /// Get or calculate the index of the specified instruction. 3170b57cec5SDimitry Andric unsigned getInstructionIndex(const Instruction *I) { 3180b57cec5SDimitry Andric assert(isInterestingInstruction(I) && 3190b57cec5SDimitry Andric "Not a load/store to/from an alloca?"); 3200b57cec5SDimitry Andric 3210b57cec5SDimitry Andric // If we already have this instruction number, return it. 3220b57cec5SDimitry Andric DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 3230b57cec5SDimitry Andric if (It != InstNumbers.end()) 3240b57cec5SDimitry Andric return It->second; 3250b57cec5SDimitry Andric 3260b57cec5SDimitry Andric // Scan the whole block to get the instruction. This accumulates 3270b57cec5SDimitry Andric // information for every interesting instruction in the block, in order to 3280b57cec5SDimitry Andric // avoid gratuitus rescans. 3290b57cec5SDimitry Andric const BasicBlock *BB = I->getParent(); 3300b57cec5SDimitry Andric unsigned InstNo = 0; 3310b57cec5SDimitry Andric for (const Instruction &BBI : *BB) 3320b57cec5SDimitry Andric if (isInterestingInstruction(&BBI)) 3330b57cec5SDimitry Andric InstNumbers[&BBI] = InstNo++; 3340b57cec5SDimitry Andric It = InstNumbers.find(I); 3350b57cec5SDimitry Andric 3360b57cec5SDimitry Andric assert(It != InstNumbers.end() && "Didn't insert instruction?"); 3370b57cec5SDimitry Andric return It->second; 3380b57cec5SDimitry Andric } 3390b57cec5SDimitry Andric 3400b57cec5SDimitry Andric void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 3410b57cec5SDimitry Andric 3420b57cec5SDimitry Andric void clear() { InstNumbers.clear(); } 3430b57cec5SDimitry Andric }; 3440b57cec5SDimitry Andric 3450b57cec5SDimitry Andric struct PromoteMem2Reg { 3460b57cec5SDimitry Andric /// The alloca instructions being promoted. 3470b57cec5SDimitry Andric std::vector<AllocaInst *> Allocas; 3480b57cec5SDimitry Andric 3490b57cec5SDimitry Andric DominatorTree &DT; 3500b57cec5SDimitry Andric DIBuilder DIB; 3510b57cec5SDimitry Andric 3520b57cec5SDimitry Andric /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 3530b57cec5SDimitry Andric AssumptionCache *AC; 3540b57cec5SDimitry Andric 3550b57cec5SDimitry Andric const SimplifyQuery SQ; 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric /// Reverse mapping of Allocas. 3580b57cec5SDimitry Andric DenseMap<AllocaInst *, unsigned> AllocaLookup; 3590b57cec5SDimitry Andric 3600b57cec5SDimitry Andric /// The PhiNodes we're adding. 3610b57cec5SDimitry Andric /// 3620b57cec5SDimitry Andric /// That map is used to simplify some Phi nodes as we iterate over it, so 3630b57cec5SDimitry Andric /// it should have deterministic iterators. We could use a MapVector, but 3640b57cec5SDimitry Andric /// since we already maintain a map from BasicBlock* to a stable numbering 3650b57cec5SDimitry Andric /// (BBNumbers), the DenseMap is more efficient (also supports removal). 3660b57cec5SDimitry Andric DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 3670b57cec5SDimitry Andric 3680b57cec5SDimitry Andric /// For each PHI node, keep track of which entry in Allocas it corresponds 3690b57cec5SDimitry Andric /// to. 3700b57cec5SDimitry Andric DenseMap<PHINode *, unsigned> PhiToAllocaMap; 3710b57cec5SDimitry Andric 3720b57cec5SDimitry Andric /// For each alloca, we keep track of the dbg.declare intrinsic that 3730b57cec5SDimitry Andric /// describes it, if any, so that we can convert it to a dbg.value 3740b57cec5SDimitry Andric /// intrinsic if the alloca gets promoted. 375e8d8bef9SDimitry Andric SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers; 3765f757f3fSDimitry Andric SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers; 3770b57cec5SDimitry Andric 378bdd1243dSDimitry Andric /// For each alloca, keep an instance of a helper class that gives us an easy 379bdd1243dSDimitry Andric /// way to update assignment tracking debug info if the alloca is promoted. 380bdd1243dSDimitry Andric SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo; 38106c3fb27SDimitry Andric /// A set of dbg.assigns to delete because they've been demoted to 38206c3fb27SDimitry Andric /// dbg.values. Call cleanUpDbgAssigns to delete them. 38306c3fb27SDimitry Andric SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete; 384*0fca6ea1SDimitry Andric SmallSet<DbgVariableRecord *, 8> DVRAssignsToDelete; 385bdd1243dSDimitry Andric 3860b57cec5SDimitry Andric /// The set of basic blocks the renamer has already visited. 3870b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 16> Visited; 3880b57cec5SDimitry Andric 3890b57cec5SDimitry Andric /// Contains a stable numbering of basic blocks to avoid non-determinstic 3900b57cec5SDimitry Andric /// behavior. 3910b57cec5SDimitry Andric DenseMap<BasicBlock *, unsigned> BBNumbers; 3920b57cec5SDimitry Andric 3930b57cec5SDimitry Andric /// Lazily compute the number of predecessors a block has. 3940b57cec5SDimitry Andric DenseMap<const BasicBlock *, unsigned> BBNumPreds; 3950b57cec5SDimitry Andric 396*0fca6ea1SDimitry Andric /// Whether the function has the no-signed-zeros-fp-math attribute set. 397*0fca6ea1SDimitry Andric bool NoSignedZeros = false; 398*0fca6ea1SDimitry Andric 3990b57cec5SDimitry Andric public: 4000b57cec5SDimitry Andric PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 4010b57cec5SDimitry Andric AssumptionCache *AC) 4020b57cec5SDimitry Andric : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 4030b57cec5SDimitry Andric DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 404*0fca6ea1SDimitry Andric AC(AC), SQ(DT.getRoot()->getDataLayout(), 4050b57cec5SDimitry Andric nullptr, &DT, AC) {} 4060b57cec5SDimitry Andric 4070b57cec5SDimitry Andric void run(); 4080b57cec5SDimitry Andric 4090b57cec5SDimitry Andric private: 4100b57cec5SDimitry Andric void RemoveFromAllocasList(unsigned &AllocaIdx) { 4110b57cec5SDimitry Andric Allocas[AllocaIdx] = Allocas.back(); 4120b57cec5SDimitry Andric Allocas.pop_back(); 4130b57cec5SDimitry Andric --AllocaIdx; 4140b57cec5SDimitry Andric } 4150b57cec5SDimitry Andric 4160b57cec5SDimitry Andric unsigned getNumPreds(const BasicBlock *BB) { 4170b57cec5SDimitry Andric unsigned &NP = BBNumPreds[BB]; 4180b57cec5SDimitry Andric if (NP == 0) 4190b57cec5SDimitry Andric NP = pred_size(BB) + 1; 4200b57cec5SDimitry Andric return NP - 1; 4210b57cec5SDimitry Andric } 4220b57cec5SDimitry Andric 4230b57cec5SDimitry Andric void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 4240b57cec5SDimitry Andric const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 4250b57cec5SDimitry Andric SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 4260b57cec5SDimitry Andric void RenamePass(BasicBlock *BB, BasicBlock *Pred, 4270b57cec5SDimitry Andric RenamePassData::ValVector &IncVals, 4280b57cec5SDimitry Andric RenamePassData::LocationVector &IncLocs, 4290b57cec5SDimitry Andric std::vector<RenamePassData> &Worklist); 4300b57cec5SDimitry Andric bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 43106c3fb27SDimitry Andric 43206c3fb27SDimitry Andric /// Delete dbg.assigns that have been demoted to dbg.values. 43306c3fb27SDimitry Andric void cleanUpDbgAssigns() { 43406c3fb27SDimitry Andric for (auto *DAI : DbgAssignsToDelete) 43506c3fb27SDimitry Andric DAI->eraseFromParent(); 43606c3fb27SDimitry Andric DbgAssignsToDelete.clear(); 437*0fca6ea1SDimitry Andric for (auto *DVR : DVRAssignsToDelete) 438*0fca6ea1SDimitry Andric DVR->eraseFromParent(); 439*0fca6ea1SDimitry Andric DVRAssignsToDelete.clear(); 44006c3fb27SDimitry Andric } 4410b57cec5SDimitry Andric }; 4420b57cec5SDimitry Andric 4430b57cec5SDimitry Andric } // end anonymous namespace 4440b57cec5SDimitry Andric 4450b57cec5SDimitry Andric /// Given a LoadInst LI this adds assume(LI != null) after it. 4460b57cec5SDimitry Andric static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 4470b57cec5SDimitry Andric Function *AssumeIntrinsic = 4480b57cec5SDimitry Andric Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 4490b57cec5SDimitry Andric ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 4500b57cec5SDimitry Andric Constant::getNullValue(LI->getType())); 4510b57cec5SDimitry Andric LoadNotNull->insertAfter(LI); 4520b57cec5SDimitry Andric CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 4530b57cec5SDimitry Andric CI->insertAfter(LoadNotNull); 454fe6060f1SDimitry Andric AC->registerAssumption(cast<AssumeInst>(CI)); 4550b57cec5SDimitry Andric } 4560b57cec5SDimitry Andric 457bdd1243dSDimitry Andric static void convertMetadataToAssumes(LoadInst *LI, Value *Val, 458bdd1243dSDimitry Andric const DataLayout &DL, AssumptionCache *AC, 459bdd1243dSDimitry Andric const DominatorTree *DT) { 460*0fca6ea1SDimitry Andric if (isa<UndefValue>(Val) && LI->hasMetadata(LLVMContext::MD_noundef)) { 461*0fca6ea1SDimitry Andric // Insert non-terminator unreachable. 462*0fca6ea1SDimitry Andric LLVMContext &Ctx = LI->getContext(); 463*0fca6ea1SDimitry Andric new StoreInst(ConstantInt::getTrue(Ctx), 464*0fca6ea1SDimitry Andric PoisonValue::get(PointerType::getUnqual(Ctx)), 465*0fca6ea1SDimitry Andric /*isVolatile=*/false, Align(1), LI); 466*0fca6ea1SDimitry Andric return; 467*0fca6ea1SDimitry Andric } 468*0fca6ea1SDimitry Andric 469bdd1243dSDimitry Andric // If the load was marked as nonnull we don't want to lose that information 470bdd1243dSDimitry Andric // when we erase this Load. So we preserve it with an assume. As !nonnull 471bdd1243dSDimitry Andric // returns poison while assume violations are immediate undefined behavior, 472bdd1243dSDimitry Andric // we can only do this if the value is known non-poison. 473bdd1243dSDimitry Andric if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 474bdd1243dSDimitry Andric LI->getMetadata(LLVMContext::MD_noundef) && 475*0fca6ea1SDimitry Andric !isKnownNonZero(Val, SimplifyQuery(DL, DT, AC, LI))) 476bdd1243dSDimitry Andric addAssumeNonNull(AC, LI); 477bdd1243dSDimitry Andric } 478bdd1243dSDimitry Andric 479e8d8bef9SDimitry Andric static void removeIntrinsicUsers(AllocaInst *AI) { 4800b57cec5SDimitry Andric // Knowing that this alloca is promotable, we know that it's safe to kill all 4810b57cec5SDimitry Andric // instructions except for load and store. 4820b57cec5SDimitry Andric 483fe6060f1SDimitry Andric for (Use &U : llvm::make_early_inc_range(AI->uses())) { 484fe6060f1SDimitry Andric Instruction *I = cast<Instruction>(U.getUser()); 4850b57cec5SDimitry Andric if (isa<LoadInst>(I) || isa<StoreInst>(I)) 4860b57cec5SDimitry Andric continue; 4870b57cec5SDimitry Andric 488e8d8bef9SDimitry Andric // Drop the use of AI in droppable instructions. 489e8d8bef9SDimitry Andric if (I->isDroppable()) { 490e8d8bef9SDimitry Andric I->dropDroppableUse(U); 491e8d8bef9SDimitry Andric continue; 492e8d8bef9SDimitry Andric } 493e8d8bef9SDimitry Andric 4940b57cec5SDimitry Andric if (!I->getType()->isVoidTy()) { 4950b57cec5SDimitry Andric // The only users of this bitcast/GEP instruction are lifetime intrinsics. 4960b57cec5SDimitry Andric // Follow the use/def chain to erase them now instead of leaving it for 4970b57cec5SDimitry Andric // dead code elimination later. 498fe6060f1SDimitry Andric for (Use &UU : llvm::make_early_inc_range(I->uses())) { 499fe6060f1SDimitry Andric Instruction *Inst = cast<Instruction>(UU.getUser()); 500e8d8bef9SDimitry Andric 501e8d8bef9SDimitry Andric // Drop the use of I in droppable instructions. 502e8d8bef9SDimitry Andric if (Inst->isDroppable()) { 503e8d8bef9SDimitry Andric Inst->dropDroppableUse(UU); 504e8d8bef9SDimitry Andric continue; 505e8d8bef9SDimitry Andric } 5060b57cec5SDimitry Andric Inst->eraseFromParent(); 5070b57cec5SDimitry Andric } 5080b57cec5SDimitry Andric } 5090b57cec5SDimitry Andric I->eraseFromParent(); 5100b57cec5SDimitry Andric } 5110b57cec5SDimitry Andric } 5120b57cec5SDimitry Andric 5130b57cec5SDimitry Andric /// Rewrite as many loads as possible given a single store. 5140b57cec5SDimitry Andric /// 5150b57cec5SDimitry Andric /// When there is only a single store, we can use the domtree to trivially 5160b57cec5SDimitry Andric /// replace all of the dominated loads with the stored value. Do so, and return 5170b57cec5SDimitry Andric /// true if this has successfully promoted the alloca entirely. If this returns 5180b57cec5SDimitry Andric /// false there were some loads which were not dominated by the single store 5190b57cec5SDimitry Andric /// and thus must be phi-ed with undef. We fall back to the standard alloca 5200b57cec5SDimitry Andric /// promotion algorithm in that case. 5217a6dacacSDimitry Andric static bool 5227a6dacacSDimitry Andric rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, 5237a6dacacSDimitry Andric const DataLayout &DL, DominatorTree &DT, 5247a6dacacSDimitry Andric AssumptionCache *AC, 5257a6dacacSDimitry Andric SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 526*0fca6ea1SDimitry Andric SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 5270b57cec5SDimitry Andric StoreInst *OnlyStore = Info.OnlyStore; 528*0fca6ea1SDimitry Andric Value *ReplVal = OnlyStore->getOperand(0); 529*0fca6ea1SDimitry Andric // Loads may either load the stored value or uninitialized memory (undef). 530*0fca6ea1SDimitry Andric // If the stored value may be poison, then replacing an uninitialized memory 531*0fca6ea1SDimitry Andric // load with it would be incorrect. If the store dominates the load, we know 532*0fca6ea1SDimitry Andric // it is always initialized. 533*0fca6ea1SDimitry Andric bool RequireDominatingStore = 534*0fca6ea1SDimitry Andric isa<Instruction>(ReplVal) || !isGuaranteedNotToBePoison(ReplVal); 5350b57cec5SDimitry Andric BasicBlock *StoreBB = OnlyStore->getParent(); 5360b57cec5SDimitry Andric int StoreIndex = -1; 5370b57cec5SDimitry Andric 5380b57cec5SDimitry Andric // Clear out UsingBlocks. We will reconstruct it here if needed. 5390b57cec5SDimitry Andric Info.UsingBlocks.clear(); 5400b57cec5SDimitry Andric 541e8d8bef9SDimitry Andric for (User *U : make_early_inc_range(AI->users())) { 542e8d8bef9SDimitry Andric Instruction *UserInst = cast<Instruction>(U); 5430b57cec5SDimitry Andric if (UserInst == OnlyStore) 5440b57cec5SDimitry Andric continue; 5450b57cec5SDimitry Andric LoadInst *LI = cast<LoadInst>(UserInst); 5460b57cec5SDimitry Andric 5470b57cec5SDimitry Andric // Okay, if we have a load from the alloca, we want to replace it with the 5480b57cec5SDimitry Andric // only value stored to the alloca. We can do this if the value is 5490b57cec5SDimitry Andric // dominated by the store. If not, we use the rest of the mem2reg machinery 5500b57cec5SDimitry Andric // to insert the phi nodes as needed. 551*0fca6ea1SDimitry Andric if (RequireDominatingStore) { 5520b57cec5SDimitry Andric if (LI->getParent() == StoreBB) { 5530b57cec5SDimitry Andric // If we have a use that is in the same block as the store, compare the 5540b57cec5SDimitry Andric // indices of the two instructions to see which one came first. If the 5550b57cec5SDimitry Andric // load came before the store, we can't handle it. 5560b57cec5SDimitry Andric if (StoreIndex == -1) 5570b57cec5SDimitry Andric StoreIndex = LBI.getInstructionIndex(OnlyStore); 5580b57cec5SDimitry Andric 5590b57cec5SDimitry Andric if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 5600b57cec5SDimitry Andric // Can't handle this load, bail out. 5610b57cec5SDimitry Andric Info.UsingBlocks.push_back(StoreBB); 5620b57cec5SDimitry Andric continue; 5630b57cec5SDimitry Andric } 5640b57cec5SDimitry Andric } else if (!DT.dominates(StoreBB, LI->getParent())) { 5650b57cec5SDimitry Andric // If the load and store are in different blocks, use BB dominance to 5660b57cec5SDimitry Andric // check their relationships. If the store doesn't dom the use, bail 5670b57cec5SDimitry Andric // out. 5680b57cec5SDimitry Andric Info.UsingBlocks.push_back(LI->getParent()); 5690b57cec5SDimitry Andric continue; 5700b57cec5SDimitry Andric } 5710b57cec5SDimitry Andric } 5720b57cec5SDimitry Andric 5730b57cec5SDimitry Andric // Otherwise, we *can* safely rewrite this load. 5740b57cec5SDimitry Andric // If the replacement value is the load, this must occur in unreachable 5750b57cec5SDimitry Andric // code. 5760b57cec5SDimitry Andric if (ReplVal == LI) 577fe6060f1SDimitry Andric ReplVal = PoisonValue::get(LI->getType()); 5780b57cec5SDimitry Andric 579bdd1243dSDimitry Andric convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 5800b57cec5SDimitry Andric LI->replaceAllUsesWith(ReplVal); 5810b57cec5SDimitry Andric LI->eraseFromParent(); 5820b57cec5SDimitry Andric LBI.deleteValue(LI); 5830b57cec5SDimitry Andric } 5840b57cec5SDimitry Andric 5850b57cec5SDimitry Andric // Finally, after the scan, check to see if the store is all that is left. 5860b57cec5SDimitry Andric if (!Info.UsingBlocks.empty()) 5870b57cec5SDimitry Andric return false; // If not, we'll have to fall back for the remainder. 5880b57cec5SDimitry Andric 589bdd1243dSDimitry Andric DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 590bdd1243dSDimitry Andric // Update assignment tracking info for the store we're going to delete. 5917a6dacacSDimitry Andric Info.AssignmentTracking.updateForDeletedStore( 592*0fca6ea1SDimitry Andric Info.OnlyStore, DIB, DbgAssignsToDelete, DVRAssignsToDelete); 593bdd1243dSDimitry Andric 5940b57cec5SDimitry Andric // Record debuginfo for the store and remove the declaration's 5950b57cec5SDimitry Andric // debuginfo. 5965f757f3fSDimitry Andric auto ConvertDebugInfoForStore = [&](auto &Container) { 5975f757f3fSDimitry Andric for (auto *DbgItem : Container) { 5985f757f3fSDimitry Andric if (DbgItem->isAddressOfVariable()) { 5995f757f3fSDimitry Andric ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB); 6005f757f3fSDimitry Andric DbgItem->eraseFromParent(); 6015f757f3fSDimitry Andric } else if (DbgItem->getExpression()->startsWithDeref()) { 6025f757f3fSDimitry Andric DbgItem->eraseFromParent(); 603e8d8bef9SDimitry Andric } 6040b57cec5SDimitry Andric } 6055f757f3fSDimitry Andric }; 6065f757f3fSDimitry Andric ConvertDebugInfoForStore(Info.DbgUsers); 6075f757f3fSDimitry Andric ConvertDebugInfoForStore(Info.DPUsers); 608bdd1243dSDimitry Andric 609bdd1243dSDimitry Andric // Remove dbg.assigns linked to the alloca as these are now redundant. 610bdd1243dSDimitry Andric at::deleteAssignmentMarkers(AI); 611bdd1243dSDimitry Andric 6120b57cec5SDimitry Andric // Remove the (now dead) store and alloca. 6130b57cec5SDimitry Andric Info.OnlyStore->eraseFromParent(); 6140b57cec5SDimitry Andric LBI.deleteValue(Info.OnlyStore); 6150b57cec5SDimitry Andric 6160b57cec5SDimitry Andric AI->eraseFromParent(); 6170b57cec5SDimitry Andric return true; 6180b57cec5SDimitry Andric } 6190b57cec5SDimitry Andric 6200b57cec5SDimitry Andric /// Many allocas are only used within a single basic block. If this is the 6210b57cec5SDimitry Andric /// case, avoid traversing the CFG and inserting a lot of potentially useless 6220b57cec5SDimitry Andric /// PHI nodes by just performing a single linear pass over the basic block 6230b57cec5SDimitry Andric /// using the Alloca. 6240b57cec5SDimitry Andric /// 6250b57cec5SDimitry Andric /// If we cannot promote this alloca (because it is read before it is written), 6260b57cec5SDimitry Andric /// return false. This is necessary in cases where, due to control flow, the 6270b57cec5SDimitry Andric /// alloca is undefined only on some control flow paths. e.g. code like 6280b57cec5SDimitry Andric /// this is correct in LLVM IR: 6290b57cec5SDimitry Andric /// // A is an alloca with no stores so far 6300b57cec5SDimitry Andric /// for (...) { 6310b57cec5SDimitry Andric /// int t = *A; 6320b57cec5SDimitry Andric /// if (!first_iteration) 6330b57cec5SDimitry Andric /// use(t); 6340b57cec5SDimitry Andric /// *A = 42; 6350b57cec5SDimitry Andric /// } 6367a6dacacSDimitry Andric static bool 6377a6dacacSDimitry Andric promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 6387a6dacacSDimitry Andric LargeBlockInfo &LBI, const DataLayout &DL, 6397a6dacacSDimitry Andric DominatorTree &DT, AssumptionCache *AC, 6407a6dacacSDimitry Andric SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 641*0fca6ea1SDimitry Andric SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 6420b57cec5SDimitry Andric // The trickiest case to handle is when we have large blocks. Because of this, 6430b57cec5SDimitry Andric // this code is optimized assuming that large blocks happen. This does not 6440b57cec5SDimitry Andric // significantly pessimize the small block case. This uses LargeBlockInfo to 6450b57cec5SDimitry Andric // make it efficient to get the index of various operations in the block. 6460b57cec5SDimitry Andric 6470b57cec5SDimitry Andric // Walk the use-def list of the alloca, getting the locations of all stores. 6480b57cec5SDimitry Andric using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 6490b57cec5SDimitry Andric StoresByIndexTy StoresByIndex; 6500b57cec5SDimitry Andric 6510b57cec5SDimitry Andric for (User *U : AI->users()) 6520b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(U)) 6530b57cec5SDimitry Andric StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 6540b57cec5SDimitry Andric 6550b57cec5SDimitry Andric // Sort the stores by their index, making it efficient to do a lookup with a 6560b57cec5SDimitry Andric // binary search. 6570b57cec5SDimitry Andric llvm::sort(StoresByIndex, less_first()); 6580b57cec5SDimitry Andric 6590b57cec5SDimitry Andric // Walk all of the loads from this alloca, replacing them with the nearest 6600b57cec5SDimitry Andric // store above them, if any. 661e8d8bef9SDimitry Andric for (User *U : make_early_inc_range(AI->users())) { 662e8d8bef9SDimitry Andric LoadInst *LI = dyn_cast<LoadInst>(U); 6630b57cec5SDimitry Andric if (!LI) 6640b57cec5SDimitry Andric continue; 6650b57cec5SDimitry Andric 6660b57cec5SDimitry Andric unsigned LoadIdx = LBI.getInstructionIndex(LI); 6670b57cec5SDimitry Andric 6680b57cec5SDimitry Andric // Find the nearest store that has a lower index than this load. 6690b57cec5SDimitry Andric StoresByIndexTy::iterator I = llvm::lower_bound( 6700b57cec5SDimitry Andric StoresByIndex, 6710b57cec5SDimitry Andric std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 6720b57cec5SDimitry Andric less_first()); 673753f127fSDimitry Andric Value *ReplVal; 6740b57cec5SDimitry Andric if (I == StoresByIndex.begin()) { 6750b57cec5SDimitry Andric if (StoresByIndex.empty()) 6760b57cec5SDimitry Andric // If there are no stores, the load takes the undef value. 677753f127fSDimitry Andric ReplVal = UndefValue::get(LI->getType()); 6780b57cec5SDimitry Andric else 6790b57cec5SDimitry Andric // There is no store before this load, bail out (load may be affected 6800b57cec5SDimitry Andric // by the following stores - see main comment). 6810b57cec5SDimitry Andric return false; 6820b57cec5SDimitry Andric } else { 683753f127fSDimitry Andric // Otherwise, there was a store before this load, the load takes its 684753f127fSDimitry Andric // value. 685753f127fSDimitry Andric ReplVal = std::prev(I)->second->getOperand(0); 686753f127fSDimitry Andric } 687753f127fSDimitry Andric 688bdd1243dSDimitry Andric convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 6890b57cec5SDimitry Andric 6900b57cec5SDimitry Andric // If the replacement value is the load, this must occur in unreachable 6910b57cec5SDimitry Andric // code. 6920b57cec5SDimitry Andric if (ReplVal == LI) 693fe6060f1SDimitry Andric ReplVal = PoisonValue::get(LI->getType()); 6940b57cec5SDimitry Andric 6950b57cec5SDimitry Andric LI->replaceAllUsesWith(ReplVal); 6960b57cec5SDimitry Andric LI->eraseFromParent(); 6970b57cec5SDimitry Andric LBI.deleteValue(LI); 6980b57cec5SDimitry Andric } 6990b57cec5SDimitry Andric 7000b57cec5SDimitry Andric // Remove the (now dead) stores and alloca. 701bdd1243dSDimitry Andric DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 7020b57cec5SDimitry Andric while (!AI->use_empty()) { 7030b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(AI->user_back()); 704bdd1243dSDimitry Andric // Update assignment tracking info for the store we're going to delete. 7057a6dacacSDimitry Andric Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete, 706*0fca6ea1SDimitry Andric DVRAssignsToDelete); 7070b57cec5SDimitry Andric // Record debuginfo for the store before removing it. 7085f757f3fSDimitry Andric auto DbgUpdateForStore = [&](auto &Container) { 7095f757f3fSDimitry Andric for (auto *DbgItem : Container) { 7105f757f3fSDimitry Andric if (DbgItem->isAddressOfVariable()) { 7115f757f3fSDimitry Andric ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 7120b57cec5SDimitry Andric } 713e8d8bef9SDimitry Andric } 7145f757f3fSDimitry Andric }; 7155f757f3fSDimitry Andric DbgUpdateForStore(Info.DbgUsers); 7165f757f3fSDimitry Andric DbgUpdateForStore(Info.DPUsers); 7175f757f3fSDimitry Andric 7180b57cec5SDimitry Andric SI->eraseFromParent(); 7190b57cec5SDimitry Andric LBI.deleteValue(SI); 7200b57cec5SDimitry Andric } 7210b57cec5SDimitry Andric 722bdd1243dSDimitry Andric // Remove dbg.assigns linked to the alloca as these are now redundant. 723bdd1243dSDimitry Andric at::deleteAssignmentMarkers(AI); 7240b57cec5SDimitry Andric AI->eraseFromParent(); 7250b57cec5SDimitry Andric 7260b57cec5SDimitry Andric // The alloca's debuginfo can be removed as well. 7275f757f3fSDimitry Andric auto DbgUpdateForAlloca = [&](auto &Container) { 7285f757f3fSDimitry Andric for (auto *DbgItem : Container) 7295f757f3fSDimitry Andric if (DbgItem->isAddressOfVariable() || 7305f757f3fSDimitry Andric DbgItem->getExpression()->startsWithDeref()) 7315f757f3fSDimitry Andric DbgItem->eraseFromParent(); 7325f757f3fSDimitry Andric }; 7335f757f3fSDimitry Andric DbgUpdateForAlloca(Info.DbgUsers); 7345f757f3fSDimitry Andric DbgUpdateForAlloca(Info.DPUsers); 7350b57cec5SDimitry Andric 7360b57cec5SDimitry Andric ++NumLocalPromoted; 7370b57cec5SDimitry Andric return true; 7380b57cec5SDimitry Andric } 7390b57cec5SDimitry Andric 7400b57cec5SDimitry Andric void PromoteMem2Reg::run() { 7410b57cec5SDimitry Andric Function &F = *DT.getRoot()->getParent(); 7420b57cec5SDimitry Andric 743e8d8bef9SDimitry Andric AllocaDbgUsers.resize(Allocas.size()); 744bdd1243dSDimitry Andric AllocaATInfo.resize(Allocas.size()); 7455f757f3fSDimitry Andric AllocaDPUsers.resize(Allocas.size()); 7460b57cec5SDimitry Andric 7470b57cec5SDimitry Andric AllocaInfo Info; 7480b57cec5SDimitry Andric LargeBlockInfo LBI; 7490b57cec5SDimitry Andric ForwardIDFCalculator IDF(DT); 7500b57cec5SDimitry Andric 751*0fca6ea1SDimitry Andric NoSignedZeros = F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool(); 752*0fca6ea1SDimitry Andric 7530b57cec5SDimitry Andric for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 7540b57cec5SDimitry Andric AllocaInst *AI = Allocas[AllocaNum]; 7550b57cec5SDimitry Andric 7560b57cec5SDimitry Andric assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 7570b57cec5SDimitry Andric assert(AI->getParent()->getParent() == &F && 7580b57cec5SDimitry Andric "All allocas should be in the same function, which is same as DF!"); 7590b57cec5SDimitry Andric 760e8d8bef9SDimitry Andric removeIntrinsicUsers(AI); 7610b57cec5SDimitry Andric 7620b57cec5SDimitry Andric if (AI->use_empty()) { 7630b57cec5SDimitry Andric // If there are no uses of the alloca, just delete it now. 7640b57cec5SDimitry Andric AI->eraseFromParent(); 7650b57cec5SDimitry Andric 7660b57cec5SDimitry Andric // Remove the alloca from the Allocas list, since it has been processed 7670b57cec5SDimitry Andric RemoveFromAllocasList(AllocaNum); 7680b57cec5SDimitry Andric ++NumDeadAlloca; 7690b57cec5SDimitry Andric continue; 7700b57cec5SDimitry Andric } 7710b57cec5SDimitry Andric 7720b57cec5SDimitry Andric // Calculate the set of read and write-locations for each alloca. This is 7730b57cec5SDimitry Andric // analogous to finding the 'uses' and 'definitions' of each variable. 7740b57cec5SDimitry Andric Info.AnalyzeAlloca(AI); 7750b57cec5SDimitry Andric 7760b57cec5SDimitry Andric // If there is only a single store to this value, replace any loads of 7770b57cec5SDimitry Andric // it that are directly dominated by the definition with the value stored. 7780b57cec5SDimitry Andric if (Info.DefiningBlocks.size() == 1) { 77906c3fb27SDimitry Andric if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC, 780*0fca6ea1SDimitry Andric &DbgAssignsToDelete, &DVRAssignsToDelete)) { 7810b57cec5SDimitry Andric // The alloca has been processed, move on. 7820b57cec5SDimitry Andric RemoveFromAllocasList(AllocaNum); 7830b57cec5SDimitry Andric ++NumSingleStore; 7840b57cec5SDimitry Andric continue; 7850b57cec5SDimitry Andric } 7860b57cec5SDimitry Andric } 7870b57cec5SDimitry Andric 7880b57cec5SDimitry Andric // If the alloca is only read and written in one basic block, just perform a 7890b57cec5SDimitry Andric // linear sweep over the block to eliminate it. 7900b57cec5SDimitry Andric if (Info.OnlyUsedInOneBlock && 79106c3fb27SDimitry Andric promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC, 792*0fca6ea1SDimitry Andric &DbgAssignsToDelete, &DVRAssignsToDelete)) { 7930b57cec5SDimitry Andric // The alloca has been processed, move on. 7940b57cec5SDimitry Andric RemoveFromAllocasList(AllocaNum); 7950b57cec5SDimitry Andric continue; 7960b57cec5SDimitry Andric } 7970b57cec5SDimitry Andric 7980b57cec5SDimitry Andric // If we haven't computed a numbering for the BB's in the function, do so 7990b57cec5SDimitry Andric // now. 8000b57cec5SDimitry Andric if (BBNumbers.empty()) { 8010b57cec5SDimitry Andric unsigned ID = 0; 8020b57cec5SDimitry Andric for (auto &BB : F) 8030b57cec5SDimitry Andric BBNumbers[&BB] = ID++; 8040b57cec5SDimitry Andric } 8050b57cec5SDimitry Andric 8060b57cec5SDimitry Andric // Remember the dbg.declare intrinsic describing this alloca, if any. 807e8d8bef9SDimitry Andric if (!Info.DbgUsers.empty()) 808e8d8bef9SDimitry Andric AllocaDbgUsers[AllocaNum] = Info.DbgUsers; 809bdd1243dSDimitry Andric if (!Info.AssignmentTracking.empty()) 810bdd1243dSDimitry Andric AllocaATInfo[AllocaNum] = Info.AssignmentTracking; 8115f757f3fSDimitry Andric if (!Info.DPUsers.empty()) 8125f757f3fSDimitry Andric AllocaDPUsers[AllocaNum] = Info.DPUsers; 8130b57cec5SDimitry Andric 8140b57cec5SDimitry Andric // Keep the reverse mapping of the 'Allocas' array for the rename pass. 8150b57cec5SDimitry Andric AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 8160b57cec5SDimitry Andric 8170b57cec5SDimitry Andric // Unique the set of defining blocks for efficient lookup. 8180b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 8190b57cec5SDimitry Andric Info.DefiningBlocks.end()); 8200b57cec5SDimitry Andric 8210b57cec5SDimitry Andric // Determine which blocks the value is live in. These are blocks which lead 8220b57cec5SDimitry Andric // to uses. 8230b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 8240b57cec5SDimitry Andric ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 8250b57cec5SDimitry Andric 8260b57cec5SDimitry Andric // At this point, we're committed to promoting the alloca using IDF's, and 8270b57cec5SDimitry Andric // the standard SSA construction algorithm. Determine which blocks need phi 8280b57cec5SDimitry Andric // nodes and see if we can optimize out some work by avoiding insertion of 8290b57cec5SDimitry Andric // dead phi nodes. 8300b57cec5SDimitry Andric IDF.setLiveInBlocks(LiveInBlocks); 8310b57cec5SDimitry Andric IDF.setDefiningBlocks(DefBlocks); 8320b57cec5SDimitry Andric SmallVector<BasicBlock *, 32> PHIBlocks; 8330b57cec5SDimitry Andric IDF.calculate(PHIBlocks); 8340b57cec5SDimitry Andric llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 8350b57cec5SDimitry Andric return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 8360b57cec5SDimitry Andric }); 8370b57cec5SDimitry Andric 8380b57cec5SDimitry Andric unsigned CurrentVersion = 0; 8390b57cec5SDimitry Andric for (BasicBlock *BB : PHIBlocks) 8400b57cec5SDimitry Andric QueuePhiNode(BB, AllocaNum, CurrentVersion); 8410b57cec5SDimitry Andric } 8420b57cec5SDimitry Andric 84306c3fb27SDimitry Andric if (Allocas.empty()) { 84406c3fb27SDimitry Andric cleanUpDbgAssigns(); 8450b57cec5SDimitry Andric return; // All of the allocas must have been trivial! 84606c3fb27SDimitry Andric } 8470b57cec5SDimitry Andric LBI.clear(); 8480b57cec5SDimitry Andric 8490b57cec5SDimitry Andric // Set the incoming values for the basic block to be null values for all of 8500b57cec5SDimitry Andric // the alloca's. We do this in case there is a load of a value that has not 8510b57cec5SDimitry Andric // been stored yet. In this case, it will get this null value. 8520b57cec5SDimitry Andric RenamePassData::ValVector Values(Allocas.size()); 8530b57cec5SDimitry Andric for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 8540b57cec5SDimitry Andric Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 8550b57cec5SDimitry Andric 8560b57cec5SDimitry Andric // When handling debug info, treat all incoming values as if they have unknown 8570b57cec5SDimitry Andric // locations until proven otherwise. 8580b57cec5SDimitry Andric RenamePassData::LocationVector Locations(Allocas.size()); 8590b57cec5SDimitry Andric 8600b57cec5SDimitry Andric // Walks all basic blocks in the function performing the SSA rename algorithm 8610b57cec5SDimitry Andric // and inserting the phi nodes we marked as necessary 8620b57cec5SDimitry Andric std::vector<RenamePassData> RenamePassWorkList; 8630b57cec5SDimitry Andric RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 8640b57cec5SDimitry Andric std::move(Locations)); 8650b57cec5SDimitry Andric do { 8660b57cec5SDimitry Andric RenamePassData RPD = std::move(RenamePassWorkList.back()); 8670b57cec5SDimitry Andric RenamePassWorkList.pop_back(); 8680b57cec5SDimitry Andric // RenamePass may add new worklist entries. 8690b57cec5SDimitry Andric RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 8700b57cec5SDimitry Andric } while (!RenamePassWorkList.empty()); 8710b57cec5SDimitry Andric 8720b57cec5SDimitry Andric // The renamer uses the Visited set to avoid infinite loops. Clear it now. 8730b57cec5SDimitry Andric Visited.clear(); 8740b57cec5SDimitry Andric 8750b57cec5SDimitry Andric // Remove the allocas themselves from the function. 8760b57cec5SDimitry Andric for (Instruction *A : Allocas) { 877bdd1243dSDimitry Andric // Remove dbg.assigns linked to the alloca as these are now redundant. 878bdd1243dSDimitry Andric at::deleteAssignmentMarkers(A); 8790b57cec5SDimitry Andric // If there are any uses of the alloca instructions left, they must be in 8800b57cec5SDimitry Andric // unreachable basic blocks that were not processed by walking the dominator 8810b57cec5SDimitry Andric // tree. Just delete the users now. 8820b57cec5SDimitry Andric if (!A->use_empty()) 883fe6060f1SDimitry Andric A->replaceAllUsesWith(PoisonValue::get(A->getType())); 8840b57cec5SDimitry Andric A->eraseFromParent(); 8850b57cec5SDimitry Andric } 8860b57cec5SDimitry Andric 88781ad6265SDimitry Andric // Remove alloca's dbg.declare intrinsics from the function. 8885f757f3fSDimitry Andric auto RemoveDbgDeclares = [&](auto &Container) { 8895f757f3fSDimitry Andric for (auto &DbgUsers : Container) { 8905f757f3fSDimitry Andric for (auto *DbgItem : DbgUsers) 8915f757f3fSDimitry Andric if (DbgItem->isAddressOfVariable() || 8925f757f3fSDimitry Andric DbgItem->getExpression()->startsWithDeref()) 8935f757f3fSDimitry Andric DbgItem->eraseFromParent(); 894e8d8bef9SDimitry Andric } 8955f757f3fSDimitry Andric }; 8965f757f3fSDimitry Andric RemoveDbgDeclares(AllocaDbgUsers); 8975f757f3fSDimitry Andric RemoveDbgDeclares(AllocaDPUsers); 8980b57cec5SDimitry Andric 8990b57cec5SDimitry Andric // Loop over all of the PHI nodes and see if there are any that we can get 9000b57cec5SDimitry Andric // rid of because they merge all of the same incoming values. This can 9010b57cec5SDimitry Andric // happen due to undef values coming into the PHI nodes. This process is 9020b57cec5SDimitry Andric // iterative, because eliminating one PHI node can cause others to be removed. 9030b57cec5SDimitry Andric bool EliminatedAPHI = true; 9040b57cec5SDimitry Andric while (EliminatedAPHI) { 9050b57cec5SDimitry Andric EliminatedAPHI = false; 9060b57cec5SDimitry Andric 9070b57cec5SDimitry Andric // Iterating over NewPhiNodes is deterministic, so it is safe to try to 9080b57cec5SDimitry Andric // simplify and RAUW them as we go. If it was not, we could add uses to 9090b57cec5SDimitry Andric // the values we replace with in a non-deterministic order, thus creating 9100b57cec5SDimitry Andric // non-deterministic def->use chains. 9110b57cec5SDimitry Andric for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 9120b57cec5SDimitry Andric I = NewPhiNodes.begin(), 9130b57cec5SDimitry Andric E = NewPhiNodes.end(); 9140b57cec5SDimitry Andric I != E;) { 9150b57cec5SDimitry Andric PHINode *PN = I->second; 9160b57cec5SDimitry Andric 9170b57cec5SDimitry Andric // If this PHI node merges one value and/or undefs, get the value. 91881ad6265SDimitry Andric if (Value *V = simplifyInstruction(PN, SQ)) { 9190b57cec5SDimitry Andric PN->replaceAllUsesWith(V); 9200b57cec5SDimitry Andric PN->eraseFromParent(); 9210b57cec5SDimitry Andric NewPhiNodes.erase(I++); 9220b57cec5SDimitry Andric EliminatedAPHI = true; 9230b57cec5SDimitry Andric continue; 9240b57cec5SDimitry Andric } 9250b57cec5SDimitry Andric ++I; 9260b57cec5SDimitry Andric } 9270b57cec5SDimitry Andric } 9280b57cec5SDimitry Andric 9290b57cec5SDimitry Andric // At this point, the renamer has added entries to PHI nodes for all reachable 9300b57cec5SDimitry Andric // code. Unfortunately, there may be unreachable blocks which the renamer 9310b57cec5SDimitry Andric // hasn't traversed. If this is the case, the PHI nodes may not 9320b57cec5SDimitry Andric // have incoming values for all predecessors. Loop over all PHI nodes we have 93306c3fb27SDimitry Andric // created, inserting poison values if they are missing any incoming values. 9340b57cec5SDimitry Andric for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 9350b57cec5SDimitry Andric I = NewPhiNodes.begin(), 9360b57cec5SDimitry Andric E = NewPhiNodes.end(); 9370b57cec5SDimitry Andric I != E; ++I) { 9380b57cec5SDimitry Andric // We want to do this once per basic block. As such, only process a block 9390b57cec5SDimitry Andric // when we find the PHI that is the first entry in the block. 9400b57cec5SDimitry Andric PHINode *SomePHI = I->second; 9410b57cec5SDimitry Andric BasicBlock *BB = SomePHI->getParent(); 9420b57cec5SDimitry Andric if (&BB->front() != SomePHI) 9430b57cec5SDimitry Andric continue; 9440b57cec5SDimitry Andric 9450b57cec5SDimitry Andric // Only do work here if there the PHI nodes are missing incoming values. We 9460b57cec5SDimitry Andric // know that all PHI nodes that were inserted in a block will have the same 9470b57cec5SDimitry Andric // number of incoming values, so we can just check any of them. 9480b57cec5SDimitry Andric if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 9490b57cec5SDimitry Andric continue; 9500b57cec5SDimitry Andric 9510b57cec5SDimitry Andric // Get the preds for BB. 952e8d8bef9SDimitry Andric SmallVector<BasicBlock *, 16> Preds(predecessors(BB)); 9530b57cec5SDimitry Andric 9540b57cec5SDimitry Andric // Ok, now we know that all of the PHI nodes are missing entries for some 9550b57cec5SDimitry Andric // basic blocks. Start by sorting the incoming predecessors for efficient 9560b57cec5SDimitry Andric // access. 9570b57cec5SDimitry Andric auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 9580b57cec5SDimitry Andric return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 9590b57cec5SDimitry Andric }; 9600b57cec5SDimitry Andric llvm::sort(Preds, CompareBBNumbers); 9610b57cec5SDimitry Andric 9620b57cec5SDimitry Andric // Now we loop through all BB's which have entries in SomePHI and remove 9630b57cec5SDimitry Andric // them from the Preds list. 9640b57cec5SDimitry Andric for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 9650b57cec5SDimitry Andric // Do a log(n) search of the Preds list for the entry we want. 9660b57cec5SDimitry Andric SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 9670b57cec5SDimitry Andric Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 9680b57cec5SDimitry Andric assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 9690b57cec5SDimitry Andric "PHI node has entry for a block which is not a predecessor!"); 9700b57cec5SDimitry Andric 9710b57cec5SDimitry Andric // Remove the entry 9720b57cec5SDimitry Andric Preds.erase(EntIt); 9730b57cec5SDimitry Andric } 9740b57cec5SDimitry Andric 9750b57cec5SDimitry Andric // At this point, the blocks left in the preds list must have dummy 9760b57cec5SDimitry Andric // entries inserted into every PHI nodes for the block. Update all the phi 9770b57cec5SDimitry Andric // nodes in this block that we are inserting (there could be phis before 9780b57cec5SDimitry Andric // mem2reg runs). 9790b57cec5SDimitry Andric unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 9800b57cec5SDimitry Andric BasicBlock::iterator BBI = BB->begin(); 9810b57cec5SDimitry Andric while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 9820b57cec5SDimitry Andric SomePHI->getNumIncomingValues() == NumBadPreds) { 98306c3fb27SDimitry Andric Value *PoisonVal = PoisonValue::get(SomePHI->getType()); 9840b57cec5SDimitry Andric for (BasicBlock *Pred : Preds) 98506c3fb27SDimitry Andric SomePHI->addIncoming(PoisonVal, Pred); 9860b57cec5SDimitry Andric } 9870b57cec5SDimitry Andric } 9880b57cec5SDimitry Andric 9890b57cec5SDimitry Andric NewPhiNodes.clear(); 99006c3fb27SDimitry Andric cleanUpDbgAssigns(); 9910b57cec5SDimitry Andric } 9920b57cec5SDimitry Andric 9930b57cec5SDimitry Andric /// Determine which blocks the value is live in. 9940b57cec5SDimitry Andric /// 9950b57cec5SDimitry Andric /// These are blocks which lead to uses. Knowing this allows us to avoid 9960b57cec5SDimitry Andric /// inserting PHI nodes into blocks which don't lead to uses (thus, the 9970b57cec5SDimitry Andric /// inserted phi nodes would be dead). 9980b57cec5SDimitry Andric void PromoteMem2Reg::ComputeLiveInBlocks( 9990b57cec5SDimitry Andric AllocaInst *AI, AllocaInfo &Info, 10000b57cec5SDimitry Andric const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 10010b57cec5SDimitry Andric SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 10020b57cec5SDimitry Andric // To determine liveness, we must iterate through the predecessors of blocks 10030b57cec5SDimitry Andric // where the def is live. Blocks are added to the worklist if we need to 10040b57cec5SDimitry Andric // check their predecessors. Start with all the using blocks. 10050b57cec5SDimitry Andric SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 10060b57cec5SDimitry Andric Info.UsingBlocks.end()); 10070b57cec5SDimitry Andric 10080b57cec5SDimitry Andric // If any of the using blocks is also a definition block, check to see if the 10090b57cec5SDimitry Andric // definition occurs before or after the use. If it happens before the use, 10100b57cec5SDimitry Andric // the value isn't really live-in. 10110b57cec5SDimitry Andric for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 10120b57cec5SDimitry Andric BasicBlock *BB = LiveInBlockWorklist[i]; 10130b57cec5SDimitry Andric if (!DefBlocks.count(BB)) 10140b57cec5SDimitry Andric continue; 10150b57cec5SDimitry Andric 10160b57cec5SDimitry Andric // Okay, this is a block that both uses and defines the value. If the first 10170b57cec5SDimitry Andric // reference to the alloca is a def (store), then we know it isn't live-in. 10180b57cec5SDimitry Andric for (BasicBlock::iterator I = BB->begin();; ++I) { 10190b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 10200b57cec5SDimitry Andric if (SI->getOperand(1) != AI) 10210b57cec5SDimitry Andric continue; 10220b57cec5SDimitry Andric 10230b57cec5SDimitry Andric // We found a store to the alloca before a load. The alloca is not 10240b57cec5SDimitry Andric // actually live-in here. 10250b57cec5SDimitry Andric LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 10260b57cec5SDimitry Andric LiveInBlockWorklist.pop_back(); 10270b57cec5SDimitry Andric --i; 10280b57cec5SDimitry Andric --e; 10290b57cec5SDimitry Andric break; 10300b57cec5SDimitry Andric } 10310b57cec5SDimitry Andric 10320b57cec5SDimitry Andric if (LoadInst *LI = dyn_cast<LoadInst>(I)) 10330b57cec5SDimitry Andric // Okay, we found a load before a store to the alloca. It is actually 10340b57cec5SDimitry Andric // live into this block. 10350b57cec5SDimitry Andric if (LI->getOperand(0) == AI) 10360b57cec5SDimitry Andric break; 10370b57cec5SDimitry Andric } 10380b57cec5SDimitry Andric } 10390b57cec5SDimitry Andric 10400b57cec5SDimitry Andric // Now that we have a set of blocks where the phi is live-in, recursively add 10410b57cec5SDimitry Andric // their predecessors until we find the full region the value is live. 10420b57cec5SDimitry Andric while (!LiveInBlockWorklist.empty()) { 10430b57cec5SDimitry Andric BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 10440b57cec5SDimitry Andric 10450b57cec5SDimitry Andric // The block really is live in here, insert it into the set. If already in 10460b57cec5SDimitry Andric // the set, then it has already been processed. 10470b57cec5SDimitry Andric if (!LiveInBlocks.insert(BB).second) 10480b57cec5SDimitry Andric continue; 10490b57cec5SDimitry Andric 10500b57cec5SDimitry Andric // Since the value is live into BB, it is either defined in a predecessor or 10510b57cec5SDimitry Andric // live into it to. Add the preds to the worklist unless they are a 10520b57cec5SDimitry Andric // defining block. 10530b57cec5SDimitry Andric for (BasicBlock *P : predecessors(BB)) { 10540b57cec5SDimitry Andric // The value is not live into a predecessor if it defines the value. 10550b57cec5SDimitry Andric if (DefBlocks.count(P)) 10560b57cec5SDimitry Andric continue; 10570b57cec5SDimitry Andric 10580b57cec5SDimitry Andric // Otherwise it is, add to the worklist. 10590b57cec5SDimitry Andric LiveInBlockWorklist.push_back(P); 10600b57cec5SDimitry Andric } 10610b57cec5SDimitry Andric } 10620b57cec5SDimitry Andric } 10630b57cec5SDimitry Andric 10640b57cec5SDimitry Andric /// Queue a phi-node to be added to a basic-block for a specific Alloca. 10650b57cec5SDimitry Andric /// 10660b57cec5SDimitry Andric /// Returns true if there wasn't already a phi-node for that variable 10670b57cec5SDimitry Andric bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 10680b57cec5SDimitry Andric unsigned &Version) { 10690b57cec5SDimitry Andric // Look up the basic-block in question. 10700b57cec5SDimitry Andric PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 10710b57cec5SDimitry Andric 10720b57cec5SDimitry Andric // If the BB already has a phi node added for the i'th alloca then we're done! 10730b57cec5SDimitry Andric if (PN) 10740b57cec5SDimitry Andric return false; 10750b57cec5SDimitry Andric 10760b57cec5SDimitry Andric // Create a PhiNode using the dereferenced type... and add the phi-node to the 10770b57cec5SDimitry Andric // BasicBlock. 10780b57cec5SDimitry Andric PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 10795f757f3fSDimitry Andric Allocas[AllocaNo]->getName() + "." + Twine(Version++)); 10805f757f3fSDimitry Andric PN->insertBefore(BB->begin()); 10810b57cec5SDimitry Andric ++NumPHIInsert; 10820b57cec5SDimitry Andric PhiToAllocaMap[PN] = AllocaNo; 10830b57cec5SDimitry Andric return true; 10840b57cec5SDimitry Andric } 10850b57cec5SDimitry Andric 10860b57cec5SDimitry Andric /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 10870b57cec5SDimitry Andric /// create a merged location incorporating \p DL, or to set \p DL directly. 10880b57cec5SDimitry Andric static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 10890b57cec5SDimitry Andric bool ApplyMergedLoc) { 10900b57cec5SDimitry Andric if (ApplyMergedLoc) 10910b57cec5SDimitry Andric PN->applyMergedLocation(PN->getDebugLoc(), DL); 10920b57cec5SDimitry Andric else 10930b57cec5SDimitry Andric PN->setDebugLoc(DL); 10940b57cec5SDimitry Andric } 10950b57cec5SDimitry Andric 10960b57cec5SDimitry Andric /// Recursively traverse the CFG of the function, renaming loads and 10970b57cec5SDimitry Andric /// stores to the allocas which we are promoting. 10980b57cec5SDimitry Andric /// 10990b57cec5SDimitry Andric /// IncomingVals indicates what value each Alloca contains on exit from the 11000b57cec5SDimitry Andric /// predecessor block Pred. 11010b57cec5SDimitry Andric void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 11020b57cec5SDimitry Andric RenamePassData::ValVector &IncomingVals, 11030b57cec5SDimitry Andric RenamePassData::LocationVector &IncomingLocs, 11040b57cec5SDimitry Andric std::vector<RenamePassData> &Worklist) { 11050b57cec5SDimitry Andric NextIteration: 11060b57cec5SDimitry Andric // If we are inserting any phi nodes into this BB, they will already be in the 11070b57cec5SDimitry Andric // block. 11080b57cec5SDimitry Andric if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 11090b57cec5SDimitry Andric // If we have PHI nodes to update, compute the number of edges from Pred to 11100b57cec5SDimitry Andric // BB. 11110b57cec5SDimitry Andric if (PhiToAllocaMap.count(APN)) { 11120b57cec5SDimitry Andric // We want to be able to distinguish between PHI nodes being inserted by 11130b57cec5SDimitry Andric // this invocation of mem2reg from those phi nodes that already existed in 11140b57cec5SDimitry Andric // the IR before mem2reg was run. We determine that APN is being inserted 11150b57cec5SDimitry Andric // because it is missing incoming edges. All other PHI nodes being 11160b57cec5SDimitry Andric // inserted by this pass of mem2reg will have the same number of incoming 11170b57cec5SDimitry Andric // operands so far. Remember this count. 11180b57cec5SDimitry Andric unsigned NewPHINumOperands = APN->getNumOperands(); 11190b57cec5SDimitry Andric 1120e8d8bef9SDimitry Andric unsigned NumEdges = llvm::count(successors(Pred), BB); 11210b57cec5SDimitry Andric assert(NumEdges && "Must be at least one edge from Pred to BB!"); 11220b57cec5SDimitry Andric 11230b57cec5SDimitry Andric // Add entries for all the phis. 11240b57cec5SDimitry Andric BasicBlock::iterator PNI = BB->begin(); 11250b57cec5SDimitry Andric do { 11260b57cec5SDimitry Andric unsigned AllocaNo = PhiToAllocaMap[APN]; 11270b57cec5SDimitry Andric 11280b57cec5SDimitry Andric // Update the location of the phi node. 11290b57cec5SDimitry Andric updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 11300b57cec5SDimitry Andric APN->getNumIncomingValues() > 0); 11310b57cec5SDimitry Andric 11320b57cec5SDimitry Andric // Add N incoming values to the PHI node. 11330b57cec5SDimitry Andric for (unsigned i = 0; i != NumEdges; ++i) 11340b57cec5SDimitry Andric APN->addIncoming(IncomingVals[AllocaNo], Pred); 11350b57cec5SDimitry Andric 1136*0fca6ea1SDimitry Andric // For the sequence `return X > 0.0 ? X : -X`, it is expected that this 1137*0fca6ea1SDimitry Andric // results in fabs intrinsic. However, without no-signed-zeros(nsz) flag 1138*0fca6ea1SDimitry Andric // on the phi node generated at this stage, fabs folding does not 1139*0fca6ea1SDimitry Andric // happen. So, we try to infer nsz flag from the function attributes to 1140*0fca6ea1SDimitry Andric // enable this fabs folding. 1141*0fca6ea1SDimitry Andric if (isa<FPMathOperator>(APN) && NoSignedZeros) 1142*0fca6ea1SDimitry Andric APN->setHasNoSignedZeros(true); 1143*0fca6ea1SDimitry Andric 11440b57cec5SDimitry Andric // The currently active variable for this block is now the PHI. 11450b57cec5SDimitry Andric IncomingVals[AllocaNo] = APN; 1146bdd1243dSDimitry Andric AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB); 11475f757f3fSDimitry Andric auto ConvertDbgDeclares = [&](auto &Container) { 11485f757f3fSDimitry Andric for (auto *DbgItem : Container) 11495f757f3fSDimitry Andric if (DbgItem->isAddressOfVariable()) 11505f757f3fSDimitry Andric ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB); 11515f757f3fSDimitry Andric }; 11525f757f3fSDimitry Andric ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]); 11535f757f3fSDimitry Andric ConvertDbgDeclares(AllocaDPUsers[AllocaNo]); 11540b57cec5SDimitry Andric 11550b57cec5SDimitry Andric // Get the next phi node. 11560b57cec5SDimitry Andric ++PNI; 11570b57cec5SDimitry Andric APN = dyn_cast<PHINode>(PNI); 11580b57cec5SDimitry Andric if (!APN) 11590b57cec5SDimitry Andric break; 11600b57cec5SDimitry Andric 11610b57cec5SDimitry Andric // Verify that it is missing entries. If not, it is not being inserted 11620b57cec5SDimitry Andric // by this mem2reg invocation so we want to ignore it. 11630b57cec5SDimitry Andric } while (APN->getNumOperands() == NewPHINumOperands); 11640b57cec5SDimitry Andric } 11650b57cec5SDimitry Andric } 11660b57cec5SDimitry Andric 11670b57cec5SDimitry Andric // Don't revisit blocks. 11680b57cec5SDimitry Andric if (!Visited.insert(BB).second) 11690b57cec5SDimitry Andric return; 11700b57cec5SDimitry Andric 11710b57cec5SDimitry Andric for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 11720b57cec5SDimitry Andric Instruction *I = &*II++; // get the instruction, increment iterator 11730b57cec5SDimitry Andric 11740b57cec5SDimitry Andric if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 11750b57cec5SDimitry Andric AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 11760b57cec5SDimitry Andric if (!Src) 11770b57cec5SDimitry Andric continue; 11780b57cec5SDimitry Andric 11790b57cec5SDimitry Andric DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 11800b57cec5SDimitry Andric if (AI == AllocaLookup.end()) 11810b57cec5SDimitry Andric continue; 11820b57cec5SDimitry Andric 11830b57cec5SDimitry Andric Value *V = IncomingVals[AI->second]; 1184bdd1243dSDimitry Andric convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT); 11850b57cec5SDimitry Andric 11860b57cec5SDimitry Andric // Anything using the load now uses the current value. 11870b57cec5SDimitry Andric LI->replaceAllUsesWith(V); 1188bdd1243dSDimitry Andric LI->eraseFromParent(); 11890b57cec5SDimitry Andric } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 11900b57cec5SDimitry Andric // Delete this instruction and mark the name as the current holder of the 11910b57cec5SDimitry Andric // value 11920b57cec5SDimitry Andric AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 11930b57cec5SDimitry Andric if (!Dest) 11940b57cec5SDimitry Andric continue; 11950b57cec5SDimitry Andric 11960b57cec5SDimitry Andric DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 11970b57cec5SDimitry Andric if (ai == AllocaLookup.end()) 11980b57cec5SDimitry Andric continue; 11990b57cec5SDimitry Andric 12000b57cec5SDimitry Andric // what value were we writing? 12010b57cec5SDimitry Andric unsigned AllocaNo = ai->second; 12020b57cec5SDimitry Andric IncomingVals[AllocaNo] = SI->getOperand(0); 12030b57cec5SDimitry Andric 12040b57cec5SDimitry Andric // Record debuginfo for the store before removing it. 12050b57cec5SDimitry Andric IncomingLocs[AllocaNo] = SI->getDebugLoc(); 12067a6dacacSDimitry Andric AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete, 1207*0fca6ea1SDimitry Andric &DVRAssignsToDelete); 12085f757f3fSDimitry Andric auto ConvertDbgDeclares = [&](auto &Container) { 12095f757f3fSDimitry Andric for (auto *DbgItem : Container) 12105f757f3fSDimitry Andric if (DbgItem->isAddressOfVariable()) 12115f757f3fSDimitry Andric ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 12125f757f3fSDimitry Andric }; 12135f757f3fSDimitry Andric ConvertDbgDeclares(AllocaDbgUsers[ai->second]); 12145f757f3fSDimitry Andric ConvertDbgDeclares(AllocaDPUsers[ai->second]); 1215bdd1243dSDimitry Andric SI->eraseFromParent(); 12160b57cec5SDimitry Andric } 12170b57cec5SDimitry Andric } 12180b57cec5SDimitry Andric 12190b57cec5SDimitry Andric // 'Recurse' to our successors. 12200b57cec5SDimitry Andric succ_iterator I = succ_begin(BB), E = succ_end(BB); 12210b57cec5SDimitry Andric if (I == E) 12220b57cec5SDimitry Andric return; 12230b57cec5SDimitry Andric 12240b57cec5SDimitry Andric // Keep track of the successors so we don't visit the same successor twice 12250b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 12260b57cec5SDimitry Andric 12270b57cec5SDimitry Andric // Handle the first successor without using the worklist. 12280b57cec5SDimitry Andric VisitedSuccs.insert(*I); 12290b57cec5SDimitry Andric Pred = BB; 12300b57cec5SDimitry Andric BB = *I; 12310b57cec5SDimitry Andric ++I; 12320b57cec5SDimitry Andric 12330b57cec5SDimitry Andric for (; I != E; ++I) 12340b57cec5SDimitry Andric if (VisitedSuccs.insert(*I).second) 12350b57cec5SDimitry Andric Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 12360b57cec5SDimitry Andric 12370b57cec5SDimitry Andric goto NextIteration; 12380b57cec5SDimitry Andric } 12390b57cec5SDimitry Andric 12400b57cec5SDimitry Andric void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 12410b57cec5SDimitry Andric AssumptionCache *AC) { 12420b57cec5SDimitry Andric // If there is nothing to do, bail out... 12430b57cec5SDimitry Andric if (Allocas.empty()) 12440b57cec5SDimitry Andric return; 12450b57cec5SDimitry Andric 12460b57cec5SDimitry Andric PromoteMem2Reg(Allocas, DT, AC).run(); 12470b57cec5SDimitry Andric } 1248