1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/PseudoProbe.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms. 115 static const unsigned BitPartRecursionMaxDepth = 48; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 BranchInst *NewBI = Builder.CreateBr(Dest1); 152 153 // Transfer the metadata to the new branch instruction. 154 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 155 LLVMContext::MD_annotation}); 156 157 Value *Cond = BI->getCondition(); 158 BI->eraseFromParent(); 159 if (DeleteDeadConditions) 160 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 161 return true; 162 } 163 164 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 165 // Are we branching on constant? 166 // YES. Change to unconditional branch... 167 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 168 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 169 170 // Let the basic block know that we are letting go of it. Based on this, 171 // it will adjust it's PHI nodes. 172 OldDest->removePredecessor(BB); 173 174 // Replace the conditional branch with an unconditional one. 175 BranchInst *NewBI = Builder.CreateBr(Destination); 176 177 // Transfer the metadata to the new branch instruction. 178 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 179 LLVMContext::MD_annotation}); 180 181 BI->eraseFromParent(); 182 if (DTU) 183 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 184 return true; 185 } 186 187 return false; 188 } 189 190 if (auto *SI = dyn_cast<SwitchInst>(T)) { 191 // If we are switching on a constant, we can convert the switch to an 192 // unconditional branch. 193 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 194 BasicBlock *DefaultDest = SI->getDefaultDest(); 195 BasicBlock *TheOnlyDest = DefaultDest; 196 197 // If the default is unreachable, ignore it when searching for TheOnlyDest. 198 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 199 SI->getNumCases() > 0) { 200 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 201 } 202 203 bool Changed = false; 204 205 // Figure out which case it goes to. 206 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 207 // Found case matching a constant operand? 208 if (i->getCaseValue() == CI) { 209 TheOnlyDest = i->getCaseSuccessor(); 210 break; 211 } 212 213 // Check to see if this branch is going to the same place as the default 214 // dest. If so, eliminate it as an explicit compare. 215 if (i->getCaseSuccessor() == DefaultDest) { 216 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 217 unsigned NCases = SI->getNumCases(); 218 // Fold the case metadata into the default if there will be any branches 219 // left, unless the metadata doesn't match the switch. 220 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 221 // Collect branch weights into a vector. 222 SmallVector<uint32_t, 8> Weights; 223 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 224 ++MD_i) { 225 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 226 Weights.push_back(CI->getValue().getZExtValue()); 227 } 228 // Merge weight of this case to the default weight. 229 unsigned idx = i->getCaseIndex(); 230 Weights[0] += Weights[idx+1]; 231 // Remove weight for this case. 232 std::swap(Weights[idx+1], Weights.back()); 233 Weights.pop_back(); 234 SI->setMetadata(LLVMContext::MD_prof, 235 MDBuilder(BB->getContext()). 236 createBranchWeights(Weights)); 237 } 238 // Remove this entry. 239 BasicBlock *ParentBB = SI->getParent(); 240 DefaultDest->removePredecessor(ParentBB); 241 i = SI->removeCase(i); 242 e = SI->case_end(); 243 Changed = true; 244 continue; 245 } 246 247 // Otherwise, check to see if the switch only branches to one destination. 248 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 249 // destinations. 250 if (i->getCaseSuccessor() != TheOnlyDest) 251 TheOnlyDest = nullptr; 252 253 // Increment this iterator as we haven't removed the case. 254 ++i; 255 } 256 257 if (CI && !TheOnlyDest) { 258 // Branching on a constant, but not any of the cases, go to the default 259 // successor. 260 TheOnlyDest = SI->getDefaultDest(); 261 } 262 263 // If we found a single destination that we can fold the switch into, do so 264 // now. 265 if (TheOnlyDest) { 266 // Insert the new branch. 267 Builder.CreateBr(TheOnlyDest); 268 BasicBlock *BB = SI->getParent(); 269 270 SmallSet<BasicBlock *, 8> RemovedSuccessors; 271 272 // Remove entries from PHI nodes which we no longer branch to... 273 BasicBlock *SuccToKeep = TheOnlyDest; 274 for (BasicBlock *Succ : successors(SI)) { 275 if (DTU && Succ != TheOnlyDest) 276 RemovedSuccessors.insert(Succ); 277 // Found case matching a constant operand? 278 if (Succ == SuccToKeep) { 279 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 280 } else { 281 Succ->removePredecessor(BB); 282 } 283 } 284 285 // Delete the old switch. 286 Value *Cond = SI->getCondition(); 287 SI->eraseFromParent(); 288 if (DeleteDeadConditions) 289 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 290 if (DTU) { 291 std::vector<DominatorTree::UpdateType> Updates; 292 Updates.reserve(RemovedSuccessors.size()); 293 for (auto *RemovedSuccessor : RemovedSuccessors) 294 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 295 DTU->applyUpdates(Updates); 296 } 297 return true; 298 } 299 300 if (SI->getNumCases() == 1) { 301 // Otherwise, we can fold this switch into a conditional branch 302 // instruction if it has only one non-default destination. 303 auto FirstCase = *SI->case_begin(); 304 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 305 FirstCase.getCaseValue(), "cond"); 306 307 // Insert the new branch. 308 BranchInst *NewBr = Builder.CreateCondBr(Cond, 309 FirstCase.getCaseSuccessor(), 310 SI->getDefaultDest()); 311 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 312 if (MD && MD->getNumOperands() == 3) { 313 ConstantInt *SICase = 314 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 315 ConstantInt *SIDef = 316 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 317 assert(SICase && SIDef); 318 // The TrueWeight should be the weight for the single case of SI. 319 NewBr->setMetadata(LLVMContext::MD_prof, 320 MDBuilder(BB->getContext()). 321 createBranchWeights(SICase->getValue().getZExtValue(), 322 SIDef->getValue().getZExtValue())); 323 } 324 325 // Update make.implicit metadata to the newly-created conditional branch. 326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 327 if (MakeImplicitMD) 328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 329 330 // Delete the old switch. 331 SI->eraseFromParent(); 332 return true; 333 } 334 return Changed; 335 } 336 337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 338 // indirectbr blockaddress(@F, @BB) -> br label @BB 339 if (auto *BA = 340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 341 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 342 SmallSet<BasicBlock *, 8> RemovedSuccessors; 343 344 // Insert the new branch. 345 Builder.CreateBr(TheOnlyDest); 346 347 BasicBlock *SuccToKeep = TheOnlyDest; 348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 349 BasicBlock *DestBB = IBI->getDestination(i); 350 if (DTU && DestBB != TheOnlyDest) 351 RemovedSuccessors.insert(DestBB); 352 if (IBI->getDestination(i) == SuccToKeep) { 353 SuccToKeep = nullptr; 354 } else { 355 DestBB->removePredecessor(BB); 356 } 357 } 358 Value *Address = IBI->getAddress(); 359 IBI->eraseFromParent(); 360 if (DeleteDeadConditions) 361 // Delete pointer cast instructions. 362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 363 364 // Also zap the blockaddress constant if there are no users remaining, 365 // otherwise the destination is still marked as having its address taken. 366 if (BA->use_empty()) 367 BA->destroyConstant(); 368 369 // If we didn't find our destination in the IBI successor list, then we 370 // have undefined behavior. Replace the unconditional branch with an 371 // 'unreachable' instruction. 372 if (SuccToKeep) { 373 BB->getTerminator()->eraseFromParent(); 374 new UnreachableInst(BB->getContext(), BB); 375 } 376 377 if (DTU) { 378 std::vector<DominatorTree::UpdateType> Updates; 379 Updates.reserve(RemovedSuccessors.size()); 380 for (auto *RemovedSuccessor : RemovedSuccessors) 381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 382 DTU->applyUpdates(Updates); 383 } 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Local dead code elimination. 393 // 394 395 /// isInstructionTriviallyDead - Return true if the result produced by the 396 /// instruction is not used, and the instruction has no side effects. 397 /// 398 bool llvm::isInstructionTriviallyDead(Instruction *I, 399 const TargetLibraryInfo *TLI) { 400 if (!I->use_empty()) 401 return false; 402 return wouldInstructionBeTriviallyDead(I, TLI); 403 } 404 405 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 406 Instruction *I, const TargetLibraryInfo *TLI) { 407 // Instructions that are "markers" and have implied meaning on code around 408 // them (without explicit uses), are not dead on unused paths. 409 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 410 if (II->getIntrinsicID() == Intrinsic::stacksave || 411 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 412 II->isLifetimeStartOrEnd()) 413 return false; 414 return wouldInstructionBeTriviallyDead(I, TLI); 415 } 416 417 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 418 const TargetLibraryInfo *TLI) { 419 if (I->isTerminator()) 420 return false; 421 422 // We don't want the landingpad-like instructions removed by anything this 423 // general. 424 if (I->isEHPad()) 425 return false; 426 427 // We don't want debug info removed by anything this general, unless 428 // debug info is empty. 429 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 430 if (DDI->getAddress()) 431 return false; 432 return true; 433 } 434 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 435 if (DVI->hasArgList() || DVI->getValue(0)) 436 return false; 437 return true; 438 } 439 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 440 if (DLI->getLabel()) 441 return false; 442 return true; 443 } 444 445 if (!I->willReturn()) 446 return false; 447 448 if (!I->mayHaveSideEffects()) 449 return true; 450 451 // Special case intrinsics that "may have side effects" but can be deleted 452 // when dead. 453 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 454 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 455 if (II->getIntrinsicID() == Intrinsic::stacksave || 456 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 457 return true; 458 459 if (II->isLifetimeStartOrEnd()) { 460 auto *Arg = II->getArgOperand(1); 461 // Lifetime intrinsics are dead when their right-hand is undef. 462 if (isa<UndefValue>(Arg)) 463 return true; 464 // If the right-hand is an alloc, global, or argument and the only uses 465 // are lifetime intrinsics then the intrinsics are dead. 466 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 467 return llvm::all_of(Arg->uses(), [](Use &Use) { 468 if (IntrinsicInst *IntrinsicUse = 469 dyn_cast<IntrinsicInst>(Use.getUser())) 470 return IntrinsicUse->isLifetimeStartOrEnd(); 471 return false; 472 }); 473 return false; 474 } 475 476 // Assumptions are dead if their condition is trivially true. Guards on 477 // true are operationally no-ops. In the future we can consider more 478 // sophisticated tradeoffs for guards considering potential for check 479 // widening, but for now we keep things simple. 480 if ((II->getIntrinsicID() == Intrinsic::assume && 481 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 482 II->getIntrinsicID() == Intrinsic::experimental_guard) { 483 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 484 return !Cond->isZero(); 485 486 return false; 487 } 488 489 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 490 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); 491 return ExBehavior.getValue() != fp::ebStrict; 492 } 493 } 494 495 if (isAllocLikeFn(I, TLI)) 496 return true; 497 498 if (CallInst *CI = isFreeCall(I, TLI)) 499 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 500 return C->isNullValue() || isa<UndefValue>(C); 501 502 if (auto *Call = dyn_cast<CallBase>(I)) 503 if (isMathLibCallNoop(Call, TLI)) 504 return true; 505 506 // To express possible interaction with floating point environment constrained 507 // intrinsics are described as if they access memory. So they look like having 508 // side effect but actually do not have it unless they raise floating point 509 // exception. If FP exceptions are ignored, the intrinsic may be deleted. 510 if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 511 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 512 if (!EB || *EB == fp::ExceptionBehavior::ebIgnore) 513 return true; 514 } 515 516 return false; 517 } 518 519 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 520 /// trivially dead instruction, delete it. If that makes any of its operands 521 /// trivially dead, delete them too, recursively. Return true if any 522 /// instructions were deleted. 523 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 524 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 525 std::function<void(Value *)> AboutToDeleteCallback) { 526 Instruction *I = dyn_cast<Instruction>(V); 527 if (!I || !isInstructionTriviallyDead(I, TLI)) 528 return false; 529 530 SmallVector<WeakTrackingVH, 16> DeadInsts; 531 DeadInsts.push_back(I); 532 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 533 AboutToDeleteCallback); 534 535 return true; 536 } 537 538 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 539 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 540 MemorySSAUpdater *MSSAU, 541 std::function<void(Value *)> AboutToDeleteCallback) { 542 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 543 for (; S != E; ++S) { 544 auto *I = dyn_cast<Instruction>(DeadInsts[S]); 545 if (!I || !isInstructionTriviallyDead(I)) { 546 DeadInsts[S] = nullptr; 547 ++Alive; 548 } 549 } 550 if (Alive == E) 551 return false; 552 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 553 AboutToDeleteCallback); 554 return true; 555 } 556 557 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 558 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 559 MemorySSAUpdater *MSSAU, 560 std::function<void(Value *)> AboutToDeleteCallback) { 561 // Process the dead instruction list until empty. 562 while (!DeadInsts.empty()) { 563 Value *V = DeadInsts.pop_back_val(); 564 Instruction *I = cast_or_null<Instruction>(V); 565 if (!I) 566 continue; 567 assert(isInstructionTriviallyDead(I, TLI) && 568 "Live instruction found in dead worklist!"); 569 assert(I->use_empty() && "Instructions with uses are not dead."); 570 571 // Don't lose the debug info while deleting the instructions. 572 salvageDebugInfo(*I); 573 574 if (AboutToDeleteCallback) 575 AboutToDeleteCallback(I); 576 577 // Null out all of the instruction's operands to see if any operand becomes 578 // dead as we go. 579 for (Use &OpU : I->operands()) { 580 Value *OpV = OpU.get(); 581 OpU.set(nullptr); 582 583 if (!OpV->use_empty()) 584 continue; 585 586 // If the operand is an instruction that became dead as we nulled out the 587 // operand, and if it is 'trivially' dead, delete it in a future loop 588 // iteration. 589 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 590 if (isInstructionTriviallyDead(OpI, TLI)) 591 DeadInsts.push_back(OpI); 592 } 593 if (MSSAU) 594 MSSAU->removeMemoryAccess(I); 595 596 I->eraseFromParent(); 597 } 598 } 599 600 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 601 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 602 findDbgUsers(DbgUsers, I); 603 for (auto *DII : DbgUsers) { 604 Value *Undef = UndefValue::get(I->getType()); 605 DII->replaceVariableLocationOp(I, Undef); 606 } 607 return !DbgUsers.empty(); 608 } 609 610 /// areAllUsesEqual - Check whether the uses of a value are all the same. 611 /// This is similar to Instruction::hasOneUse() except this will also return 612 /// true when there are no uses or multiple uses that all refer to the same 613 /// value. 614 static bool areAllUsesEqual(Instruction *I) { 615 Value::user_iterator UI = I->user_begin(); 616 Value::user_iterator UE = I->user_end(); 617 if (UI == UE) 618 return true; 619 620 User *TheUse = *UI; 621 for (++UI; UI != UE; ++UI) { 622 if (*UI != TheUse) 623 return false; 624 } 625 return true; 626 } 627 628 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 629 /// dead PHI node, due to being a def-use chain of single-use nodes that 630 /// either forms a cycle or is terminated by a trivially dead instruction, 631 /// delete it. If that makes any of its operands trivially dead, delete them 632 /// too, recursively. Return true if a change was made. 633 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 634 const TargetLibraryInfo *TLI, 635 llvm::MemorySSAUpdater *MSSAU) { 636 SmallPtrSet<Instruction*, 4> Visited; 637 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 638 I = cast<Instruction>(*I->user_begin())) { 639 if (I->use_empty()) 640 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 641 642 // If we find an instruction more than once, we're on a cycle that 643 // won't prove fruitful. 644 if (!Visited.insert(I).second) { 645 // Break the cycle and delete the instruction and its operands. 646 I->replaceAllUsesWith(UndefValue::get(I->getType())); 647 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 648 return true; 649 } 650 } 651 return false; 652 } 653 654 static bool 655 simplifyAndDCEInstruction(Instruction *I, 656 SmallSetVector<Instruction *, 16> &WorkList, 657 const DataLayout &DL, 658 const TargetLibraryInfo *TLI) { 659 if (isInstructionTriviallyDead(I, TLI)) { 660 salvageDebugInfo(*I); 661 662 // Null out all of the instruction's operands to see if any operand becomes 663 // dead as we go. 664 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 665 Value *OpV = I->getOperand(i); 666 I->setOperand(i, nullptr); 667 668 if (!OpV->use_empty() || I == OpV) 669 continue; 670 671 // If the operand is an instruction that became dead as we nulled out the 672 // operand, and if it is 'trivially' dead, delete it in a future loop 673 // iteration. 674 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 675 if (isInstructionTriviallyDead(OpI, TLI)) 676 WorkList.insert(OpI); 677 } 678 679 I->eraseFromParent(); 680 681 return true; 682 } 683 684 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 685 // Add the users to the worklist. CAREFUL: an instruction can use itself, 686 // in the case of a phi node. 687 for (User *U : I->users()) { 688 if (U != I) { 689 WorkList.insert(cast<Instruction>(U)); 690 } 691 } 692 693 // Replace the instruction with its simplified value. 694 bool Changed = false; 695 if (!I->use_empty()) { 696 I->replaceAllUsesWith(SimpleV); 697 Changed = true; 698 } 699 if (isInstructionTriviallyDead(I, TLI)) { 700 I->eraseFromParent(); 701 Changed = true; 702 } 703 return Changed; 704 } 705 return false; 706 } 707 708 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 709 /// simplify any instructions in it and recursively delete dead instructions. 710 /// 711 /// This returns true if it changed the code, note that it can delete 712 /// instructions in other blocks as well in this block. 713 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 714 const TargetLibraryInfo *TLI) { 715 bool MadeChange = false; 716 const DataLayout &DL = BB->getModule()->getDataLayout(); 717 718 #ifndef NDEBUG 719 // In debug builds, ensure that the terminator of the block is never replaced 720 // or deleted by these simplifications. The idea of simplification is that it 721 // cannot introduce new instructions, and there is no way to replace the 722 // terminator of a block without introducing a new instruction. 723 AssertingVH<Instruction> TerminatorVH(&BB->back()); 724 #endif 725 726 SmallSetVector<Instruction *, 16> WorkList; 727 // Iterate over the original function, only adding insts to the worklist 728 // if they actually need to be revisited. This avoids having to pre-init 729 // the worklist with the entire function's worth of instructions. 730 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 731 BI != E;) { 732 assert(!BI->isTerminator()); 733 Instruction *I = &*BI; 734 ++BI; 735 736 // We're visiting this instruction now, so make sure it's not in the 737 // worklist from an earlier visit. 738 if (!WorkList.count(I)) 739 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 740 } 741 742 while (!WorkList.empty()) { 743 Instruction *I = WorkList.pop_back_val(); 744 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 745 } 746 return MadeChange; 747 } 748 749 //===----------------------------------------------------------------------===// 750 // Control Flow Graph Restructuring. 751 // 752 753 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 754 DomTreeUpdater *DTU) { 755 756 // If BB has single-entry PHI nodes, fold them. 757 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 758 Value *NewVal = PN->getIncomingValue(0); 759 // Replace self referencing PHI with undef, it must be dead. 760 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 761 PN->replaceAllUsesWith(NewVal); 762 PN->eraseFromParent(); 763 } 764 765 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 766 assert(PredBB && "Block doesn't have a single predecessor!"); 767 768 bool ReplaceEntryBB = PredBB->isEntryBlock(); 769 770 // DTU updates: Collect all the edges that enter 771 // PredBB. These dominator edges will be redirected to DestBB. 772 SmallVector<DominatorTree::UpdateType, 32> Updates; 773 774 if (DTU) { 775 // To avoid processing the same predecessor more than once. 776 SmallPtrSet<BasicBlock *, 2> SeenPreds; 777 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 778 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 779 // This predecessor of PredBB may already have DestBB as a successor. 780 if (PredOfPredBB != PredBB) 781 if (SeenPreds.insert(PredOfPredBB).second) 782 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 783 SeenPreds.clear(); 784 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 785 if (SeenPreds.insert(PredOfPredBB).second) 786 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 787 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 788 } 789 790 // Zap anything that took the address of DestBB. Not doing this will give the 791 // address an invalid value. 792 if (DestBB->hasAddressTaken()) { 793 BlockAddress *BA = BlockAddress::get(DestBB); 794 Constant *Replacement = 795 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 796 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 797 BA->getType())); 798 BA->destroyConstant(); 799 } 800 801 // Anything that branched to PredBB now branches to DestBB. 802 PredBB->replaceAllUsesWith(DestBB); 803 804 // Splice all the instructions from PredBB to DestBB. 805 PredBB->getTerminator()->eraseFromParent(); 806 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 807 new UnreachableInst(PredBB->getContext(), PredBB); 808 809 // If the PredBB is the entry block of the function, move DestBB up to 810 // become the entry block after we erase PredBB. 811 if (ReplaceEntryBB) 812 DestBB->moveAfter(PredBB); 813 814 if (DTU) { 815 assert(PredBB->getInstList().size() == 1 && 816 isa<UnreachableInst>(PredBB->getTerminator()) && 817 "The successor list of PredBB isn't empty before " 818 "applying corresponding DTU updates."); 819 DTU->applyUpdatesPermissive(Updates); 820 DTU->deleteBB(PredBB); 821 // Recalculation of DomTree is needed when updating a forward DomTree and 822 // the Entry BB is replaced. 823 if (ReplaceEntryBB && DTU->hasDomTree()) { 824 // The entry block was removed and there is no external interface for 825 // the dominator tree to be notified of this change. In this corner-case 826 // we recalculate the entire tree. 827 DTU->recalculate(*(DestBB->getParent())); 828 } 829 } 830 831 else { 832 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 833 } 834 } 835 836 /// Return true if we can choose one of these values to use in place of the 837 /// other. Note that we will always choose the non-undef value to keep. 838 static bool CanMergeValues(Value *First, Value *Second) { 839 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 840 } 841 842 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 843 /// branch to Succ, into Succ. 844 /// 845 /// Assumption: Succ is the single successor for BB. 846 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 847 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 848 849 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 850 << Succ->getName() << "\n"); 851 // Shortcut, if there is only a single predecessor it must be BB and merging 852 // is always safe 853 if (Succ->getSinglePredecessor()) return true; 854 855 // Make a list of the predecessors of BB 856 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 857 858 // Look at all the phi nodes in Succ, to see if they present a conflict when 859 // merging these blocks 860 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 861 PHINode *PN = cast<PHINode>(I); 862 863 // If the incoming value from BB is again a PHINode in 864 // BB which has the same incoming value for *PI as PN does, we can 865 // merge the phi nodes and then the blocks can still be merged 866 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 867 if (BBPN && BBPN->getParent() == BB) { 868 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 869 BasicBlock *IBB = PN->getIncomingBlock(PI); 870 if (BBPreds.count(IBB) && 871 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 872 PN->getIncomingValue(PI))) { 873 LLVM_DEBUG(dbgs() 874 << "Can't fold, phi node " << PN->getName() << " in " 875 << Succ->getName() << " is conflicting with " 876 << BBPN->getName() << " with regard to common predecessor " 877 << IBB->getName() << "\n"); 878 return false; 879 } 880 } 881 } else { 882 Value* Val = PN->getIncomingValueForBlock(BB); 883 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 884 // See if the incoming value for the common predecessor is equal to the 885 // one for BB, in which case this phi node will not prevent the merging 886 // of the block. 887 BasicBlock *IBB = PN->getIncomingBlock(PI); 888 if (BBPreds.count(IBB) && 889 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 890 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 891 << " in " << Succ->getName() 892 << " is conflicting with regard to common " 893 << "predecessor " << IBB->getName() << "\n"); 894 return false; 895 } 896 } 897 } 898 } 899 900 return true; 901 } 902 903 using PredBlockVector = SmallVector<BasicBlock *, 16>; 904 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 905 906 /// Determines the value to use as the phi node input for a block. 907 /// 908 /// Select between \p OldVal any value that we know flows from \p BB 909 /// to a particular phi on the basis of which one (if either) is not 910 /// undef. Update IncomingValues based on the selected value. 911 /// 912 /// \param OldVal The value we are considering selecting. 913 /// \param BB The block that the value flows in from. 914 /// \param IncomingValues A map from block-to-value for other phi inputs 915 /// that we have examined. 916 /// 917 /// \returns the selected value. 918 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 919 IncomingValueMap &IncomingValues) { 920 if (!isa<UndefValue>(OldVal)) { 921 assert((!IncomingValues.count(BB) || 922 IncomingValues.find(BB)->second == OldVal) && 923 "Expected OldVal to match incoming value from BB!"); 924 925 IncomingValues.insert(std::make_pair(BB, OldVal)); 926 return OldVal; 927 } 928 929 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 930 if (It != IncomingValues.end()) return It->second; 931 932 return OldVal; 933 } 934 935 /// Create a map from block to value for the operands of a 936 /// given phi. 937 /// 938 /// Create a map from block to value for each non-undef value flowing 939 /// into \p PN. 940 /// 941 /// \param PN The phi we are collecting the map for. 942 /// \param IncomingValues [out] The map from block to value for this phi. 943 static void gatherIncomingValuesToPhi(PHINode *PN, 944 IncomingValueMap &IncomingValues) { 945 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 946 BasicBlock *BB = PN->getIncomingBlock(i); 947 Value *V = PN->getIncomingValue(i); 948 949 if (!isa<UndefValue>(V)) 950 IncomingValues.insert(std::make_pair(BB, V)); 951 } 952 } 953 954 /// Replace the incoming undef values to a phi with the values 955 /// from a block-to-value map. 956 /// 957 /// \param PN The phi we are replacing the undefs in. 958 /// \param IncomingValues A map from block to value. 959 static void replaceUndefValuesInPhi(PHINode *PN, 960 const IncomingValueMap &IncomingValues) { 961 SmallVector<unsigned> TrueUndefOps; 962 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 963 Value *V = PN->getIncomingValue(i); 964 965 if (!isa<UndefValue>(V)) continue; 966 967 BasicBlock *BB = PN->getIncomingBlock(i); 968 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 969 970 // Keep track of undef/poison incoming values. Those must match, so we fix 971 // them up below if needed. 972 // Note: this is conservatively correct, but we could try harder and group 973 // the undef values per incoming basic block. 974 if (It == IncomingValues.end()) { 975 TrueUndefOps.push_back(i); 976 continue; 977 } 978 979 // There is a defined value for this incoming block, so map this undef 980 // incoming value to the defined value. 981 PN->setIncomingValue(i, It->second); 982 } 983 984 // If there are both undef and poison values incoming, then convert those 985 // values to undef. It is invalid to have different values for the same 986 // incoming block. 987 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 988 return isa<PoisonValue>(PN->getIncomingValue(i)); 989 }); 990 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 991 for (unsigned i : TrueUndefOps) 992 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 993 } 994 } 995 996 /// Replace a value flowing from a block to a phi with 997 /// potentially multiple instances of that value flowing from the 998 /// block's predecessors to the phi. 999 /// 1000 /// \param BB The block with the value flowing into the phi. 1001 /// \param BBPreds The predecessors of BB. 1002 /// \param PN The phi that we are updating. 1003 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1004 const PredBlockVector &BBPreds, 1005 PHINode *PN) { 1006 Value *OldVal = PN->removeIncomingValue(BB, false); 1007 assert(OldVal && "No entry in PHI for Pred BB!"); 1008 1009 IncomingValueMap IncomingValues; 1010 1011 // We are merging two blocks - BB, and the block containing PN - and 1012 // as a result we need to redirect edges from the predecessors of BB 1013 // to go to the block containing PN, and update PN 1014 // accordingly. Since we allow merging blocks in the case where the 1015 // predecessor and successor blocks both share some predecessors, 1016 // and where some of those common predecessors might have undef 1017 // values flowing into PN, we want to rewrite those values to be 1018 // consistent with the non-undef values. 1019 1020 gatherIncomingValuesToPhi(PN, IncomingValues); 1021 1022 // If this incoming value is one of the PHI nodes in BB, the new entries 1023 // in the PHI node are the entries from the old PHI. 1024 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1025 PHINode *OldValPN = cast<PHINode>(OldVal); 1026 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1027 // Note that, since we are merging phi nodes and BB and Succ might 1028 // have common predecessors, we could end up with a phi node with 1029 // identical incoming branches. This will be cleaned up later (and 1030 // will trigger asserts if we try to clean it up now, without also 1031 // simplifying the corresponding conditional branch). 1032 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1033 Value *PredVal = OldValPN->getIncomingValue(i); 1034 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1035 IncomingValues); 1036 1037 // And add a new incoming value for this predecessor for the 1038 // newly retargeted branch. 1039 PN->addIncoming(Selected, PredBB); 1040 } 1041 } else { 1042 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1043 // Update existing incoming values in PN for this 1044 // predecessor of BB. 1045 BasicBlock *PredBB = BBPreds[i]; 1046 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1047 IncomingValues); 1048 1049 // And add a new incoming value for this predecessor for the 1050 // newly retargeted branch. 1051 PN->addIncoming(Selected, PredBB); 1052 } 1053 } 1054 1055 replaceUndefValuesInPhi(PN, IncomingValues); 1056 } 1057 1058 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1059 DomTreeUpdater *DTU) { 1060 assert(BB != &BB->getParent()->getEntryBlock() && 1061 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1062 1063 // We can't eliminate infinite loops. 1064 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1065 if (BB == Succ) return false; 1066 1067 // Check to see if merging these blocks would cause conflicts for any of the 1068 // phi nodes in BB or Succ. If not, we can safely merge. 1069 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1070 1071 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1072 // has uses which will not disappear when the PHI nodes are merged. It is 1073 // possible to handle such cases, but difficult: it requires checking whether 1074 // BB dominates Succ, which is non-trivial to calculate in the case where 1075 // Succ has multiple predecessors. Also, it requires checking whether 1076 // constructing the necessary self-referential PHI node doesn't introduce any 1077 // conflicts; this isn't too difficult, but the previous code for doing this 1078 // was incorrect. 1079 // 1080 // Note that if this check finds a live use, BB dominates Succ, so BB is 1081 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1082 // folding the branch isn't profitable in that case anyway. 1083 if (!Succ->getSinglePredecessor()) { 1084 BasicBlock::iterator BBI = BB->begin(); 1085 while (isa<PHINode>(*BBI)) { 1086 for (Use &U : BBI->uses()) { 1087 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1088 if (PN->getIncomingBlock(U) != BB) 1089 return false; 1090 } else { 1091 return false; 1092 } 1093 } 1094 ++BBI; 1095 } 1096 } 1097 1098 // We cannot fold the block if it's a branch to an already present callbr 1099 // successor because that creates duplicate successors. 1100 for (BasicBlock *PredBB : predecessors(BB)) { 1101 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1102 if (Succ == CBI->getDefaultDest()) 1103 return false; 1104 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1105 if (Succ == CBI->getIndirectDest(i)) 1106 return false; 1107 } 1108 } 1109 1110 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1111 1112 SmallVector<DominatorTree::UpdateType, 32> Updates; 1113 if (DTU) { 1114 // To avoid processing the same predecessor more than once. 1115 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1116 // All predecessors of BB will be moved to Succ. 1117 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1118 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1119 for (auto *PredOfBB : predecessors(BB)) 1120 // This predecessor of BB may already have Succ as a successor. 1121 if (!PredsOfSucc.contains(PredOfBB)) 1122 if (SeenPreds.insert(PredOfBB).second) 1123 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1124 SeenPreds.clear(); 1125 for (auto *PredOfBB : predecessors(BB)) 1126 if (SeenPreds.insert(PredOfBB).second) 1127 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1128 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1129 } 1130 1131 if (isa<PHINode>(Succ->begin())) { 1132 // If there is more than one pred of succ, and there are PHI nodes in 1133 // the successor, then we need to add incoming edges for the PHI nodes 1134 // 1135 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1136 1137 // Loop over all of the PHI nodes in the successor of BB. 1138 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1139 PHINode *PN = cast<PHINode>(I); 1140 1141 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1142 } 1143 } 1144 1145 if (Succ->getSinglePredecessor()) { 1146 // BB is the only predecessor of Succ, so Succ will end up with exactly 1147 // the same predecessors BB had. 1148 1149 // Copy over any phi, debug or lifetime instruction. 1150 BB->getTerminator()->eraseFromParent(); 1151 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1152 BB->getInstList()); 1153 } else { 1154 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1155 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1156 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1157 PN->eraseFromParent(); 1158 } 1159 } 1160 1161 // If the unconditional branch we replaced contains llvm.loop metadata, we 1162 // add the metadata to the branch instructions in the predecessors. 1163 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1164 Instruction *TI = BB->getTerminator(); 1165 if (TI) 1166 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1167 for (BasicBlock *Pred : predecessors(BB)) 1168 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1169 1170 // Everything that jumped to BB now goes to Succ. 1171 BB->replaceAllUsesWith(Succ); 1172 if (!Succ->hasName()) Succ->takeName(BB); 1173 1174 // Clear the successor list of BB to match updates applying to DTU later. 1175 if (BB->getTerminator()) 1176 BB->getInstList().pop_back(); 1177 new UnreachableInst(BB->getContext(), BB); 1178 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1179 "applying corresponding DTU updates."); 1180 1181 if (DTU) 1182 DTU->applyUpdates(Updates); 1183 1184 DeleteDeadBlock(BB, DTU); 1185 1186 return true; 1187 } 1188 1189 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1190 // This implementation doesn't currently consider undef operands 1191 // specially. Theoretically, two phis which are identical except for 1192 // one having an undef where the other doesn't could be collapsed. 1193 1194 bool Changed = false; 1195 1196 // Examine each PHI. 1197 // Note that increment of I must *NOT* be in the iteration_expression, since 1198 // we don't want to immediately advance when we restart from the beginning. 1199 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1200 ++I; 1201 // Is there an identical PHI node in this basic block? 1202 // Note that we only look in the upper square's triangle, 1203 // we already checked that the lower triangle PHI's aren't identical. 1204 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1205 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1206 continue; 1207 // A duplicate. Replace this PHI with the base PHI. 1208 ++NumPHICSEs; 1209 DuplicatePN->replaceAllUsesWith(PN); 1210 DuplicatePN->eraseFromParent(); 1211 Changed = true; 1212 1213 // The RAUW can change PHIs that we already visited. 1214 I = BB->begin(); 1215 break; // Start over from the beginning. 1216 } 1217 } 1218 return Changed; 1219 } 1220 1221 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1222 // This implementation doesn't currently consider undef operands 1223 // specially. Theoretically, two phis which are identical except for 1224 // one having an undef where the other doesn't could be collapsed. 1225 1226 struct PHIDenseMapInfo { 1227 static PHINode *getEmptyKey() { 1228 return DenseMapInfo<PHINode *>::getEmptyKey(); 1229 } 1230 1231 static PHINode *getTombstoneKey() { 1232 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1233 } 1234 1235 static bool isSentinel(PHINode *PN) { 1236 return PN == getEmptyKey() || PN == getTombstoneKey(); 1237 } 1238 1239 // WARNING: this logic must be kept in sync with 1240 // Instruction::isIdenticalToWhenDefined()! 1241 static unsigned getHashValueImpl(PHINode *PN) { 1242 // Compute a hash value on the operands. Instcombine will likely have 1243 // sorted them, which helps expose duplicates, but we have to check all 1244 // the operands to be safe in case instcombine hasn't run. 1245 return static_cast<unsigned>(hash_combine( 1246 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1247 hash_combine_range(PN->block_begin(), PN->block_end()))); 1248 } 1249 1250 static unsigned getHashValue(PHINode *PN) { 1251 #ifndef NDEBUG 1252 // If -phicse-debug-hash was specified, return a constant -- this 1253 // will force all hashing to collide, so we'll exhaustively search 1254 // the table for a match, and the assertion in isEqual will fire if 1255 // there's a bug causing equal keys to hash differently. 1256 if (PHICSEDebugHash) 1257 return 0; 1258 #endif 1259 return getHashValueImpl(PN); 1260 } 1261 1262 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1263 if (isSentinel(LHS) || isSentinel(RHS)) 1264 return LHS == RHS; 1265 return LHS->isIdenticalTo(RHS); 1266 } 1267 1268 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1269 // These comparisons are nontrivial, so assert that equality implies 1270 // hash equality (DenseMap demands this as an invariant). 1271 bool Result = isEqualImpl(LHS, RHS); 1272 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1273 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1274 return Result; 1275 } 1276 }; 1277 1278 // Set of unique PHINodes. 1279 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1280 PHISet.reserve(4 * PHICSENumPHISmallSize); 1281 1282 // Examine each PHI. 1283 bool Changed = false; 1284 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1285 auto Inserted = PHISet.insert(PN); 1286 if (!Inserted.second) { 1287 // A duplicate. Replace this PHI with its duplicate. 1288 ++NumPHICSEs; 1289 PN->replaceAllUsesWith(*Inserted.first); 1290 PN->eraseFromParent(); 1291 Changed = true; 1292 1293 // The RAUW can change PHIs that we already visited. Start over from the 1294 // beginning. 1295 PHISet.clear(); 1296 I = BB->begin(); 1297 } 1298 } 1299 1300 return Changed; 1301 } 1302 1303 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1304 if ( 1305 #ifndef NDEBUG 1306 !PHICSEDebugHash && 1307 #endif 1308 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1309 return EliminateDuplicatePHINodesNaiveImpl(BB); 1310 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1311 } 1312 1313 /// If the specified pointer points to an object that we control, try to modify 1314 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1315 /// the value after the operation, which may be lower than PrefAlign. 1316 /// 1317 /// Increating value alignment isn't often possible though. If alignment is 1318 /// important, a more reliable approach is to simply align all global variables 1319 /// and allocation instructions to their preferred alignment from the beginning. 1320 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1321 const DataLayout &DL) { 1322 V = V->stripPointerCasts(); 1323 1324 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1325 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1326 // than the current alignment, as the known bits calculation should have 1327 // already taken it into account. However, this is not always the case, 1328 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1329 // doesn't. 1330 Align CurrentAlign = AI->getAlign(); 1331 if (PrefAlign <= CurrentAlign) 1332 return CurrentAlign; 1333 1334 // If the preferred alignment is greater than the natural stack alignment 1335 // then don't round up. This avoids dynamic stack realignment. 1336 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1337 return CurrentAlign; 1338 AI->setAlignment(PrefAlign); 1339 return PrefAlign; 1340 } 1341 1342 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1343 // TODO: as above, this shouldn't be necessary. 1344 Align CurrentAlign = GO->getPointerAlignment(DL); 1345 if (PrefAlign <= CurrentAlign) 1346 return CurrentAlign; 1347 1348 // If there is a large requested alignment and we can, bump up the alignment 1349 // of the global. If the memory we set aside for the global may not be the 1350 // memory used by the final program then it is impossible for us to reliably 1351 // enforce the preferred alignment. 1352 if (!GO->canIncreaseAlignment()) 1353 return CurrentAlign; 1354 1355 GO->setAlignment(PrefAlign); 1356 return PrefAlign; 1357 } 1358 1359 return Align(1); 1360 } 1361 1362 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1363 const DataLayout &DL, 1364 const Instruction *CxtI, 1365 AssumptionCache *AC, 1366 const DominatorTree *DT) { 1367 assert(V->getType()->isPointerTy() && 1368 "getOrEnforceKnownAlignment expects a pointer!"); 1369 1370 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1371 unsigned TrailZ = Known.countMinTrailingZeros(); 1372 1373 // Avoid trouble with ridiculously large TrailZ values, such as 1374 // those computed from a null pointer. 1375 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1376 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1377 1378 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1379 1380 if (PrefAlign && *PrefAlign > Alignment) 1381 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1382 1383 // We don't need to make any adjustment. 1384 return Alignment; 1385 } 1386 1387 ///===---------------------------------------------------------------------===// 1388 /// Dbg Intrinsic utilities 1389 /// 1390 1391 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1392 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1393 DIExpression *DIExpr, 1394 PHINode *APN) { 1395 // Since we can't guarantee that the original dbg.declare instrinsic 1396 // is removed by LowerDbgDeclare(), we need to make sure that we are 1397 // not inserting the same dbg.value intrinsic over and over. 1398 SmallVector<DbgValueInst *, 1> DbgValues; 1399 findDbgValues(DbgValues, APN); 1400 for (auto *DVI : DbgValues) { 1401 assert(is_contained(DVI->getValues(), APN)); 1402 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1403 return true; 1404 } 1405 return false; 1406 } 1407 1408 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1409 /// (or fragment of the variable) described by \p DII. 1410 /// 1411 /// This is primarily intended as a helper for the different 1412 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1413 /// converted describes an alloca'd variable, so we need to use the 1414 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1415 /// identified as covering an n-bit fragment, if the store size of i1 is at 1416 /// least n bits. 1417 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1418 const DataLayout &DL = DII->getModule()->getDataLayout(); 1419 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1420 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1421 assert(!ValueSize.isScalable() && 1422 "Fragments don't work on scalable types."); 1423 return ValueSize.getFixedSize() >= *FragmentSize; 1424 } 1425 // We can't always calculate the size of the DI variable (e.g. if it is a 1426 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1427 // intead. 1428 if (DII->isAddressOfVariable()) { 1429 // DII should have exactly 1 location when it is an address. 1430 assert(DII->getNumVariableLocationOps() == 1 && 1431 "address of variable must have exactly 1 location operand."); 1432 if (auto *AI = 1433 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1434 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1435 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1436 } 1437 } 1438 } 1439 // Could not determine size of variable. Conservatively return false. 1440 return false; 1441 } 1442 1443 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1444 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1445 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1446 /// case this DebugLoc leaks into any adjacent instructions. 1447 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1448 // Original dbg.declare must have a location. 1449 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1450 MDNode *Scope = DeclareLoc.getScope(); 1451 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1452 // Produce an unknown location with the correct scope / inlinedAt fields. 1453 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1454 } 1455 1456 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1457 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1458 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1459 StoreInst *SI, DIBuilder &Builder) { 1460 assert(DII->isAddressOfVariable()); 1461 auto *DIVar = DII->getVariable(); 1462 assert(DIVar && "Missing variable"); 1463 auto *DIExpr = DII->getExpression(); 1464 Value *DV = SI->getValueOperand(); 1465 1466 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1467 1468 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1469 // FIXME: If storing to a part of the variable described by the dbg.declare, 1470 // then we want to insert a dbg.value for the corresponding fragment. 1471 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1472 << *DII << '\n'); 1473 // For now, when there is a store to parts of the variable (but we do not 1474 // know which part) we insert an dbg.value instrinsic to indicate that we 1475 // know nothing about the variable's content. 1476 DV = UndefValue::get(DV->getType()); 1477 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1478 return; 1479 } 1480 1481 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1482 } 1483 1484 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1485 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1486 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1487 LoadInst *LI, DIBuilder &Builder) { 1488 auto *DIVar = DII->getVariable(); 1489 auto *DIExpr = DII->getExpression(); 1490 assert(DIVar && "Missing variable"); 1491 1492 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1493 // FIXME: If only referring to a part of the variable described by the 1494 // dbg.declare, then we want to insert a dbg.value for the corresponding 1495 // fragment. 1496 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1497 << *DII << '\n'); 1498 return; 1499 } 1500 1501 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1502 1503 // We are now tracking the loaded value instead of the address. In the 1504 // future if multi-location support is added to the IR, it might be 1505 // preferable to keep tracking both the loaded value and the original 1506 // address in case the alloca can not be elided. 1507 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1508 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1509 DbgValue->insertAfter(LI); 1510 } 1511 1512 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1513 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1514 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1515 PHINode *APN, DIBuilder &Builder) { 1516 auto *DIVar = DII->getVariable(); 1517 auto *DIExpr = DII->getExpression(); 1518 assert(DIVar && "Missing variable"); 1519 1520 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1521 return; 1522 1523 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1524 // FIXME: If only referring to a part of the variable described by the 1525 // dbg.declare, then we want to insert a dbg.value for the corresponding 1526 // fragment. 1527 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1528 << *DII << '\n'); 1529 return; 1530 } 1531 1532 BasicBlock *BB = APN->getParent(); 1533 auto InsertionPt = BB->getFirstInsertionPt(); 1534 1535 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1536 1537 // The block may be a catchswitch block, which does not have a valid 1538 // insertion point. 1539 // FIXME: Insert dbg.value markers in the successors when appropriate. 1540 if (InsertionPt != BB->end()) 1541 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1542 } 1543 1544 /// Determine whether this alloca is either a VLA or an array. 1545 static bool isArray(AllocaInst *AI) { 1546 return AI->isArrayAllocation() || 1547 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1548 } 1549 1550 /// Determine whether this alloca is a structure. 1551 static bool isStructure(AllocaInst *AI) { 1552 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1553 } 1554 1555 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1556 /// of llvm.dbg.value intrinsics. 1557 bool llvm::LowerDbgDeclare(Function &F) { 1558 bool Changed = false; 1559 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1560 SmallVector<DbgDeclareInst *, 4> Dbgs; 1561 for (auto &FI : F) 1562 for (Instruction &BI : FI) 1563 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1564 Dbgs.push_back(DDI); 1565 1566 if (Dbgs.empty()) 1567 return Changed; 1568 1569 for (auto &I : Dbgs) { 1570 DbgDeclareInst *DDI = I; 1571 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1572 // If this is an alloca for a scalar variable, insert a dbg.value 1573 // at each load and store to the alloca and erase the dbg.declare. 1574 // The dbg.values allow tracking a variable even if it is not 1575 // stored on the stack, while the dbg.declare can only describe 1576 // the stack slot (and at a lexical-scope granularity). Later 1577 // passes will attempt to elide the stack slot. 1578 if (!AI || isArray(AI) || isStructure(AI)) 1579 continue; 1580 1581 // A volatile load/store means that the alloca can't be elided anyway. 1582 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1583 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1584 return LI->isVolatile(); 1585 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1586 return SI->isVolatile(); 1587 return false; 1588 })) 1589 continue; 1590 1591 SmallVector<const Value *, 8> WorkList; 1592 WorkList.push_back(AI); 1593 while (!WorkList.empty()) { 1594 const Value *V = WorkList.pop_back_val(); 1595 for (auto &AIUse : V->uses()) { 1596 User *U = AIUse.getUser(); 1597 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1598 if (AIUse.getOperandNo() == 1) 1599 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1600 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1601 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1602 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1603 // This is a call by-value or some other instruction that takes a 1604 // pointer to the variable. Insert a *value* intrinsic that describes 1605 // the variable by dereferencing the alloca. 1606 if (!CI->isLifetimeStartOrEnd()) { 1607 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1608 auto *DerefExpr = 1609 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1610 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1611 NewLoc, CI); 1612 } 1613 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1614 if (BI->getType()->isPointerTy()) 1615 WorkList.push_back(BI); 1616 } 1617 } 1618 } 1619 DDI->eraseFromParent(); 1620 Changed = true; 1621 } 1622 1623 if (Changed) 1624 for (BasicBlock &BB : F) 1625 RemoveRedundantDbgInstrs(&BB); 1626 1627 return Changed; 1628 } 1629 1630 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1631 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1632 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1633 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1634 if (InsertedPHIs.size() == 0) 1635 return; 1636 1637 // Map existing PHI nodes to their dbg.values. 1638 ValueToValueMapTy DbgValueMap; 1639 for (auto &I : *BB) { 1640 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1641 for (Value *V : DbgII->location_ops()) 1642 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1643 DbgValueMap.insert({Loc, DbgII}); 1644 } 1645 } 1646 if (DbgValueMap.size() == 0) 1647 return; 1648 1649 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1650 // so that if a dbg.value is being rewritten to use more than one of the 1651 // inserted PHIs in the same destination BB, we can update the same dbg.value 1652 // with all the new PHIs instead of creating one copy for each. 1653 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1654 DbgVariableIntrinsic *> 1655 NewDbgValueMap; 1656 // Then iterate through the new PHIs and look to see if they use one of the 1657 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1658 // propagate the info through the new PHI. If we use more than one new PHI in 1659 // a single destination BB with the same old dbg.value, merge the updates so 1660 // that we get a single new dbg.value with all the new PHIs. 1661 for (auto PHI : InsertedPHIs) { 1662 BasicBlock *Parent = PHI->getParent(); 1663 // Avoid inserting an intrinsic into an EH block. 1664 if (Parent->getFirstNonPHI()->isEHPad()) 1665 continue; 1666 for (auto VI : PHI->operand_values()) { 1667 auto V = DbgValueMap.find(VI); 1668 if (V != DbgValueMap.end()) { 1669 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1670 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1671 if (NewDI == NewDbgValueMap.end()) { 1672 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1673 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1674 } 1675 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1676 // If PHI contains VI as an operand more than once, we may 1677 // replaced it in NewDbgII; confirm that it is present. 1678 if (is_contained(NewDbgII->location_ops(), VI)) 1679 NewDbgII->replaceVariableLocationOp(VI, PHI); 1680 } 1681 } 1682 } 1683 // Insert thew new dbg.values into their destination blocks. 1684 for (auto DI : NewDbgValueMap) { 1685 BasicBlock *Parent = DI.first.first; 1686 auto *NewDbgII = DI.second; 1687 auto InsertionPt = Parent->getFirstInsertionPt(); 1688 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1689 NewDbgII->insertBefore(&*InsertionPt); 1690 } 1691 } 1692 1693 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1694 DIBuilder &Builder, uint8_t DIExprFlags, 1695 int Offset) { 1696 auto DbgAddrs = FindDbgAddrUses(Address); 1697 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1698 const DebugLoc &Loc = DII->getDebugLoc(); 1699 auto *DIVar = DII->getVariable(); 1700 auto *DIExpr = DII->getExpression(); 1701 assert(DIVar && "Missing variable"); 1702 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1703 // Insert llvm.dbg.declare immediately before DII, and remove old 1704 // llvm.dbg.declare. 1705 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1706 DII->eraseFromParent(); 1707 } 1708 return !DbgAddrs.empty(); 1709 } 1710 1711 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1712 DIBuilder &Builder, int Offset) { 1713 const DebugLoc &Loc = DVI->getDebugLoc(); 1714 auto *DIVar = DVI->getVariable(); 1715 auto *DIExpr = DVI->getExpression(); 1716 assert(DIVar && "Missing variable"); 1717 1718 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1719 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1720 // it and give up. 1721 if (!DIExpr || DIExpr->getNumElements() < 1 || 1722 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1723 return; 1724 1725 // Insert the offset before the first deref. 1726 // We could just change the offset argument of dbg.value, but it's unsigned... 1727 if (Offset) 1728 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1729 1730 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1731 DVI->eraseFromParent(); 1732 } 1733 1734 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1735 DIBuilder &Builder, int Offset) { 1736 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1737 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1738 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1739 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1740 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1741 } 1742 1743 /// Where possible to salvage debug information for \p I do so 1744 /// and return True. If not possible mark undef and return False. 1745 void llvm::salvageDebugInfo(Instruction &I) { 1746 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1747 findDbgUsers(DbgUsers, &I); 1748 salvageDebugInfoForDbgValues(I, DbgUsers); 1749 } 1750 1751 void llvm::salvageDebugInfoForDbgValues( 1752 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1753 // These are arbitrary chosen limits on the maximum number of values and the 1754 // maximum size of a debug expression we can salvage up to, used for 1755 // performance reasons. 1756 const unsigned MaxDebugArgs = 16; 1757 const unsigned MaxExpressionSize = 128; 1758 bool Salvaged = false; 1759 1760 for (auto *DII : DbgUsers) { 1761 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1762 // are implicitly pointing out the value as a DWARF memory location 1763 // description. 1764 bool StackValue = isa<DbgValueInst>(DII); 1765 auto DIILocation = DII->location_ops(); 1766 assert( 1767 is_contained(DIILocation, &I) && 1768 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1769 SmallVector<Value *, 4> AdditionalValues; 1770 // `I` may appear more than once in DII's location ops, and each use of `I` 1771 // must be updated in the DIExpression and potentially have additional 1772 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1773 // DIILocation. 1774 Value *Op0 = nullptr; 1775 DIExpression *SalvagedExpr = DII->getExpression(); 1776 auto LocItr = find(DIILocation, &I); 1777 while (SalvagedExpr && LocItr != DIILocation.end()) { 1778 SmallVector<uint64_t, 16> Ops; 1779 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1780 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 1781 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 1782 if (!Op0) 1783 break; 1784 SalvagedExpr = 1785 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 1786 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1787 } 1788 // salvageDebugInfoImpl should fail on examining the first element of 1789 // DbgUsers, or none of them. 1790 if (!Op0) 1791 break; 1792 1793 DII->replaceVariableLocationOp(&I, Op0); 1794 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 1795 if (AdditionalValues.empty() && IsValidSalvageExpr) { 1796 DII->setExpression(SalvagedExpr); 1797 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 1798 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1799 MaxDebugArgs) { 1800 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1801 } else { 1802 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1803 // currently only valid for stack value expressions. 1804 // Also do not salvage if the resulting DIArgList would contain an 1805 // unreasonably large number of values. 1806 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1807 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1808 } 1809 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1810 Salvaged = true; 1811 } 1812 1813 if (Salvaged) 1814 return; 1815 1816 for (auto *DII : DbgUsers) { 1817 Value *Undef = UndefValue::get(I.getType()); 1818 DII->replaceVariableLocationOp(&I, Undef); 1819 } 1820 } 1821 1822 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1823 uint64_t CurrentLocOps, 1824 SmallVectorImpl<uint64_t> &Opcodes, 1825 SmallVectorImpl<Value *> &AdditionalValues) { 1826 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1827 // Rewrite a GEP into a DIExpression. 1828 MapVector<Value *, APInt> VariableOffsets; 1829 APInt ConstantOffset(BitWidth, 0); 1830 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1831 return nullptr; 1832 if (!VariableOffsets.empty() && !CurrentLocOps) { 1833 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1834 CurrentLocOps = 1; 1835 } 1836 for (auto Offset : VariableOffsets) { 1837 AdditionalValues.push_back(Offset.first); 1838 assert(Offset.second.isStrictlyPositive() && 1839 "Expected strictly positive multiplier for offset."); 1840 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1841 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1842 dwarf::DW_OP_plus}); 1843 } 1844 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1845 return GEP->getOperand(0); 1846 } 1847 1848 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1849 switch (Opcode) { 1850 case Instruction::Add: 1851 return dwarf::DW_OP_plus; 1852 case Instruction::Sub: 1853 return dwarf::DW_OP_minus; 1854 case Instruction::Mul: 1855 return dwarf::DW_OP_mul; 1856 case Instruction::SDiv: 1857 return dwarf::DW_OP_div; 1858 case Instruction::SRem: 1859 return dwarf::DW_OP_mod; 1860 case Instruction::Or: 1861 return dwarf::DW_OP_or; 1862 case Instruction::And: 1863 return dwarf::DW_OP_and; 1864 case Instruction::Xor: 1865 return dwarf::DW_OP_xor; 1866 case Instruction::Shl: 1867 return dwarf::DW_OP_shl; 1868 case Instruction::LShr: 1869 return dwarf::DW_OP_shr; 1870 case Instruction::AShr: 1871 return dwarf::DW_OP_shra; 1872 default: 1873 // TODO: Salvage from each kind of binop we know about. 1874 return 0; 1875 } 1876 } 1877 1878 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1879 SmallVectorImpl<uint64_t> &Opcodes, 1880 SmallVectorImpl<Value *> &AdditionalValues) { 1881 // Handle binary operations with constant integer operands as a special case. 1882 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1883 // Values wider than 64 bits cannot be represented within a DIExpression. 1884 if (ConstInt && ConstInt->getBitWidth() > 64) 1885 return nullptr; 1886 1887 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1888 // Push any Constant Int operand onto the expression stack. 1889 if (ConstInt) { 1890 uint64_t Val = ConstInt->getSExtValue(); 1891 // Add or Sub Instructions with a constant operand can potentially be 1892 // simplified. 1893 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1894 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1895 DIExpression::appendOffset(Opcodes, Offset); 1896 return BI->getOperand(0); 1897 } 1898 Opcodes.append({dwarf::DW_OP_constu, Val}); 1899 } else { 1900 if (!CurrentLocOps) { 1901 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1902 CurrentLocOps = 1; 1903 } 1904 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1905 AdditionalValues.push_back(BI->getOperand(1)); 1906 } 1907 1908 // Add salvaged binary operator to expression stack, if it has a valid 1909 // representation in a DIExpression. 1910 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1911 if (!DwarfBinOp) 1912 return nullptr; 1913 Opcodes.push_back(DwarfBinOp); 1914 return BI->getOperand(0); 1915 } 1916 1917 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 1918 SmallVectorImpl<uint64_t> &Ops, 1919 SmallVectorImpl<Value *> &AdditionalValues) { 1920 auto &M = *I.getModule(); 1921 auto &DL = M.getDataLayout(); 1922 1923 if (auto *CI = dyn_cast<CastInst>(&I)) { 1924 Value *FromValue = CI->getOperand(0); 1925 // No-op casts are irrelevant for debug info. 1926 if (CI->isNoopCast(DL)) { 1927 return FromValue; 1928 } 1929 1930 Type *Type = CI->getType(); 1931 if (Type->isPointerTy()) 1932 Type = DL.getIntPtrType(Type); 1933 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1934 if (Type->isVectorTy() || 1935 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 1936 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 1937 return nullptr; 1938 1939 llvm::Type *FromType = FromValue->getType(); 1940 if (FromType->isPointerTy()) 1941 FromType = DL.getIntPtrType(FromType); 1942 1943 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 1944 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1945 1946 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1947 isa<SExtInst>(&I)); 1948 Ops.append(ExtOps.begin(), ExtOps.end()); 1949 return FromValue; 1950 } 1951 1952 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 1953 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 1954 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 1955 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 1956 1957 // *Not* to do: we should not attempt to salvage load instructions, 1958 // because the validity and lifetime of a dbg.value containing 1959 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1960 return nullptr; 1961 } 1962 1963 /// A replacement for a dbg.value expression. 1964 using DbgValReplacement = Optional<DIExpression *>; 1965 1966 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1967 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1968 /// changes are made. 1969 static bool rewriteDebugUsers( 1970 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1971 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1972 // Find debug users of From. 1973 SmallVector<DbgVariableIntrinsic *, 1> Users; 1974 findDbgUsers(Users, &From); 1975 if (Users.empty()) 1976 return false; 1977 1978 // Prevent use-before-def of To. 1979 bool Changed = false; 1980 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1981 if (isa<Instruction>(&To)) { 1982 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1983 1984 for (auto *DII : Users) { 1985 // It's common to see a debug user between From and DomPoint. Move it 1986 // after DomPoint to preserve the variable update without any reordering. 1987 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1988 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1989 DII->moveAfter(&DomPoint); 1990 Changed = true; 1991 1992 // Users which otherwise aren't dominated by the replacement value must 1993 // be salvaged or deleted. 1994 } else if (!DT.dominates(&DomPoint, DII)) { 1995 UndefOrSalvage.insert(DII); 1996 } 1997 } 1998 } 1999 2000 // Update debug users without use-before-def risk. 2001 for (auto *DII : Users) { 2002 if (UndefOrSalvage.count(DII)) 2003 continue; 2004 2005 DbgValReplacement DVR = RewriteExpr(*DII); 2006 if (!DVR) 2007 continue; 2008 2009 DII->replaceVariableLocationOp(&From, &To); 2010 DII->setExpression(*DVR); 2011 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2012 Changed = true; 2013 } 2014 2015 if (!UndefOrSalvage.empty()) { 2016 // Try to salvage the remaining debug users. 2017 salvageDebugInfo(From); 2018 Changed = true; 2019 } 2020 2021 return Changed; 2022 } 2023 2024 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2025 /// losslessly preserve the bits and semantics of the value. This predicate is 2026 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2027 /// 2028 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2029 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2030 /// and also does not allow lossless pointer <-> integer conversions. 2031 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2032 Type *ToTy) { 2033 // Trivially compatible types. 2034 if (FromTy == ToTy) 2035 return true; 2036 2037 // Handle compatible pointer <-> integer conversions. 2038 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2039 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2040 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2041 !DL.isNonIntegralPointerType(ToTy); 2042 return SameSize && LosslessConversion; 2043 } 2044 2045 // TODO: This is not exhaustive. 2046 return false; 2047 } 2048 2049 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2050 Instruction &DomPoint, DominatorTree &DT) { 2051 // Exit early if From has no debug users. 2052 if (!From.isUsedByMetadata()) 2053 return false; 2054 2055 assert(&From != &To && "Can't replace something with itself"); 2056 2057 Type *FromTy = From.getType(); 2058 Type *ToTy = To.getType(); 2059 2060 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2061 return DII.getExpression(); 2062 }; 2063 2064 // Handle no-op conversions. 2065 Module &M = *From.getModule(); 2066 const DataLayout &DL = M.getDataLayout(); 2067 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2068 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2069 2070 // Handle integer-to-integer widening and narrowing. 2071 // FIXME: Use DW_OP_convert when it's available everywhere. 2072 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2073 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2074 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2075 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2076 2077 // When the width of the result grows, assume that a debugger will only 2078 // access the low `FromBits` bits when inspecting the source variable. 2079 if (FromBits < ToBits) 2080 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2081 2082 // The width of the result has shrunk. Use sign/zero extension to describe 2083 // the source variable's high bits. 2084 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2085 DILocalVariable *Var = DII.getVariable(); 2086 2087 // Without knowing signedness, sign/zero extension isn't possible. 2088 auto Signedness = Var->getSignedness(); 2089 if (!Signedness) 2090 return None; 2091 2092 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2093 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2094 Signed); 2095 }; 2096 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2097 } 2098 2099 // TODO: Floating-point conversions, vectors. 2100 return false; 2101 } 2102 2103 std::pair<unsigned, unsigned> 2104 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2105 unsigned NumDeadInst = 0; 2106 unsigned NumDeadDbgInst = 0; 2107 // Delete the instructions backwards, as it has a reduced likelihood of 2108 // having to update as many def-use and use-def chains. 2109 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2110 while (EndInst != &BB->front()) { 2111 // Delete the next to last instruction. 2112 Instruction *Inst = &*--EndInst->getIterator(); 2113 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2114 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2115 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2116 EndInst = Inst; 2117 continue; 2118 } 2119 if (isa<DbgInfoIntrinsic>(Inst)) 2120 ++NumDeadDbgInst; 2121 else 2122 ++NumDeadInst; 2123 Inst->eraseFromParent(); 2124 } 2125 return {NumDeadInst, NumDeadDbgInst}; 2126 } 2127 2128 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2129 DomTreeUpdater *DTU, 2130 MemorySSAUpdater *MSSAU) { 2131 BasicBlock *BB = I->getParent(); 2132 2133 if (MSSAU) 2134 MSSAU->changeToUnreachable(I); 2135 2136 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2137 2138 // Loop over all of the successors, removing BB's entry from any PHI 2139 // nodes. 2140 for (BasicBlock *Successor : successors(BB)) { 2141 Successor->removePredecessor(BB, PreserveLCSSA); 2142 if (DTU) 2143 UniqueSuccessors.insert(Successor); 2144 } 2145 auto *UI = new UnreachableInst(I->getContext(), I); 2146 UI->setDebugLoc(I->getDebugLoc()); 2147 2148 // All instructions after this are dead. 2149 unsigned NumInstrsRemoved = 0; 2150 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2151 while (BBI != BBE) { 2152 if (!BBI->use_empty()) 2153 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2154 BB->getInstList().erase(BBI++); 2155 ++NumInstrsRemoved; 2156 } 2157 if (DTU) { 2158 SmallVector<DominatorTree::UpdateType, 8> Updates; 2159 Updates.reserve(UniqueSuccessors.size()); 2160 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2161 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2162 DTU->applyUpdates(Updates); 2163 } 2164 return NumInstrsRemoved; 2165 } 2166 2167 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2168 SmallVector<Value *, 8> Args(II->args()); 2169 SmallVector<OperandBundleDef, 1> OpBundles; 2170 II->getOperandBundlesAsDefs(OpBundles); 2171 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2172 II->getCalledOperand(), Args, OpBundles); 2173 NewCall->setCallingConv(II->getCallingConv()); 2174 NewCall->setAttributes(II->getAttributes()); 2175 NewCall->setDebugLoc(II->getDebugLoc()); 2176 NewCall->copyMetadata(*II); 2177 2178 // If the invoke had profile metadata, try converting them for CallInst. 2179 uint64_t TotalWeight; 2180 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2181 // Set the total weight if it fits into i32, otherwise reset. 2182 MDBuilder MDB(NewCall->getContext()); 2183 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2184 ? nullptr 2185 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2186 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2187 } 2188 2189 return NewCall; 2190 } 2191 2192 /// changeToCall - Convert the specified invoke into a normal call. 2193 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2194 CallInst *NewCall = createCallMatchingInvoke(II); 2195 NewCall->takeName(II); 2196 NewCall->insertBefore(II); 2197 II->replaceAllUsesWith(NewCall); 2198 2199 // Follow the call by a branch to the normal destination. 2200 BasicBlock *NormalDestBB = II->getNormalDest(); 2201 BranchInst::Create(NormalDestBB, II); 2202 2203 // Update PHI nodes in the unwind destination 2204 BasicBlock *BB = II->getParent(); 2205 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2206 UnwindDestBB->removePredecessor(BB); 2207 II->eraseFromParent(); 2208 if (DTU) 2209 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2210 } 2211 2212 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2213 BasicBlock *UnwindEdge, 2214 DomTreeUpdater *DTU) { 2215 BasicBlock *BB = CI->getParent(); 2216 2217 // Convert this function call into an invoke instruction. First, split the 2218 // basic block. 2219 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2220 CI->getName() + ".noexc"); 2221 2222 // Delete the unconditional branch inserted by SplitBlock 2223 BB->getInstList().pop_back(); 2224 2225 // Create the new invoke instruction. 2226 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2227 SmallVector<OperandBundleDef, 1> OpBundles; 2228 2229 CI->getOperandBundlesAsDefs(OpBundles); 2230 2231 // Note: we're round tripping operand bundles through memory here, and that 2232 // can potentially be avoided with a cleverer API design that we do not have 2233 // as of this time. 2234 2235 InvokeInst *II = 2236 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2237 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2238 II->setDebugLoc(CI->getDebugLoc()); 2239 II->setCallingConv(CI->getCallingConv()); 2240 II->setAttributes(CI->getAttributes()); 2241 2242 if (DTU) 2243 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2244 2245 // Make sure that anything using the call now uses the invoke! This also 2246 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2247 CI->replaceAllUsesWith(II); 2248 2249 // Delete the original call 2250 Split->getInstList().pop_front(); 2251 return Split; 2252 } 2253 2254 static bool markAliveBlocks(Function &F, 2255 SmallPtrSetImpl<BasicBlock *> &Reachable, 2256 DomTreeUpdater *DTU = nullptr) { 2257 SmallVector<BasicBlock*, 128> Worklist; 2258 BasicBlock *BB = &F.front(); 2259 Worklist.push_back(BB); 2260 Reachable.insert(BB); 2261 bool Changed = false; 2262 do { 2263 BB = Worklist.pop_back_val(); 2264 2265 // Do a quick scan of the basic block, turning any obviously unreachable 2266 // instructions into LLVM unreachable insts. The instruction combining pass 2267 // canonicalizes unreachable insts into stores to null or undef. 2268 for (Instruction &I : *BB) { 2269 if (auto *CI = dyn_cast<CallInst>(&I)) { 2270 Value *Callee = CI->getCalledOperand(); 2271 // Handle intrinsic calls. 2272 if (Function *F = dyn_cast<Function>(Callee)) { 2273 auto IntrinsicID = F->getIntrinsicID(); 2274 // Assumptions that are known to be false are equivalent to 2275 // unreachable. Also, if the condition is undefined, then we make the 2276 // choice most beneficial to the optimizer, and choose that to also be 2277 // unreachable. 2278 if (IntrinsicID == Intrinsic::assume) { 2279 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2280 // Don't insert a call to llvm.trap right before the unreachable. 2281 changeToUnreachable(CI, false, DTU); 2282 Changed = true; 2283 break; 2284 } 2285 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2286 // A call to the guard intrinsic bails out of the current 2287 // compilation unit if the predicate passed to it is false. If the 2288 // predicate is a constant false, then we know the guard will bail 2289 // out of the current compile unconditionally, so all code following 2290 // it is dead. 2291 // 2292 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2293 // guards to treat `undef` as `false` since a guard on `undef` can 2294 // still be useful for widening. 2295 if (match(CI->getArgOperand(0), m_Zero())) 2296 if (!isa<UnreachableInst>(CI->getNextNode())) { 2297 changeToUnreachable(CI->getNextNode(), false, DTU); 2298 Changed = true; 2299 break; 2300 } 2301 } 2302 } else if ((isa<ConstantPointerNull>(Callee) && 2303 !NullPointerIsDefined(CI->getFunction())) || 2304 isa<UndefValue>(Callee)) { 2305 changeToUnreachable(CI, false, DTU); 2306 Changed = true; 2307 break; 2308 } 2309 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2310 // If we found a call to a no-return function, insert an unreachable 2311 // instruction after it. Make sure there isn't *already* one there 2312 // though. 2313 if (!isa<UnreachableInst>(CI->getNextNode())) { 2314 // Don't insert a call to llvm.trap right before the unreachable. 2315 changeToUnreachable(CI->getNextNode(), false, DTU); 2316 Changed = true; 2317 } 2318 break; 2319 } 2320 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2321 // Store to undef and store to null are undefined and used to signal 2322 // that they should be changed to unreachable by passes that can't 2323 // modify the CFG. 2324 2325 // Don't touch volatile stores. 2326 if (SI->isVolatile()) continue; 2327 2328 Value *Ptr = SI->getOperand(1); 2329 2330 if (isa<UndefValue>(Ptr) || 2331 (isa<ConstantPointerNull>(Ptr) && 2332 !NullPointerIsDefined(SI->getFunction(), 2333 SI->getPointerAddressSpace()))) { 2334 changeToUnreachable(SI, false, DTU); 2335 Changed = true; 2336 break; 2337 } 2338 } 2339 } 2340 2341 Instruction *Terminator = BB->getTerminator(); 2342 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2343 // Turn invokes that call 'nounwind' functions into ordinary calls. 2344 Value *Callee = II->getCalledOperand(); 2345 if ((isa<ConstantPointerNull>(Callee) && 2346 !NullPointerIsDefined(BB->getParent())) || 2347 isa<UndefValue>(Callee)) { 2348 changeToUnreachable(II, false, DTU); 2349 Changed = true; 2350 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2351 if (II->use_empty() && II->onlyReadsMemory()) { 2352 // jump to the normal destination branch. 2353 BasicBlock *NormalDestBB = II->getNormalDest(); 2354 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2355 BranchInst::Create(NormalDestBB, II); 2356 UnwindDestBB->removePredecessor(II->getParent()); 2357 II->eraseFromParent(); 2358 if (DTU) 2359 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2360 } else 2361 changeToCall(II, DTU); 2362 Changed = true; 2363 } 2364 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2365 // Remove catchpads which cannot be reached. 2366 struct CatchPadDenseMapInfo { 2367 static CatchPadInst *getEmptyKey() { 2368 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2369 } 2370 2371 static CatchPadInst *getTombstoneKey() { 2372 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2373 } 2374 2375 static unsigned getHashValue(CatchPadInst *CatchPad) { 2376 return static_cast<unsigned>(hash_combine_range( 2377 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2378 } 2379 2380 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2381 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2382 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2383 return LHS == RHS; 2384 return LHS->isIdenticalTo(RHS); 2385 } 2386 }; 2387 2388 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2389 // Set of unique CatchPads. 2390 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2391 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2392 HandlerSet; 2393 detail::DenseSetEmpty Empty; 2394 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2395 E = CatchSwitch->handler_end(); 2396 I != E; ++I) { 2397 BasicBlock *HandlerBB = *I; 2398 if (DTU) 2399 ++NumPerSuccessorCases[HandlerBB]; 2400 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2401 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2402 if (DTU) 2403 --NumPerSuccessorCases[HandlerBB]; 2404 CatchSwitch->removeHandler(I); 2405 --I; 2406 --E; 2407 Changed = true; 2408 } 2409 } 2410 if (DTU) { 2411 std::vector<DominatorTree::UpdateType> Updates; 2412 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2413 if (I.second == 0) 2414 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2415 DTU->applyUpdates(Updates); 2416 } 2417 } 2418 2419 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2420 for (BasicBlock *Successor : successors(BB)) 2421 if (Reachable.insert(Successor).second) 2422 Worklist.push_back(Successor); 2423 } while (!Worklist.empty()); 2424 return Changed; 2425 } 2426 2427 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2428 Instruction *TI = BB->getTerminator(); 2429 2430 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2431 changeToCall(II, DTU); 2432 return; 2433 } 2434 2435 Instruction *NewTI; 2436 BasicBlock *UnwindDest; 2437 2438 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2439 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2440 UnwindDest = CRI->getUnwindDest(); 2441 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2442 auto *NewCatchSwitch = CatchSwitchInst::Create( 2443 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2444 CatchSwitch->getName(), CatchSwitch); 2445 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2446 NewCatchSwitch->addHandler(PadBB); 2447 2448 NewTI = NewCatchSwitch; 2449 UnwindDest = CatchSwitch->getUnwindDest(); 2450 } else { 2451 llvm_unreachable("Could not find unwind successor"); 2452 } 2453 2454 NewTI->takeName(TI); 2455 NewTI->setDebugLoc(TI->getDebugLoc()); 2456 UnwindDest->removePredecessor(BB); 2457 TI->replaceAllUsesWith(NewTI); 2458 TI->eraseFromParent(); 2459 if (DTU) 2460 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2461 } 2462 2463 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2464 /// if they are in a dead cycle. Return true if a change was made, false 2465 /// otherwise. 2466 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2467 MemorySSAUpdater *MSSAU) { 2468 SmallPtrSet<BasicBlock *, 16> Reachable; 2469 bool Changed = markAliveBlocks(F, Reachable, DTU); 2470 2471 // If there are unreachable blocks in the CFG... 2472 if (Reachable.size() == F.size()) 2473 return Changed; 2474 2475 assert(Reachable.size() < F.size()); 2476 2477 // Are there any blocks left to actually delete? 2478 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2479 for (BasicBlock &BB : F) { 2480 // Skip reachable basic blocks 2481 if (Reachable.count(&BB)) 2482 continue; 2483 // Skip already-deleted blocks 2484 if (DTU && DTU->isBBPendingDeletion(&BB)) 2485 continue; 2486 BlocksToRemove.insert(&BB); 2487 } 2488 2489 if (BlocksToRemove.empty()) 2490 return Changed; 2491 2492 Changed = true; 2493 NumRemoved += BlocksToRemove.size(); 2494 2495 if (MSSAU) 2496 MSSAU->removeBlocks(BlocksToRemove); 2497 2498 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2499 2500 return Changed; 2501 } 2502 2503 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2504 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2505 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2506 K->dropUnknownNonDebugMetadata(KnownIDs); 2507 K->getAllMetadataOtherThanDebugLoc(Metadata); 2508 for (const auto &MD : Metadata) { 2509 unsigned Kind = MD.first; 2510 MDNode *JMD = J->getMetadata(Kind); 2511 MDNode *KMD = MD.second; 2512 2513 switch (Kind) { 2514 default: 2515 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2516 break; 2517 case LLVMContext::MD_dbg: 2518 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2519 case LLVMContext::MD_tbaa: 2520 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2521 break; 2522 case LLVMContext::MD_alias_scope: 2523 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2524 break; 2525 case LLVMContext::MD_noalias: 2526 case LLVMContext::MD_mem_parallel_loop_access: 2527 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2528 break; 2529 case LLVMContext::MD_access_group: 2530 K->setMetadata(LLVMContext::MD_access_group, 2531 intersectAccessGroups(K, J)); 2532 break; 2533 case LLVMContext::MD_range: 2534 2535 // If K does move, use most generic range. Otherwise keep the range of 2536 // K. 2537 if (DoesKMove) 2538 // FIXME: If K does move, we should drop the range info and nonnull. 2539 // Currently this function is used with DoesKMove in passes 2540 // doing hoisting/sinking and the current behavior of using the 2541 // most generic range is correct in those cases. 2542 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2543 break; 2544 case LLVMContext::MD_fpmath: 2545 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2546 break; 2547 case LLVMContext::MD_invariant_load: 2548 // Only set the !invariant.load if it is present in both instructions. 2549 K->setMetadata(Kind, JMD); 2550 break; 2551 case LLVMContext::MD_nonnull: 2552 // If K does move, keep nonull if it is present in both instructions. 2553 if (DoesKMove) 2554 K->setMetadata(Kind, JMD); 2555 break; 2556 case LLVMContext::MD_invariant_group: 2557 // Preserve !invariant.group in K. 2558 break; 2559 case LLVMContext::MD_align: 2560 K->setMetadata(Kind, 2561 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2562 break; 2563 case LLVMContext::MD_dereferenceable: 2564 case LLVMContext::MD_dereferenceable_or_null: 2565 K->setMetadata(Kind, 2566 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2567 break; 2568 case LLVMContext::MD_preserve_access_index: 2569 // Preserve !preserve.access.index in K. 2570 break; 2571 } 2572 } 2573 // Set !invariant.group from J if J has it. If both instructions have it 2574 // then we will just pick it from J - even when they are different. 2575 // Also make sure that K is load or store - f.e. combining bitcast with load 2576 // could produce bitcast with invariant.group metadata, which is invalid. 2577 // FIXME: we should try to preserve both invariant.group md if they are 2578 // different, but right now instruction can only have one invariant.group. 2579 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2580 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2581 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2582 } 2583 2584 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2585 bool KDominatesJ) { 2586 unsigned KnownIDs[] = { 2587 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2588 LLVMContext::MD_noalias, LLVMContext::MD_range, 2589 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2590 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2591 LLVMContext::MD_dereferenceable, 2592 LLVMContext::MD_dereferenceable_or_null, 2593 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2594 combineMetadata(K, J, KnownIDs, KDominatesJ); 2595 } 2596 2597 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2598 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2599 Source.getAllMetadata(MD); 2600 MDBuilder MDB(Dest.getContext()); 2601 Type *NewType = Dest.getType(); 2602 const DataLayout &DL = Source.getModule()->getDataLayout(); 2603 for (const auto &MDPair : MD) { 2604 unsigned ID = MDPair.first; 2605 MDNode *N = MDPair.second; 2606 // Note, essentially every kind of metadata should be preserved here! This 2607 // routine is supposed to clone a load instruction changing *only its type*. 2608 // The only metadata it makes sense to drop is metadata which is invalidated 2609 // when the pointer type changes. This should essentially never be the case 2610 // in LLVM, but we explicitly switch over only known metadata to be 2611 // conservatively correct. If you are adding metadata to LLVM which pertains 2612 // to loads, you almost certainly want to add it here. 2613 switch (ID) { 2614 case LLVMContext::MD_dbg: 2615 case LLVMContext::MD_tbaa: 2616 case LLVMContext::MD_prof: 2617 case LLVMContext::MD_fpmath: 2618 case LLVMContext::MD_tbaa_struct: 2619 case LLVMContext::MD_invariant_load: 2620 case LLVMContext::MD_alias_scope: 2621 case LLVMContext::MD_noalias: 2622 case LLVMContext::MD_nontemporal: 2623 case LLVMContext::MD_mem_parallel_loop_access: 2624 case LLVMContext::MD_access_group: 2625 // All of these directly apply. 2626 Dest.setMetadata(ID, N); 2627 break; 2628 2629 case LLVMContext::MD_nonnull: 2630 copyNonnullMetadata(Source, N, Dest); 2631 break; 2632 2633 case LLVMContext::MD_align: 2634 case LLVMContext::MD_dereferenceable: 2635 case LLVMContext::MD_dereferenceable_or_null: 2636 // These only directly apply if the new type is also a pointer. 2637 if (NewType->isPointerTy()) 2638 Dest.setMetadata(ID, N); 2639 break; 2640 2641 case LLVMContext::MD_range: 2642 copyRangeMetadata(DL, Source, N, Dest); 2643 break; 2644 } 2645 } 2646 } 2647 2648 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2649 auto *ReplInst = dyn_cast<Instruction>(Repl); 2650 if (!ReplInst) 2651 return; 2652 2653 // Patch the replacement so that it is not more restrictive than the value 2654 // being replaced. 2655 // Note that if 'I' is a load being replaced by some operation, 2656 // for example, by an arithmetic operation, then andIRFlags() 2657 // would just erase all math flags from the original arithmetic 2658 // operation, which is clearly not wanted and not needed. 2659 if (!isa<LoadInst>(I)) 2660 ReplInst->andIRFlags(I); 2661 2662 // FIXME: If both the original and replacement value are part of the 2663 // same control-flow region (meaning that the execution of one 2664 // guarantees the execution of the other), then we can combine the 2665 // noalias scopes here and do better than the general conservative 2666 // answer used in combineMetadata(). 2667 2668 // In general, GVN unifies expressions over different control-flow 2669 // regions, and so we need a conservative combination of the noalias 2670 // scopes. 2671 static const unsigned KnownIDs[] = { 2672 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2673 LLVMContext::MD_noalias, LLVMContext::MD_range, 2674 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2675 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2676 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2677 combineMetadata(ReplInst, I, KnownIDs, false); 2678 } 2679 2680 template <typename RootType, typename DominatesFn> 2681 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2682 const RootType &Root, 2683 const DominatesFn &Dominates) { 2684 assert(From->getType() == To->getType()); 2685 2686 unsigned Count = 0; 2687 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2688 if (!Dominates(Root, U)) 2689 continue; 2690 U.set(To); 2691 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2692 << "' as " << *To << " in " << *U << "\n"); 2693 ++Count; 2694 } 2695 return Count; 2696 } 2697 2698 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2699 assert(From->getType() == To->getType()); 2700 auto *BB = From->getParent(); 2701 unsigned Count = 0; 2702 2703 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2704 auto *I = cast<Instruction>(U.getUser()); 2705 if (I->getParent() == BB) 2706 continue; 2707 U.set(To); 2708 ++Count; 2709 } 2710 return Count; 2711 } 2712 2713 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2714 DominatorTree &DT, 2715 const BasicBlockEdge &Root) { 2716 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2717 return DT.dominates(Root, U); 2718 }; 2719 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2720 } 2721 2722 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2723 DominatorTree &DT, 2724 const BasicBlock *BB) { 2725 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2726 return DT.dominates(BB, U); 2727 }; 2728 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2729 } 2730 2731 bool llvm::callsGCLeafFunction(const CallBase *Call, 2732 const TargetLibraryInfo &TLI) { 2733 // Check if the function is specifically marked as a gc leaf function. 2734 if (Call->hasFnAttr("gc-leaf-function")) 2735 return true; 2736 if (const Function *F = Call->getCalledFunction()) { 2737 if (F->hasFnAttribute("gc-leaf-function")) 2738 return true; 2739 2740 if (auto IID = F->getIntrinsicID()) { 2741 // Most LLVM intrinsics do not take safepoints. 2742 return IID != Intrinsic::experimental_gc_statepoint && 2743 IID != Intrinsic::experimental_deoptimize && 2744 IID != Intrinsic::memcpy_element_unordered_atomic && 2745 IID != Intrinsic::memmove_element_unordered_atomic; 2746 } 2747 } 2748 2749 // Lib calls can be materialized by some passes, and won't be 2750 // marked as 'gc-leaf-function.' All available Libcalls are 2751 // GC-leaf. 2752 LibFunc LF; 2753 if (TLI.getLibFunc(*Call, LF)) { 2754 return TLI.has(LF); 2755 } 2756 2757 return false; 2758 } 2759 2760 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2761 LoadInst &NewLI) { 2762 auto *NewTy = NewLI.getType(); 2763 2764 // This only directly applies if the new type is also a pointer. 2765 if (NewTy->isPointerTy()) { 2766 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2767 return; 2768 } 2769 2770 // The only other translation we can do is to integral loads with !range 2771 // metadata. 2772 if (!NewTy->isIntegerTy()) 2773 return; 2774 2775 MDBuilder MDB(NewLI.getContext()); 2776 const Value *Ptr = OldLI.getPointerOperand(); 2777 auto *ITy = cast<IntegerType>(NewTy); 2778 auto *NullInt = ConstantExpr::getPtrToInt( 2779 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2780 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2781 NewLI.setMetadata(LLVMContext::MD_range, 2782 MDB.createRange(NonNullInt, NullInt)); 2783 } 2784 2785 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2786 MDNode *N, LoadInst &NewLI) { 2787 auto *NewTy = NewLI.getType(); 2788 2789 // Give up unless it is converted to a pointer where there is a single very 2790 // valuable mapping we can do reliably. 2791 // FIXME: It would be nice to propagate this in more ways, but the type 2792 // conversions make it hard. 2793 if (!NewTy->isPointerTy()) 2794 return; 2795 2796 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2797 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2798 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2799 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2800 } 2801 } 2802 2803 void llvm::dropDebugUsers(Instruction &I) { 2804 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2805 findDbgUsers(DbgUsers, &I); 2806 for (auto *DII : DbgUsers) 2807 DII->eraseFromParent(); 2808 } 2809 2810 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2811 BasicBlock *BB) { 2812 // Since we are moving the instructions out of its basic block, we do not 2813 // retain their original debug locations (DILocations) and debug intrinsic 2814 // instructions. 2815 // 2816 // Doing so would degrade the debugging experience and adversely affect the 2817 // accuracy of profiling information. 2818 // 2819 // Currently, when hoisting the instructions, we take the following actions: 2820 // - Remove their debug intrinsic instructions. 2821 // - Set their debug locations to the values from the insertion point. 2822 // 2823 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2824 // need to be deleted, is because there will not be any instructions with a 2825 // DILocation in either branch left after performing the transformation. We 2826 // can only insert a dbg.value after the two branches are joined again. 2827 // 2828 // See PR38762, PR39243 for more details. 2829 // 2830 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2831 // encode predicated DIExpressions that yield different results on different 2832 // code paths. 2833 2834 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2835 Instruction *I = &*II; 2836 I->dropUndefImplyingAttrsAndUnknownMetadata(); 2837 if (I->isUsedByMetadata()) 2838 dropDebugUsers(*I); 2839 if (I->isDebugOrPseudoInst()) { 2840 // Remove DbgInfo and pseudo probe Intrinsics. 2841 II = I->eraseFromParent(); 2842 continue; 2843 } 2844 I->setDebugLoc(InsertPt->getDebugLoc()); 2845 ++II; 2846 } 2847 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2848 BB->begin(), 2849 BB->getTerminator()->getIterator()); 2850 } 2851 2852 namespace { 2853 2854 /// A potential constituent of a bitreverse or bswap expression. See 2855 /// collectBitParts for a fuller explanation. 2856 struct BitPart { 2857 BitPart(Value *P, unsigned BW) : Provider(P) { 2858 Provenance.resize(BW); 2859 } 2860 2861 /// The Value that this is a bitreverse/bswap of. 2862 Value *Provider; 2863 2864 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2865 /// in Provider becomes bit B in the result of this expression. 2866 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2867 2868 enum { Unset = -1 }; 2869 }; 2870 2871 } // end anonymous namespace 2872 2873 /// Analyze the specified subexpression and see if it is capable of providing 2874 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2875 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2876 /// the output of the expression came from a corresponding bit in some other 2877 /// value. This function is recursive, and the end result is a mapping of 2878 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2879 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2880 /// 2881 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2882 /// that the expression deposits the low byte of %X into the high byte of the 2883 /// result and that all other bits are zero. This expression is accepted and a 2884 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2885 /// [0-7]. 2886 /// 2887 /// For vector types, all analysis is performed at the per-element level. No 2888 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2889 /// constant masks must be splatted across all elements. 2890 /// 2891 /// To avoid revisiting values, the BitPart results are memoized into the 2892 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2893 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2894 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2895 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2896 /// type instead to provide the same functionality. 2897 /// 2898 /// Because we pass around references into \c BPS, we must use a container that 2899 /// does not invalidate internal references (std::map instead of DenseMap). 2900 static const Optional<BitPart> & 2901 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2902 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2903 bool &FoundRoot) { 2904 auto I = BPS.find(V); 2905 if (I != BPS.end()) 2906 return I->second; 2907 2908 auto &Result = BPS[V] = None; 2909 auto BitWidth = V->getType()->getScalarSizeInBits(); 2910 2911 // Can't do integer/elements > 128 bits. 2912 if (BitWidth > 128) 2913 return Result; 2914 2915 // Prevent stack overflow by limiting the recursion depth 2916 if (Depth == BitPartRecursionMaxDepth) { 2917 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2918 return Result; 2919 } 2920 2921 if (auto *I = dyn_cast<Instruction>(V)) { 2922 Value *X, *Y; 2923 const APInt *C; 2924 2925 // If this is an or instruction, it may be an inner node of the bswap. 2926 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2927 // Check we have both sources and they are from the same provider. 2928 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2929 Depth + 1, FoundRoot); 2930 if (!A || !A->Provider) 2931 return Result; 2932 2933 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2934 Depth + 1, FoundRoot); 2935 if (!B || A->Provider != B->Provider) 2936 return Result; 2937 2938 // Try and merge the two together. 2939 Result = BitPart(A->Provider, BitWidth); 2940 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2941 if (A->Provenance[BitIdx] != BitPart::Unset && 2942 B->Provenance[BitIdx] != BitPart::Unset && 2943 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2944 return Result = None; 2945 2946 if (A->Provenance[BitIdx] == BitPart::Unset) 2947 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2948 else 2949 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2950 } 2951 2952 return Result; 2953 } 2954 2955 // If this is a logical shift by a constant, recurse then shift the result. 2956 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2957 const APInt &BitShift = *C; 2958 2959 // Ensure the shift amount is defined. 2960 if (BitShift.uge(BitWidth)) 2961 return Result; 2962 2963 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2964 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2965 return Result; 2966 2967 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2968 Depth + 1, FoundRoot); 2969 if (!Res) 2970 return Result; 2971 Result = Res; 2972 2973 // Perform the "shift" on BitProvenance. 2974 auto &P = Result->Provenance; 2975 if (I->getOpcode() == Instruction::Shl) { 2976 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2977 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2978 } else { 2979 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2980 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2981 } 2982 2983 return Result; 2984 } 2985 2986 // If this is a logical 'and' with a mask that clears bits, recurse then 2987 // unset the appropriate bits. 2988 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2989 const APInt &AndMask = *C; 2990 2991 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2992 // early exit. 2993 unsigned NumMaskedBits = AndMask.countPopulation(); 2994 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2995 return Result; 2996 2997 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2998 Depth + 1, FoundRoot); 2999 if (!Res) 3000 return Result; 3001 Result = Res; 3002 3003 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3004 // If the AndMask is zero for this bit, clear the bit. 3005 if (AndMask[BitIdx] == 0) 3006 Result->Provenance[BitIdx] = BitPart::Unset; 3007 return Result; 3008 } 3009 3010 // If this is a zext instruction zero extend the result. 3011 if (match(V, m_ZExt(m_Value(X)))) { 3012 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3013 Depth + 1, FoundRoot); 3014 if (!Res) 3015 return Result; 3016 3017 Result = BitPart(Res->Provider, BitWidth); 3018 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3019 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3020 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3021 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3022 Result->Provenance[BitIdx] = BitPart::Unset; 3023 return Result; 3024 } 3025 3026 // If this is a truncate instruction, extract the lower bits. 3027 if (match(V, m_Trunc(m_Value(X)))) { 3028 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3029 Depth + 1, FoundRoot); 3030 if (!Res) 3031 return Result; 3032 3033 Result = BitPart(Res->Provider, BitWidth); 3034 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3035 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3036 return Result; 3037 } 3038 3039 // BITREVERSE - most likely due to us previous matching a partial 3040 // bitreverse. 3041 if (match(V, m_BitReverse(m_Value(X)))) { 3042 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3043 Depth + 1, FoundRoot); 3044 if (!Res) 3045 return Result; 3046 3047 Result = BitPart(Res->Provider, BitWidth); 3048 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3049 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3050 return Result; 3051 } 3052 3053 // BSWAP - most likely due to us previous matching a partial bswap. 3054 if (match(V, m_BSwap(m_Value(X)))) { 3055 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3056 Depth + 1, FoundRoot); 3057 if (!Res) 3058 return Result; 3059 3060 unsigned ByteWidth = BitWidth / 8; 3061 Result = BitPart(Res->Provider, BitWidth); 3062 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3063 unsigned ByteBitOfs = ByteIdx * 8; 3064 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3065 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3066 Res->Provenance[ByteBitOfs + BitIdx]; 3067 } 3068 return Result; 3069 } 3070 3071 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3072 // amount (modulo). 3073 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3074 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3075 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3076 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3077 // We can treat fshr as a fshl by flipping the modulo amount. 3078 unsigned ModAmt = C->urem(BitWidth); 3079 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3080 ModAmt = BitWidth - ModAmt; 3081 3082 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3083 if (!MatchBitReversals && (ModAmt % 8) != 0) 3084 return Result; 3085 3086 // Check we have both sources and they are from the same provider. 3087 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3088 Depth + 1, FoundRoot); 3089 if (!LHS || !LHS->Provider) 3090 return Result; 3091 3092 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3093 Depth + 1, FoundRoot); 3094 if (!RHS || LHS->Provider != RHS->Provider) 3095 return Result; 3096 3097 unsigned StartBitRHS = BitWidth - ModAmt; 3098 Result = BitPart(LHS->Provider, BitWidth); 3099 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3100 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3101 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3102 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3103 return Result; 3104 } 3105 } 3106 3107 // If we've already found a root input value then we're never going to merge 3108 // these back together. 3109 if (FoundRoot) 3110 return Result; 3111 3112 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3113 // be the root input value to the bswap/bitreverse. 3114 FoundRoot = true; 3115 Result = BitPart(V, BitWidth); 3116 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3117 Result->Provenance[BitIdx] = BitIdx; 3118 return Result; 3119 } 3120 3121 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3122 unsigned BitWidth) { 3123 if (From % 8 != To % 8) 3124 return false; 3125 // Convert from bit indices to byte indices and check for a byte reversal. 3126 From >>= 3; 3127 To >>= 3; 3128 BitWidth >>= 3; 3129 return From == BitWidth - To - 1; 3130 } 3131 3132 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3133 unsigned BitWidth) { 3134 return From == BitWidth - To - 1; 3135 } 3136 3137 bool llvm::recognizeBSwapOrBitReverseIdiom( 3138 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3139 SmallVectorImpl<Instruction *> &InsertedInsts) { 3140 if (!match(I, m_Or(m_Value(), m_Value())) && 3141 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3142 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3143 return false; 3144 if (!MatchBSwaps && !MatchBitReversals) 3145 return false; 3146 Type *ITy = I->getType(); 3147 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3148 return false; // Can't do integer/elements > 128 bits. 3149 3150 Type *DemandedTy = ITy; 3151 if (I->hasOneUse()) 3152 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3153 DemandedTy = Trunc->getType(); 3154 3155 // Try to find all the pieces corresponding to the bswap. 3156 bool FoundRoot = false; 3157 std::map<Value *, Optional<BitPart>> BPS; 3158 const auto &Res = 3159 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3160 if (!Res) 3161 return false; 3162 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3163 assert(all_of(BitProvenance, 3164 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3165 "Illegal bit provenance index"); 3166 3167 // If the upper bits are zero, then attempt to perform as a truncated op. 3168 if (BitProvenance.back() == BitPart::Unset) { 3169 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3170 BitProvenance = BitProvenance.drop_back(); 3171 if (BitProvenance.empty()) 3172 return false; // TODO - handle null value? 3173 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3174 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3175 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3176 } 3177 3178 // Check BitProvenance hasn't found a source larger than the result type. 3179 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3180 if (DemandedBW > ITy->getScalarSizeInBits()) 3181 return false; 3182 3183 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3184 // only byteswap values with an even number of bytes. 3185 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3186 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3187 bool OKForBitReverse = MatchBitReversals; 3188 for (unsigned BitIdx = 0; 3189 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3190 if (BitProvenance[BitIdx] == BitPart::Unset) { 3191 DemandedMask.clearBit(BitIdx); 3192 continue; 3193 } 3194 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3195 DemandedBW); 3196 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3197 BitIdx, DemandedBW); 3198 } 3199 3200 Intrinsic::ID Intrin; 3201 if (OKForBSwap) 3202 Intrin = Intrinsic::bswap; 3203 else if (OKForBitReverse) 3204 Intrin = Intrinsic::bitreverse; 3205 else 3206 return false; 3207 3208 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3209 Value *Provider = Res->Provider; 3210 3211 // We may need to truncate the provider. 3212 if (DemandedTy != Provider->getType()) { 3213 auto *Trunc = 3214 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3215 InsertedInsts.push_back(Trunc); 3216 Provider = Trunc; 3217 } 3218 3219 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3220 InsertedInsts.push_back(Result); 3221 3222 if (!DemandedMask.isAllOnes()) { 3223 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3224 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3225 InsertedInsts.push_back(Result); 3226 } 3227 3228 // We may need to zeroextend back to the result type. 3229 if (ITy != Result->getType()) { 3230 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3231 InsertedInsts.push_back(ExtInst); 3232 } 3233 3234 return true; 3235 } 3236 3237 // CodeGen has special handling for some string functions that may replace 3238 // them with target-specific intrinsics. Since that'd skip our interceptors 3239 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3240 // we mark affected calls as NoBuiltin, which will disable optimization 3241 // in CodeGen. 3242 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3243 CallInst *CI, const TargetLibraryInfo *TLI) { 3244 Function *F = CI->getCalledFunction(); 3245 LibFunc Func; 3246 if (F && !F->hasLocalLinkage() && F->hasName() && 3247 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3248 !F->doesNotAccessMemory()) 3249 CI->addFnAttr(Attribute::NoBuiltin); 3250 } 3251 3252 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3253 // We can't have a PHI with a metadata type. 3254 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3255 return false; 3256 3257 // Early exit. 3258 if (!isa<Constant>(I->getOperand(OpIdx))) 3259 return true; 3260 3261 switch (I->getOpcode()) { 3262 default: 3263 return true; 3264 case Instruction::Call: 3265 case Instruction::Invoke: { 3266 const auto &CB = cast<CallBase>(*I); 3267 3268 // Can't handle inline asm. Skip it. 3269 if (CB.isInlineAsm()) 3270 return false; 3271 3272 // Constant bundle operands may need to retain their constant-ness for 3273 // correctness. 3274 if (CB.isBundleOperand(OpIdx)) 3275 return false; 3276 3277 if (OpIdx < CB.arg_size()) { 3278 // Some variadic intrinsics require constants in the variadic arguments, 3279 // which currently aren't markable as immarg. 3280 if (isa<IntrinsicInst>(CB) && 3281 OpIdx >= CB.getFunctionType()->getNumParams()) { 3282 // This is known to be OK for stackmap. 3283 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3284 } 3285 3286 // gcroot is a special case, since it requires a constant argument which 3287 // isn't also required to be a simple ConstantInt. 3288 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3289 return false; 3290 3291 // Some intrinsic operands are required to be immediates. 3292 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3293 } 3294 3295 // It is never allowed to replace the call argument to an intrinsic, but it 3296 // may be possible for a call. 3297 return !isa<IntrinsicInst>(CB); 3298 } 3299 case Instruction::ShuffleVector: 3300 // Shufflevector masks are constant. 3301 return OpIdx != 2; 3302 case Instruction::Switch: 3303 case Instruction::ExtractValue: 3304 // All operands apart from the first are constant. 3305 return OpIdx == 0; 3306 case Instruction::InsertValue: 3307 // All operands apart from the first and the second are constant. 3308 return OpIdx < 2; 3309 case Instruction::Alloca: 3310 // Static allocas (constant size in the entry block) are handled by 3311 // prologue/epilogue insertion so they're free anyway. We definitely don't 3312 // want to make them non-constant. 3313 return !cast<AllocaInst>(I)->isStaticAlloca(); 3314 case Instruction::GetElementPtr: 3315 if (OpIdx == 0) 3316 return true; 3317 gep_type_iterator It = gep_type_begin(I); 3318 for (auto E = std::next(It, OpIdx); It != E; ++It) 3319 if (It.isStruct()) 3320 return false; 3321 return true; 3322 } 3323 } 3324 3325 Value *llvm::invertCondition(Value *Condition) { 3326 // First: Check if it's a constant 3327 if (Constant *C = dyn_cast<Constant>(Condition)) 3328 return ConstantExpr::getNot(C); 3329 3330 // Second: If the condition is already inverted, return the original value 3331 Value *NotCondition; 3332 if (match(Condition, m_Not(m_Value(NotCondition)))) 3333 return NotCondition; 3334 3335 BasicBlock *Parent = nullptr; 3336 Instruction *Inst = dyn_cast<Instruction>(Condition); 3337 if (Inst) 3338 Parent = Inst->getParent(); 3339 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3340 Parent = &Arg->getParent()->getEntryBlock(); 3341 assert(Parent && "Unsupported condition to invert"); 3342 3343 // Third: Check all the users for an invert 3344 for (User *U : Condition->users()) 3345 if (Instruction *I = dyn_cast<Instruction>(U)) 3346 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3347 return I; 3348 3349 // Last option: Create a new instruction 3350 auto *Inverted = 3351 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3352 if (Inst && !isa<PHINode>(Inst)) 3353 Inverted->insertAfter(Inst); 3354 else 3355 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3356 return Inverted; 3357 } 3358 3359 bool llvm::inferAttributesFromOthers(Function &F) { 3360 // Note: We explicitly check for attributes rather than using cover functions 3361 // because some of the cover functions include the logic being implemented. 3362 3363 bool Changed = false; 3364 // readnone + not convergent implies nosync 3365 if (!F.hasFnAttribute(Attribute::NoSync) && 3366 F.doesNotAccessMemory() && !F.isConvergent()) { 3367 F.setNoSync(); 3368 Changed = true; 3369 } 3370 3371 // readonly implies nofree 3372 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3373 F.setDoesNotFreeMemory(); 3374 Changed = true; 3375 } 3376 3377 // willreturn implies mustprogress 3378 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3379 F.setMustProgress(); 3380 Changed = true; 3381 } 3382 3383 // TODO: There are a bunch of cases of restrictive memory effects we 3384 // can infer by inspecting arguments of argmemonly-ish functions. 3385 3386 return Changed; 3387 } 3388