xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 #define DEBUG_TYPE "loop-utils"
58 
59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
61 
62 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
63                                    MemorySSAUpdater *MSSAU,
64                                    bool PreserveLCSSA) {
65   bool Changed = false;
66 
67   // We re-use a vector for the in-loop predecesosrs.
68   SmallVector<BasicBlock *, 4> InLoopPredecessors;
69 
70   auto RewriteExit = [&](BasicBlock *BB) {
71     assert(InLoopPredecessors.empty() &&
72            "Must start with an empty predecessors list!");
73     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
74 
75     // See if there are any non-loop predecessors of this exit block and
76     // keep track of the in-loop predecessors.
77     bool IsDedicatedExit = true;
78     for (auto *PredBB : predecessors(BB))
79       if (L->contains(PredBB)) {
80         if (isa<IndirectBrInst>(PredBB->getTerminator()))
81           // We cannot rewrite exiting edges from an indirectbr.
82           return false;
83         if (isa<CallBrInst>(PredBB->getTerminator()))
84           // We cannot rewrite exiting edges from a callbr.
85           return false;
86 
87         InLoopPredecessors.push_back(PredBB);
88       } else {
89         IsDedicatedExit = false;
90       }
91 
92     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
93 
94     // Nothing to do if this is already a dedicated exit.
95     if (IsDedicatedExit)
96       return false;
97 
98     auto *NewExitBB = SplitBlockPredecessors(
99         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
100 
101     if (!NewExitBB)
102       LLVM_DEBUG(
103           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
104                  << *L << "\n");
105     else
106       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
107                         << NewExitBB->getName() << "\n");
108     return true;
109   };
110 
111   // Walk the exit blocks directly rather than building up a data structure for
112   // them, but only visit each one once.
113   SmallPtrSet<BasicBlock *, 4> Visited;
114   for (auto *BB : L->blocks())
115     for (auto *SuccBB : successors(BB)) {
116       // We're looking for exit blocks so skip in-loop successors.
117       if (L->contains(SuccBB))
118         continue;
119 
120       // Visit each exit block exactly once.
121       if (!Visited.insert(SuccBB).second)
122         continue;
123 
124       Changed |= RewriteExit(SuccBB);
125     }
126 
127   return Changed;
128 }
129 
130 /// Returns the instructions that use values defined in the loop.
131 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
132   SmallVector<Instruction *, 8> UsedOutside;
133 
134   for (auto *Block : L->getBlocks())
135     // FIXME: I believe that this could use copy_if if the Inst reference could
136     // be adapted into a pointer.
137     for (auto &Inst : *Block) {
138       auto Users = Inst.users();
139       if (any_of(Users, [&](User *U) {
140             auto *Use = cast<Instruction>(U);
141             return !L->contains(Use->getParent());
142           }))
143         UsedOutside.push_back(&Inst);
144     }
145 
146   return UsedOutside;
147 }
148 
149 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
150   // By definition, all loop passes need the LoopInfo analysis and the
151   // Dominator tree it depends on. Because they all participate in the loop
152   // pass manager, they must also preserve these.
153   AU.addRequired<DominatorTreeWrapperPass>();
154   AU.addPreserved<DominatorTreeWrapperPass>();
155   AU.addRequired<LoopInfoWrapperPass>();
156   AU.addPreserved<LoopInfoWrapperPass>();
157 
158   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
159   // here because users shouldn't directly get them from this header.
160   extern char &LoopSimplifyID;
161   extern char &LCSSAID;
162   AU.addRequiredID(LoopSimplifyID);
163   AU.addPreservedID(LoopSimplifyID);
164   AU.addRequiredID(LCSSAID);
165   AU.addPreservedID(LCSSAID);
166   // This is used in the LPPassManager to perform LCSSA verification on passes
167   // which preserve lcssa form
168   AU.addRequired<LCSSAVerificationPass>();
169   AU.addPreserved<LCSSAVerificationPass>();
170 
171   // Loop passes are designed to run inside of a loop pass manager which means
172   // that any function analyses they require must be required by the first loop
173   // pass in the manager (so that it is computed before the loop pass manager
174   // runs) and preserved by all loop pasess in the manager. To make this
175   // reasonably robust, the set needed for most loop passes is maintained here.
176   // If your loop pass requires an analysis not listed here, you will need to
177   // carefully audit the loop pass manager nesting structure that results.
178   AU.addRequired<AAResultsWrapperPass>();
179   AU.addPreserved<AAResultsWrapperPass>();
180   AU.addPreserved<BasicAAWrapperPass>();
181   AU.addPreserved<GlobalsAAWrapperPass>();
182   AU.addPreserved<SCEVAAWrapperPass>();
183   AU.addRequired<ScalarEvolutionWrapperPass>();
184   AU.addPreserved<ScalarEvolutionWrapperPass>();
185   // FIXME: When all loop passes preserve MemorySSA, it can be required and
186   // preserved here instead of the individual handling in each pass.
187 }
188 
189 /// Manually defined generic "LoopPass" dependency initialization. This is used
190 /// to initialize the exact set of passes from above in \c
191 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
192 /// with:
193 ///
194 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
195 ///
196 /// As-if "LoopPass" were a pass.
197 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
198   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
200   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
201   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
202   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
203   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
206   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
208 }
209 
210 /// Create MDNode for input string.
211 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
212   LLVMContext &Context = TheLoop->getHeader()->getContext();
213   Metadata *MDs[] = {
214       MDString::get(Context, Name),
215       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
216   return MDNode::get(Context, MDs);
217 }
218 
219 /// Set input string into loop metadata by keeping other values intact.
220 /// If the string is already in loop metadata update value if it is
221 /// different.
222 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
223                                    unsigned V) {
224   SmallVector<Metadata *, 4> MDs(1);
225   // If the loop already has metadata, retain it.
226   MDNode *LoopID = TheLoop->getLoopID();
227   if (LoopID) {
228     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
229       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
230       // If it is of form key = value, try to parse it.
231       if (Node->getNumOperands() == 2) {
232         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
233         if (S && S->getString().equals(StringMD)) {
234           ConstantInt *IntMD =
235               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
236           if (IntMD && IntMD->getSExtValue() == V)
237             // It is already in place. Do nothing.
238             return;
239           // We need to update the value, so just skip it here and it will
240           // be added after copying other existed nodes.
241           continue;
242         }
243       }
244       MDs.push_back(Node);
245     }
246   }
247   // Add new metadata.
248   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
249   // Replace current metadata node with new one.
250   LLVMContext &Context = TheLoop->getHeader()->getContext();
251   MDNode *NewLoopID = MDNode::get(Context, MDs);
252   // Set operand 0 to refer to the loop id itself.
253   NewLoopID->replaceOperandWith(0, NewLoopID);
254   TheLoop->setLoopID(NewLoopID);
255 }
256 
257 Optional<ElementCount>
258 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
259   Optional<int> Width =
260       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
261 
262   if (Width.hasValue()) {
263     Optional<int> IsScalable = getOptionalIntLoopAttribute(
264         TheLoop, "llvm.loop.vectorize.scalable.enable");
265     return ElementCount::get(*Width, IsScalable.getValueOr(false));
266   }
267 
268   return None;
269 }
270 
271 Optional<MDNode *> llvm::makeFollowupLoopID(
272     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
273     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
274   if (!OrigLoopID) {
275     if (AlwaysNew)
276       return nullptr;
277     return None;
278   }
279 
280   assert(OrigLoopID->getOperand(0) == OrigLoopID);
281 
282   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
283   bool InheritSomeAttrs =
284       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
285   SmallVector<Metadata *, 8> MDs;
286   MDs.push_back(nullptr);
287 
288   bool Changed = false;
289   if (InheritAllAttrs || InheritSomeAttrs) {
290     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
291       MDNode *Op = cast<MDNode>(Existing.get());
292 
293       auto InheritThisAttribute = [InheritSomeAttrs,
294                                    InheritOptionsExceptPrefix](MDNode *Op) {
295         if (!InheritSomeAttrs)
296           return false;
297 
298         // Skip malformatted attribute metadata nodes.
299         if (Op->getNumOperands() == 0)
300           return true;
301         Metadata *NameMD = Op->getOperand(0).get();
302         if (!isa<MDString>(NameMD))
303           return true;
304         StringRef AttrName = cast<MDString>(NameMD)->getString();
305 
306         // Do not inherit excluded attributes.
307         return !AttrName.startswith(InheritOptionsExceptPrefix);
308       };
309 
310       if (InheritThisAttribute(Op))
311         MDs.push_back(Op);
312       else
313         Changed = true;
314     }
315   } else {
316     // Modified if we dropped at least one attribute.
317     Changed = OrigLoopID->getNumOperands() > 1;
318   }
319 
320   bool HasAnyFollowup = false;
321   for (StringRef OptionName : FollowupOptions) {
322     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
323     if (!FollowupNode)
324       continue;
325 
326     HasAnyFollowup = true;
327     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
328       MDs.push_back(Option.get());
329       Changed = true;
330     }
331   }
332 
333   // Attributes of the followup loop not specified explicity, so signal to the
334   // transformation pass to add suitable attributes.
335   if (!AlwaysNew && !HasAnyFollowup)
336     return None;
337 
338   // If no attributes were added or remove, the previous loop Id can be reused.
339   if (!AlwaysNew && !Changed)
340     return OrigLoopID;
341 
342   // No attributes is equivalent to having no !llvm.loop metadata at all.
343   if (MDs.size() == 1)
344     return nullptr;
345 
346   // Build the new loop ID.
347   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
348   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
349   return FollowupLoopID;
350 }
351 
352 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
353   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
354 }
355 
356 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
357   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
358 }
359 
360 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
361   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
362     return TM_SuppressedByUser;
363 
364   Optional<int> Count =
365       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
366   if (Count.hasValue())
367     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
368 
369   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
370     return TM_ForcedByUser;
371 
372   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
373     return TM_ForcedByUser;
374 
375   if (hasDisableAllTransformsHint(L))
376     return TM_Disable;
377 
378   return TM_Unspecified;
379 }
380 
381 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
382   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
383     return TM_SuppressedByUser;
384 
385   Optional<int> Count =
386       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
387   if (Count.hasValue())
388     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
389 
390   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
391     return TM_ForcedByUser;
392 
393   if (hasDisableAllTransformsHint(L))
394     return TM_Disable;
395 
396   return TM_Unspecified;
397 }
398 
399 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
400   Optional<bool> Enable =
401       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
402 
403   if (Enable == false)
404     return TM_SuppressedByUser;
405 
406   Optional<ElementCount> VectorizeWidth =
407       getOptionalElementCountLoopAttribute(L);
408   Optional<int> InterleaveCount =
409       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
410 
411   // 'Forcing' vector width and interleave count to one effectively disables
412   // this tranformation.
413   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
414       InterleaveCount == 1)
415     return TM_SuppressedByUser;
416 
417   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
418     return TM_Disable;
419 
420   if (Enable == true)
421     return TM_ForcedByUser;
422 
423   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
424     return TM_Disable;
425 
426   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
427     return TM_Enable;
428 
429   if (hasDisableAllTransformsHint(L))
430     return TM_Disable;
431 
432   return TM_Unspecified;
433 }
434 
435 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
436   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
437     return TM_ForcedByUser;
438 
439   if (hasDisableAllTransformsHint(L))
440     return TM_Disable;
441 
442   return TM_Unspecified;
443 }
444 
445 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
446   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
447     return TM_SuppressedByUser;
448 
449   if (hasDisableAllTransformsHint(L))
450     return TM_Disable;
451 
452   return TM_Unspecified;
453 }
454 
455 /// Does a BFS from a given node to all of its children inside a given loop.
456 /// The returned vector of nodes includes the starting point.
457 SmallVector<DomTreeNode *, 16>
458 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
459   SmallVector<DomTreeNode *, 16> Worklist;
460   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
461     // Only include subregions in the top level loop.
462     BasicBlock *BB = DTN->getBlock();
463     if (CurLoop->contains(BB))
464       Worklist.push_back(DTN);
465   };
466 
467   AddRegionToWorklist(N);
468 
469   for (size_t I = 0; I < Worklist.size(); I++) {
470     for (DomTreeNode *Child : Worklist[I]->children())
471       AddRegionToWorklist(Child);
472   }
473 
474   return Worklist;
475 }
476 
477 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
478                           LoopInfo *LI, MemorySSA *MSSA) {
479   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
480   auto *Preheader = L->getLoopPreheader();
481   assert(Preheader && "Preheader should exist!");
482 
483   std::unique_ptr<MemorySSAUpdater> MSSAU;
484   if (MSSA)
485     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
486 
487   // Now that we know the removal is safe, remove the loop by changing the
488   // branch from the preheader to go to the single exit block.
489   //
490   // Because we're deleting a large chunk of code at once, the sequence in which
491   // we remove things is very important to avoid invalidation issues.
492 
493   // Tell ScalarEvolution that the loop is deleted. Do this before
494   // deleting the loop so that ScalarEvolution can look at the loop
495   // to determine what it needs to clean up.
496   if (SE)
497     SE->forgetLoop(L);
498 
499   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
500   assert(OldBr && "Preheader must end with a branch");
501   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
502   // Connect the preheader to the exit block. Keep the old edge to the header
503   // around to perform the dominator tree update in two separate steps
504   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
505   // preheader -> header.
506   //
507   //
508   // 0.  Preheader          1.  Preheader           2.  Preheader
509   //        |                    |   |                   |
510   //        V                    |   V                   |
511   //      Header <--\            | Header <--\           | Header <--\
512   //       |  |     |            |  |  |     |           |  |  |     |
513   //       |  V     |            |  |  V     |           |  |  V     |
514   //       | Body --/            |  | Body --/           |  | Body --/
515   //       V                     V  V                    V  V
516   //      Exit                   Exit                    Exit
517   //
518   // By doing this is two separate steps we can perform the dominator tree
519   // update without using the batch update API.
520   //
521   // Even when the loop is never executed, we cannot remove the edge from the
522   // source block to the exit block. Consider the case where the unexecuted loop
523   // branches back to an outer loop. If we deleted the loop and removed the edge
524   // coming to this inner loop, this will break the outer loop structure (by
525   // deleting the backedge of the outer loop). If the outer loop is indeed a
526   // non-loop, it will be deleted in a future iteration of loop deletion pass.
527   IRBuilder<> Builder(OldBr);
528 
529   auto *ExitBlock = L->getUniqueExitBlock();
530   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
531   if (ExitBlock) {
532     assert(ExitBlock && "Should have a unique exit block!");
533     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
534 
535     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
536     // Remove the old branch. The conditional branch becomes a new terminator.
537     OldBr->eraseFromParent();
538 
539     // Rewrite phis in the exit block to get their inputs from the Preheader
540     // instead of the exiting block.
541     for (PHINode &P : ExitBlock->phis()) {
542       // Set the zero'th element of Phi to be from the preheader and remove all
543       // other incoming values. Given the loop has dedicated exits, all other
544       // incoming values must be from the exiting blocks.
545       int PredIndex = 0;
546       P.setIncomingBlock(PredIndex, Preheader);
547       // Removes all incoming values from all other exiting blocks (including
548       // duplicate values from an exiting block).
549       // Nuke all entries except the zero'th entry which is the preheader entry.
550       // NOTE! We need to remove Incoming Values in the reverse order as done
551       // below, to keep the indices valid for deletion (removeIncomingValues
552       // updates getNumIncomingValues and shifts all values down into the
553       // operand being deleted).
554       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
555         P.removeIncomingValue(e - i, false);
556 
557       assert((P.getNumIncomingValues() == 1 &&
558               P.getIncomingBlock(PredIndex) == Preheader) &&
559              "Should have exactly one value and that's from the preheader!");
560     }
561 
562     if (DT) {
563       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
564       if (MSSA) {
565         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
566                             *DT);
567         if (VerifyMemorySSA)
568           MSSA->verifyMemorySSA();
569       }
570     }
571 
572     // Disconnect the loop body by branching directly to its exit.
573     Builder.SetInsertPoint(Preheader->getTerminator());
574     Builder.CreateBr(ExitBlock);
575     // Remove the old branch.
576     Preheader->getTerminator()->eraseFromParent();
577   } else {
578     assert(L->hasNoExitBlocks() &&
579            "Loop should have either zero or one exit blocks.");
580 
581     Builder.SetInsertPoint(OldBr);
582     Builder.CreateUnreachable();
583     Preheader->getTerminator()->eraseFromParent();
584   }
585 
586   if (DT) {
587     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
588     if (MSSA) {
589       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
590                           *DT);
591       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
592                                                    L->block_end());
593       MSSAU->removeBlocks(DeadBlockSet);
594       if (VerifyMemorySSA)
595         MSSA->verifyMemorySSA();
596     }
597   }
598 
599   // Use a map to unique and a vector to guarantee deterministic ordering.
600   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
601   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
602 
603   if (ExitBlock) {
604     // Given LCSSA form is satisfied, we should not have users of instructions
605     // within the dead loop outside of the loop. However, LCSSA doesn't take
606     // unreachable uses into account. We handle them here.
607     // We could do it after drop all references (in this case all users in the
608     // loop will be already eliminated and we have less work to do but according
609     // to API doc of User::dropAllReferences only valid operation after dropping
610     // references, is deletion. So let's substitute all usages of
611     // instruction from the loop with undef value of corresponding type first.
612     for (auto *Block : L->blocks())
613       for (Instruction &I : *Block) {
614         auto *Undef = UndefValue::get(I.getType());
615         for (Use &U : llvm::make_early_inc_range(I.uses())) {
616           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
617             if (L->contains(Usr->getParent()))
618               continue;
619           // If we have a DT then we can check that uses outside a loop only in
620           // unreachable block.
621           if (DT)
622             assert(!DT->isReachableFromEntry(U) &&
623                    "Unexpected user in reachable block");
624           U.set(Undef);
625         }
626         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
627         if (!DVI)
628           continue;
629         auto Key =
630             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
631         if (Key != DeadDebugSet.end())
632           continue;
633         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
634         DeadDebugInst.push_back(DVI);
635       }
636 
637     // After the loop has been deleted all the values defined and modified
638     // inside the loop are going to be unavailable.
639     // Since debug values in the loop have been deleted, inserting an undef
640     // dbg.value truncates the range of any dbg.value before the loop where the
641     // loop used to be. This is particularly important for constant values.
642     DIBuilder DIB(*ExitBlock->getModule());
643     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
644     assert(InsertDbgValueBefore &&
645            "There should be a non-PHI instruction in exit block, else these "
646            "instructions will have no parent.");
647     for (auto *DVI : DeadDebugInst)
648       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
649                                   DVI->getVariable(), DVI->getExpression(),
650                                   DVI->getDebugLoc(), InsertDbgValueBefore);
651   }
652 
653   // Remove the block from the reference counting scheme, so that we can
654   // delete it freely later.
655   for (auto *Block : L->blocks())
656     Block->dropAllReferences();
657 
658   if (MSSA && VerifyMemorySSA)
659     MSSA->verifyMemorySSA();
660 
661   if (LI) {
662     // Erase the instructions and the blocks without having to worry
663     // about ordering because we already dropped the references.
664     // NOTE: This iteration is safe because erasing the block does not remove
665     // its entry from the loop's block list.  We do that in the next section.
666     for (BasicBlock *BB : L->blocks())
667       BB->eraseFromParent();
668 
669     // Finally, the blocks from loopinfo.  This has to happen late because
670     // otherwise our loop iterators won't work.
671 
672     SmallPtrSet<BasicBlock *, 8> blocks;
673     blocks.insert(L->block_begin(), L->block_end());
674     for (BasicBlock *BB : blocks)
675       LI->removeBlock(BB);
676 
677     // The last step is to update LoopInfo now that we've eliminated this loop.
678     // Note: LoopInfo::erase remove the given loop and relink its subloops with
679     // its parent. While removeLoop/removeChildLoop remove the given loop but
680     // not relink its subloops, which is what we want.
681     if (Loop *ParentLoop = L->getParentLoop()) {
682       Loop::iterator I = find(*ParentLoop, L);
683       assert(I != ParentLoop->end() && "Couldn't find loop");
684       ParentLoop->removeChildLoop(I);
685     } else {
686       Loop::iterator I = find(*LI, L);
687       assert(I != LI->end() && "Couldn't find loop");
688       LI->removeLoop(I);
689     }
690     LI->destroy(L);
691   }
692 }
693 
694 static Loop *getOutermostLoop(Loop *L) {
695   while (Loop *Parent = L->getParentLoop())
696     L = Parent;
697   return L;
698 }
699 
700 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
701                              LoopInfo &LI, MemorySSA *MSSA) {
702   auto *Latch = L->getLoopLatch();
703   assert(Latch && "multiple latches not yet supported");
704   auto *Header = L->getHeader();
705   Loop *OutermostLoop = getOutermostLoop(L);
706 
707   SE.forgetLoop(L);
708 
709   std::unique_ptr<MemorySSAUpdater> MSSAU;
710   if (MSSA)
711     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
712 
713   // Update the CFG and domtree.  We chose to special case a couple of
714   // of common cases for code quality and test readability reasons.
715   [&]() -> void {
716     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
717       if (!BI->isConditional()) {
718         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
719         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
720                                   MSSAU.get());
721         return;
722       }
723 
724       // Conditional latch/exit - note that latch can be shared by inner
725       // and outer loop so the other target doesn't need to an exit
726       if (L->isLoopExiting(Latch)) {
727         // TODO: Generalize ConstantFoldTerminator so that it can be used
728         // here without invalidating LCSSA or MemorySSA.  (Tricky case for
729         // LCSSA: header is an exit block of a preceeding sibling loop w/o
730         // dedicated exits.)
731         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
732         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
733 
734         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
735         Header->removePredecessor(Latch, true);
736 
737         IRBuilder<> Builder(BI);
738         auto *NewBI = Builder.CreateBr(ExitBB);
739         // Transfer the metadata to the new branch instruction (minus the
740         // loop info since this is no longer a loop)
741         NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
742                                   LLVMContext::MD_annotation});
743 
744         BI->eraseFromParent();
745         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
746         if (MSSA)
747           MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
748         return;
749       }
750     }
751 
752     // General case.  By splitting the backedge, and then explicitly making it
753     // unreachable we gracefully handle corner cases such as switch and invoke
754     // termiantors.
755     auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
756 
757     DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
758     (void)changeToUnreachable(BackedgeBB->getTerminator(),
759                               /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
760   }();
761 
762   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
763   // and blocks within the loop as needed.
764   LI.erase(L);
765 
766   // If the loop we broke had a parent, then changeToUnreachable might have
767   // caused a block to be removed from the parent loop (see loop_nest_lcssa
768   // test case in zero-btc.ll for an example), thus changing the parent's
769   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
770   // loop which might have a had a block removed.
771   if (OutermostLoop != L)
772     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
773 }
774 
775 
776 /// Checks if \p L has an exiting latch branch.  There may also be other
777 /// exiting blocks.  Returns branch instruction terminating the loop
778 /// latch if above check is successful, nullptr otherwise.
779 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
780   BasicBlock *Latch = L->getLoopLatch();
781   if (!Latch)
782     return nullptr;
783 
784   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
785   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
786     return nullptr;
787 
788   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
789           LatchBR->getSuccessor(1) == L->getHeader()) &&
790          "At least one edge out of the latch must go to the header");
791 
792   return LatchBR;
793 }
794 
795 /// Return the estimated trip count for any exiting branch which dominates
796 /// the loop latch.
797 static Optional<uint64_t>
798 getEstimatedTripCount(BranchInst *ExitingBranch, Loop *L,
799                       uint64_t &OrigExitWeight) {
800   // To estimate the number of times the loop body was executed, we want to
801   // know the number of times the backedge was taken, vs. the number of times
802   // we exited the loop.
803   uint64_t LoopWeight, ExitWeight;
804   if (!ExitingBranch->extractProfMetadata(LoopWeight, ExitWeight))
805     return None;
806 
807   if (L->contains(ExitingBranch->getSuccessor(1)))
808     std::swap(LoopWeight, ExitWeight);
809 
810   if (!ExitWeight)
811     // Don't have a way to return predicated infinite
812     return None;
813 
814   OrigExitWeight = ExitWeight;
815 
816   // Estimated exit count is a ratio of the loop weight by the weight of the
817   // edge exiting the loop, rounded to nearest.
818   uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
819   // Estimated trip count is one plus estimated exit count.
820   return ExitCount + 1;
821 }
822 
823 Optional<unsigned>
824 llvm::getLoopEstimatedTripCount(Loop *L,
825                                 unsigned *EstimatedLoopInvocationWeight) {
826   // Currently we take the estimate exit count only from the loop latch,
827   // ignoring other exiting blocks.  This can overestimate the trip count
828   // if we exit through another exit, but can never underestimate it.
829   // TODO: incorporate information from other exits
830   if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
831     uint64_t ExitWeight;
832     if (Optional<uint64_t> EstTripCount =
833         getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
834       if (EstimatedLoopInvocationWeight)
835         *EstimatedLoopInvocationWeight = ExitWeight;
836       return *EstTripCount;
837     }
838   }
839   return None;
840 }
841 
842 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
843                                      unsigned EstimatedloopInvocationWeight) {
844   // At the moment, we currently support changing the estimate trip count of
845   // the latch branch only.  We could extend this API to manipulate estimated
846   // trip counts for any exit.
847   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
848   if (!LatchBranch)
849     return false;
850 
851   // Calculate taken and exit weights.
852   unsigned LatchExitWeight = 0;
853   unsigned BackedgeTakenWeight = 0;
854 
855   if (EstimatedTripCount > 0) {
856     LatchExitWeight = EstimatedloopInvocationWeight;
857     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
858   }
859 
860   // Make a swap if back edge is taken when condition is "false".
861   if (LatchBranch->getSuccessor(0) != L->getHeader())
862     std::swap(BackedgeTakenWeight, LatchExitWeight);
863 
864   MDBuilder MDB(LatchBranch->getContext());
865 
866   // Set/Update profile metadata.
867   LatchBranch->setMetadata(
868       LLVMContext::MD_prof,
869       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
870 
871   return true;
872 }
873 
874 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
875                                               ScalarEvolution &SE) {
876   Loop *OuterL = InnerLoop->getParentLoop();
877   if (!OuterL)
878     return true;
879 
880   // Get the backedge taken count for the inner loop
881   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
882   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
883   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
884       !InnerLoopBECountSC->getType()->isIntegerTy())
885     return false;
886 
887   // Get whether count is invariant to the outer loop
888   ScalarEvolution::LoopDisposition LD =
889       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
890   if (LD != ScalarEvolution::LoopInvariant)
891     return false;
892 
893   return true;
894 }
895 
896 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
897   switch (RK) {
898   default:
899     llvm_unreachable("Unknown min/max recurrence kind");
900   case RecurKind::UMin:
901     return CmpInst::ICMP_ULT;
902   case RecurKind::UMax:
903     return CmpInst::ICMP_UGT;
904   case RecurKind::SMin:
905     return CmpInst::ICMP_SLT;
906   case RecurKind::SMax:
907     return CmpInst::ICMP_SGT;
908   case RecurKind::FMin:
909     return CmpInst::FCMP_OLT;
910   case RecurKind::FMax:
911     return CmpInst::FCMP_OGT;
912   }
913 }
914 
915 Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal,
916                                RecurKind RK, Value *Left, Value *Right) {
917   if (auto VTy = dyn_cast<VectorType>(Left->getType()))
918     StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
919   Value *Cmp =
920       Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
921   return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
922 }
923 
924 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
925                             Value *Right) {
926   CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
927   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
928   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
929   return Select;
930 }
931 
932 // Helper to generate an ordered reduction.
933 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
934                                  unsigned Op, RecurKind RdxKind) {
935   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
936 
937   // Extract and apply reduction ops in ascending order:
938   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
939   Value *Result = Acc;
940   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
941     Value *Ext =
942         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
943 
944     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
945       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
946                                    "bin.rdx");
947     } else {
948       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
949              "Invalid min/max");
950       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
951     }
952   }
953 
954   return Result;
955 }
956 
957 // Helper to generate a log2 shuffle reduction.
958 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
959                                  unsigned Op, RecurKind RdxKind) {
960   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
961   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
962   // and vector ops, reducing the set of values being computed by half each
963   // round.
964   assert(isPowerOf2_32(VF) &&
965          "Reduction emission only supported for pow2 vectors!");
966   // Note: fast-math-flags flags are controlled by the builder configuration
967   // and are assumed to apply to all generated arithmetic instructions.  Other
968   // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
969   // of the builder configuration, and since they're not passed explicitly,
970   // will never be relevant here.  Note that it would be generally unsound to
971   // propagate these from an intrinsic call to the expansion anyways as we/
972   // change the order of operations.
973   Value *TmpVec = Src;
974   SmallVector<int, 32> ShuffleMask(VF);
975   for (unsigned i = VF; i != 1; i >>= 1) {
976     // Move the upper half of the vector to the lower half.
977     for (unsigned j = 0; j != i / 2; ++j)
978       ShuffleMask[j] = i / 2 + j;
979 
980     // Fill the rest of the mask with undef.
981     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
982 
983     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
984 
985     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
986       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
987                                    "bin.rdx");
988     } else {
989       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
990              "Invalid min/max");
991       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
992     }
993   }
994   // The result is in the first element of the vector.
995   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
996 }
997 
998 Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder,
999                                             const TargetTransformInfo *TTI,
1000                                             Value *Src,
1001                                             const RecurrenceDescriptor &Desc,
1002                                             PHINode *OrigPhi) {
1003   assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind(
1004              Desc.getRecurrenceKind()) &&
1005          "Unexpected reduction kind");
1006   Value *InitVal = Desc.getRecurrenceStartValue();
1007   Value *NewVal = nullptr;
1008 
1009   // First use the original phi to determine the new value we're trying to
1010   // select from in the loop.
1011   SelectInst *SI = nullptr;
1012   for (auto *U : OrigPhi->users()) {
1013     if ((SI = dyn_cast<SelectInst>(U)))
1014       break;
1015   }
1016   assert(SI && "One user of the original phi should be a select");
1017 
1018   if (SI->getTrueValue() == OrigPhi)
1019     NewVal = SI->getFalseValue();
1020   else {
1021     assert(SI->getFalseValue() == OrigPhi &&
1022            "At least one input to the select should be the original Phi");
1023     NewVal = SI->getTrueValue();
1024   }
1025 
1026   // Create a splat vector with the new value and compare this to the vector
1027   // we want to reduce.
1028   ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
1029   Value *Right = Builder.CreateVectorSplat(EC, InitVal);
1030   Value *Cmp =
1031       Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
1032 
1033   // If any predicate is true it means that we want to select the new value.
1034   Cmp = Builder.CreateOrReduce(Cmp);
1035   return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
1036 }
1037 
1038 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
1039                                          const TargetTransformInfo *TTI,
1040                                          Value *Src, RecurKind RdxKind) {
1041   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1042   switch (RdxKind) {
1043   case RecurKind::Add:
1044     return Builder.CreateAddReduce(Src);
1045   case RecurKind::Mul:
1046     return Builder.CreateMulReduce(Src);
1047   case RecurKind::And:
1048     return Builder.CreateAndReduce(Src);
1049   case RecurKind::Or:
1050     return Builder.CreateOrReduce(Src);
1051   case RecurKind::Xor:
1052     return Builder.CreateXorReduce(Src);
1053   case RecurKind::FMulAdd:
1054   case RecurKind::FAdd:
1055     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1056                                     Src);
1057   case RecurKind::FMul:
1058     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1059   case RecurKind::SMax:
1060     return Builder.CreateIntMaxReduce(Src, true);
1061   case RecurKind::SMin:
1062     return Builder.CreateIntMinReduce(Src, true);
1063   case RecurKind::UMax:
1064     return Builder.CreateIntMaxReduce(Src, false);
1065   case RecurKind::UMin:
1066     return Builder.CreateIntMinReduce(Src, false);
1067   case RecurKind::FMax:
1068     return Builder.CreateFPMaxReduce(Src);
1069   case RecurKind::FMin:
1070     return Builder.CreateFPMinReduce(Src);
1071   default:
1072     llvm_unreachable("Unhandled opcode");
1073   }
1074 }
1075 
1076 Value *llvm::createTargetReduction(IRBuilderBase &B,
1077                                    const TargetTransformInfo *TTI,
1078                                    const RecurrenceDescriptor &Desc, Value *Src,
1079                                    PHINode *OrigPhi) {
1080   // TODO: Support in-order reductions based on the recurrence descriptor.
1081   // All ops in the reduction inherit fast-math-flags from the recurrence
1082   // descriptor.
1083   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1084   B.setFastMathFlags(Desc.getFastMathFlags());
1085 
1086   RecurKind RK = Desc.getRecurrenceKind();
1087   if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
1088     return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi);
1089 
1090   return createSimpleTargetReduction(B, TTI, Src, RK);
1091 }
1092 
1093 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1094                                     const RecurrenceDescriptor &Desc,
1095                                     Value *Src, Value *Start) {
1096   assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1097           Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1098          "Unexpected reduction kind");
1099   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1100   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1101 
1102   return B.CreateFAddReduce(Start, Src);
1103 }
1104 
1105 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1106   auto *VecOp = dyn_cast<Instruction>(I);
1107   if (!VecOp)
1108     return;
1109   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1110                                             : dyn_cast<Instruction>(OpValue);
1111   if (!Intersection)
1112     return;
1113   const unsigned Opcode = Intersection->getOpcode();
1114   VecOp->copyIRFlags(Intersection);
1115   for (auto *V : VL) {
1116     auto *Instr = dyn_cast<Instruction>(V);
1117     if (!Instr)
1118       continue;
1119     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1120       VecOp->andIRFlags(V);
1121   }
1122 }
1123 
1124 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1125                                  ScalarEvolution &SE) {
1126   const SCEV *Zero = SE.getZero(S->getType());
1127   return SE.isAvailableAtLoopEntry(S, L) &&
1128          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1129 }
1130 
1131 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1132                                     ScalarEvolution &SE) {
1133   const SCEV *Zero = SE.getZero(S->getType());
1134   return SE.isAvailableAtLoopEntry(S, L) &&
1135          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1136 }
1137 
1138 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1139                              bool Signed) {
1140   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1141   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1142     APInt::getMinValue(BitWidth);
1143   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1144   return SE.isAvailableAtLoopEntry(S, L) &&
1145          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1146                                      SE.getConstant(Min));
1147 }
1148 
1149 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1150                              bool Signed) {
1151   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1152   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1153     APInt::getMaxValue(BitWidth);
1154   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1155   return SE.isAvailableAtLoopEntry(S, L) &&
1156          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1157                                      SE.getConstant(Max));
1158 }
1159 
1160 //===----------------------------------------------------------------------===//
1161 // rewriteLoopExitValues - Optimize IV users outside the loop.
1162 // As a side effect, reduces the amount of IV processing within the loop.
1163 //===----------------------------------------------------------------------===//
1164 
1165 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1166   SmallPtrSet<const Instruction *, 8> Visited;
1167   SmallVector<const Instruction *, 8> WorkList;
1168   Visited.insert(I);
1169   WorkList.push_back(I);
1170   while (!WorkList.empty()) {
1171     const Instruction *Curr = WorkList.pop_back_val();
1172     // This use is outside the loop, nothing to do.
1173     if (!L->contains(Curr))
1174       continue;
1175     // Do we assume it is a "hard" use which will not be eliminated easily?
1176     if (Curr->mayHaveSideEffects())
1177       return true;
1178     // Otherwise, add all its users to worklist.
1179     for (auto U : Curr->users()) {
1180       auto *UI = cast<Instruction>(U);
1181       if (Visited.insert(UI).second)
1182         WorkList.push_back(UI);
1183     }
1184   }
1185   return false;
1186 }
1187 
1188 // Collect information about PHI nodes which can be transformed in
1189 // rewriteLoopExitValues.
1190 struct RewritePhi {
1191   PHINode *PN;               // For which PHI node is this replacement?
1192   unsigned Ith;              // For which incoming value?
1193   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1194   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1195   bool HighCost;               // Is this expansion a high-cost?
1196 
1197   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1198              bool H)
1199       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1200         HighCost(H) {}
1201 };
1202 
1203 // Check whether it is possible to delete the loop after rewriting exit
1204 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1205 // aggressively.
1206 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1207   BasicBlock *Preheader = L->getLoopPreheader();
1208   // If there is no preheader, the loop will not be deleted.
1209   if (!Preheader)
1210     return false;
1211 
1212   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1213   // We obviate multiple ExitingBlocks case for simplicity.
1214   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1215   // after exit value rewriting, we can enhance the logic here.
1216   SmallVector<BasicBlock *, 4> ExitingBlocks;
1217   L->getExitingBlocks(ExitingBlocks);
1218   SmallVector<BasicBlock *, 8> ExitBlocks;
1219   L->getUniqueExitBlocks(ExitBlocks);
1220   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1221     return false;
1222 
1223   BasicBlock *ExitBlock = ExitBlocks[0];
1224   BasicBlock::iterator BI = ExitBlock->begin();
1225   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1226     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1227 
1228     // If the Incoming value of P is found in RewritePhiSet, we know it
1229     // could be rewritten to use a loop invariant value in transformation
1230     // phase later. Skip it in the loop invariant check below.
1231     bool found = false;
1232     for (const RewritePhi &Phi : RewritePhiSet) {
1233       unsigned i = Phi.Ith;
1234       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1235         found = true;
1236         break;
1237       }
1238     }
1239 
1240     Instruction *I;
1241     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1242       if (!L->hasLoopInvariantOperands(I))
1243         return false;
1244 
1245     ++BI;
1246   }
1247 
1248   for (auto *BB : L->blocks())
1249     if (llvm::any_of(*BB, [](Instruction &I) {
1250           return I.mayHaveSideEffects();
1251         }))
1252       return false;
1253 
1254   return true;
1255 }
1256 
1257 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1258                                 ScalarEvolution *SE,
1259                                 const TargetTransformInfo *TTI,
1260                                 SCEVExpander &Rewriter, DominatorTree *DT,
1261                                 ReplaceExitVal ReplaceExitValue,
1262                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1263   // Check a pre-condition.
1264   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1265          "Indvars did not preserve LCSSA!");
1266 
1267   SmallVector<BasicBlock*, 8> ExitBlocks;
1268   L->getUniqueExitBlocks(ExitBlocks);
1269 
1270   SmallVector<RewritePhi, 8> RewritePhiSet;
1271   // Find all values that are computed inside the loop, but used outside of it.
1272   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1273   // the exit blocks of the loop to find them.
1274   for (BasicBlock *ExitBB : ExitBlocks) {
1275     // If there are no PHI nodes in this exit block, then no values defined
1276     // inside the loop are used on this path, skip it.
1277     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1278     if (!PN) continue;
1279 
1280     unsigned NumPreds = PN->getNumIncomingValues();
1281 
1282     // Iterate over all of the PHI nodes.
1283     BasicBlock::iterator BBI = ExitBB->begin();
1284     while ((PN = dyn_cast<PHINode>(BBI++))) {
1285       if (PN->use_empty())
1286         continue; // dead use, don't replace it
1287 
1288       if (!SE->isSCEVable(PN->getType()))
1289         continue;
1290 
1291       // Iterate over all of the values in all the PHI nodes.
1292       for (unsigned i = 0; i != NumPreds; ++i) {
1293         // If the value being merged in is not integer or is not defined
1294         // in the loop, skip it.
1295         Value *InVal = PN->getIncomingValue(i);
1296         if (!isa<Instruction>(InVal))
1297           continue;
1298 
1299         // If this pred is for a subloop, not L itself, skip it.
1300         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1301           continue; // The Block is in a subloop, skip it.
1302 
1303         // Check that InVal is defined in the loop.
1304         Instruction *Inst = cast<Instruction>(InVal);
1305         if (!L->contains(Inst))
1306           continue;
1307 
1308         // Okay, this instruction has a user outside of the current loop
1309         // and varies predictably *inside* the loop.  Evaluate the value it
1310         // contains when the loop exits, if possible.  We prefer to start with
1311         // expressions which are true for all exits (so as to maximize
1312         // expression reuse by the SCEVExpander), but resort to per-exit
1313         // evaluation if that fails.
1314         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1315         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1316             !SE->isLoopInvariant(ExitValue, L) ||
1317             !isSafeToExpand(ExitValue, *SE)) {
1318           // TODO: This should probably be sunk into SCEV in some way; maybe a
1319           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1320           // most SCEV expressions and other recurrence types (e.g. shift
1321           // recurrences).  Is there existing code we can reuse?
1322           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1323           if (isa<SCEVCouldNotCompute>(ExitCount))
1324             continue;
1325           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1326             if (AddRec->getLoop() == L)
1327               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1328           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1329               !SE->isLoopInvariant(ExitValue, L) ||
1330               !isSafeToExpand(ExitValue, *SE))
1331             continue;
1332         }
1333 
1334         // Computing the value outside of the loop brings no benefit if it is
1335         // definitely used inside the loop in a way which can not be optimized
1336         // away. Avoid doing so unless we know we have a value which computes
1337         // the ExitValue already. TODO: This should be merged into SCEV
1338         // expander to leverage its knowledge of existing expressions.
1339         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1340             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1341           continue;
1342 
1343         // Check if expansions of this SCEV would count as being high cost.
1344         bool HighCost = Rewriter.isHighCostExpansion(
1345             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1346 
1347         // Note that we must not perform expansions until after
1348         // we query *all* the costs, because if we perform temporary expansion
1349         // inbetween, one that we might not intend to keep, said expansion
1350         // *may* affect cost calculation of the the next SCEV's we'll query,
1351         // and next SCEV may errneously get smaller cost.
1352 
1353         // Collect all the candidate PHINodes to be rewritten.
1354         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1355       }
1356     }
1357   }
1358 
1359   // TODO: evaluate whether it is beneficial to change how we calculate
1360   // high-cost: if we have SCEV 'A' which we know we will expand, should we
1361   // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1362   // potentially giving cost bonus to those other SCEV's?
1363 
1364   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1365   int NumReplaced = 0;
1366 
1367   // Transformation.
1368   for (const RewritePhi &Phi : RewritePhiSet) {
1369     PHINode *PN = Phi.PN;
1370 
1371     // Only do the rewrite when the ExitValue can be expanded cheaply.
1372     // If LoopCanBeDel is true, rewrite exit value aggressively.
1373     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost)
1374       continue;
1375 
1376     Value *ExitVal = Rewriter.expandCodeFor(
1377         Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1378 
1379     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1380                       << '\n'
1381                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1382 
1383 #ifndef NDEBUG
1384     // If we reuse an instruction from a loop which is neither L nor one of
1385     // its containing loops, we end up breaking LCSSA form for this loop by
1386     // creating a new use of its instruction.
1387     if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1388       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1389         if (EVL != L)
1390           assert(EVL->contains(L) && "LCSSA breach detected!");
1391 #endif
1392 
1393     NumReplaced++;
1394     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1395     PN->setIncomingValue(Phi.Ith, ExitVal);
1396     // It's necessary to tell ScalarEvolution about this explicitly so that
1397     // it can walk the def-use list and forget all SCEVs, as it may not be
1398     // watching the PHI itself. Once the new exit value is in place, there
1399     // may not be a def-use connection between the loop and every instruction
1400     // which got a SCEVAddRecExpr for that loop.
1401     SE->forgetValue(PN);
1402 
1403     // If this instruction is dead now, delete it. Don't do it now to avoid
1404     // invalidating iterators.
1405     if (isInstructionTriviallyDead(Inst, TLI))
1406       DeadInsts.push_back(Inst);
1407 
1408     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1409     if (PN->getNumIncomingValues() == 1 &&
1410         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1411       PN->replaceAllUsesWith(ExitVal);
1412       PN->eraseFromParent();
1413     }
1414   }
1415 
1416   // The insertion point instruction may have been deleted; clear it out
1417   // so that the rewriter doesn't trip over it later.
1418   Rewriter.clearInsertPoint();
1419   return NumReplaced;
1420 }
1421 
1422 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1423 /// \p OrigLoop.
1424 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1425                                         Loop *RemainderLoop, uint64_t UF) {
1426   assert(UF > 0 && "Zero unrolled factor is not supported");
1427   assert(UnrolledLoop != RemainderLoop &&
1428          "Unrolled and Remainder loops are expected to distinct");
1429 
1430   // Get number of iterations in the original scalar loop.
1431   unsigned OrigLoopInvocationWeight = 0;
1432   Optional<unsigned> OrigAverageTripCount =
1433       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1434   if (!OrigAverageTripCount)
1435     return;
1436 
1437   // Calculate number of iterations in unrolled loop.
1438   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1439   // Calculate number of iterations for remainder loop.
1440   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1441 
1442   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1443                             OrigLoopInvocationWeight);
1444   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1445                             OrigLoopInvocationWeight);
1446 }
1447 
1448 /// Utility that implements appending of loops onto a worklist.
1449 /// Loops are added in preorder (analogous for reverse postorder for trees),
1450 /// and the worklist is processed LIFO.
1451 template <typename RangeT>
1452 void llvm::appendReversedLoopsToWorklist(
1453     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1454   // We use an internal worklist to build up the preorder traversal without
1455   // recursion.
1456   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1457 
1458   // We walk the initial sequence of loops in reverse because we generally want
1459   // to visit defs before uses and the worklist is LIFO.
1460   for (Loop *RootL : Loops) {
1461     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1462     assert(PreOrderWorklist.empty() &&
1463            "Must start with an empty preorder walk worklist.");
1464     PreOrderWorklist.push_back(RootL);
1465     do {
1466       Loop *L = PreOrderWorklist.pop_back_val();
1467       PreOrderWorklist.append(L->begin(), L->end());
1468       PreOrderLoops.push_back(L);
1469     } while (!PreOrderWorklist.empty());
1470 
1471     Worklist.insert(std::move(PreOrderLoops));
1472     PreOrderLoops.clear();
1473   }
1474 }
1475 
1476 template <typename RangeT>
1477 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1478                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1479   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1480 }
1481 
1482 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1483     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1484 
1485 template void
1486 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1487                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1488 
1489 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1490                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1491   appendReversedLoopsToWorklist(LI, Worklist);
1492 }
1493 
1494 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1495                       LoopInfo *LI, LPPassManager *LPM) {
1496   Loop &New = *LI->AllocateLoop();
1497   if (PL)
1498     PL->addChildLoop(&New);
1499   else
1500     LI->addTopLevelLoop(&New);
1501 
1502   if (LPM)
1503     LPM->addLoop(New);
1504 
1505   // Add all of the blocks in L to the new loop.
1506   for (BasicBlock *BB : L->blocks())
1507     if (LI->getLoopFor(BB) == L)
1508       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1509 
1510   // Add all of the subloops to the new loop.
1511   for (Loop *I : *L)
1512     cloneLoop(I, &New, VM, LI, LPM);
1513 
1514   return &New;
1515 }
1516 
1517 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1518 /// need to use value-handles because SCEV expansion can invalidate previously
1519 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1520 /// a previous one.
1521 struct PointerBounds {
1522   TrackingVH<Value> Start;
1523   TrackingVH<Value> End;
1524 };
1525 
1526 /// Expand code for the lower and upper bound of the pointer group \p CG
1527 /// in \p TheLoop.  \return the values for the bounds.
1528 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1529                                   Loop *TheLoop, Instruction *Loc,
1530                                   SCEVExpander &Exp) {
1531   LLVMContext &Ctx = Loc->getContext();
1532   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace);
1533 
1534   Value *Start = nullptr, *End = nullptr;
1535   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1536   Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1537   End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1538   LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1539   return {Start, End};
1540 }
1541 
1542 /// Turns a collection of checks into a collection of expanded upper and
1543 /// lower bounds for both pointers in the check.
1544 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1545 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1546              Instruction *Loc, SCEVExpander &Exp) {
1547   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1548 
1549   // Here we're relying on the SCEV Expander's cache to only emit code for the
1550   // same bounds once.
1551   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1552             [&](const RuntimePointerCheck &Check) {
1553               PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
1554                             Second = expandBounds(Check.second, L, Loc, Exp);
1555               return std::make_pair(First, Second);
1556             });
1557 
1558   return ChecksWithBounds;
1559 }
1560 
1561 Value *llvm::addRuntimeChecks(
1562     Instruction *Loc, Loop *TheLoop,
1563     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1564     SCEVExpander &Exp) {
1565   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1566   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1567   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
1568 
1569   LLVMContext &Ctx = Loc->getContext();
1570   IRBuilder<> ChkBuilder(Loc);
1571   // Our instructions might fold to a constant.
1572   Value *MemoryRuntimeCheck = nullptr;
1573 
1574   for (const auto &Check : ExpandedChecks) {
1575     const PointerBounds &A = Check.first, &B = Check.second;
1576     // Check if two pointers (A and B) conflict where conflict is computed as:
1577     // start(A) <= end(B) && start(B) <= end(A)
1578     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1579     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1580 
1581     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1582            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1583            "Trying to bounds check pointers with different address spaces");
1584 
1585     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1586     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1587 
1588     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1589     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1590     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1591     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1592 
1593     // [A|B].Start points to the first accessed byte under base [A|B].
1594     // [A|B].End points to the last accessed byte, plus one.
1595     // There is no conflict when the intervals are disjoint:
1596     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1597     //
1598     // bound0 = (B.Start < A.End)
1599     // bound1 = (A.Start < B.End)
1600     //  IsConflict = bound0 & bound1
1601     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1602     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1603     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1604     if (MemoryRuntimeCheck) {
1605       IsConflict =
1606           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1607     }
1608     MemoryRuntimeCheck = IsConflict;
1609   }
1610 
1611   return MemoryRuntimeCheck;
1612 }
1613 
1614 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
1615                                                       unsigned MSSAThreshold,
1616                                                       MemorySSA &MSSA,
1617                                                       AAResults &AA) {
1618   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1619   if (!TI || !TI->isConditional())
1620     return {};
1621 
1622   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1623   // The case with the condition outside the loop should already be handled
1624   // earlier.
1625   if (!CondI || !L.contains(CondI))
1626     return {};
1627 
1628   SmallVector<Instruction *> InstToDuplicate;
1629   InstToDuplicate.push_back(CondI);
1630 
1631   SmallVector<Value *, 4> WorkList;
1632   WorkList.append(CondI->op_begin(), CondI->op_end());
1633 
1634   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1635   SmallVector<MemoryLocation, 4> AccessedLocs;
1636   while (!WorkList.empty()) {
1637     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1638     if (!I || !L.contains(I))
1639       continue;
1640 
1641     // TODO: support additional instructions.
1642     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1643       return {};
1644 
1645     // Do not duplicate volatile and atomic loads.
1646     if (auto *LI = dyn_cast<LoadInst>(I))
1647       if (LI->isVolatile() || LI->isAtomic())
1648         return {};
1649 
1650     InstToDuplicate.push_back(I);
1651     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1652       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1653         // Queue the defining access to check for alias checks.
1654         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1655         AccessedLocs.push_back(MemoryLocation::get(I));
1656       } else {
1657         // MemoryDefs may clobber the location or may be atomic memory
1658         // operations. Bail out.
1659         return {};
1660       }
1661     }
1662     WorkList.append(I->op_begin(), I->op_end());
1663   }
1664 
1665   if (InstToDuplicate.empty())
1666     return {};
1667 
1668   SmallVector<BasicBlock *, 4> ExitingBlocks;
1669   L.getExitingBlocks(ExitingBlocks);
1670   auto HasNoClobbersOnPath =
1671       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1672        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1673                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1674       -> Optional<IVConditionInfo> {
1675     IVConditionInfo Info;
1676     // First, collect all blocks in the loop that are on a patch from Succ
1677     // to the header.
1678     SmallVector<BasicBlock *, 4> WorkList;
1679     WorkList.push_back(Succ);
1680     WorkList.push_back(Header);
1681     SmallPtrSet<BasicBlock *, 4> Seen;
1682     Seen.insert(Header);
1683     Info.PathIsNoop &=
1684         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1685 
1686     while (!WorkList.empty()) {
1687       BasicBlock *Current = WorkList.pop_back_val();
1688       if (!L.contains(Current))
1689         continue;
1690       const auto &SeenIns = Seen.insert(Current);
1691       if (!SeenIns.second)
1692         continue;
1693 
1694       Info.PathIsNoop &= all_of(
1695           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1696       WorkList.append(succ_begin(Current), succ_end(Current));
1697     }
1698 
1699     // Require at least 2 blocks on a path through the loop. This skips
1700     // paths that directly exit the loop.
1701     if (Seen.size() < 2)
1702       return {};
1703 
1704     // Next, check if there are any MemoryDefs that are on the path through
1705     // the loop (in the Seen set) and they may-alias any of the locations in
1706     // AccessedLocs. If that is the case, they may modify the condition and
1707     // partial unswitching is not possible.
1708     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1709     while (!AccessesToCheck.empty()) {
1710       MemoryAccess *Current = AccessesToCheck.pop_back_val();
1711       auto SeenI = SeenAccesses.insert(Current);
1712       if (!SeenI.second || !Seen.contains(Current->getBlock()))
1713         continue;
1714 
1715       // Bail out if exceeded the threshold.
1716       if (SeenAccesses.size() >= MSSAThreshold)
1717         return {};
1718 
1719       // MemoryUse are read-only accesses.
1720       if (isa<MemoryUse>(Current))
1721         continue;
1722 
1723       // For a MemoryDef, check if is aliases any of the location feeding
1724       // the original condition.
1725       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1726         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1727               return isModSet(
1728                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1729             }))
1730           return {};
1731       }
1732 
1733       for (Use &U : Current->uses())
1734         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1735     }
1736 
1737     // We could also allow loops with known trip counts without mustprogress,
1738     // but ScalarEvolution may not be available.
1739     Info.PathIsNoop &= isMustProgress(&L);
1740 
1741     // If the path is considered a no-op so far, check if it reaches a
1742     // single exit block without any phis. This ensures no values from the
1743     // loop are used outside of the loop.
1744     if (Info.PathIsNoop) {
1745       for (auto *Exiting : ExitingBlocks) {
1746         if (!Seen.contains(Exiting))
1747           continue;
1748         for (auto *Succ : successors(Exiting)) {
1749           if (L.contains(Succ))
1750             continue;
1751 
1752           Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
1753                              (!Info.ExitForPath || Info.ExitForPath == Succ);
1754           if (!Info.PathIsNoop)
1755             break;
1756           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1757                  "cannot have multiple exit blocks");
1758           Info.ExitForPath = Succ;
1759         }
1760       }
1761     }
1762     if (!Info.ExitForPath)
1763       Info.PathIsNoop = false;
1764 
1765     Info.InstToDuplicate = InstToDuplicate;
1766     return Info;
1767   };
1768 
1769   // If we branch to the same successor, partial unswitching will not be
1770   // beneficial.
1771   if (TI->getSuccessor(0) == TI->getSuccessor(1))
1772     return {};
1773 
1774   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
1775                                       AccessesToCheck)) {
1776     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
1777     return Info;
1778   }
1779   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
1780                                       AccessesToCheck)) {
1781     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
1782     return Info;
1783   }
1784 
1785   return {};
1786 }
1787