1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/IR/AssemblyAnnotationWriter.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/FormattedStream.h" 36 #include "llvm/Transforms/Utils.h" 37 #include <algorithm> 38 #define DEBUG_TYPE "predicateinfo" 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 43 "PredicateInfo Printer", false, false) 44 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 45 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 46 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 47 "PredicateInfo Printer", false, false) 48 static cl::opt<bool> VerifyPredicateInfo( 49 "verify-predicateinfo", cl::init(false), cl::Hidden, 50 cl::desc("Verify PredicateInfo in legacy printer pass.")); 51 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 52 "Controls which variables are renamed with predicateinfo"); 53 54 // Maximum number of conditions considered for renaming for each branch/assume. 55 // This limits renaming of deep and/or chains. 56 static const unsigned MaxCondsPerBranch = 8; 57 58 namespace { 59 // Given a predicate info that is a type of branching terminator, get the 60 // branching block. 61 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 62 assert(isa<PredicateWithEdge>(PB) && 63 "Only branches and switches should have PHIOnly defs that " 64 "require branch blocks."); 65 return cast<PredicateWithEdge>(PB)->From; 66 } 67 68 // Given a predicate info that is a type of branching terminator, get the 69 // branching terminator. 70 static Instruction *getBranchTerminator(const PredicateBase *PB) { 71 assert(isa<PredicateWithEdge>(PB) && 72 "Not a predicate info type we know how to get a terminator from."); 73 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 74 } 75 76 // Given a predicate info that is a type of branching terminator, get the 77 // edge this predicate info represents 78 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) { 79 assert(isa<PredicateWithEdge>(PB) && 80 "Not a predicate info type we know how to get an edge from."); 81 const auto *PEdge = cast<PredicateWithEdge>(PB); 82 return std::make_pair(PEdge->From, PEdge->To); 83 } 84 } 85 86 namespace llvm { 87 enum LocalNum { 88 // Operations that must appear first in the block. 89 LN_First, 90 // Operations that are somewhere in the middle of the block, and are sorted on 91 // demand. 92 LN_Middle, 93 // Operations that must appear last in a block, like successor phi node uses. 94 LN_Last 95 }; 96 97 // Associate global and local DFS info with defs and uses, so we can sort them 98 // into a global domination ordering. 99 struct ValueDFS { 100 int DFSIn = 0; 101 int DFSOut = 0; 102 unsigned int LocalNum = LN_Middle; 103 // Only one of Def or Use will be set. 104 Value *Def = nullptr; 105 Use *U = nullptr; 106 // Neither PInfo nor EdgeOnly participate in the ordering 107 PredicateBase *PInfo = nullptr; 108 bool EdgeOnly = false; 109 }; 110 111 // Perform a strict weak ordering on instructions and arguments. 112 static bool valueComesBefore(const Value *A, const Value *B) { 113 auto *ArgA = dyn_cast_or_null<Argument>(A); 114 auto *ArgB = dyn_cast_or_null<Argument>(B); 115 if (ArgA && !ArgB) 116 return true; 117 if (ArgB && !ArgA) 118 return false; 119 if (ArgA && ArgB) 120 return ArgA->getArgNo() < ArgB->getArgNo(); 121 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B)); 122 } 123 124 // This compares ValueDFS structures. Doing so allows us to walk the minimum 125 // number of instructions necessary to compute our def/use ordering. 126 struct ValueDFS_Compare { 127 DominatorTree &DT; 128 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {} 129 130 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 131 if (&A == &B) 132 return false; 133 // The only case we can't directly compare them is when they in the same 134 // block, and both have localnum == middle. In that case, we have to use 135 // comesbefore to see what the real ordering is, because they are in the 136 // same basic block. 137 138 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 139 "Equal DFS-in numbers imply equal out numbers"); 140 bool SameBlock = A.DFSIn == B.DFSIn; 141 142 // We want to put the def that will get used for a given set of phi uses, 143 // before those phi uses. 144 // So we sort by edge, then by def. 145 // Note that only phi nodes uses and defs can come last. 146 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 147 return comparePHIRelated(A, B); 148 149 bool isADef = A.Def; 150 bool isBDef = B.Def; 151 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 152 return std::tie(A.DFSIn, A.LocalNum, isADef) < 153 std::tie(B.DFSIn, B.LocalNum, isBDef); 154 return localComesBefore(A, B); 155 } 156 157 // For a phi use, or a non-materialized def, return the edge it represents. 158 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const { 159 if (!VD.Def && VD.U) { 160 auto *PHI = cast<PHINode>(VD.U->getUser()); 161 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 162 } 163 // This is really a non-materialized def. 164 return ::getBlockEdge(VD.PInfo); 165 } 166 167 // For two phi related values, return the ordering. 168 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 169 BasicBlock *ASrc, *ADest, *BSrc, *BDest; 170 std::tie(ASrc, ADest) = getBlockEdge(A); 171 std::tie(BSrc, BDest) = getBlockEdge(B); 172 173 #ifndef NDEBUG 174 // This function should only be used for values in the same BB, check that. 175 DomTreeNode *DomASrc = DT.getNode(ASrc); 176 DomTreeNode *DomBSrc = DT.getNode(BSrc); 177 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 178 "DFS numbers for A should match the ones of the source block"); 179 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 180 "DFS numbers for B should match the ones of the source block"); 181 assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 182 #endif 183 (void)ASrc; 184 (void)BSrc; 185 186 // Use DFS numbers to compare destination blocks, to guarantee a 187 // deterministic order. 188 DomTreeNode *DomADest = DT.getNode(ADest); 189 DomTreeNode *DomBDest = DT.getNode(BDest); 190 unsigned AIn = DomADest->getDFSNumIn(); 191 unsigned BIn = DomBDest->getDFSNumIn(); 192 bool isADef = A.Def; 193 bool isBDef = B.Def; 194 assert((!A.Def || !A.U) && (!B.Def || !B.U) && 195 "Def and U cannot be set at the same time"); 196 // Now sort by edge destination and then defs before uses. 197 return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 198 } 199 200 // Get the definition of an instruction that occurs in the middle of a block. 201 Value *getMiddleDef(const ValueDFS &VD) const { 202 if (VD.Def) 203 return VD.Def; 204 // It's possible for the defs and uses to be null. For branches, the local 205 // numbering will say the placed predicaeinfos should go first (IE 206 // LN_beginning), so we won't be in this function. For assumes, we will end 207 // up here, beause we need to order the def we will place relative to the 208 // assume. So for the purpose of ordering, we pretend the def is right 209 // after the assume, because that is where we will insert the info. 210 if (!VD.U) { 211 assert(VD.PInfo && 212 "No def, no use, and no predicateinfo should not occur"); 213 assert(isa<PredicateAssume>(VD.PInfo) && 214 "Middle of block should only occur for assumes"); 215 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode(); 216 } 217 return nullptr; 218 } 219 220 // Return either the Def, if it's not null, or the user of the Use, if the def 221 // is null. 222 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 223 if (Def) 224 return cast<Instruction>(Def); 225 return cast<Instruction>(U->getUser()); 226 } 227 228 // This performs the necessary local basic block ordering checks to tell 229 // whether A comes before B, where both are in the same basic block. 230 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 231 auto *ADef = getMiddleDef(A); 232 auto *BDef = getMiddleDef(B); 233 234 // See if we have real values or uses. If we have real values, we are 235 // guaranteed they are instructions or arguments. No matter what, we are 236 // guaranteed they are in the same block if they are instructions. 237 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 238 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 239 240 if (ArgA || ArgB) 241 return valueComesBefore(ArgA, ArgB); 242 243 auto *AInst = getDefOrUser(ADef, A.U); 244 auto *BInst = getDefOrUser(BDef, B.U); 245 return valueComesBefore(AInst, BInst); 246 } 247 }; 248 249 class PredicateInfoBuilder { 250 // Used to store information about each value we might rename. 251 struct ValueInfo { 252 SmallVector<PredicateBase *, 4> Infos; 253 }; 254 255 PredicateInfo &PI; 256 Function &F; 257 DominatorTree &DT; 258 AssumptionCache &AC; 259 260 // This stores info about each operand or comparison result we make copies 261 // of. The real ValueInfos start at index 1, index 0 is unused so that we 262 // can more easily detect invalid indexing. 263 SmallVector<ValueInfo, 32> ValueInfos; 264 265 // This gives the index into the ValueInfos array for a given Value. Because 266 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell 267 // whether it returned a valid result. 268 DenseMap<Value *, unsigned int> ValueInfoNums; 269 270 // The set of edges along which we can only handle phi uses, due to critical 271 // edges. 272 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly; 273 274 ValueInfo &getOrCreateValueInfo(Value *); 275 const ValueInfo &getValueInfo(Value *) const; 276 277 void processAssume(IntrinsicInst *, BasicBlock *, 278 SmallVectorImpl<Value *> &OpsToRename); 279 void processBranch(BranchInst *, BasicBlock *, 280 SmallVectorImpl<Value *> &OpsToRename); 281 void processSwitch(SwitchInst *, BasicBlock *, 282 SmallVectorImpl<Value *> &OpsToRename); 283 void renameUses(SmallVectorImpl<Value *> &OpsToRename); 284 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 285 PredicateBase *PB); 286 287 typedef SmallVectorImpl<ValueDFS> ValueDFSStack; 288 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &); 289 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *); 290 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const; 291 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &); 292 293 public: 294 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, 295 AssumptionCache &AC) 296 : PI(PI), F(F), DT(DT), AC(AC) { 297 // Push an empty operand info so that we can detect 0 as not finding one 298 ValueInfos.resize(1); 299 } 300 301 void buildPredicateInfo(); 302 }; 303 304 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack, 305 const ValueDFS &VDUse) const { 306 if (Stack.empty()) 307 return false; 308 // If it's a phi only use, make sure it's for this phi node edge, and that the 309 // use is in a phi node. If it's anything else, and the top of the stack is 310 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 311 // the defs they must go with so that we can know it's time to pop the stack 312 // when we hit the end of the phi uses for a given def. 313 if (Stack.back().EdgeOnly) { 314 if (!VDUse.U) 315 return false; 316 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 317 if (!PHI) 318 return false; 319 // Check edge 320 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 321 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 322 return false; 323 324 // Use dominates, which knows how to handle edge dominance. 325 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 326 } 327 328 return (VDUse.DFSIn >= Stack.back().DFSIn && 329 VDUse.DFSOut <= Stack.back().DFSOut); 330 } 331 332 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack, 333 const ValueDFS &VD) { 334 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 335 Stack.pop_back(); 336 } 337 338 // Convert the uses of Op into a vector of uses, associating global and local 339 // DFS info with each one. 340 void PredicateInfoBuilder::convertUsesToDFSOrdered( 341 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 342 for (auto &U : Op->uses()) { 343 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 344 ValueDFS VD; 345 // Put the phi node uses in the incoming block. 346 BasicBlock *IBlock; 347 if (auto *PN = dyn_cast<PHINode>(I)) { 348 IBlock = PN->getIncomingBlock(U); 349 // Make phi node users appear last in the incoming block 350 // they are from. 351 VD.LocalNum = LN_Last; 352 } else { 353 // If it's not a phi node use, it is somewhere in the middle of the 354 // block. 355 IBlock = I->getParent(); 356 VD.LocalNum = LN_Middle; 357 } 358 DomTreeNode *DomNode = DT.getNode(IBlock); 359 // It's possible our use is in an unreachable block. Skip it if so. 360 if (!DomNode) 361 continue; 362 VD.DFSIn = DomNode->getDFSNumIn(); 363 VD.DFSOut = DomNode->getDFSNumOut(); 364 VD.U = &U; 365 DFSOrderedSet.push_back(VD); 366 } 367 } 368 } 369 370 bool shouldRename(Value *V) { 371 // Only want real values, not constants. Additionally, operands with one use 372 // are only being used in the comparison, which means they will not be useful 373 // for us to consider for predicateinfo. 374 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse(); 375 } 376 377 // Collect relevant operations from Comparison that we may want to insert copies 378 // for. 379 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 380 auto *Op0 = Comparison->getOperand(0); 381 auto *Op1 = Comparison->getOperand(1); 382 if (Op0 == Op1) 383 return; 384 385 CmpOperands.push_back(Op0); 386 CmpOperands.push_back(Op1); 387 } 388 389 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 390 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, 391 Value *Op, PredicateBase *PB) { 392 auto &OperandInfo = getOrCreateValueInfo(Op); 393 if (OperandInfo.Infos.empty()) 394 OpsToRename.push_back(Op); 395 PI.AllInfos.push_back(PB); 396 OperandInfo.Infos.push_back(PB); 397 } 398 399 // Process an assume instruction and place relevant operations we want to rename 400 // into OpsToRename. 401 void PredicateInfoBuilder::processAssume( 402 IntrinsicInst *II, BasicBlock *AssumeBB, 403 SmallVectorImpl<Value *> &OpsToRename) { 404 SmallVector<Value *, 4> Worklist; 405 SmallPtrSet<Value *, 4> Visited; 406 Worklist.push_back(II->getOperand(0)); 407 while (!Worklist.empty()) { 408 Value *Cond = Worklist.pop_back_val(); 409 if (!Visited.insert(Cond).second) 410 continue; 411 if (Visited.size() > MaxCondsPerBranch) 412 break; 413 414 Value *Op0, *Op1; 415 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 416 Worklist.push_back(Op1); 417 Worklist.push_back(Op0); 418 } 419 420 SmallVector<Value *, 4> Values; 421 Values.push_back(Cond); 422 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) 423 collectCmpOps(Cmp, Values); 424 425 for (Value *V : Values) { 426 if (shouldRename(V)) { 427 auto *PA = new PredicateAssume(V, II, Cond); 428 addInfoFor(OpsToRename, V, PA); 429 } 430 } 431 } 432 } 433 434 // Process a block terminating branch, and place relevant operations to be 435 // renamed into OpsToRename. 436 void PredicateInfoBuilder::processBranch( 437 BranchInst *BI, BasicBlock *BranchBB, 438 SmallVectorImpl<Value *> &OpsToRename) { 439 BasicBlock *FirstBB = BI->getSuccessor(0); 440 BasicBlock *SecondBB = BI->getSuccessor(1); 441 442 for (BasicBlock *Succ : {FirstBB, SecondBB}) { 443 bool TakenEdge = Succ == FirstBB; 444 // Don't try to insert on a self-edge. This is mainly because we will 445 // eliminate during renaming anyway. 446 if (Succ == BranchBB) 447 continue; 448 449 SmallVector<Value *, 4> Worklist; 450 SmallPtrSet<Value *, 4> Visited; 451 Worklist.push_back(BI->getCondition()); 452 while (!Worklist.empty()) { 453 Value *Cond = Worklist.pop_back_val(); 454 if (!Visited.insert(Cond).second) 455 continue; 456 if (Visited.size() > MaxCondsPerBranch) 457 break; 458 459 Value *Op0, *Op1; 460 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) 461 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 462 Worklist.push_back(Op1); 463 Worklist.push_back(Op0); 464 } 465 466 SmallVector<Value *, 4> Values; 467 Values.push_back(Cond); 468 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) 469 collectCmpOps(Cmp, Values); 470 471 for (Value *V : Values) { 472 if (shouldRename(V)) { 473 PredicateBase *PB = 474 new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge); 475 addInfoFor(OpsToRename, V, PB); 476 if (!Succ->getSinglePredecessor()) 477 EdgeUsesOnly.insert({BranchBB, Succ}); 478 } 479 } 480 } 481 } 482 } 483 // Process a block terminating switch, and place relevant operations to be 484 // renamed into OpsToRename. 485 void PredicateInfoBuilder::processSwitch( 486 SwitchInst *SI, BasicBlock *BranchBB, 487 SmallVectorImpl<Value *> &OpsToRename) { 488 Value *Op = SI->getCondition(); 489 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 490 return; 491 492 // Remember how many outgoing edges there are to every successor. 493 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 494 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 495 BasicBlock *TargetBlock = SI->getSuccessor(i); 496 ++SwitchEdges[TargetBlock]; 497 } 498 499 // Now propagate info for each case value 500 for (auto C : SI->cases()) { 501 BasicBlock *TargetBlock = C.getCaseSuccessor(); 502 if (SwitchEdges.lookup(TargetBlock) == 1) { 503 PredicateSwitch *PS = new PredicateSwitch( 504 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 505 addInfoFor(OpsToRename, Op, PS); 506 if (!TargetBlock->getSinglePredecessor()) 507 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 508 } 509 } 510 } 511 512 // Build predicate info for our function 513 void PredicateInfoBuilder::buildPredicateInfo() { 514 DT.updateDFSNumbers(); 515 // Collect operands to rename from all conditional branch terminators, as well 516 // as assume statements. 517 SmallVector<Value *, 8> OpsToRename; 518 for (auto DTN : depth_first(DT.getRootNode())) { 519 BasicBlock *BranchBB = DTN->getBlock(); 520 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 521 if (!BI->isConditional()) 522 continue; 523 // Can't insert conditional information if they all go to the same place. 524 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 525 continue; 526 processBranch(BI, BranchBB, OpsToRename); 527 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 528 processSwitch(SI, BranchBB, OpsToRename); 529 } 530 } 531 for (auto &Assume : AC.assumptions()) { 532 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 533 if (DT.isReachableFromEntry(II->getParent())) 534 processAssume(II, II->getParent(), OpsToRename); 535 } 536 // Now rename all our operations. 537 renameUses(OpsToRename); 538 } 539 540 // Given the renaming stack, make all the operands currently on the stack real 541 // by inserting them into the IR. Return the last operation's value. 542 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter, 543 ValueDFSStack &RenameStack, 544 Value *OrigOp) { 545 // Find the first thing we have to materialize 546 auto RevIter = RenameStack.rbegin(); 547 for (; RevIter != RenameStack.rend(); ++RevIter) 548 if (RevIter->Def) 549 break; 550 551 size_t Start = RevIter - RenameStack.rbegin(); 552 // The maximum number of things we should be trying to materialize at once 553 // right now is 4, depending on if we had an assume, a branch, and both used 554 // and of conditions. 555 for (auto RenameIter = RenameStack.end() - Start; 556 RenameIter != RenameStack.end(); ++RenameIter) { 557 auto *Op = 558 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 559 ValueDFS &Result = *RenameIter; 560 auto *ValInfo = Result.PInfo; 561 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin() 562 ? OrigOp 563 : (RenameStack.end() - Start - 1)->Def; 564 // For edge predicates, we can just place the operand in the block before 565 // the terminator. For assume, we have to place it right before the assume 566 // to ensure we dominate all of our uses. Always insert right before the 567 // relevant instruction (terminator, assume), so that we insert in proper 568 // order in the case of multiple predicateinfo in the same block. 569 if (isa<PredicateWithEdge>(ValInfo)) { 570 IRBuilder<> B(getBranchTerminator(ValInfo)); 571 Function *IF = Intrinsic::getDeclaration( 572 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 573 CallInst *PIC = 574 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 575 PI.PredicateMap.insert({PIC, ValInfo}); 576 Result.Def = PIC; 577 } else { 578 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 579 assert(PAssume && 580 "Should not have gotten here without it being an assume"); 581 // Insert the predicate directly after the assume. While it also holds 582 // directly before it, assume(i1 true) is not a useful fact. 583 IRBuilder<> B(PAssume->AssumeInst->getNextNode()); 584 Function *IF = Intrinsic::getDeclaration( 585 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 586 CallInst *PIC = B.CreateCall(IF, Op); 587 PI.PredicateMap.insert({PIC, ValInfo}); 588 Result.Def = PIC; 589 } 590 } 591 return RenameStack.back().Def; 592 } 593 594 // Instead of the standard SSA renaming algorithm, which is O(Number of 595 // instructions), and walks the entire dominator tree, we walk only the defs + 596 // uses. The standard SSA renaming algorithm does not really rely on the 597 // dominator tree except to order the stack push/pops of the renaming stacks, so 598 // that defs end up getting pushed before hitting the correct uses. This does 599 // not require the dominator tree, only the *order* of the dominator tree. The 600 // complete and correct ordering of the defs and uses, in dominator tree is 601 // contained in the DFS numbering of the dominator tree. So we sort the defs and 602 // uses into the DFS ordering, and then just use the renaming stack as per 603 // normal, pushing when we hit a def (which is a predicateinfo instruction), 604 // popping when we are out of the dfs scope for that def, and replacing any uses 605 // with top of stack if it exists. In order to handle liveness without 606 // propagating liveness info, we don't actually insert the predicateinfo 607 // instruction def until we see a use that it would dominate. Once we see such 608 // a use, we materialize the predicateinfo instruction in the right place and 609 // use it. 610 // 611 // TODO: Use this algorithm to perform fast single-variable renaming in 612 // promotememtoreg and memoryssa. 613 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 614 ValueDFS_Compare Compare(DT); 615 // Compute liveness, and rename in O(uses) per Op. 616 for (auto *Op : OpsToRename) { 617 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 618 unsigned Counter = 0; 619 SmallVector<ValueDFS, 16> OrderedUses; 620 const auto &ValueInfo = getValueInfo(Op); 621 // Insert the possible copies into the def/use list. 622 // They will become real copies if we find a real use for them, and never 623 // created otherwise. 624 for (auto &PossibleCopy : ValueInfo.Infos) { 625 ValueDFS VD; 626 // Determine where we are going to place the copy by the copy type. 627 // The predicate info for branches always come first, they will get 628 // materialized in the split block at the top of the block. 629 // The predicate info for assumes will be somewhere in the middle, 630 // it will get materialized in front of the assume. 631 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 632 VD.LocalNum = LN_Middle; 633 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 634 if (!DomNode) 635 continue; 636 VD.DFSIn = DomNode->getDFSNumIn(); 637 VD.DFSOut = DomNode->getDFSNumOut(); 638 VD.PInfo = PossibleCopy; 639 OrderedUses.push_back(VD); 640 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 641 // If we can only do phi uses, we treat it like it's in the branch 642 // block, and handle it specially. We know that it goes last, and only 643 // dominate phi uses. 644 auto BlockEdge = getBlockEdge(PossibleCopy); 645 if (EdgeUsesOnly.count(BlockEdge)) { 646 VD.LocalNum = LN_Last; 647 auto *DomNode = DT.getNode(BlockEdge.first); 648 if (DomNode) { 649 VD.DFSIn = DomNode->getDFSNumIn(); 650 VD.DFSOut = DomNode->getDFSNumOut(); 651 VD.PInfo = PossibleCopy; 652 VD.EdgeOnly = true; 653 OrderedUses.push_back(VD); 654 } 655 } else { 656 // Otherwise, we are in the split block (even though we perform 657 // insertion in the branch block). 658 // Insert a possible copy at the split block and before the branch. 659 VD.LocalNum = LN_First; 660 auto *DomNode = DT.getNode(BlockEdge.second); 661 if (DomNode) { 662 VD.DFSIn = DomNode->getDFSNumIn(); 663 VD.DFSOut = DomNode->getDFSNumOut(); 664 VD.PInfo = PossibleCopy; 665 OrderedUses.push_back(VD); 666 } 667 } 668 } 669 } 670 671 convertUsesToDFSOrdered(Op, OrderedUses); 672 // Here we require a stable sort because we do not bother to try to 673 // assign an order to the operands the uses represent. Thus, two 674 // uses in the same instruction do not have a strict sort order 675 // currently and will be considered equal. We could get rid of the 676 // stable sort by creating one if we wanted. 677 llvm::stable_sort(OrderedUses, Compare); 678 SmallVector<ValueDFS, 8> RenameStack; 679 // For each use, sorted into dfs order, push values and replaces uses with 680 // top of stack, which will represent the reaching def. 681 for (auto &VD : OrderedUses) { 682 // We currently do not materialize copy over copy, but we should decide if 683 // we want to. 684 bool PossibleCopy = VD.PInfo != nullptr; 685 if (RenameStack.empty()) { 686 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 687 } else { 688 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 689 << RenameStack.back().DFSIn << "," 690 << RenameStack.back().DFSOut << ")\n"); 691 } 692 693 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 694 << VD.DFSOut << ")\n"); 695 696 bool ShouldPush = (VD.Def || PossibleCopy); 697 bool OutOfScope = !stackIsInScope(RenameStack, VD); 698 if (OutOfScope || ShouldPush) { 699 // Sync to our current scope. 700 popStackUntilDFSScope(RenameStack, VD); 701 if (ShouldPush) { 702 RenameStack.push_back(VD); 703 } 704 } 705 // If we get to this point, and the stack is empty we must have a use 706 // with no renaming needed, just skip it. 707 if (RenameStack.empty()) 708 continue; 709 // Skip values, only want to rename the uses 710 if (VD.Def || PossibleCopy) 711 continue; 712 if (!DebugCounter::shouldExecute(RenameCounter)) { 713 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 714 continue; 715 } 716 ValueDFS &Result = RenameStack.back(); 717 718 // If the possible copy dominates something, materialize our stack up to 719 // this point. This ensures every comparison that affects our operation 720 // ends up with predicateinfo. 721 if (!Result.Def) 722 Result.Def = materializeStack(Counter, RenameStack, Op); 723 724 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 725 << *VD.U->get() << " in " << *(VD.U->getUser()) 726 << "\n"); 727 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 728 "Predicateinfo def should have dominated this use"); 729 VD.U->set(Result.Def); 730 } 731 } 732 } 733 734 PredicateInfoBuilder::ValueInfo & 735 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) { 736 auto OIN = ValueInfoNums.find(Operand); 737 if (OIN == ValueInfoNums.end()) { 738 // This will grow it 739 ValueInfos.resize(ValueInfos.size() + 1); 740 // This will use the new size and give us a 0 based number of the info 741 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 742 assert(InsertResult.second && "Value info number already existed?"); 743 return ValueInfos[InsertResult.first->second]; 744 } 745 return ValueInfos[OIN->second]; 746 } 747 748 const PredicateInfoBuilder::ValueInfo & 749 PredicateInfoBuilder::getValueInfo(Value *Operand) const { 750 auto OINI = ValueInfoNums.lookup(Operand); 751 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 752 assert(OINI < ValueInfos.size() && 753 "Value Info Number greater than size of Value Info Table"); 754 return ValueInfos[OINI]; 755 } 756 757 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 758 AssumptionCache &AC) 759 : F(F) { 760 PredicateInfoBuilder Builder(*this, F, DT, AC); 761 Builder.buildPredicateInfo(); 762 } 763 764 Optional<PredicateConstraint> PredicateBase::getConstraint() const { 765 switch (Type) { 766 case PT_Assume: 767 case PT_Branch: { 768 bool TrueEdge = true; 769 if (auto *PBranch = dyn_cast<PredicateBranch>(this)) 770 TrueEdge = PBranch->TrueEdge; 771 772 if (Condition == RenamedOp) { 773 return {{CmpInst::ICMP_EQ, 774 TrueEdge ? ConstantInt::getTrue(Condition->getType()) 775 : ConstantInt::getFalse(Condition->getType())}}; 776 } 777 778 CmpInst *Cmp = dyn_cast<CmpInst>(Condition); 779 if (!Cmp) { 780 // TODO: Make this an assertion once RenamedOp is fully accurate. 781 return None; 782 } 783 784 CmpInst::Predicate Pred; 785 Value *OtherOp; 786 if (Cmp->getOperand(0) == RenamedOp) { 787 Pred = Cmp->getPredicate(); 788 OtherOp = Cmp->getOperand(1); 789 } else if (Cmp->getOperand(1) == RenamedOp) { 790 Pred = Cmp->getSwappedPredicate(); 791 OtherOp = Cmp->getOperand(0); 792 } else { 793 // TODO: Make this an assertion once RenamedOp is fully accurate. 794 return None; 795 } 796 797 // Invert predicate along false edge. 798 if (!TrueEdge) 799 Pred = CmpInst::getInversePredicate(Pred); 800 801 return {{Pred, OtherOp}}; 802 } 803 case PT_Switch: 804 if (Condition != RenamedOp) { 805 // TODO: Make this an assertion once RenamedOp is fully accurate. 806 return None; 807 } 808 809 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}}; 810 } 811 llvm_unreachable("Unknown predicate type"); 812 } 813 814 void PredicateInfo::verifyPredicateInfo() const {} 815 816 char PredicateInfoPrinterLegacyPass::ID = 0; 817 818 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 819 : FunctionPass(ID) { 820 initializePredicateInfoPrinterLegacyPassPass( 821 *PassRegistry::getPassRegistry()); 822 } 823 824 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 825 AU.setPreservesAll(); 826 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 827 AU.addRequired<AssumptionCacheTracker>(); 828 } 829 830 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 831 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 832 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 833 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 834 PredInfo->print(dbgs()); 835 if (VerifyPredicateInfo) 836 PredInfo->verifyPredicateInfo(); 837 return false; 838 } 839 840 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 841 FunctionAnalysisManager &AM) { 842 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 843 auto &AC = AM.getResult<AssumptionAnalysis>(F); 844 OS << "PredicateInfo for function: " << F.getName() << "\n"; 845 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 846 PredInfo->print(OS); 847 848 return PreservedAnalyses::all(); 849 } 850 851 /// An assembly annotator class to print PredicateInfo information in 852 /// comments. 853 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 854 friend class PredicateInfo; 855 const PredicateInfo *PredInfo; 856 857 public: 858 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 859 860 void emitBasicBlockStartAnnot(const BasicBlock *BB, 861 formatted_raw_ostream &OS) override {} 862 863 void emitInstructionAnnot(const Instruction *I, 864 formatted_raw_ostream &OS) override { 865 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 866 OS << "; Has predicate info\n"; 867 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 868 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 869 << " Comparison:" << *PB->Condition << " Edge: ["; 870 PB->From->printAsOperand(OS); 871 OS << ","; 872 PB->To->printAsOperand(OS); 873 OS << "]"; 874 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 875 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 876 << " Switch:" << *PS->Switch << " Edge: ["; 877 PS->From->printAsOperand(OS); 878 OS << ","; 879 PS->To->printAsOperand(OS); 880 OS << "]"; 881 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 882 OS << "; assume predicate info {" 883 << " Comparison:" << *PA->Condition; 884 } 885 OS << ", RenamedOp: "; 886 PI->RenamedOp->printAsOperand(OS, false); 887 OS << " }\n"; 888 } 889 } 890 }; 891 892 void PredicateInfo::print(raw_ostream &OS) const { 893 PredicateInfoAnnotatedWriter Writer(this); 894 F.print(OS, &Writer); 895 } 896 897 void PredicateInfo::dump() const { 898 PredicateInfoAnnotatedWriter Writer(this); 899 F.print(dbgs(), &Writer); 900 } 901 902 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 903 FunctionAnalysisManager &AM) { 904 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 905 auto &AC = AM.getResult<AssumptionAnalysis>(F); 906 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 907 908 return PreservedAnalyses::all(); 909 } 910 } 911