1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/PriorityWorklist.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DomTreeUpdater.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/InstSimplifyFolder.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ProfDataUtils.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 49 using namespace llvm; 50 using namespace llvm::PatternMatch; 51 52 #define DEBUG_TYPE "loop-utils" 53 54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 56 57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 58 MemorySSAUpdater *MSSAU, 59 bool PreserveLCSSA) { 60 bool Changed = false; 61 62 // We re-use a vector for the in-loop predecesosrs. 63 SmallVector<BasicBlock *, 4> InLoopPredecessors; 64 65 auto RewriteExit = [&](BasicBlock *BB) { 66 assert(InLoopPredecessors.empty() && 67 "Must start with an empty predecessors list!"); 68 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 69 70 // See if there are any non-loop predecessors of this exit block and 71 // keep track of the in-loop predecessors. 72 bool IsDedicatedExit = true; 73 for (auto *PredBB : predecessors(BB)) 74 if (L->contains(PredBB)) { 75 if (isa<IndirectBrInst>(PredBB->getTerminator())) 76 // We cannot rewrite exiting edges from an indirectbr. 77 return false; 78 79 InLoopPredecessors.push_back(PredBB); 80 } else { 81 IsDedicatedExit = false; 82 } 83 84 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 85 86 // Nothing to do if this is already a dedicated exit. 87 if (IsDedicatedExit) 88 return false; 89 90 auto *NewExitBB = SplitBlockPredecessors( 91 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 92 93 if (!NewExitBB) 94 LLVM_DEBUG( 95 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 96 << *L << "\n"); 97 else 98 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 99 << NewExitBB->getName() << "\n"); 100 return true; 101 }; 102 103 // Walk the exit blocks directly rather than building up a data structure for 104 // them, but only visit each one once. 105 SmallPtrSet<BasicBlock *, 4> Visited; 106 for (auto *BB : L->blocks()) 107 for (auto *SuccBB : successors(BB)) { 108 // We're looking for exit blocks so skip in-loop successors. 109 if (L->contains(SuccBB)) 110 continue; 111 112 // Visit each exit block exactly once. 113 if (!Visited.insert(SuccBB).second) 114 continue; 115 116 Changed |= RewriteExit(SuccBB); 117 } 118 119 return Changed; 120 } 121 122 /// Returns the instructions that use values defined in the loop. 123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 124 SmallVector<Instruction *, 8> UsedOutside; 125 126 for (auto *Block : L->getBlocks()) 127 // FIXME: I believe that this could use copy_if if the Inst reference could 128 // be adapted into a pointer. 129 for (auto &Inst : *Block) { 130 auto Users = Inst.users(); 131 if (any_of(Users, [&](User *U) { 132 auto *Use = cast<Instruction>(U); 133 return !L->contains(Use->getParent()); 134 })) 135 UsedOutside.push_back(&Inst); 136 } 137 138 return UsedOutside; 139 } 140 141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 142 // By definition, all loop passes need the LoopInfo analysis and the 143 // Dominator tree it depends on. Because they all participate in the loop 144 // pass manager, they must also preserve these. 145 AU.addRequired<DominatorTreeWrapperPass>(); 146 AU.addPreserved<DominatorTreeWrapperPass>(); 147 AU.addRequired<LoopInfoWrapperPass>(); 148 AU.addPreserved<LoopInfoWrapperPass>(); 149 150 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 151 // here because users shouldn't directly get them from this header. 152 extern char &LoopSimplifyID; 153 extern char &LCSSAID; 154 AU.addRequiredID(LoopSimplifyID); 155 AU.addPreservedID(LoopSimplifyID); 156 AU.addRequiredID(LCSSAID); 157 AU.addPreservedID(LCSSAID); 158 // This is used in the LPPassManager to perform LCSSA verification on passes 159 // which preserve lcssa form 160 AU.addRequired<LCSSAVerificationPass>(); 161 AU.addPreserved<LCSSAVerificationPass>(); 162 163 // Loop passes are designed to run inside of a loop pass manager which means 164 // that any function analyses they require must be required by the first loop 165 // pass in the manager (so that it is computed before the loop pass manager 166 // runs) and preserved by all loop pasess in the manager. To make this 167 // reasonably robust, the set needed for most loop passes is maintained here. 168 // If your loop pass requires an analysis not listed here, you will need to 169 // carefully audit the loop pass manager nesting structure that results. 170 AU.addRequired<AAResultsWrapperPass>(); 171 AU.addPreserved<AAResultsWrapperPass>(); 172 AU.addPreserved<BasicAAWrapperPass>(); 173 AU.addPreserved<GlobalsAAWrapperPass>(); 174 AU.addPreserved<SCEVAAWrapperPass>(); 175 AU.addRequired<ScalarEvolutionWrapperPass>(); 176 AU.addPreserved<ScalarEvolutionWrapperPass>(); 177 // FIXME: When all loop passes preserve MemorySSA, it can be required and 178 // preserved here instead of the individual handling in each pass. 179 } 180 181 /// Manually defined generic "LoopPass" dependency initialization. This is used 182 /// to initialize the exact set of passes from above in \c 183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 184 /// with: 185 /// 186 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 187 /// 188 /// As-if "LoopPass" were a pass. 189 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 193 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 200 } 201 202 /// Create MDNode for input string. 203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 204 LLVMContext &Context = TheLoop->getHeader()->getContext(); 205 Metadata *MDs[] = { 206 MDString::get(Context, Name), 207 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 208 return MDNode::get(Context, MDs); 209 } 210 211 /// Set input string into loop metadata by keeping other values intact. 212 /// If the string is already in loop metadata update value if it is 213 /// different. 214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 215 unsigned V) { 216 SmallVector<Metadata *, 4> MDs(1); 217 // If the loop already has metadata, retain it. 218 MDNode *LoopID = TheLoop->getLoopID(); 219 if (LoopID) { 220 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 221 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 222 // If it is of form key = value, try to parse it. 223 if (Node->getNumOperands() == 2) { 224 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 225 if (S && S->getString() == StringMD) { 226 ConstantInt *IntMD = 227 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 228 if (IntMD && IntMD->getSExtValue() == V) 229 // It is already in place. Do nothing. 230 return; 231 // We need to update the value, so just skip it here and it will 232 // be added after copying other existed nodes. 233 continue; 234 } 235 } 236 MDs.push_back(Node); 237 } 238 } 239 // Add new metadata. 240 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 241 // Replace current metadata node with new one. 242 LLVMContext &Context = TheLoop->getHeader()->getContext(); 243 MDNode *NewLoopID = MDNode::get(Context, MDs); 244 // Set operand 0 to refer to the loop id itself. 245 NewLoopID->replaceOperandWith(0, NewLoopID); 246 TheLoop->setLoopID(NewLoopID); 247 } 248 249 std::optional<ElementCount> 250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 251 std::optional<int> Width = 252 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 253 254 if (Width) { 255 std::optional<int> IsScalable = getOptionalIntLoopAttribute( 256 TheLoop, "llvm.loop.vectorize.scalable.enable"); 257 return ElementCount::get(*Width, IsScalable.value_or(false)); 258 } 259 260 return std::nullopt; 261 } 262 263 std::optional<MDNode *> llvm::makeFollowupLoopID( 264 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 265 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 266 if (!OrigLoopID) { 267 if (AlwaysNew) 268 return nullptr; 269 return std::nullopt; 270 } 271 272 assert(OrigLoopID->getOperand(0) == OrigLoopID); 273 274 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 275 bool InheritSomeAttrs = 276 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 277 SmallVector<Metadata *, 8> MDs; 278 MDs.push_back(nullptr); 279 280 bool Changed = false; 281 if (InheritAllAttrs || InheritSomeAttrs) { 282 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 283 MDNode *Op = cast<MDNode>(Existing.get()); 284 285 auto InheritThisAttribute = [InheritSomeAttrs, 286 InheritOptionsExceptPrefix](MDNode *Op) { 287 if (!InheritSomeAttrs) 288 return false; 289 290 // Skip malformatted attribute metadata nodes. 291 if (Op->getNumOperands() == 0) 292 return true; 293 Metadata *NameMD = Op->getOperand(0).get(); 294 if (!isa<MDString>(NameMD)) 295 return true; 296 StringRef AttrName = cast<MDString>(NameMD)->getString(); 297 298 // Do not inherit excluded attributes. 299 return !AttrName.starts_with(InheritOptionsExceptPrefix); 300 }; 301 302 if (InheritThisAttribute(Op)) 303 MDs.push_back(Op); 304 else 305 Changed = true; 306 } 307 } else { 308 // Modified if we dropped at least one attribute. 309 Changed = OrigLoopID->getNumOperands() > 1; 310 } 311 312 bool HasAnyFollowup = false; 313 for (StringRef OptionName : FollowupOptions) { 314 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 315 if (!FollowupNode) 316 continue; 317 318 HasAnyFollowup = true; 319 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 320 MDs.push_back(Option.get()); 321 Changed = true; 322 } 323 } 324 325 // Attributes of the followup loop not specified explicity, so signal to the 326 // transformation pass to add suitable attributes. 327 if (!AlwaysNew && !HasAnyFollowup) 328 return std::nullopt; 329 330 // If no attributes were added or remove, the previous loop Id can be reused. 331 if (!AlwaysNew && !Changed) 332 return OrigLoopID; 333 334 // No attributes is equivalent to having no !llvm.loop metadata at all. 335 if (MDs.size() == 1) 336 return nullptr; 337 338 // Build the new loop ID. 339 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 340 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 341 return FollowupLoopID; 342 } 343 344 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 345 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 346 } 347 348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 349 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 350 } 351 352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 353 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 354 return TM_SuppressedByUser; 355 356 std::optional<int> Count = 357 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 358 if (Count) 359 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 360 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 362 return TM_ForcedByUser; 363 364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 365 return TM_ForcedByUser; 366 367 if (hasDisableAllTransformsHint(L)) 368 return TM_Disable; 369 370 return TM_Unspecified; 371 } 372 373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 374 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 375 return TM_SuppressedByUser; 376 377 std::optional<int> Count = 378 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 379 if (Count) 380 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 381 382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 383 return TM_ForcedByUser; 384 385 if (hasDisableAllTransformsHint(L)) 386 return TM_Disable; 387 388 return TM_Unspecified; 389 } 390 391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 392 std::optional<bool> Enable = 393 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 394 395 if (Enable == false) 396 return TM_SuppressedByUser; 397 398 std::optional<ElementCount> VectorizeWidth = 399 getOptionalElementCountLoopAttribute(L); 400 std::optional<int> InterleaveCount = 401 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 402 403 // 'Forcing' vector width and interleave count to one effectively disables 404 // this tranformation. 405 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 406 InterleaveCount == 1) 407 return TM_SuppressedByUser; 408 409 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 410 return TM_Disable; 411 412 if (Enable == true) 413 return TM_ForcedByUser; 414 415 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 416 return TM_Disable; 417 418 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 419 return TM_Enable; 420 421 if (hasDisableAllTransformsHint(L)) 422 return TM_Disable; 423 424 return TM_Unspecified; 425 } 426 427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 428 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 429 return TM_ForcedByUser; 430 431 if (hasDisableAllTransformsHint(L)) 432 return TM_Disable; 433 434 return TM_Unspecified; 435 } 436 437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 438 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 439 return TM_SuppressedByUser; 440 441 if (hasDisableAllTransformsHint(L)) 442 return TM_Disable; 443 444 return TM_Unspecified; 445 } 446 447 /// Does a BFS from a given node to all of its children inside a given loop. 448 /// The returned vector of nodes includes the starting point. 449 SmallVector<DomTreeNode *, 16> 450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 451 SmallVector<DomTreeNode *, 16> Worklist; 452 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 453 // Only include subregions in the top level loop. 454 BasicBlock *BB = DTN->getBlock(); 455 if (CurLoop->contains(BB)) 456 Worklist.push_back(DTN); 457 }; 458 459 AddRegionToWorklist(N); 460 461 for (size_t I = 0; I < Worklist.size(); I++) { 462 for (DomTreeNode *Child : Worklist[I]->children()) 463 AddRegionToWorklist(Child); 464 } 465 466 return Worklist; 467 } 468 469 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) { 470 int LatchIdx = PN->getBasicBlockIndex(LatchBlock); 471 assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode"); 472 Value *IncV = PN->getIncomingValue(LatchIdx); 473 474 for (User *U : PN->users()) 475 if (U != Cond && U != IncV) return false; 476 477 for (User *U : IncV->users()) 478 if (U != Cond && U != PN) return false; 479 return true; 480 } 481 482 483 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 484 LoopInfo *LI, MemorySSA *MSSA) { 485 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 486 auto *Preheader = L->getLoopPreheader(); 487 assert(Preheader && "Preheader should exist!"); 488 489 std::unique_ptr<MemorySSAUpdater> MSSAU; 490 if (MSSA) 491 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 492 493 // Now that we know the removal is safe, remove the loop by changing the 494 // branch from the preheader to go to the single exit block. 495 // 496 // Because we're deleting a large chunk of code at once, the sequence in which 497 // we remove things is very important to avoid invalidation issues. 498 499 // Tell ScalarEvolution that the loop is deleted. Do this before 500 // deleting the loop so that ScalarEvolution can look at the loop 501 // to determine what it needs to clean up. 502 if (SE) { 503 SE->forgetLoop(L); 504 SE->forgetBlockAndLoopDispositions(); 505 } 506 507 Instruction *OldTerm = Preheader->getTerminator(); 508 assert(!OldTerm->mayHaveSideEffects() && 509 "Preheader must end with a side-effect-free terminator"); 510 assert(OldTerm->getNumSuccessors() == 1 && 511 "Preheader must have a single successor"); 512 // Connect the preheader to the exit block. Keep the old edge to the header 513 // around to perform the dominator tree update in two separate steps 514 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 515 // preheader -> header. 516 // 517 // 518 // 0. Preheader 1. Preheader 2. Preheader 519 // | | | | 520 // V | V | 521 // Header <--\ | Header <--\ | Header <--\ 522 // | | | | | | | | | | | 523 // | V | | | V | | | V | 524 // | Body --/ | | Body --/ | | Body --/ 525 // V V V V V 526 // Exit Exit Exit 527 // 528 // By doing this is two separate steps we can perform the dominator tree 529 // update without using the batch update API. 530 // 531 // Even when the loop is never executed, we cannot remove the edge from the 532 // source block to the exit block. Consider the case where the unexecuted loop 533 // branches back to an outer loop. If we deleted the loop and removed the edge 534 // coming to this inner loop, this will break the outer loop structure (by 535 // deleting the backedge of the outer loop). If the outer loop is indeed a 536 // non-loop, it will be deleted in a future iteration of loop deletion pass. 537 IRBuilder<> Builder(OldTerm); 538 539 auto *ExitBlock = L->getUniqueExitBlock(); 540 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 541 if (ExitBlock) { 542 assert(ExitBlock && "Should have a unique exit block!"); 543 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 544 545 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 546 // Remove the old branch. The conditional branch becomes a new terminator. 547 OldTerm->eraseFromParent(); 548 549 // Rewrite phis in the exit block to get their inputs from the Preheader 550 // instead of the exiting block. 551 for (PHINode &P : ExitBlock->phis()) { 552 // Set the zero'th element of Phi to be from the preheader and remove all 553 // other incoming values. Given the loop has dedicated exits, all other 554 // incoming values must be from the exiting blocks. 555 int PredIndex = 0; 556 P.setIncomingBlock(PredIndex, Preheader); 557 // Removes all incoming values from all other exiting blocks (including 558 // duplicate values from an exiting block). 559 // Nuke all entries except the zero'th entry which is the preheader entry. 560 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; }, 561 /* DeletePHIIfEmpty */ false); 562 563 assert((P.getNumIncomingValues() == 1 && 564 P.getIncomingBlock(PredIndex) == Preheader) && 565 "Should have exactly one value and that's from the preheader!"); 566 } 567 568 if (DT) { 569 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 570 if (MSSA) { 571 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 572 *DT); 573 if (VerifyMemorySSA) 574 MSSA->verifyMemorySSA(); 575 } 576 } 577 578 // Disconnect the loop body by branching directly to its exit. 579 Builder.SetInsertPoint(Preheader->getTerminator()); 580 Builder.CreateBr(ExitBlock); 581 // Remove the old branch. 582 Preheader->getTerminator()->eraseFromParent(); 583 } else { 584 assert(L->hasNoExitBlocks() && 585 "Loop should have either zero or one exit blocks."); 586 587 Builder.SetInsertPoint(OldTerm); 588 Builder.CreateUnreachable(); 589 Preheader->getTerminator()->eraseFromParent(); 590 } 591 592 if (DT) { 593 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 594 if (MSSA) { 595 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 596 *DT); 597 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 598 L->block_end()); 599 MSSAU->removeBlocks(DeadBlockSet); 600 if (VerifyMemorySSA) 601 MSSA->verifyMemorySSA(); 602 } 603 } 604 605 // Use a map to unique and a vector to guarantee deterministic ordering. 606 llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet; 607 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 608 llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords; 609 610 if (ExitBlock) { 611 // Given LCSSA form is satisfied, we should not have users of instructions 612 // within the dead loop outside of the loop. However, LCSSA doesn't take 613 // unreachable uses into account. We handle them here. 614 // We could do it after drop all references (in this case all users in the 615 // loop will be already eliminated and we have less work to do but according 616 // to API doc of User::dropAllReferences only valid operation after dropping 617 // references, is deletion. So let's substitute all usages of 618 // instruction from the loop with poison value of corresponding type first. 619 for (auto *Block : L->blocks()) 620 for (Instruction &I : *Block) { 621 auto *Poison = PoisonValue::get(I.getType()); 622 for (Use &U : llvm::make_early_inc_range(I.uses())) { 623 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 624 if (L->contains(Usr->getParent())) 625 continue; 626 // If we have a DT then we can check that uses outside a loop only in 627 // unreachable block. 628 if (DT) 629 assert(!DT->isReachableFromEntry(U) && 630 "Unexpected user in reachable block"); 631 U.set(Poison); 632 } 633 634 // RemoveDIs: do the same as below for DbgVariableRecords. 635 if (Block->IsNewDbgInfoFormat) { 636 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 637 filterDbgVars(I.getDbgRecordRange()))) { 638 DebugVariable Key(DVR.getVariable(), DVR.getExpression(), 639 DVR.getDebugLoc().get()); 640 if (!DeadDebugSet.insert(Key).second) 641 continue; 642 // Unlinks the DVR from it's container, for later insertion. 643 DVR.removeFromParent(); 644 DeadDbgVariableRecords.push_back(&DVR); 645 } 646 } 647 648 // For one of each variable encountered, preserve a debug intrinsic (set 649 // to Poison) and transfer it to the loop exit. This terminates any 650 // variable locations that were set during the loop. 651 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 652 if (!DVI) 653 continue; 654 if (!DeadDebugSet.insert(DebugVariable(DVI)).second) 655 continue; 656 DeadDebugInst.push_back(DVI); 657 } 658 659 // After the loop has been deleted all the values defined and modified 660 // inside the loop are going to be unavailable. Values computed in the 661 // loop will have been deleted, automatically causing their debug uses 662 // be be replaced with undef. Loop invariant values will still be available. 663 // Move dbg.values out the loop so that earlier location ranges are still 664 // terminated and loop invariant assignments are preserved. 665 DIBuilder DIB(*ExitBlock->getModule()); 666 BasicBlock::iterator InsertDbgValueBefore = 667 ExitBlock->getFirstInsertionPt(); 668 assert(InsertDbgValueBefore != ExitBlock->end() && 669 "There should be a non-PHI instruction in exit block, else these " 670 "instructions will have no parent."); 671 672 for (auto *DVI : DeadDebugInst) 673 DVI->moveBefore(*ExitBlock, InsertDbgValueBefore); 674 675 // Due to the "head" bit in BasicBlock::iterator, we're going to insert 676 // each DbgVariableRecord right at the start of the block, wheras dbg.values 677 // would be repeatedly inserted before the first instruction. To replicate 678 // this behaviour, do it backwards. 679 for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords)) 680 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore); 681 } 682 683 // Remove the block from the reference counting scheme, so that we can 684 // delete it freely later. 685 for (auto *Block : L->blocks()) 686 Block->dropAllReferences(); 687 688 if (MSSA && VerifyMemorySSA) 689 MSSA->verifyMemorySSA(); 690 691 if (LI) { 692 // Erase the instructions and the blocks without having to worry 693 // about ordering because we already dropped the references. 694 // NOTE: This iteration is safe because erasing the block does not remove 695 // its entry from the loop's block list. We do that in the next section. 696 for (BasicBlock *BB : L->blocks()) 697 BB->eraseFromParent(); 698 699 // Finally, the blocks from loopinfo. This has to happen late because 700 // otherwise our loop iterators won't work. 701 702 SmallPtrSet<BasicBlock *, 8> blocks; 703 blocks.insert(L->block_begin(), L->block_end()); 704 for (BasicBlock *BB : blocks) 705 LI->removeBlock(BB); 706 707 // The last step is to update LoopInfo now that we've eliminated this loop. 708 // Note: LoopInfo::erase remove the given loop and relink its subloops with 709 // its parent. While removeLoop/removeChildLoop remove the given loop but 710 // not relink its subloops, which is what we want. 711 if (Loop *ParentLoop = L->getParentLoop()) { 712 Loop::iterator I = find(*ParentLoop, L); 713 assert(I != ParentLoop->end() && "Couldn't find loop"); 714 ParentLoop->removeChildLoop(I); 715 } else { 716 Loop::iterator I = find(*LI, L); 717 assert(I != LI->end() && "Couldn't find loop"); 718 LI->removeLoop(I); 719 } 720 LI->destroy(L); 721 } 722 } 723 724 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 725 LoopInfo &LI, MemorySSA *MSSA) { 726 auto *Latch = L->getLoopLatch(); 727 assert(Latch && "multiple latches not yet supported"); 728 auto *Header = L->getHeader(); 729 Loop *OutermostLoop = L->getOutermostLoop(); 730 731 SE.forgetLoop(L); 732 SE.forgetBlockAndLoopDispositions(); 733 734 std::unique_ptr<MemorySSAUpdater> MSSAU; 735 if (MSSA) 736 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 737 738 // Update the CFG and domtree. We chose to special case a couple of 739 // of common cases for code quality and test readability reasons. 740 [&]() -> void { 741 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 742 if (!BI->isConditional()) { 743 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 744 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 745 MSSAU.get()); 746 return; 747 } 748 749 // Conditional latch/exit - note that latch can be shared by inner 750 // and outer loop so the other target doesn't need to an exit 751 if (L->isLoopExiting(Latch)) { 752 // TODO: Generalize ConstantFoldTerminator so that it can be used 753 // here without invalidating LCSSA or MemorySSA. (Tricky case for 754 // LCSSA: header is an exit block of a preceeding sibling loop w/o 755 // dedicated exits.) 756 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 757 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 758 759 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 760 Header->removePredecessor(Latch, true); 761 762 IRBuilder<> Builder(BI); 763 auto *NewBI = Builder.CreateBr(ExitBB); 764 // Transfer the metadata to the new branch instruction (minus the 765 // loop info since this is no longer a loop) 766 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 767 LLVMContext::MD_annotation}); 768 769 BI->eraseFromParent(); 770 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 771 if (MSSA) 772 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 773 return; 774 } 775 } 776 777 // General case. By splitting the backedge, and then explicitly making it 778 // unreachable we gracefully handle corner cases such as switch and invoke 779 // termiantors. 780 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 781 782 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 783 (void)changeToUnreachable(BackedgeBB->getTerminator(), 784 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 785 }(); 786 787 // Erase (and destroy) this loop instance. Handles relinking sub-loops 788 // and blocks within the loop as needed. 789 LI.erase(L); 790 791 // If the loop we broke had a parent, then changeToUnreachable might have 792 // caused a block to be removed from the parent loop (see loop_nest_lcssa 793 // test case in zero-btc.ll for an example), thus changing the parent's 794 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 795 // loop which might have a had a block removed. 796 if (OutermostLoop != L) 797 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 798 } 799 800 801 /// Checks if \p L has an exiting latch branch. There may also be other 802 /// exiting blocks. Returns branch instruction terminating the loop 803 /// latch if above check is successful, nullptr otherwise. 804 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 805 BasicBlock *Latch = L->getLoopLatch(); 806 if (!Latch) 807 return nullptr; 808 809 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 810 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 811 return nullptr; 812 813 assert((LatchBR->getSuccessor(0) == L->getHeader() || 814 LatchBR->getSuccessor(1) == L->getHeader()) && 815 "At least one edge out of the latch must go to the header"); 816 817 return LatchBR; 818 } 819 820 /// Return the estimated trip count for any exiting branch which dominates 821 /// the loop latch. 822 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch, 823 Loop *L, 824 uint64_t &OrigExitWeight) { 825 // To estimate the number of times the loop body was executed, we want to 826 // know the number of times the backedge was taken, vs. the number of times 827 // we exited the loop. 828 uint64_t LoopWeight, ExitWeight; 829 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight)) 830 return std::nullopt; 831 832 if (L->contains(ExitingBranch->getSuccessor(1))) 833 std::swap(LoopWeight, ExitWeight); 834 835 if (!ExitWeight) 836 // Don't have a way to return predicated infinite 837 return std::nullopt; 838 839 OrigExitWeight = ExitWeight; 840 841 // Estimated exit count is a ratio of the loop weight by the weight of the 842 // edge exiting the loop, rounded to nearest. 843 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 844 // Estimated trip count is one plus estimated exit count. 845 return ExitCount + 1; 846 } 847 848 std::optional<unsigned> 849 llvm::getLoopEstimatedTripCount(Loop *L, 850 unsigned *EstimatedLoopInvocationWeight) { 851 // Currently we take the estimate exit count only from the loop latch, 852 // ignoring other exiting blocks. This can overestimate the trip count 853 // if we exit through another exit, but can never underestimate it. 854 // TODO: incorporate information from other exits 855 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 856 uint64_t ExitWeight; 857 if (std::optional<uint64_t> EstTripCount = 858 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 859 if (EstimatedLoopInvocationWeight) 860 *EstimatedLoopInvocationWeight = ExitWeight; 861 return *EstTripCount; 862 } 863 } 864 return std::nullopt; 865 } 866 867 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 868 unsigned EstimatedloopInvocationWeight) { 869 // At the moment, we currently support changing the estimate trip count of 870 // the latch branch only. We could extend this API to manipulate estimated 871 // trip counts for any exit. 872 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 873 if (!LatchBranch) 874 return false; 875 876 // Calculate taken and exit weights. 877 unsigned LatchExitWeight = 0; 878 unsigned BackedgeTakenWeight = 0; 879 880 if (EstimatedTripCount > 0) { 881 LatchExitWeight = EstimatedloopInvocationWeight; 882 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 883 } 884 885 // Make a swap if back edge is taken when condition is "false". 886 if (LatchBranch->getSuccessor(0) != L->getHeader()) 887 std::swap(BackedgeTakenWeight, LatchExitWeight); 888 889 MDBuilder MDB(LatchBranch->getContext()); 890 891 // Set/Update profile metadata. 892 LatchBranch->setMetadata( 893 LLVMContext::MD_prof, 894 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 895 896 return true; 897 } 898 899 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 900 ScalarEvolution &SE) { 901 Loop *OuterL = InnerLoop->getParentLoop(); 902 if (!OuterL) 903 return true; 904 905 // Get the backedge taken count for the inner loop 906 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 907 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 908 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 909 !InnerLoopBECountSC->getType()->isIntegerTy()) 910 return false; 911 912 // Get whether count is invariant to the outer loop 913 ScalarEvolution::LoopDisposition LD = 914 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 915 if (LD != ScalarEvolution::LoopInvariant) 916 return false; 917 918 return true; 919 } 920 921 unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) { 922 switch (RdxID) { 923 case Intrinsic::vector_reduce_fadd: 924 return Instruction::FAdd; 925 case Intrinsic::vector_reduce_fmul: 926 return Instruction::FMul; 927 case Intrinsic::vector_reduce_add: 928 return Instruction::Add; 929 case Intrinsic::vector_reduce_mul: 930 return Instruction::Mul; 931 case Intrinsic::vector_reduce_and: 932 return Instruction::And; 933 case Intrinsic::vector_reduce_or: 934 return Instruction::Or; 935 case Intrinsic::vector_reduce_xor: 936 return Instruction::Xor; 937 case Intrinsic::vector_reduce_smax: 938 case Intrinsic::vector_reduce_smin: 939 case Intrinsic::vector_reduce_umax: 940 case Intrinsic::vector_reduce_umin: 941 return Instruction::ICmp; 942 case Intrinsic::vector_reduce_fmax: 943 case Intrinsic::vector_reduce_fmin: 944 return Instruction::FCmp; 945 default: 946 llvm_unreachable("Unexpected ID"); 947 } 948 } 949 950 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) { 951 switch (RdxID) { 952 default: 953 llvm_unreachable("Unknown min/max recurrence kind"); 954 case Intrinsic::vector_reduce_umin: 955 return Intrinsic::umin; 956 case Intrinsic::vector_reduce_umax: 957 return Intrinsic::umax; 958 case Intrinsic::vector_reduce_smin: 959 return Intrinsic::smin; 960 case Intrinsic::vector_reduce_smax: 961 return Intrinsic::smax; 962 case Intrinsic::vector_reduce_fmin: 963 return Intrinsic::minnum; 964 case Intrinsic::vector_reduce_fmax: 965 return Intrinsic::maxnum; 966 case Intrinsic::vector_reduce_fminimum: 967 return Intrinsic::minimum; 968 case Intrinsic::vector_reduce_fmaximum: 969 return Intrinsic::maximum; 970 } 971 } 972 973 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) { 974 switch (RK) { 975 default: 976 llvm_unreachable("Unknown min/max recurrence kind"); 977 case RecurKind::UMin: 978 return Intrinsic::umin; 979 case RecurKind::UMax: 980 return Intrinsic::umax; 981 case RecurKind::SMin: 982 return Intrinsic::smin; 983 case RecurKind::SMax: 984 return Intrinsic::smax; 985 case RecurKind::FMin: 986 return Intrinsic::minnum; 987 case RecurKind::FMax: 988 return Intrinsic::maxnum; 989 case RecurKind::FMinimum: 990 return Intrinsic::minimum; 991 case RecurKind::FMaximum: 992 return Intrinsic::maximum; 993 } 994 } 995 996 RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) { 997 switch (RdxID) { 998 case Intrinsic::vector_reduce_smax: 999 return RecurKind::SMax; 1000 case Intrinsic::vector_reduce_smin: 1001 return RecurKind::SMin; 1002 case Intrinsic::vector_reduce_umax: 1003 return RecurKind::UMax; 1004 case Intrinsic::vector_reduce_umin: 1005 return RecurKind::UMin; 1006 case Intrinsic::vector_reduce_fmax: 1007 return RecurKind::FMax; 1008 case Intrinsic::vector_reduce_fmin: 1009 return RecurKind::FMin; 1010 default: 1011 return RecurKind::None; 1012 } 1013 } 1014 1015 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 1016 switch (RK) { 1017 default: 1018 llvm_unreachable("Unknown min/max recurrence kind"); 1019 case RecurKind::UMin: 1020 return CmpInst::ICMP_ULT; 1021 case RecurKind::UMax: 1022 return CmpInst::ICMP_UGT; 1023 case RecurKind::SMin: 1024 return CmpInst::ICMP_SLT; 1025 case RecurKind::SMax: 1026 return CmpInst::ICMP_SGT; 1027 case RecurKind::FMin: 1028 return CmpInst::FCMP_OLT; 1029 case RecurKind::FMax: 1030 return CmpInst::FCMP_OGT; 1031 // We do not add FMinimum/FMaximum recurrence kind here since there is no 1032 // equivalent predicate which compares signed zeroes according to the 1033 // semantics of the intrinsics (llvm.minimum/maximum). 1034 } 1035 } 1036 1037 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 1038 Value *Right) { 1039 Type *Ty = Left->getType(); 1040 if (Ty->isIntOrIntVectorTy() || 1041 (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) { 1042 // TODO: Add float minnum/maxnum support when FMF nnan is set. 1043 Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK); 1044 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr, 1045 "rdx.minmax"); 1046 } 1047 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 1048 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 1049 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 1050 return Select; 1051 } 1052 1053 // Helper to generate an ordered reduction. 1054 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 1055 unsigned Op, RecurKind RdxKind) { 1056 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1057 1058 // Extract and apply reduction ops in ascending order: 1059 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 1060 Value *Result = Acc; 1061 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 1062 Value *Ext = 1063 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 1064 1065 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1066 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 1067 "bin.rdx"); 1068 } else { 1069 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1070 "Invalid min/max"); 1071 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 1072 } 1073 } 1074 1075 return Result; 1076 } 1077 1078 // Helper to generate a log2 shuffle reduction. 1079 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 1080 unsigned Op, 1081 TargetTransformInfo::ReductionShuffle RS, 1082 RecurKind RdxKind) { 1083 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1084 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1085 // and vector ops, reducing the set of values being computed by half each 1086 // round. 1087 assert(isPowerOf2_32(VF) && 1088 "Reduction emission only supported for pow2 vectors!"); 1089 // Note: fast-math-flags flags are controlled by the builder configuration 1090 // and are assumed to apply to all generated arithmetic instructions. Other 1091 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 1092 // of the builder configuration, and since they're not passed explicitly, 1093 // will never be relevant here. Note that it would be generally unsound to 1094 // propagate these from an intrinsic call to the expansion anyways as we/ 1095 // change the order of operations. 1096 auto BuildShuffledOp = [&Builder, &Op, 1097 &RdxKind](SmallVectorImpl<int> &ShuffleMask, 1098 Value *&TmpVec) -> void { 1099 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 1100 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1101 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 1102 "bin.rdx"); 1103 } else { 1104 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1105 "Invalid min/max"); 1106 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 1107 } 1108 }; 1109 1110 Value *TmpVec = Src; 1111 if (TargetTransformInfo::ReductionShuffle::Pairwise == RS) { 1112 SmallVector<int, 32> ShuffleMask(VF); 1113 for (unsigned stride = 1; stride < VF; stride <<= 1) { 1114 // Initialise the mask with undef. 1115 std::fill(ShuffleMask.begin(), ShuffleMask.end(), -1); 1116 for (unsigned j = 0; j < VF; j += stride << 1) { 1117 ShuffleMask[j] = j + stride; 1118 } 1119 BuildShuffledOp(ShuffleMask, TmpVec); 1120 } 1121 } else { 1122 SmallVector<int, 32> ShuffleMask(VF); 1123 for (unsigned i = VF; i != 1; i >>= 1) { 1124 // Move the upper half of the vector to the lower half. 1125 for (unsigned j = 0; j != i / 2; ++j) 1126 ShuffleMask[j] = i / 2 + j; 1127 1128 // Fill the rest of the mask with undef. 1129 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 1130 BuildShuffledOp(ShuffleMask, TmpVec); 1131 } 1132 } 1133 // The result is in the first element of the vector. 1134 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1135 } 1136 1137 Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src, 1138 const RecurrenceDescriptor &Desc, 1139 PHINode *OrigPhi) { 1140 assert( 1141 RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) && 1142 "Unexpected reduction kind"); 1143 Value *InitVal = Desc.getRecurrenceStartValue(); 1144 Value *NewVal = nullptr; 1145 1146 // First use the original phi to determine the new value we're trying to 1147 // select from in the loop. 1148 SelectInst *SI = nullptr; 1149 for (auto *U : OrigPhi->users()) { 1150 if ((SI = dyn_cast<SelectInst>(U))) 1151 break; 1152 } 1153 assert(SI && "One user of the original phi should be a select"); 1154 1155 if (SI->getTrueValue() == OrigPhi) 1156 NewVal = SI->getFalseValue(); 1157 else { 1158 assert(SI->getFalseValue() == OrigPhi && 1159 "At least one input to the select should be the original Phi"); 1160 NewVal = SI->getTrueValue(); 1161 } 1162 1163 // If any predicate is true it means that we want to select the new value. 1164 Value *AnyOf = 1165 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src; 1166 // The compares in the loop may yield poison, which propagates through the 1167 // bitwise ORs. Freeze it here before the condition is used. 1168 AnyOf = Builder.CreateFreeze(AnyOf); 1169 return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select"); 1170 } 1171 1172 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src, 1173 RecurKind RdxKind) { 1174 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1175 switch (RdxKind) { 1176 case RecurKind::Add: 1177 return Builder.CreateAddReduce(Src); 1178 case RecurKind::Mul: 1179 return Builder.CreateMulReduce(Src); 1180 case RecurKind::And: 1181 return Builder.CreateAndReduce(Src); 1182 case RecurKind::Or: 1183 return Builder.CreateOrReduce(Src); 1184 case RecurKind::Xor: 1185 return Builder.CreateXorReduce(Src); 1186 case RecurKind::FMulAdd: 1187 case RecurKind::FAdd: 1188 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1189 Src); 1190 case RecurKind::FMul: 1191 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1192 case RecurKind::SMax: 1193 return Builder.CreateIntMaxReduce(Src, true); 1194 case RecurKind::SMin: 1195 return Builder.CreateIntMinReduce(Src, true); 1196 case RecurKind::UMax: 1197 return Builder.CreateIntMaxReduce(Src, false); 1198 case RecurKind::UMin: 1199 return Builder.CreateIntMinReduce(Src, false); 1200 case RecurKind::FMax: 1201 return Builder.CreateFPMaxReduce(Src); 1202 case RecurKind::FMin: 1203 return Builder.CreateFPMinReduce(Src); 1204 case RecurKind::FMinimum: 1205 return Builder.CreateFPMinimumReduce(Src); 1206 case RecurKind::FMaximum: 1207 return Builder.CreateFPMaximumReduce(Src); 1208 default: 1209 llvm_unreachable("Unhandled opcode"); 1210 } 1211 } 1212 1213 Value *llvm::createSimpleTargetReduction(VectorBuilder &VBuilder, Value *Src, 1214 const RecurrenceDescriptor &Desc) { 1215 RecurKind Kind = Desc.getRecurrenceKind(); 1216 assert(!RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) && 1217 "AnyOf reduction is not supported."); 1218 auto *SrcTy = cast<VectorType>(Src->getType()); 1219 Type *SrcEltTy = SrcTy->getElementType(); 1220 Value *Iden = 1221 Desc.getRecurrenceIdentity(Kind, SrcEltTy, Desc.getFastMathFlags()); 1222 Value *Ops[] = {Iden, Src}; 1223 return VBuilder.createSimpleTargetReduction(Kind, SrcTy, Ops); 1224 } 1225 1226 Value *llvm::createTargetReduction(IRBuilderBase &B, 1227 const RecurrenceDescriptor &Desc, Value *Src, 1228 PHINode *OrigPhi) { 1229 // TODO: Support in-order reductions based on the recurrence descriptor. 1230 // All ops in the reduction inherit fast-math-flags from the recurrence 1231 // descriptor. 1232 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1233 B.setFastMathFlags(Desc.getFastMathFlags()); 1234 1235 RecurKind RK = Desc.getRecurrenceKind(); 1236 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) 1237 return createAnyOfTargetReduction(B, Src, Desc, OrigPhi); 1238 1239 return createSimpleTargetReduction(B, Src, RK); 1240 } 1241 1242 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1243 const RecurrenceDescriptor &Desc, 1244 Value *Src, Value *Start) { 1245 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1246 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1247 "Unexpected reduction kind"); 1248 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1249 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1250 1251 return B.CreateFAddReduce(Start, Src); 1252 } 1253 1254 Value *llvm::createOrderedReduction(VectorBuilder &VBuilder, 1255 const RecurrenceDescriptor &Desc, 1256 Value *Src, Value *Start) { 1257 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1258 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1259 "Unexpected reduction kind"); 1260 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1261 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1262 1263 auto *SrcTy = cast<VectorType>(Src->getType()); 1264 Value *Ops[] = {Start, Src}; 1265 return VBuilder.createSimpleTargetReduction(RecurKind::FAdd, SrcTy, Ops); 1266 } 1267 1268 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue, 1269 bool IncludeWrapFlags) { 1270 auto *VecOp = dyn_cast<Instruction>(I); 1271 if (!VecOp) 1272 return; 1273 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1274 : dyn_cast<Instruction>(OpValue); 1275 if (!Intersection) 1276 return; 1277 const unsigned Opcode = Intersection->getOpcode(); 1278 VecOp->copyIRFlags(Intersection, IncludeWrapFlags); 1279 for (auto *V : VL) { 1280 auto *Instr = dyn_cast<Instruction>(V); 1281 if (!Instr) 1282 continue; 1283 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1284 VecOp->andIRFlags(V); 1285 } 1286 } 1287 1288 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1289 ScalarEvolution &SE) { 1290 const SCEV *Zero = SE.getZero(S->getType()); 1291 return SE.isAvailableAtLoopEntry(S, L) && 1292 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1293 } 1294 1295 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1296 ScalarEvolution &SE) { 1297 const SCEV *Zero = SE.getZero(S->getType()); 1298 return SE.isAvailableAtLoopEntry(S, L) && 1299 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1300 } 1301 1302 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L, 1303 ScalarEvolution &SE) { 1304 const SCEV *Zero = SE.getZero(S->getType()); 1305 return SE.isAvailableAtLoopEntry(S, L) && 1306 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero); 1307 } 1308 1309 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, 1310 ScalarEvolution &SE) { 1311 const SCEV *Zero = SE.getZero(S->getType()); 1312 return SE.isAvailableAtLoopEntry(S, L) && 1313 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero); 1314 } 1315 1316 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1317 bool Signed) { 1318 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1319 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1320 APInt::getMinValue(BitWidth); 1321 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1322 return SE.isAvailableAtLoopEntry(S, L) && 1323 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1324 SE.getConstant(Min)); 1325 } 1326 1327 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1328 bool Signed) { 1329 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1330 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1331 APInt::getMaxValue(BitWidth); 1332 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1333 return SE.isAvailableAtLoopEntry(S, L) && 1334 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1335 SE.getConstant(Max)); 1336 } 1337 1338 //===----------------------------------------------------------------------===// 1339 // rewriteLoopExitValues - Optimize IV users outside the loop. 1340 // As a side effect, reduces the amount of IV processing within the loop. 1341 //===----------------------------------------------------------------------===// 1342 1343 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1344 SmallPtrSet<const Instruction *, 8> Visited; 1345 SmallVector<const Instruction *, 8> WorkList; 1346 Visited.insert(I); 1347 WorkList.push_back(I); 1348 while (!WorkList.empty()) { 1349 const Instruction *Curr = WorkList.pop_back_val(); 1350 // This use is outside the loop, nothing to do. 1351 if (!L->contains(Curr)) 1352 continue; 1353 // Do we assume it is a "hard" use which will not be eliminated easily? 1354 if (Curr->mayHaveSideEffects()) 1355 return true; 1356 // Otherwise, add all its users to worklist. 1357 for (const auto *U : Curr->users()) { 1358 auto *UI = cast<Instruction>(U); 1359 if (Visited.insert(UI).second) 1360 WorkList.push_back(UI); 1361 } 1362 } 1363 return false; 1364 } 1365 1366 // Collect information about PHI nodes which can be transformed in 1367 // rewriteLoopExitValues. 1368 struct RewritePhi { 1369 PHINode *PN; // For which PHI node is this replacement? 1370 unsigned Ith; // For which incoming value? 1371 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1372 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1373 bool HighCost; // Is this expansion a high-cost? 1374 1375 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1376 bool H) 1377 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1378 HighCost(H) {} 1379 }; 1380 1381 // Check whether it is possible to delete the loop after rewriting exit 1382 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1383 // aggressively. 1384 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1385 BasicBlock *Preheader = L->getLoopPreheader(); 1386 // If there is no preheader, the loop will not be deleted. 1387 if (!Preheader) 1388 return false; 1389 1390 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1391 // We obviate multiple ExitingBlocks case for simplicity. 1392 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1393 // after exit value rewriting, we can enhance the logic here. 1394 SmallVector<BasicBlock *, 4> ExitingBlocks; 1395 L->getExitingBlocks(ExitingBlocks); 1396 SmallVector<BasicBlock *, 8> ExitBlocks; 1397 L->getUniqueExitBlocks(ExitBlocks); 1398 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1399 return false; 1400 1401 BasicBlock *ExitBlock = ExitBlocks[0]; 1402 BasicBlock::iterator BI = ExitBlock->begin(); 1403 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1404 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1405 1406 // If the Incoming value of P is found in RewritePhiSet, we know it 1407 // could be rewritten to use a loop invariant value in transformation 1408 // phase later. Skip it in the loop invariant check below. 1409 bool found = false; 1410 for (const RewritePhi &Phi : RewritePhiSet) { 1411 unsigned i = Phi.Ith; 1412 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1413 found = true; 1414 break; 1415 } 1416 } 1417 1418 Instruction *I; 1419 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1420 if (!L->hasLoopInvariantOperands(I)) 1421 return false; 1422 1423 ++BI; 1424 } 1425 1426 for (auto *BB : L->blocks()) 1427 if (llvm::any_of(*BB, [](Instruction &I) { 1428 return I.mayHaveSideEffects(); 1429 })) 1430 return false; 1431 1432 return true; 1433 } 1434 1435 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi, 1436 /// and returns true if this Phi is an induction phi in the loop. When 1437 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI. 1438 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, 1439 InductionDescriptor &ID) { 1440 if (!Phi) 1441 return false; 1442 if (!L->getLoopPreheader()) 1443 return false; 1444 if (Phi->getParent() != L->getHeader()) 1445 return false; 1446 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID); 1447 } 1448 1449 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1450 ScalarEvolution *SE, 1451 const TargetTransformInfo *TTI, 1452 SCEVExpander &Rewriter, DominatorTree *DT, 1453 ReplaceExitVal ReplaceExitValue, 1454 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1455 // Check a pre-condition. 1456 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1457 "Indvars did not preserve LCSSA!"); 1458 1459 SmallVector<BasicBlock*, 8> ExitBlocks; 1460 L->getUniqueExitBlocks(ExitBlocks); 1461 1462 SmallVector<RewritePhi, 8> RewritePhiSet; 1463 // Find all values that are computed inside the loop, but used outside of it. 1464 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1465 // the exit blocks of the loop to find them. 1466 for (BasicBlock *ExitBB : ExitBlocks) { 1467 // If there are no PHI nodes in this exit block, then no values defined 1468 // inside the loop are used on this path, skip it. 1469 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1470 if (!PN) continue; 1471 1472 unsigned NumPreds = PN->getNumIncomingValues(); 1473 1474 // Iterate over all of the PHI nodes. 1475 BasicBlock::iterator BBI = ExitBB->begin(); 1476 while ((PN = dyn_cast<PHINode>(BBI++))) { 1477 if (PN->use_empty()) 1478 continue; // dead use, don't replace it 1479 1480 if (!SE->isSCEVable(PN->getType())) 1481 continue; 1482 1483 // Iterate over all of the values in all the PHI nodes. 1484 for (unsigned i = 0; i != NumPreds; ++i) { 1485 // If the value being merged in is not integer or is not defined 1486 // in the loop, skip it. 1487 Value *InVal = PN->getIncomingValue(i); 1488 if (!isa<Instruction>(InVal)) 1489 continue; 1490 1491 // If this pred is for a subloop, not L itself, skip it. 1492 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1493 continue; // The Block is in a subloop, skip it. 1494 1495 // Check that InVal is defined in the loop. 1496 Instruction *Inst = cast<Instruction>(InVal); 1497 if (!L->contains(Inst)) 1498 continue; 1499 1500 // Find exit values which are induction variables in the loop, and are 1501 // unused in the loop, with the only use being the exit block PhiNode, 1502 // and the induction variable update binary operator. 1503 // The exit value can be replaced with the final value when it is cheap 1504 // to do so. 1505 if (ReplaceExitValue == UnusedIndVarInLoop) { 1506 InductionDescriptor ID; 1507 PHINode *IndPhi = dyn_cast<PHINode>(Inst); 1508 if (IndPhi) { 1509 if (!checkIsIndPhi(IndPhi, L, SE, ID)) 1510 continue; 1511 // This is an induction PHI. Check that the only users are PHI 1512 // nodes, and induction variable update binary operators. 1513 if (llvm::any_of(Inst->users(), [&](User *U) { 1514 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U)) 1515 return true; 1516 BinaryOperator *B = dyn_cast<BinaryOperator>(U); 1517 if (B && B != ID.getInductionBinOp()) 1518 return true; 1519 return false; 1520 })) 1521 continue; 1522 } else { 1523 // If it is not an induction phi, it must be an induction update 1524 // binary operator with an induction phi user. 1525 BinaryOperator *B = dyn_cast<BinaryOperator>(Inst); 1526 if (!B) 1527 continue; 1528 if (llvm::any_of(Inst->users(), [&](User *U) { 1529 PHINode *Phi = dyn_cast<PHINode>(U); 1530 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID)) 1531 return true; 1532 return false; 1533 })) 1534 continue; 1535 if (B != ID.getInductionBinOp()) 1536 continue; 1537 } 1538 } 1539 1540 // Okay, this instruction has a user outside of the current loop 1541 // and varies predictably *inside* the loop. Evaluate the value it 1542 // contains when the loop exits, if possible. We prefer to start with 1543 // expressions which are true for all exits (so as to maximize 1544 // expression reuse by the SCEVExpander), but resort to per-exit 1545 // evaluation if that fails. 1546 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1547 if (isa<SCEVCouldNotCompute>(ExitValue) || 1548 !SE->isLoopInvariant(ExitValue, L) || 1549 !Rewriter.isSafeToExpand(ExitValue)) { 1550 // TODO: This should probably be sunk into SCEV in some way; maybe a 1551 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1552 // most SCEV expressions and other recurrence types (e.g. shift 1553 // recurrences). Is there existing code we can reuse? 1554 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1555 if (isa<SCEVCouldNotCompute>(ExitCount)) 1556 continue; 1557 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1558 if (AddRec->getLoop() == L) 1559 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1560 if (isa<SCEVCouldNotCompute>(ExitValue) || 1561 !SE->isLoopInvariant(ExitValue, L) || 1562 !Rewriter.isSafeToExpand(ExitValue)) 1563 continue; 1564 } 1565 1566 // Computing the value outside of the loop brings no benefit if it is 1567 // definitely used inside the loop in a way which can not be optimized 1568 // away. Avoid doing so unless we know we have a value which computes 1569 // the ExitValue already. TODO: This should be merged into SCEV 1570 // expander to leverage its knowledge of existing expressions. 1571 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1572 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1573 continue; 1574 1575 // Check if expansions of this SCEV would count as being high cost. 1576 bool HighCost = Rewriter.isHighCostExpansion( 1577 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1578 1579 // Note that we must not perform expansions until after 1580 // we query *all* the costs, because if we perform temporary expansion 1581 // inbetween, one that we might not intend to keep, said expansion 1582 // *may* affect cost calculation of the next SCEV's we'll query, 1583 // and next SCEV may errneously get smaller cost. 1584 1585 // Collect all the candidate PHINodes to be rewritten. 1586 Instruction *InsertPt = 1587 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ? 1588 &*Inst->getParent()->getFirstInsertionPt() : Inst; 1589 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost); 1590 } 1591 } 1592 } 1593 1594 // TODO: evaluate whether it is beneficial to change how we calculate 1595 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1596 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1597 // potentially giving cost bonus to those other SCEV's? 1598 1599 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1600 int NumReplaced = 0; 1601 1602 // Transformation. 1603 for (const RewritePhi &Phi : RewritePhiSet) { 1604 PHINode *PN = Phi.PN; 1605 1606 // Only do the rewrite when the ExitValue can be expanded cheaply. 1607 // If LoopCanBeDel is true, rewrite exit value aggressively. 1608 if ((ReplaceExitValue == OnlyCheapRepl || 1609 ReplaceExitValue == UnusedIndVarInLoop) && 1610 !LoopCanBeDel && Phi.HighCost) 1611 continue; 1612 1613 Value *ExitVal = Rewriter.expandCodeFor( 1614 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1615 1616 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1617 << '\n' 1618 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1619 1620 #ifndef NDEBUG 1621 // If we reuse an instruction from a loop which is neither L nor one of 1622 // its containing loops, we end up breaking LCSSA form for this loop by 1623 // creating a new use of its instruction. 1624 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1625 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1626 if (EVL != L) 1627 assert(EVL->contains(L) && "LCSSA breach detected!"); 1628 #endif 1629 1630 NumReplaced++; 1631 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1632 PN->setIncomingValue(Phi.Ith, ExitVal); 1633 // It's necessary to tell ScalarEvolution about this explicitly so that 1634 // it can walk the def-use list and forget all SCEVs, as it may not be 1635 // watching the PHI itself. Once the new exit value is in place, there 1636 // may not be a def-use connection between the loop and every instruction 1637 // which got a SCEVAddRecExpr for that loop. 1638 SE->forgetValue(PN); 1639 1640 // If this instruction is dead now, delete it. Don't do it now to avoid 1641 // invalidating iterators. 1642 if (isInstructionTriviallyDead(Inst, TLI)) 1643 DeadInsts.push_back(Inst); 1644 1645 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1646 if (PN->getNumIncomingValues() == 1 && 1647 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1648 PN->replaceAllUsesWith(ExitVal); 1649 PN->eraseFromParent(); 1650 } 1651 } 1652 1653 // The insertion point instruction may have been deleted; clear it out 1654 // so that the rewriter doesn't trip over it later. 1655 Rewriter.clearInsertPoint(); 1656 return NumReplaced; 1657 } 1658 1659 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1660 /// \p OrigLoop. 1661 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1662 Loop *RemainderLoop, uint64_t UF) { 1663 assert(UF > 0 && "Zero unrolled factor is not supported"); 1664 assert(UnrolledLoop != RemainderLoop && 1665 "Unrolled and Remainder loops are expected to distinct"); 1666 1667 // Get number of iterations in the original scalar loop. 1668 unsigned OrigLoopInvocationWeight = 0; 1669 std::optional<unsigned> OrigAverageTripCount = 1670 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1671 if (!OrigAverageTripCount) 1672 return; 1673 1674 // Calculate number of iterations in unrolled loop. 1675 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1676 // Calculate number of iterations for remainder loop. 1677 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1678 1679 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1680 OrigLoopInvocationWeight); 1681 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1682 OrigLoopInvocationWeight); 1683 } 1684 1685 /// Utility that implements appending of loops onto a worklist. 1686 /// Loops are added in preorder (analogous for reverse postorder for trees), 1687 /// and the worklist is processed LIFO. 1688 template <typename RangeT> 1689 void llvm::appendReversedLoopsToWorklist( 1690 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1691 // We use an internal worklist to build up the preorder traversal without 1692 // recursion. 1693 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1694 1695 // We walk the initial sequence of loops in reverse because we generally want 1696 // to visit defs before uses and the worklist is LIFO. 1697 for (Loop *RootL : Loops) { 1698 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1699 assert(PreOrderWorklist.empty() && 1700 "Must start with an empty preorder walk worklist."); 1701 PreOrderWorklist.push_back(RootL); 1702 do { 1703 Loop *L = PreOrderWorklist.pop_back_val(); 1704 PreOrderWorklist.append(L->begin(), L->end()); 1705 PreOrderLoops.push_back(L); 1706 } while (!PreOrderWorklist.empty()); 1707 1708 Worklist.insert(std::move(PreOrderLoops)); 1709 PreOrderLoops.clear(); 1710 } 1711 } 1712 1713 template <typename RangeT> 1714 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1715 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1716 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1717 } 1718 1719 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1720 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1721 1722 template void 1723 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1724 SmallPriorityWorklist<Loop *, 4> &Worklist); 1725 1726 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1727 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1728 appendReversedLoopsToWorklist(LI, Worklist); 1729 } 1730 1731 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1732 LoopInfo *LI, LPPassManager *LPM) { 1733 Loop &New = *LI->AllocateLoop(); 1734 if (PL) 1735 PL->addChildLoop(&New); 1736 else 1737 LI->addTopLevelLoop(&New); 1738 1739 if (LPM) 1740 LPM->addLoop(New); 1741 1742 // Add all of the blocks in L to the new loop. 1743 for (BasicBlock *BB : L->blocks()) 1744 if (LI->getLoopFor(BB) == L) 1745 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1746 1747 // Add all of the subloops to the new loop. 1748 for (Loop *I : *L) 1749 cloneLoop(I, &New, VM, LI, LPM); 1750 1751 return &New; 1752 } 1753 1754 /// IR Values for the lower and upper bounds of a pointer evolution. We 1755 /// need to use value-handles because SCEV expansion can invalidate previously 1756 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1757 /// a previous one. 1758 struct PointerBounds { 1759 TrackingVH<Value> Start; 1760 TrackingVH<Value> End; 1761 Value *StrideToCheck; 1762 }; 1763 1764 /// Expand code for the lower and upper bound of the pointer group \p CG 1765 /// in \p TheLoop. \return the values for the bounds. 1766 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1767 Loop *TheLoop, Instruction *Loc, 1768 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1769 LLVMContext &Ctx = Loc->getContext(); 1770 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace); 1771 1772 Value *Start = nullptr, *End = nullptr; 1773 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1774 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr; 1775 1776 // If the Low and High values are themselves loop-variant, then we may want 1777 // to expand the range to include those covered by the outer loop as well. 1778 // There is a trade-off here with the advantage being that creating checks 1779 // using the expanded range permits the runtime memory checks to be hoisted 1780 // out of the outer loop. This reduces the cost of entering the inner loop, 1781 // which can be significant for low trip counts. The disadvantage is that 1782 // there is a chance we may now never enter the vectorized inner loop, 1783 // whereas using a restricted range check could have allowed us to enter at 1784 // least once. This is why the behaviour is not currently the default and is 1785 // controlled by the parameter 'HoistRuntimeChecks'. 1786 if (HoistRuntimeChecks && TheLoop->getParentLoop() && 1787 isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) { 1788 auto *HighAR = cast<SCEVAddRecExpr>(High); 1789 auto *LowAR = cast<SCEVAddRecExpr>(Low); 1790 const Loop *OuterLoop = TheLoop->getParentLoop(); 1791 ScalarEvolution &SE = *Exp.getSE(); 1792 const SCEV *Recur = LowAR->getStepRecurrence(SE); 1793 if (Recur == HighAR->getStepRecurrence(SE) && 1794 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) { 1795 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1796 const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch); 1797 if (!isa<SCEVCouldNotCompute>(OuterExitCount) && 1798 OuterExitCount->getType()->isIntegerTy()) { 1799 const SCEV *NewHigh = 1800 cast<SCEVAddRecExpr>(High)->evaluateAtIteration(OuterExitCount, SE); 1801 if (!isa<SCEVCouldNotCompute>(NewHigh)) { 1802 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include " 1803 "outer loop in order to permit hoisting\n"); 1804 High = NewHigh; 1805 Low = cast<SCEVAddRecExpr>(Low)->getStart(); 1806 // If there is a possibility that the stride is negative then we have 1807 // to generate extra checks to ensure the stride is positive. 1808 if (!SE.isKnownNonNegative( 1809 SE.applyLoopGuards(Recur, HighAR->getLoop()))) { 1810 Stride = Recur; 1811 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is " 1812 "positive: " 1813 << *Stride << '\n'); 1814 } 1815 } 1816 } 1817 } 1818 } 1819 1820 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc); 1821 End = Exp.expandCodeFor(High, PtrArithTy, Loc); 1822 if (CG->NeedsFreeze) { 1823 IRBuilder<> Builder(Loc); 1824 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr"); 1825 End = Builder.CreateFreeze(End, End->getName() + ".fr"); 1826 } 1827 Value *StrideVal = 1828 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr; 1829 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n"); 1830 return {Start, End, StrideVal}; 1831 } 1832 1833 /// Turns a collection of checks into a collection of expanded upper and 1834 /// lower bounds for both pointers in the check. 1835 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1836 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1837 Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) { 1838 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1839 1840 // Here we're relying on the SCEV Expander's cache to only emit code for the 1841 // same bounds once. 1842 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1843 [&](const RuntimePointerCheck &Check) { 1844 PointerBounds First = expandBounds(Check.first, L, Loc, Exp, 1845 HoistRuntimeChecks), 1846 Second = expandBounds(Check.second, L, Loc, Exp, 1847 HoistRuntimeChecks); 1848 return std::make_pair(First, Second); 1849 }); 1850 1851 return ChecksWithBounds; 1852 } 1853 1854 Value *llvm::addRuntimeChecks( 1855 Instruction *Loc, Loop *TheLoop, 1856 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1857 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1858 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1859 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1860 auto ExpandedChecks = 1861 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks); 1862 1863 LLVMContext &Ctx = Loc->getContext(); 1864 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1865 Loc->getDataLayout()); 1866 ChkBuilder.SetInsertPoint(Loc); 1867 // Our instructions might fold to a constant. 1868 Value *MemoryRuntimeCheck = nullptr; 1869 1870 for (const auto &[A, B] : ExpandedChecks) { 1871 // Check if two pointers (A and B) conflict where conflict is computed as: 1872 // start(A) <= end(B) && start(B) <= end(A) 1873 1874 assert((A.Start->getType()->getPointerAddressSpace() == 1875 B.End->getType()->getPointerAddressSpace()) && 1876 (B.Start->getType()->getPointerAddressSpace() == 1877 A.End->getType()->getPointerAddressSpace()) && 1878 "Trying to bounds check pointers with different address spaces"); 1879 1880 // [A|B].Start points to the first accessed byte under base [A|B]. 1881 // [A|B].End points to the last accessed byte, plus one. 1882 // There is no conflict when the intervals are disjoint: 1883 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1884 // 1885 // bound0 = (B.Start < A.End) 1886 // bound1 = (A.Start < B.End) 1887 // IsConflict = bound0 & bound1 1888 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0"); 1889 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1"); 1890 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1891 if (A.StrideToCheck) { 1892 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1893 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0), 1894 "stride.check"); 1895 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1896 } 1897 if (B.StrideToCheck) { 1898 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1899 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0), 1900 "stride.check"); 1901 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1902 } 1903 if (MemoryRuntimeCheck) { 1904 IsConflict = 1905 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1906 } 1907 MemoryRuntimeCheck = IsConflict; 1908 } 1909 1910 return MemoryRuntimeCheck; 1911 } 1912 1913 Value *llvm::addDiffRuntimeChecks( 1914 Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander, 1915 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) { 1916 1917 LLVMContext &Ctx = Loc->getContext(); 1918 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1919 Loc->getDataLayout()); 1920 ChkBuilder.SetInsertPoint(Loc); 1921 // Our instructions might fold to a constant. 1922 Value *MemoryRuntimeCheck = nullptr; 1923 1924 auto &SE = *Expander.getSE(); 1925 // Map to keep track of created compares, The key is the pair of operands for 1926 // the compare, to allow detecting and re-using redundant compares. 1927 DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares; 1928 for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) { 1929 Type *Ty = SinkStart->getType(); 1930 // Compute VF * IC * AccessSize. 1931 auto *VFTimesUFTimesSize = 1932 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()), 1933 ConstantInt::get(Ty, IC * AccessSize)); 1934 Value *Diff = 1935 Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc); 1936 1937 // Check if the same compare has already been created earlier. In that case, 1938 // there is no need to check it again. 1939 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize}); 1940 if (IsConflict) 1941 continue; 1942 1943 IsConflict = 1944 ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check"); 1945 SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict}); 1946 if (NeedsFreeze) 1947 IsConflict = 1948 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr"); 1949 if (MemoryRuntimeCheck) { 1950 IsConflict = 1951 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1952 } 1953 MemoryRuntimeCheck = IsConflict; 1954 } 1955 1956 return MemoryRuntimeCheck; 1957 } 1958 1959 std::optional<IVConditionInfo> 1960 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, 1961 const MemorySSA &MSSA, AAResults &AA) { 1962 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1963 if (!TI || !TI->isConditional()) 1964 return {}; 1965 1966 auto *CondI = dyn_cast<Instruction>(TI->getCondition()); 1967 // The case with the condition outside the loop should already be handled 1968 // earlier. 1969 // Allow CmpInst and TruncInsts as they may be users of load instructions 1970 // and have potential for partial unswitching 1971 if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI)) 1972 return {}; 1973 1974 SmallVector<Instruction *> InstToDuplicate; 1975 InstToDuplicate.push_back(CondI); 1976 1977 SmallVector<Value *, 4> WorkList; 1978 WorkList.append(CondI->op_begin(), CondI->op_end()); 1979 1980 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1981 SmallVector<MemoryLocation, 4> AccessedLocs; 1982 while (!WorkList.empty()) { 1983 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1984 if (!I || !L.contains(I)) 1985 continue; 1986 1987 // TODO: support additional instructions. 1988 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1989 return {}; 1990 1991 // Do not duplicate volatile and atomic loads. 1992 if (auto *LI = dyn_cast<LoadInst>(I)) 1993 if (LI->isVolatile() || LI->isAtomic()) 1994 return {}; 1995 1996 InstToDuplicate.push_back(I); 1997 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1998 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1999 // Queue the defining access to check for alias checks. 2000 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 2001 AccessedLocs.push_back(MemoryLocation::get(I)); 2002 } else { 2003 // MemoryDefs may clobber the location or may be atomic memory 2004 // operations. Bail out. 2005 return {}; 2006 } 2007 } 2008 WorkList.append(I->op_begin(), I->op_end()); 2009 } 2010 2011 if (InstToDuplicate.empty()) 2012 return {}; 2013 2014 SmallVector<BasicBlock *, 4> ExitingBlocks; 2015 L.getExitingBlocks(ExitingBlocks); 2016 auto HasNoClobbersOnPath = 2017 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 2018 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 2019 SmallVector<MemoryAccess *, 4> AccessesToCheck) 2020 -> std::optional<IVConditionInfo> { 2021 IVConditionInfo Info; 2022 // First, collect all blocks in the loop that are on a patch from Succ 2023 // to the header. 2024 SmallVector<BasicBlock *, 4> WorkList; 2025 WorkList.push_back(Succ); 2026 WorkList.push_back(Header); 2027 SmallPtrSet<BasicBlock *, 4> Seen; 2028 Seen.insert(Header); 2029 Info.PathIsNoop &= 2030 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 2031 2032 while (!WorkList.empty()) { 2033 BasicBlock *Current = WorkList.pop_back_val(); 2034 if (!L.contains(Current)) 2035 continue; 2036 const auto &SeenIns = Seen.insert(Current); 2037 if (!SeenIns.second) 2038 continue; 2039 2040 Info.PathIsNoop &= all_of( 2041 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 2042 WorkList.append(succ_begin(Current), succ_end(Current)); 2043 } 2044 2045 // Require at least 2 blocks on a path through the loop. This skips 2046 // paths that directly exit the loop. 2047 if (Seen.size() < 2) 2048 return {}; 2049 2050 // Next, check if there are any MemoryDefs that are on the path through 2051 // the loop (in the Seen set) and they may-alias any of the locations in 2052 // AccessedLocs. If that is the case, they may modify the condition and 2053 // partial unswitching is not possible. 2054 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 2055 while (!AccessesToCheck.empty()) { 2056 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 2057 auto SeenI = SeenAccesses.insert(Current); 2058 if (!SeenI.second || !Seen.contains(Current->getBlock())) 2059 continue; 2060 2061 // Bail out if exceeded the threshold. 2062 if (SeenAccesses.size() >= MSSAThreshold) 2063 return {}; 2064 2065 // MemoryUse are read-only accesses. 2066 if (isa<MemoryUse>(Current)) 2067 continue; 2068 2069 // For a MemoryDef, check if is aliases any of the location feeding 2070 // the original condition. 2071 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 2072 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 2073 return isModSet( 2074 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 2075 })) 2076 return {}; 2077 } 2078 2079 for (Use &U : Current->uses()) 2080 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 2081 } 2082 2083 // We could also allow loops with known trip counts without mustprogress, 2084 // but ScalarEvolution may not be available. 2085 Info.PathIsNoop &= isMustProgress(&L); 2086 2087 // If the path is considered a no-op so far, check if it reaches a 2088 // single exit block without any phis. This ensures no values from the 2089 // loop are used outside of the loop. 2090 if (Info.PathIsNoop) { 2091 for (auto *Exiting : ExitingBlocks) { 2092 if (!Seen.contains(Exiting)) 2093 continue; 2094 for (auto *Succ : successors(Exiting)) { 2095 if (L.contains(Succ)) 2096 continue; 2097 2098 Info.PathIsNoop &= Succ->phis().empty() && 2099 (!Info.ExitForPath || Info.ExitForPath == Succ); 2100 if (!Info.PathIsNoop) 2101 break; 2102 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 2103 "cannot have multiple exit blocks"); 2104 Info.ExitForPath = Succ; 2105 } 2106 } 2107 } 2108 if (!Info.ExitForPath) 2109 Info.PathIsNoop = false; 2110 2111 Info.InstToDuplicate = InstToDuplicate; 2112 return Info; 2113 }; 2114 2115 // If we branch to the same successor, partial unswitching will not be 2116 // beneficial. 2117 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 2118 return {}; 2119 2120 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 2121 AccessesToCheck)) { 2122 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 2123 return Info; 2124 } 2125 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 2126 AccessesToCheck)) { 2127 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 2128 return Info; 2129 } 2130 2131 return {}; 2132 } 2133