1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/CallGraph.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/IndirectCallVisitor.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/MemoryProfileInfo.h" 29 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 30 #include "llvm/Analysis/ObjCARCUtil.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/AttributeMask.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Dominators.h" 47 #include "llvm/IR/EHPersonalities.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/IRBuilder.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/ProfDataUtils.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <limits> 76 #include <optional> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 #define DEBUG_TYPE "inline-function" 82 83 using namespace llvm; 84 using namespace llvm::memprof; 85 using ProfileCount = Function::ProfileCount; 86 87 static cl::opt<bool> 88 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 89 cl::Hidden, 90 cl::desc("Convert noalias attributes to metadata during inlining.")); 91 92 static cl::opt<bool> 93 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden, 94 cl::init(true), 95 cl::desc("Use the llvm.experimental.noalias.scope.decl " 96 "intrinsic during inlining.")); 97 98 // Disabled by default, because the added alignment assumptions may increase 99 // compile-time and block optimizations. This option is not suitable for use 100 // with frontends that emit comprehensive parameter alignment annotations. 101 static cl::opt<bool> 102 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 103 cl::init(false), cl::Hidden, 104 cl::desc("Convert align attributes to assumptions during inlining.")); 105 106 static cl::opt<unsigned> InlinerAttributeWindow( 107 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 108 cl::desc("the maximum number of instructions analyzed for may throw during " 109 "attribute inference in inlined body"), 110 cl::init(4)); 111 112 namespace { 113 114 /// A class for recording information about inlining a landing pad. 115 class LandingPadInliningInfo { 116 /// Destination of the invoke's unwind. 117 BasicBlock *OuterResumeDest; 118 119 /// Destination for the callee's resume. 120 BasicBlock *InnerResumeDest = nullptr; 121 122 /// LandingPadInst associated with the invoke. 123 LandingPadInst *CallerLPad = nullptr; 124 125 /// PHI for EH values from landingpad insts. 126 PHINode *InnerEHValuesPHI = nullptr; 127 128 SmallVector<Value*, 8> UnwindDestPHIValues; 129 130 public: 131 LandingPadInliningInfo(InvokeInst *II) 132 : OuterResumeDest(II->getUnwindDest()) { 133 // If there are PHI nodes in the unwind destination block, we need to keep 134 // track of which values came into them from the invoke before removing 135 // the edge from this block. 136 BasicBlock *InvokeBB = II->getParent(); 137 BasicBlock::iterator I = OuterResumeDest->begin(); 138 for (; isa<PHINode>(I); ++I) { 139 // Save the value to use for this edge. 140 PHINode *PHI = cast<PHINode>(I); 141 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 142 } 143 144 CallerLPad = cast<LandingPadInst>(I); 145 } 146 147 /// The outer unwind destination is the target of 148 /// unwind edges introduced for calls within the inlined function. 149 BasicBlock *getOuterResumeDest() const { 150 return OuterResumeDest; 151 } 152 153 BasicBlock *getInnerResumeDest(); 154 155 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 156 157 /// Forward the 'resume' instruction to the caller's landing pad block. 158 /// When the landing pad block has only one predecessor, this is 159 /// a simple branch. When there is more than one predecessor, we need to 160 /// split the landing pad block after the landingpad instruction and jump 161 /// to there. 162 void forwardResume(ResumeInst *RI, 163 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 164 165 /// Add incoming-PHI values to the unwind destination block for the given 166 /// basic block, using the values for the original invoke's source block. 167 void addIncomingPHIValuesFor(BasicBlock *BB) const { 168 addIncomingPHIValuesForInto(BB, OuterResumeDest); 169 } 170 171 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 172 BasicBlock::iterator I = dest->begin(); 173 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 174 PHINode *phi = cast<PHINode>(I); 175 phi->addIncoming(UnwindDestPHIValues[i], src); 176 } 177 } 178 }; 179 180 } // end anonymous namespace 181 182 /// Get or create a target for the branch from ResumeInsts. 183 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 184 if (InnerResumeDest) return InnerResumeDest; 185 186 // Split the landing pad. 187 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 188 InnerResumeDest = 189 OuterResumeDest->splitBasicBlock(SplitPoint, 190 OuterResumeDest->getName() + ".body"); 191 192 // The number of incoming edges we expect to the inner landing pad. 193 const unsigned PHICapacity = 2; 194 195 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 196 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 197 BasicBlock::iterator I = OuterResumeDest->begin(); 198 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 199 PHINode *OuterPHI = cast<PHINode>(I); 200 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 201 OuterPHI->getName() + ".lpad-body"); 202 InnerPHI->insertBefore(InsertPoint); 203 OuterPHI->replaceAllUsesWith(InnerPHI); 204 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 205 } 206 207 // Create a PHI for the exception values. 208 InnerEHValuesPHI = 209 PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body"); 210 InnerEHValuesPHI->insertBefore(InsertPoint); 211 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 212 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 213 214 // All done. 215 return InnerResumeDest; 216 } 217 218 /// Forward the 'resume' instruction to the caller's landing pad block. 219 /// When the landing pad block has only one predecessor, this is a simple 220 /// branch. When there is more than one predecessor, we need to split the 221 /// landing pad block after the landingpad instruction and jump to there. 222 void LandingPadInliningInfo::forwardResume( 223 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 224 BasicBlock *Dest = getInnerResumeDest(); 225 BasicBlock *Src = RI->getParent(); 226 227 BranchInst::Create(Dest, Src); 228 229 // Update the PHIs in the destination. They were inserted in an order which 230 // makes this work. 231 addIncomingPHIValuesForInto(Src, Dest); 232 233 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 234 RI->eraseFromParent(); 235 } 236 237 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 238 static Value *getParentPad(Value *EHPad) { 239 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 240 return FPI->getParentPad(); 241 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 242 } 243 244 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 245 246 /// Helper for getUnwindDestToken that does the descendant-ward part of 247 /// the search. 248 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 249 UnwindDestMemoTy &MemoMap) { 250 SmallVector<Instruction *, 8> Worklist(1, EHPad); 251 252 while (!Worklist.empty()) { 253 Instruction *CurrentPad = Worklist.pop_back_val(); 254 // We only put pads on the worklist that aren't in the MemoMap. When 255 // we find an unwind dest for a pad we may update its ancestors, but 256 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 257 // so they should never get updated while queued on the worklist. 258 assert(!MemoMap.count(CurrentPad)); 259 Value *UnwindDestToken = nullptr; 260 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 261 if (CatchSwitch->hasUnwindDest()) { 262 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 263 } else { 264 // Catchswitch doesn't have a 'nounwind' variant, and one might be 265 // annotated as "unwinds to caller" when really it's nounwind (see 266 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 267 // parent's unwind dest from this. We can check its catchpads' 268 // descendants, since they might include a cleanuppad with an 269 // "unwinds to caller" cleanupret, which can be trusted. 270 for (auto HI = CatchSwitch->handler_begin(), 271 HE = CatchSwitch->handler_end(); 272 HI != HE && !UnwindDestToken; ++HI) { 273 BasicBlock *HandlerBlock = *HI; 274 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 275 for (User *Child : CatchPad->users()) { 276 // Intentionally ignore invokes here -- since the catchswitch is 277 // marked "unwind to caller", it would be a verifier error if it 278 // contained an invoke which unwinds out of it, so any invoke we'd 279 // encounter must unwind to some child of the catch. 280 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 281 continue; 282 283 Instruction *ChildPad = cast<Instruction>(Child); 284 auto Memo = MemoMap.find(ChildPad); 285 if (Memo == MemoMap.end()) { 286 // Haven't figured out this child pad yet; queue it. 287 Worklist.push_back(ChildPad); 288 continue; 289 } 290 // We've already checked this child, but might have found that 291 // it offers no proof either way. 292 Value *ChildUnwindDestToken = Memo->second; 293 if (!ChildUnwindDestToken) 294 continue; 295 // We already know the child's unwind dest, which can either 296 // be ConstantTokenNone to indicate unwind to caller, or can 297 // be another child of the catchpad. Only the former indicates 298 // the unwind dest of the catchswitch. 299 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 300 UnwindDestToken = ChildUnwindDestToken; 301 break; 302 } 303 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 304 } 305 } 306 } 307 } else { 308 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 309 for (User *U : CleanupPad->users()) { 310 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 311 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 312 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 313 else 314 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 315 break; 316 } 317 Value *ChildUnwindDestToken; 318 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 319 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 320 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 321 Instruction *ChildPad = cast<Instruction>(U); 322 auto Memo = MemoMap.find(ChildPad); 323 if (Memo == MemoMap.end()) { 324 // Haven't resolved this child yet; queue it and keep searching. 325 Worklist.push_back(ChildPad); 326 continue; 327 } 328 // We've checked this child, but still need to ignore it if it 329 // had no proof either way. 330 ChildUnwindDestToken = Memo->second; 331 if (!ChildUnwindDestToken) 332 continue; 333 } else { 334 // Not a relevant user of the cleanuppad 335 continue; 336 } 337 // In a well-formed program, the child/invoke must either unwind to 338 // an(other) child of the cleanup, or exit the cleanup. In the 339 // first case, continue searching. 340 if (isa<Instruction>(ChildUnwindDestToken) && 341 getParentPad(ChildUnwindDestToken) == CleanupPad) 342 continue; 343 UnwindDestToken = ChildUnwindDestToken; 344 break; 345 } 346 } 347 // If we haven't found an unwind dest for CurrentPad, we may have queued its 348 // children, so move on to the next in the worklist. 349 if (!UnwindDestToken) 350 continue; 351 352 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 353 // any ancestors of CurrentPad up to but not including UnwindDestToken's 354 // parent pad. Record this in the memo map, and check to see if the 355 // original EHPad being queried is one of the ones exited. 356 Value *UnwindParent; 357 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 358 UnwindParent = getParentPad(UnwindPad); 359 else 360 UnwindParent = nullptr; 361 bool ExitedOriginalPad = false; 362 for (Instruction *ExitedPad = CurrentPad; 363 ExitedPad && ExitedPad != UnwindParent; 364 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 365 // Skip over catchpads since they just follow their catchswitches. 366 if (isa<CatchPadInst>(ExitedPad)) 367 continue; 368 MemoMap[ExitedPad] = UnwindDestToken; 369 ExitedOriginalPad |= (ExitedPad == EHPad); 370 } 371 372 if (ExitedOriginalPad) 373 return UnwindDestToken; 374 375 // Continue the search. 376 } 377 378 // No definitive information is contained within this funclet. 379 return nullptr; 380 } 381 382 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 383 /// return that pad instruction. If it unwinds to caller, return 384 /// ConstantTokenNone. If it does not have a definitive unwind destination, 385 /// return nullptr. 386 /// 387 /// This routine gets invoked for calls in funclets in inlinees when inlining 388 /// an invoke. Since many funclets don't have calls inside them, it's queried 389 /// on-demand rather than building a map of pads to unwind dests up front. 390 /// Determining a funclet's unwind dest may require recursively searching its 391 /// descendants, and also ancestors and cousins if the descendants don't provide 392 /// an answer. Since most funclets will have their unwind dest immediately 393 /// available as the unwind dest of a catchswitch or cleanupret, this routine 394 /// searches top-down from the given pad and then up. To avoid worst-case 395 /// quadratic run-time given that approach, it uses a memo map to avoid 396 /// re-processing funclet trees. The callers that rewrite the IR as they go 397 /// take advantage of this, for correctness, by checking/forcing rewritten 398 /// pads' entries to match the original callee view. 399 static Value *getUnwindDestToken(Instruction *EHPad, 400 UnwindDestMemoTy &MemoMap) { 401 // Catchpads unwind to the same place as their catchswitch; 402 // redirct any queries on catchpads so the code below can 403 // deal with just catchswitches and cleanuppads. 404 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 405 EHPad = CPI->getCatchSwitch(); 406 407 // Check if we've already determined the unwind dest for this pad. 408 auto Memo = MemoMap.find(EHPad); 409 if (Memo != MemoMap.end()) 410 return Memo->second; 411 412 // Search EHPad and, if necessary, its descendants. 413 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 414 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 415 if (UnwindDestToken) 416 return UnwindDestToken; 417 418 // No information is available for this EHPad from itself or any of its 419 // descendants. An unwind all the way out to a pad in the caller would 420 // need also to agree with the unwind dest of the parent funclet, so 421 // search up the chain to try to find a funclet with information. Put 422 // null entries in the memo map to avoid re-processing as we go up. 423 MemoMap[EHPad] = nullptr; 424 #ifndef NDEBUG 425 SmallPtrSet<Instruction *, 4> TempMemos; 426 TempMemos.insert(EHPad); 427 #endif 428 Instruction *LastUselessPad = EHPad; 429 Value *AncestorToken; 430 for (AncestorToken = getParentPad(EHPad); 431 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 432 AncestorToken = getParentPad(AncestorToken)) { 433 // Skip over catchpads since they just follow their catchswitches. 434 if (isa<CatchPadInst>(AncestorPad)) 435 continue; 436 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 437 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 438 // call to getUnwindDestToken, that would mean that AncestorPad had no 439 // information in itself, its descendants, or its ancestors. If that 440 // were the case, then we should also have recorded the lack of information 441 // for the descendant that we're coming from. So assert that we don't 442 // find a null entry in the MemoMap for AncestorPad. 443 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 444 auto AncestorMemo = MemoMap.find(AncestorPad); 445 if (AncestorMemo == MemoMap.end()) { 446 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 447 } else { 448 UnwindDestToken = AncestorMemo->second; 449 } 450 if (UnwindDestToken) 451 break; 452 LastUselessPad = AncestorPad; 453 MemoMap[LastUselessPad] = nullptr; 454 #ifndef NDEBUG 455 TempMemos.insert(LastUselessPad); 456 #endif 457 } 458 459 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 460 // returned nullptr (and likewise for EHPad and any of its ancestors up to 461 // LastUselessPad), so LastUselessPad has no information from below. Since 462 // getUnwindDestTokenHelper must investigate all downward paths through 463 // no-information nodes to prove that a node has no information like this, 464 // and since any time it finds information it records it in the MemoMap for 465 // not just the immediately-containing funclet but also any ancestors also 466 // exited, it must be the case that, walking downward from LastUselessPad, 467 // visiting just those nodes which have not been mapped to an unwind dest 468 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 469 // they are just used to keep getUnwindDestTokenHelper from repeating work), 470 // any node visited must have been exhaustively searched with no information 471 // for it found. 472 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 473 while (!Worklist.empty()) { 474 Instruction *UselessPad = Worklist.pop_back_val(); 475 auto Memo = MemoMap.find(UselessPad); 476 if (Memo != MemoMap.end() && Memo->second) { 477 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 478 // that it is a funclet that does have information about unwinding to 479 // a particular destination; its parent was a useless pad. 480 // Since its parent has no information, the unwind edge must not escape 481 // the parent, and must target a sibling of this pad. This local unwind 482 // gives us no information about EHPad. Leave it and the subtree rooted 483 // at it alone. 484 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 485 continue; 486 } 487 // We know we don't have information for UselesPad. If it has an entry in 488 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 489 // added on this invocation of getUnwindDestToken; if a previous invocation 490 // recorded nullptr, it would have had to prove that the ancestors of 491 // UselessPad, which include LastUselessPad, had no information, and that 492 // in turn would have required proving that the descendants of 493 // LastUselesPad, which include EHPad, have no information about 494 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 495 // the MemoMap on that invocation, which isn't the case if we got here. 496 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 497 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 498 // information that we'd be contradicting by making a map entry for it 499 // (which is something that getUnwindDestTokenHelper must have proved for 500 // us to get here). Just assert on is direct users here; the checks in 501 // this downward walk at its descendants will verify that they don't have 502 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 503 // unwind edges or unwind to a sibling). 504 MemoMap[UselessPad] = UnwindDestToken; 505 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 506 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 507 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 508 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 509 for (User *U : CatchPad->users()) { 510 assert( 511 (!isa<InvokeInst>(U) || 512 (getParentPad( 513 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 514 CatchPad)) && 515 "Expected useless pad"); 516 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 517 Worklist.push_back(cast<Instruction>(U)); 518 } 519 } 520 } else { 521 assert(isa<CleanupPadInst>(UselessPad)); 522 for (User *U : UselessPad->users()) { 523 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 524 assert((!isa<InvokeInst>(U) || 525 (getParentPad( 526 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 527 UselessPad)) && 528 "Expected useless pad"); 529 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 530 Worklist.push_back(cast<Instruction>(U)); 531 } 532 } 533 } 534 535 return UnwindDestToken; 536 } 537 538 /// When we inline a basic block into an invoke, 539 /// we have to turn all of the calls that can throw into invokes. 540 /// This function analyze BB to see if there are any calls, and if so, 541 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 542 /// nodes in that block with the values specified in InvokeDestPHIValues. 543 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 544 BasicBlock *BB, BasicBlock *UnwindEdge, 545 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 546 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 547 // We only need to check for function calls: inlined invoke 548 // instructions require no special handling. 549 CallInst *CI = dyn_cast<CallInst>(&I); 550 551 if (!CI || CI->doesNotThrow()) 552 continue; 553 554 // We do not need to (and in fact, cannot) convert possibly throwing calls 555 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 556 // invokes. The caller's "segment" of the deoptimization continuation 557 // attached to the newly inlined @llvm.experimental_deoptimize 558 // (resp. @llvm.experimental.guard) call should contain the exception 559 // handling logic, if any. 560 if (auto *F = CI->getCalledFunction()) 561 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 562 F->getIntrinsicID() == Intrinsic::experimental_guard) 563 continue; 564 565 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 566 // This call is nested inside a funclet. If that funclet has an unwind 567 // destination within the inlinee, then unwinding out of this call would 568 // be UB. Rewriting this call to an invoke which targets the inlined 569 // invoke's unwind dest would give the call's parent funclet multiple 570 // unwind destinations, which is something that subsequent EH table 571 // generation can't handle and that the veirifer rejects. So when we 572 // see such a call, leave it as a call. 573 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 574 Value *UnwindDestToken = 575 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 576 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 577 continue; 578 #ifndef NDEBUG 579 Instruction *MemoKey; 580 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 581 MemoKey = CatchPad->getCatchSwitch(); 582 else 583 MemoKey = FuncletPad; 584 assert(FuncletUnwindMap->count(MemoKey) && 585 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 586 "must get memoized to avoid confusing later searches"); 587 #endif // NDEBUG 588 } 589 590 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 591 return BB; 592 } 593 return nullptr; 594 } 595 596 /// If we inlined an invoke site, we need to convert calls 597 /// in the body of the inlined function into invokes. 598 /// 599 /// II is the invoke instruction being inlined. FirstNewBlock is the first 600 /// block of the inlined code (the last block is the end of the function), 601 /// and InlineCodeInfo is information about the code that got inlined. 602 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 603 ClonedCodeInfo &InlinedCodeInfo) { 604 BasicBlock *InvokeDest = II->getUnwindDest(); 605 606 Function *Caller = FirstNewBlock->getParent(); 607 608 // The inlined code is currently at the end of the function, scan from the 609 // start of the inlined code to its end, checking for stuff we need to 610 // rewrite. 611 LandingPadInliningInfo Invoke(II); 612 613 // Get all of the inlined landing pad instructions. 614 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 615 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 616 I != E; ++I) 617 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 618 InlinedLPads.insert(II->getLandingPadInst()); 619 620 // Append the clauses from the outer landing pad instruction into the inlined 621 // landing pad instructions. 622 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 623 for (LandingPadInst *InlinedLPad : InlinedLPads) { 624 unsigned OuterNum = OuterLPad->getNumClauses(); 625 InlinedLPad->reserveClauses(OuterNum); 626 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 627 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 628 if (OuterLPad->isCleanup()) 629 InlinedLPad->setCleanup(true); 630 } 631 632 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 633 BB != E; ++BB) { 634 if (InlinedCodeInfo.ContainsCalls) 635 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 636 &*BB, Invoke.getOuterResumeDest())) 637 // Update any PHI nodes in the exceptional block to indicate that there 638 // is now a new entry in them. 639 Invoke.addIncomingPHIValuesFor(NewBB); 640 641 // Forward any resumes that are remaining here. 642 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 643 Invoke.forwardResume(RI, InlinedLPads); 644 } 645 646 // Now that everything is happy, we have one final detail. The PHI nodes in 647 // the exception destination block still have entries due to the original 648 // invoke instruction. Eliminate these entries (which might even delete the 649 // PHI node) now. 650 InvokeDest->removePredecessor(II->getParent()); 651 } 652 653 /// If we inlined an invoke site, we need to convert calls 654 /// in the body of the inlined function into invokes. 655 /// 656 /// II is the invoke instruction being inlined. FirstNewBlock is the first 657 /// block of the inlined code (the last block is the end of the function), 658 /// and InlineCodeInfo is information about the code that got inlined. 659 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 660 ClonedCodeInfo &InlinedCodeInfo) { 661 BasicBlock *UnwindDest = II->getUnwindDest(); 662 Function *Caller = FirstNewBlock->getParent(); 663 664 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 665 666 // If there are PHI nodes in the unwind destination block, we need to keep 667 // track of which values came into them from the invoke before removing the 668 // edge from this block. 669 SmallVector<Value *, 8> UnwindDestPHIValues; 670 BasicBlock *InvokeBB = II->getParent(); 671 for (PHINode &PHI : UnwindDest->phis()) { 672 // Save the value to use for this edge. 673 UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB)); 674 } 675 676 // Add incoming-PHI values to the unwind destination block for the given basic 677 // block, using the values for the original invoke's source block. 678 auto UpdatePHINodes = [&](BasicBlock *Src) { 679 BasicBlock::iterator I = UnwindDest->begin(); 680 for (Value *V : UnwindDestPHIValues) { 681 PHINode *PHI = cast<PHINode>(I); 682 PHI->addIncoming(V, Src); 683 ++I; 684 } 685 }; 686 687 // This connects all the instructions which 'unwind to caller' to the invoke 688 // destination. 689 UnwindDestMemoTy FuncletUnwindMap; 690 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 691 BB != E; ++BB) { 692 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 693 if (CRI->unwindsToCaller()) { 694 auto *CleanupPad = CRI->getCleanupPad(); 695 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI->getIterator()); 696 CRI->eraseFromParent(); 697 UpdatePHINodes(&*BB); 698 // Finding a cleanupret with an unwind destination would confuse 699 // subsequent calls to getUnwindDestToken, so map the cleanuppad 700 // to short-circuit any such calls and recognize this as an "unwind 701 // to caller" cleanup. 702 assert(!FuncletUnwindMap.count(CleanupPad) || 703 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 704 FuncletUnwindMap[CleanupPad] = 705 ConstantTokenNone::get(Caller->getContext()); 706 } 707 } 708 709 Instruction *I = BB->getFirstNonPHI(); 710 if (!I->isEHPad()) 711 continue; 712 713 Instruction *Replacement = nullptr; 714 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 715 if (CatchSwitch->unwindsToCaller()) { 716 Value *UnwindDestToken; 717 if (auto *ParentPad = 718 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 719 // This catchswitch is nested inside another funclet. If that 720 // funclet has an unwind destination within the inlinee, then 721 // unwinding out of this catchswitch would be UB. Rewriting this 722 // catchswitch to unwind to the inlined invoke's unwind dest would 723 // give the parent funclet multiple unwind destinations, which is 724 // something that subsequent EH table generation can't handle and 725 // that the veirifer rejects. So when we see such a call, leave it 726 // as "unwind to caller". 727 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 728 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 729 continue; 730 } else { 731 // This catchswitch has no parent to inherit constraints from, and 732 // none of its descendants can have an unwind edge that exits it and 733 // targets another funclet in the inlinee. It may or may not have a 734 // descendant that definitively has an unwind to caller. In either 735 // case, we'll have to assume that any unwinds out of it may need to 736 // be routed to the caller, so treat it as though it has a definitive 737 // unwind to caller. 738 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 739 } 740 auto *NewCatchSwitch = CatchSwitchInst::Create( 741 CatchSwitch->getParentPad(), UnwindDest, 742 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 743 CatchSwitch->getIterator()); 744 for (BasicBlock *PadBB : CatchSwitch->handlers()) 745 NewCatchSwitch->addHandler(PadBB); 746 // Propagate info for the old catchswitch over to the new one in 747 // the unwind map. This also serves to short-circuit any subsequent 748 // checks for the unwind dest of this catchswitch, which would get 749 // confused if they found the outer handler in the callee. 750 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 751 Replacement = NewCatchSwitch; 752 } 753 } else if (!isa<FuncletPadInst>(I)) { 754 llvm_unreachable("unexpected EHPad!"); 755 } 756 757 if (Replacement) { 758 Replacement->takeName(I); 759 I->replaceAllUsesWith(Replacement); 760 I->eraseFromParent(); 761 UpdatePHINodes(&*BB); 762 } 763 } 764 765 if (InlinedCodeInfo.ContainsCalls) 766 for (Function::iterator BB = FirstNewBlock->getIterator(), 767 E = Caller->end(); 768 BB != E; ++BB) 769 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 770 &*BB, UnwindDest, &FuncletUnwindMap)) 771 // Update any PHI nodes in the exceptional block to indicate that there 772 // is now a new entry in them. 773 UpdatePHINodes(NewBB); 774 775 // Now that everything is happy, we have one final detail. The PHI nodes in 776 // the exception destination block still have entries due to the original 777 // invoke instruction. Eliminate these entries (which might even delete the 778 // PHI node) now. 779 UnwindDest->removePredecessor(InvokeBB); 780 } 781 782 static bool haveCommonPrefix(MDNode *MIBStackContext, 783 MDNode *CallsiteStackContext) { 784 assert(MIBStackContext->getNumOperands() > 0 && 785 CallsiteStackContext->getNumOperands() > 0); 786 // Because of the context trimming performed during matching, the callsite 787 // context could have more stack ids than the MIB. We match up to the end of 788 // the shortest stack context. 789 for (auto MIBStackIter = MIBStackContext->op_begin(), 790 CallsiteStackIter = CallsiteStackContext->op_begin(); 791 MIBStackIter != MIBStackContext->op_end() && 792 CallsiteStackIter != CallsiteStackContext->op_end(); 793 MIBStackIter++, CallsiteStackIter++) { 794 auto *Val1 = mdconst::dyn_extract<ConstantInt>(*MIBStackIter); 795 auto *Val2 = mdconst::dyn_extract<ConstantInt>(*CallsiteStackIter); 796 assert(Val1 && Val2); 797 if (Val1->getZExtValue() != Val2->getZExtValue()) 798 return false; 799 } 800 return true; 801 } 802 803 static void removeMemProfMetadata(CallBase *Call) { 804 Call->setMetadata(LLVMContext::MD_memprof, nullptr); 805 } 806 807 static void removeCallsiteMetadata(CallBase *Call) { 808 Call->setMetadata(LLVMContext::MD_callsite, nullptr); 809 } 810 811 static void updateMemprofMetadata(CallBase *CI, 812 const std::vector<Metadata *> &MIBList) { 813 assert(!MIBList.empty()); 814 // Remove existing memprof, which will either be replaced or may not be needed 815 // if we are able to use a single allocation type function attribute. 816 removeMemProfMetadata(CI); 817 CallStackTrie CallStack; 818 for (Metadata *MIB : MIBList) 819 CallStack.addCallStack(cast<MDNode>(MIB)); 820 bool MemprofMDAttached = CallStack.buildAndAttachMIBMetadata(CI); 821 assert(MemprofMDAttached == CI->hasMetadata(LLVMContext::MD_memprof)); 822 if (!MemprofMDAttached) 823 // If we used a function attribute remove the callsite metadata as well. 824 removeCallsiteMetadata(CI); 825 } 826 827 // Update the metadata on the inlined copy ClonedCall of a call OrigCall in the 828 // inlined callee body, based on the callsite metadata InlinedCallsiteMD from 829 // the call that was inlined. 830 static void propagateMemProfHelper(const CallBase *OrigCall, 831 CallBase *ClonedCall, 832 MDNode *InlinedCallsiteMD) { 833 MDNode *OrigCallsiteMD = ClonedCall->getMetadata(LLVMContext::MD_callsite); 834 MDNode *ClonedCallsiteMD = nullptr; 835 // Check if the call originally had callsite metadata, and update it for the 836 // new call in the inlined body. 837 if (OrigCallsiteMD) { 838 // The cloned call's context is now the concatenation of the original call's 839 // callsite metadata and the callsite metadata on the call where it was 840 // inlined. 841 ClonedCallsiteMD = MDNode::concatenate(OrigCallsiteMD, InlinedCallsiteMD); 842 ClonedCall->setMetadata(LLVMContext::MD_callsite, ClonedCallsiteMD); 843 } 844 845 // Update any memprof metadata on the cloned call. 846 MDNode *OrigMemProfMD = ClonedCall->getMetadata(LLVMContext::MD_memprof); 847 if (!OrigMemProfMD) 848 return; 849 // We currently expect that allocations with memprof metadata also have 850 // callsite metadata for the allocation's part of the context. 851 assert(OrigCallsiteMD); 852 853 // New call's MIB list. 854 std::vector<Metadata *> NewMIBList; 855 856 // For each MIB metadata, check if its call stack context starts with the 857 // new clone's callsite metadata. If so, that MIB goes onto the cloned call in 858 // the inlined body. If not, it stays on the out-of-line original call. 859 for (auto &MIBOp : OrigMemProfMD->operands()) { 860 MDNode *MIB = dyn_cast<MDNode>(MIBOp); 861 // Stack is first operand of MIB. 862 MDNode *StackMD = getMIBStackNode(MIB); 863 assert(StackMD); 864 // See if the new cloned callsite context matches this profiled context. 865 if (haveCommonPrefix(StackMD, ClonedCallsiteMD)) 866 // Add it to the cloned call's MIB list. 867 NewMIBList.push_back(MIB); 868 } 869 if (NewMIBList.empty()) { 870 removeMemProfMetadata(ClonedCall); 871 removeCallsiteMetadata(ClonedCall); 872 return; 873 } 874 if (NewMIBList.size() < OrigMemProfMD->getNumOperands()) 875 updateMemprofMetadata(ClonedCall, NewMIBList); 876 } 877 878 // Update memprof related metadata (!memprof and !callsite) based on the 879 // inlining of Callee into the callsite at CB. The updates include merging the 880 // inlined callee's callsite metadata with that of the inlined call, 881 // and moving the subset of any memprof contexts to the inlined callee 882 // allocations if they match the new inlined call stack. 883 static void 884 propagateMemProfMetadata(Function *Callee, CallBase &CB, 885 bool ContainsMemProfMetadata, 886 const ValueMap<const Value *, WeakTrackingVH> &VMap) { 887 MDNode *CallsiteMD = CB.getMetadata(LLVMContext::MD_callsite); 888 // Only need to update if the inlined callsite had callsite metadata, or if 889 // there was any memprof metadata inlined. 890 if (!CallsiteMD && !ContainsMemProfMetadata) 891 return; 892 893 // Propagate metadata onto the cloned calls in the inlined callee. 894 for (const auto &Entry : VMap) { 895 // See if this is a call that has been inlined and remapped, and not 896 // simplified away in the process. 897 auto *OrigCall = dyn_cast_or_null<CallBase>(Entry.first); 898 auto *ClonedCall = dyn_cast_or_null<CallBase>(Entry.second); 899 if (!OrigCall || !ClonedCall) 900 continue; 901 // If the inlined callsite did not have any callsite metadata, then it isn't 902 // involved in any profiled call contexts, and we can remove any memprof 903 // metadata on the cloned call. 904 if (!CallsiteMD) { 905 removeMemProfMetadata(ClonedCall); 906 removeCallsiteMetadata(ClonedCall); 907 continue; 908 } 909 propagateMemProfHelper(OrigCall, ClonedCall, CallsiteMD); 910 } 911 } 912 913 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 914 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 915 /// be propagated to all memory-accessing cloned instructions. 916 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart, 917 Function::iterator FEnd) { 918 MDNode *MemParallelLoopAccess = 919 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 920 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 921 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 922 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 923 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 924 return; 925 926 for (BasicBlock &BB : make_range(FStart, FEnd)) { 927 for (Instruction &I : BB) { 928 // This metadata is only relevant for instructions that access memory. 929 if (!I.mayReadOrWriteMemory()) 930 continue; 931 932 if (MemParallelLoopAccess) { 933 // TODO: This probably should not overwrite MemParalleLoopAccess. 934 MemParallelLoopAccess = MDNode::concatenate( 935 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access), 936 MemParallelLoopAccess); 937 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access, 938 MemParallelLoopAccess); 939 } 940 941 if (AccessGroup) 942 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 943 I.getMetadata(LLVMContext::MD_access_group), AccessGroup)); 944 945 if (AliasScope) 946 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 947 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 948 949 if (NoAlias) 950 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 951 I.getMetadata(LLVMContext::MD_noalias), NoAlias)); 952 } 953 } 954 } 955 956 /// Bundle operands of the inlined function must be added to inlined call sites. 957 static void PropagateOperandBundles(Function::iterator InlinedBB, 958 Instruction *CallSiteEHPad) { 959 for (Instruction &II : llvm::make_early_inc_range(*InlinedBB)) { 960 CallBase *I = dyn_cast<CallBase>(&II); 961 if (!I) 962 continue; 963 // Skip call sites which already have a "funclet" bundle. 964 if (I->getOperandBundle(LLVMContext::OB_funclet)) 965 continue; 966 // Skip call sites which are nounwind intrinsics (as long as they don't 967 // lower into regular function calls in the course of IR transformations). 968 auto *CalledFn = 969 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 970 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow() && 971 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID())) 972 continue; 973 974 SmallVector<OperandBundleDef, 1> OpBundles; 975 I->getOperandBundlesAsDefs(OpBundles); 976 OpBundles.emplace_back("funclet", CallSiteEHPad); 977 978 Instruction *NewInst = CallBase::Create(I, OpBundles, I->getIterator()); 979 NewInst->takeName(I); 980 I->replaceAllUsesWith(NewInst); 981 I->eraseFromParent(); 982 } 983 } 984 985 namespace { 986 /// Utility for cloning !noalias and !alias.scope metadata. When a code region 987 /// using scoped alias metadata is inlined, the aliasing relationships may not 988 /// hold between the two version. It is necessary to create a deep clone of the 989 /// metadata, putting the two versions in separate scope domains. 990 class ScopedAliasMetadataDeepCloner { 991 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>; 992 SetVector<const MDNode *> MD; 993 MetadataMap MDMap; 994 void addRecursiveMetadataUses(); 995 996 public: 997 ScopedAliasMetadataDeepCloner(const Function *F); 998 999 /// Create a new clone of the scoped alias metadata, which will be used by 1000 /// subsequent remap() calls. 1001 void clone(); 1002 1003 /// Remap instructions in the given range from the original to the cloned 1004 /// metadata. 1005 void remap(Function::iterator FStart, Function::iterator FEnd); 1006 }; 1007 } // namespace 1008 1009 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner( 1010 const Function *F) { 1011 for (const BasicBlock &BB : *F) { 1012 for (const Instruction &I : BB) { 1013 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 1014 MD.insert(M); 1015 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 1016 MD.insert(M); 1017 1018 // We also need to clone the metadata in noalias intrinsics. 1019 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1020 MD.insert(Decl->getScopeList()); 1021 } 1022 } 1023 addRecursiveMetadataUses(); 1024 } 1025 1026 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() { 1027 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 1028 while (!Queue.empty()) { 1029 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 1030 for (const Metadata *Op : M->operands()) 1031 if (const MDNode *OpMD = dyn_cast<MDNode>(Op)) 1032 if (MD.insert(OpMD)) 1033 Queue.push_back(OpMD); 1034 } 1035 } 1036 1037 void ScopedAliasMetadataDeepCloner::clone() { 1038 assert(MDMap.empty() && "clone() already called ?"); 1039 1040 SmallVector<TempMDTuple, 16> DummyNodes; 1041 for (const MDNode *I : MD) { 1042 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), std::nullopt)); 1043 MDMap[I].reset(DummyNodes.back().get()); 1044 } 1045 1046 // Create new metadata nodes to replace the dummy nodes, replacing old 1047 // metadata references with either a dummy node or an already-created new 1048 // node. 1049 SmallVector<Metadata *, 4> NewOps; 1050 for (const MDNode *I : MD) { 1051 for (const Metadata *Op : I->operands()) { 1052 if (const MDNode *M = dyn_cast<MDNode>(Op)) 1053 NewOps.push_back(MDMap[M]); 1054 else 1055 NewOps.push_back(const_cast<Metadata *>(Op)); 1056 } 1057 1058 MDNode *NewM = MDNode::get(I->getContext(), NewOps); 1059 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 1060 assert(TempM->isTemporary() && "Expected temporary node"); 1061 1062 TempM->replaceAllUsesWith(NewM); 1063 NewOps.clear(); 1064 } 1065 } 1066 1067 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart, 1068 Function::iterator FEnd) { 1069 if (MDMap.empty()) 1070 return; // Nothing to do. 1071 1072 for (BasicBlock &BB : make_range(FStart, FEnd)) { 1073 for (Instruction &I : BB) { 1074 // TODO: The null checks for the MDMap.lookup() results should no longer 1075 // be necessary. 1076 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 1077 if (MDNode *MNew = MDMap.lookup(M)) 1078 I.setMetadata(LLVMContext::MD_alias_scope, MNew); 1079 1080 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 1081 if (MDNode *MNew = MDMap.lookup(M)) 1082 I.setMetadata(LLVMContext::MD_noalias, MNew); 1083 1084 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1085 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList())) 1086 Decl->setScopeList(MNew); 1087 } 1088 } 1089 } 1090 1091 /// If the inlined function has noalias arguments, 1092 /// then add new alias scopes for each noalias argument, tag the mapped noalias 1093 /// parameters with noalias metadata specifying the new scope, and tag all 1094 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 1095 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 1096 const DataLayout &DL, AAResults *CalleeAAR, 1097 ClonedCodeInfo &InlinedFunctionInfo) { 1098 if (!EnableNoAliasConversion) 1099 return; 1100 1101 const Function *CalledFunc = CB.getCalledFunction(); 1102 SmallVector<const Argument *, 4> NoAliasArgs; 1103 1104 for (const Argument &Arg : CalledFunc->args()) 1105 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 1106 NoAliasArgs.push_back(&Arg); 1107 1108 if (NoAliasArgs.empty()) 1109 return; 1110 1111 // To do a good job, if a noalias variable is captured, we need to know if 1112 // the capture point dominates the particular use we're considering. 1113 DominatorTree DT; 1114 DT.recalculate(const_cast<Function&>(*CalledFunc)); 1115 1116 // noalias indicates that pointer values based on the argument do not alias 1117 // pointer values which are not based on it. So we add a new "scope" for each 1118 // noalias function argument. Accesses using pointers based on that argument 1119 // become part of that alias scope, accesses using pointers not based on that 1120 // argument are tagged as noalias with that scope. 1121 1122 DenseMap<const Argument *, MDNode *> NewScopes; 1123 MDBuilder MDB(CalledFunc->getContext()); 1124 1125 // Create a new scope domain for this function. 1126 MDNode *NewDomain = 1127 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 1128 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 1129 const Argument *A = NoAliasArgs[i]; 1130 1131 std::string Name = std::string(CalledFunc->getName()); 1132 if (A->hasName()) { 1133 Name += ": %"; 1134 Name += A->getName(); 1135 } else { 1136 Name += ": argument "; 1137 Name += utostr(i); 1138 } 1139 1140 // Note: We always create a new anonymous root here. This is true regardless 1141 // of the linkage of the callee because the aliasing "scope" is not just a 1142 // property of the callee, but also all control dependencies in the caller. 1143 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 1144 NewScopes.insert(std::make_pair(A, NewScope)); 1145 1146 if (UseNoAliasIntrinsic) { 1147 // Introduce a llvm.experimental.noalias.scope.decl for the noalias 1148 // argument. 1149 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope); 1150 auto *NoAliasDecl = 1151 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList); 1152 // Ignore the result for now. The result will be used when the 1153 // llvm.noalias intrinsic is introduced. 1154 (void)NoAliasDecl; 1155 } 1156 } 1157 1158 // Iterate over all new instructions in the map; for all memory-access 1159 // instructions, add the alias scope metadata. 1160 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 1161 VMI != VMIE; ++VMI) { 1162 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 1163 if (!VMI->second) 1164 continue; 1165 1166 Instruction *NI = dyn_cast<Instruction>(VMI->second); 1167 if (!NI || InlinedFunctionInfo.isSimplified(I, NI)) 1168 continue; 1169 1170 bool IsArgMemOnlyCall = false, IsFuncCall = false; 1171 SmallVector<const Value *, 2> PtrArgs; 1172 1173 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1174 PtrArgs.push_back(LI->getPointerOperand()); 1175 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1176 PtrArgs.push_back(SI->getPointerOperand()); 1177 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1178 PtrArgs.push_back(VAAI->getPointerOperand()); 1179 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1180 PtrArgs.push_back(CXI->getPointerOperand()); 1181 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1182 PtrArgs.push_back(RMWI->getPointerOperand()); 1183 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1184 // If we know that the call does not access memory, then we'll still 1185 // know that about the inlined clone of this call site, and we don't 1186 // need to add metadata. 1187 if (Call->doesNotAccessMemory()) 1188 continue; 1189 1190 IsFuncCall = true; 1191 if (CalleeAAR) { 1192 MemoryEffects ME = CalleeAAR->getMemoryEffects(Call); 1193 1194 // We'll retain this knowledge without additional metadata. 1195 if (ME.onlyAccessesInaccessibleMem()) 1196 continue; 1197 1198 if (ME.onlyAccessesArgPointees()) 1199 IsArgMemOnlyCall = true; 1200 } 1201 1202 for (Value *Arg : Call->args()) { 1203 // Only care about pointer arguments. If a noalias argument is 1204 // accessed through a non-pointer argument, it must be captured 1205 // first (e.g. via ptrtoint), and we protect against captures below. 1206 if (!Arg->getType()->isPointerTy()) 1207 continue; 1208 1209 PtrArgs.push_back(Arg); 1210 } 1211 } 1212 1213 // If we found no pointers, then this instruction is not suitable for 1214 // pairing with an instruction to receive aliasing metadata. 1215 // However, if this is a call, this we might just alias with none of the 1216 // noalias arguments. 1217 if (PtrArgs.empty() && !IsFuncCall) 1218 continue; 1219 1220 // It is possible that there is only one underlying object, but you 1221 // need to go through several PHIs to see it, and thus could be 1222 // repeated in the Objects list. 1223 SmallPtrSet<const Value *, 4> ObjSet; 1224 SmallVector<Metadata *, 4> Scopes, NoAliases; 1225 1226 for (const Value *V : PtrArgs) { 1227 SmallVector<const Value *, 4> Objects; 1228 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1229 1230 for (const Value *O : Objects) 1231 ObjSet.insert(O); 1232 } 1233 1234 // Figure out if we're derived from anything that is not a noalias 1235 // argument. 1236 bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false, 1237 UsesUnknownObject = false; 1238 for (const Value *V : ObjSet) { 1239 // Is this value a constant that cannot be derived from any pointer 1240 // value (we need to exclude constant expressions, for example, that 1241 // are formed from arithmetic on global symbols). 1242 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1243 isa<ConstantPointerNull>(V) || 1244 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1245 if (IsNonPtrConst) 1246 continue; 1247 1248 // If this is anything other than a noalias argument, then we cannot 1249 // completely describe the aliasing properties using alias.scope 1250 // metadata (and, thus, won't add any). 1251 if (const Argument *A = dyn_cast<Argument>(V)) { 1252 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1253 UsesAliasingPtr = true; 1254 } else { 1255 UsesAliasingPtr = true; 1256 } 1257 1258 if (isEscapeSource(V)) { 1259 // An escape source can only alias with a noalias argument if it has 1260 // been captured beforehand. 1261 RequiresNoCaptureBefore = true; 1262 } else if (!isa<Argument>(V) && !isIdentifiedObject(V)) { 1263 // If this is neither an escape source, nor some identified object 1264 // (which cannot directly alias a noalias argument), nor some other 1265 // argument (which, by definition, also cannot alias a noalias 1266 // argument), conservatively do not make any assumptions. 1267 UsesUnknownObject = true; 1268 } 1269 } 1270 1271 // Nothing we can do if the used underlying object cannot be reliably 1272 // determined. 1273 if (UsesUnknownObject) 1274 continue; 1275 1276 // A function call can always get captured noalias pointers (via other 1277 // parameters, globals, etc.). 1278 if (IsFuncCall && !IsArgMemOnlyCall) 1279 RequiresNoCaptureBefore = true; 1280 1281 // First, we want to figure out all of the sets with which we definitely 1282 // don't alias. Iterate over all noalias set, and add those for which: 1283 // 1. The noalias argument is not in the set of objects from which we 1284 // definitely derive. 1285 // 2. The noalias argument has not yet been captured. 1286 // An arbitrary function that might load pointers could see captured 1287 // noalias arguments via other noalias arguments or globals, and so we 1288 // must always check for prior capture. 1289 for (const Argument *A : NoAliasArgs) { 1290 if (ObjSet.contains(A)) 1291 continue; // May be based on a noalias argument. 1292 1293 // It might be tempting to skip the PointerMayBeCapturedBefore check if 1294 // A->hasNoCaptureAttr() is true, but this is incorrect because 1295 // nocapture only guarantees that no copies outlive the function, not 1296 // that the value cannot be locally captured. 1297 if (!RequiresNoCaptureBefore || 1298 !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false, 1299 /* StoreCaptures */ false, I, &DT)) 1300 NoAliases.push_back(NewScopes[A]); 1301 } 1302 1303 if (!NoAliases.empty()) 1304 NI->setMetadata(LLVMContext::MD_noalias, 1305 MDNode::concatenate( 1306 NI->getMetadata(LLVMContext::MD_noalias), 1307 MDNode::get(CalledFunc->getContext(), NoAliases))); 1308 1309 // Next, we want to figure out all of the sets to which we might belong. 1310 // We might belong to a set if the noalias argument is in the set of 1311 // underlying objects. If there is some non-noalias argument in our list 1312 // of underlying objects, then we cannot add a scope because the fact 1313 // that some access does not alias with any set of our noalias arguments 1314 // cannot itself guarantee that it does not alias with this access 1315 // (because there is some pointer of unknown origin involved and the 1316 // other access might also depend on this pointer). We also cannot add 1317 // scopes to arbitrary functions unless we know they don't access any 1318 // non-parameter pointer-values. 1319 bool CanAddScopes = !UsesAliasingPtr; 1320 if (CanAddScopes && IsFuncCall) 1321 CanAddScopes = IsArgMemOnlyCall; 1322 1323 if (CanAddScopes) 1324 for (const Argument *A : NoAliasArgs) { 1325 if (ObjSet.count(A)) 1326 Scopes.push_back(NewScopes[A]); 1327 } 1328 1329 if (!Scopes.empty()) 1330 NI->setMetadata( 1331 LLVMContext::MD_alias_scope, 1332 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1333 MDNode::get(CalledFunc->getContext(), Scopes))); 1334 } 1335 } 1336 } 1337 1338 static bool MayContainThrowingOrExitingCallAfterCB(CallBase *Begin, 1339 ReturnInst *End) { 1340 1341 assert(Begin->getParent() == End->getParent() && 1342 "Expected to be in same basic block!"); 1343 auto BeginIt = Begin->getIterator(); 1344 assert(BeginIt != End->getIterator() && "Non-empty BB has empty iterator"); 1345 return !llvm::isGuaranteedToTransferExecutionToSuccessor( 1346 ++BeginIt, End->getIterator(), InlinerAttributeWindow + 1); 1347 } 1348 1349 // Add attributes from CB params and Fn attributes that can always be propagated 1350 // to the corresponding argument / inner callbases. 1351 static void AddParamAndFnBasicAttributes(const CallBase &CB, 1352 ValueToValueMapTy &VMap) { 1353 auto *CalledFunction = CB.getCalledFunction(); 1354 auto &Context = CalledFunction->getContext(); 1355 1356 // Collect valid attributes for all params. 1357 SmallVector<AttrBuilder> ValidParamAttrs; 1358 bool HasAttrToPropagate = false; 1359 1360 for (unsigned I = 0, E = CB.arg_size(); I < E; ++I) { 1361 ValidParamAttrs.emplace_back(AttrBuilder{CB.getContext()}); 1362 // Access attributes can be propagated to any param with the same underlying 1363 // object as the argument. 1364 if (CB.paramHasAttr(I, Attribute::ReadNone)) 1365 ValidParamAttrs.back().addAttribute(Attribute::ReadNone); 1366 if (CB.paramHasAttr(I, Attribute::ReadOnly)) 1367 ValidParamAttrs.back().addAttribute(Attribute::ReadOnly); 1368 HasAttrToPropagate |= ValidParamAttrs.back().hasAttributes(); 1369 } 1370 1371 // Won't be able to propagate anything. 1372 if (!HasAttrToPropagate) 1373 return; 1374 1375 for (BasicBlock &BB : *CalledFunction) { 1376 for (Instruction &Ins : BB) { 1377 const auto *InnerCB = dyn_cast<CallBase>(&Ins); 1378 if (!InnerCB) 1379 continue; 1380 auto *NewInnerCB = dyn_cast_or_null<CallBase>(VMap.lookup(InnerCB)); 1381 if (!NewInnerCB) 1382 continue; 1383 AttributeList AL = NewInnerCB->getAttributes(); 1384 for (unsigned I = 0, E = InnerCB->arg_size(); I < E; ++I) { 1385 // Check if the underlying value for the parameter is an argument. 1386 const Value *UnderlyingV = 1387 getUnderlyingObject(InnerCB->getArgOperand(I)); 1388 const Argument *Arg = dyn_cast<Argument>(UnderlyingV); 1389 if (!Arg) 1390 continue; 1391 1392 if (AL.hasParamAttr(I, Attribute::ByVal)) 1393 // It's unsound to propagate memory attributes to byval arguments. 1394 // Even if CalledFunction doesn't e.g. write to the argument, 1395 // the call to NewInnerCB may write to its by-value copy. 1396 continue; 1397 1398 unsigned ArgNo = Arg->getArgNo(); 1399 // If so, propagate its access attributes. 1400 AL = AL.addParamAttributes(Context, I, ValidParamAttrs[ArgNo]); 1401 // We can have conflicting attributes from the inner callsite and 1402 // to-be-inlined callsite. In that case, choose the most 1403 // restrictive. 1404 1405 // readonly + writeonly means we can never deref so make readnone. 1406 if (AL.hasParamAttr(I, Attribute::ReadOnly) && 1407 AL.hasParamAttr(I, Attribute::WriteOnly)) 1408 AL = AL.addParamAttribute(Context, I, Attribute::ReadNone); 1409 1410 // If have readnone, need to clear readonly/writeonly 1411 if (AL.hasParamAttr(I, Attribute::ReadNone)) { 1412 AL = AL.removeParamAttribute(Context, I, Attribute::ReadOnly); 1413 AL = AL.removeParamAttribute(Context, I, Attribute::WriteOnly); 1414 } 1415 1416 // Writable cannot exist in conjunction w/ readonly/readnone 1417 if (AL.hasParamAttr(I, Attribute::ReadOnly) || 1418 AL.hasParamAttr(I, Attribute::ReadNone)) 1419 AL = AL.removeParamAttribute(Context, I, Attribute::Writable); 1420 } 1421 NewInnerCB->setAttributes(AL); 1422 } 1423 } 1424 } 1425 1426 // Only allow these white listed attributes to be propagated back to the 1427 // callee. This is because other attributes may only be valid on the call 1428 // itself, i.e. attributes such as signext and zeroext. 1429 1430 // Attributes that are always okay to propagate as if they are violated its 1431 // immediate UB. 1432 static AttrBuilder IdentifyValidUBGeneratingAttributes(CallBase &CB) { 1433 AttrBuilder Valid(CB.getContext()); 1434 if (auto DerefBytes = CB.getRetDereferenceableBytes()) 1435 Valid.addDereferenceableAttr(DerefBytes); 1436 if (auto DerefOrNullBytes = CB.getRetDereferenceableOrNullBytes()) 1437 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1438 if (CB.hasRetAttr(Attribute::NoAlias)) 1439 Valid.addAttribute(Attribute::NoAlias); 1440 if (CB.hasRetAttr(Attribute::NoUndef)) 1441 Valid.addAttribute(Attribute::NoUndef); 1442 return Valid; 1443 } 1444 1445 // Attributes that need additional checks as propagating them may change 1446 // behavior or cause new UB. 1447 static AttrBuilder IdentifyValidPoisonGeneratingAttributes(CallBase &CB) { 1448 AttrBuilder Valid(CB.getContext()); 1449 if (CB.hasRetAttr(Attribute::NonNull)) 1450 Valid.addAttribute(Attribute::NonNull); 1451 if (CB.hasRetAttr(Attribute::Alignment)) 1452 Valid.addAlignmentAttr(CB.getRetAlign()); 1453 if (std::optional<ConstantRange> Range = CB.getRange()) 1454 Valid.addRangeAttr(*Range); 1455 return Valid; 1456 } 1457 1458 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1459 AttrBuilder ValidUB = IdentifyValidUBGeneratingAttributes(CB); 1460 AttrBuilder ValidPG = IdentifyValidPoisonGeneratingAttributes(CB); 1461 if (!ValidUB.hasAttributes() && !ValidPG.hasAttributes()) 1462 return; 1463 auto *CalledFunction = CB.getCalledFunction(); 1464 auto &Context = CalledFunction->getContext(); 1465 1466 for (auto &BB : *CalledFunction) { 1467 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1468 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1469 continue; 1470 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1471 // Check that the cloned RetVal exists and is a call, otherwise we cannot 1472 // add the attributes on the cloned RetVal. Simplification during inlining 1473 // could have transformed the cloned instruction. 1474 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1475 if (!NewRetVal) 1476 continue; 1477 // Backward propagation of attributes to the returned value may be incorrect 1478 // if it is control flow dependent. 1479 // Consider: 1480 // @callee { 1481 // %rv = call @foo() 1482 // %rv2 = call @bar() 1483 // if (%rv2 != null) 1484 // return %rv2 1485 // if (%rv == null) 1486 // exit() 1487 // return %rv 1488 // } 1489 // caller() { 1490 // %val = call nonnull @callee() 1491 // } 1492 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1493 // limit the check to both RetVal and RI are in the same basic block and 1494 // there are no throwing/exiting instructions between these instructions. 1495 if (RI->getParent() != RetVal->getParent() || 1496 MayContainThrowingOrExitingCallAfterCB(RetVal, RI)) 1497 continue; 1498 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1499 // instruction. 1500 // NB! When we have the same attribute already existing on NewRetVal, but 1501 // with a differing value, the AttributeList's merge API honours the already 1502 // existing attribute value (i.e. attributes such as dereferenceable, 1503 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1504 AttributeList AL = NewRetVal->getAttributes(); 1505 if (ValidUB.getDereferenceableBytes() < AL.getRetDereferenceableBytes()) 1506 ValidUB.removeAttribute(Attribute::Dereferenceable); 1507 if (ValidUB.getDereferenceableOrNullBytes() < 1508 AL.getRetDereferenceableOrNullBytes()) 1509 ValidUB.removeAttribute(Attribute::DereferenceableOrNull); 1510 AttributeList NewAL = AL.addRetAttributes(Context, ValidUB); 1511 // Attributes that may generate poison returns are a bit tricky. If we 1512 // propagate them, other uses of the callsite might have their behavior 1513 // change or cause UB (if they have noundef) b.c of the new potential 1514 // poison. 1515 // Take the following three cases: 1516 // 1517 // 1) 1518 // define nonnull ptr @foo() { 1519 // %p = call ptr @bar() 1520 // call void @use(ptr %p) willreturn nounwind 1521 // ret ptr %p 1522 // } 1523 // 1524 // 2) 1525 // define noundef nonnull ptr @foo() { 1526 // %p = call ptr @bar() 1527 // call void @use(ptr %p) willreturn nounwind 1528 // ret ptr %p 1529 // } 1530 // 1531 // 3) 1532 // define nonnull ptr @foo() { 1533 // %p = call noundef ptr @bar() 1534 // ret ptr %p 1535 // } 1536 // 1537 // In case 1, we can't propagate nonnull because poison value in @use may 1538 // change behavior or trigger UB. 1539 // In case 2, we don't need to be concerned about propagating nonnull, as 1540 // any new poison at @use will trigger UB anyways. 1541 // In case 3, we can never propagate nonnull because it may create UB due to 1542 // the noundef on @bar. 1543 if (ValidPG.getAlignment().valueOrOne() < AL.getRetAlignment().valueOrOne()) 1544 ValidPG.removeAttribute(Attribute::Alignment); 1545 if (ValidPG.hasAttributes()) { 1546 Attribute CBRange = ValidPG.getAttribute(Attribute::Range); 1547 if (CBRange.isValid()) { 1548 Attribute NewRange = AL.getRetAttr(Attribute::Range); 1549 if (NewRange.isValid()) { 1550 ValidPG.addRangeAttr( 1551 CBRange.getRange().intersectWith(NewRange.getRange())); 1552 } 1553 } 1554 // Three checks. 1555 // If the callsite has `noundef`, then a poison due to violating the 1556 // return attribute will create UB anyways so we can always propagate. 1557 // Otherwise, if the return value (callee to be inlined) has `noundef`, we 1558 // can't propagate as a new poison return will cause UB. 1559 // Finally, check if the return value has no uses whose behavior may 1560 // change/may cause UB if we potentially return poison. At the moment this 1561 // is implemented overly conservatively with a single-use check. 1562 // TODO: Update the single-use check to iterate through uses and only bail 1563 // if we have a potentially dangerous use. 1564 1565 if (CB.hasRetAttr(Attribute::NoUndef) || 1566 (RetVal->hasOneUse() && !RetVal->hasRetAttr(Attribute::NoUndef))) 1567 NewAL = NewAL.addRetAttributes(Context, ValidPG); 1568 } 1569 NewRetVal->setAttributes(NewAL); 1570 } 1571 } 1572 1573 /// If the inlined function has non-byval align arguments, then 1574 /// add @llvm.assume-based alignment assumptions to preserve this information. 1575 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1576 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1577 return; 1578 1579 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1580 auto &DL = CB.getDataLayout(); 1581 1582 // To avoid inserting redundant assumptions, we should check for assumptions 1583 // already in the caller. To do this, we might need a DT of the caller. 1584 DominatorTree DT; 1585 bool DTCalculated = false; 1586 1587 Function *CalledFunc = CB.getCalledFunction(); 1588 for (Argument &Arg : CalledFunc->args()) { 1589 if (!Arg.getType()->isPointerTy() || Arg.hasPassPointeeByValueCopyAttr() || 1590 Arg.hasNUses(0)) 1591 continue; 1592 MaybeAlign Alignment = Arg.getParamAlign(); 1593 if (!Alignment) 1594 continue; 1595 1596 if (!DTCalculated) { 1597 DT.recalculate(*CB.getCaller()); 1598 DTCalculated = true; 1599 } 1600 // If we can already prove the asserted alignment in the context of the 1601 // caller, then don't bother inserting the assumption. 1602 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1603 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= *Alignment) 1604 continue; 1605 1606 CallInst *NewAsmp = IRBuilder<>(&CB).CreateAlignmentAssumption( 1607 DL, ArgVal, Alignment->value()); 1608 AC->registerAssumption(cast<AssumeInst>(NewAsmp)); 1609 } 1610 } 1611 1612 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src, 1613 Module *M, BasicBlock *InsertBlock, 1614 InlineFunctionInfo &IFI, 1615 Function *CalledFunc) { 1616 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1617 1618 Value *Size = 1619 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType)); 1620 1621 // Always generate a memcpy of alignment 1 here because we don't know 1622 // the alignment of the src pointer. Other optimizations can infer 1623 // better alignment. 1624 CallInst *CI = Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1625 /*SrcAlign*/ Align(1), Size); 1626 1627 // The verifier requires that all calls of debug-info-bearing functions 1628 // from debug-info-bearing functions have a debug location (for inlining 1629 // purposes). Assign a dummy location to satisfy the constraint. 1630 if (!CI->getDebugLoc() && InsertBlock->getParent()->getSubprogram()) 1631 if (DISubprogram *SP = CalledFunc->getSubprogram()) 1632 CI->setDebugLoc(DILocation::get(SP->getContext(), 0, 0, SP)); 1633 } 1634 1635 /// When inlining a call site that has a byval argument, 1636 /// we have to make the implicit memcpy explicit by adding it. 1637 static Value *HandleByValArgument(Type *ByValType, Value *Arg, 1638 Instruction *TheCall, 1639 const Function *CalledFunc, 1640 InlineFunctionInfo &IFI, 1641 MaybeAlign ByValAlignment) { 1642 Function *Caller = TheCall->getFunction(); 1643 const DataLayout &DL = Caller->getDataLayout(); 1644 1645 // If the called function is readonly, then it could not mutate the caller's 1646 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1647 // temporary. 1648 if (CalledFunc->onlyReadsMemory()) { 1649 // If the byval argument has a specified alignment that is greater than the 1650 // passed in pointer, then we either have to round up the input pointer or 1651 // give up on this transformation. 1652 if (ByValAlignment.valueOrOne() == 1) 1653 return Arg; 1654 1655 AssumptionCache *AC = 1656 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1657 1658 // If the pointer is already known to be sufficiently aligned, or if we can 1659 // round it up to a larger alignment, then we don't need a temporary. 1660 if (getOrEnforceKnownAlignment(Arg, *ByValAlignment, DL, TheCall, AC) >= 1661 *ByValAlignment) 1662 return Arg; 1663 1664 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1665 // for code quality, but rarely happens and is required for correctness. 1666 } 1667 1668 // Create the alloca. If we have DataLayout, use nice alignment. 1669 Align Alignment = DL.getPrefTypeAlign(ByValType); 1670 1671 // If the byval had an alignment specified, we *must* use at least that 1672 // alignment, as it is required by the byval argument (and uses of the 1673 // pointer inside the callee). 1674 if (ByValAlignment) 1675 Alignment = std::max(Alignment, *ByValAlignment); 1676 1677 AllocaInst *NewAlloca = 1678 new AllocaInst(ByValType, Arg->getType()->getPointerAddressSpace(), 1679 nullptr, Alignment, Arg->getName()); 1680 NewAlloca->insertBefore(Caller->begin()->begin()); 1681 IFI.StaticAllocas.push_back(NewAlloca); 1682 1683 // Uses of the argument in the function should use our new alloca 1684 // instead. 1685 return NewAlloca; 1686 } 1687 1688 // Check whether this Value is used by a lifetime intrinsic. 1689 static bool isUsedByLifetimeMarker(Value *V) { 1690 for (User *U : V->users()) 1691 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1692 if (II->isLifetimeStartOrEnd()) 1693 return true; 1694 return false; 1695 } 1696 1697 // Check whether the given alloca already has 1698 // lifetime.start or lifetime.end intrinsics. 1699 static bool hasLifetimeMarkers(AllocaInst *AI) { 1700 Type *Ty = AI->getType(); 1701 Type *Int8PtrTy = 1702 PointerType::get(Ty->getContext(), Ty->getPointerAddressSpace()); 1703 if (Ty == Int8PtrTy) 1704 return isUsedByLifetimeMarker(AI); 1705 1706 // Do a scan to find all the casts to i8*. 1707 for (User *U : AI->users()) { 1708 if (U->getType() != Int8PtrTy) continue; 1709 if (U->stripPointerCasts() != AI) continue; 1710 if (isUsedByLifetimeMarker(U)) 1711 return true; 1712 } 1713 return false; 1714 } 1715 1716 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1717 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1718 /// cannot be static. 1719 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1720 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1721 } 1722 1723 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1724 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1725 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1726 LLVMContext &Ctx, 1727 DenseMap<const MDNode *, MDNode *> &IANodes) { 1728 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1729 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(), 1730 OrigDL.getScope(), IA); 1731 } 1732 1733 /// Update inlined instructions' line numbers to 1734 /// to encode location where these instructions are inlined. 1735 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1736 Instruction *TheCall, bool CalleeHasDebugInfo) { 1737 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1738 if (!TheCallDL) 1739 return; 1740 1741 auto &Ctx = Fn->getContext(); 1742 DILocation *InlinedAtNode = TheCallDL; 1743 1744 // Create a unique call site, not to be confused with any other call from the 1745 // same location. 1746 InlinedAtNode = DILocation::getDistinct( 1747 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1748 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1749 1750 // Cache the inlined-at nodes as they're built so they are reused, without 1751 // this every instruction's inlined-at chain would become distinct from each 1752 // other. 1753 DenseMap<const MDNode *, MDNode *> IANodes; 1754 1755 // Check if we are not generating inline line tables and want to use 1756 // the call site location instead. 1757 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1758 1759 // Helper-util for updating the metadata attached to an instruction. 1760 auto UpdateInst = [&](Instruction &I) { 1761 // Loop metadata needs to be updated so that the start and end locs 1762 // reference inlined-at locations. 1763 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, 1764 &IANodes](Metadata *MD) -> Metadata * { 1765 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1766 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get(); 1767 return MD; 1768 }; 1769 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1770 1771 if (!NoInlineLineTables) 1772 if (DebugLoc DL = I.getDebugLoc()) { 1773 DebugLoc IDL = 1774 inlineDebugLoc(DL, InlinedAtNode, I.getContext(), IANodes); 1775 I.setDebugLoc(IDL); 1776 return; 1777 } 1778 1779 if (CalleeHasDebugInfo && !NoInlineLineTables) 1780 return; 1781 1782 // If the inlined instruction has no line number, or if inline info 1783 // is not being generated, make it look as if it originates from the call 1784 // location. This is important for ((__always_inline, __nodebug__)) 1785 // functions which must use caller location for all instructions in their 1786 // function body. 1787 1788 // Don't update static allocas, as they may get moved later. 1789 if (auto *AI = dyn_cast<AllocaInst>(&I)) 1790 if (allocaWouldBeStaticInEntry(AI)) 1791 return; 1792 1793 // Do not force a debug loc for pseudo probes, since they do not need to 1794 // be debuggable, and also they are expected to have a zero/null dwarf 1795 // discriminator at this point which could be violated otherwise. 1796 if (isa<PseudoProbeInst>(I)) 1797 return; 1798 1799 I.setDebugLoc(TheCallDL); 1800 }; 1801 1802 // Helper-util for updating debug-info records attached to instructions. 1803 auto UpdateDVR = [&](DbgRecord *DVR) { 1804 assert(DVR->getDebugLoc() && "Debug Value must have debug loc"); 1805 if (NoInlineLineTables) { 1806 DVR->setDebugLoc(TheCallDL); 1807 return; 1808 } 1809 DebugLoc DL = DVR->getDebugLoc(); 1810 DebugLoc IDL = 1811 inlineDebugLoc(DL, InlinedAtNode, 1812 DVR->getMarker()->getParent()->getContext(), IANodes); 1813 DVR->setDebugLoc(IDL); 1814 }; 1815 1816 // Iterate over all instructions, updating metadata and debug-info records. 1817 for (; FI != Fn->end(); ++FI) { 1818 for (Instruction &I : *FI) { 1819 UpdateInst(I); 1820 for (DbgRecord &DVR : I.getDbgRecordRange()) { 1821 UpdateDVR(&DVR); 1822 } 1823 } 1824 1825 // Remove debug info intrinsics if we're not keeping inline info. 1826 if (NoInlineLineTables) { 1827 BasicBlock::iterator BI = FI->begin(); 1828 while (BI != FI->end()) { 1829 if (isa<DbgInfoIntrinsic>(BI)) { 1830 BI = BI->eraseFromParent(); 1831 continue; 1832 } else { 1833 BI->dropDbgRecords(); 1834 } 1835 ++BI; 1836 } 1837 } 1838 } 1839 } 1840 1841 #undef DEBUG_TYPE 1842 #define DEBUG_TYPE "assignment-tracking" 1843 /// Find Alloca and linked DbgAssignIntrinsic for locals escaped by \p CB. 1844 static at::StorageToVarsMap collectEscapedLocals(const DataLayout &DL, 1845 const CallBase &CB) { 1846 at::StorageToVarsMap EscapedLocals; 1847 SmallPtrSet<const Value *, 4> SeenBases; 1848 1849 LLVM_DEBUG( 1850 errs() << "# Finding caller local variables escaped by callee\n"); 1851 for (const Value *Arg : CB.args()) { 1852 LLVM_DEBUG(errs() << "INSPECT: " << *Arg << "\n"); 1853 if (!Arg->getType()->isPointerTy()) { 1854 LLVM_DEBUG(errs() << " | SKIP: Not a pointer\n"); 1855 continue; 1856 } 1857 1858 const Instruction *I = dyn_cast<Instruction>(Arg); 1859 if (!I) { 1860 LLVM_DEBUG(errs() << " | SKIP: Not result of instruction\n"); 1861 continue; 1862 } 1863 1864 // Walk back to the base storage. 1865 assert(Arg->getType()->isPtrOrPtrVectorTy()); 1866 APInt TmpOffset(DL.getIndexTypeSizeInBits(Arg->getType()), 0, false); 1867 const AllocaInst *Base = dyn_cast<AllocaInst>( 1868 Arg->stripAndAccumulateConstantOffsets(DL, TmpOffset, true)); 1869 if (!Base) { 1870 LLVM_DEBUG(errs() << " | SKIP: Couldn't walk back to base storage\n"); 1871 continue; 1872 } 1873 1874 assert(Base); 1875 LLVM_DEBUG(errs() << " | BASE: " << *Base << "\n"); 1876 // We only need to process each base address once - skip any duplicates. 1877 if (!SeenBases.insert(Base).second) 1878 continue; 1879 1880 // Find all local variables associated with the backing storage. 1881 auto CollectAssignsForStorage = [&](auto *DbgAssign) { 1882 // Skip variables from inlined functions - they are not local variables. 1883 if (DbgAssign->getDebugLoc().getInlinedAt()) 1884 return; 1885 LLVM_DEBUG(errs() << " > DEF : " << *DbgAssign << "\n"); 1886 EscapedLocals[Base].insert(at::VarRecord(DbgAssign)); 1887 }; 1888 for_each(at::getAssignmentMarkers(Base), CollectAssignsForStorage); 1889 for_each(at::getDVRAssignmentMarkers(Base), CollectAssignsForStorage); 1890 } 1891 return EscapedLocals; 1892 } 1893 1894 static void trackInlinedStores(Function::iterator Start, Function::iterator End, 1895 const CallBase &CB) { 1896 LLVM_DEBUG(errs() << "trackInlinedStores into " 1897 << Start->getParent()->getName() << " from " 1898 << CB.getCalledFunction()->getName() << "\n"); 1899 std::unique_ptr<DataLayout> DL = std::make_unique<DataLayout>(CB.getModule()); 1900 at::trackAssignments(Start, End, collectEscapedLocals(*DL, CB), *DL); 1901 } 1902 1903 /// Update inlined instructions' DIAssignID metadata. We need to do this 1904 /// otherwise a function inlined more than once into the same function 1905 /// will cause DIAssignID to be shared by many instructions. 1906 static void fixupAssignments(Function::iterator Start, Function::iterator End) { 1907 DenseMap<DIAssignID *, DIAssignID *> Map; 1908 // Loop over all the inlined instructions. If we find a DIAssignID 1909 // attachment or use, replace it with a new version. 1910 for (auto BBI = Start; BBI != End; ++BBI) { 1911 for (Instruction &I : *BBI) 1912 at::remapAssignID(Map, I); 1913 } 1914 } 1915 #undef DEBUG_TYPE 1916 #define DEBUG_TYPE "inline-function" 1917 1918 /// Update the block frequencies of the caller after a callee has been inlined. 1919 /// 1920 /// Each block cloned into the caller has its block frequency scaled by the 1921 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1922 /// callee's entry block gets the same frequency as the callsite block and the 1923 /// relative frequencies of all cloned blocks remain the same after cloning. 1924 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1925 const ValueToValueMapTy &VMap, 1926 BlockFrequencyInfo *CallerBFI, 1927 BlockFrequencyInfo *CalleeBFI, 1928 const BasicBlock &CalleeEntryBlock) { 1929 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1930 for (auto Entry : VMap) { 1931 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1932 continue; 1933 auto *OrigBB = cast<BasicBlock>(Entry.first); 1934 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1935 BlockFrequency Freq = CalleeBFI->getBlockFreq(OrigBB); 1936 if (!ClonedBBs.insert(ClonedBB).second) { 1937 // Multiple blocks in the callee might get mapped to one cloned block in 1938 // the caller since we prune the callee as we clone it. When that happens, 1939 // we want to use the maximum among the original blocks' frequencies. 1940 BlockFrequency NewFreq = CallerBFI->getBlockFreq(ClonedBB); 1941 if (NewFreq > Freq) 1942 Freq = NewFreq; 1943 } 1944 CallerBFI->setBlockFreq(ClonedBB, Freq); 1945 } 1946 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1947 CallerBFI->setBlockFreqAndScale( 1948 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock), ClonedBBs); 1949 } 1950 1951 /// Update the branch metadata for cloned call instructions. 1952 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1953 const ProfileCount &CalleeEntryCount, 1954 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1955 BlockFrequencyInfo *CallerBFI) { 1956 if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1) 1957 return; 1958 auto CallSiteCount = 1959 PSI ? PSI->getProfileCount(TheCall, CallerBFI) : std::nullopt; 1960 int64_t CallCount = 1961 std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount()); 1962 updateProfileCallee(Callee, -CallCount, &VMap); 1963 } 1964 1965 void llvm::updateProfileCallee( 1966 Function *Callee, int64_t EntryDelta, 1967 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1968 auto CalleeCount = Callee->getEntryCount(); 1969 if (!CalleeCount) 1970 return; 1971 1972 const uint64_t PriorEntryCount = CalleeCount->getCount(); 1973 1974 // Since CallSiteCount is an estimate, it could exceed the original callee 1975 // count and has to be set to 0 so guard against underflow. 1976 const uint64_t NewEntryCount = 1977 (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount) 1978 ? 0 1979 : PriorEntryCount + EntryDelta; 1980 1981 auto updateVTableProfWeight = [](CallBase *CB, const uint64_t NewEntryCount, 1982 const uint64_t PriorEntryCount) { 1983 Instruction *VPtr = PGOIndirectCallVisitor::tryGetVTableInstruction(CB); 1984 if (VPtr) 1985 scaleProfData(*VPtr, NewEntryCount, PriorEntryCount); 1986 }; 1987 1988 // During inlining ? 1989 if (VMap) { 1990 uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount; 1991 for (auto Entry : *VMap) { 1992 if (isa<CallInst>(Entry.first)) 1993 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) { 1994 CI->updateProfWeight(CloneEntryCount, PriorEntryCount); 1995 updateVTableProfWeight(CI, CloneEntryCount, PriorEntryCount); 1996 } 1997 1998 if (isa<InvokeInst>(Entry.first)) 1999 if (auto *II = dyn_cast_or_null<InvokeInst>(Entry.second)) { 2000 II->updateProfWeight(CloneEntryCount, PriorEntryCount); 2001 updateVTableProfWeight(II, CloneEntryCount, PriorEntryCount); 2002 } 2003 } 2004 } 2005 2006 if (EntryDelta) { 2007 Callee->setEntryCount(NewEntryCount); 2008 2009 for (BasicBlock &BB : *Callee) 2010 // No need to update the callsite if it is pruned during inlining. 2011 if (!VMap || VMap->count(&BB)) 2012 for (Instruction &I : BB) { 2013 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2014 CI->updateProfWeight(NewEntryCount, PriorEntryCount); 2015 updateVTableProfWeight(CI, NewEntryCount, PriorEntryCount); 2016 } 2017 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 2018 II->updateProfWeight(NewEntryCount, PriorEntryCount); 2019 updateVTableProfWeight(II, NewEntryCount, PriorEntryCount); 2020 } 2021 } 2022 } 2023 } 2024 2025 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call 2026 /// result is implicitly consumed by a call to retainRV or claimRV immediately 2027 /// after the call. This function inlines the retainRV/claimRV calls. 2028 /// 2029 /// There are three cases to consider: 2030 /// 2031 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned 2032 /// object in the callee return block, the autoreleaseRV call and the 2033 /// retainRV/claimRV call in the caller cancel out. If the call in the caller 2034 /// is a claimRV call, a call to objc_release is emitted. 2035 /// 2036 /// 2. If there is a call in the callee return block that doesn't have operand 2037 /// bundle "clang.arc.attachedcall", the operand bundle on the original call 2038 /// is transferred to the call in the callee. 2039 /// 2040 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is 2041 /// a retainRV call. 2042 static void 2043 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind, 2044 const SmallVectorImpl<ReturnInst *> &Returns) { 2045 Module *Mod = CB.getModule(); 2046 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function"); 2047 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV, 2048 IsUnsafeClaimRV = !IsRetainRV; 2049 2050 for (auto *RI : Returns) { 2051 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0)); 2052 bool InsertRetainCall = IsRetainRV; 2053 IRBuilder<> Builder(RI->getContext()); 2054 2055 // Walk backwards through the basic block looking for either a matching 2056 // autoreleaseRV call or an unannotated call. 2057 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()), 2058 RI->getParent()->rend()); 2059 for (Instruction &I : llvm::make_early_inc_range(InstRange)) { 2060 // Ignore casts. 2061 if (isa<CastInst>(I)) 2062 continue; 2063 2064 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 2065 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue || 2066 !II->hasNUses(0) || 2067 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd) 2068 break; 2069 2070 // If we've found a matching authoreleaseRV call: 2071 // - If claimRV is attached to the call, insert a call to objc_release 2072 // and erase the autoreleaseRV call. 2073 // - If retainRV is attached to the call, just erase the autoreleaseRV 2074 // call. 2075 if (IsUnsafeClaimRV) { 2076 Builder.SetInsertPoint(II); 2077 Function *IFn = 2078 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release); 2079 Builder.CreateCall(IFn, RetOpnd, ""); 2080 } 2081 II->eraseFromParent(); 2082 InsertRetainCall = false; 2083 break; 2084 } 2085 2086 auto *CI = dyn_cast<CallInst>(&I); 2087 2088 if (!CI) 2089 break; 2090 2091 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd || 2092 objcarc::hasAttachedCallOpBundle(CI)) 2093 break; 2094 2095 // If we've found an unannotated call that defines RetOpnd, add a 2096 // "clang.arc.attachedcall" operand bundle. 2097 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)}; 2098 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs); 2099 auto *NewCall = CallBase::addOperandBundle( 2100 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI->getIterator()); 2101 NewCall->copyMetadata(*CI); 2102 CI->replaceAllUsesWith(NewCall); 2103 CI->eraseFromParent(); 2104 InsertRetainCall = false; 2105 break; 2106 } 2107 2108 if (InsertRetainCall) { 2109 // The retainRV is attached to the call and we've failed to find a 2110 // matching autoreleaseRV or an annotated call in the callee. Emit a call 2111 // to objc_retain. 2112 Builder.SetInsertPoint(RI); 2113 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain); 2114 Builder.CreateCall(IFn, RetOpnd, ""); 2115 } 2116 } 2117 } 2118 2119 /// This function inlines the called function into the basic block of the 2120 /// caller. This returns false if it is not possible to inline this call. 2121 /// The program is still in a well defined state if this occurs though. 2122 /// 2123 /// Note that this only does one level of inlining. For example, if the 2124 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 2125 /// exists in the instruction stream. Similarly this will inline a recursive 2126 /// function by one level. 2127 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 2128 bool MergeAttributes, 2129 AAResults *CalleeAAR, 2130 bool InsertLifetime, 2131 Function *ForwardVarArgsTo) { 2132 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 2133 2134 // FIXME: we don't inline callbr yet. 2135 if (isa<CallBrInst>(CB)) 2136 return InlineResult::failure("We don't inline callbr yet."); 2137 2138 // If IFI has any state in it, zap it before we fill it in. 2139 IFI.reset(); 2140 2141 Function *CalledFunc = CB.getCalledFunction(); 2142 if (!CalledFunc || // Can't inline external function or indirect 2143 CalledFunc->isDeclaration()) // call! 2144 return InlineResult::failure("external or indirect"); 2145 2146 // The inliner does not know how to inline through calls with operand bundles 2147 // in general ... 2148 Value *ConvergenceControlToken = nullptr; 2149 if (CB.hasOperandBundles()) { 2150 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 2151 auto OBUse = CB.getOperandBundleAt(i); 2152 uint32_t Tag = OBUse.getTagID(); 2153 // ... but it knows how to inline through "deopt" operand bundles ... 2154 if (Tag == LLVMContext::OB_deopt) 2155 continue; 2156 // ... and "funclet" operand bundles. 2157 if (Tag == LLVMContext::OB_funclet) 2158 continue; 2159 if (Tag == LLVMContext::OB_clang_arc_attachedcall) 2160 continue; 2161 if (Tag == LLVMContext::OB_kcfi) 2162 continue; 2163 if (Tag == LLVMContext::OB_convergencectrl) { 2164 ConvergenceControlToken = OBUse.Inputs[0].get(); 2165 continue; 2166 } 2167 2168 return InlineResult::failure("unsupported operand bundle"); 2169 } 2170 } 2171 2172 // FIXME: The check below is redundant and incomplete. According to spec, if a 2173 // convergent call is missing a token, then the caller is using uncontrolled 2174 // convergence. If the callee has an entry intrinsic, then the callee is using 2175 // controlled convergence, and the call cannot be inlined. A proper 2176 // implemenation of this check requires a whole new analysis that identifies 2177 // convergence in every function. For now, we skip that and just do this one 2178 // cursory check. The underlying assumption is that in a compiler flow that 2179 // fully implements convergence control tokens, there is no mixing of 2180 // controlled and uncontrolled convergent operations in the whole program. 2181 if (CB.isConvergent()) { 2182 auto *I = CalledFunc->getEntryBlock().getFirstNonPHI(); 2183 if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) { 2184 if (IntrinsicCall->getIntrinsicID() == 2185 Intrinsic::experimental_convergence_entry) { 2186 if (!ConvergenceControlToken) { 2187 return InlineResult::failure( 2188 "convergent call needs convergencectrl operand"); 2189 } 2190 } 2191 } 2192 } 2193 2194 // If the call to the callee cannot throw, set the 'nounwind' flag on any 2195 // calls that we inline. 2196 bool MarkNoUnwind = CB.doesNotThrow(); 2197 2198 BasicBlock *OrigBB = CB.getParent(); 2199 Function *Caller = OrigBB->getParent(); 2200 2201 // GC poses two hazards to inlining, which only occur when the callee has GC: 2202 // 1. If the caller has no GC, then the callee's GC must be propagated to the 2203 // caller. 2204 // 2. If the caller has a differing GC, it is invalid to inline. 2205 if (CalledFunc->hasGC()) { 2206 if (!Caller->hasGC()) 2207 Caller->setGC(CalledFunc->getGC()); 2208 else if (CalledFunc->getGC() != Caller->getGC()) 2209 return InlineResult::failure("incompatible GC"); 2210 } 2211 2212 // Get the personality function from the callee if it contains a landing pad. 2213 Constant *CalledPersonality = 2214 CalledFunc->hasPersonalityFn() 2215 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 2216 : nullptr; 2217 2218 // Find the personality function used by the landing pads of the caller. If it 2219 // exists, then check to see that it matches the personality function used in 2220 // the callee. 2221 Constant *CallerPersonality = 2222 Caller->hasPersonalityFn() 2223 ? Caller->getPersonalityFn()->stripPointerCasts() 2224 : nullptr; 2225 if (CalledPersonality) { 2226 if (!CallerPersonality) 2227 Caller->setPersonalityFn(CalledPersonality); 2228 // If the personality functions match, then we can perform the 2229 // inlining. Otherwise, we can't inline. 2230 // TODO: This isn't 100% true. Some personality functions are proper 2231 // supersets of others and can be used in place of the other. 2232 else if (CalledPersonality != CallerPersonality) 2233 return InlineResult::failure("incompatible personality"); 2234 } 2235 2236 // We need to figure out which funclet the callsite was in so that we may 2237 // properly nest the callee. 2238 Instruction *CallSiteEHPad = nullptr; 2239 if (CallerPersonality) { 2240 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 2241 if (isScopedEHPersonality(Personality)) { 2242 std::optional<OperandBundleUse> ParentFunclet = 2243 CB.getOperandBundle(LLVMContext::OB_funclet); 2244 if (ParentFunclet) 2245 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 2246 2247 // OK, the inlining site is legal. What about the target function? 2248 2249 if (CallSiteEHPad) { 2250 if (Personality == EHPersonality::MSVC_CXX) { 2251 // The MSVC personality cannot tolerate catches getting inlined into 2252 // cleanup funclets. 2253 if (isa<CleanupPadInst>(CallSiteEHPad)) { 2254 // Ok, the call site is within a cleanuppad. Let's check the callee 2255 // for catchpads. 2256 for (const BasicBlock &CalledBB : *CalledFunc) { 2257 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 2258 return InlineResult::failure("catch in cleanup funclet"); 2259 } 2260 } 2261 } else if (isAsynchronousEHPersonality(Personality)) { 2262 // SEH is even less tolerant, there may not be any sort of exceptional 2263 // funclet in the callee. 2264 for (const BasicBlock &CalledBB : *CalledFunc) { 2265 if (CalledBB.isEHPad()) 2266 return InlineResult::failure("SEH in cleanup funclet"); 2267 } 2268 } 2269 } 2270 } 2271 } 2272 2273 // Determine if we are dealing with a call in an EHPad which does not unwind 2274 // to caller. 2275 bool EHPadForCallUnwindsLocally = false; 2276 if (CallSiteEHPad && isa<CallInst>(CB)) { 2277 UnwindDestMemoTy FuncletUnwindMap; 2278 Value *CallSiteUnwindDestToken = 2279 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 2280 2281 EHPadForCallUnwindsLocally = 2282 CallSiteUnwindDestToken && 2283 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 2284 } 2285 2286 // Get an iterator to the last basic block in the function, which will have 2287 // the new function inlined after it. 2288 Function::iterator LastBlock = --Caller->end(); 2289 2290 // Make sure to capture all of the return instructions from the cloned 2291 // function. 2292 SmallVector<ReturnInst*, 8> Returns; 2293 ClonedCodeInfo InlinedFunctionInfo; 2294 Function::iterator FirstNewBlock; 2295 2296 { // Scope to destroy VMap after cloning. 2297 ValueToValueMapTy VMap; 2298 struct ByValInit { 2299 Value *Dst; 2300 Value *Src; 2301 Type *Ty; 2302 }; 2303 // Keep a list of pair (dst, src) to emit byval initializations. 2304 SmallVector<ByValInit, 4> ByValInits; 2305 2306 // When inlining a function that contains noalias scope metadata, 2307 // this metadata needs to be cloned so that the inlined blocks 2308 // have different "unique scopes" at every call site. 2309 // Track the metadata that must be cloned. Do this before other changes to 2310 // the function, so that we do not get in trouble when inlining caller == 2311 // callee. 2312 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction()); 2313 2314 auto &DL = Caller->getDataLayout(); 2315 2316 // Calculate the vector of arguments to pass into the function cloner, which 2317 // matches up the formal to the actual argument values. 2318 auto AI = CB.arg_begin(); 2319 unsigned ArgNo = 0; 2320 for (Function::arg_iterator I = CalledFunc->arg_begin(), 2321 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 2322 Value *ActualArg = *AI; 2323 2324 // When byval arguments actually inlined, we need to make the copy implied 2325 // by them explicit. However, we don't do this if the callee is readonly 2326 // or readnone, because the copy would be unneeded: the callee doesn't 2327 // modify the struct. 2328 if (CB.isByValArgument(ArgNo)) { 2329 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg, 2330 &CB, CalledFunc, IFI, 2331 CalledFunc->getParamAlign(ArgNo)); 2332 if (ActualArg != *AI) 2333 ByValInits.push_back( 2334 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)}); 2335 } 2336 2337 VMap[&*I] = ActualArg; 2338 } 2339 2340 // TODO: Remove this when users have been updated to the assume bundles. 2341 // Add alignment assumptions if necessary. We do this before the inlined 2342 // instructions are actually cloned into the caller so that we can easily 2343 // check what will be known at the start of the inlined code. 2344 AddAlignmentAssumptions(CB, IFI); 2345 2346 AssumptionCache *AC = 2347 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2348 2349 /// Preserve all attributes on of the call and its parameters. 2350 salvageKnowledge(&CB, AC); 2351 2352 // We want the inliner to prune the code as it copies. We would LOVE to 2353 // have no dead or constant instructions leftover after inlining occurs 2354 // (which can happen, e.g., because an argument was constant), but we'll be 2355 // happy with whatever the cloner can do. 2356 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 2357 /*ModuleLevelChanges=*/false, Returns, ".i", 2358 &InlinedFunctionInfo); 2359 // Remember the first block that is newly cloned over. 2360 FirstNewBlock = LastBlock; ++FirstNewBlock; 2361 2362 // Insert retainRV/clainRV runtime calls. 2363 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB); 2364 if (RVCallKind != objcarc::ARCInstKind::None) 2365 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns); 2366 2367 // Updated caller/callee profiles only when requested. For sample loader 2368 // inlining, the context-sensitive inlinee profile doesn't need to be 2369 // subtracted from callee profile, and the inlined clone also doesn't need 2370 // to be scaled based on call site count. 2371 if (IFI.UpdateProfile) { 2372 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 2373 // Update the BFI of blocks cloned into the caller. 2374 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 2375 CalledFunc->front()); 2376 2377 if (auto Profile = CalledFunc->getEntryCount()) 2378 updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI, 2379 IFI.CallerBFI); 2380 } 2381 2382 // Inject byval arguments initialization. 2383 for (ByValInit &Init : ByValInits) 2384 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(), 2385 &*FirstNewBlock, IFI, CalledFunc); 2386 2387 std::optional<OperandBundleUse> ParentDeopt = 2388 CB.getOperandBundle(LLVMContext::OB_deopt); 2389 if (ParentDeopt) { 2390 SmallVector<OperandBundleDef, 2> OpDefs; 2391 2392 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 2393 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 2394 if (!ICS) 2395 continue; // instruction was DCE'd or RAUW'ed to undef 2396 2397 OpDefs.clear(); 2398 2399 OpDefs.reserve(ICS->getNumOperandBundles()); 2400 2401 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 2402 ++COBi) { 2403 auto ChildOB = ICS->getOperandBundleAt(COBi); 2404 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 2405 // If the inlined call has other operand bundles, let them be 2406 OpDefs.emplace_back(ChildOB); 2407 continue; 2408 } 2409 2410 // It may be useful to separate this logic (of handling operand 2411 // bundles) out to a separate "policy" component if this gets crowded. 2412 // Prepend the parent's deoptimization continuation to the newly 2413 // inlined call's deoptimization continuation. 2414 std::vector<Value *> MergedDeoptArgs; 2415 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 2416 ChildOB.Inputs.size()); 2417 2418 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs); 2419 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs); 2420 2421 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 2422 } 2423 2424 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS->getIterator()); 2425 2426 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 2427 // this even if the call returns void. 2428 ICS->replaceAllUsesWith(NewI); 2429 2430 VH = nullptr; 2431 ICS->eraseFromParent(); 2432 } 2433 } 2434 2435 // For 'nodebug' functions, the associated DISubprogram is always null. 2436 // Conservatively avoid propagating the callsite debug location to 2437 // instructions inlined from a function whose DISubprogram is not null. 2438 fixupLineNumbers(Caller, FirstNewBlock, &CB, 2439 CalledFunc->getSubprogram() != nullptr); 2440 2441 if (isAssignmentTrackingEnabled(*Caller->getParent())) { 2442 // Interpret inlined stores to caller-local variables as assignments. 2443 trackInlinedStores(FirstNewBlock, Caller->end(), CB); 2444 2445 // Update DIAssignID metadata attachments and uses so that they are 2446 // unique to this inlined instance. 2447 fixupAssignments(FirstNewBlock, Caller->end()); 2448 } 2449 2450 // Now clone the inlined noalias scope metadata. 2451 SAMetadataCloner.clone(); 2452 SAMetadataCloner.remap(FirstNewBlock, Caller->end()); 2453 2454 // Add noalias metadata if necessary. 2455 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo); 2456 2457 // Clone return attributes on the callsite into the calls within the inlined 2458 // function which feed into its return value. 2459 AddReturnAttributes(CB, VMap); 2460 2461 // Clone attributes on the params of the callsite to calls within the 2462 // inlined function which use the same param. 2463 AddParamAndFnBasicAttributes(CB, VMap); 2464 2465 propagateMemProfMetadata(CalledFunc, CB, 2466 InlinedFunctionInfo.ContainsMemProfMetadata, VMap); 2467 2468 // Propagate metadata on the callsite if necessary. 2469 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end()); 2470 2471 // Register any cloned assumptions. 2472 if (IFI.GetAssumptionCache) 2473 for (BasicBlock &NewBlock : 2474 make_range(FirstNewBlock->getIterator(), Caller->end())) 2475 for (Instruction &I : NewBlock) 2476 if (auto *II = dyn_cast<AssumeInst>(&I)) 2477 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 2478 } 2479 2480 if (ConvergenceControlToken) { 2481 auto *I = FirstNewBlock->getFirstNonPHI(); 2482 if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) { 2483 if (IntrinsicCall->getIntrinsicID() == 2484 Intrinsic::experimental_convergence_entry) { 2485 IntrinsicCall->replaceAllUsesWith(ConvergenceControlToken); 2486 IntrinsicCall->eraseFromParent(); 2487 } 2488 } 2489 } 2490 2491 // If there are any alloca instructions in the block that used to be the entry 2492 // block for the callee, move them to the entry block of the caller. First 2493 // calculate which instruction they should be inserted before. We insert the 2494 // instructions at the end of the current alloca list. 2495 { 2496 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 2497 for (BasicBlock::iterator I = FirstNewBlock->begin(), 2498 E = FirstNewBlock->end(); I != E; ) { 2499 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 2500 if (!AI) continue; 2501 2502 // If the alloca is now dead, remove it. This often occurs due to code 2503 // specialization. 2504 if (AI->use_empty()) { 2505 AI->eraseFromParent(); 2506 continue; 2507 } 2508 2509 if (!allocaWouldBeStaticInEntry(AI)) 2510 continue; 2511 2512 // Keep track of the static allocas that we inline into the caller. 2513 IFI.StaticAllocas.push_back(AI); 2514 2515 // Scan for the block of allocas that we can move over, and move them 2516 // all at once. 2517 while (isa<AllocaInst>(I) && 2518 !cast<AllocaInst>(I)->use_empty() && 2519 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 2520 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 2521 ++I; 2522 } 2523 2524 // Transfer all of the allocas over in a block. Using splice means 2525 // that the instructions aren't removed from the symbol table, then 2526 // reinserted. 2527 I.setTailBit(true); 2528 Caller->getEntryBlock().splice(InsertPoint, &*FirstNewBlock, 2529 AI->getIterator(), I); 2530 } 2531 } 2532 2533 SmallVector<Value*,4> VarArgsToForward; 2534 SmallVector<AttributeSet, 4> VarArgsAttrs; 2535 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2536 i < CB.arg_size(); i++) { 2537 VarArgsToForward.push_back(CB.getArgOperand(i)); 2538 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i)); 2539 } 2540 2541 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2542 if (InlinedFunctionInfo.ContainsCalls) { 2543 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2544 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 2545 CallSiteTailKind = CI->getTailCallKind(); 2546 2547 // For inlining purposes, the "notail" marker is the same as no marker. 2548 if (CallSiteTailKind == CallInst::TCK_NoTail) 2549 CallSiteTailKind = CallInst::TCK_None; 2550 2551 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2552 ++BB) { 2553 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 2554 CallInst *CI = dyn_cast<CallInst>(&I); 2555 if (!CI) 2556 continue; 2557 2558 // Forward varargs from inlined call site to calls to the 2559 // ForwardVarArgsTo function, if requested, and to musttail calls. 2560 if (!VarArgsToForward.empty() && 2561 ((ForwardVarArgsTo && 2562 CI->getCalledFunction() == ForwardVarArgsTo) || 2563 CI->isMustTailCall())) { 2564 // Collect attributes for non-vararg parameters. 2565 AttributeList Attrs = CI->getAttributes(); 2566 SmallVector<AttributeSet, 8> ArgAttrs; 2567 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2568 for (unsigned ArgNo = 0; 2569 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2570 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 2571 } 2572 2573 // Add VarArg attributes. 2574 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2575 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(), 2576 Attrs.getRetAttrs(), ArgAttrs); 2577 // Add VarArgs to existing parameters. 2578 SmallVector<Value *, 6> Params(CI->args()); 2579 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2580 CallInst *NewCI = CallInst::Create( 2581 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI->getIterator()); 2582 NewCI->setDebugLoc(CI->getDebugLoc()); 2583 NewCI->setAttributes(Attrs); 2584 NewCI->setCallingConv(CI->getCallingConv()); 2585 CI->replaceAllUsesWith(NewCI); 2586 CI->eraseFromParent(); 2587 CI = NewCI; 2588 } 2589 2590 if (Function *F = CI->getCalledFunction()) 2591 InlinedDeoptimizeCalls |= 2592 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2593 2594 // We need to reduce the strength of any inlined tail calls. For 2595 // musttail, we have to avoid introducing potential unbounded stack 2596 // growth. For example, if functions 'f' and 'g' are mutually recursive 2597 // with musttail, we can inline 'g' into 'f' so long as we preserve 2598 // musttail on the cloned call to 'f'. If either the inlined call site 2599 // or the cloned call site is *not* musttail, the program already has 2600 // one frame of stack growth, so it's safe to remove musttail. Here is 2601 // a table of example transformations: 2602 // 2603 // f -> musttail g -> musttail f ==> f -> musttail f 2604 // f -> musttail g -> tail f ==> f -> tail f 2605 // f -> g -> musttail f ==> f -> f 2606 // f -> g -> tail f ==> f -> f 2607 // 2608 // Inlined notail calls should remain notail calls. 2609 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2610 if (ChildTCK != CallInst::TCK_NoTail) 2611 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2612 CI->setTailCallKind(ChildTCK); 2613 InlinedMustTailCalls |= CI->isMustTailCall(); 2614 2615 // Call sites inlined through a 'nounwind' call site should be 2616 // 'nounwind' as well. However, avoid marking call sites explicitly 2617 // where possible. This helps expose more opportunities for CSE after 2618 // inlining, commonly when the callee is an intrinsic. 2619 if (MarkNoUnwind && !CI->doesNotThrow()) 2620 CI->setDoesNotThrow(); 2621 } 2622 } 2623 } 2624 2625 // Leave lifetime markers for the static alloca's, scoping them to the 2626 // function we just inlined. 2627 // We need to insert lifetime intrinsics even at O0 to avoid invalid 2628 // access caused by multithreaded coroutines. The check 2629 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only. 2630 if ((InsertLifetime || Caller->isPresplitCoroutine()) && 2631 !IFI.StaticAllocas.empty()) { 2632 IRBuilder<> builder(&*FirstNewBlock, FirstNewBlock->begin()); 2633 for (AllocaInst *AI : IFI.StaticAllocas) { 2634 // Don't mark swifterror allocas. They can't have bitcast uses. 2635 if (AI->isSwiftError()) 2636 continue; 2637 2638 // If the alloca is already scoped to something smaller than the whole 2639 // function then there's no need to add redundant, less accurate markers. 2640 if (hasLifetimeMarkers(AI)) 2641 continue; 2642 2643 // Try to determine the size of the allocation. 2644 ConstantInt *AllocaSize = nullptr; 2645 if (ConstantInt *AIArraySize = 2646 dyn_cast<ConstantInt>(AI->getArraySize())) { 2647 auto &DL = Caller->getDataLayout(); 2648 Type *AllocaType = AI->getAllocatedType(); 2649 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2650 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2651 2652 // Don't add markers for zero-sized allocas. 2653 if (AllocaArraySize == 0) 2654 continue; 2655 2656 // Check that array size doesn't saturate uint64_t and doesn't 2657 // overflow when it's multiplied by type size. 2658 if (!AllocaTypeSize.isScalable() && 2659 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2660 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2661 AllocaTypeSize.getFixedValue()) { 2662 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2663 AllocaArraySize * AllocaTypeSize); 2664 } 2665 } 2666 2667 builder.CreateLifetimeStart(AI, AllocaSize); 2668 for (ReturnInst *RI : Returns) { 2669 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2670 // call and a return. The return kills all local allocas. 2671 if (InlinedMustTailCalls && 2672 RI->getParent()->getTerminatingMustTailCall()) 2673 continue; 2674 if (InlinedDeoptimizeCalls && 2675 RI->getParent()->getTerminatingDeoptimizeCall()) 2676 continue; 2677 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2678 } 2679 } 2680 } 2681 2682 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2683 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2684 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2685 // Insert the llvm.stacksave. 2686 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2687 .CreateStackSave("savedstack"); 2688 2689 // Insert a call to llvm.stackrestore before any return instructions in the 2690 // inlined function. 2691 for (ReturnInst *RI : Returns) { 2692 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2693 // call and a return. The return will restore the stack pointer. 2694 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2695 continue; 2696 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2697 continue; 2698 IRBuilder<>(RI).CreateStackRestore(SavedPtr); 2699 } 2700 } 2701 2702 // If we are inlining for an invoke instruction, we must make sure to rewrite 2703 // any call instructions into invoke instructions. This is sensitive to which 2704 // funclet pads were top-level in the inlinee, so must be done before 2705 // rewriting the "parent pad" links. 2706 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2707 BasicBlock *UnwindDest = II->getUnwindDest(); 2708 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2709 if (isa<LandingPadInst>(FirstNonPHI)) { 2710 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2711 } else { 2712 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2713 } 2714 } 2715 2716 // Update the lexical scopes of the new funclets and callsites. 2717 // Anything that had 'none' as its parent is now nested inside the callsite's 2718 // EHPad. 2719 if (CallSiteEHPad) { 2720 for (Function::iterator BB = FirstNewBlock->getIterator(), 2721 E = Caller->end(); 2722 BB != E; ++BB) { 2723 // Add bundle operands to inlined call sites. 2724 PropagateOperandBundles(BB, CallSiteEHPad); 2725 2726 // It is problematic if the inlinee has a cleanupret which unwinds to 2727 // caller and we inline it into a call site which doesn't unwind but into 2728 // an EH pad that does. Such an edge must be dynamically unreachable. 2729 // As such, we replace the cleanupret with unreachable. 2730 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2731 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2732 changeToUnreachable(CleanupRet); 2733 2734 Instruction *I = BB->getFirstNonPHI(); 2735 if (!I->isEHPad()) 2736 continue; 2737 2738 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2739 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2740 CatchSwitch->setParentPad(CallSiteEHPad); 2741 } else { 2742 auto *FPI = cast<FuncletPadInst>(I); 2743 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2744 FPI->setParentPad(CallSiteEHPad); 2745 } 2746 } 2747 } 2748 2749 if (InlinedDeoptimizeCalls) { 2750 // We need to at least remove the deoptimizing returns from the Return set, 2751 // so that the control flow from those returns does not get merged into the 2752 // caller (but terminate it instead). If the caller's return type does not 2753 // match the callee's return type, we also need to change the return type of 2754 // the intrinsic. 2755 if (Caller->getReturnType() == CB.getType()) { 2756 llvm::erase_if(Returns, [](ReturnInst *RI) { 2757 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2758 }); 2759 } else { 2760 SmallVector<ReturnInst *, 8> NormalReturns; 2761 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2762 Caller->getParent(), Intrinsic::experimental_deoptimize, 2763 {Caller->getReturnType()}); 2764 2765 for (ReturnInst *RI : Returns) { 2766 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2767 if (!DeoptCall) { 2768 NormalReturns.push_back(RI); 2769 continue; 2770 } 2771 2772 // The calling convention on the deoptimize call itself may be bogus, 2773 // since the code we're inlining may have undefined behavior (and may 2774 // never actually execute at runtime); but all 2775 // @llvm.experimental.deoptimize declarations have to have the same 2776 // calling convention in a well-formed module. 2777 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2778 NewDeoptIntrinsic->setCallingConv(CallingConv); 2779 auto *CurBB = RI->getParent(); 2780 RI->eraseFromParent(); 2781 2782 SmallVector<Value *, 4> CallArgs(DeoptCall->args()); 2783 2784 SmallVector<OperandBundleDef, 1> OpBundles; 2785 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2786 auto DeoptAttributes = DeoptCall->getAttributes(); 2787 DeoptCall->eraseFromParent(); 2788 assert(!OpBundles.empty() && 2789 "Expected at least the deopt operand bundle"); 2790 2791 IRBuilder<> Builder(CurBB); 2792 CallInst *NewDeoptCall = 2793 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2794 NewDeoptCall->setCallingConv(CallingConv); 2795 NewDeoptCall->setAttributes(DeoptAttributes); 2796 if (NewDeoptCall->getType()->isVoidTy()) 2797 Builder.CreateRetVoid(); 2798 else 2799 Builder.CreateRet(NewDeoptCall); 2800 // Since the ret type is changed, remove the incompatible attributes. 2801 NewDeoptCall->removeRetAttrs( 2802 AttributeFuncs::typeIncompatible(NewDeoptCall->getType())); 2803 } 2804 2805 // Leave behind the normal returns so we can merge control flow. 2806 std::swap(Returns, NormalReturns); 2807 } 2808 } 2809 2810 // Handle any inlined musttail call sites. In order for a new call site to be 2811 // musttail, the source of the clone and the inlined call site must have been 2812 // musttail. Therefore it's safe to return without merging control into the 2813 // phi below. 2814 if (InlinedMustTailCalls) { 2815 // Check if we need to bitcast the result of any musttail calls. 2816 Type *NewRetTy = Caller->getReturnType(); 2817 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2818 2819 // Handle the returns preceded by musttail calls separately. 2820 SmallVector<ReturnInst *, 8> NormalReturns; 2821 for (ReturnInst *RI : Returns) { 2822 CallInst *ReturnedMustTail = 2823 RI->getParent()->getTerminatingMustTailCall(); 2824 if (!ReturnedMustTail) { 2825 NormalReturns.push_back(RI); 2826 continue; 2827 } 2828 if (!NeedBitCast) 2829 continue; 2830 2831 // Delete the old return and any preceding bitcast. 2832 BasicBlock *CurBB = RI->getParent(); 2833 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2834 RI->eraseFromParent(); 2835 if (OldCast) 2836 OldCast->eraseFromParent(); 2837 2838 // Insert a new bitcast and return with the right type. 2839 IRBuilder<> Builder(CurBB); 2840 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2841 } 2842 2843 // Leave behind the normal returns so we can merge control flow. 2844 std::swap(Returns, NormalReturns); 2845 } 2846 2847 // Now that all of the transforms on the inlined code have taken place but 2848 // before we splice the inlined code into the CFG and lose track of which 2849 // blocks were actually inlined, collect the call sites. We only do this if 2850 // call graph updates weren't requested, as those provide value handle based 2851 // tracking of inlined call sites instead. Calls to intrinsics are not 2852 // collected because they are not inlineable. 2853 if (InlinedFunctionInfo.ContainsCalls) { 2854 // Otherwise just collect the raw call sites that were inlined. 2855 for (BasicBlock &NewBB : 2856 make_range(FirstNewBlock->getIterator(), Caller->end())) 2857 for (Instruction &I : NewBB) 2858 if (auto *CB = dyn_cast<CallBase>(&I)) 2859 if (!(CB->getCalledFunction() && 2860 CB->getCalledFunction()->isIntrinsic())) 2861 IFI.InlinedCallSites.push_back(CB); 2862 } 2863 2864 // If we cloned in _exactly one_ basic block, and if that block ends in a 2865 // return instruction, we splice the body of the inlined callee directly into 2866 // the calling basic block. 2867 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2868 // Move all of the instructions right before the call. 2869 OrigBB->splice(CB.getIterator(), &*FirstNewBlock, FirstNewBlock->begin(), 2870 FirstNewBlock->end()); 2871 // Remove the cloned basic block. 2872 Caller->back().eraseFromParent(); 2873 2874 // If the call site was an invoke instruction, add a branch to the normal 2875 // destination. 2876 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2877 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), CB.getIterator()); 2878 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2879 } 2880 2881 // If the return instruction returned a value, replace uses of the call with 2882 // uses of the returned value. 2883 if (!CB.use_empty()) { 2884 ReturnInst *R = Returns[0]; 2885 if (&CB == R->getReturnValue()) 2886 CB.replaceAllUsesWith(PoisonValue::get(CB.getType())); 2887 else 2888 CB.replaceAllUsesWith(R->getReturnValue()); 2889 } 2890 // Since we are now done with the Call/Invoke, we can delete it. 2891 CB.eraseFromParent(); 2892 2893 // Since we are now done with the return instruction, delete it also. 2894 Returns[0]->eraseFromParent(); 2895 2896 if (MergeAttributes) 2897 AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc); 2898 2899 // We are now done with the inlining. 2900 return InlineResult::success(); 2901 } 2902 2903 // Otherwise, we have the normal case, of more than one block to inline or 2904 // multiple return sites. 2905 2906 // We want to clone the entire callee function into the hole between the 2907 // "starter" and "ender" blocks. How we accomplish this depends on whether 2908 // this is an invoke instruction or a call instruction. 2909 BasicBlock *AfterCallBB; 2910 BranchInst *CreatedBranchToNormalDest = nullptr; 2911 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2912 2913 // Add an unconditional branch to make this look like the CallInst case... 2914 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), CB.getIterator()); 2915 2916 // Split the basic block. This guarantees that no PHI nodes will have to be 2917 // updated due to new incoming edges, and make the invoke case more 2918 // symmetric to the call case. 2919 AfterCallBB = 2920 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2921 CalledFunc->getName() + ".exit"); 2922 2923 } else { // It's a call 2924 // If this is a call instruction, we need to split the basic block that 2925 // the call lives in. 2926 // 2927 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2928 CalledFunc->getName() + ".exit"); 2929 } 2930 2931 if (IFI.CallerBFI) { 2932 // Copy original BB's block frequency to AfterCallBB 2933 IFI.CallerBFI->setBlockFreq(AfterCallBB, 2934 IFI.CallerBFI->getBlockFreq(OrigBB)); 2935 } 2936 2937 // Change the branch that used to go to AfterCallBB to branch to the first 2938 // basic block of the inlined function. 2939 // 2940 Instruction *Br = OrigBB->getTerminator(); 2941 assert(Br && Br->getOpcode() == Instruction::Br && 2942 "splitBasicBlock broken!"); 2943 Br->setOperand(0, &*FirstNewBlock); 2944 2945 // Now that the function is correct, make it a little bit nicer. In 2946 // particular, move the basic blocks inserted from the end of the function 2947 // into the space made by splitting the source basic block. 2948 Caller->splice(AfterCallBB->getIterator(), Caller, FirstNewBlock, 2949 Caller->end()); 2950 2951 // Handle all of the return instructions that we just cloned in, and eliminate 2952 // any users of the original call/invoke instruction. 2953 Type *RTy = CalledFunc->getReturnType(); 2954 2955 PHINode *PHI = nullptr; 2956 if (Returns.size() > 1) { 2957 // The PHI node should go at the front of the new basic block to merge all 2958 // possible incoming values. 2959 if (!CB.use_empty()) { 2960 PHI = PHINode::Create(RTy, Returns.size(), CB.getName()); 2961 PHI->insertBefore(AfterCallBB->begin()); 2962 // Anything that used the result of the function call should now use the 2963 // PHI node as their operand. 2964 CB.replaceAllUsesWith(PHI); 2965 } 2966 2967 // Loop over all of the return instructions adding entries to the PHI node 2968 // as appropriate. 2969 if (PHI) { 2970 for (ReturnInst *RI : Returns) { 2971 assert(RI->getReturnValue()->getType() == PHI->getType() && 2972 "Ret value not consistent in function!"); 2973 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2974 } 2975 } 2976 2977 // Add a branch to the merge points and remove return instructions. 2978 DebugLoc Loc; 2979 for (ReturnInst *RI : Returns) { 2980 BranchInst *BI = BranchInst::Create(AfterCallBB, RI->getIterator()); 2981 Loc = RI->getDebugLoc(); 2982 BI->setDebugLoc(Loc); 2983 RI->eraseFromParent(); 2984 } 2985 // We need to set the debug location to *somewhere* inside the 2986 // inlined function. The line number may be nonsensical, but the 2987 // instruction will at least be associated with the right 2988 // function. 2989 if (CreatedBranchToNormalDest) 2990 CreatedBranchToNormalDest->setDebugLoc(Loc); 2991 } else if (!Returns.empty()) { 2992 // Otherwise, if there is exactly one return value, just replace anything 2993 // using the return value of the call with the computed value. 2994 if (!CB.use_empty()) { 2995 if (&CB == Returns[0]->getReturnValue()) 2996 CB.replaceAllUsesWith(PoisonValue::get(CB.getType())); 2997 else 2998 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2999 } 3000 3001 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 3002 BasicBlock *ReturnBB = Returns[0]->getParent(); 3003 ReturnBB->replaceAllUsesWith(AfterCallBB); 3004 3005 // Splice the code from the return block into the block that it will return 3006 // to, which contains the code that was after the call. 3007 AfterCallBB->splice(AfterCallBB->begin(), ReturnBB); 3008 3009 if (CreatedBranchToNormalDest) 3010 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 3011 3012 // Delete the return instruction now and empty ReturnBB now. 3013 Returns[0]->eraseFromParent(); 3014 ReturnBB->eraseFromParent(); 3015 } else if (!CB.use_empty()) { 3016 // No returns, but something is using the return value of the call. Just 3017 // nuke the result. 3018 CB.replaceAllUsesWith(PoisonValue::get(CB.getType())); 3019 } 3020 3021 // Since we are now done with the Call/Invoke, we can delete it. 3022 CB.eraseFromParent(); 3023 3024 // If we inlined any musttail calls and the original return is now 3025 // unreachable, delete it. It can only contain a bitcast and ret. 3026 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 3027 AfterCallBB->eraseFromParent(); 3028 3029 // We should always be able to fold the entry block of the function into the 3030 // single predecessor of the block... 3031 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 3032 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 3033 3034 // Splice the code entry block into calling block, right before the 3035 // unconditional branch. 3036 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 3037 OrigBB->splice(Br->getIterator(), CalleeEntry); 3038 3039 // Remove the unconditional branch. 3040 Br->eraseFromParent(); 3041 3042 // Now we can remove the CalleeEntry block, which is now empty. 3043 CalleeEntry->eraseFromParent(); 3044 3045 // If we inserted a phi node, check to see if it has a single value (e.g. all 3046 // the entries are the same or undef). If so, remove the PHI so it doesn't 3047 // block other optimizations. 3048 if (PHI) { 3049 AssumptionCache *AC = 3050 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 3051 auto &DL = Caller->getDataLayout(); 3052 if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 3053 PHI->replaceAllUsesWith(V); 3054 PHI->eraseFromParent(); 3055 } 3056 } 3057 3058 if (MergeAttributes) 3059 AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc); 3060 3061 return InlineResult::success(); 3062 } 3063