1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 31 #include "llvm/Analysis/ObjCARCUtil.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstdint> 71 #include <iterator> 72 #include <limits> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 using ProfileCount = Function::ProfileCount; 79 80 static cl::opt<bool> 81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 82 cl::Hidden, 83 cl::desc("Convert noalias attributes to metadata during inlining.")); 84 85 static cl::opt<bool> 86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden, 87 cl::init(true), 88 cl::desc("Use the llvm.experimental.noalias.scope.decl " 89 "intrinsic during inlining.")); 90 91 // Disabled by default, because the added alignment assumptions may increase 92 // compile-time and block optimizations. This option is not suitable for use 93 // with frontends that emit comprehensive parameter alignment annotations. 94 static cl::opt<bool> 95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 96 cl::init(false), cl::Hidden, 97 cl::desc("Convert align attributes to assumptions during inlining.")); 98 99 static cl::opt<bool> UpdateReturnAttributes( 100 "update-return-attrs", cl::init(true), cl::Hidden, 101 cl::desc("Update return attributes on calls within inlined body")); 102 103 static cl::opt<unsigned> InlinerAttributeWindow( 104 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 105 cl::desc("the maximum number of instructions analyzed for may throw during " 106 "attribute inference in inlined body"), 107 cl::init(4)); 108 109 namespace { 110 111 /// A class for recording information about inlining a landing pad. 112 class LandingPadInliningInfo { 113 /// Destination of the invoke's unwind. 114 BasicBlock *OuterResumeDest; 115 116 /// Destination for the callee's resume. 117 BasicBlock *InnerResumeDest = nullptr; 118 119 /// LandingPadInst associated with the invoke. 120 LandingPadInst *CallerLPad = nullptr; 121 122 /// PHI for EH values from landingpad insts. 123 PHINode *InnerEHValuesPHI = nullptr; 124 125 SmallVector<Value*, 8> UnwindDestPHIValues; 126 127 public: 128 LandingPadInliningInfo(InvokeInst *II) 129 : OuterResumeDest(II->getUnwindDest()) { 130 // If there are PHI nodes in the unwind destination block, we need to keep 131 // track of which values came into them from the invoke before removing 132 // the edge from this block. 133 BasicBlock *InvokeBB = II->getParent(); 134 BasicBlock::iterator I = OuterResumeDest->begin(); 135 for (; isa<PHINode>(I); ++I) { 136 // Save the value to use for this edge. 137 PHINode *PHI = cast<PHINode>(I); 138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 139 } 140 141 CallerLPad = cast<LandingPadInst>(I); 142 } 143 144 /// The outer unwind destination is the target of 145 /// unwind edges introduced for calls within the inlined function. 146 BasicBlock *getOuterResumeDest() const { 147 return OuterResumeDest; 148 } 149 150 BasicBlock *getInnerResumeDest(); 151 152 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 153 154 /// Forward the 'resume' instruction to the caller's landing pad block. 155 /// When the landing pad block has only one predecessor, this is 156 /// a simple branch. When there is more than one predecessor, we need to 157 /// split the landing pad block after the landingpad instruction and jump 158 /// to there. 159 void forwardResume(ResumeInst *RI, 160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 161 162 /// Add incoming-PHI values to the unwind destination block for the given 163 /// basic block, using the values for the original invoke's source block. 164 void addIncomingPHIValuesFor(BasicBlock *BB) const { 165 addIncomingPHIValuesForInto(BB, OuterResumeDest); 166 } 167 168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 169 BasicBlock::iterator I = dest->begin(); 170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 171 PHINode *phi = cast<PHINode>(I); 172 phi->addIncoming(UnwindDestPHIValues[i], src); 173 } 174 } 175 }; 176 177 } // end anonymous namespace 178 179 /// Get or create a target for the branch from ResumeInsts. 180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 181 if (InnerResumeDest) return InnerResumeDest; 182 183 // Split the landing pad. 184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 185 InnerResumeDest = 186 OuterResumeDest->splitBasicBlock(SplitPoint, 187 OuterResumeDest->getName() + ".body"); 188 189 // The number of incoming edges we expect to the inner landing pad. 190 const unsigned PHICapacity = 2; 191 192 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 193 Instruction *InsertPoint = &InnerResumeDest->front(); 194 BasicBlock::iterator I = OuterResumeDest->begin(); 195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 196 PHINode *OuterPHI = cast<PHINode>(I); 197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 198 OuterPHI->getName() + ".lpad-body", 199 InsertPoint); 200 OuterPHI->replaceAllUsesWith(InnerPHI); 201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 202 } 203 204 // Create a PHI for the exception values. 205 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 206 "eh.lpad-body", InsertPoint); 207 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 208 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 209 210 // All done. 211 return InnerResumeDest; 212 } 213 214 /// Forward the 'resume' instruction to the caller's landing pad block. 215 /// When the landing pad block has only one predecessor, this is a simple 216 /// branch. When there is more than one predecessor, we need to split the 217 /// landing pad block after the landingpad instruction and jump to there. 218 void LandingPadInliningInfo::forwardResume( 219 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 220 BasicBlock *Dest = getInnerResumeDest(); 221 BasicBlock *Src = RI->getParent(); 222 223 BranchInst::Create(Dest, Src); 224 225 // Update the PHIs in the destination. They were inserted in an order which 226 // makes this work. 227 addIncomingPHIValuesForInto(Src, Dest); 228 229 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 230 RI->eraseFromParent(); 231 } 232 233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 234 static Value *getParentPad(Value *EHPad) { 235 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 236 return FPI->getParentPad(); 237 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 238 } 239 240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 241 242 /// Helper for getUnwindDestToken that does the descendant-ward part of 243 /// the search. 244 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 245 UnwindDestMemoTy &MemoMap) { 246 SmallVector<Instruction *, 8> Worklist(1, EHPad); 247 248 while (!Worklist.empty()) { 249 Instruction *CurrentPad = Worklist.pop_back_val(); 250 // We only put pads on the worklist that aren't in the MemoMap. When 251 // we find an unwind dest for a pad we may update its ancestors, but 252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 253 // so they should never get updated while queued on the worklist. 254 assert(!MemoMap.count(CurrentPad)); 255 Value *UnwindDestToken = nullptr; 256 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 257 if (CatchSwitch->hasUnwindDest()) { 258 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 259 } else { 260 // Catchswitch doesn't have a 'nounwind' variant, and one might be 261 // annotated as "unwinds to caller" when really it's nounwind (see 262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 263 // parent's unwind dest from this. We can check its catchpads' 264 // descendants, since they might include a cleanuppad with an 265 // "unwinds to caller" cleanupret, which can be trusted. 266 for (auto HI = CatchSwitch->handler_begin(), 267 HE = CatchSwitch->handler_end(); 268 HI != HE && !UnwindDestToken; ++HI) { 269 BasicBlock *HandlerBlock = *HI; 270 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 271 for (User *Child : CatchPad->users()) { 272 // Intentionally ignore invokes here -- since the catchswitch is 273 // marked "unwind to caller", it would be a verifier error if it 274 // contained an invoke which unwinds out of it, so any invoke we'd 275 // encounter must unwind to some child of the catch. 276 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 277 continue; 278 279 Instruction *ChildPad = cast<Instruction>(Child); 280 auto Memo = MemoMap.find(ChildPad); 281 if (Memo == MemoMap.end()) { 282 // Haven't figured out this child pad yet; queue it. 283 Worklist.push_back(ChildPad); 284 continue; 285 } 286 // We've already checked this child, but might have found that 287 // it offers no proof either way. 288 Value *ChildUnwindDestToken = Memo->second; 289 if (!ChildUnwindDestToken) 290 continue; 291 // We already know the child's unwind dest, which can either 292 // be ConstantTokenNone to indicate unwind to caller, or can 293 // be another child of the catchpad. Only the former indicates 294 // the unwind dest of the catchswitch. 295 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 296 UnwindDestToken = ChildUnwindDestToken; 297 break; 298 } 299 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 300 } 301 } 302 } 303 } else { 304 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 305 for (User *U : CleanupPad->users()) { 306 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 307 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 308 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 309 else 310 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 311 break; 312 } 313 Value *ChildUnwindDestToken; 314 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 315 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 316 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 317 Instruction *ChildPad = cast<Instruction>(U); 318 auto Memo = MemoMap.find(ChildPad); 319 if (Memo == MemoMap.end()) { 320 // Haven't resolved this child yet; queue it and keep searching. 321 Worklist.push_back(ChildPad); 322 continue; 323 } 324 // We've checked this child, but still need to ignore it if it 325 // had no proof either way. 326 ChildUnwindDestToken = Memo->second; 327 if (!ChildUnwindDestToken) 328 continue; 329 } else { 330 // Not a relevant user of the cleanuppad 331 continue; 332 } 333 // In a well-formed program, the child/invoke must either unwind to 334 // an(other) child of the cleanup, or exit the cleanup. In the 335 // first case, continue searching. 336 if (isa<Instruction>(ChildUnwindDestToken) && 337 getParentPad(ChildUnwindDestToken) == CleanupPad) 338 continue; 339 UnwindDestToken = ChildUnwindDestToken; 340 break; 341 } 342 } 343 // If we haven't found an unwind dest for CurrentPad, we may have queued its 344 // children, so move on to the next in the worklist. 345 if (!UnwindDestToken) 346 continue; 347 348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 349 // any ancestors of CurrentPad up to but not including UnwindDestToken's 350 // parent pad. Record this in the memo map, and check to see if the 351 // original EHPad being queried is one of the ones exited. 352 Value *UnwindParent; 353 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 354 UnwindParent = getParentPad(UnwindPad); 355 else 356 UnwindParent = nullptr; 357 bool ExitedOriginalPad = false; 358 for (Instruction *ExitedPad = CurrentPad; 359 ExitedPad && ExitedPad != UnwindParent; 360 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 361 // Skip over catchpads since they just follow their catchswitches. 362 if (isa<CatchPadInst>(ExitedPad)) 363 continue; 364 MemoMap[ExitedPad] = UnwindDestToken; 365 ExitedOriginalPad |= (ExitedPad == EHPad); 366 } 367 368 if (ExitedOriginalPad) 369 return UnwindDestToken; 370 371 // Continue the search. 372 } 373 374 // No definitive information is contained within this funclet. 375 return nullptr; 376 } 377 378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 379 /// return that pad instruction. If it unwinds to caller, return 380 /// ConstantTokenNone. If it does not have a definitive unwind destination, 381 /// return nullptr. 382 /// 383 /// This routine gets invoked for calls in funclets in inlinees when inlining 384 /// an invoke. Since many funclets don't have calls inside them, it's queried 385 /// on-demand rather than building a map of pads to unwind dests up front. 386 /// Determining a funclet's unwind dest may require recursively searching its 387 /// descendants, and also ancestors and cousins if the descendants don't provide 388 /// an answer. Since most funclets will have their unwind dest immediately 389 /// available as the unwind dest of a catchswitch or cleanupret, this routine 390 /// searches top-down from the given pad and then up. To avoid worst-case 391 /// quadratic run-time given that approach, it uses a memo map to avoid 392 /// re-processing funclet trees. The callers that rewrite the IR as they go 393 /// take advantage of this, for correctness, by checking/forcing rewritten 394 /// pads' entries to match the original callee view. 395 static Value *getUnwindDestToken(Instruction *EHPad, 396 UnwindDestMemoTy &MemoMap) { 397 // Catchpads unwind to the same place as their catchswitch; 398 // redirct any queries on catchpads so the code below can 399 // deal with just catchswitches and cleanuppads. 400 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 401 EHPad = CPI->getCatchSwitch(); 402 403 // Check if we've already determined the unwind dest for this pad. 404 auto Memo = MemoMap.find(EHPad); 405 if (Memo != MemoMap.end()) 406 return Memo->second; 407 408 // Search EHPad and, if necessary, its descendants. 409 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 410 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 411 if (UnwindDestToken) 412 return UnwindDestToken; 413 414 // No information is available for this EHPad from itself or any of its 415 // descendants. An unwind all the way out to a pad in the caller would 416 // need also to agree with the unwind dest of the parent funclet, so 417 // search up the chain to try to find a funclet with information. Put 418 // null entries in the memo map to avoid re-processing as we go up. 419 MemoMap[EHPad] = nullptr; 420 #ifndef NDEBUG 421 SmallPtrSet<Instruction *, 4> TempMemos; 422 TempMemos.insert(EHPad); 423 #endif 424 Instruction *LastUselessPad = EHPad; 425 Value *AncestorToken; 426 for (AncestorToken = getParentPad(EHPad); 427 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 428 AncestorToken = getParentPad(AncestorToken)) { 429 // Skip over catchpads since they just follow their catchswitches. 430 if (isa<CatchPadInst>(AncestorPad)) 431 continue; 432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 434 // call to getUnwindDestToken, that would mean that AncestorPad had no 435 // information in itself, its descendants, or its ancestors. If that 436 // were the case, then we should also have recorded the lack of information 437 // for the descendant that we're coming from. So assert that we don't 438 // find a null entry in the MemoMap for AncestorPad. 439 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 440 auto AncestorMemo = MemoMap.find(AncestorPad); 441 if (AncestorMemo == MemoMap.end()) { 442 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 443 } else { 444 UnwindDestToken = AncestorMemo->second; 445 } 446 if (UnwindDestToken) 447 break; 448 LastUselessPad = AncestorPad; 449 MemoMap[LastUselessPad] = nullptr; 450 #ifndef NDEBUG 451 TempMemos.insert(LastUselessPad); 452 #endif 453 } 454 455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 456 // returned nullptr (and likewise for EHPad and any of its ancestors up to 457 // LastUselessPad), so LastUselessPad has no information from below. Since 458 // getUnwindDestTokenHelper must investigate all downward paths through 459 // no-information nodes to prove that a node has no information like this, 460 // and since any time it finds information it records it in the MemoMap for 461 // not just the immediately-containing funclet but also any ancestors also 462 // exited, it must be the case that, walking downward from LastUselessPad, 463 // visiting just those nodes which have not been mapped to an unwind dest 464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 465 // they are just used to keep getUnwindDestTokenHelper from repeating work), 466 // any node visited must have been exhaustively searched with no information 467 // for it found. 468 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 469 while (!Worklist.empty()) { 470 Instruction *UselessPad = Worklist.pop_back_val(); 471 auto Memo = MemoMap.find(UselessPad); 472 if (Memo != MemoMap.end() && Memo->second) { 473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 474 // that it is a funclet that does have information about unwinding to 475 // a particular destination; its parent was a useless pad. 476 // Since its parent has no information, the unwind edge must not escape 477 // the parent, and must target a sibling of this pad. This local unwind 478 // gives us no information about EHPad. Leave it and the subtree rooted 479 // at it alone. 480 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 481 continue; 482 } 483 // We know we don't have information for UselesPad. If it has an entry in 484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 485 // added on this invocation of getUnwindDestToken; if a previous invocation 486 // recorded nullptr, it would have had to prove that the ancestors of 487 // UselessPad, which include LastUselessPad, had no information, and that 488 // in turn would have required proving that the descendants of 489 // LastUselesPad, which include EHPad, have no information about 490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 491 // the MemoMap on that invocation, which isn't the case if we got here. 492 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 494 // information that we'd be contradicting by making a map entry for it 495 // (which is something that getUnwindDestTokenHelper must have proved for 496 // us to get here). Just assert on is direct users here; the checks in 497 // this downward walk at its descendants will verify that they don't have 498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 499 // unwind edges or unwind to a sibling). 500 MemoMap[UselessPad] = UnwindDestToken; 501 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 502 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 503 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 504 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 505 for (User *U : CatchPad->users()) { 506 assert( 507 (!isa<InvokeInst>(U) || 508 (getParentPad( 509 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 510 CatchPad)) && 511 "Expected useless pad"); 512 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 513 Worklist.push_back(cast<Instruction>(U)); 514 } 515 } 516 } else { 517 assert(isa<CleanupPadInst>(UselessPad)); 518 for (User *U : UselessPad->users()) { 519 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 520 assert((!isa<InvokeInst>(U) || 521 (getParentPad( 522 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 523 UselessPad)) && 524 "Expected useless pad"); 525 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 526 Worklist.push_back(cast<Instruction>(U)); 527 } 528 } 529 } 530 531 return UnwindDestToken; 532 } 533 534 /// When we inline a basic block into an invoke, 535 /// we have to turn all of the calls that can throw into invokes. 536 /// This function analyze BB to see if there are any calls, and if so, 537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 538 /// nodes in that block with the values specified in InvokeDestPHIValues. 539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 540 BasicBlock *BB, BasicBlock *UnwindEdge, 541 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 542 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 543 // We only need to check for function calls: inlined invoke 544 // instructions require no special handling. 545 CallInst *CI = dyn_cast<CallInst>(&I); 546 547 if (!CI || CI->doesNotThrow()) 548 continue; 549 550 if (CI->isInlineAsm()) { 551 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand()); 552 if (!IA->canThrow()) { 553 continue; 554 } 555 } 556 557 // We do not need to (and in fact, cannot) convert possibly throwing calls 558 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 559 // invokes. The caller's "segment" of the deoptimization continuation 560 // attached to the newly inlined @llvm.experimental_deoptimize 561 // (resp. @llvm.experimental.guard) call should contain the exception 562 // handling logic, if any. 563 if (auto *F = CI->getCalledFunction()) 564 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 565 F->getIntrinsicID() == Intrinsic::experimental_guard) 566 continue; 567 568 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 569 // This call is nested inside a funclet. If that funclet has an unwind 570 // destination within the inlinee, then unwinding out of this call would 571 // be UB. Rewriting this call to an invoke which targets the inlined 572 // invoke's unwind dest would give the call's parent funclet multiple 573 // unwind destinations, which is something that subsequent EH table 574 // generation can't handle and that the veirifer rejects. So when we 575 // see such a call, leave it as a call. 576 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 577 Value *UnwindDestToken = 578 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 579 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 580 continue; 581 #ifndef NDEBUG 582 Instruction *MemoKey; 583 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 584 MemoKey = CatchPad->getCatchSwitch(); 585 else 586 MemoKey = FuncletPad; 587 assert(FuncletUnwindMap->count(MemoKey) && 588 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 589 "must get memoized to avoid confusing later searches"); 590 #endif // NDEBUG 591 } 592 593 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 594 return BB; 595 } 596 return nullptr; 597 } 598 599 /// If we inlined an invoke site, we need to convert calls 600 /// in the body of the inlined function into invokes. 601 /// 602 /// II is the invoke instruction being inlined. FirstNewBlock is the first 603 /// block of the inlined code (the last block is the end of the function), 604 /// and InlineCodeInfo is information about the code that got inlined. 605 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 606 ClonedCodeInfo &InlinedCodeInfo) { 607 BasicBlock *InvokeDest = II->getUnwindDest(); 608 609 Function *Caller = FirstNewBlock->getParent(); 610 611 // The inlined code is currently at the end of the function, scan from the 612 // start of the inlined code to its end, checking for stuff we need to 613 // rewrite. 614 LandingPadInliningInfo Invoke(II); 615 616 // Get all of the inlined landing pad instructions. 617 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 618 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 619 I != E; ++I) 620 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 621 InlinedLPads.insert(II->getLandingPadInst()); 622 623 // Append the clauses from the outer landing pad instruction into the inlined 624 // landing pad instructions. 625 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 626 for (LandingPadInst *InlinedLPad : InlinedLPads) { 627 unsigned OuterNum = OuterLPad->getNumClauses(); 628 InlinedLPad->reserveClauses(OuterNum); 629 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 630 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 631 if (OuterLPad->isCleanup()) 632 InlinedLPad->setCleanup(true); 633 } 634 635 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 636 BB != E; ++BB) { 637 if (InlinedCodeInfo.ContainsCalls) 638 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 639 &*BB, Invoke.getOuterResumeDest())) 640 // Update any PHI nodes in the exceptional block to indicate that there 641 // is now a new entry in them. 642 Invoke.addIncomingPHIValuesFor(NewBB); 643 644 // Forward any resumes that are remaining here. 645 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 646 Invoke.forwardResume(RI, InlinedLPads); 647 } 648 649 // Now that everything is happy, we have one final detail. The PHI nodes in 650 // the exception destination block still have entries due to the original 651 // invoke instruction. Eliminate these entries (which might even delete the 652 // PHI node) now. 653 InvokeDest->removePredecessor(II->getParent()); 654 } 655 656 /// If we inlined an invoke site, we need to convert calls 657 /// in the body of the inlined function into invokes. 658 /// 659 /// II is the invoke instruction being inlined. FirstNewBlock is the first 660 /// block of the inlined code (the last block is the end of the function), 661 /// and InlineCodeInfo is information about the code that got inlined. 662 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 663 ClonedCodeInfo &InlinedCodeInfo) { 664 BasicBlock *UnwindDest = II->getUnwindDest(); 665 Function *Caller = FirstNewBlock->getParent(); 666 667 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 668 669 // If there are PHI nodes in the unwind destination block, we need to keep 670 // track of which values came into them from the invoke before removing the 671 // edge from this block. 672 SmallVector<Value *, 8> UnwindDestPHIValues; 673 BasicBlock *InvokeBB = II->getParent(); 674 for (PHINode &PHI : UnwindDest->phis()) { 675 // Save the value to use for this edge. 676 UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB)); 677 } 678 679 // Add incoming-PHI values to the unwind destination block for the given basic 680 // block, using the values for the original invoke's source block. 681 auto UpdatePHINodes = [&](BasicBlock *Src) { 682 BasicBlock::iterator I = UnwindDest->begin(); 683 for (Value *V : UnwindDestPHIValues) { 684 PHINode *PHI = cast<PHINode>(I); 685 PHI->addIncoming(V, Src); 686 ++I; 687 } 688 }; 689 690 // This connects all the instructions which 'unwind to caller' to the invoke 691 // destination. 692 UnwindDestMemoTy FuncletUnwindMap; 693 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 694 BB != E; ++BB) { 695 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 696 if (CRI->unwindsToCaller()) { 697 auto *CleanupPad = CRI->getCleanupPad(); 698 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 699 CRI->eraseFromParent(); 700 UpdatePHINodes(&*BB); 701 // Finding a cleanupret with an unwind destination would confuse 702 // subsequent calls to getUnwindDestToken, so map the cleanuppad 703 // to short-circuit any such calls and recognize this as an "unwind 704 // to caller" cleanup. 705 assert(!FuncletUnwindMap.count(CleanupPad) || 706 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 707 FuncletUnwindMap[CleanupPad] = 708 ConstantTokenNone::get(Caller->getContext()); 709 } 710 } 711 712 Instruction *I = BB->getFirstNonPHI(); 713 if (!I->isEHPad()) 714 continue; 715 716 Instruction *Replacement = nullptr; 717 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 718 if (CatchSwitch->unwindsToCaller()) { 719 Value *UnwindDestToken; 720 if (auto *ParentPad = 721 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 722 // This catchswitch is nested inside another funclet. If that 723 // funclet has an unwind destination within the inlinee, then 724 // unwinding out of this catchswitch would be UB. Rewriting this 725 // catchswitch to unwind to the inlined invoke's unwind dest would 726 // give the parent funclet multiple unwind destinations, which is 727 // something that subsequent EH table generation can't handle and 728 // that the veirifer rejects. So when we see such a call, leave it 729 // as "unwind to caller". 730 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 731 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 732 continue; 733 } else { 734 // This catchswitch has no parent to inherit constraints from, and 735 // none of its descendants can have an unwind edge that exits it and 736 // targets another funclet in the inlinee. It may or may not have a 737 // descendant that definitively has an unwind to caller. In either 738 // case, we'll have to assume that any unwinds out of it may need to 739 // be routed to the caller, so treat it as though it has a definitive 740 // unwind to caller. 741 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 742 } 743 auto *NewCatchSwitch = CatchSwitchInst::Create( 744 CatchSwitch->getParentPad(), UnwindDest, 745 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 746 CatchSwitch); 747 for (BasicBlock *PadBB : CatchSwitch->handlers()) 748 NewCatchSwitch->addHandler(PadBB); 749 // Propagate info for the old catchswitch over to the new one in 750 // the unwind map. This also serves to short-circuit any subsequent 751 // checks for the unwind dest of this catchswitch, which would get 752 // confused if they found the outer handler in the callee. 753 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 754 Replacement = NewCatchSwitch; 755 } 756 } else if (!isa<FuncletPadInst>(I)) { 757 llvm_unreachable("unexpected EHPad!"); 758 } 759 760 if (Replacement) { 761 Replacement->takeName(I); 762 I->replaceAllUsesWith(Replacement); 763 I->eraseFromParent(); 764 UpdatePHINodes(&*BB); 765 } 766 } 767 768 if (InlinedCodeInfo.ContainsCalls) 769 for (Function::iterator BB = FirstNewBlock->getIterator(), 770 E = Caller->end(); 771 BB != E; ++BB) 772 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 773 &*BB, UnwindDest, &FuncletUnwindMap)) 774 // Update any PHI nodes in the exceptional block to indicate that there 775 // is now a new entry in them. 776 UpdatePHINodes(NewBB); 777 778 // Now that everything is happy, we have one final detail. The PHI nodes in 779 // the exception destination block still have entries due to the original 780 // invoke instruction. Eliminate these entries (which might even delete the 781 // PHI node) now. 782 UnwindDest->removePredecessor(InvokeBB); 783 } 784 785 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 786 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 787 /// be propagated to all memory-accessing cloned instructions. 788 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart, 789 Function::iterator FEnd) { 790 MDNode *MemParallelLoopAccess = 791 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 792 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 793 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 794 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 795 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 796 return; 797 798 for (BasicBlock &BB : make_range(FStart, FEnd)) { 799 for (Instruction &I : BB) { 800 // This metadata is only relevant for instructions that access memory. 801 if (!I.mayReadOrWriteMemory()) 802 continue; 803 804 if (MemParallelLoopAccess) { 805 // TODO: This probably should not overwrite MemParalleLoopAccess. 806 MemParallelLoopAccess = MDNode::concatenate( 807 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access), 808 MemParallelLoopAccess); 809 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access, 810 MemParallelLoopAccess); 811 } 812 813 if (AccessGroup) 814 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 815 I.getMetadata(LLVMContext::MD_access_group), AccessGroup)); 816 817 if (AliasScope) 818 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 819 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 820 821 if (NoAlias) 822 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 823 I.getMetadata(LLVMContext::MD_noalias), NoAlias)); 824 } 825 } 826 } 827 828 namespace { 829 /// Utility for cloning !noalias and !alias.scope metadata. When a code region 830 /// using scoped alias metadata is inlined, the aliasing relationships may not 831 /// hold between the two version. It is necessary to create a deep clone of the 832 /// metadata, putting the two versions in separate scope domains. 833 class ScopedAliasMetadataDeepCloner { 834 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>; 835 SetVector<const MDNode *> MD; 836 MetadataMap MDMap; 837 void addRecursiveMetadataUses(); 838 839 public: 840 ScopedAliasMetadataDeepCloner(const Function *F); 841 842 /// Create a new clone of the scoped alias metadata, which will be used by 843 /// subsequent remap() calls. 844 void clone(); 845 846 /// Remap instructions in the given range from the original to the cloned 847 /// metadata. 848 void remap(Function::iterator FStart, Function::iterator FEnd); 849 }; 850 } // namespace 851 852 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner( 853 const Function *F) { 854 for (const BasicBlock &BB : *F) { 855 for (const Instruction &I : BB) { 856 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 857 MD.insert(M); 858 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 859 MD.insert(M); 860 861 // We also need to clone the metadata in noalias intrinsics. 862 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 863 MD.insert(Decl->getScopeList()); 864 } 865 } 866 addRecursiveMetadataUses(); 867 } 868 869 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() { 870 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 871 while (!Queue.empty()) { 872 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 873 for (const Metadata *Op : M->operands()) 874 if (const MDNode *OpMD = dyn_cast<MDNode>(Op)) 875 if (MD.insert(OpMD)) 876 Queue.push_back(OpMD); 877 } 878 } 879 880 void ScopedAliasMetadataDeepCloner::clone() { 881 assert(MDMap.empty() && "clone() already called ?"); 882 883 SmallVector<TempMDTuple, 16> DummyNodes; 884 for (const MDNode *I : MD) { 885 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None)); 886 MDMap[I].reset(DummyNodes.back().get()); 887 } 888 889 // Create new metadata nodes to replace the dummy nodes, replacing old 890 // metadata references with either a dummy node or an already-created new 891 // node. 892 SmallVector<Metadata *, 4> NewOps; 893 for (const MDNode *I : MD) { 894 for (const Metadata *Op : I->operands()) { 895 if (const MDNode *M = dyn_cast<MDNode>(Op)) 896 NewOps.push_back(MDMap[M]); 897 else 898 NewOps.push_back(const_cast<Metadata *>(Op)); 899 } 900 901 MDNode *NewM = MDNode::get(I->getContext(), NewOps); 902 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 903 assert(TempM->isTemporary() && "Expected temporary node"); 904 905 TempM->replaceAllUsesWith(NewM); 906 NewOps.clear(); 907 } 908 } 909 910 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart, 911 Function::iterator FEnd) { 912 if (MDMap.empty()) 913 return; // Nothing to do. 914 915 for (BasicBlock &BB : make_range(FStart, FEnd)) { 916 for (Instruction &I : BB) { 917 // TODO: The null checks for the MDMap.lookup() results should no longer 918 // be necessary. 919 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 920 if (MDNode *MNew = MDMap.lookup(M)) 921 I.setMetadata(LLVMContext::MD_alias_scope, MNew); 922 923 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 924 if (MDNode *MNew = MDMap.lookup(M)) 925 I.setMetadata(LLVMContext::MD_noalias, MNew); 926 927 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 928 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList())) 929 Decl->setScopeList(MNew); 930 } 931 } 932 } 933 934 /// If the inlined function has noalias arguments, 935 /// then add new alias scopes for each noalias argument, tag the mapped noalias 936 /// parameters with noalias metadata specifying the new scope, and tag all 937 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 938 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 939 const DataLayout &DL, AAResults *CalleeAAR, 940 ClonedCodeInfo &InlinedFunctionInfo) { 941 if (!EnableNoAliasConversion) 942 return; 943 944 const Function *CalledFunc = CB.getCalledFunction(); 945 SmallVector<const Argument *, 4> NoAliasArgs; 946 947 for (const Argument &Arg : CalledFunc->args()) 948 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 949 NoAliasArgs.push_back(&Arg); 950 951 if (NoAliasArgs.empty()) 952 return; 953 954 // To do a good job, if a noalias variable is captured, we need to know if 955 // the capture point dominates the particular use we're considering. 956 DominatorTree DT; 957 DT.recalculate(const_cast<Function&>(*CalledFunc)); 958 959 // noalias indicates that pointer values based on the argument do not alias 960 // pointer values which are not based on it. So we add a new "scope" for each 961 // noalias function argument. Accesses using pointers based on that argument 962 // become part of that alias scope, accesses using pointers not based on that 963 // argument are tagged as noalias with that scope. 964 965 DenseMap<const Argument *, MDNode *> NewScopes; 966 MDBuilder MDB(CalledFunc->getContext()); 967 968 // Create a new scope domain for this function. 969 MDNode *NewDomain = 970 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 971 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 972 const Argument *A = NoAliasArgs[i]; 973 974 std::string Name = std::string(CalledFunc->getName()); 975 if (A->hasName()) { 976 Name += ": %"; 977 Name += A->getName(); 978 } else { 979 Name += ": argument "; 980 Name += utostr(i); 981 } 982 983 // Note: We always create a new anonymous root here. This is true regardless 984 // of the linkage of the callee because the aliasing "scope" is not just a 985 // property of the callee, but also all control dependencies in the caller. 986 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 987 NewScopes.insert(std::make_pair(A, NewScope)); 988 989 if (UseNoAliasIntrinsic) { 990 // Introduce a llvm.experimental.noalias.scope.decl for the noalias 991 // argument. 992 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope); 993 auto *NoAliasDecl = 994 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList); 995 // Ignore the result for now. The result will be used when the 996 // llvm.noalias intrinsic is introduced. 997 (void)NoAliasDecl; 998 } 999 } 1000 1001 // Iterate over all new instructions in the map; for all memory-access 1002 // instructions, add the alias scope metadata. 1003 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 1004 VMI != VMIE; ++VMI) { 1005 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 1006 if (!VMI->second) 1007 continue; 1008 1009 Instruction *NI = dyn_cast<Instruction>(VMI->second); 1010 if (!NI || InlinedFunctionInfo.isSimplified(I, NI)) 1011 continue; 1012 1013 bool IsArgMemOnlyCall = false, IsFuncCall = false; 1014 SmallVector<const Value *, 2> PtrArgs; 1015 1016 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1017 PtrArgs.push_back(LI->getPointerOperand()); 1018 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1019 PtrArgs.push_back(SI->getPointerOperand()); 1020 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1021 PtrArgs.push_back(VAAI->getPointerOperand()); 1022 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1023 PtrArgs.push_back(CXI->getPointerOperand()); 1024 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1025 PtrArgs.push_back(RMWI->getPointerOperand()); 1026 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1027 // If we know that the call does not access memory, then we'll still 1028 // know that about the inlined clone of this call site, and we don't 1029 // need to add metadata. 1030 if (Call->doesNotAccessMemory()) 1031 continue; 1032 1033 IsFuncCall = true; 1034 if (CalleeAAR) { 1035 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1036 1037 // We'll retain this knowledge without additional metadata. 1038 if (AAResults::onlyAccessesInaccessibleMem(MRB)) 1039 continue; 1040 1041 if (AAResults::onlyAccessesArgPointees(MRB)) 1042 IsArgMemOnlyCall = true; 1043 } 1044 1045 for (Value *Arg : Call->args()) { 1046 // Only care about pointer arguments. If a noalias argument is 1047 // accessed through a non-pointer argument, it must be captured 1048 // first (e.g. via ptrtoint), and we protect against captures below. 1049 if (!Arg->getType()->isPointerTy()) 1050 continue; 1051 1052 PtrArgs.push_back(Arg); 1053 } 1054 } 1055 1056 // If we found no pointers, then this instruction is not suitable for 1057 // pairing with an instruction to receive aliasing metadata. 1058 // However, if this is a call, this we might just alias with none of the 1059 // noalias arguments. 1060 if (PtrArgs.empty() && !IsFuncCall) 1061 continue; 1062 1063 // It is possible that there is only one underlying object, but you 1064 // need to go through several PHIs to see it, and thus could be 1065 // repeated in the Objects list. 1066 SmallPtrSet<const Value *, 4> ObjSet; 1067 SmallVector<Metadata *, 4> Scopes, NoAliases; 1068 1069 SmallSetVector<const Argument *, 4> NAPtrArgs; 1070 for (const Value *V : PtrArgs) { 1071 SmallVector<const Value *, 4> Objects; 1072 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1073 1074 for (const Value *O : Objects) 1075 ObjSet.insert(O); 1076 } 1077 1078 // Figure out if we're derived from anything that is not a noalias 1079 // argument. 1080 bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false, 1081 UsesUnknownObject = false; 1082 for (const Value *V : ObjSet) { 1083 // Is this value a constant that cannot be derived from any pointer 1084 // value (we need to exclude constant expressions, for example, that 1085 // are formed from arithmetic on global symbols). 1086 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1087 isa<ConstantPointerNull>(V) || 1088 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1089 if (IsNonPtrConst) 1090 continue; 1091 1092 // If this is anything other than a noalias argument, then we cannot 1093 // completely describe the aliasing properties using alias.scope 1094 // metadata (and, thus, won't add any). 1095 if (const Argument *A = dyn_cast<Argument>(V)) { 1096 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1097 UsesAliasingPtr = true; 1098 } else { 1099 UsesAliasingPtr = true; 1100 } 1101 1102 if (isEscapeSource(V)) { 1103 // An escape source can only alias with a noalias argument if it has 1104 // been captured beforehand. 1105 RequiresNoCaptureBefore = true; 1106 } else if (!isa<Argument>(V) && !isIdentifiedObject(V)) { 1107 // If this is neither an escape source, nor some identified object 1108 // (which cannot directly alias a noalias argument), nor some other 1109 // argument (which, by definition, also cannot alias a noalias 1110 // argument), conservatively do not make any assumptions. 1111 UsesUnknownObject = true; 1112 } 1113 } 1114 1115 // Nothing we can do if the used underlying object cannot be reliably 1116 // determined. 1117 if (UsesUnknownObject) 1118 continue; 1119 1120 // A function call can always get captured noalias pointers (via other 1121 // parameters, globals, etc.). 1122 if (IsFuncCall && !IsArgMemOnlyCall) 1123 RequiresNoCaptureBefore = true; 1124 1125 // First, we want to figure out all of the sets with which we definitely 1126 // don't alias. Iterate over all noalias set, and add those for which: 1127 // 1. The noalias argument is not in the set of objects from which we 1128 // definitely derive. 1129 // 2. The noalias argument has not yet been captured. 1130 // An arbitrary function that might load pointers could see captured 1131 // noalias arguments via other noalias arguments or globals, and so we 1132 // must always check for prior capture. 1133 for (const Argument *A : NoAliasArgs) { 1134 if (ObjSet.contains(A)) 1135 continue; // May be based on a noalias argument. 1136 1137 // It might be tempting to skip the PointerMayBeCapturedBefore check if 1138 // A->hasNoCaptureAttr() is true, but this is incorrect because 1139 // nocapture only guarantees that no copies outlive the function, not 1140 // that the value cannot be locally captured. 1141 if (!RequiresNoCaptureBefore || 1142 !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false, 1143 /* StoreCaptures */ false, I, &DT)) 1144 NoAliases.push_back(NewScopes[A]); 1145 } 1146 1147 if (!NoAliases.empty()) 1148 NI->setMetadata(LLVMContext::MD_noalias, 1149 MDNode::concatenate( 1150 NI->getMetadata(LLVMContext::MD_noalias), 1151 MDNode::get(CalledFunc->getContext(), NoAliases))); 1152 1153 // Next, we want to figure out all of the sets to which we might belong. 1154 // We might belong to a set if the noalias argument is in the set of 1155 // underlying objects. If there is some non-noalias argument in our list 1156 // of underlying objects, then we cannot add a scope because the fact 1157 // that some access does not alias with any set of our noalias arguments 1158 // cannot itself guarantee that it does not alias with this access 1159 // (because there is some pointer of unknown origin involved and the 1160 // other access might also depend on this pointer). We also cannot add 1161 // scopes to arbitrary functions unless we know they don't access any 1162 // non-parameter pointer-values. 1163 bool CanAddScopes = !UsesAliasingPtr; 1164 if (CanAddScopes && IsFuncCall) 1165 CanAddScopes = IsArgMemOnlyCall; 1166 1167 if (CanAddScopes) 1168 for (const Argument *A : NoAliasArgs) { 1169 if (ObjSet.count(A)) 1170 Scopes.push_back(NewScopes[A]); 1171 } 1172 1173 if (!Scopes.empty()) 1174 NI->setMetadata( 1175 LLVMContext::MD_alias_scope, 1176 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1177 MDNode::get(CalledFunc->getContext(), Scopes))); 1178 } 1179 } 1180 } 1181 1182 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1183 Instruction *End) { 1184 1185 assert(Begin->getParent() == End->getParent() && 1186 "Expected to be in same basic block!"); 1187 return !llvm::isGuaranteedToTransferExecutionToSuccessor( 1188 Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1); 1189 } 1190 1191 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1192 1193 AttrBuilder AB(CB.getContext(), CB.getAttributes().getRetAttrs()); 1194 if (!AB.hasAttributes()) 1195 return AB; 1196 AttrBuilder Valid(CB.getContext()); 1197 // Only allow these white listed attributes to be propagated back to the 1198 // callee. This is because other attributes may only be valid on the call 1199 // itself, i.e. attributes such as signext and zeroext. 1200 if (auto DerefBytes = AB.getDereferenceableBytes()) 1201 Valid.addDereferenceableAttr(DerefBytes); 1202 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1203 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1204 if (AB.contains(Attribute::NoAlias)) 1205 Valid.addAttribute(Attribute::NoAlias); 1206 if (AB.contains(Attribute::NonNull)) 1207 Valid.addAttribute(Attribute::NonNull); 1208 return Valid; 1209 } 1210 1211 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1212 if (!UpdateReturnAttributes) 1213 return; 1214 1215 AttrBuilder Valid = IdentifyValidAttributes(CB); 1216 if (!Valid.hasAttributes()) 1217 return; 1218 auto *CalledFunction = CB.getCalledFunction(); 1219 auto &Context = CalledFunction->getContext(); 1220 1221 for (auto &BB : *CalledFunction) { 1222 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1223 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1224 continue; 1225 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1226 // Check that the cloned RetVal exists and is a call, otherwise we cannot 1227 // add the attributes on the cloned RetVal. Simplification during inlining 1228 // could have transformed the cloned instruction. 1229 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1230 if (!NewRetVal) 1231 continue; 1232 // Backward propagation of attributes to the returned value may be incorrect 1233 // if it is control flow dependent. 1234 // Consider: 1235 // @callee { 1236 // %rv = call @foo() 1237 // %rv2 = call @bar() 1238 // if (%rv2 != null) 1239 // return %rv2 1240 // if (%rv == null) 1241 // exit() 1242 // return %rv 1243 // } 1244 // caller() { 1245 // %val = call nonnull @callee() 1246 // } 1247 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1248 // limit the check to both RetVal and RI are in the same basic block and 1249 // there are no throwing/exiting instructions between these instructions. 1250 if (RI->getParent() != RetVal->getParent() || 1251 MayContainThrowingOrExitingCall(RetVal, RI)) 1252 continue; 1253 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1254 // instruction. 1255 // NB! When we have the same attribute already existing on NewRetVal, but 1256 // with a differing value, the AttributeList's merge API honours the already 1257 // existing attribute value (i.e. attributes such as dereferenceable, 1258 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1259 AttributeList AL = NewRetVal->getAttributes(); 1260 AttributeList NewAL = AL.addRetAttributes(Context, Valid); 1261 NewRetVal->setAttributes(NewAL); 1262 } 1263 } 1264 1265 /// If the inlined function has non-byval align arguments, then 1266 /// add @llvm.assume-based alignment assumptions to preserve this information. 1267 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1268 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1269 return; 1270 1271 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1272 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1273 1274 // To avoid inserting redundant assumptions, we should check for assumptions 1275 // already in the caller. To do this, we might need a DT of the caller. 1276 DominatorTree DT; 1277 bool DTCalculated = false; 1278 1279 Function *CalledFunc = CB.getCalledFunction(); 1280 for (Argument &Arg : CalledFunc->args()) { 1281 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1282 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1283 if (!DTCalculated) { 1284 DT.recalculate(*CB.getCaller()); 1285 DTCalculated = true; 1286 } 1287 1288 // If we can already prove the asserted alignment in the context of the 1289 // caller, then don't bother inserting the assumption. 1290 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1291 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1292 continue; 1293 1294 CallInst *NewAsmp = 1295 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1296 AC->registerAssumption(cast<AssumeInst>(NewAsmp)); 1297 } 1298 } 1299 } 1300 1301 /// Once we have cloned code over from a callee into the caller, 1302 /// update the specified callgraph to reflect the changes we made. 1303 /// Note that it's possible that not all code was copied over, so only 1304 /// some edges of the callgraph may remain. 1305 static void UpdateCallGraphAfterInlining(CallBase &CB, 1306 Function::iterator FirstNewBlock, 1307 ValueToValueMapTy &VMap, 1308 InlineFunctionInfo &IFI) { 1309 CallGraph &CG = *IFI.CG; 1310 const Function *Caller = CB.getCaller(); 1311 const Function *Callee = CB.getCalledFunction(); 1312 CallGraphNode *CalleeNode = CG[Callee]; 1313 CallGraphNode *CallerNode = CG[Caller]; 1314 1315 // Since we inlined some uninlined call sites in the callee into the caller, 1316 // add edges from the caller to all of the callees of the callee. 1317 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1318 1319 // Consider the case where CalleeNode == CallerNode. 1320 CallGraphNode::CalledFunctionsVector CallCache; 1321 if (CalleeNode == CallerNode) { 1322 CallCache.assign(I, E); 1323 I = CallCache.begin(); 1324 E = CallCache.end(); 1325 } 1326 1327 for (; I != E; ++I) { 1328 // Skip 'refererence' call records. 1329 if (!I->first) 1330 continue; 1331 1332 const Value *OrigCall = *I->first; 1333 1334 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1335 // Only copy the edge if the call was inlined! 1336 if (VMI == VMap.end() || VMI->second == nullptr) 1337 continue; 1338 1339 // If the call was inlined, but then constant folded, there is no edge to 1340 // add. Check for this case. 1341 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1342 if (!NewCall) 1343 continue; 1344 1345 // We do not treat intrinsic calls like real function calls because we 1346 // expect them to become inline code; do not add an edge for an intrinsic. 1347 if (NewCall->getCalledFunction() && 1348 NewCall->getCalledFunction()->isIntrinsic()) 1349 continue; 1350 1351 // Remember that this call site got inlined for the client of 1352 // InlineFunction. 1353 IFI.InlinedCalls.push_back(NewCall); 1354 1355 // It's possible that inlining the callsite will cause it to go from an 1356 // indirect to a direct call by resolving a function pointer. If this 1357 // happens, set the callee of the new call site to a more precise 1358 // destination. This can also happen if the call graph node of the caller 1359 // was just unnecessarily imprecise. 1360 if (!I->second->getFunction()) 1361 if (Function *F = NewCall->getCalledFunction()) { 1362 // Indirect call site resolved to direct call. 1363 CallerNode->addCalledFunction(NewCall, CG[F]); 1364 1365 continue; 1366 } 1367 1368 CallerNode->addCalledFunction(NewCall, I->second); 1369 } 1370 1371 // Update the call graph by deleting the edge from Callee to Caller. We must 1372 // do this after the loop above in case Caller and Callee are the same. 1373 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1374 } 1375 1376 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src, 1377 Module *M, BasicBlock *InsertBlock, 1378 InlineFunctionInfo &IFI) { 1379 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1380 1381 Value *Size = 1382 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType)); 1383 1384 // Always generate a memcpy of alignment 1 here because we don't know 1385 // the alignment of the src pointer. Other optimizations can infer 1386 // better alignment. 1387 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1388 /*SrcAlign*/ Align(1), Size); 1389 } 1390 1391 /// When inlining a call site that has a byval argument, 1392 /// we have to make the implicit memcpy explicit by adding it. 1393 static Value *HandleByValArgument(Type *ByValType, Value *Arg, 1394 Instruction *TheCall, 1395 const Function *CalledFunc, 1396 InlineFunctionInfo &IFI, 1397 unsigned ByValAlignment) { 1398 assert(cast<PointerType>(Arg->getType()) 1399 ->isOpaqueOrPointeeTypeMatches(ByValType)); 1400 Function *Caller = TheCall->getFunction(); 1401 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1402 1403 // If the called function is readonly, then it could not mutate the caller's 1404 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1405 // temporary. 1406 if (CalledFunc->onlyReadsMemory()) { 1407 // If the byval argument has a specified alignment that is greater than the 1408 // passed in pointer, then we either have to round up the input pointer or 1409 // give up on this transformation. 1410 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1411 return Arg; 1412 1413 AssumptionCache *AC = 1414 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1415 1416 // If the pointer is already known to be sufficiently aligned, or if we can 1417 // round it up to a larger alignment, then we don't need a temporary. 1418 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1419 AC) >= ByValAlignment) 1420 return Arg; 1421 1422 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1423 // for code quality, but rarely happens and is required for correctness. 1424 } 1425 1426 // Create the alloca. If we have DataLayout, use nice alignment. 1427 Align Alignment(DL.getPrefTypeAlignment(ByValType)); 1428 1429 // If the byval had an alignment specified, we *must* use at least that 1430 // alignment, as it is required by the byval argument (and uses of the 1431 // pointer inside the callee). 1432 if (ByValAlignment > 0) 1433 Alignment = std::max(Alignment, Align(ByValAlignment)); 1434 1435 Value *NewAlloca = 1436 new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment, 1437 Arg->getName(), &*Caller->begin()->begin()); 1438 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1439 1440 // Uses of the argument in the function should use our new alloca 1441 // instead. 1442 return NewAlloca; 1443 } 1444 1445 // Check whether this Value is used by a lifetime intrinsic. 1446 static bool isUsedByLifetimeMarker(Value *V) { 1447 for (User *U : V->users()) 1448 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1449 if (II->isLifetimeStartOrEnd()) 1450 return true; 1451 return false; 1452 } 1453 1454 // Check whether the given alloca already has 1455 // lifetime.start or lifetime.end intrinsics. 1456 static bool hasLifetimeMarkers(AllocaInst *AI) { 1457 Type *Ty = AI->getType(); 1458 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1459 Ty->getPointerAddressSpace()); 1460 if (Ty == Int8PtrTy) 1461 return isUsedByLifetimeMarker(AI); 1462 1463 // Do a scan to find all the casts to i8*. 1464 for (User *U : AI->users()) { 1465 if (U->getType() != Int8PtrTy) continue; 1466 if (U->stripPointerCasts() != AI) continue; 1467 if (isUsedByLifetimeMarker(U)) 1468 return true; 1469 } 1470 return false; 1471 } 1472 1473 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1474 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1475 /// cannot be static. 1476 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1477 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1478 } 1479 1480 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1481 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1482 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1483 LLVMContext &Ctx, 1484 DenseMap<const MDNode *, MDNode *> &IANodes) { 1485 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1486 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(), 1487 OrigDL.getScope(), IA); 1488 } 1489 1490 /// Update inlined instructions' line numbers to 1491 /// to encode location where these instructions are inlined. 1492 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1493 Instruction *TheCall, bool CalleeHasDebugInfo) { 1494 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1495 if (!TheCallDL) 1496 return; 1497 1498 auto &Ctx = Fn->getContext(); 1499 DILocation *InlinedAtNode = TheCallDL; 1500 1501 // Create a unique call site, not to be confused with any other call from the 1502 // same location. 1503 InlinedAtNode = DILocation::getDistinct( 1504 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1505 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1506 1507 // Cache the inlined-at nodes as they're built so they are reused, without 1508 // this every instruction's inlined-at chain would become distinct from each 1509 // other. 1510 DenseMap<const MDNode *, MDNode *> IANodes; 1511 1512 // Check if we are not generating inline line tables and want to use 1513 // the call site location instead. 1514 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1515 1516 for (; FI != Fn->end(); ++FI) { 1517 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1518 BI != BE; ++BI) { 1519 // Loop metadata needs to be updated so that the start and end locs 1520 // reference inlined-at locations. 1521 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, 1522 &IANodes](Metadata *MD) -> Metadata * { 1523 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1524 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get(); 1525 return MD; 1526 }; 1527 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1528 1529 if (!NoInlineLineTables) 1530 if (DebugLoc DL = BI->getDebugLoc()) { 1531 DebugLoc IDL = 1532 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1533 BI->setDebugLoc(IDL); 1534 continue; 1535 } 1536 1537 if (CalleeHasDebugInfo && !NoInlineLineTables) 1538 continue; 1539 1540 // If the inlined instruction has no line number, or if inline info 1541 // is not being generated, make it look as if it originates from the call 1542 // location. This is important for ((__always_inline, __nodebug__)) 1543 // functions which must use caller location for all instructions in their 1544 // function body. 1545 1546 // Don't update static allocas, as they may get moved later. 1547 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1548 if (allocaWouldBeStaticInEntry(AI)) 1549 continue; 1550 1551 BI->setDebugLoc(TheCallDL); 1552 } 1553 1554 // Remove debug info intrinsics if we're not keeping inline info. 1555 if (NoInlineLineTables) { 1556 BasicBlock::iterator BI = FI->begin(); 1557 while (BI != FI->end()) { 1558 if (isa<DbgInfoIntrinsic>(BI)) { 1559 BI = BI->eraseFromParent(); 1560 continue; 1561 } 1562 ++BI; 1563 } 1564 } 1565 1566 } 1567 } 1568 1569 /// Update the block frequencies of the caller after a callee has been inlined. 1570 /// 1571 /// Each block cloned into the caller has its block frequency scaled by the 1572 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1573 /// callee's entry block gets the same frequency as the callsite block and the 1574 /// relative frequencies of all cloned blocks remain the same after cloning. 1575 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1576 const ValueToValueMapTy &VMap, 1577 BlockFrequencyInfo *CallerBFI, 1578 BlockFrequencyInfo *CalleeBFI, 1579 const BasicBlock &CalleeEntryBlock) { 1580 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1581 for (auto Entry : VMap) { 1582 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1583 continue; 1584 auto *OrigBB = cast<BasicBlock>(Entry.first); 1585 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1586 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1587 if (!ClonedBBs.insert(ClonedBB).second) { 1588 // Multiple blocks in the callee might get mapped to one cloned block in 1589 // the caller since we prune the callee as we clone it. When that happens, 1590 // we want to use the maximum among the original blocks' frequencies. 1591 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1592 if (NewFreq > Freq) 1593 Freq = NewFreq; 1594 } 1595 CallerBFI->setBlockFreq(ClonedBB, Freq); 1596 } 1597 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1598 CallerBFI->setBlockFreqAndScale( 1599 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1600 ClonedBBs); 1601 } 1602 1603 /// Update the branch metadata for cloned call instructions. 1604 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1605 const ProfileCount &CalleeEntryCount, 1606 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1607 BlockFrequencyInfo *CallerBFI) { 1608 if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1) 1609 return; 1610 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1611 int64_t CallCount = 1612 std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount()); 1613 updateProfileCallee(Callee, -CallCount, &VMap); 1614 } 1615 1616 void llvm::updateProfileCallee( 1617 Function *Callee, int64_t EntryDelta, 1618 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1619 auto CalleeCount = Callee->getEntryCount(); 1620 if (!CalleeCount) 1621 return; 1622 1623 const uint64_t PriorEntryCount = CalleeCount->getCount(); 1624 1625 // Since CallSiteCount is an estimate, it could exceed the original callee 1626 // count and has to be set to 0 so guard against underflow. 1627 const uint64_t NewEntryCount = 1628 (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount) 1629 ? 0 1630 : PriorEntryCount + EntryDelta; 1631 1632 // During inlining ? 1633 if (VMap) { 1634 uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount; 1635 for (auto Entry : *VMap) 1636 if (isa<CallInst>(Entry.first)) 1637 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1638 CI->updateProfWeight(CloneEntryCount, PriorEntryCount); 1639 } 1640 1641 if (EntryDelta) { 1642 Callee->setEntryCount(NewEntryCount); 1643 1644 for (BasicBlock &BB : *Callee) 1645 // No need to update the callsite if it is pruned during inlining. 1646 if (!VMap || VMap->count(&BB)) 1647 for (Instruction &I : BB) 1648 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1649 CI->updateProfWeight(NewEntryCount, PriorEntryCount); 1650 } 1651 } 1652 1653 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call 1654 /// result is implicitly consumed by a call to retainRV or claimRV immediately 1655 /// after the call. This function inlines the retainRV/claimRV calls. 1656 /// 1657 /// There are three cases to consider: 1658 /// 1659 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned 1660 /// object in the callee return block, the autoreleaseRV call and the 1661 /// retainRV/claimRV call in the caller cancel out. If the call in the caller 1662 /// is a claimRV call, a call to objc_release is emitted. 1663 /// 1664 /// 2. If there is a call in the callee return block that doesn't have operand 1665 /// bundle "clang.arc.attachedcall", the operand bundle on the original call 1666 /// is transferred to the call in the callee. 1667 /// 1668 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is 1669 /// a retainRV call. 1670 static void 1671 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind, 1672 const SmallVectorImpl<ReturnInst *> &Returns) { 1673 Module *Mod = CB.getModule(); 1674 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function"); 1675 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV, 1676 IsUnsafeClaimRV = !IsRetainRV; 1677 1678 for (auto *RI : Returns) { 1679 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0)); 1680 bool InsertRetainCall = IsRetainRV; 1681 IRBuilder<> Builder(RI->getContext()); 1682 1683 // Walk backwards through the basic block looking for either a matching 1684 // autoreleaseRV call or an unannotated call. 1685 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()), 1686 RI->getParent()->rend()); 1687 for (Instruction &I : llvm::make_early_inc_range(InstRange)) { 1688 // Ignore casts. 1689 if (isa<CastInst>(I)) 1690 continue; 1691 1692 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1693 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue || 1694 !II->hasNUses(0) || 1695 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd) 1696 break; 1697 1698 // If we've found a matching authoreleaseRV call: 1699 // - If claimRV is attached to the call, insert a call to objc_release 1700 // and erase the autoreleaseRV call. 1701 // - If retainRV is attached to the call, just erase the autoreleaseRV 1702 // call. 1703 if (IsUnsafeClaimRV) { 1704 Builder.SetInsertPoint(II); 1705 Function *IFn = 1706 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release); 1707 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1708 Builder.CreateCall(IFn, BC, ""); 1709 } 1710 II->eraseFromParent(); 1711 InsertRetainCall = false; 1712 break; 1713 } 1714 1715 auto *CI = dyn_cast<CallInst>(&I); 1716 1717 if (!CI) 1718 break; 1719 1720 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd || 1721 objcarc::hasAttachedCallOpBundle(CI)) 1722 break; 1723 1724 // If we've found an unannotated call that defines RetOpnd, add a 1725 // "clang.arc.attachedcall" operand bundle. 1726 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)}; 1727 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs); 1728 auto *NewCall = CallBase::addOperandBundle( 1729 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI); 1730 NewCall->copyMetadata(*CI); 1731 CI->replaceAllUsesWith(NewCall); 1732 CI->eraseFromParent(); 1733 InsertRetainCall = false; 1734 break; 1735 } 1736 1737 if (InsertRetainCall) { 1738 // The retainRV is attached to the call and we've failed to find a 1739 // matching autoreleaseRV or an annotated call in the callee. Emit a call 1740 // to objc_retain. 1741 Builder.SetInsertPoint(RI); 1742 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain); 1743 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1744 Builder.CreateCall(IFn, BC, ""); 1745 } 1746 } 1747 } 1748 1749 /// This function inlines the called function into the basic block of the 1750 /// caller. This returns false if it is not possible to inline this call. 1751 /// The program is still in a well defined state if this occurs though. 1752 /// 1753 /// Note that this only does one level of inlining. For example, if the 1754 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1755 /// exists in the instruction stream. Similarly this will inline a recursive 1756 /// function by one level. 1757 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1758 AAResults *CalleeAAR, 1759 bool InsertLifetime, 1760 Function *ForwardVarArgsTo) { 1761 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1762 1763 // FIXME: we don't inline callbr yet. 1764 if (isa<CallBrInst>(CB)) 1765 return InlineResult::failure("We don't inline callbr yet."); 1766 1767 // If IFI has any state in it, zap it before we fill it in. 1768 IFI.reset(); 1769 1770 Function *CalledFunc = CB.getCalledFunction(); 1771 if (!CalledFunc || // Can't inline external function or indirect 1772 CalledFunc->isDeclaration()) // call! 1773 return InlineResult::failure("external or indirect"); 1774 1775 // The inliner does not know how to inline through calls with operand bundles 1776 // in general ... 1777 if (CB.hasOperandBundles()) { 1778 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1779 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1780 // ... but it knows how to inline through "deopt" operand bundles ... 1781 if (Tag == LLVMContext::OB_deopt) 1782 continue; 1783 // ... and "funclet" operand bundles. 1784 if (Tag == LLVMContext::OB_funclet) 1785 continue; 1786 if (Tag == LLVMContext::OB_clang_arc_attachedcall) 1787 continue; 1788 1789 return InlineResult::failure("unsupported operand bundle"); 1790 } 1791 } 1792 1793 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1794 // calls that we inline. 1795 bool MarkNoUnwind = CB.doesNotThrow(); 1796 1797 BasicBlock *OrigBB = CB.getParent(); 1798 Function *Caller = OrigBB->getParent(); 1799 1800 // Do not inline strictfp function into non-strictfp one. It would require 1801 // conversion of all FP operations in host function to constrained intrinsics. 1802 if (CalledFunc->getAttributes().hasFnAttr(Attribute::StrictFP) && 1803 !Caller->getAttributes().hasFnAttr(Attribute::StrictFP)) { 1804 return InlineResult::failure("incompatible strictfp attributes"); 1805 } 1806 1807 // GC poses two hazards to inlining, which only occur when the callee has GC: 1808 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1809 // caller. 1810 // 2. If the caller has a differing GC, it is invalid to inline. 1811 if (CalledFunc->hasGC()) { 1812 if (!Caller->hasGC()) 1813 Caller->setGC(CalledFunc->getGC()); 1814 else if (CalledFunc->getGC() != Caller->getGC()) 1815 return InlineResult::failure("incompatible GC"); 1816 } 1817 1818 // Get the personality function from the callee if it contains a landing pad. 1819 Constant *CalledPersonality = 1820 CalledFunc->hasPersonalityFn() 1821 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1822 : nullptr; 1823 1824 // Find the personality function used by the landing pads of the caller. If it 1825 // exists, then check to see that it matches the personality function used in 1826 // the callee. 1827 Constant *CallerPersonality = 1828 Caller->hasPersonalityFn() 1829 ? Caller->getPersonalityFn()->stripPointerCasts() 1830 : nullptr; 1831 if (CalledPersonality) { 1832 if (!CallerPersonality) 1833 Caller->setPersonalityFn(CalledPersonality); 1834 // If the personality functions match, then we can perform the 1835 // inlining. Otherwise, we can't inline. 1836 // TODO: This isn't 100% true. Some personality functions are proper 1837 // supersets of others and can be used in place of the other. 1838 else if (CalledPersonality != CallerPersonality) 1839 return InlineResult::failure("incompatible personality"); 1840 } 1841 1842 // We need to figure out which funclet the callsite was in so that we may 1843 // properly nest the callee. 1844 Instruction *CallSiteEHPad = nullptr; 1845 if (CallerPersonality) { 1846 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1847 if (isScopedEHPersonality(Personality)) { 1848 Optional<OperandBundleUse> ParentFunclet = 1849 CB.getOperandBundle(LLVMContext::OB_funclet); 1850 if (ParentFunclet) 1851 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1852 1853 // OK, the inlining site is legal. What about the target function? 1854 1855 if (CallSiteEHPad) { 1856 if (Personality == EHPersonality::MSVC_CXX) { 1857 // The MSVC personality cannot tolerate catches getting inlined into 1858 // cleanup funclets. 1859 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1860 // Ok, the call site is within a cleanuppad. Let's check the callee 1861 // for catchpads. 1862 for (const BasicBlock &CalledBB : *CalledFunc) { 1863 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1864 return InlineResult::failure("catch in cleanup funclet"); 1865 } 1866 } 1867 } else if (isAsynchronousEHPersonality(Personality)) { 1868 // SEH is even less tolerant, there may not be any sort of exceptional 1869 // funclet in the callee. 1870 for (const BasicBlock &CalledBB : *CalledFunc) { 1871 if (CalledBB.isEHPad()) 1872 return InlineResult::failure("SEH in cleanup funclet"); 1873 } 1874 } 1875 } 1876 } 1877 } 1878 1879 // Determine if we are dealing with a call in an EHPad which does not unwind 1880 // to caller. 1881 bool EHPadForCallUnwindsLocally = false; 1882 if (CallSiteEHPad && isa<CallInst>(CB)) { 1883 UnwindDestMemoTy FuncletUnwindMap; 1884 Value *CallSiteUnwindDestToken = 1885 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1886 1887 EHPadForCallUnwindsLocally = 1888 CallSiteUnwindDestToken && 1889 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1890 } 1891 1892 // Get an iterator to the last basic block in the function, which will have 1893 // the new function inlined after it. 1894 Function::iterator LastBlock = --Caller->end(); 1895 1896 // Make sure to capture all of the return instructions from the cloned 1897 // function. 1898 SmallVector<ReturnInst*, 8> Returns; 1899 ClonedCodeInfo InlinedFunctionInfo; 1900 Function::iterator FirstNewBlock; 1901 1902 { // Scope to destroy VMap after cloning. 1903 ValueToValueMapTy VMap; 1904 struct ByValInit { 1905 Value *Dst; 1906 Value *Src; 1907 Type *Ty; 1908 }; 1909 // Keep a list of pair (dst, src) to emit byval initializations. 1910 SmallVector<ByValInit, 4> ByValInits; 1911 1912 // When inlining a function that contains noalias scope metadata, 1913 // this metadata needs to be cloned so that the inlined blocks 1914 // have different "unique scopes" at every call site. 1915 // Track the metadata that must be cloned. Do this before other changes to 1916 // the function, so that we do not get in trouble when inlining caller == 1917 // callee. 1918 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction()); 1919 1920 auto &DL = Caller->getParent()->getDataLayout(); 1921 1922 // Calculate the vector of arguments to pass into the function cloner, which 1923 // matches up the formal to the actual argument values. 1924 auto AI = CB.arg_begin(); 1925 unsigned ArgNo = 0; 1926 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1927 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1928 Value *ActualArg = *AI; 1929 1930 // When byval arguments actually inlined, we need to make the copy implied 1931 // by them explicit. However, we don't do this if the callee is readonly 1932 // or readnone, because the copy would be unneeded: the callee doesn't 1933 // modify the struct. 1934 if (CB.isByValArgument(ArgNo)) { 1935 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg, 1936 &CB, CalledFunc, IFI, 1937 CalledFunc->getParamAlignment(ArgNo)); 1938 if (ActualArg != *AI) 1939 ByValInits.push_back( 1940 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)}); 1941 } 1942 1943 VMap[&*I] = ActualArg; 1944 } 1945 1946 // TODO: Remove this when users have been updated to the assume bundles. 1947 // Add alignment assumptions if necessary. We do this before the inlined 1948 // instructions are actually cloned into the caller so that we can easily 1949 // check what will be known at the start of the inlined code. 1950 AddAlignmentAssumptions(CB, IFI); 1951 1952 AssumptionCache *AC = 1953 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1954 1955 /// Preserve all attributes on of the call and its parameters. 1956 salvageKnowledge(&CB, AC); 1957 1958 // We want the inliner to prune the code as it copies. We would LOVE to 1959 // have no dead or constant instructions leftover after inlining occurs 1960 // (which can happen, e.g., because an argument was constant), but we'll be 1961 // happy with whatever the cloner can do. 1962 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1963 /*ModuleLevelChanges=*/false, Returns, ".i", 1964 &InlinedFunctionInfo); 1965 // Remember the first block that is newly cloned over. 1966 FirstNewBlock = LastBlock; ++FirstNewBlock; 1967 1968 // Insert retainRV/clainRV runtime calls. 1969 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB); 1970 if (RVCallKind != objcarc::ARCInstKind::None) 1971 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns); 1972 1973 // Updated caller/callee profiles only when requested. For sample loader 1974 // inlining, the context-sensitive inlinee profile doesn't need to be 1975 // subtracted from callee profile, and the inlined clone also doesn't need 1976 // to be scaled based on call site count. 1977 if (IFI.UpdateProfile) { 1978 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1979 // Update the BFI of blocks cloned into the caller. 1980 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1981 CalledFunc->front()); 1982 1983 if (auto Profile = CalledFunc->getEntryCount()) 1984 updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI, 1985 IFI.CallerBFI); 1986 } 1987 1988 // Inject byval arguments initialization. 1989 for (ByValInit &Init : ByValInits) 1990 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(), 1991 &*FirstNewBlock, IFI); 1992 1993 Optional<OperandBundleUse> ParentDeopt = 1994 CB.getOperandBundle(LLVMContext::OB_deopt); 1995 if (ParentDeopt) { 1996 SmallVector<OperandBundleDef, 2> OpDefs; 1997 1998 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1999 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 2000 if (!ICS) 2001 continue; // instruction was DCE'd or RAUW'ed to undef 2002 2003 OpDefs.clear(); 2004 2005 OpDefs.reserve(ICS->getNumOperandBundles()); 2006 2007 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 2008 ++COBi) { 2009 auto ChildOB = ICS->getOperandBundleAt(COBi); 2010 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 2011 // If the inlined call has other operand bundles, let them be 2012 OpDefs.emplace_back(ChildOB); 2013 continue; 2014 } 2015 2016 // It may be useful to separate this logic (of handling operand 2017 // bundles) out to a separate "policy" component if this gets crowded. 2018 // Prepend the parent's deoptimization continuation to the newly 2019 // inlined call's deoptimization continuation. 2020 std::vector<Value *> MergedDeoptArgs; 2021 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 2022 ChildOB.Inputs.size()); 2023 2024 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs); 2025 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs); 2026 2027 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 2028 } 2029 2030 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 2031 2032 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 2033 // this even if the call returns void. 2034 ICS->replaceAllUsesWith(NewI); 2035 2036 VH = nullptr; 2037 ICS->eraseFromParent(); 2038 } 2039 } 2040 2041 // Update the callgraph if requested. 2042 if (IFI.CG) 2043 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 2044 2045 // For 'nodebug' functions, the associated DISubprogram is always null. 2046 // Conservatively avoid propagating the callsite debug location to 2047 // instructions inlined from a function whose DISubprogram is not null. 2048 fixupLineNumbers(Caller, FirstNewBlock, &CB, 2049 CalledFunc->getSubprogram() != nullptr); 2050 2051 // Now clone the inlined noalias scope metadata. 2052 SAMetadataCloner.clone(); 2053 SAMetadataCloner.remap(FirstNewBlock, Caller->end()); 2054 2055 // Add noalias metadata if necessary. 2056 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo); 2057 2058 // Clone return attributes on the callsite into the calls within the inlined 2059 // function which feed into its return value. 2060 AddReturnAttributes(CB, VMap); 2061 2062 // Propagate metadata on the callsite if necessary. 2063 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end()); 2064 2065 // Register any cloned assumptions. 2066 if (IFI.GetAssumptionCache) 2067 for (BasicBlock &NewBlock : 2068 make_range(FirstNewBlock->getIterator(), Caller->end())) 2069 for (Instruction &I : NewBlock) 2070 if (auto *II = dyn_cast<AssumeInst>(&I)) 2071 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 2072 } 2073 2074 // If there are any alloca instructions in the block that used to be the entry 2075 // block for the callee, move them to the entry block of the caller. First 2076 // calculate which instruction they should be inserted before. We insert the 2077 // instructions at the end of the current alloca list. 2078 { 2079 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 2080 for (BasicBlock::iterator I = FirstNewBlock->begin(), 2081 E = FirstNewBlock->end(); I != E; ) { 2082 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 2083 if (!AI) continue; 2084 2085 // If the alloca is now dead, remove it. This often occurs due to code 2086 // specialization. 2087 if (AI->use_empty()) { 2088 AI->eraseFromParent(); 2089 continue; 2090 } 2091 2092 if (!allocaWouldBeStaticInEntry(AI)) 2093 continue; 2094 2095 // Keep track of the static allocas that we inline into the caller. 2096 IFI.StaticAllocas.push_back(AI); 2097 2098 // Scan for the block of allocas that we can move over, and move them 2099 // all at once. 2100 while (isa<AllocaInst>(I) && 2101 !cast<AllocaInst>(I)->use_empty() && 2102 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 2103 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 2104 ++I; 2105 } 2106 2107 // Transfer all of the allocas over in a block. Using splice means 2108 // that the instructions aren't removed from the symbol table, then 2109 // reinserted. 2110 Caller->getEntryBlock().getInstList().splice( 2111 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 2112 } 2113 } 2114 2115 SmallVector<Value*,4> VarArgsToForward; 2116 SmallVector<AttributeSet, 4> VarArgsAttrs; 2117 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2118 i < CB.arg_size(); i++) { 2119 VarArgsToForward.push_back(CB.getArgOperand(i)); 2120 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i)); 2121 } 2122 2123 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2124 if (InlinedFunctionInfo.ContainsCalls) { 2125 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2126 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 2127 CallSiteTailKind = CI->getTailCallKind(); 2128 2129 // For inlining purposes, the "notail" marker is the same as no marker. 2130 if (CallSiteTailKind == CallInst::TCK_NoTail) 2131 CallSiteTailKind = CallInst::TCK_None; 2132 2133 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2134 ++BB) { 2135 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 2136 CallInst *CI = dyn_cast<CallInst>(&I); 2137 if (!CI) 2138 continue; 2139 2140 // Forward varargs from inlined call site to calls to the 2141 // ForwardVarArgsTo function, if requested, and to musttail calls. 2142 if (!VarArgsToForward.empty() && 2143 ((ForwardVarArgsTo && 2144 CI->getCalledFunction() == ForwardVarArgsTo) || 2145 CI->isMustTailCall())) { 2146 // Collect attributes for non-vararg parameters. 2147 AttributeList Attrs = CI->getAttributes(); 2148 SmallVector<AttributeSet, 8> ArgAttrs; 2149 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2150 for (unsigned ArgNo = 0; 2151 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2152 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 2153 } 2154 2155 // Add VarArg attributes. 2156 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2157 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(), 2158 Attrs.getRetAttrs(), ArgAttrs); 2159 // Add VarArgs to existing parameters. 2160 SmallVector<Value *, 6> Params(CI->args()); 2161 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2162 CallInst *NewCI = CallInst::Create( 2163 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2164 NewCI->setDebugLoc(CI->getDebugLoc()); 2165 NewCI->setAttributes(Attrs); 2166 NewCI->setCallingConv(CI->getCallingConv()); 2167 CI->replaceAllUsesWith(NewCI); 2168 CI->eraseFromParent(); 2169 CI = NewCI; 2170 } 2171 2172 if (Function *F = CI->getCalledFunction()) 2173 InlinedDeoptimizeCalls |= 2174 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2175 2176 // We need to reduce the strength of any inlined tail calls. For 2177 // musttail, we have to avoid introducing potential unbounded stack 2178 // growth. For example, if functions 'f' and 'g' are mutually recursive 2179 // with musttail, we can inline 'g' into 'f' so long as we preserve 2180 // musttail on the cloned call to 'f'. If either the inlined call site 2181 // or the cloned call site is *not* musttail, the program already has 2182 // one frame of stack growth, so it's safe to remove musttail. Here is 2183 // a table of example transformations: 2184 // 2185 // f -> musttail g -> musttail f ==> f -> musttail f 2186 // f -> musttail g -> tail f ==> f -> tail f 2187 // f -> g -> musttail f ==> f -> f 2188 // f -> g -> tail f ==> f -> f 2189 // 2190 // Inlined notail calls should remain notail calls. 2191 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2192 if (ChildTCK != CallInst::TCK_NoTail) 2193 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2194 CI->setTailCallKind(ChildTCK); 2195 InlinedMustTailCalls |= CI->isMustTailCall(); 2196 2197 // Calls inlined through a 'nounwind' call site should be marked 2198 // 'nounwind'. 2199 if (MarkNoUnwind) 2200 CI->setDoesNotThrow(); 2201 } 2202 } 2203 } 2204 2205 // Leave lifetime markers for the static alloca's, scoping them to the 2206 // function we just inlined. 2207 // We need to insert lifetime intrinsics even at O0 to avoid invalid 2208 // access caused by multithreaded coroutines. The check 2209 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only. 2210 if ((InsertLifetime || Caller->isPresplitCoroutine()) && 2211 !IFI.StaticAllocas.empty()) { 2212 IRBuilder<> builder(&FirstNewBlock->front()); 2213 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2214 AllocaInst *AI = IFI.StaticAllocas[ai]; 2215 // Don't mark swifterror allocas. They can't have bitcast uses. 2216 if (AI->isSwiftError()) 2217 continue; 2218 2219 // If the alloca is already scoped to something smaller than the whole 2220 // function then there's no need to add redundant, less accurate markers. 2221 if (hasLifetimeMarkers(AI)) 2222 continue; 2223 2224 // Try to determine the size of the allocation. 2225 ConstantInt *AllocaSize = nullptr; 2226 if (ConstantInt *AIArraySize = 2227 dyn_cast<ConstantInt>(AI->getArraySize())) { 2228 auto &DL = Caller->getParent()->getDataLayout(); 2229 Type *AllocaType = AI->getAllocatedType(); 2230 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2231 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2232 2233 // Don't add markers for zero-sized allocas. 2234 if (AllocaArraySize == 0) 2235 continue; 2236 2237 // Check that array size doesn't saturate uint64_t and doesn't 2238 // overflow when it's multiplied by type size. 2239 if (!AllocaTypeSize.isScalable() && 2240 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2241 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2242 AllocaTypeSize.getFixedSize()) { 2243 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2244 AllocaArraySize * AllocaTypeSize); 2245 } 2246 } 2247 2248 builder.CreateLifetimeStart(AI, AllocaSize); 2249 for (ReturnInst *RI : Returns) { 2250 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2251 // call and a return. The return kills all local allocas. 2252 if (InlinedMustTailCalls && 2253 RI->getParent()->getTerminatingMustTailCall()) 2254 continue; 2255 if (InlinedDeoptimizeCalls && 2256 RI->getParent()->getTerminatingDeoptimizeCall()) 2257 continue; 2258 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2259 } 2260 } 2261 } 2262 2263 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2264 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2265 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2266 Module *M = Caller->getParent(); 2267 // Get the two intrinsics we care about. 2268 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2269 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2270 2271 // Insert the llvm.stacksave. 2272 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2273 .CreateCall(StackSave, {}, "savedstack"); 2274 2275 // Insert a call to llvm.stackrestore before any return instructions in the 2276 // inlined function. 2277 for (ReturnInst *RI : Returns) { 2278 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2279 // call and a return. The return will restore the stack pointer. 2280 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2281 continue; 2282 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2283 continue; 2284 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2285 } 2286 } 2287 2288 // If we are inlining for an invoke instruction, we must make sure to rewrite 2289 // any call instructions into invoke instructions. This is sensitive to which 2290 // funclet pads were top-level in the inlinee, so must be done before 2291 // rewriting the "parent pad" links. 2292 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2293 BasicBlock *UnwindDest = II->getUnwindDest(); 2294 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2295 if (isa<LandingPadInst>(FirstNonPHI)) { 2296 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2297 } else { 2298 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2299 } 2300 } 2301 2302 // Update the lexical scopes of the new funclets and callsites. 2303 // Anything that had 'none' as its parent is now nested inside the callsite's 2304 // EHPad. 2305 2306 if (CallSiteEHPad) { 2307 for (Function::iterator BB = FirstNewBlock->getIterator(), 2308 E = Caller->end(); 2309 BB != E; ++BB) { 2310 // Add bundle operands to any top-level call sites. 2311 SmallVector<OperandBundleDef, 1> OpBundles; 2312 for (Instruction &II : llvm::make_early_inc_range(*BB)) { 2313 CallBase *I = dyn_cast<CallBase>(&II); 2314 if (!I) 2315 continue; 2316 2317 // Skip call sites which are nounwind intrinsics. 2318 auto *CalledFn = 2319 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2320 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2321 continue; 2322 2323 // Skip call sites which already have a "funclet" bundle. 2324 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2325 continue; 2326 2327 I->getOperandBundlesAsDefs(OpBundles); 2328 OpBundles.emplace_back("funclet", CallSiteEHPad); 2329 2330 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2331 NewInst->takeName(I); 2332 I->replaceAllUsesWith(NewInst); 2333 I->eraseFromParent(); 2334 2335 OpBundles.clear(); 2336 } 2337 2338 // It is problematic if the inlinee has a cleanupret which unwinds to 2339 // caller and we inline it into a call site which doesn't unwind but into 2340 // an EH pad that does. Such an edge must be dynamically unreachable. 2341 // As such, we replace the cleanupret with unreachable. 2342 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2343 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2344 changeToUnreachable(CleanupRet); 2345 2346 Instruction *I = BB->getFirstNonPHI(); 2347 if (!I->isEHPad()) 2348 continue; 2349 2350 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2351 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2352 CatchSwitch->setParentPad(CallSiteEHPad); 2353 } else { 2354 auto *FPI = cast<FuncletPadInst>(I); 2355 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2356 FPI->setParentPad(CallSiteEHPad); 2357 } 2358 } 2359 } 2360 2361 if (InlinedDeoptimizeCalls) { 2362 // We need to at least remove the deoptimizing returns from the Return set, 2363 // so that the control flow from those returns does not get merged into the 2364 // caller (but terminate it instead). If the caller's return type does not 2365 // match the callee's return type, we also need to change the return type of 2366 // the intrinsic. 2367 if (Caller->getReturnType() == CB.getType()) { 2368 llvm::erase_if(Returns, [](ReturnInst *RI) { 2369 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2370 }); 2371 } else { 2372 SmallVector<ReturnInst *, 8> NormalReturns; 2373 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2374 Caller->getParent(), Intrinsic::experimental_deoptimize, 2375 {Caller->getReturnType()}); 2376 2377 for (ReturnInst *RI : Returns) { 2378 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2379 if (!DeoptCall) { 2380 NormalReturns.push_back(RI); 2381 continue; 2382 } 2383 2384 // The calling convention on the deoptimize call itself may be bogus, 2385 // since the code we're inlining may have undefined behavior (and may 2386 // never actually execute at runtime); but all 2387 // @llvm.experimental.deoptimize declarations have to have the same 2388 // calling convention in a well-formed module. 2389 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2390 NewDeoptIntrinsic->setCallingConv(CallingConv); 2391 auto *CurBB = RI->getParent(); 2392 RI->eraseFromParent(); 2393 2394 SmallVector<Value *, 4> CallArgs(DeoptCall->args()); 2395 2396 SmallVector<OperandBundleDef, 1> OpBundles; 2397 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2398 auto DeoptAttributes = DeoptCall->getAttributes(); 2399 DeoptCall->eraseFromParent(); 2400 assert(!OpBundles.empty() && 2401 "Expected at least the deopt operand bundle"); 2402 2403 IRBuilder<> Builder(CurBB); 2404 CallInst *NewDeoptCall = 2405 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2406 NewDeoptCall->setCallingConv(CallingConv); 2407 NewDeoptCall->setAttributes(DeoptAttributes); 2408 if (NewDeoptCall->getType()->isVoidTy()) 2409 Builder.CreateRetVoid(); 2410 else 2411 Builder.CreateRet(NewDeoptCall); 2412 } 2413 2414 // Leave behind the normal returns so we can merge control flow. 2415 std::swap(Returns, NormalReturns); 2416 } 2417 } 2418 2419 // Handle any inlined musttail call sites. In order for a new call site to be 2420 // musttail, the source of the clone and the inlined call site must have been 2421 // musttail. Therefore it's safe to return without merging control into the 2422 // phi below. 2423 if (InlinedMustTailCalls) { 2424 // Check if we need to bitcast the result of any musttail calls. 2425 Type *NewRetTy = Caller->getReturnType(); 2426 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2427 2428 // Handle the returns preceded by musttail calls separately. 2429 SmallVector<ReturnInst *, 8> NormalReturns; 2430 for (ReturnInst *RI : Returns) { 2431 CallInst *ReturnedMustTail = 2432 RI->getParent()->getTerminatingMustTailCall(); 2433 if (!ReturnedMustTail) { 2434 NormalReturns.push_back(RI); 2435 continue; 2436 } 2437 if (!NeedBitCast) 2438 continue; 2439 2440 // Delete the old return and any preceding bitcast. 2441 BasicBlock *CurBB = RI->getParent(); 2442 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2443 RI->eraseFromParent(); 2444 if (OldCast) 2445 OldCast->eraseFromParent(); 2446 2447 // Insert a new bitcast and return with the right type. 2448 IRBuilder<> Builder(CurBB); 2449 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2450 } 2451 2452 // Leave behind the normal returns so we can merge control flow. 2453 std::swap(Returns, NormalReturns); 2454 } 2455 2456 // Now that all of the transforms on the inlined code have taken place but 2457 // before we splice the inlined code into the CFG and lose track of which 2458 // blocks were actually inlined, collect the call sites. We only do this if 2459 // call graph updates weren't requested, as those provide value handle based 2460 // tracking of inlined call sites instead. Calls to intrinsics are not 2461 // collected because they are not inlineable. 2462 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2463 // Otherwise just collect the raw call sites that were inlined. 2464 for (BasicBlock &NewBB : 2465 make_range(FirstNewBlock->getIterator(), Caller->end())) 2466 for (Instruction &I : NewBB) 2467 if (auto *CB = dyn_cast<CallBase>(&I)) 2468 if (!(CB->getCalledFunction() && 2469 CB->getCalledFunction()->isIntrinsic())) 2470 IFI.InlinedCallSites.push_back(CB); 2471 } 2472 2473 // If we cloned in _exactly one_ basic block, and if that block ends in a 2474 // return instruction, we splice the body of the inlined callee directly into 2475 // the calling basic block. 2476 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2477 // Move all of the instructions right before the call. 2478 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2479 FirstNewBlock->begin(), FirstNewBlock->end()); 2480 // Remove the cloned basic block. 2481 Caller->getBasicBlockList().pop_back(); 2482 2483 // If the call site was an invoke instruction, add a branch to the normal 2484 // destination. 2485 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2486 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2487 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2488 } 2489 2490 // If the return instruction returned a value, replace uses of the call with 2491 // uses of the returned value. 2492 if (!CB.use_empty()) { 2493 ReturnInst *R = Returns[0]; 2494 if (&CB == R->getReturnValue()) 2495 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2496 else 2497 CB.replaceAllUsesWith(R->getReturnValue()); 2498 } 2499 // Since we are now done with the Call/Invoke, we can delete it. 2500 CB.eraseFromParent(); 2501 2502 // Since we are now done with the return instruction, delete it also. 2503 Returns[0]->eraseFromParent(); 2504 2505 // We are now done with the inlining. 2506 return InlineResult::success(); 2507 } 2508 2509 // Otherwise, we have the normal case, of more than one block to inline or 2510 // multiple return sites. 2511 2512 // We want to clone the entire callee function into the hole between the 2513 // "starter" and "ender" blocks. How we accomplish this depends on whether 2514 // this is an invoke instruction or a call instruction. 2515 BasicBlock *AfterCallBB; 2516 BranchInst *CreatedBranchToNormalDest = nullptr; 2517 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2518 2519 // Add an unconditional branch to make this look like the CallInst case... 2520 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2521 2522 // Split the basic block. This guarantees that no PHI nodes will have to be 2523 // updated due to new incoming edges, and make the invoke case more 2524 // symmetric to the call case. 2525 AfterCallBB = 2526 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2527 CalledFunc->getName() + ".exit"); 2528 2529 } else { // It's a call 2530 // If this is a call instruction, we need to split the basic block that 2531 // the call lives in. 2532 // 2533 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2534 CalledFunc->getName() + ".exit"); 2535 } 2536 2537 if (IFI.CallerBFI) { 2538 // Copy original BB's block frequency to AfterCallBB 2539 IFI.CallerBFI->setBlockFreq( 2540 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2541 } 2542 2543 // Change the branch that used to go to AfterCallBB to branch to the first 2544 // basic block of the inlined function. 2545 // 2546 Instruction *Br = OrigBB->getTerminator(); 2547 assert(Br && Br->getOpcode() == Instruction::Br && 2548 "splitBasicBlock broken!"); 2549 Br->setOperand(0, &*FirstNewBlock); 2550 2551 // Now that the function is correct, make it a little bit nicer. In 2552 // particular, move the basic blocks inserted from the end of the function 2553 // into the space made by splitting the source basic block. 2554 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2555 Caller->getBasicBlockList(), FirstNewBlock, 2556 Caller->end()); 2557 2558 // Handle all of the return instructions that we just cloned in, and eliminate 2559 // any users of the original call/invoke instruction. 2560 Type *RTy = CalledFunc->getReturnType(); 2561 2562 PHINode *PHI = nullptr; 2563 if (Returns.size() > 1) { 2564 // The PHI node should go at the front of the new basic block to merge all 2565 // possible incoming values. 2566 if (!CB.use_empty()) { 2567 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2568 &AfterCallBB->front()); 2569 // Anything that used the result of the function call should now use the 2570 // PHI node as their operand. 2571 CB.replaceAllUsesWith(PHI); 2572 } 2573 2574 // Loop over all of the return instructions adding entries to the PHI node 2575 // as appropriate. 2576 if (PHI) { 2577 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2578 ReturnInst *RI = Returns[i]; 2579 assert(RI->getReturnValue()->getType() == PHI->getType() && 2580 "Ret value not consistent in function!"); 2581 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2582 } 2583 } 2584 2585 // Add a branch to the merge points and remove return instructions. 2586 DebugLoc Loc; 2587 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2588 ReturnInst *RI = Returns[i]; 2589 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2590 Loc = RI->getDebugLoc(); 2591 BI->setDebugLoc(Loc); 2592 RI->eraseFromParent(); 2593 } 2594 // We need to set the debug location to *somewhere* inside the 2595 // inlined function. The line number may be nonsensical, but the 2596 // instruction will at least be associated with the right 2597 // function. 2598 if (CreatedBranchToNormalDest) 2599 CreatedBranchToNormalDest->setDebugLoc(Loc); 2600 } else if (!Returns.empty()) { 2601 // Otherwise, if there is exactly one return value, just replace anything 2602 // using the return value of the call with the computed value. 2603 if (!CB.use_empty()) { 2604 if (&CB == Returns[0]->getReturnValue()) 2605 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2606 else 2607 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2608 } 2609 2610 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2611 BasicBlock *ReturnBB = Returns[0]->getParent(); 2612 ReturnBB->replaceAllUsesWith(AfterCallBB); 2613 2614 // Splice the code from the return block into the block that it will return 2615 // to, which contains the code that was after the call. 2616 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2617 ReturnBB->getInstList()); 2618 2619 if (CreatedBranchToNormalDest) 2620 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2621 2622 // Delete the return instruction now and empty ReturnBB now. 2623 Returns[0]->eraseFromParent(); 2624 ReturnBB->eraseFromParent(); 2625 } else if (!CB.use_empty()) { 2626 // No returns, but something is using the return value of the call. Just 2627 // nuke the result. 2628 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2629 } 2630 2631 // Since we are now done with the Call/Invoke, we can delete it. 2632 CB.eraseFromParent(); 2633 2634 // If we inlined any musttail calls and the original return is now 2635 // unreachable, delete it. It can only contain a bitcast and ret. 2636 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 2637 AfterCallBB->eraseFromParent(); 2638 2639 // We should always be able to fold the entry block of the function into the 2640 // single predecessor of the block... 2641 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2642 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2643 2644 // Splice the code entry block into calling block, right before the 2645 // unconditional branch. 2646 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2647 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2648 2649 // Remove the unconditional branch. 2650 OrigBB->getInstList().erase(Br); 2651 2652 // Now we can remove the CalleeEntry block, which is now empty. 2653 Caller->getBasicBlockList().erase(CalleeEntry); 2654 2655 // If we inserted a phi node, check to see if it has a single value (e.g. all 2656 // the entries are the same or undef). If so, remove the PHI so it doesn't 2657 // block other optimizations. 2658 if (PHI) { 2659 AssumptionCache *AC = 2660 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2661 auto &DL = Caller->getParent()->getDataLayout(); 2662 if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2663 PHI->replaceAllUsesWith(V); 2664 PHI->eraseFromParent(); 2665 } 2666 } 2667 2668 return InlineResult::success(); 2669 } 2670