xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <iterator>
72 #include <limits>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 using ProfileCount = Function::ProfileCount;
79 
80 static cl::opt<bool>
81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
82   cl::Hidden,
83   cl::desc("Convert noalias attributes to metadata during inlining."));
84 
85 static cl::opt<bool>
86     UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
87                         cl::ZeroOrMore, cl::init(true),
88                         cl::desc("Use the llvm.experimental.noalias.scope.decl "
89                                  "intrinsic during inlining."));
90 
91 // Disabled by default, because the added alignment assumptions may increase
92 // compile-time and block optimizations. This option is not suitable for use
93 // with frontends that emit comprehensive parameter alignment annotations.
94 static cl::opt<bool>
95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
96   cl::init(false), cl::Hidden,
97   cl::desc("Convert align attributes to assumptions during inlining."));
98 
99 static cl::opt<bool> UpdateReturnAttributes(
100         "update-return-attrs", cl::init(true), cl::Hidden,
101             cl::desc("Update return attributes on calls within inlined body"));
102 
103 static cl::opt<unsigned> InlinerAttributeWindow(
104     "max-inst-checked-for-throw-during-inlining", cl::Hidden,
105     cl::desc("the maximum number of instructions analyzed for may throw during "
106              "attribute inference in inlined body"),
107     cl::init(4));
108 
109 namespace {
110 
111   /// A class for recording information about inlining a landing pad.
112   class LandingPadInliningInfo {
113     /// Destination of the invoke's unwind.
114     BasicBlock *OuterResumeDest;
115 
116     /// Destination for the callee's resume.
117     BasicBlock *InnerResumeDest = nullptr;
118 
119     /// LandingPadInst associated with the invoke.
120     LandingPadInst *CallerLPad = nullptr;
121 
122     /// PHI for EH values from landingpad insts.
123     PHINode *InnerEHValuesPHI = nullptr;
124 
125     SmallVector<Value*, 8> UnwindDestPHIValues;
126 
127   public:
128     LandingPadInliningInfo(InvokeInst *II)
129         : OuterResumeDest(II->getUnwindDest()) {
130       // If there are PHI nodes in the unwind destination block, we need to keep
131       // track of which values came into them from the invoke before removing
132       // the edge from this block.
133       BasicBlock *InvokeBB = II->getParent();
134       BasicBlock::iterator I = OuterResumeDest->begin();
135       for (; isa<PHINode>(I); ++I) {
136         // Save the value to use for this edge.
137         PHINode *PHI = cast<PHINode>(I);
138         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
139       }
140 
141       CallerLPad = cast<LandingPadInst>(I);
142     }
143 
144     /// The outer unwind destination is the target of
145     /// unwind edges introduced for calls within the inlined function.
146     BasicBlock *getOuterResumeDest() const {
147       return OuterResumeDest;
148     }
149 
150     BasicBlock *getInnerResumeDest();
151 
152     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
153 
154     /// Forward the 'resume' instruction to the caller's landing pad block.
155     /// When the landing pad block has only one predecessor, this is
156     /// a simple branch. When there is more than one predecessor, we need to
157     /// split the landing pad block after the landingpad instruction and jump
158     /// to there.
159     void forwardResume(ResumeInst *RI,
160                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
161 
162     /// Add incoming-PHI values to the unwind destination block for the given
163     /// basic block, using the values for the original invoke's source block.
164     void addIncomingPHIValuesFor(BasicBlock *BB) const {
165       addIncomingPHIValuesForInto(BB, OuterResumeDest);
166     }
167 
168     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
169       BasicBlock::iterator I = dest->begin();
170       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
171         PHINode *phi = cast<PHINode>(I);
172         phi->addIncoming(UnwindDestPHIValues[i], src);
173       }
174     }
175   };
176 
177 } // end anonymous namespace
178 
179 /// Get or create a target for the branch from ResumeInsts.
180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
181   if (InnerResumeDest) return InnerResumeDest;
182 
183   // Split the landing pad.
184   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
185   InnerResumeDest =
186     OuterResumeDest->splitBasicBlock(SplitPoint,
187                                      OuterResumeDest->getName() + ".body");
188 
189   // The number of incoming edges we expect to the inner landing pad.
190   const unsigned PHICapacity = 2;
191 
192   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193   Instruction *InsertPoint = &InnerResumeDest->front();
194   BasicBlock::iterator I = OuterResumeDest->begin();
195   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
196     PHINode *OuterPHI = cast<PHINode>(I);
197     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
198                                         OuterPHI->getName() + ".lpad-body",
199                                         InsertPoint);
200     OuterPHI->replaceAllUsesWith(InnerPHI);
201     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
202   }
203 
204   // Create a PHI for the exception values.
205   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
206                                      "eh.lpad-body", InsertPoint);
207   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
208   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
209 
210   // All done.
211   return InnerResumeDest;
212 }
213 
214 /// Forward the 'resume' instruction to the caller's landing pad block.
215 /// When the landing pad block has only one predecessor, this is a simple
216 /// branch. When there is more than one predecessor, we need to split the
217 /// landing pad block after the landingpad instruction and jump to there.
218 void LandingPadInliningInfo::forwardResume(
219     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
220   BasicBlock *Dest = getInnerResumeDest();
221   BasicBlock *Src = RI->getParent();
222 
223   BranchInst::Create(Dest, Src);
224 
225   // Update the PHIs in the destination. They were inserted in an order which
226   // makes this work.
227   addIncomingPHIValuesForInto(Src, Dest);
228 
229   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
230   RI->eraseFromParent();
231 }
232 
233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
234 static Value *getParentPad(Value *EHPad) {
235   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
236     return FPI->getParentPad();
237   return cast<CatchSwitchInst>(EHPad)->getParentPad();
238 }
239 
240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
241 
242 /// Helper for getUnwindDestToken that does the descendant-ward part of
243 /// the search.
244 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
245                                        UnwindDestMemoTy &MemoMap) {
246   SmallVector<Instruction *, 8> Worklist(1, EHPad);
247 
248   while (!Worklist.empty()) {
249     Instruction *CurrentPad = Worklist.pop_back_val();
250     // We only put pads on the worklist that aren't in the MemoMap.  When
251     // we find an unwind dest for a pad we may update its ancestors, but
252     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
253     // so they should never get updated while queued on the worklist.
254     assert(!MemoMap.count(CurrentPad));
255     Value *UnwindDestToken = nullptr;
256     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
257       if (CatchSwitch->hasUnwindDest()) {
258         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
259       } else {
260         // Catchswitch doesn't have a 'nounwind' variant, and one might be
261         // annotated as "unwinds to caller" when really it's nounwind (see
262         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
263         // parent's unwind dest from this.  We can check its catchpads'
264         // descendants, since they might include a cleanuppad with an
265         // "unwinds to caller" cleanupret, which can be trusted.
266         for (auto HI = CatchSwitch->handler_begin(),
267                   HE = CatchSwitch->handler_end();
268              HI != HE && !UnwindDestToken; ++HI) {
269           BasicBlock *HandlerBlock = *HI;
270           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
271           for (User *Child : CatchPad->users()) {
272             // Intentionally ignore invokes here -- since the catchswitch is
273             // marked "unwind to caller", it would be a verifier error if it
274             // contained an invoke which unwinds out of it, so any invoke we'd
275             // encounter must unwind to some child of the catch.
276             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
277               continue;
278 
279             Instruction *ChildPad = cast<Instruction>(Child);
280             auto Memo = MemoMap.find(ChildPad);
281             if (Memo == MemoMap.end()) {
282               // Haven't figured out this child pad yet; queue it.
283               Worklist.push_back(ChildPad);
284               continue;
285             }
286             // We've already checked this child, but might have found that
287             // it offers no proof either way.
288             Value *ChildUnwindDestToken = Memo->second;
289             if (!ChildUnwindDestToken)
290               continue;
291             // We already know the child's unwind dest, which can either
292             // be ConstantTokenNone to indicate unwind to caller, or can
293             // be another child of the catchpad.  Only the former indicates
294             // the unwind dest of the catchswitch.
295             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
296               UnwindDestToken = ChildUnwindDestToken;
297               break;
298             }
299             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
300           }
301         }
302       }
303     } else {
304       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
305       for (User *U : CleanupPad->users()) {
306         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
307           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
308             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
309           else
310             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
311           break;
312         }
313         Value *ChildUnwindDestToken;
314         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
315           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
316         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
317           Instruction *ChildPad = cast<Instruction>(U);
318           auto Memo = MemoMap.find(ChildPad);
319           if (Memo == MemoMap.end()) {
320             // Haven't resolved this child yet; queue it and keep searching.
321             Worklist.push_back(ChildPad);
322             continue;
323           }
324           // We've checked this child, but still need to ignore it if it
325           // had no proof either way.
326           ChildUnwindDestToken = Memo->second;
327           if (!ChildUnwindDestToken)
328             continue;
329         } else {
330           // Not a relevant user of the cleanuppad
331           continue;
332         }
333         // In a well-formed program, the child/invoke must either unwind to
334         // an(other) child of the cleanup, or exit the cleanup.  In the
335         // first case, continue searching.
336         if (isa<Instruction>(ChildUnwindDestToken) &&
337             getParentPad(ChildUnwindDestToken) == CleanupPad)
338           continue;
339         UnwindDestToken = ChildUnwindDestToken;
340         break;
341       }
342     }
343     // If we haven't found an unwind dest for CurrentPad, we may have queued its
344     // children, so move on to the next in the worklist.
345     if (!UnwindDestToken)
346       continue;
347 
348     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
349     // any ancestors of CurrentPad up to but not including UnwindDestToken's
350     // parent pad.  Record this in the memo map, and check to see if the
351     // original EHPad being queried is one of the ones exited.
352     Value *UnwindParent;
353     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
354       UnwindParent = getParentPad(UnwindPad);
355     else
356       UnwindParent = nullptr;
357     bool ExitedOriginalPad = false;
358     for (Instruction *ExitedPad = CurrentPad;
359          ExitedPad && ExitedPad != UnwindParent;
360          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
361       // Skip over catchpads since they just follow their catchswitches.
362       if (isa<CatchPadInst>(ExitedPad))
363         continue;
364       MemoMap[ExitedPad] = UnwindDestToken;
365       ExitedOriginalPad |= (ExitedPad == EHPad);
366     }
367 
368     if (ExitedOriginalPad)
369       return UnwindDestToken;
370 
371     // Continue the search.
372   }
373 
374   // No definitive information is contained within this funclet.
375   return nullptr;
376 }
377 
378 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
379 /// return that pad instruction.  If it unwinds to caller, return
380 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
381 /// return nullptr.
382 ///
383 /// This routine gets invoked for calls in funclets in inlinees when inlining
384 /// an invoke.  Since many funclets don't have calls inside them, it's queried
385 /// on-demand rather than building a map of pads to unwind dests up front.
386 /// Determining a funclet's unwind dest may require recursively searching its
387 /// descendants, and also ancestors and cousins if the descendants don't provide
388 /// an answer.  Since most funclets will have their unwind dest immediately
389 /// available as the unwind dest of a catchswitch or cleanupret, this routine
390 /// searches top-down from the given pad and then up. To avoid worst-case
391 /// quadratic run-time given that approach, it uses a memo map to avoid
392 /// re-processing funclet trees.  The callers that rewrite the IR as they go
393 /// take advantage of this, for correctness, by checking/forcing rewritten
394 /// pads' entries to match the original callee view.
395 static Value *getUnwindDestToken(Instruction *EHPad,
396                                  UnwindDestMemoTy &MemoMap) {
397   // Catchpads unwind to the same place as their catchswitch;
398   // redirct any queries on catchpads so the code below can
399   // deal with just catchswitches and cleanuppads.
400   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
401     EHPad = CPI->getCatchSwitch();
402 
403   // Check if we've already determined the unwind dest for this pad.
404   auto Memo = MemoMap.find(EHPad);
405   if (Memo != MemoMap.end())
406     return Memo->second;
407 
408   // Search EHPad and, if necessary, its descendants.
409   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
410   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
411   if (UnwindDestToken)
412     return UnwindDestToken;
413 
414   // No information is available for this EHPad from itself or any of its
415   // descendants.  An unwind all the way out to a pad in the caller would
416   // need also to agree with the unwind dest of the parent funclet, so
417   // search up the chain to try to find a funclet with information.  Put
418   // null entries in the memo map to avoid re-processing as we go up.
419   MemoMap[EHPad] = nullptr;
420 #ifndef NDEBUG
421   SmallPtrSet<Instruction *, 4> TempMemos;
422   TempMemos.insert(EHPad);
423 #endif
424   Instruction *LastUselessPad = EHPad;
425   Value *AncestorToken;
426   for (AncestorToken = getParentPad(EHPad);
427        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
428        AncestorToken = getParentPad(AncestorToken)) {
429     // Skip over catchpads since they just follow their catchswitches.
430     if (isa<CatchPadInst>(AncestorPad))
431       continue;
432     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
433     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
434     // call to getUnwindDestToken, that would mean that AncestorPad had no
435     // information in itself, its descendants, or its ancestors.  If that
436     // were the case, then we should also have recorded the lack of information
437     // for the descendant that we're coming from.  So assert that we don't
438     // find a null entry in the MemoMap for AncestorPad.
439     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
440     auto AncestorMemo = MemoMap.find(AncestorPad);
441     if (AncestorMemo == MemoMap.end()) {
442       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
443     } else {
444       UnwindDestToken = AncestorMemo->second;
445     }
446     if (UnwindDestToken)
447       break;
448     LastUselessPad = AncestorPad;
449     MemoMap[LastUselessPad] = nullptr;
450 #ifndef NDEBUG
451     TempMemos.insert(LastUselessPad);
452 #endif
453   }
454 
455   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
456   // returned nullptr (and likewise for EHPad and any of its ancestors up to
457   // LastUselessPad), so LastUselessPad has no information from below.  Since
458   // getUnwindDestTokenHelper must investigate all downward paths through
459   // no-information nodes to prove that a node has no information like this,
460   // and since any time it finds information it records it in the MemoMap for
461   // not just the immediately-containing funclet but also any ancestors also
462   // exited, it must be the case that, walking downward from LastUselessPad,
463   // visiting just those nodes which have not been mapped to an unwind dest
464   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
465   // they are just used to keep getUnwindDestTokenHelper from repeating work),
466   // any node visited must have been exhaustively searched with no information
467   // for it found.
468   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
469   while (!Worklist.empty()) {
470     Instruction *UselessPad = Worklist.pop_back_val();
471     auto Memo = MemoMap.find(UselessPad);
472     if (Memo != MemoMap.end() && Memo->second) {
473       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
474       // that it is a funclet that does have information about unwinding to
475       // a particular destination; its parent was a useless pad.
476       // Since its parent has no information, the unwind edge must not escape
477       // the parent, and must target a sibling of this pad.  This local unwind
478       // gives us no information about EHPad.  Leave it and the subtree rooted
479       // at it alone.
480       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
481       continue;
482     }
483     // We know we don't have information for UselesPad.  If it has an entry in
484     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
485     // added on this invocation of getUnwindDestToken; if a previous invocation
486     // recorded nullptr, it would have had to prove that the ancestors of
487     // UselessPad, which include LastUselessPad, had no information, and that
488     // in turn would have required proving that the descendants of
489     // LastUselesPad, which include EHPad, have no information about
490     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
491     // the MemoMap on that invocation, which isn't the case if we got here.
492     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
493     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
494     // information that we'd be contradicting by making a map entry for it
495     // (which is something that getUnwindDestTokenHelper must have proved for
496     // us to get here).  Just assert on is direct users here; the checks in
497     // this downward walk at its descendants will verify that they don't have
498     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
499     // unwind edges or unwind to a sibling).
500     MemoMap[UselessPad] = UnwindDestToken;
501     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
502       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
503       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
504         auto *CatchPad = HandlerBlock->getFirstNonPHI();
505         for (User *U : CatchPad->users()) {
506           assert(
507               (!isa<InvokeInst>(U) ||
508                (getParentPad(
509                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
510                 CatchPad)) &&
511               "Expected useless pad");
512           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
513             Worklist.push_back(cast<Instruction>(U));
514         }
515       }
516     } else {
517       assert(isa<CleanupPadInst>(UselessPad));
518       for (User *U : UselessPad->users()) {
519         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
520         assert((!isa<InvokeInst>(U) ||
521                 (getParentPad(
522                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
523                  UselessPad)) &&
524                "Expected useless pad");
525         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
526           Worklist.push_back(cast<Instruction>(U));
527       }
528     }
529   }
530 
531   return UnwindDestToken;
532 }
533 
534 /// When we inline a basic block into an invoke,
535 /// we have to turn all of the calls that can throw into invokes.
536 /// This function analyze BB to see if there are any calls, and if so,
537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
538 /// nodes in that block with the values specified in InvokeDestPHIValues.
539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
540     BasicBlock *BB, BasicBlock *UnwindEdge,
541     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
542   for (Instruction &I : llvm::make_early_inc_range(*BB)) {
543     // We only need to check for function calls: inlined invoke
544     // instructions require no special handling.
545     CallInst *CI = dyn_cast<CallInst>(&I);
546 
547     if (!CI || CI->doesNotThrow())
548       continue;
549 
550     if (CI->isInlineAsm()) {
551       InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
552       if (!IA->canThrow()) {
553         continue;
554       }
555     }
556 
557     // We do not need to (and in fact, cannot) convert possibly throwing calls
558     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
559     // invokes.  The caller's "segment" of the deoptimization continuation
560     // attached to the newly inlined @llvm.experimental_deoptimize
561     // (resp. @llvm.experimental.guard) call should contain the exception
562     // handling logic, if any.
563     if (auto *F = CI->getCalledFunction())
564       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
565           F->getIntrinsicID() == Intrinsic::experimental_guard)
566         continue;
567 
568     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
569       // This call is nested inside a funclet.  If that funclet has an unwind
570       // destination within the inlinee, then unwinding out of this call would
571       // be UB.  Rewriting this call to an invoke which targets the inlined
572       // invoke's unwind dest would give the call's parent funclet multiple
573       // unwind destinations, which is something that subsequent EH table
574       // generation can't handle and that the veirifer rejects.  So when we
575       // see such a call, leave it as a call.
576       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
577       Value *UnwindDestToken =
578           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
579       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
580         continue;
581 #ifndef NDEBUG
582       Instruction *MemoKey;
583       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
584         MemoKey = CatchPad->getCatchSwitch();
585       else
586         MemoKey = FuncletPad;
587       assert(FuncletUnwindMap->count(MemoKey) &&
588              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
589              "must get memoized to avoid confusing later searches");
590 #endif // NDEBUG
591     }
592 
593     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
594     return BB;
595   }
596   return nullptr;
597 }
598 
599 /// If we inlined an invoke site, we need to convert calls
600 /// in the body of the inlined function into invokes.
601 ///
602 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
603 /// block of the inlined code (the last block is the end of the function),
604 /// and InlineCodeInfo is information about the code that got inlined.
605 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
606                                     ClonedCodeInfo &InlinedCodeInfo) {
607   BasicBlock *InvokeDest = II->getUnwindDest();
608 
609   Function *Caller = FirstNewBlock->getParent();
610 
611   // The inlined code is currently at the end of the function, scan from the
612   // start of the inlined code to its end, checking for stuff we need to
613   // rewrite.
614   LandingPadInliningInfo Invoke(II);
615 
616   // Get all of the inlined landing pad instructions.
617   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
618   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
619        I != E; ++I)
620     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
621       InlinedLPads.insert(II->getLandingPadInst());
622 
623   // Append the clauses from the outer landing pad instruction into the inlined
624   // landing pad instructions.
625   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
626   for (LandingPadInst *InlinedLPad : InlinedLPads) {
627     unsigned OuterNum = OuterLPad->getNumClauses();
628     InlinedLPad->reserveClauses(OuterNum);
629     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
630       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
631     if (OuterLPad->isCleanup())
632       InlinedLPad->setCleanup(true);
633   }
634 
635   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
636        BB != E; ++BB) {
637     if (InlinedCodeInfo.ContainsCalls)
638       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
639               &*BB, Invoke.getOuterResumeDest()))
640         // Update any PHI nodes in the exceptional block to indicate that there
641         // is now a new entry in them.
642         Invoke.addIncomingPHIValuesFor(NewBB);
643 
644     // Forward any resumes that are remaining here.
645     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
646       Invoke.forwardResume(RI, InlinedLPads);
647   }
648 
649   // Now that everything is happy, we have one final detail.  The PHI nodes in
650   // the exception destination block still have entries due to the original
651   // invoke instruction. Eliminate these entries (which might even delete the
652   // PHI node) now.
653   InvokeDest->removePredecessor(II->getParent());
654 }
655 
656 /// If we inlined an invoke site, we need to convert calls
657 /// in the body of the inlined function into invokes.
658 ///
659 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
660 /// block of the inlined code (the last block is the end of the function),
661 /// and InlineCodeInfo is information about the code that got inlined.
662 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
663                                ClonedCodeInfo &InlinedCodeInfo) {
664   BasicBlock *UnwindDest = II->getUnwindDest();
665   Function *Caller = FirstNewBlock->getParent();
666 
667   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
668 
669   // If there are PHI nodes in the unwind destination block, we need to keep
670   // track of which values came into them from the invoke before removing the
671   // edge from this block.
672   SmallVector<Value *, 8> UnwindDestPHIValues;
673   BasicBlock *InvokeBB = II->getParent();
674   for (Instruction &I : *UnwindDest) {
675     // Save the value to use for this edge.
676     PHINode *PHI = dyn_cast<PHINode>(&I);
677     if (!PHI)
678       break;
679     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
680   }
681 
682   // Add incoming-PHI values to the unwind destination block for the given basic
683   // block, using the values for the original invoke's source block.
684   auto UpdatePHINodes = [&](BasicBlock *Src) {
685     BasicBlock::iterator I = UnwindDest->begin();
686     for (Value *V : UnwindDestPHIValues) {
687       PHINode *PHI = cast<PHINode>(I);
688       PHI->addIncoming(V, Src);
689       ++I;
690     }
691   };
692 
693   // This connects all the instructions which 'unwind to caller' to the invoke
694   // destination.
695   UnwindDestMemoTy FuncletUnwindMap;
696   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
697        BB != E; ++BB) {
698     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
699       if (CRI->unwindsToCaller()) {
700         auto *CleanupPad = CRI->getCleanupPad();
701         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
702         CRI->eraseFromParent();
703         UpdatePHINodes(&*BB);
704         // Finding a cleanupret with an unwind destination would confuse
705         // subsequent calls to getUnwindDestToken, so map the cleanuppad
706         // to short-circuit any such calls and recognize this as an "unwind
707         // to caller" cleanup.
708         assert(!FuncletUnwindMap.count(CleanupPad) ||
709                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
710         FuncletUnwindMap[CleanupPad] =
711             ConstantTokenNone::get(Caller->getContext());
712       }
713     }
714 
715     Instruction *I = BB->getFirstNonPHI();
716     if (!I->isEHPad())
717       continue;
718 
719     Instruction *Replacement = nullptr;
720     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
721       if (CatchSwitch->unwindsToCaller()) {
722         Value *UnwindDestToken;
723         if (auto *ParentPad =
724                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
725           // This catchswitch is nested inside another funclet.  If that
726           // funclet has an unwind destination within the inlinee, then
727           // unwinding out of this catchswitch would be UB.  Rewriting this
728           // catchswitch to unwind to the inlined invoke's unwind dest would
729           // give the parent funclet multiple unwind destinations, which is
730           // something that subsequent EH table generation can't handle and
731           // that the veirifer rejects.  So when we see such a call, leave it
732           // as "unwind to caller".
733           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
734           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
735             continue;
736         } else {
737           // This catchswitch has no parent to inherit constraints from, and
738           // none of its descendants can have an unwind edge that exits it and
739           // targets another funclet in the inlinee.  It may or may not have a
740           // descendant that definitively has an unwind to caller.  In either
741           // case, we'll have to assume that any unwinds out of it may need to
742           // be routed to the caller, so treat it as though it has a definitive
743           // unwind to caller.
744           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
745         }
746         auto *NewCatchSwitch = CatchSwitchInst::Create(
747             CatchSwitch->getParentPad(), UnwindDest,
748             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
749             CatchSwitch);
750         for (BasicBlock *PadBB : CatchSwitch->handlers())
751           NewCatchSwitch->addHandler(PadBB);
752         // Propagate info for the old catchswitch over to the new one in
753         // the unwind map.  This also serves to short-circuit any subsequent
754         // checks for the unwind dest of this catchswitch, which would get
755         // confused if they found the outer handler in the callee.
756         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
757         Replacement = NewCatchSwitch;
758       }
759     } else if (!isa<FuncletPadInst>(I)) {
760       llvm_unreachable("unexpected EHPad!");
761     }
762 
763     if (Replacement) {
764       Replacement->takeName(I);
765       I->replaceAllUsesWith(Replacement);
766       I->eraseFromParent();
767       UpdatePHINodes(&*BB);
768     }
769   }
770 
771   if (InlinedCodeInfo.ContainsCalls)
772     for (Function::iterator BB = FirstNewBlock->getIterator(),
773                             E = Caller->end();
774          BB != E; ++BB)
775       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
776               &*BB, UnwindDest, &FuncletUnwindMap))
777         // Update any PHI nodes in the exceptional block to indicate that there
778         // is now a new entry in them.
779         UpdatePHINodes(NewBB);
780 
781   // Now that everything is happy, we have one final detail.  The PHI nodes in
782   // the exception destination block still have entries due to the original
783   // invoke instruction. Eliminate these entries (which might even delete the
784   // PHI node) now.
785   UnwindDest->removePredecessor(InvokeBB);
786 }
787 
788 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
789 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
790 /// be propagated to all memory-accessing cloned instructions.
791 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
792                                       Function::iterator FEnd) {
793   MDNode *MemParallelLoopAccess =
794       CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
795   MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
796   MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
797   MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
798   if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
799     return;
800 
801   for (BasicBlock &BB : make_range(FStart, FEnd)) {
802     for (Instruction &I : BB) {
803       // This metadata is only relevant for instructions that access memory.
804       if (!I.mayReadOrWriteMemory())
805         continue;
806 
807       if (MemParallelLoopAccess) {
808         // TODO: This probably should not overwrite MemParalleLoopAccess.
809         MemParallelLoopAccess = MDNode::concatenate(
810             I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
811             MemParallelLoopAccess);
812         I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
813                       MemParallelLoopAccess);
814       }
815 
816       if (AccessGroup)
817         I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
818             I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
819 
820       if (AliasScope)
821         I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
822             I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
823 
824       if (NoAlias)
825         I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
826             I.getMetadata(LLVMContext::MD_noalias), NoAlias));
827     }
828   }
829 }
830 
831 namespace {
832 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
833 /// using scoped alias metadata is inlined, the aliasing relationships may not
834 /// hold between the two version. It is necessary to create a deep clone of the
835 /// metadata, putting the two versions in separate scope domains.
836 class ScopedAliasMetadataDeepCloner {
837   using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
838   SetVector<const MDNode *> MD;
839   MetadataMap MDMap;
840   void addRecursiveMetadataUses();
841 
842 public:
843   ScopedAliasMetadataDeepCloner(const Function *F);
844 
845   /// Create a new clone of the scoped alias metadata, which will be used by
846   /// subsequent remap() calls.
847   void clone();
848 
849   /// Remap instructions in the given range from the original to the cloned
850   /// metadata.
851   void remap(Function::iterator FStart, Function::iterator FEnd);
852 };
853 } // namespace
854 
855 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
856     const Function *F) {
857   for (const BasicBlock &BB : *F) {
858     for (const Instruction &I : BB) {
859       if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
860         MD.insert(M);
861       if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
862         MD.insert(M);
863 
864       // We also need to clone the metadata in noalias intrinsics.
865       if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
866         MD.insert(Decl->getScopeList());
867     }
868   }
869   addRecursiveMetadataUses();
870 }
871 
872 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
873   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
874   while (!Queue.empty()) {
875     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
876     for (const Metadata *Op : M->operands())
877       if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
878         if (MD.insert(OpMD))
879           Queue.push_back(OpMD);
880   }
881 }
882 
883 void ScopedAliasMetadataDeepCloner::clone() {
884   assert(MDMap.empty() && "clone() already called ?");
885 
886   SmallVector<TempMDTuple, 16> DummyNodes;
887   for (const MDNode *I : MD) {
888     DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
889     MDMap[I].reset(DummyNodes.back().get());
890   }
891 
892   // Create new metadata nodes to replace the dummy nodes, replacing old
893   // metadata references with either a dummy node or an already-created new
894   // node.
895   SmallVector<Metadata *, 4> NewOps;
896   for (const MDNode *I : MD) {
897     for (const Metadata *Op : I->operands()) {
898       if (const MDNode *M = dyn_cast<MDNode>(Op))
899         NewOps.push_back(MDMap[M]);
900       else
901         NewOps.push_back(const_cast<Metadata *>(Op));
902     }
903 
904     MDNode *NewM = MDNode::get(I->getContext(), NewOps);
905     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
906     assert(TempM->isTemporary() && "Expected temporary node");
907 
908     TempM->replaceAllUsesWith(NewM);
909     NewOps.clear();
910   }
911 }
912 
913 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
914                                           Function::iterator FEnd) {
915   if (MDMap.empty())
916     return; // Nothing to do.
917 
918   for (BasicBlock &BB : make_range(FStart, FEnd)) {
919     for (Instruction &I : BB) {
920       // TODO: The null checks for the MDMap.lookup() results should no longer
921       // be necessary.
922       if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
923         if (MDNode *MNew = MDMap.lookup(M))
924           I.setMetadata(LLVMContext::MD_alias_scope, MNew);
925 
926       if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
927         if (MDNode *MNew = MDMap.lookup(M))
928           I.setMetadata(LLVMContext::MD_noalias, MNew);
929 
930       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
931         if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
932           Decl->setScopeList(MNew);
933     }
934   }
935 }
936 
937 /// If the inlined function has noalias arguments,
938 /// then add new alias scopes for each noalias argument, tag the mapped noalias
939 /// parameters with noalias metadata specifying the new scope, and tag all
940 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
942                                   const DataLayout &DL, AAResults *CalleeAAR,
943                                   ClonedCodeInfo &InlinedFunctionInfo) {
944   if (!EnableNoAliasConversion)
945     return;
946 
947   const Function *CalledFunc = CB.getCalledFunction();
948   SmallVector<const Argument *, 4> NoAliasArgs;
949 
950   for (const Argument &Arg : CalledFunc->args())
951     if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
952       NoAliasArgs.push_back(&Arg);
953 
954   if (NoAliasArgs.empty())
955     return;
956 
957   // To do a good job, if a noalias variable is captured, we need to know if
958   // the capture point dominates the particular use we're considering.
959   DominatorTree DT;
960   DT.recalculate(const_cast<Function&>(*CalledFunc));
961 
962   // noalias indicates that pointer values based on the argument do not alias
963   // pointer values which are not based on it. So we add a new "scope" for each
964   // noalias function argument. Accesses using pointers based on that argument
965   // become part of that alias scope, accesses using pointers not based on that
966   // argument are tagged as noalias with that scope.
967 
968   DenseMap<const Argument *, MDNode *> NewScopes;
969   MDBuilder MDB(CalledFunc->getContext());
970 
971   // Create a new scope domain for this function.
972   MDNode *NewDomain =
973     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
974   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
975     const Argument *A = NoAliasArgs[i];
976 
977     std::string Name = std::string(CalledFunc->getName());
978     if (A->hasName()) {
979       Name += ": %";
980       Name += A->getName();
981     } else {
982       Name += ": argument ";
983       Name += utostr(i);
984     }
985 
986     // Note: We always create a new anonymous root here. This is true regardless
987     // of the linkage of the callee because the aliasing "scope" is not just a
988     // property of the callee, but also all control dependencies in the caller.
989     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
990     NewScopes.insert(std::make_pair(A, NewScope));
991 
992     if (UseNoAliasIntrinsic) {
993       // Introduce a llvm.experimental.noalias.scope.decl for the noalias
994       // argument.
995       MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
996       auto *NoAliasDecl =
997           IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
998       // Ignore the result for now. The result will be used when the
999       // llvm.noalias intrinsic is introduced.
1000       (void)NoAliasDecl;
1001     }
1002   }
1003 
1004   // Iterate over all new instructions in the map; for all memory-access
1005   // instructions, add the alias scope metadata.
1006   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1007        VMI != VMIE; ++VMI) {
1008     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1009       if (!VMI->second)
1010         continue;
1011 
1012       Instruction *NI = dyn_cast<Instruction>(VMI->second);
1013       if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
1014         continue;
1015 
1016       bool IsArgMemOnlyCall = false, IsFuncCall = false;
1017       SmallVector<const Value *, 2> PtrArgs;
1018 
1019       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1020         PtrArgs.push_back(LI->getPointerOperand());
1021       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1022         PtrArgs.push_back(SI->getPointerOperand());
1023       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1024         PtrArgs.push_back(VAAI->getPointerOperand());
1025       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1026         PtrArgs.push_back(CXI->getPointerOperand());
1027       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1028         PtrArgs.push_back(RMWI->getPointerOperand());
1029       else if (const auto *Call = dyn_cast<CallBase>(I)) {
1030         // If we know that the call does not access memory, then we'll still
1031         // know that about the inlined clone of this call site, and we don't
1032         // need to add metadata.
1033         if (Call->doesNotAccessMemory())
1034           continue;
1035 
1036         IsFuncCall = true;
1037         if (CalleeAAR) {
1038           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1039 
1040           // We'll retain this knowledge without additional metadata.
1041           if (AAResults::onlyAccessesInaccessibleMem(MRB))
1042             continue;
1043 
1044           if (AAResults::onlyAccessesArgPointees(MRB))
1045             IsArgMemOnlyCall = true;
1046         }
1047 
1048         for (Value *Arg : Call->args()) {
1049           // We need to check the underlying objects of all arguments, not just
1050           // the pointer arguments, because we might be passing pointers as
1051           // integers, etc.
1052           // However, if we know that the call only accesses pointer arguments,
1053           // then we only need to check the pointer arguments.
1054           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1055             continue;
1056 
1057           PtrArgs.push_back(Arg);
1058         }
1059       }
1060 
1061       // If we found no pointers, then this instruction is not suitable for
1062       // pairing with an instruction to receive aliasing metadata.
1063       // However, if this is a call, this we might just alias with none of the
1064       // noalias arguments.
1065       if (PtrArgs.empty() && !IsFuncCall)
1066         continue;
1067 
1068       // It is possible that there is only one underlying object, but you
1069       // need to go through several PHIs to see it, and thus could be
1070       // repeated in the Objects list.
1071       SmallPtrSet<const Value *, 4> ObjSet;
1072       SmallVector<Metadata *, 4> Scopes, NoAliases;
1073 
1074       SmallSetVector<const Argument *, 4> NAPtrArgs;
1075       for (const Value *V : PtrArgs) {
1076         SmallVector<const Value *, 4> Objects;
1077         getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1078 
1079         for (const Value *O : Objects)
1080           ObjSet.insert(O);
1081       }
1082 
1083       // Figure out if we're derived from anything that is not a noalias
1084       // argument.
1085       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1086       for (const Value *V : ObjSet) {
1087         // Is this value a constant that cannot be derived from any pointer
1088         // value (we need to exclude constant expressions, for example, that
1089         // are formed from arithmetic on global symbols).
1090         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1091                              isa<ConstantPointerNull>(V) ||
1092                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1093         if (IsNonPtrConst)
1094           continue;
1095 
1096         // If this is anything other than a noalias argument, then we cannot
1097         // completely describe the aliasing properties using alias.scope
1098         // metadata (and, thus, won't add any).
1099         if (const Argument *A = dyn_cast<Argument>(V)) {
1100           if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1101             UsesAliasingPtr = true;
1102         } else {
1103           UsesAliasingPtr = true;
1104         }
1105 
1106         // If this is not some identified function-local object (which cannot
1107         // directly alias a noalias argument), or some other argument (which,
1108         // by definition, also cannot alias a noalias argument), then we could
1109         // alias a noalias argument that has been captured).
1110         if (!isa<Argument>(V) &&
1111             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1112           CanDeriveViaCapture = true;
1113       }
1114 
1115       // A function call can always get captured noalias pointers (via other
1116       // parameters, globals, etc.).
1117       if (IsFuncCall && !IsArgMemOnlyCall)
1118         CanDeriveViaCapture = true;
1119 
1120       // First, we want to figure out all of the sets with which we definitely
1121       // don't alias. Iterate over all noalias set, and add those for which:
1122       //   1. The noalias argument is not in the set of objects from which we
1123       //      definitely derive.
1124       //   2. The noalias argument has not yet been captured.
1125       // An arbitrary function that might load pointers could see captured
1126       // noalias arguments via other noalias arguments or globals, and so we
1127       // must always check for prior capture.
1128       for (const Argument *A : NoAliasArgs) {
1129         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1130                                  // It might be tempting to skip the
1131                                  // PointerMayBeCapturedBefore check if
1132                                  // A->hasNoCaptureAttr() is true, but this is
1133                                  // incorrect because nocapture only guarantees
1134                                  // that no copies outlive the function, not
1135                                  // that the value cannot be locally captured.
1136                                  !PointerMayBeCapturedBefore(A,
1137                                    /* ReturnCaptures */ false,
1138                                    /* StoreCaptures */ false, I, &DT)))
1139           NoAliases.push_back(NewScopes[A]);
1140       }
1141 
1142       if (!NoAliases.empty())
1143         NI->setMetadata(LLVMContext::MD_noalias,
1144                         MDNode::concatenate(
1145                             NI->getMetadata(LLVMContext::MD_noalias),
1146                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1147 
1148       // Next, we want to figure out all of the sets to which we might belong.
1149       // We might belong to a set if the noalias argument is in the set of
1150       // underlying objects. If there is some non-noalias argument in our list
1151       // of underlying objects, then we cannot add a scope because the fact
1152       // that some access does not alias with any set of our noalias arguments
1153       // cannot itself guarantee that it does not alias with this access
1154       // (because there is some pointer of unknown origin involved and the
1155       // other access might also depend on this pointer). We also cannot add
1156       // scopes to arbitrary functions unless we know they don't access any
1157       // non-parameter pointer-values.
1158       bool CanAddScopes = !UsesAliasingPtr;
1159       if (CanAddScopes && IsFuncCall)
1160         CanAddScopes = IsArgMemOnlyCall;
1161 
1162       if (CanAddScopes)
1163         for (const Argument *A : NoAliasArgs) {
1164           if (ObjSet.count(A))
1165             Scopes.push_back(NewScopes[A]);
1166         }
1167 
1168       if (!Scopes.empty())
1169         NI->setMetadata(
1170             LLVMContext::MD_alias_scope,
1171             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1172                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1173     }
1174   }
1175 }
1176 
1177 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1178                                             Instruction *End) {
1179 
1180   assert(Begin->getParent() == End->getParent() &&
1181          "Expected to be in same basic block!");
1182   return !llvm::isGuaranteedToTransferExecutionToSuccessor(
1183       Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1);
1184 }
1185 
1186 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1187 
1188   AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1189   if (AB.empty())
1190     return AB;
1191   AttrBuilder Valid;
1192   // Only allow these white listed attributes to be propagated back to the
1193   // callee. This is because other attributes may only be valid on the call
1194   // itself, i.e. attributes such as signext and zeroext.
1195   if (auto DerefBytes = AB.getDereferenceableBytes())
1196     Valid.addDereferenceableAttr(DerefBytes);
1197   if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1198     Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1199   if (AB.contains(Attribute::NoAlias))
1200     Valid.addAttribute(Attribute::NoAlias);
1201   if (AB.contains(Attribute::NonNull))
1202     Valid.addAttribute(Attribute::NonNull);
1203   return Valid;
1204 }
1205 
1206 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1207   if (!UpdateReturnAttributes)
1208     return;
1209 
1210   AttrBuilder Valid = IdentifyValidAttributes(CB);
1211   if (Valid.empty())
1212     return;
1213   auto *CalledFunction = CB.getCalledFunction();
1214   auto &Context = CalledFunction->getContext();
1215 
1216   for (auto &BB : *CalledFunction) {
1217     auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1218     if (!RI || !isa<CallBase>(RI->getOperand(0)))
1219       continue;
1220     auto *RetVal = cast<CallBase>(RI->getOperand(0));
1221     // Check that the cloned RetVal exists and is a call, otherwise we cannot
1222     // add the attributes on the cloned RetVal. Simplification during inlining
1223     // could have transformed the cloned instruction.
1224     auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1225     if (!NewRetVal)
1226       continue;
1227     // Backward propagation of attributes to the returned value may be incorrect
1228     // if it is control flow dependent.
1229     // Consider:
1230     // @callee {
1231     //  %rv = call @foo()
1232     //  %rv2 = call @bar()
1233     //  if (%rv2 != null)
1234     //    return %rv2
1235     //  if (%rv == null)
1236     //    exit()
1237     //  return %rv
1238     // }
1239     // caller() {
1240     //   %val = call nonnull @callee()
1241     // }
1242     // Here we cannot add the nonnull attribute on either foo or bar. So, we
1243     // limit the check to both RetVal and RI are in the same basic block and
1244     // there are no throwing/exiting instructions between these instructions.
1245     if (RI->getParent() != RetVal->getParent() ||
1246         MayContainThrowingOrExitingCall(RetVal, RI))
1247       continue;
1248     // Add to the existing attributes of NewRetVal, i.e. the cloned call
1249     // instruction.
1250     // NB! When we have the same attribute already existing on NewRetVal, but
1251     // with a differing value, the AttributeList's merge API honours the already
1252     // existing attribute value (i.e. attributes such as dereferenceable,
1253     // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1254     AttributeList AL = NewRetVal->getAttributes();
1255     AttributeList NewAL = AL.addRetAttributes(Context, Valid);
1256     NewRetVal->setAttributes(NewAL);
1257   }
1258 }
1259 
1260 /// If the inlined function has non-byval align arguments, then
1261 /// add @llvm.assume-based alignment assumptions to preserve this information.
1262 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1263   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1264     return;
1265 
1266   AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1267   auto &DL = CB.getCaller()->getParent()->getDataLayout();
1268 
1269   // To avoid inserting redundant assumptions, we should check for assumptions
1270   // already in the caller. To do this, we might need a DT of the caller.
1271   DominatorTree DT;
1272   bool DTCalculated = false;
1273 
1274   Function *CalledFunc = CB.getCalledFunction();
1275   for (Argument &Arg : CalledFunc->args()) {
1276     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1277     if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1278       if (!DTCalculated) {
1279         DT.recalculate(*CB.getCaller());
1280         DTCalculated = true;
1281       }
1282 
1283       // If we can already prove the asserted alignment in the context of the
1284       // caller, then don't bother inserting the assumption.
1285       Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1286       if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1287         continue;
1288 
1289       CallInst *NewAsmp =
1290           IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1291       AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1292     }
1293   }
1294 }
1295 
1296 /// Once we have cloned code over from a callee into the caller,
1297 /// update the specified callgraph to reflect the changes we made.
1298 /// Note that it's possible that not all code was copied over, so only
1299 /// some edges of the callgraph may remain.
1300 static void UpdateCallGraphAfterInlining(CallBase &CB,
1301                                          Function::iterator FirstNewBlock,
1302                                          ValueToValueMapTy &VMap,
1303                                          InlineFunctionInfo &IFI) {
1304   CallGraph &CG = *IFI.CG;
1305   const Function *Caller = CB.getCaller();
1306   const Function *Callee = CB.getCalledFunction();
1307   CallGraphNode *CalleeNode = CG[Callee];
1308   CallGraphNode *CallerNode = CG[Caller];
1309 
1310   // Since we inlined some uninlined call sites in the callee into the caller,
1311   // add edges from the caller to all of the callees of the callee.
1312   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1313 
1314   // Consider the case where CalleeNode == CallerNode.
1315   CallGraphNode::CalledFunctionsVector CallCache;
1316   if (CalleeNode == CallerNode) {
1317     CallCache.assign(I, E);
1318     I = CallCache.begin();
1319     E = CallCache.end();
1320   }
1321 
1322   for (; I != E; ++I) {
1323     // Skip 'refererence' call records.
1324     if (!I->first)
1325       continue;
1326 
1327     const Value *OrigCall = *I->first;
1328 
1329     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1330     // Only copy the edge if the call was inlined!
1331     if (VMI == VMap.end() || VMI->second == nullptr)
1332       continue;
1333 
1334     // If the call was inlined, but then constant folded, there is no edge to
1335     // add.  Check for this case.
1336     auto *NewCall = dyn_cast<CallBase>(VMI->second);
1337     if (!NewCall)
1338       continue;
1339 
1340     // We do not treat intrinsic calls like real function calls because we
1341     // expect them to become inline code; do not add an edge for an intrinsic.
1342     if (NewCall->getCalledFunction() &&
1343         NewCall->getCalledFunction()->isIntrinsic())
1344       continue;
1345 
1346     // Remember that this call site got inlined for the client of
1347     // InlineFunction.
1348     IFI.InlinedCalls.push_back(NewCall);
1349 
1350     // It's possible that inlining the callsite will cause it to go from an
1351     // indirect to a direct call by resolving a function pointer.  If this
1352     // happens, set the callee of the new call site to a more precise
1353     // destination.  This can also happen if the call graph node of the caller
1354     // was just unnecessarily imprecise.
1355     if (!I->second->getFunction())
1356       if (Function *F = NewCall->getCalledFunction()) {
1357         // Indirect call site resolved to direct call.
1358         CallerNode->addCalledFunction(NewCall, CG[F]);
1359 
1360         continue;
1361       }
1362 
1363     CallerNode->addCalledFunction(NewCall, I->second);
1364   }
1365 
1366   // Update the call graph by deleting the edge from Callee to Caller.  We must
1367   // do this after the loop above in case Caller and Callee are the same.
1368   CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1369 }
1370 
1371 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
1372                                     Module *M, BasicBlock *InsertBlock,
1373                                     InlineFunctionInfo &IFI) {
1374   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1375 
1376   Value *Size =
1377       Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
1378 
1379   // Always generate a memcpy of alignment 1 here because we don't know
1380   // the alignment of the src pointer.  Other optimizations can infer
1381   // better alignment.
1382   Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1383                        /*SrcAlign*/ Align(1), Size);
1384 }
1385 
1386 /// When inlining a call site that has a byval argument,
1387 /// we have to make the implicit memcpy explicit by adding it.
1388 static Value *HandleByValArgument(Type *ByValType, Value *Arg,
1389                                   Instruction *TheCall,
1390                                   const Function *CalledFunc,
1391                                   InlineFunctionInfo &IFI,
1392                                   unsigned ByValAlignment) {
1393   assert(cast<PointerType>(Arg->getType())
1394              ->isOpaqueOrPointeeTypeMatches(ByValType));
1395   Function *Caller = TheCall->getFunction();
1396   const DataLayout &DL = Caller->getParent()->getDataLayout();
1397 
1398   // If the called function is readonly, then it could not mutate the caller's
1399   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1400   // temporary.
1401   if (CalledFunc->onlyReadsMemory()) {
1402     // If the byval argument has a specified alignment that is greater than the
1403     // passed in pointer, then we either have to round up the input pointer or
1404     // give up on this transformation.
1405     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1406       return Arg;
1407 
1408     AssumptionCache *AC =
1409         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1410 
1411     // If the pointer is already known to be sufficiently aligned, or if we can
1412     // round it up to a larger alignment, then we don't need a temporary.
1413     if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1414                                    AC) >= ByValAlignment)
1415       return Arg;
1416 
1417     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1418     // for code quality, but rarely happens and is required for correctness.
1419   }
1420 
1421   // Create the alloca.  If we have DataLayout, use nice alignment.
1422   Align Alignment(DL.getPrefTypeAlignment(ByValType));
1423 
1424   // If the byval had an alignment specified, we *must* use at least that
1425   // alignment, as it is required by the byval argument (and uses of the
1426   // pointer inside the callee).
1427   Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1428 
1429   Value *NewAlloca =
1430       new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment,
1431                      Arg->getName(), &*Caller->begin()->begin());
1432   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1433 
1434   // Uses of the argument in the function should use our new alloca
1435   // instead.
1436   return NewAlloca;
1437 }
1438 
1439 // Check whether this Value is used by a lifetime intrinsic.
1440 static bool isUsedByLifetimeMarker(Value *V) {
1441   for (User *U : V->users())
1442     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1443       if (II->isLifetimeStartOrEnd())
1444         return true;
1445   return false;
1446 }
1447 
1448 // Check whether the given alloca already has
1449 // lifetime.start or lifetime.end intrinsics.
1450 static bool hasLifetimeMarkers(AllocaInst *AI) {
1451   Type *Ty = AI->getType();
1452   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1453                                        Ty->getPointerAddressSpace());
1454   if (Ty == Int8PtrTy)
1455     return isUsedByLifetimeMarker(AI);
1456 
1457   // Do a scan to find all the casts to i8*.
1458   for (User *U : AI->users()) {
1459     if (U->getType() != Int8PtrTy) continue;
1460     if (U->stripPointerCasts() != AI) continue;
1461     if (isUsedByLifetimeMarker(U))
1462       return true;
1463   }
1464   return false;
1465 }
1466 
1467 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1468 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1469 /// cannot be static.
1470 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1471   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1472 }
1473 
1474 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1475 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1476 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1477                                LLVMContext &Ctx,
1478                                DenseMap<const MDNode *, MDNode *> &IANodes) {
1479   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1480   return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1481                          OrigDL.getScope(), IA);
1482 }
1483 
1484 /// Update inlined instructions' line numbers to
1485 /// to encode location where these instructions are inlined.
1486 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1487                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1488   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1489   if (!TheCallDL)
1490     return;
1491 
1492   auto &Ctx = Fn->getContext();
1493   DILocation *InlinedAtNode = TheCallDL;
1494 
1495   // Create a unique call site, not to be confused with any other call from the
1496   // same location.
1497   InlinedAtNode = DILocation::getDistinct(
1498       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1499       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1500 
1501   // Cache the inlined-at nodes as they're built so they are reused, without
1502   // this every instruction's inlined-at chain would become distinct from each
1503   // other.
1504   DenseMap<const MDNode *, MDNode *> IANodes;
1505 
1506   // Check if we are not generating inline line tables and want to use
1507   // the call site location instead.
1508   bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1509 
1510   for (; FI != Fn->end(); ++FI) {
1511     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1512          BI != BE; ++BI) {
1513       // Loop metadata needs to be updated so that the start and end locs
1514       // reference inlined-at locations.
1515       auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1516                                 &IANodes](Metadata *MD) -> Metadata * {
1517         if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1518           return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1519         return MD;
1520       };
1521       updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1522 
1523       if (!NoInlineLineTables)
1524         if (DebugLoc DL = BI->getDebugLoc()) {
1525           DebugLoc IDL =
1526               inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1527           BI->setDebugLoc(IDL);
1528           continue;
1529         }
1530 
1531       if (CalleeHasDebugInfo && !NoInlineLineTables)
1532         continue;
1533 
1534       // If the inlined instruction has no line number, or if inline info
1535       // is not being generated, make it look as if it originates from the call
1536       // location. This is important for ((__always_inline, __nodebug__))
1537       // functions which must use caller location for all instructions in their
1538       // function body.
1539 
1540       // Don't update static allocas, as they may get moved later.
1541       if (auto *AI = dyn_cast<AllocaInst>(BI))
1542         if (allocaWouldBeStaticInEntry(AI))
1543           continue;
1544 
1545       BI->setDebugLoc(TheCallDL);
1546     }
1547 
1548     // Remove debug info intrinsics if we're not keeping inline info.
1549     if (NoInlineLineTables) {
1550       BasicBlock::iterator BI = FI->begin();
1551       while (BI != FI->end()) {
1552         if (isa<DbgInfoIntrinsic>(BI)) {
1553           BI = BI->eraseFromParent();
1554           continue;
1555         }
1556         ++BI;
1557       }
1558     }
1559 
1560   }
1561 }
1562 
1563 /// Update the block frequencies of the caller after a callee has been inlined.
1564 ///
1565 /// Each block cloned into the caller has its block frequency scaled by the
1566 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1567 /// callee's entry block gets the same frequency as the callsite block and the
1568 /// relative frequencies of all cloned blocks remain the same after cloning.
1569 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1570                             const ValueToValueMapTy &VMap,
1571                             BlockFrequencyInfo *CallerBFI,
1572                             BlockFrequencyInfo *CalleeBFI,
1573                             const BasicBlock &CalleeEntryBlock) {
1574   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1575   for (auto Entry : VMap) {
1576     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1577       continue;
1578     auto *OrigBB = cast<BasicBlock>(Entry.first);
1579     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1580     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1581     if (!ClonedBBs.insert(ClonedBB).second) {
1582       // Multiple blocks in the callee might get mapped to one cloned block in
1583       // the caller since we prune the callee as we clone it. When that happens,
1584       // we want to use the maximum among the original blocks' frequencies.
1585       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1586       if (NewFreq > Freq)
1587         Freq = NewFreq;
1588     }
1589     CallerBFI->setBlockFreq(ClonedBB, Freq);
1590   }
1591   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1592   CallerBFI->setBlockFreqAndScale(
1593       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1594       ClonedBBs);
1595 }
1596 
1597 /// Update the branch metadata for cloned call instructions.
1598 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1599                               const ProfileCount &CalleeEntryCount,
1600                               const CallBase &TheCall, ProfileSummaryInfo *PSI,
1601                               BlockFrequencyInfo *CallerBFI) {
1602   if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
1603     return;
1604   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1605   int64_t CallCount =
1606       std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
1607   updateProfileCallee(Callee, -CallCount, &VMap);
1608 }
1609 
1610 void llvm::updateProfileCallee(
1611     Function *Callee, int64_t EntryDelta,
1612     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1613   auto CalleeCount = Callee->getEntryCount();
1614   if (!CalleeCount.hasValue())
1615     return;
1616 
1617   const uint64_t PriorEntryCount = CalleeCount->getCount();
1618 
1619   // Since CallSiteCount is an estimate, it could exceed the original callee
1620   // count and has to be set to 0 so guard against underflow.
1621   const uint64_t NewEntryCount =
1622       (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
1623           ? 0
1624           : PriorEntryCount + EntryDelta;
1625 
1626   // During inlining ?
1627   if (VMap) {
1628     uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
1629     for (auto Entry : *VMap)
1630       if (isa<CallInst>(Entry.first))
1631         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1632           CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
1633   }
1634 
1635   if (EntryDelta) {
1636     Callee->setEntryCount(NewEntryCount);
1637 
1638     for (BasicBlock &BB : *Callee)
1639       // No need to update the callsite if it is pruned during inlining.
1640       if (!VMap || VMap->count(&BB))
1641         for (Instruction &I : BB)
1642           if (CallInst *CI = dyn_cast<CallInst>(&I))
1643             CI->updateProfWeight(NewEntryCount, PriorEntryCount);
1644   }
1645 }
1646 
1647 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1648 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1649 /// after the call. This function inlines the retainRV/claimRV calls.
1650 ///
1651 /// There are three cases to consider:
1652 ///
1653 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1654 ///    object in the callee return block, the autoreleaseRV call and the
1655 ///    retainRV/claimRV call in the caller cancel out. If the call in the caller
1656 ///    is a claimRV call, a call to objc_release is emitted.
1657 ///
1658 /// 2. If there is a call in the callee return block that doesn't have operand
1659 ///    bundle "clang.arc.attachedcall", the operand bundle on the original call
1660 ///    is transferred to the call in the callee.
1661 ///
1662 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1663 ///    a retainRV call.
1664 static void
1665 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
1666                            const SmallVectorImpl<ReturnInst *> &Returns) {
1667   Module *Mod = CB.getModule();
1668   assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
1669   bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
1670        IsClaimRV = !IsRetainRV;
1671 
1672   for (auto *RI : Returns) {
1673     Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1674     bool InsertRetainCall = IsRetainRV;
1675     IRBuilder<> Builder(RI->getContext());
1676 
1677     // Walk backwards through the basic block looking for either a matching
1678     // autoreleaseRV call or an unannotated call.
1679     auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
1680                                       RI->getParent()->rend());
1681     for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
1682       // Ignore casts.
1683       if (isa<CastInst>(I))
1684         continue;
1685 
1686       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1687         if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
1688             !II->hasNUses(0) ||
1689             objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
1690           break;
1691 
1692         // If we've found a matching authoreleaseRV call:
1693         // - If claimRV is attached to the call, insert a call to objc_release
1694         //   and erase the autoreleaseRV call.
1695         // - If retainRV is attached to the call, just erase the autoreleaseRV
1696         //   call.
1697         if (IsClaimRV) {
1698           Builder.SetInsertPoint(II);
1699           Function *IFn =
1700               Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1701           Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1702           Builder.CreateCall(IFn, BC, "");
1703         }
1704         II->eraseFromParent();
1705         InsertRetainCall = false;
1706         break;
1707       }
1708 
1709       auto *CI = dyn_cast<CallInst>(&I);
1710 
1711       if (!CI)
1712         break;
1713 
1714       if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
1715           objcarc::hasAttachedCallOpBundle(CI))
1716         break;
1717 
1718       // If we've found an unannotated call that defines RetOpnd, add a
1719       // "clang.arc.attachedcall" operand bundle.
1720       Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
1721       OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1722       auto *NewCall = CallBase::addOperandBundle(
1723           CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1724       NewCall->copyMetadata(*CI);
1725       CI->replaceAllUsesWith(NewCall);
1726       CI->eraseFromParent();
1727       InsertRetainCall = false;
1728       break;
1729     }
1730 
1731     if (InsertRetainCall) {
1732       // The retainRV is attached to the call and we've failed to find a
1733       // matching autoreleaseRV or an annotated call in the callee. Emit a call
1734       // to objc_retain.
1735       Builder.SetInsertPoint(RI);
1736       Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1737       Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1738       Builder.CreateCall(IFn, BC, "");
1739     }
1740   }
1741 }
1742 
1743 /// This function inlines the called function into the basic block of the
1744 /// caller. This returns false if it is not possible to inline this call.
1745 /// The program is still in a well defined state if this occurs though.
1746 ///
1747 /// Note that this only does one level of inlining.  For example, if the
1748 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1749 /// exists in the instruction stream.  Similarly this will inline a recursive
1750 /// function by one level.
1751 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1752                                         AAResults *CalleeAAR,
1753                                         bool InsertLifetime,
1754                                         Function *ForwardVarArgsTo) {
1755   assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1756 
1757   // FIXME: we don't inline callbr yet.
1758   if (isa<CallBrInst>(CB))
1759     return InlineResult::failure("We don't inline callbr yet.");
1760 
1761   // If IFI has any state in it, zap it before we fill it in.
1762   IFI.reset();
1763 
1764   Function *CalledFunc = CB.getCalledFunction();
1765   if (!CalledFunc ||               // Can't inline external function or indirect
1766       CalledFunc->isDeclaration()) // call!
1767     return InlineResult::failure("external or indirect");
1768 
1769   // The inliner does not know how to inline through calls with operand bundles
1770   // in general ...
1771   if (CB.hasOperandBundles()) {
1772     for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1773       uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1774       // ... but it knows how to inline through "deopt" operand bundles ...
1775       if (Tag == LLVMContext::OB_deopt)
1776         continue;
1777       // ... and "funclet" operand bundles.
1778       if (Tag == LLVMContext::OB_funclet)
1779         continue;
1780       if (Tag == LLVMContext::OB_clang_arc_attachedcall)
1781         continue;
1782 
1783       return InlineResult::failure("unsupported operand bundle");
1784     }
1785   }
1786 
1787   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1788   // calls that we inline.
1789   bool MarkNoUnwind = CB.doesNotThrow();
1790 
1791   BasicBlock *OrigBB = CB.getParent();
1792   Function *Caller = OrigBB->getParent();
1793 
1794   // GC poses two hazards to inlining, which only occur when the callee has GC:
1795   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1796   //     caller.
1797   //  2. If the caller has a differing GC, it is invalid to inline.
1798   if (CalledFunc->hasGC()) {
1799     if (!Caller->hasGC())
1800       Caller->setGC(CalledFunc->getGC());
1801     else if (CalledFunc->getGC() != Caller->getGC())
1802       return InlineResult::failure("incompatible GC");
1803   }
1804 
1805   // Get the personality function from the callee if it contains a landing pad.
1806   Constant *CalledPersonality =
1807       CalledFunc->hasPersonalityFn()
1808           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1809           : nullptr;
1810 
1811   // Find the personality function used by the landing pads of the caller. If it
1812   // exists, then check to see that it matches the personality function used in
1813   // the callee.
1814   Constant *CallerPersonality =
1815       Caller->hasPersonalityFn()
1816           ? Caller->getPersonalityFn()->stripPointerCasts()
1817           : nullptr;
1818   if (CalledPersonality) {
1819     if (!CallerPersonality)
1820       Caller->setPersonalityFn(CalledPersonality);
1821     // If the personality functions match, then we can perform the
1822     // inlining. Otherwise, we can't inline.
1823     // TODO: This isn't 100% true. Some personality functions are proper
1824     //       supersets of others and can be used in place of the other.
1825     else if (CalledPersonality != CallerPersonality)
1826       return InlineResult::failure("incompatible personality");
1827   }
1828 
1829   // We need to figure out which funclet the callsite was in so that we may
1830   // properly nest the callee.
1831   Instruction *CallSiteEHPad = nullptr;
1832   if (CallerPersonality) {
1833     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1834     if (isScopedEHPersonality(Personality)) {
1835       Optional<OperandBundleUse> ParentFunclet =
1836           CB.getOperandBundle(LLVMContext::OB_funclet);
1837       if (ParentFunclet)
1838         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1839 
1840       // OK, the inlining site is legal.  What about the target function?
1841 
1842       if (CallSiteEHPad) {
1843         if (Personality == EHPersonality::MSVC_CXX) {
1844           // The MSVC personality cannot tolerate catches getting inlined into
1845           // cleanup funclets.
1846           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1847             // Ok, the call site is within a cleanuppad.  Let's check the callee
1848             // for catchpads.
1849             for (const BasicBlock &CalledBB : *CalledFunc) {
1850               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1851                 return InlineResult::failure("catch in cleanup funclet");
1852             }
1853           }
1854         } else if (isAsynchronousEHPersonality(Personality)) {
1855           // SEH is even less tolerant, there may not be any sort of exceptional
1856           // funclet in the callee.
1857           for (const BasicBlock &CalledBB : *CalledFunc) {
1858             if (CalledBB.isEHPad())
1859               return InlineResult::failure("SEH in cleanup funclet");
1860           }
1861         }
1862       }
1863     }
1864   }
1865 
1866   // Determine if we are dealing with a call in an EHPad which does not unwind
1867   // to caller.
1868   bool EHPadForCallUnwindsLocally = false;
1869   if (CallSiteEHPad && isa<CallInst>(CB)) {
1870     UnwindDestMemoTy FuncletUnwindMap;
1871     Value *CallSiteUnwindDestToken =
1872         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1873 
1874     EHPadForCallUnwindsLocally =
1875         CallSiteUnwindDestToken &&
1876         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1877   }
1878 
1879   // Get an iterator to the last basic block in the function, which will have
1880   // the new function inlined after it.
1881   Function::iterator LastBlock = --Caller->end();
1882 
1883   // Make sure to capture all of the return instructions from the cloned
1884   // function.
1885   SmallVector<ReturnInst*, 8> Returns;
1886   ClonedCodeInfo InlinedFunctionInfo;
1887   Function::iterator FirstNewBlock;
1888 
1889   { // Scope to destroy VMap after cloning.
1890     ValueToValueMapTy VMap;
1891     struct ByValInit {
1892       Value *Dst;
1893       Value *Src;
1894       Type *Ty;
1895     };
1896     // Keep a list of pair (dst, src) to emit byval initializations.
1897     SmallVector<ByValInit, 4> ByValInits;
1898 
1899     // When inlining a function that contains noalias scope metadata,
1900     // this metadata needs to be cloned so that the inlined blocks
1901     // have different "unique scopes" at every call site.
1902     // Track the metadata that must be cloned. Do this before other changes to
1903     // the function, so that we do not get in trouble when inlining caller ==
1904     // callee.
1905     ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1906 
1907     auto &DL = Caller->getParent()->getDataLayout();
1908 
1909     // Calculate the vector of arguments to pass into the function cloner, which
1910     // matches up the formal to the actual argument values.
1911     auto AI = CB.arg_begin();
1912     unsigned ArgNo = 0;
1913     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1914          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1915       Value *ActualArg = *AI;
1916 
1917       // When byval arguments actually inlined, we need to make the copy implied
1918       // by them explicit.  However, we don't do this if the callee is readonly
1919       // or readnone, because the copy would be unneeded: the callee doesn't
1920       // modify the struct.
1921       if (CB.isByValArgument(ArgNo)) {
1922         ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
1923                                         &CB, CalledFunc, IFI,
1924                                         CalledFunc->getParamAlignment(ArgNo));
1925         if (ActualArg != *AI)
1926           ByValInits.push_back(
1927               {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
1928       }
1929 
1930       VMap[&*I] = ActualArg;
1931     }
1932 
1933     // TODO: Remove this when users have been updated to the assume bundles.
1934     // Add alignment assumptions if necessary. We do this before the inlined
1935     // instructions are actually cloned into the caller so that we can easily
1936     // check what will be known at the start of the inlined code.
1937     AddAlignmentAssumptions(CB, IFI);
1938 
1939     AssumptionCache *AC =
1940         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1941 
1942     /// Preserve all attributes on of the call and its parameters.
1943     salvageKnowledge(&CB, AC);
1944 
1945     // We want the inliner to prune the code as it copies.  We would LOVE to
1946     // have no dead or constant instructions leftover after inlining occurs
1947     // (which can happen, e.g., because an argument was constant), but we'll be
1948     // happy with whatever the cloner can do.
1949     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1950                               /*ModuleLevelChanges=*/false, Returns, ".i",
1951                               &InlinedFunctionInfo);
1952     // Remember the first block that is newly cloned over.
1953     FirstNewBlock = LastBlock; ++FirstNewBlock;
1954 
1955     // Insert retainRV/clainRV runtime calls.
1956     objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
1957     if (RVCallKind != objcarc::ARCInstKind::None)
1958       inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
1959 
1960     // Updated caller/callee profiles only when requested. For sample loader
1961     // inlining, the context-sensitive inlinee profile doesn't need to be
1962     // subtracted from callee profile, and the inlined clone also doesn't need
1963     // to be scaled based on call site count.
1964     if (IFI.UpdateProfile) {
1965       if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1966         // Update the BFI of blocks cloned into the caller.
1967         updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1968                         CalledFunc->front());
1969 
1970       if (auto Profile = CalledFunc->getEntryCount())
1971         updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
1972                           IFI.CallerBFI);
1973     }
1974 
1975     // Inject byval arguments initialization.
1976     for (ByValInit &Init : ByValInits)
1977       HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
1978                               &*FirstNewBlock, IFI);
1979 
1980     Optional<OperandBundleUse> ParentDeopt =
1981         CB.getOperandBundle(LLVMContext::OB_deopt);
1982     if (ParentDeopt) {
1983       SmallVector<OperandBundleDef, 2> OpDefs;
1984 
1985       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1986         CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1987         if (!ICS)
1988           continue; // instruction was DCE'd or RAUW'ed to undef
1989 
1990         OpDefs.clear();
1991 
1992         OpDefs.reserve(ICS->getNumOperandBundles());
1993 
1994         for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1995              ++COBi) {
1996           auto ChildOB = ICS->getOperandBundleAt(COBi);
1997           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1998             // If the inlined call has other operand bundles, let them be
1999             OpDefs.emplace_back(ChildOB);
2000             continue;
2001           }
2002 
2003           // It may be useful to separate this logic (of handling operand
2004           // bundles) out to a separate "policy" component if this gets crowded.
2005           // Prepend the parent's deoptimization continuation to the newly
2006           // inlined call's deoptimization continuation.
2007           std::vector<Value *> MergedDeoptArgs;
2008           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2009                                   ChildOB.Inputs.size());
2010 
2011           llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2012           llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2013 
2014           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2015         }
2016 
2017         Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2018 
2019         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2020         // this even if the call returns void.
2021         ICS->replaceAllUsesWith(NewI);
2022 
2023         VH = nullptr;
2024         ICS->eraseFromParent();
2025       }
2026     }
2027 
2028     // Update the callgraph if requested.
2029     if (IFI.CG)
2030       UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2031 
2032     // For 'nodebug' functions, the associated DISubprogram is always null.
2033     // Conservatively avoid propagating the callsite debug location to
2034     // instructions inlined from a function whose DISubprogram is not null.
2035     fixupLineNumbers(Caller, FirstNewBlock, &CB,
2036                      CalledFunc->getSubprogram() != nullptr);
2037 
2038     // Now clone the inlined noalias scope metadata.
2039     SAMetadataCloner.clone();
2040     SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2041 
2042     // Add noalias metadata if necessary.
2043     AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
2044 
2045     // Clone return attributes on the callsite into the calls within the inlined
2046     // function which feed into its return value.
2047     AddReturnAttributes(CB, VMap);
2048 
2049     // Propagate metadata on the callsite if necessary.
2050     PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2051 
2052     // Register any cloned assumptions.
2053     if (IFI.GetAssumptionCache)
2054       for (BasicBlock &NewBlock :
2055            make_range(FirstNewBlock->getIterator(), Caller->end()))
2056         for (Instruction &I : NewBlock)
2057           if (auto *II = dyn_cast<AssumeInst>(&I))
2058             IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2059   }
2060 
2061   // If there are any alloca instructions in the block that used to be the entry
2062   // block for the callee, move them to the entry block of the caller.  First
2063   // calculate which instruction they should be inserted before.  We insert the
2064   // instructions at the end of the current alloca list.
2065   {
2066     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2067     for (BasicBlock::iterator I = FirstNewBlock->begin(),
2068          E = FirstNewBlock->end(); I != E; ) {
2069       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2070       if (!AI) continue;
2071 
2072       // If the alloca is now dead, remove it.  This often occurs due to code
2073       // specialization.
2074       if (AI->use_empty()) {
2075         AI->eraseFromParent();
2076         continue;
2077       }
2078 
2079       if (!allocaWouldBeStaticInEntry(AI))
2080         continue;
2081 
2082       // Keep track of the static allocas that we inline into the caller.
2083       IFI.StaticAllocas.push_back(AI);
2084 
2085       // Scan for the block of allocas that we can move over, and move them
2086       // all at once.
2087       while (isa<AllocaInst>(I) &&
2088              !cast<AllocaInst>(I)->use_empty() &&
2089              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2090         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2091         ++I;
2092       }
2093 
2094       // Transfer all of the allocas over in a block.  Using splice means
2095       // that the instructions aren't removed from the symbol table, then
2096       // reinserted.
2097       Caller->getEntryBlock().getInstList().splice(
2098           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2099     }
2100   }
2101 
2102   SmallVector<Value*,4> VarArgsToForward;
2103   SmallVector<AttributeSet, 4> VarArgsAttrs;
2104   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2105        i < CB.arg_size(); i++) {
2106     VarArgsToForward.push_back(CB.getArgOperand(i));
2107     VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
2108   }
2109 
2110   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2111   if (InlinedFunctionInfo.ContainsCalls) {
2112     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2113     if (CallInst *CI = dyn_cast<CallInst>(&CB))
2114       CallSiteTailKind = CI->getTailCallKind();
2115 
2116     // For inlining purposes, the "notail" marker is the same as no marker.
2117     if (CallSiteTailKind == CallInst::TCK_NoTail)
2118       CallSiteTailKind = CallInst::TCK_None;
2119 
2120     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2121          ++BB) {
2122       for (Instruction &I : llvm::make_early_inc_range(*BB)) {
2123         CallInst *CI = dyn_cast<CallInst>(&I);
2124         if (!CI)
2125           continue;
2126 
2127         // Forward varargs from inlined call site to calls to the
2128         // ForwardVarArgsTo function, if requested, and to musttail calls.
2129         if (!VarArgsToForward.empty() &&
2130             ((ForwardVarArgsTo &&
2131               CI->getCalledFunction() == ForwardVarArgsTo) ||
2132              CI->isMustTailCall())) {
2133           // Collect attributes for non-vararg parameters.
2134           AttributeList Attrs = CI->getAttributes();
2135           SmallVector<AttributeSet, 8> ArgAttrs;
2136           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2137             for (unsigned ArgNo = 0;
2138                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2139               ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
2140           }
2141 
2142           // Add VarArg attributes.
2143           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2144           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
2145                                      Attrs.getRetAttrs(), ArgAttrs);
2146           // Add VarArgs to existing parameters.
2147           SmallVector<Value *, 6> Params(CI->args());
2148           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2149           CallInst *NewCI = CallInst::Create(
2150               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2151           NewCI->setDebugLoc(CI->getDebugLoc());
2152           NewCI->setAttributes(Attrs);
2153           NewCI->setCallingConv(CI->getCallingConv());
2154           CI->replaceAllUsesWith(NewCI);
2155           CI->eraseFromParent();
2156           CI = NewCI;
2157         }
2158 
2159         if (Function *F = CI->getCalledFunction())
2160           InlinedDeoptimizeCalls |=
2161               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2162 
2163         // We need to reduce the strength of any inlined tail calls.  For
2164         // musttail, we have to avoid introducing potential unbounded stack
2165         // growth.  For example, if functions 'f' and 'g' are mutually recursive
2166         // with musttail, we can inline 'g' into 'f' so long as we preserve
2167         // musttail on the cloned call to 'f'.  If either the inlined call site
2168         // or the cloned call site is *not* musttail, the program already has
2169         // one frame of stack growth, so it's safe to remove musttail.  Here is
2170         // a table of example transformations:
2171         //
2172         //    f -> musttail g -> musttail f  ==>  f -> musttail f
2173         //    f -> musttail g ->     tail f  ==>  f ->     tail f
2174         //    f ->          g -> musttail f  ==>  f ->          f
2175         //    f ->          g ->     tail f  ==>  f ->          f
2176         //
2177         // Inlined notail calls should remain notail calls.
2178         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2179         if (ChildTCK != CallInst::TCK_NoTail)
2180           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2181         CI->setTailCallKind(ChildTCK);
2182         InlinedMustTailCalls |= CI->isMustTailCall();
2183 
2184         // Calls inlined through a 'nounwind' call site should be marked
2185         // 'nounwind'.
2186         if (MarkNoUnwind)
2187           CI->setDoesNotThrow();
2188       }
2189     }
2190   }
2191 
2192   // Leave lifetime markers for the static alloca's, scoping them to the
2193   // function we just inlined.
2194   // We need to insert lifetime intrinsics even at O0 to avoid invalid
2195   // access caused by multithreaded coroutines. The check
2196   // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2197   if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2198       !IFI.StaticAllocas.empty()) {
2199     IRBuilder<> builder(&FirstNewBlock->front());
2200     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2201       AllocaInst *AI = IFI.StaticAllocas[ai];
2202       // Don't mark swifterror allocas. They can't have bitcast uses.
2203       if (AI->isSwiftError())
2204         continue;
2205 
2206       // If the alloca is already scoped to something smaller than the whole
2207       // function then there's no need to add redundant, less accurate markers.
2208       if (hasLifetimeMarkers(AI))
2209         continue;
2210 
2211       // Try to determine the size of the allocation.
2212       ConstantInt *AllocaSize = nullptr;
2213       if (ConstantInt *AIArraySize =
2214           dyn_cast<ConstantInt>(AI->getArraySize())) {
2215         auto &DL = Caller->getParent()->getDataLayout();
2216         Type *AllocaType = AI->getAllocatedType();
2217         TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2218         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2219 
2220         // Don't add markers for zero-sized allocas.
2221         if (AllocaArraySize == 0)
2222           continue;
2223 
2224         // Check that array size doesn't saturate uint64_t and doesn't
2225         // overflow when it's multiplied by type size.
2226         if (!AllocaTypeSize.isScalable() &&
2227             AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2228             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2229                 AllocaTypeSize.getFixedSize()) {
2230           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2231                                         AllocaArraySize * AllocaTypeSize);
2232         }
2233       }
2234 
2235       builder.CreateLifetimeStart(AI, AllocaSize);
2236       for (ReturnInst *RI : Returns) {
2237         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2238         // call and a return.  The return kills all local allocas.
2239         if (InlinedMustTailCalls &&
2240             RI->getParent()->getTerminatingMustTailCall())
2241           continue;
2242         if (InlinedDeoptimizeCalls &&
2243             RI->getParent()->getTerminatingDeoptimizeCall())
2244           continue;
2245         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2246       }
2247     }
2248   }
2249 
2250   // If the inlined code contained dynamic alloca instructions, wrap the inlined
2251   // code with llvm.stacksave/llvm.stackrestore intrinsics.
2252   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2253     Module *M = Caller->getParent();
2254     // Get the two intrinsics we care about.
2255     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2256     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2257 
2258     // Insert the llvm.stacksave.
2259     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2260                              .CreateCall(StackSave, {}, "savedstack");
2261 
2262     // Insert a call to llvm.stackrestore before any return instructions in the
2263     // inlined function.
2264     for (ReturnInst *RI : Returns) {
2265       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2266       // call and a return.  The return will restore the stack pointer.
2267       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2268         continue;
2269       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2270         continue;
2271       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2272     }
2273   }
2274 
2275   // If we are inlining for an invoke instruction, we must make sure to rewrite
2276   // any call instructions into invoke instructions.  This is sensitive to which
2277   // funclet pads were top-level in the inlinee, so must be done before
2278   // rewriting the "parent pad" links.
2279   if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2280     BasicBlock *UnwindDest = II->getUnwindDest();
2281     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2282     if (isa<LandingPadInst>(FirstNonPHI)) {
2283       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2284     } else {
2285       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2286     }
2287   }
2288 
2289   // Update the lexical scopes of the new funclets and callsites.
2290   // Anything that had 'none' as its parent is now nested inside the callsite's
2291   // EHPad.
2292 
2293   if (CallSiteEHPad) {
2294     for (Function::iterator BB = FirstNewBlock->getIterator(),
2295                             E = Caller->end();
2296          BB != E; ++BB) {
2297       // Add bundle operands to any top-level call sites.
2298       SmallVector<OperandBundleDef, 1> OpBundles;
2299       for (Instruction &II : llvm::make_early_inc_range(*BB)) {
2300         CallBase *I = dyn_cast<CallBase>(&II);
2301         if (!I)
2302           continue;
2303 
2304         // Skip call sites which are nounwind intrinsics.
2305         auto *CalledFn =
2306             dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2307         if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2308           continue;
2309 
2310         // Skip call sites which already have a "funclet" bundle.
2311         if (I->getOperandBundle(LLVMContext::OB_funclet))
2312           continue;
2313 
2314         I->getOperandBundlesAsDefs(OpBundles);
2315         OpBundles.emplace_back("funclet", CallSiteEHPad);
2316 
2317         Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2318         NewInst->takeName(I);
2319         I->replaceAllUsesWith(NewInst);
2320         I->eraseFromParent();
2321 
2322         OpBundles.clear();
2323       }
2324 
2325       // It is problematic if the inlinee has a cleanupret which unwinds to
2326       // caller and we inline it into a call site which doesn't unwind but into
2327       // an EH pad that does.  Such an edge must be dynamically unreachable.
2328       // As such, we replace the cleanupret with unreachable.
2329       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2330         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2331           changeToUnreachable(CleanupRet);
2332 
2333       Instruction *I = BB->getFirstNonPHI();
2334       if (!I->isEHPad())
2335         continue;
2336 
2337       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2338         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2339           CatchSwitch->setParentPad(CallSiteEHPad);
2340       } else {
2341         auto *FPI = cast<FuncletPadInst>(I);
2342         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2343           FPI->setParentPad(CallSiteEHPad);
2344       }
2345     }
2346   }
2347 
2348   if (InlinedDeoptimizeCalls) {
2349     // We need to at least remove the deoptimizing returns from the Return set,
2350     // so that the control flow from those returns does not get merged into the
2351     // caller (but terminate it instead).  If the caller's return type does not
2352     // match the callee's return type, we also need to change the return type of
2353     // the intrinsic.
2354     if (Caller->getReturnType() == CB.getType()) {
2355       llvm::erase_if(Returns, [](ReturnInst *RI) {
2356         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2357       });
2358     } else {
2359       SmallVector<ReturnInst *, 8> NormalReturns;
2360       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2361           Caller->getParent(), Intrinsic::experimental_deoptimize,
2362           {Caller->getReturnType()});
2363 
2364       for (ReturnInst *RI : Returns) {
2365         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2366         if (!DeoptCall) {
2367           NormalReturns.push_back(RI);
2368           continue;
2369         }
2370 
2371         // The calling convention on the deoptimize call itself may be bogus,
2372         // since the code we're inlining may have undefined behavior (and may
2373         // never actually execute at runtime); but all
2374         // @llvm.experimental.deoptimize declarations have to have the same
2375         // calling convention in a well-formed module.
2376         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2377         NewDeoptIntrinsic->setCallingConv(CallingConv);
2378         auto *CurBB = RI->getParent();
2379         RI->eraseFromParent();
2380 
2381         SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2382 
2383         SmallVector<OperandBundleDef, 1> OpBundles;
2384         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2385         auto DeoptAttributes = DeoptCall->getAttributes();
2386         DeoptCall->eraseFromParent();
2387         assert(!OpBundles.empty() &&
2388                "Expected at least the deopt operand bundle");
2389 
2390         IRBuilder<> Builder(CurBB);
2391         CallInst *NewDeoptCall =
2392             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2393         NewDeoptCall->setCallingConv(CallingConv);
2394         NewDeoptCall->setAttributes(DeoptAttributes);
2395         if (NewDeoptCall->getType()->isVoidTy())
2396           Builder.CreateRetVoid();
2397         else
2398           Builder.CreateRet(NewDeoptCall);
2399       }
2400 
2401       // Leave behind the normal returns so we can merge control flow.
2402       std::swap(Returns, NormalReturns);
2403     }
2404   }
2405 
2406   // Handle any inlined musttail call sites.  In order for a new call site to be
2407   // musttail, the source of the clone and the inlined call site must have been
2408   // musttail.  Therefore it's safe to return without merging control into the
2409   // phi below.
2410   if (InlinedMustTailCalls) {
2411     // Check if we need to bitcast the result of any musttail calls.
2412     Type *NewRetTy = Caller->getReturnType();
2413     bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2414 
2415     // Handle the returns preceded by musttail calls separately.
2416     SmallVector<ReturnInst *, 8> NormalReturns;
2417     for (ReturnInst *RI : Returns) {
2418       CallInst *ReturnedMustTail =
2419           RI->getParent()->getTerminatingMustTailCall();
2420       if (!ReturnedMustTail) {
2421         NormalReturns.push_back(RI);
2422         continue;
2423       }
2424       if (!NeedBitCast)
2425         continue;
2426 
2427       // Delete the old return and any preceding bitcast.
2428       BasicBlock *CurBB = RI->getParent();
2429       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2430       RI->eraseFromParent();
2431       if (OldCast)
2432         OldCast->eraseFromParent();
2433 
2434       // Insert a new bitcast and return with the right type.
2435       IRBuilder<> Builder(CurBB);
2436       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2437     }
2438 
2439     // Leave behind the normal returns so we can merge control flow.
2440     std::swap(Returns, NormalReturns);
2441   }
2442 
2443   // Now that all of the transforms on the inlined code have taken place but
2444   // before we splice the inlined code into the CFG and lose track of which
2445   // blocks were actually inlined, collect the call sites. We only do this if
2446   // call graph updates weren't requested, as those provide value handle based
2447   // tracking of inlined call sites instead. Calls to intrinsics are not
2448   // collected because they are not inlineable.
2449   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2450     // Otherwise just collect the raw call sites that were inlined.
2451     for (BasicBlock &NewBB :
2452          make_range(FirstNewBlock->getIterator(), Caller->end()))
2453       for (Instruction &I : NewBB)
2454         if (auto *CB = dyn_cast<CallBase>(&I))
2455           if (!(CB->getCalledFunction() &&
2456                 CB->getCalledFunction()->isIntrinsic()))
2457             IFI.InlinedCallSites.push_back(CB);
2458   }
2459 
2460   // If we cloned in _exactly one_ basic block, and if that block ends in a
2461   // return instruction, we splice the body of the inlined callee directly into
2462   // the calling basic block.
2463   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2464     // Move all of the instructions right before the call.
2465     OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2466                                  FirstNewBlock->begin(), FirstNewBlock->end());
2467     // Remove the cloned basic block.
2468     Caller->getBasicBlockList().pop_back();
2469 
2470     // If the call site was an invoke instruction, add a branch to the normal
2471     // destination.
2472     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2473       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2474       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2475     }
2476 
2477     // If the return instruction returned a value, replace uses of the call with
2478     // uses of the returned value.
2479     if (!CB.use_empty()) {
2480       ReturnInst *R = Returns[0];
2481       if (&CB == R->getReturnValue())
2482         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2483       else
2484         CB.replaceAllUsesWith(R->getReturnValue());
2485     }
2486     // Since we are now done with the Call/Invoke, we can delete it.
2487     CB.eraseFromParent();
2488 
2489     // Since we are now done with the return instruction, delete it also.
2490     Returns[0]->eraseFromParent();
2491 
2492     // We are now done with the inlining.
2493     return InlineResult::success();
2494   }
2495 
2496   // Otherwise, we have the normal case, of more than one block to inline or
2497   // multiple return sites.
2498 
2499   // We want to clone the entire callee function into the hole between the
2500   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2501   // this is an invoke instruction or a call instruction.
2502   BasicBlock *AfterCallBB;
2503   BranchInst *CreatedBranchToNormalDest = nullptr;
2504   if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2505 
2506     // Add an unconditional branch to make this look like the CallInst case...
2507     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2508 
2509     // Split the basic block.  This guarantees that no PHI nodes will have to be
2510     // updated due to new incoming edges, and make the invoke case more
2511     // symmetric to the call case.
2512     AfterCallBB =
2513         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2514                                 CalledFunc->getName() + ".exit");
2515 
2516   } else { // It's a call
2517     // If this is a call instruction, we need to split the basic block that
2518     // the call lives in.
2519     //
2520     AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2521                                           CalledFunc->getName() + ".exit");
2522   }
2523 
2524   if (IFI.CallerBFI) {
2525     // Copy original BB's block frequency to AfterCallBB
2526     IFI.CallerBFI->setBlockFreq(
2527         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2528   }
2529 
2530   // Change the branch that used to go to AfterCallBB to branch to the first
2531   // basic block of the inlined function.
2532   //
2533   Instruction *Br = OrigBB->getTerminator();
2534   assert(Br && Br->getOpcode() == Instruction::Br &&
2535          "splitBasicBlock broken!");
2536   Br->setOperand(0, &*FirstNewBlock);
2537 
2538   // Now that the function is correct, make it a little bit nicer.  In
2539   // particular, move the basic blocks inserted from the end of the function
2540   // into the space made by splitting the source basic block.
2541   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2542                                      Caller->getBasicBlockList(), FirstNewBlock,
2543                                      Caller->end());
2544 
2545   // Handle all of the return instructions that we just cloned in, and eliminate
2546   // any users of the original call/invoke instruction.
2547   Type *RTy = CalledFunc->getReturnType();
2548 
2549   PHINode *PHI = nullptr;
2550   if (Returns.size() > 1) {
2551     // The PHI node should go at the front of the new basic block to merge all
2552     // possible incoming values.
2553     if (!CB.use_empty()) {
2554       PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2555                             &AfterCallBB->front());
2556       // Anything that used the result of the function call should now use the
2557       // PHI node as their operand.
2558       CB.replaceAllUsesWith(PHI);
2559     }
2560 
2561     // Loop over all of the return instructions adding entries to the PHI node
2562     // as appropriate.
2563     if (PHI) {
2564       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2565         ReturnInst *RI = Returns[i];
2566         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2567                "Ret value not consistent in function!");
2568         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2569       }
2570     }
2571 
2572     // Add a branch to the merge points and remove return instructions.
2573     DebugLoc Loc;
2574     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2575       ReturnInst *RI = Returns[i];
2576       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2577       Loc = RI->getDebugLoc();
2578       BI->setDebugLoc(Loc);
2579       RI->eraseFromParent();
2580     }
2581     // We need to set the debug location to *somewhere* inside the
2582     // inlined function. The line number may be nonsensical, but the
2583     // instruction will at least be associated with the right
2584     // function.
2585     if (CreatedBranchToNormalDest)
2586       CreatedBranchToNormalDest->setDebugLoc(Loc);
2587   } else if (!Returns.empty()) {
2588     // Otherwise, if there is exactly one return value, just replace anything
2589     // using the return value of the call with the computed value.
2590     if (!CB.use_empty()) {
2591       if (&CB == Returns[0]->getReturnValue())
2592         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2593       else
2594         CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2595     }
2596 
2597     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2598     BasicBlock *ReturnBB = Returns[0]->getParent();
2599     ReturnBB->replaceAllUsesWith(AfterCallBB);
2600 
2601     // Splice the code from the return block into the block that it will return
2602     // to, which contains the code that was after the call.
2603     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2604                                       ReturnBB->getInstList());
2605 
2606     if (CreatedBranchToNormalDest)
2607       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2608 
2609     // Delete the return instruction now and empty ReturnBB now.
2610     Returns[0]->eraseFromParent();
2611     ReturnBB->eraseFromParent();
2612   } else if (!CB.use_empty()) {
2613     // No returns, but something is using the return value of the call.  Just
2614     // nuke the result.
2615     CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2616   }
2617 
2618   // Since we are now done with the Call/Invoke, we can delete it.
2619   CB.eraseFromParent();
2620 
2621   // If we inlined any musttail calls and the original return is now
2622   // unreachable, delete it.  It can only contain a bitcast and ret.
2623   if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2624     AfterCallBB->eraseFromParent();
2625 
2626   // We should always be able to fold the entry block of the function into the
2627   // single predecessor of the block...
2628   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2629   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2630 
2631   // Splice the code entry block into calling block, right before the
2632   // unconditional branch.
2633   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2634   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2635 
2636   // Remove the unconditional branch.
2637   OrigBB->getInstList().erase(Br);
2638 
2639   // Now we can remove the CalleeEntry block, which is now empty.
2640   Caller->getBasicBlockList().erase(CalleeEntry);
2641 
2642   // If we inserted a phi node, check to see if it has a single value (e.g. all
2643   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2644   // block other optimizations.
2645   if (PHI) {
2646     AssumptionCache *AC =
2647         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2648     auto &DL = Caller->getParent()->getDataLayout();
2649     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2650       PHI->replaceAllUsesWith(V);
2651       PHI->eraseFromParent();
2652     }
2653   }
2654 
2655   return InlineResult::success();
2656 }
2657