1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/MustExecute.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 #define DEBUG_TYPE "loop-utils" 58 59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 61 62 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 63 MemorySSAUpdater *MSSAU, 64 bool PreserveLCSSA) { 65 bool Changed = false; 66 67 // We re-use a vector for the in-loop predecesosrs. 68 SmallVector<BasicBlock *, 4> InLoopPredecessors; 69 70 auto RewriteExit = [&](BasicBlock *BB) { 71 assert(InLoopPredecessors.empty() && 72 "Must start with an empty predecessors list!"); 73 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 74 75 // See if there are any non-loop predecessors of this exit block and 76 // keep track of the in-loop predecessors. 77 bool IsDedicatedExit = true; 78 for (auto *PredBB : predecessors(BB)) 79 if (L->contains(PredBB)) { 80 if (isa<IndirectBrInst>(PredBB->getTerminator())) 81 // We cannot rewrite exiting edges from an indirectbr. 82 return false; 83 if (isa<CallBrInst>(PredBB->getTerminator())) 84 // We cannot rewrite exiting edges from a callbr. 85 return false; 86 87 InLoopPredecessors.push_back(PredBB); 88 } else { 89 IsDedicatedExit = false; 90 } 91 92 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 93 94 // Nothing to do if this is already a dedicated exit. 95 if (IsDedicatedExit) 96 return false; 97 98 auto *NewExitBB = SplitBlockPredecessors( 99 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 100 101 if (!NewExitBB) 102 LLVM_DEBUG( 103 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 104 << *L << "\n"); 105 else 106 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 107 << NewExitBB->getName() << "\n"); 108 return true; 109 }; 110 111 // Walk the exit blocks directly rather than building up a data structure for 112 // them, but only visit each one once. 113 SmallPtrSet<BasicBlock *, 4> Visited; 114 for (auto *BB : L->blocks()) 115 for (auto *SuccBB : successors(BB)) { 116 // We're looking for exit blocks so skip in-loop successors. 117 if (L->contains(SuccBB)) 118 continue; 119 120 // Visit each exit block exactly once. 121 if (!Visited.insert(SuccBB).second) 122 continue; 123 124 Changed |= RewriteExit(SuccBB); 125 } 126 127 return Changed; 128 } 129 130 /// Returns the instructions that use values defined in the loop. 131 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 132 SmallVector<Instruction *, 8> UsedOutside; 133 134 for (auto *Block : L->getBlocks()) 135 // FIXME: I believe that this could use copy_if if the Inst reference could 136 // be adapted into a pointer. 137 for (auto &Inst : *Block) { 138 auto Users = Inst.users(); 139 if (any_of(Users, [&](User *U) { 140 auto *Use = cast<Instruction>(U); 141 return !L->contains(Use->getParent()); 142 })) 143 UsedOutside.push_back(&Inst); 144 } 145 146 return UsedOutside; 147 } 148 149 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 150 // By definition, all loop passes need the LoopInfo analysis and the 151 // Dominator tree it depends on. Because they all participate in the loop 152 // pass manager, they must also preserve these. 153 AU.addRequired<DominatorTreeWrapperPass>(); 154 AU.addPreserved<DominatorTreeWrapperPass>(); 155 AU.addRequired<LoopInfoWrapperPass>(); 156 AU.addPreserved<LoopInfoWrapperPass>(); 157 158 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 159 // here because users shouldn't directly get them from this header. 160 extern char &LoopSimplifyID; 161 extern char &LCSSAID; 162 AU.addRequiredID(LoopSimplifyID); 163 AU.addPreservedID(LoopSimplifyID); 164 AU.addRequiredID(LCSSAID); 165 AU.addPreservedID(LCSSAID); 166 // This is used in the LPPassManager to perform LCSSA verification on passes 167 // which preserve lcssa form 168 AU.addRequired<LCSSAVerificationPass>(); 169 AU.addPreserved<LCSSAVerificationPass>(); 170 171 // Loop passes are designed to run inside of a loop pass manager which means 172 // that any function analyses they require must be required by the first loop 173 // pass in the manager (so that it is computed before the loop pass manager 174 // runs) and preserved by all loop pasess in the manager. To make this 175 // reasonably robust, the set needed for most loop passes is maintained here. 176 // If your loop pass requires an analysis not listed here, you will need to 177 // carefully audit the loop pass manager nesting structure that results. 178 AU.addRequired<AAResultsWrapperPass>(); 179 AU.addPreserved<AAResultsWrapperPass>(); 180 AU.addPreserved<BasicAAWrapperPass>(); 181 AU.addPreserved<GlobalsAAWrapperPass>(); 182 AU.addPreserved<SCEVAAWrapperPass>(); 183 AU.addRequired<ScalarEvolutionWrapperPass>(); 184 AU.addPreserved<ScalarEvolutionWrapperPass>(); 185 // FIXME: When all loop passes preserve MemorySSA, it can be required and 186 // preserved here instead of the individual handling in each pass. 187 } 188 189 /// Manually defined generic "LoopPass" dependency initialization. This is used 190 /// to initialize the exact set of passes from above in \c 191 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 192 /// with: 193 /// 194 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 195 /// 196 /// As-if "LoopPass" were a pass. 197 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 198 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 201 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 204 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 205 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 206 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 207 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 208 } 209 210 /// Create MDNode for input string. 211 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 212 LLVMContext &Context = TheLoop->getHeader()->getContext(); 213 Metadata *MDs[] = { 214 MDString::get(Context, Name), 215 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 216 return MDNode::get(Context, MDs); 217 } 218 219 /// Set input string into loop metadata by keeping other values intact. 220 /// If the string is already in loop metadata update value if it is 221 /// different. 222 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 223 unsigned V) { 224 SmallVector<Metadata *, 4> MDs(1); 225 // If the loop already has metadata, retain it. 226 MDNode *LoopID = TheLoop->getLoopID(); 227 if (LoopID) { 228 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 229 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 230 // If it is of form key = value, try to parse it. 231 if (Node->getNumOperands() == 2) { 232 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 233 if (S && S->getString().equals(StringMD)) { 234 ConstantInt *IntMD = 235 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 236 if (IntMD && IntMD->getSExtValue() == V) 237 // It is already in place. Do nothing. 238 return; 239 // We need to update the value, so just skip it here and it will 240 // be added after copying other existed nodes. 241 continue; 242 } 243 } 244 MDs.push_back(Node); 245 } 246 } 247 // Add new metadata. 248 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 249 // Replace current metadata node with new one. 250 LLVMContext &Context = TheLoop->getHeader()->getContext(); 251 MDNode *NewLoopID = MDNode::get(Context, MDs); 252 // Set operand 0 to refer to the loop id itself. 253 NewLoopID->replaceOperandWith(0, NewLoopID); 254 TheLoop->setLoopID(NewLoopID); 255 } 256 257 Optional<ElementCount> 258 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 259 Optional<int> Width = 260 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 261 262 if (Width.hasValue()) { 263 Optional<int> IsScalable = getOptionalIntLoopAttribute( 264 TheLoop, "llvm.loop.vectorize.scalable.enable"); 265 return ElementCount::get(*Width, IsScalable.getValueOr(false)); 266 } 267 268 return None; 269 } 270 271 Optional<MDNode *> llvm::makeFollowupLoopID( 272 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 273 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 274 if (!OrigLoopID) { 275 if (AlwaysNew) 276 return nullptr; 277 return None; 278 } 279 280 assert(OrigLoopID->getOperand(0) == OrigLoopID); 281 282 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 283 bool InheritSomeAttrs = 284 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 285 SmallVector<Metadata *, 8> MDs; 286 MDs.push_back(nullptr); 287 288 bool Changed = false; 289 if (InheritAllAttrs || InheritSomeAttrs) { 290 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 291 MDNode *Op = cast<MDNode>(Existing.get()); 292 293 auto InheritThisAttribute = [InheritSomeAttrs, 294 InheritOptionsExceptPrefix](MDNode *Op) { 295 if (!InheritSomeAttrs) 296 return false; 297 298 // Skip malformatted attribute metadata nodes. 299 if (Op->getNumOperands() == 0) 300 return true; 301 Metadata *NameMD = Op->getOperand(0).get(); 302 if (!isa<MDString>(NameMD)) 303 return true; 304 StringRef AttrName = cast<MDString>(NameMD)->getString(); 305 306 // Do not inherit excluded attributes. 307 return !AttrName.startswith(InheritOptionsExceptPrefix); 308 }; 309 310 if (InheritThisAttribute(Op)) 311 MDs.push_back(Op); 312 else 313 Changed = true; 314 } 315 } else { 316 // Modified if we dropped at least one attribute. 317 Changed = OrigLoopID->getNumOperands() > 1; 318 } 319 320 bool HasAnyFollowup = false; 321 for (StringRef OptionName : FollowupOptions) { 322 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 323 if (!FollowupNode) 324 continue; 325 326 HasAnyFollowup = true; 327 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 328 MDs.push_back(Option.get()); 329 Changed = true; 330 } 331 } 332 333 // Attributes of the followup loop not specified explicity, so signal to the 334 // transformation pass to add suitable attributes. 335 if (!AlwaysNew && !HasAnyFollowup) 336 return None; 337 338 // If no attributes were added or remove, the previous loop Id can be reused. 339 if (!AlwaysNew && !Changed) 340 return OrigLoopID; 341 342 // No attributes is equivalent to having no !llvm.loop metadata at all. 343 if (MDs.size() == 1) 344 return nullptr; 345 346 // Build the new loop ID. 347 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 348 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 349 return FollowupLoopID; 350 } 351 352 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 353 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 354 } 355 356 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 357 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 358 } 359 360 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 362 return TM_SuppressedByUser; 363 364 Optional<int> Count = 365 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 366 if (Count.hasValue()) 367 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 368 369 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 370 return TM_ForcedByUser; 371 372 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 373 return TM_ForcedByUser; 374 375 if (hasDisableAllTransformsHint(L)) 376 return TM_Disable; 377 378 return TM_Unspecified; 379 } 380 381 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 383 return TM_SuppressedByUser; 384 385 Optional<int> Count = 386 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 387 if (Count.hasValue()) 388 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 389 390 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 391 return TM_ForcedByUser; 392 393 if (hasDisableAllTransformsHint(L)) 394 return TM_Disable; 395 396 return TM_Unspecified; 397 } 398 399 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 400 Optional<bool> Enable = 401 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 402 403 if (Enable == false) 404 return TM_SuppressedByUser; 405 406 Optional<ElementCount> VectorizeWidth = 407 getOptionalElementCountLoopAttribute(L); 408 Optional<int> InterleaveCount = 409 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 410 411 // 'Forcing' vector width and interleave count to one effectively disables 412 // this tranformation. 413 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 414 InterleaveCount == 1) 415 return TM_SuppressedByUser; 416 417 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 418 return TM_Disable; 419 420 if (Enable == true) 421 return TM_ForcedByUser; 422 423 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 424 return TM_Disable; 425 426 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 427 return TM_Enable; 428 429 if (hasDisableAllTransformsHint(L)) 430 return TM_Disable; 431 432 return TM_Unspecified; 433 } 434 435 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 436 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 437 return TM_ForcedByUser; 438 439 if (hasDisableAllTransformsHint(L)) 440 return TM_Disable; 441 442 return TM_Unspecified; 443 } 444 445 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 446 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 447 return TM_SuppressedByUser; 448 449 if (hasDisableAllTransformsHint(L)) 450 return TM_Disable; 451 452 return TM_Unspecified; 453 } 454 455 /// Does a BFS from a given node to all of its children inside a given loop. 456 /// The returned vector of nodes includes the starting point. 457 SmallVector<DomTreeNode *, 16> 458 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 459 SmallVector<DomTreeNode *, 16> Worklist; 460 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 461 // Only include subregions in the top level loop. 462 BasicBlock *BB = DTN->getBlock(); 463 if (CurLoop->contains(BB)) 464 Worklist.push_back(DTN); 465 }; 466 467 AddRegionToWorklist(N); 468 469 for (size_t I = 0; I < Worklist.size(); I++) { 470 for (DomTreeNode *Child : Worklist[I]->children()) 471 AddRegionToWorklist(Child); 472 } 473 474 return Worklist; 475 } 476 477 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 478 LoopInfo *LI, MemorySSA *MSSA) { 479 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 480 auto *Preheader = L->getLoopPreheader(); 481 assert(Preheader && "Preheader should exist!"); 482 483 std::unique_ptr<MemorySSAUpdater> MSSAU; 484 if (MSSA) 485 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 486 487 // Now that we know the removal is safe, remove the loop by changing the 488 // branch from the preheader to go to the single exit block. 489 // 490 // Because we're deleting a large chunk of code at once, the sequence in which 491 // we remove things is very important to avoid invalidation issues. 492 493 // Tell ScalarEvolution that the loop is deleted. Do this before 494 // deleting the loop so that ScalarEvolution can look at the loop 495 // to determine what it needs to clean up. 496 if (SE) 497 SE->forgetLoop(L); 498 499 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 500 assert(OldBr && "Preheader must end with a branch"); 501 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 502 // Connect the preheader to the exit block. Keep the old edge to the header 503 // around to perform the dominator tree update in two separate steps 504 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 505 // preheader -> header. 506 // 507 // 508 // 0. Preheader 1. Preheader 2. Preheader 509 // | | | | 510 // V | V | 511 // Header <--\ | Header <--\ | Header <--\ 512 // | | | | | | | | | | | 513 // | V | | | V | | | V | 514 // | Body --/ | | Body --/ | | Body --/ 515 // V V V V V 516 // Exit Exit Exit 517 // 518 // By doing this is two separate steps we can perform the dominator tree 519 // update without using the batch update API. 520 // 521 // Even when the loop is never executed, we cannot remove the edge from the 522 // source block to the exit block. Consider the case where the unexecuted loop 523 // branches back to an outer loop. If we deleted the loop and removed the edge 524 // coming to this inner loop, this will break the outer loop structure (by 525 // deleting the backedge of the outer loop). If the outer loop is indeed a 526 // non-loop, it will be deleted in a future iteration of loop deletion pass. 527 IRBuilder<> Builder(OldBr); 528 529 auto *ExitBlock = L->getUniqueExitBlock(); 530 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 531 if (ExitBlock) { 532 assert(ExitBlock && "Should have a unique exit block!"); 533 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 534 535 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 536 // Remove the old branch. The conditional branch becomes a new terminator. 537 OldBr->eraseFromParent(); 538 539 // Rewrite phis in the exit block to get their inputs from the Preheader 540 // instead of the exiting block. 541 for (PHINode &P : ExitBlock->phis()) { 542 // Set the zero'th element of Phi to be from the preheader and remove all 543 // other incoming values. Given the loop has dedicated exits, all other 544 // incoming values must be from the exiting blocks. 545 int PredIndex = 0; 546 P.setIncomingBlock(PredIndex, Preheader); 547 // Removes all incoming values from all other exiting blocks (including 548 // duplicate values from an exiting block). 549 // Nuke all entries except the zero'th entry which is the preheader entry. 550 // NOTE! We need to remove Incoming Values in the reverse order as done 551 // below, to keep the indices valid for deletion (removeIncomingValues 552 // updates getNumIncomingValues and shifts all values down into the 553 // operand being deleted). 554 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 555 P.removeIncomingValue(e - i, false); 556 557 assert((P.getNumIncomingValues() == 1 && 558 P.getIncomingBlock(PredIndex) == Preheader) && 559 "Should have exactly one value and that's from the preheader!"); 560 } 561 562 if (DT) { 563 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 564 if (MSSA) { 565 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 566 *DT); 567 if (VerifyMemorySSA) 568 MSSA->verifyMemorySSA(); 569 } 570 } 571 572 // Disconnect the loop body by branching directly to its exit. 573 Builder.SetInsertPoint(Preheader->getTerminator()); 574 Builder.CreateBr(ExitBlock); 575 // Remove the old branch. 576 Preheader->getTerminator()->eraseFromParent(); 577 } else { 578 assert(L->hasNoExitBlocks() && 579 "Loop should have either zero or one exit blocks."); 580 581 Builder.SetInsertPoint(OldBr); 582 Builder.CreateUnreachable(); 583 Preheader->getTerminator()->eraseFromParent(); 584 } 585 586 if (DT) { 587 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 588 if (MSSA) { 589 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 590 *DT); 591 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 592 L->block_end()); 593 MSSAU->removeBlocks(DeadBlockSet); 594 if (VerifyMemorySSA) 595 MSSA->verifyMemorySSA(); 596 } 597 } 598 599 // Use a map to unique and a vector to guarantee deterministic ordering. 600 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 601 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 602 603 if (ExitBlock) { 604 // Given LCSSA form is satisfied, we should not have users of instructions 605 // within the dead loop outside of the loop. However, LCSSA doesn't take 606 // unreachable uses into account. We handle them here. 607 // We could do it after drop all references (in this case all users in the 608 // loop will be already eliminated and we have less work to do but according 609 // to API doc of User::dropAllReferences only valid operation after dropping 610 // references, is deletion. So let's substitute all usages of 611 // instruction from the loop with undef value of corresponding type first. 612 for (auto *Block : L->blocks()) 613 for (Instruction &I : *Block) { 614 auto *Undef = UndefValue::get(I.getType()); 615 for (Use &U : llvm::make_early_inc_range(I.uses())) { 616 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 617 if (L->contains(Usr->getParent())) 618 continue; 619 // If we have a DT then we can check that uses outside a loop only in 620 // unreachable block. 621 if (DT) 622 assert(!DT->isReachableFromEntry(U) && 623 "Unexpected user in reachable block"); 624 U.set(Undef); 625 } 626 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 627 if (!DVI) 628 continue; 629 auto Key = 630 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 631 if (Key != DeadDebugSet.end()) 632 continue; 633 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 634 DeadDebugInst.push_back(DVI); 635 } 636 637 // After the loop has been deleted all the values defined and modified 638 // inside the loop are going to be unavailable. 639 // Since debug values in the loop have been deleted, inserting an undef 640 // dbg.value truncates the range of any dbg.value before the loop where the 641 // loop used to be. This is particularly important for constant values. 642 DIBuilder DIB(*ExitBlock->getModule()); 643 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 644 assert(InsertDbgValueBefore && 645 "There should be a non-PHI instruction in exit block, else these " 646 "instructions will have no parent."); 647 for (auto *DVI : DeadDebugInst) 648 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 649 DVI->getVariable(), DVI->getExpression(), 650 DVI->getDebugLoc(), InsertDbgValueBefore); 651 } 652 653 // Remove the block from the reference counting scheme, so that we can 654 // delete it freely later. 655 for (auto *Block : L->blocks()) 656 Block->dropAllReferences(); 657 658 if (MSSA && VerifyMemorySSA) 659 MSSA->verifyMemorySSA(); 660 661 if (LI) { 662 // Erase the instructions and the blocks without having to worry 663 // about ordering because we already dropped the references. 664 // NOTE: This iteration is safe because erasing the block does not remove 665 // its entry from the loop's block list. We do that in the next section. 666 for (BasicBlock *BB : L->blocks()) 667 BB->eraseFromParent(); 668 669 // Finally, the blocks from loopinfo. This has to happen late because 670 // otherwise our loop iterators won't work. 671 672 SmallPtrSet<BasicBlock *, 8> blocks; 673 blocks.insert(L->block_begin(), L->block_end()); 674 for (BasicBlock *BB : blocks) 675 LI->removeBlock(BB); 676 677 // The last step is to update LoopInfo now that we've eliminated this loop. 678 // Note: LoopInfo::erase remove the given loop and relink its subloops with 679 // its parent. While removeLoop/removeChildLoop remove the given loop but 680 // not relink its subloops, which is what we want. 681 if (Loop *ParentLoop = L->getParentLoop()) { 682 Loop::iterator I = find(*ParentLoop, L); 683 assert(I != ParentLoop->end() && "Couldn't find loop"); 684 ParentLoop->removeChildLoop(I); 685 } else { 686 Loop::iterator I = find(*LI, L); 687 assert(I != LI->end() && "Couldn't find loop"); 688 LI->removeLoop(I); 689 } 690 LI->destroy(L); 691 } 692 } 693 694 static Loop *getOutermostLoop(Loop *L) { 695 while (Loop *Parent = L->getParentLoop()) 696 L = Parent; 697 return L; 698 } 699 700 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 701 LoopInfo &LI, MemorySSA *MSSA) { 702 auto *Latch = L->getLoopLatch(); 703 assert(Latch && "multiple latches not yet supported"); 704 auto *Header = L->getHeader(); 705 Loop *OutermostLoop = getOutermostLoop(L); 706 707 SE.forgetLoop(L); 708 709 std::unique_ptr<MemorySSAUpdater> MSSAU; 710 if (MSSA) 711 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 712 713 // Update the CFG and domtree. We chose to special case a couple of 714 // of common cases for code quality and test readability reasons. 715 [&]() -> void { 716 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 717 if (!BI->isConditional()) { 718 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 719 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 720 MSSAU.get()); 721 return; 722 } 723 724 // Conditional latch/exit - note that latch can be shared by inner 725 // and outer loop so the other target doesn't need to an exit 726 if (L->isLoopExiting(Latch)) { 727 // TODO: Generalize ConstantFoldTerminator so that it can be used 728 // here without invalidating LCSSA or MemorySSA. (Tricky case for 729 // LCSSA: header is an exit block of a preceeding sibling loop w/o 730 // dedicated exits.) 731 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 732 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 733 734 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 735 Header->removePredecessor(Latch, true); 736 737 IRBuilder<> Builder(BI); 738 auto *NewBI = Builder.CreateBr(ExitBB); 739 // Transfer the metadata to the new branch instruction (minus the 740 // loop info since this is no longer a loop) 741 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 742 LLVMContext::MD_annotation}); 743 744 BI->eraseFromParent(); 745 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 746 if (MSSA) 747 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 748 return; 749 } 750 } 751 752 // General case. By splitting the backedge, and then explicitly making it 753 // unreachable we gracefully handle corner cases such as switch and invoke 754 // termiantors. 755 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 756 757 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 758 (void)changeToUnreachable(BackedgeBB->getTerminator(), 759 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 760 }(); 761 762 // Erase (and destroy) this loop instance. Handles relinking sub-loops 763 // and blocks within the loop as needed. 764 LI.erase(L); 765 766 // If the loop we broke had a parent, then changeToUnreachable might have 767 // caused a block to be removed from the parent loop (see loop_nest_lcssa 768 // test case in zero-btc.ll for an example), thus changing the parent's 769 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 770 // loop which might have a had a block removed. 771 if (OutermostLoop != L) 772 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 773 } 774 775 776 /// Checks if \p L has an exiting latch branch. There may also be other 777 /// exiting blocks. Returns branch instruction terminating the loop 778 /// latch if above check is successful, nullptr otherwise. 779 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 780 BasicBlock *Latch = L->getLoopLatch(); 781 if (!Latch) 782 return nullptr; 783 784 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 785 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 786 return nullptr; 787 788 assert((LatchBR->getSuccessor(0) == L->getHeader() || 789 LatchBR->getSuccessor(1) == L->getHeader()) && 790 "At least one edge out of the latch must go to the header"); 791 792 return LatchBR; 793 } 794 795 /// Return the estimated trip count for any exiting branch which dominates 796 /// the loop latch. 797 static Optional<uint64_t> 798 getEstimatedTripCount(BranchInst *ExitingBranch, Loop *L, 799 uint64_t &OrigExitWeight) { 800 // To estimate the number of times the loop body was executed, we want to 801 // know the number of times the backedge was taken, vs. the number of times 802 // we exited the loop. 803 uint64_t LoopWeight, ExitWeight; 804 if (!ExitingBranch->extractProfMetadata(LoopWeight, ExitWeight)) 805 return None; 806 807 if (L->contains(ExitingBranch->getSuccessor(1))) 808 std::swap(LoopWeight, ExitWeight); 809 810 if (!ExitWeight) 811 // Don't have a way to return predicated infinite 812 return None; 813 814 OrigExitWeight = ExitWeight; 815 816 // Estimated exit count is a ratio of the loop weight by the weight of the 817 // edge exiting the loop, rounded to nearest. 818 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 819 // Estimated trip count is one plus estimated exit count. 820 return ExitCount + 1; 821 } 822 823 Optional<unsigned> 824 llvm::getLoopEstimatedTripCount(Loop *L, 825 unsigned *EstimatedLoopInvocationWeight) { 826 // Currently we take the estimate exit count only from the loop latch, 827 // ignoring other exiting blocks. This can overestimate the trip count 828 // if we exit through another exit, but can never underestimate it. 829 // TODO: incorporate information from other exits 830 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 831 uint64_t ExitWeight; 832 if (Optional<uint64_t> EstTripCount = 833 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 834 if (EstimatedLoopInvocationWeight) 835 *EstimatedLoopInvocationWeight = ExitWeight; 836 return *EstTripCount; 837 } 838 } 839 return None; 840 } 841 842 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 843 unsigned EstimatedloopInvocationWeight) { 844 // At the moment, we currently support changing the estimate trip count of 845 // the latch branch only. We could extend this API to manipulate estimated 846 // trip counts for any exit. 847 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 848 if (!LatchBranch) 849 return false; 850 851 // Calculate taken and exit weights. 852 unsigned LatchExitWeight = 0; 853 unsigned BackedgeTakenWeight = 0; 854 855 if (EstimatedTripCount > 0) { 856 LatchExitWeight = EstimatedloopInvocationWeight; 857 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 858 } 859 860 // Make a swap if back edge is taken when condition is "false". 861 if (LatchBranch->getSuccessor(0) != L->getHeader()) 862 std::swap(BackedgeTakenWeight, LatchExitWeight); 863 864 MDBuilder MDB(LatchBranch->getContext()); 865 866 // Set/Update profile metadata. 867 LatchBranch->setMetadata( 868 LLVMContext::MD_prof, 869 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 870 871 return true; 872 } 873 874 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 875 ScalarEvolution &SE) { 876 Loop *OuterL = InnerLoop->getParentLoop(); 877 if (!OuterL) 878 return true; 879 880 // Get the backedge taken count for the inner loop 881 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 882 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 883 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 884 !InnerLoopBECountSC->getType()->isIntegerTy()) 885 return false; 886 887 // Get whether count is invariant to the outer loop 888 ScalarEvolution::LoopDisposition LD = 889 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 890 if (LD != ScalarEvolution::LoopInvariant) 891 return false; 892 893 return true; 894 } 895 896 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 897 switch (RK) { 898 default: 899 llvm_unreachable("Unknown min/max recurrence kind"); 900 case RecurKind::UMin: 901 return CmpInst::ICMP_ULT; 902 case RecurKind::UMax: 903 return CmpInst::ICMP_UGT; 904 case RecurKind::SMin: 905 return CmpInst::ICMP_SLT; 906 case RecurKind::SMax: 907 return CmpInst::ICMP_SGT; 908 case RecurKind::FMin: 909 return CmpInst::FCMP_OLT; 910 case RecurKind::FMax: 911 return CmpInst::FCMP_OGT; 912 } 913 } 914 915 Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal, 916 RecurKind RK, Value *Left, Value *Right) { 917 if (auto VTy = dyn_cast<VectorType>(Left->getType())) 918 StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal); 919 Value *Cmp = 920 Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp"); 921 return Builder.CreateSelect(Cmp, Left, Right, "rdx.select"); 922 } 923 924 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 925 Value *Right) { 926 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 927 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 928 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 929 return Select; 930 } 931 932 // Helper to generate an ordered reduction. 933 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 934 unsigned Op, RecurKind RdxKind) { 935 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 936 937 // Extract and apply reduction ops in ascending order: 938 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 939 Value *Result = Acc; 940 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 941 Value *Ext = 942 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 943 944 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 945 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 946 "bin.rdx"); 947 } else { 948 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 949 "Invalid min/max"); 950 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 951 } 952 } 953 954 return Result; 955 } 956 957 // Helper to generate a log2 shuffle reduction. 958 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 959 unsigned Op, RecurKind RdxKind) { 960 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 961 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 962 // and vector ops, reducing the set of values being computed by half each 963 // round. 964 assert(isPowerOf2_32(VF) && 965 "Reduction emission only supported for pow2 vectors!"); 966 // Note: fast-math-flags flags are controlled by the builder configuration 967 // and are assumed to apply to all generated arithmetic instructions. Other 968 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 969 // of the builder configuration, and since they're not passed explicitly, 970 // will never be relevant here. Note that it would be generally unsound to 971 // propagate these from an intrinsic call to the expansion anyways as we/ 972 // change the order of operations. 973 Value *TmpVec = Src; 974 SmallVector<int, 32> ShuffleMask(VF); 975 for (unsigned i = VF; i != 1; i >>= 1) { 976 // Move the upper half of the vector to the lower half. 977 for (unsigned j = 0; j != i / 2; ++j) 978 ShuffleMask[j] = i / 2 + j; 979 980 // Fill the rest of the mask with undef. 981 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 982 983 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 984 985 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 986 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 987 "bin.rdx"); 988 } else { 989 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 990 "Invalid min/max"); 991 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 992 } 993 } 994 // The result is in the first element of the vector. 995 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 996 } 997 998 Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder, 999 const TargetTransformInfo *TTI, 1000 Value *Src, 1001 const RecurrenceDescriptor &Desc, 1002 PHINode *OrigPhi) { 1003 assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind( 1004 Desc.getRecurrenceKind()) && 1005 "Unexpected reduction kind"); 1006 Value *InitVal = Desc.getRecurrenceStartValue(); 1007 Value *NewVal = nullptr; 1008 1009 // First use the original phi to determine the new value we're trying to 1010 // select from in the loop. 1011 SelectInst *SI = nullptr; 1012 for (auto *U : OrigPhi->users()) { 1013 if ((SI = dyn_cast<SelectInst>(U))) 1014 break; 1015 } 1016 assert(SI && "One user of the original phi should be a select"); 1017 1018 if (SI->getTrueValue() == OrigPhi) 1019 NewVal = SI->getFalseValue(); 1020 else { 1021 assert(SI->getFalseValue() == OrigPhi && 1022 "At least one input to the select should be the original Phi"); 1023 NewVal = SI->getTrueValue(); 1024 } 1025 1026 // Create a splat vector with the new value and compare this to the vector 1027 // we want to reduce. 1028 ElementCount EC = cast<VectorType>(Src->getType())->getElementCount(); 1029 Value *Right = Builder.CreateVectorSplat(EC, InitVal); 1030 Value *Cmp = 1031 Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp"); 1032 1033 // If any predicate is true it means that we want to select the new value. 1034 Cmp = Builder.CreateOrReduce(Cmp); 1035 return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select"); 1036 } 1037 1038 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 1039 const TargetTransformInfo *TTI, 1040 Value *Src, RecurKind RdxKind) { 1041 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1042 switch (RdxKind) { 1043 case RecurKind::Add: 1044 return Builder.CreateAddReduce(Src); 1045 case RecurKind::Mul: 1046 return Builder.CreateMulReduce(Src); 1047 case RecurKind::And: 1048 return Builder.CreateAndReduce(Src); 1049 case RecurKind::Or: 1050 return Builder.CreateOrReduce(Src); 1051 case RecurKind::Xor: 1052 return Builder.CreateXorReduce(Src); 1053 case RecurKind::FMulAdd: 1054 case RecurKind::FAdd: 1055 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1056 Src); 1057 case RecurKind::FMul: 1058 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1059 case RecurKind::SMax: 1060 return Builder.CreateIntMaxReduce(Src, true); 1061 case RecurKind::SMin: 1062 return Builder.CreateIntMinReduce(Src, true); 1063 case RecurKind::UMax: 1064 return Builder.CreateIntMaxReduce(Src, false); 1065 case RecurKind::UMin: 1066 return Builder.CreateIntMinReduce(Src, false); 1067 case RecurKind::FMax: 1068 return Builder.CreateFPMaxReduce(Src); 1069 case RecurKind::FMin: 1070 return Builder.CreateFPMinReduce(Src); 1071 default: 1072 llvm_unreachable("Unhandled opcode"); 1073 } 1074 } 1075 1076 Value *llvm::createTargetReduction(IRBuilderBase &B, 1077 const TargetTransformInfo *TTI, 1078 const RecurrenceDescriptor &Desc, Value *Src, 1079 PHINode *OrigPhi) { 1080 // TODO: Support in-order reductions based on the recurrence descriptor. 1081 // All ops in the reduction inherit fast-math-flags from the recurrence 1082 // descriptor. 1083 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1084 B.setFastMathFlags(Desc.getFastMathFlags()); 1085 1086 RecurKind RK = Desc.getRecurrenceKind(); 1087 if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 1088 return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi); 1089 1090 return createSimpleTargetReduction(B, TTI, Src, RK); 1091 } 1092 1093 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1094 const RecurrenceDescriptor &Desc, 1095 Value *Src, Value *Start) { 1096 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1097 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1098 "Unexpected reduction kind"); 1099 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1100 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1101 1102 return B.CreateFAddReduce(Start, Src); 1103 } 1104 1105 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1106 auto *VecOp = dyn_cast<Instruction>(I); 1107 if (!VecOp) 1108 return; 1109 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1110 : dyn_cast<Instruction>(OpValue); 1111 if (!Intersection) 1112 return; 1113 const unsigned Opcode = Intersection->getOpcode(); 1114 VecOp->copyIRFlags(Intersection); 1115 for (auto *V : VL) { 1116 auto *Instr = dyn_cast<Instruction>(V); 1117 if (!Instr) 1118 continue; 1119 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1120 VecOp->andIRFlags(V); 1121 } 1122 } 1123 1124 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1125 ScalarEvolution &SE) { 1126 const SCEV *Zero = SE.getZero(S->getType()); 1127 return SE.isAvailableAtLoopEntry(S, L) && 1128 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1129 } 1130 1131 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1132 ScalarEvolution &SE) { 1133 const SCEV *Zero = SE.getZero(S->getType()); 1134 return SE.isAvailableAtLoopEntry(S, L) && 1135 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1136 } 1137 1138 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1139 bool Signed) { 1140 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1141 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1142 APInt::getMinValue(BitWidth); 1143 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1144 return SE.isAvailableAtLoopEntry(S, L) && 1145 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1146 SE.getConstant(Min)); 1147 } 1148 1149 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1150 bool Signed) { 1151 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1152 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1153 APInt::getMaxValue(BitWidth); 1154 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1155 return SE.isAvailableAtLoopEntry(S, L) && 1156 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1157 SE.getConstant(Max)); 1158 } 1159 1160 //===----------------------------------------------------------------------===// 1161 // rewriteLoopExitValues - Optimize IV users outside the loop. 1162 // As a side effect, reduces the amount of IV processing within the loop. 1163 //===----------------------------------------------------------------------===// 1164 1165 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1166 SmallPtrSet<const Instruction *, 8> Visited; 1167 SmallVector<const Instruction *, 8> WorkList; 1168 Visited.insert(I); 1169 WorkList.push_back(I); 1170 while (!WorkList.empty()) { 1171 const Instruction *Curr = WorkList.pop_back_val(); 1172 // This use is outside the loop, nothing to do. 1173 if (!L->contains(Curr)) 1174 continue; 1175 // Do we assume it is a "hard" use which will not be eliminated easily? 1176 if (Curr->mayHaveSideEffects()) 1177 return true; 1178 // Otherwise, add all its users to worklist. 1179 for (auto U : Curr->users()) { 1180 auto *UI = cast<Instruction>(U); 1181 if (Visited.insert(UI).second) 1182 WorkList.push_back(UI); 1183 } 1184 } 1185 return false; 1186 } 1187 1188 // Collect information about PHI nodes which can be transformed in 1189 // rewriteLoopExitValues. 1190 struct RewritePhi { 1191 PHINode *PN; // For which PHI node is this replacement? 1192 unsigned Ith; // For which incoming value? 1193 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1194 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1195 bool HighCost; // Is this expansion a high-cost? 1196 1197 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1198 bool H) 1199 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1200 HighCost(H) {} 1201 }; 1202 1203 // Check whether it is possible to delete the loop after rewriting exit 1204 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1205 // aggressively. 1206 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1207 BasicBlock *Preheader = L->getLoopPreheader(); 1208 // If there is no preheader, the loop will not be deleted. 1209 if (!Preheader) 1210 return false; 1211 1212 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1213 // We obviate multiple ExitingBlocks case for simplicity. 1214 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1215 // after exit value rewriting, we can enhance the logic here. 1216 SmallVector<BasicBlock *, 4> ExitingBlocks; 1217 L->getExitingBlocks(ExitingBlocks); 1218 SmallVector<BasicBlock *, 8> ExitBlocks; 1219 L->getUniqueExitBlocks(ExitBlocks); 1220 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1221 return false; 1222 1223 BasicBlock *ExitBlock = ExitBlocks[0]; 1224 BasicBlock::iterator BI = ExitBlock->begin(); 1225 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1226 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1227 1228 // If the Incoming value of P is found in RewritePhiSet, we know it 1229 // could be rewritten to use a loop invariant value in transformation 1230 // phase later. Skip it in the loop invariant check below. 1231 bool found = false; 1232 for (const RewritePhi &Phi : RewritePhiSet) { 1233 unsigned i = Phi.Ith; 1234 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1235 found = true; 1236 break; 1237 } 1238 } 1239 1240 Instruction *I; 1241 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1242 if (!L->hasLoopInvariantOperands(I)) 1243 return false; 1244 1245 ++BI; 1246 } 1247 1248 for (auto *BB : L->blocks()) 1249 if (llvm::any_of(*BB, [](Instruction &I) { 1250 return I.mayHaveSideEffects(); 1251 })) 1252 return false; 1253 1254 return true; 1255 } 1256 1257 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1258 ScalarEvolution *SE, 1259 const TargetTransformInfo *TTI, 1260 SCEVExpander &Rewriter, DominatorTree *DT, 1261 ReplaceExitVal ReplaceExitValue, 1262 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1263 // Check a pre-condition. 1264 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1265 "Indvars did not preserve LCSSA!"); 1266 1267 SmallVector<BasicBlock*, 8> ExitBlocks; 1268 L->getUniqueExitBlocks(ExitBlocks); 1269 1270 SmallVector<RewritePhi, 8> RewritePhiSet; 1271 // Find all values that are computed inside the loop, but used outside of it. 1272 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1273 // the exit blocks of the loop to find them. 1274 for (BasicBlock *ExitBB : ExitBlocks) { 1275 // If there are no PHI nodes in this exit block, then no values defined 1276 // inside the loop are used on this path, skip it. 1277 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1278 if (!PN) continue; 1279 1280 unsigned NumPreds = PN->getNumIncomingValues(); 1281 1282 // Iterate over all of the PHI nodes. 1283 BasicBlock::iterator BBI = ExitBB->begin(); 1284 while ((PN = dyn_cast<PHINode>(BBI++))) { 1285 if (PN->use_empty()) 1286 continue; // dead use, don't replace it 1287 1288 if (!SE->isSCEVable(PN->getType())) 1289 continue; 1290 1291 // Iterate over all of the values in all the PHI nodes. 1292 for (unsigned i = 0; i != NumPreds; ++i) { 1293 // If the value being merged in is not integer or is not defined 1294 // in the loop, skip it. 1295 Value *InVal = PN->getIncomingValue(i); 1296 if (!isa<Instruction>(InVal)) 1297 continue; 1298 1299 // If this pred is for a subloop, not L itself, skip it. 1300 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1301 continue; // The Block is in a subloop, skip it. 1302 1303 // Check that InVal is defined in the loop. 1304 Instruction *Inst = cast<Instruction>(InVal); 1305 if (!L->contains(Inst)) 1306 continue; 1307 1308 // Okay, this instruction has a user outside of the current loop 1309 // and varies predictably *inside* the loop. Evaluate the value it 1310 // contains when the loop exits, if possible. We prefer to start with 1311 // expressions which are true for all exits (so as to maximize 1312 // expression reuse by the SCEVExpander), but resort to per-exit 1313 // evaluation if that fails. 1314 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1315 if (isa<SCEVCouldNotCompute>(ExitValue) || 1316 !SE->isLoopInvariant(ExitValue, L) || 1317 !isSafeToExpand(ExitValue, *SE)) { 1318 // TODO: This should probably be sunk into SCEV in some way; maybe a 1319 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1320 // most SCEV expressions and other recurrence types (e.g. shift 1321 // recurrences). Is there existing code we can reuse? 1322 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1323 if (isa<SCEVCouldNotCompute>(ExitCount)) 1324 continue; 1325 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1326 if (AddRec->getLoop() == L) 1327 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1328 if (isa<SCEVCouldNotCompute>(ExitValue) || 1329 !SE->isLoopInvariant(ExitValue, L) || 1330 !isSafeToExpand(ExitValue, *SE)) 1331 continue; 1332 } 1333 1334 // Computing the value outside of the loop brings no benefit if it is 1335 // definitely used inside the loop in a way which can not be optimized 1336 // away. Avoid doing so unless we know we have a value which computes 1337 // the ExitValue already. TODO: This should be merged into SCEV 1338 // expander to leverage its knowledge of existing expressions. 1339 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1340 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1341 continue; 1342 1343 // Check if expansions of this SCEV would count as being high cost. 1344 bool HighCost = Rewriter.isHighCostExpansion( 1345 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1346 1347 // Note that we must not perform expansions until after 1348 // we query *all* the costs, because if we perform temporary expansion 1349 // inbetween, one that we might not intend to keep, said expansion 1350 // *may* affect cost calculation of the the next SCEV's we'll query, 1351 // and next SCEV may errneously get smaller cost. 1352 1353 // Collect all the candidate PHINodes to be rewritten. 1354 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1355 } 1356 } 1357 } 1358 1359 // TODO: evaluate whether it is beneficial to change how we calculate 1360 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1361 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1362 // potentially giving cost bonus to those other SCEV's? 1363 1364 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1365 int NumReplaced = 0; 1366 1367 // Transformation. 1368 for (const RewritePhi &Phi : RewritePhiSet) { 1369 PHINode *PN = Phi.PN; 1370 1371 // Only do the rewrite when the ExitValue can be expanded cheaply. 1372 // If LoopCanBeDel is true, rewrite exit value aggressively. 1373 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) 1374 continue; 1375 1376 Value *ExitVal = Rewriter.expandCodeFor( 1377 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1378 1379 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1380 << '\n' 1381 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1382 1383 #ifndef NDEBUG 1384 // If we reuse an instruction from a loop which is neither L nor one of 1385 // its containing loops, we end up breaking LCSSA form for this loop by 1386 // creating a new use of its instruction. 1387 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1388 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1389 if (EVL != L) 1390 assert(EVL->contains(L) && "LCSSA breach detected!"); 1391 #endif 1392 1393 NumReplaced++; 1394 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1395 PN->setIncomingValue(Phi.Ith, ExitVal); 1396 // It's necessary to tell ScalarEvolution about this explicitly so that 1397 // it can walk the def-use list and forget all SCEVs, as it may not be 1398 // watching the PHI itself. Once the new exit value is in place, there 1399 // may not be a def-use connection between the loop and every instruction 1400 // which got a SCEVAddRecExpr for that loop. 1401 SE->forgetValue(PN); 1402 1403 // If this instruction is dead now, delete it. Don't do it now to avoid 1404 // invalidating iterators. 1405 if (isInstructionTriviallyDead(Inst, TLI)) 1406 DeadInsts.push_back(Inst); 1407 1408 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1409 if (PN->getNumIncomingValues() == 1 && 1410 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1411 PN->replaceAllUsesWith(ExitVal); 1412 PN->eraseFromParent(); 1413 } 1414 } 1415 1416 // The insertion point instruction may have been deleted; clear it out 1417 // so that the rewriter doesn't trip over it later. 1418 Rewriter.clearInsertPoint(); 1419 return NumReplaced; 1420 } 1421 1422 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1423 /// \p OrigLoop. 1424 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1425 Loop *RemainderLoop, uint64_t UF) { 1426 assert(UF > 0 && "Zero unrolled factor is not supported"); 1427 assert(UnrolledLoop != RemainderLoop && 1428 "Unrolled and Remainder loops are expected to distinct"); 1429 1430 // Get number of iterations in the original scalar loop. 1431 unsigned OrigLoopInvocationWeight = 0; 1432 Optional<unsigned> OrigAverageTripCount = 1433 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1434 if (!OrigAverageTripCount) 1435 return; 1436 1437 // Calculate number of iterations in unrolled loop. 1438 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1439 // Calculate number of iterations for remainder loop. 1440 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1441 1442 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1443 OrigLoopInvocationWeight); 1444 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1445 OrigLoopInvocationWeight); 1446 } 1447 1448 /// Utility that implements appending of loops onto a worklist. 1449 /// Loops are added in preorder (analogous for reverse postorder for trees), 1450 /// and the worklist is processed LIFO. 1451 template <typename RangeT> 1452 void llvm::appendReversedLoopsToWorklist( 1453 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1454 // We use an internal worklist to build up the preorder traversal without 1455 // recursion. 1456 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1457 1458 // We walk the initial sequence of loops in reverse because we generally want 1459 // to visit defs before uses and the worklist is LIFO. 1460 for (Loop *RootL : Loops) { 1461 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1462 assert(PreOrderWorklist.empty() && 1463 "Must start with an empty preorder walk worklist."); 1464 PreOrderWorklist.push_back(RootL); 1465 do { 1466 Loop *L = PreOrderWorklist.pop_back_val(); 1467 PreOrderWorklist.append(L->begin(), L->end()); 1468 PreOrderLoops.push_back(L); 1469 } while (!PreOrderWorklist.empty()); 1470 1471 Worklist.insert(std::move(PreOrderLoops)); 1472 PreOrderLoops.clear(); 1473 } 1474 } 1475 1476 template <typename RangeT> 1477 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1478 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1479 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1480 } 1481 1482 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1483 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1484 1485 template void 1486 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1487 SmallPriorityWorklist<Loop *, 4> &Worklist); 1488 1489 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1490 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1491 appendReversedLoopsToWorklist(LI, Worklist); 1492 } 1493 1494 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1495 LoopInfo *LI, LPPassManager *LPM) { 1496 Loop &New = *LI->AllocateLoop(); 1497 if (PL) 1498 PL->addChildLoop(&New); 1499 else 1500 LI->addTopLevelLoop(&New); 1501 1502 if (LPM) 1503 LPM->addLoop(New); 1504 1505 // Add all of the blocks in L to the new loop. 1506 for (BasicBlock *BB : L->blocks()) 1507 if (LI->getLoopFor(BB) == L) 1508 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1509 1510 // Add all of the subloops to the new loop. 1511 for (Loop *I : *L) 1512 cloneLoop(I, &New, VM, LI, LPM); 1513 1514 return &New; 1515 } 1516 1517 /// IR Values for the lower and upper bounds of a pointer evolution. We 1518 /// need to use value-handles because SCEV expansion can invalidate previously 1519 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1520 /// a previous one. 1521 struct PointerBounds { 1522 TrackingVH<Value> Start; 1523 TrackingVH<Value> End; 1524 }; 1525 1526 /// Expand code for the lower and upper bound of the pointer group \p CG 1527 /// in \p TheLoop. \return the values for the bounds. 1528 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1529 Loop *TheLoop, Instruction *Loc, 1530 SCEVExpander &Exp) { 1531 LLVMContext &Ctx = Loc->getContext(); 1532 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace); 1533 1534 Value *Start = nullptr, *End = nullptr; 1535 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1536 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1537 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1538 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1539 return {Start, End}; 1540 } 1541 1542 /// Turns a collection of checks into a collection of expanded upper and 1543 /// lower bounds for both pointers in the check. 1544 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1545 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1546 Instruction *Loc, SCEVExpander &Exp) { 1547 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1548 1549 // Here we're relying on the SCEV Expander's cache to only emit code for the 1550 // same bounds once. 1551 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1552 [&](const RuntimePointerCheck &Check) { 1553 PointerBounds First = expandBounds(Check.first, L, Loc, Exp), 1554 Second = expandBounds(Check.second, L, Loc, Exp); 1555 return std::make_pair(First, Second); 1556 }); 1557 1558 return ChecksWithBounds; 1559 } 1560 1561 Value *llvm::addRuntimeChecks( 1562 Instruction *Loc, Loop *TheLoop, 1563 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1564 SCEVExpander &Exp) { 1565 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1566 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1567 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); 1568 1569 LLVMContext &Ctx = Loc->getContext(); 1570 IRBuilder<> ChkBuilder(Loc); 1571 // Our instructions might fold to a constant. 1572 Value *MemoryRuntimeCheck = nullptr; 1573 1574 for (const auto &Check : ExpandedChecks) { 1575 const PointerBounds &A = Check.first, &B = Check.second; 1576 // Check if two pointers (A and B) conflict where conflict is computed as: 1577 // start(A) <= end(B) && start(B) <= end(A) 1578 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1579 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1580 1581 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1582 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1583 "Trying to bounds check pointers with different address spaces"); 1584 1585 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1586 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1587 1588 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1589 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1590 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1591 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1592 1593 // [A|B].Start points to the first accessed byte under base [A|B]. 1594 // [A|B].End points to the last accessed byte, plus one. 1595 // There is no conflict when the intervals are disjoint: 1596 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1597 // 1598 // bound0 = (B.Start < A.End) 1599 // bound1 = (A.Start < B.End) 1600 // IsConflict = bound0 & bound1 1601 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1602 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1603 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1604 if (MemoryRuntimeCheck) { 1605 IsConflict = 1606 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1607 } 1608 MemoryRuntimeCheck = IsConflict; 1609 } 1610 1611 return MemoryRuntimeCheck; 1612 } 1613 1614 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L, 1615 unsigned MSSAThreshold, 1616 MemorySSA &MSSA, 1617 AAResults &AA) { 1618 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1619 if (!TI || !TI->isConditional()) 1620 return {}; 1621 1622 auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); 1623 // The case with the condition outside the loop should already be handled 1624 // earlier. 1625 if (!CondI || !L.contains(CondI)) 1626 return {}; 1627 1628 SmallVector<Instruction *> InstToDuplicate; 1629 InstToDuplicate.push_back(CondI); 1630 1631 SmallVector<Value *, 4> WorkList; 1632 WorkList.append(CondI->op_begin(), CondI->op_end()); 1633 1634 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1635 SmallVector<MemoryLocation, 4> AccessedLocs; 1636 while (!WorkList.empty()) { 1637 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1638 if (!I || !L.contains(I)) 1639 continue; 1640 1641 // TODO: support additional instructions. 1642 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1643 return {}; 1644 1645 // Do not duplicate volatile and atomic loads. 1646 if (auto *LI = dyn_cast<LoadInst>(I)) 1647 if (LI->isVolatile() || LI->isAtomic()) 1648 return {}; 1649 1650 InstToDuplicate.push_back(I); 1651 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1652 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1653 // Queue the defining access to check for alias checks. 1654 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 1655 AccessedLocs.push_back(MemoryLocation::get(I)); 1656 } else { 1657 // MemoryDefs may clobber the location or may be atomic memory 1658 // operations. Bail out. 1659 return {}; 1660 } 1661 } 1662 WorkList.append(I->op_begin(), I->op_end()); 1663 } 1664 1665 if (InstToDuplicate.empty()) 1666 return {}; 1667 1668 SmallVector<BasicBlock *, 4> ExitingBlocks; 1669 L.getExitingBlocks(ExitingBlocks); 1670 auto HasNoClobbersOnPath = 1671 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 1672 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 1673 SmallVector<MemoryAccess *, 4> AccessesToCheck) 1674 -> Optional<IVConditionInfo> { 1675 IVConditionInfo Info; 1676 // First, collect all blocks in the loop that are on a patch from Succ 1677 // to the header. 1678 SmallVector<BasicBlock *, 4> WorkList; 1679 WorkList.push_back(Succ); 1680 WorkList.push_back(Header); 1681 SmallPtrSet<BasicBlock *, 4> Seen; 1682 Seen.insert(Header); 1683 Info.PathIsNoop &= 1684 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1685 1686 while (!WorkList.empty()) { 1687 BasicBlock *Current = WorkList.pop_back_val(); 1688 if (!L.contains(Current)) 1689 continue; 1690 const auto &SeenIns = Seen.insert(Current); 1691 if (!SeenIns.second) 1692 continue; 1693 1694 Info.PathIsNoop &= all_of( 1695 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1696 WorkList.append(succ_begin(Current), succ_end(Current)); 1697 } 1698 1699 // Require at least 2 blocks on a path through the loop. This skips 1700 // paths that directly exit the loop. 1701 if (Seen.size() < 2) 1702 return {}; 1703 1704 // Next, check if there are any MemoryDefs that are on the path through 1705 // the loop (in the Seen set) and they may-alias any of the locations in 1706 // AccessedLocs. If that is the case, they may modify the condition and 1707 // partial unswitching is not possible. 1708 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 1709 while (!AccessesToCheck.empty()) { 1710 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 1711 auto SeenI = SeenAccesses.insert(Current); 1712 if (!SeenI.second || !Seen.contains(Current->getBlock())) 1713 continue; 1714 1715 // Bail out if exceeded the threshold. 1716 if (SeenAccesses.size() >= MSSAThreshold) 1717 return {}; 1718 1719 // MemoryUse are read-only accesses. 1720 if (isa<MemoryUse>(Current)) 1721 continue; 1722 1723 // For a MemoryDef, check if is aliases any of the location feeding 1724 // the original condition. 1725 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 1726 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 1727 return isModSet( 1728 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 1729 })) 1730 return {}; 1731 } 1732 1733 for (Use &U : Current->uses()) 1734 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 1735 } 1736 1737 // We could also allow loops with known trip counts without mustprogress, 1738 // but ScalarEvolution may not be available. 1739 Info.PathIsNoop &= isMustProgress(&L); 1740 1741 // If the path is considered a no-op so far, check if it reaches a 1742 // single exit block without any phis. This ensures no values from the 1743 // loop are used outside of the loop. 1744 if (Info.PathIsNoop) { 1745 for (auto *Exiting : ExitingBlocks) { 1746 if (!Seen.contains(Exiting)) 1747 continue; 1748 for (auto *Succ : successors(Exiting)) { 1749 if (L.contains(Succ)) 1750 continue; 1751 1752 Info.PathIsNoop &= llvm::empty(Succ->phis()) && 1753 (!Info.ExitForPath || Info.ExitForPath == Succ); 1754 if (!Info.PathIsNoop) 1755 break; 1756 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 1757 "cannot have multiple exit blocks"); 1758 Info.ExitForPath = Succ; 1759 } 1760 } 1761 } 1762 if (!Info.ExitForPath) 1763 Info.PathIsNoop = false; 1764 1765 Info.InstToDuplicate = InstToDuplicate; 1766 return Info; 1767 }; 1768 1769 // If we branch to the same successor, partial unswitching will not be 1770 // beneficial. 1771 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 1772 return {}; 1773 1774 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 1775 AccessesToCheck)) { 1776 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 1777 return Info; 1778 } 1779 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 1780 AccessesToCheck)) { 1781 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 1782 return Info; 1783 } 1784 1785 return {}; 1786 } 1787