1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 31 #include "llvm/Analysis/ObjCARCUtil.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstdint> 71 #include <iterator> 72 #include <limits> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 using ProfileCount = Function::ProfileCount; 79 80 static cl::opt<bool> 81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 82 cl::Hidden, 83 cl::desc("Convert noalias attributes to metadata during inlining.")); 84 85 static cl::opt<bool> 86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden, 87 cl::ZeroOrMore, cl::init(true), 88 cl::desc("Use the llvm.experimental.noalias.scope.decl " 89 "intrinsic during inlining.")); 90 91 // Disabled by default, because the added alignment assumptions may increase 92 // compile-time and block optimizations. This option is not suitable for use 93 // with frontends that emit comprehensive parameter alignment annotations. 94 static cl::opt<bool> 95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 96 cl::init(false), cl::Hidden, 97 cl::desc("Convert align attributes to assumptions during inlining.")); 98 99 static cl::opt<bool> UpdateReturnAttributes( 100 "update-return-attrs", cl::init(true), cl::Hidden, 101 cl::desc("Update return attributes on calls within inlined body")); 102 103 static cl::opt<unsigned> InlinerAttributeWindow( 104 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 105 cl::desc("the maximum number of instructions analyzed for may throw during " 106 "attribute inference in inlined body"), 107 cl::init(4)); 108 109 namespace { 110 111 /// A class for recording information about inlining a landing pad. 112 class LandingPadInliningInfo { 113 /// Destination of the invoke's unwind. 114 BasicBlock *OuterResumeDest; 115 116 /// Destination for the callee's resume. 117 BasicBlock *InnerResumeDest = nullptr; 118 119 /// LandingPadInst associated with the invoke. 120 LandingPadInst *CallerLPad = nullptr; 121 122 /// PHI for EH values from landingpad insts. 123 PHINode *InnerEHValuesPHI = nullptr; 124 125 SmallVector<Value*, 8> UnwindDestPHIValues; 126 127 public: 128 LandingPadInliningInfo(InvokeInst *II) 129 : OuterResumeDest(II->getUnwindDest()) { 130 // If there are PHI nodes in the unwind destination block, we need to keep 131 // track of which values came into them from the invoke before removing 132 // the edge from this block. 133 BasicBlock *InvokeBB = II->getParent(); 134 BasicBlock::iterator I = OuterResumeDest->begin(); 135 for (; isa<PHINode>(I); ++I) { 136 // Save the value to use for this edge. 137 PHINode *PHI = cast<PHINode>(I); 138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 139 } 140 141 CallerLPad = cast<LandingPadInst>(I); 142 } 143 144 /// The outer unwind destination is the target of 145 /// unwind edges introduced for calls within the inlined function. 146 BasicBlock *getOuterResumeDest() const { 147 return OuterResumeDest; 148 } 149 150 BasicBlock *getInnerResumeDest(); 151 152 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 153 154 /// Forward the 'resume' instruction to the caller's landing pad block. 155 /// When the landing pad block has only one predecessor, this is 156 /// a simple branch. When there is more than one predecessor, we need to 157 /// split the landing pad block after the landingpad instruction and jump 158 /// to there. 159 void forwardResume(ResumeInst *RI, 160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 161 162 /// Add incoming-PHI values to the unwind destination block for the given 163 /// basic block, using the values for the original invoke's source block. 164 void addIncomingPHIValuesFor(BasicBlock *BB) const { 165 addIncomingPHIValuesForInto(BB, OuterResumeDest); 166 } 167 168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 169 BasicBlock::iterator I = dest->begin(); 170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 171 PHINode *phi = cast<PHINode>(I); 172 phi->addIncoming(UnwindDestPHIValues[i], src); 173 } 174 } 175 }; 176 177 } // end anonymous namespace 178 179 /// Get or create a target for the branch from ResumeInsts. 180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 181 if (InnerResumeDest) return InnerResumeDest; 182 183 // Split the landing pad. 184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 185 InnerResumeDest = 186 OuterResumeDest->splitBasicBlock(SplitPoint, 187 OuterResumeDest->getName() + ".body"); 188 189 // The number of incoming edges we expect to the inner landing pad. 190 const unsigned PHICapacity = 2; 191 192 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 193 Instruction *InsertPoint = &InnerResumeDest->front(); 194 BasicBlock::iterator I = OuterResumeDest->begin(); 195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 196 PHINode *OuterPHI = cast<PHINode>(I); 197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 198 OuterPHI->getName() + ".lpad-body", 199 InsertPoint); 200 OuterPHI->replaceAllUsesWith(InnerPHI); 201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 202 } 203 204 // Create a PHI for the exception values. 205 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 206 "eh.lpad-body", InsertPoint); 207 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 208 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 209 210 // All done. 211 return InnerResumeDest; 212 } 213 214 /// Forward the 'resume' instruction to the caller's landing pad block. 215 /// When the landing pad block has only one predecessor, this is a simple 216 /// branch. When there is more than one predecessor, we need to split the 217 /// landing pad block after the landingpad instruction and jump to there. 218 void LandingPadInliningInfo::forwardResume( 219 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 220 BasicBlock *Dest = getInnerResumeDest(); 221 BasicBlock *Src = RI->getParent(); 222 223 BranchInst::Create(Dest, Src); 224 225 // Update the PHIs in the destination. They were inserted in an order which 226 // makes this work. 227 addIncomingPHIValuesForInto(Src, Dest); 228 229 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 230 RI->eraseFromParent(); 231 } 232 233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 234 static Value *getParentPad(Value *EHPad) { 235 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 236 return FPI->getParentPad(); 237 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 238 } 239 240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 241 242 /// Helper for getUnwindDestToken that does the descendant-ward part of 243 /// the search. 244 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 245 UnwindDestMemoTy &MemoMap) { 246 SmallVector<Instruction *, 8> Worklist(1, EHPad); 247 248 while (!Worklist.empty()) { 249 Instruction *CurrentPad = Worklist.pop_back_val(); 250 // We only put pads on the worklist that aren't in the MemoMap. When 251 // we find an unwind dest for a pad we may update its ancestors, but 252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 253 // so they should never get updated while queued on the worklist. 254 assert(!MemoMap.count(CurrentPad)); 255 Value *UnwindDestToken = nullptr; 256 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 257 if (CatchSwitch->hasUnwindDest()) { 258 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 259 } else { 260 // Catchswitch doesn't have a 'nounwind' variant, and one might be 261 // annotated as "unwinds to caller" when really it's nounwind (see 262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 263 // parent's unwind dest from this. We can check its catchpads' 264 // descendants, since they might include a cleanuppad with an 265 // "unwinds to caller" cleanupret, which can be trusted. 266 for (auto HI = CatchSwitch->handler_begin(), 267 HE = CatchSwitch->handler_end(); 268 HI != HE && !UnwindDestToken; ++HI) { 269 BasicBlock *HandlerBlock = *HI; 270 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 271 for (User *Child : CatchPad->users()) { 272 // Intentionally ignore invokes here -- since the catchswitch is 273 // marked "unwind to caller", it would be a verifier error if it 274 // contained an invoke which unwinds out of it, so any invoke we'd 275 // encounter must unwind to some child of the catch. 276 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 277 continue; 278 279 Instruction *ChildPad = cast<Instruction>(Child); 280 auto Memo = MemoMap.find(ChildPad); 281 if (Memo == MemoMap.end()) { 282 // Haven't figured out this child pad yet; queue it. 283 Worklist.push_back(ChildPad); 284 continue; 285 } 286 // We've already checked this child, but might have found that 287 // it offers no proof either way. 288 Value *ChildUnwindDestToken = Memo->second; 289 if (!ChildUnwindDestToken) 290 continue; 291 // We already know the child's unwind dest, which can either 292 // be ConstantTokenNone to indicate unwind to caller, or can 293 // be another child of the catchpad. Only the former indicates 294 // the unwind dest of the catchswitch. 295 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 296 UnwindDestToken = ChildUnwindDestToken; 297 break; 298 } 299 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 300 } 301 } 302 } 303 } else { 304 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 305 for (User *U : CleanupPad->users()) { 306 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 307 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 308 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 309 else 310 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 311 break; 312 } 313 Value *ChildUnwindDestToken; 314 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 315 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 316 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 317 Instruction *ChildPad = cast<Instruction>(U); 318 auto Memo = MemoMap.find(ChildPad); 319 if (Memo == MemoMap.end()) { 320 // Haven't resolved this child yet; queue it and keep searching. 321 Worklist.push_back(ChildPad); 322 continue; 323 } 324 // We've checked this child, but still need to ignore it if it 325 // had no proof either way. 326 ChildUnwindDestToken = Memo->second; 327 if (!ChildUnwindDestToken) 328 continue; 329 } else { 330 // Not a relevant user of the cleanuppad 331 continue; 332 } 333 // In a well-formed program, the child/invoke must either unwind to 334 // an(other) child of the cleanup, or exit the cleanup. In the 335 // first case, continue searching. 336 if (isa<Instruction>(ChildUnwindDestToken) && 337 getParentPad(ChildUnwindDestToken) == CleanupPad) 338 continue; 339 UnwindDestToken = ChildUnwindDestToken; 340 break; 341 } 342 } 343 // If we haven't found an unwind dest for CurrentPad, we may have queued its 344 // children, so move on to the next in the worklist. 345 if (!UnwindDestToken) 346 continue; 347 348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 349 // any ancestors of CurrentPad up to but not including UnwindDestToken's 350 // parent pad. Record this in the memo map, and check to see if the 351 // original EHPad being queried is one of the ones exited. 352 Value *UnwindParent; 353 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 354 UnwindParent = getParentPad(UnwindPad); 355 else 356 UnwindParent = nullptr; 357 bool ExitedOriginalPad = false; 358 for (Instruction *ExitedPad = CurrentPad; 359 ExitedPad && ExitedPad != UnwindParent; 360 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 361 // Skip over catchpads since they just follow their catchswitches. 362 if (isa<CatchPadInst>(ExitedPad)) 363 continue; 364 MemoMap[ExitedPad] = UnwindDestToken; 365 ExitedOriginalPad |= (ExitedPad == EHPad); 366 } 367 368 if (ExitedOriginalPad) 369 return UnwindDestToken; 370 371 // Continue the search. 372 } 373 374 // No definitive information is contained within this funclet. 375 return nullptr; 376 } 377 378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 379 /// return that pad instruction. If it unwinds to caller, return 380 /// ConstantTokenNone. If it does not have a definitive unwind destination, 381 /// return nullptr. 382 /// 383 /// This routine gets invoked for calls in funclets in inlinees when inlining 384 /// an invoke. Since many funclets don't have calls inside them, it's queried 385 /// on-demand rather than building a map of pads to unwind dests up front. 386 /// Determining a funclet's unwind dest may require recursively searching its 387 /// descendants, and also ancestors and cousins if the descendants don't provide 388 /// an answer. Since most funclets will have their unwind dest immediately 389 /// available as the unwind dest of a catchswitch or cleanupret, this routine 390 /// searches top-down from the given pad and then up. To avoid worst-case 391 /// quadratic run-time given that approach, it uses a memo map to avoid 392 /// re-processing funclet trees. The callers that rewrite the IR as they go 393 /// take advantage of this, for correctness, by checking/forcing rewritten 394 /// pads' entries to match the original callee view. 395 static Value *getUnwindDestToken(Instruction *EHPad, 396 UnwindDestMemoTy &MemoMap) { 397 // Catchpads unwind to the same place as their catchswitch; 398 // redirct any queries on catchpads so the code below can 399 // deal with just catchswitches and cleanuppads. 400 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 401 EHPad = CPI->getCatchSwitch(); 402 403 // Check if we've already determined the unwind dest for this pad. 404 auto Memo = MemoMap.find(EHPad); 405 if (Memo != MemoMap.end()) 406 return Memo->second; 407 408 // Search EHPad and, if necessary, its descendants. 409 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 410 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 411 if (UnwindDestToken) 412 return UnwindDestToken; 413 414 // No information is available for this EHPad from itself or any of its 415 // descendants. An unwind all the way out to a pad in the caller would 416 // need also to agree with the unwind dest of the parent funclet, so 417 // search up the chain to try to find a funclet with information. Put 418 // null entries in the memo map to avoid re-processing as we go up. 419 MemoMap[EHPad] = nullptr; 420 #ifndef NDEBUG 421 SmallPtrSet<Instruction *, 4> TempMemos; 422 TempMemos.insert(EHPad); 423 #endif 424 Instruction *LastUselessPad = EHPad; 425 Value *AncestorToken; 426 for (AncestorToken = getParentPad(EHPad); 427 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 428 AncestorToken = getParentPad(AncestorToken)) { 429 // Skip over catchpads since they just follow their catchswitches. 430 if (isa<CatchPadInst>(AncestorPad)) 431 continue; 432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 434 // call to getUnwindDestToken, that would mean that AncestorPad had no 435 // information in itself, its descendants, or its ancestors. If that 436 // were the case, then we should also have recorded the lack of information 437 // for the descendant that we're coming from. So assert that we don't 438 // find a null entry in the MemoMap for AncestorPad. 439 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 440 auto AncestorMemo = MemoMap.find(AncestorPad); 441 if (AncestorMemo == MemoMap.end()) { 442 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 443 } else { 444 UnwindDestToken = AncestorMemo->second; 445 } 446 if (UnwindDestToken) 447 break; 448 LastUselessPad = AncestorPad; 449 MemoMap[LastUselessPad] = nullptr; 450 #ifndef NDEBUG 451 TempMemos.insert(LastUselessPad); 452 #endif 453 } 454 455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 456 // returned nullptr (and likewise for EHPad and any of its ancestors up to 457 // LastUselessPad), so LastUselessPad has no information from below. Since 458 // getUnwindDestTokenHelper must investigate all downward paths through 459 // no-information nodes to prove that a node has no information like this, 460 // and since any time it finds information it records it in the MemoMap for 461 // not just the immediately-containing funclet but also any ancestors also 462 // exited, it must be the case that, walking downward from LastUselessPad, 463 // visiting just those nodes which have not been mapped to an unwind dest 464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 465 // they are just used to keep getUnwindDestTokenHelper from repeating work), 466 // any node visited must have been exhaustively searched with no information 467 // for it found. 468 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 469 while (!Worklist.empty()) { 470 Instruction *UselessPad = Worklist.pop_back_val(); 471 auto Memo = MemoMap.find(UselessPad); 472 if (Memo != MemoMap.end() && Memo->second) { 473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 474 // that it is a funclet that does have information about unwinding to 475 // a particular destination; its parent was a useless pad. 476 // Since its parent has no information, the unwind edge must not escape 477 // the parent, and must target a sibling of this pad. This local unwind 478 // gives us no information about EHPad. Leave it and the subtree rooted 479 // at it alone. 480 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 481 continue; 482 } 483 // We know we don't have information for UselesPad. If it has an entry in 484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 485 // added on this invocation of getUnwindDestToken; if a previous invocation 486 // recorded nullptr, it would have had to prove that the ancestors of 487 // UselessPad, which include LastUselessPad, had no information, and that 488 // in turn would have required proving that the descendants of 489 // LastUselesPad, which include EHPad, have no information about 490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 491 // the MemoMap on that invocation, which isn't the case if we got here. 492 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 494 // information that we'd be contradicting by making a map entry for it 495 // (which is something that getUnwindDestTokenHelper must have proved for 496 // us to get here). Just assert on is direct users here; the checks in 497 // this downward walk at its descendants will verify that they don't have 498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 499 // unwind edges or unwind to a sibling). 500 MemoMap[UselessPad] = UnwindDestToken; 501 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 502 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 503 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 504 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 505 for (User *U : CatchPad->users()) { 506 assert( 507 (!isa<InvokeInst>(U) || 508 (getParentPad( 509 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 510 CatchPad)) && 511 "Expected useless pad"); 512 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 513 Worklist.push_back(cast<Instruction>(U)); 514 } 515 } 516 } else { 517 assert(isa<CleanupPadInst>(UselessPad)); 518 for (User *U : UselessPad->users()) { 519 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 520 assert((!isa<InvokeInst>(U) || 521 (getParentPad( 522 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 523 UselessPad)) && 524 "Expected useless pad"); 525 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 526 Worklist.push_back(cast<Instruction>(U)); 527 } 528 } 529 } 530 531 return UnwindDestToken; 532 } 533 534 /// When we inline a basic block into an invoke, 535 /// we have to turn all of the calls that can throw into invokes. 536 /// This function analyze BB to see if there are any calls, and if so, 537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 538 /// nodes in that block with the values specified in InvokeDestPHIValues. 539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 540 BasicBlock *BB, BasicBlock *UnwindEdge, 541 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 542 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 543 // We only need to check for function calls: inlined invoke 544 // instructions require no special handling. 545 CallInst *CI = dyn_cast<CallInst>(&I); 546 547 if (!CI || CI->doesNotThrow()) 548 continue; 549 550 if (CI->isInlineAsm()) { 551 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand()); 552 if (!IA->canThrow()) { 553 continue; 554 } 555 } 556 557 // We do not need to (and in fact, cannot) convert possibly throwing calls 558 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 559 // invokes. The caller's "segment" of the deoptimization continuation 560 // attached to the newly inlined @llvm.experimental_deoptimize 561 // (resp. @llvm.experimental.guard) call should contain the exception 562 // handling logic, if any. 563 if (auto *F = CI->getCalledFunction()) 564 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 565 F->getIntrinsicID() == Intrinsic::experimental_guard) 566 continue; 567 568 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 569 // This call is nested inside a funclet. If that funclet has an unwind 570 // destination within the inlinee, then unwinding out of this call would 571 // be UB. Rewriting this call to an invoke which targets the inlined 572 // invoke's unwind dest would give the call's parent funclet multiple 573 // unwind destinations, which is something that subsequent EH table 574 // generation can't handle and that the veirifer rejects. So when we 575 // see such a call, leave it as a call. 576 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 577 Value *UnwindDestToken = 578 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 579 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 580 continue; 581 #ifndef NDEBUG 582 Instruction *MemoKey; 583 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 584 MemoKey = CatchPad->getCatchSwitch(); 585 else 586 MemoKey = FuncletPad; 587 assert(FuncletUnwindMap->count(MemoKey) && 588 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 589 "must get memoized to avoid confusing later searches"); 590 #endif // NDEBUG 591 } 592 593 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 594 return BB; 595 } 596 return nullptr; 597 } 598 599 /// If we inlined an invoke site, we need to convert calls 600 /// in the body of the inlined function into invokes. 601 /// 602 /// II is the invoke instruction being inlined. FirstNewBlock is the first 603 /// block of the inlined code (the last block is the end of the function), 604 /// and InlineCodeInfo is information about the code that got inlined. 605 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 606 ClonedCodeInfo &InlinedCodeInfo) { 607 BasicBlock *InvokeDest = II->getUnwindDest(); 608 609 Function *Caller = FirstNewBlock->getParent(); 610 611 // The inlined code is currently at the end of the function, scan from the 612 // start of the inlined code to its end, checking for stuff we need to 613 // rewrite. 614 LandingPadInliningInfo Invoke(II); 615 616 // Get all of the inlined landing pad instructions. 617 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 618 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 619 I != E; ++I) 620 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 621 InlinedLPads.insert(II->getLandingPadInst()); 622 623 // Append the clauses from the outer landing pad instruction into the inlined 624 // landing pad instructions. 625 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 626 for (LandingPadInst *InlinedLPad : InlinedLPads) { 627 unsigned OuterNum = OuterLPad->getNumClauses(); 628 InlinedLPad->reserveClauses(OuterNum); 629 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 630 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 631 if (OuterLPad->isCleanup()) 632 InlinedLPad->setCleanup(true); 633 } 634 635 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 636 BB != E; ++BB) { 637 if (InlinedCodeInfo.ContainsCalls) 638 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 639 &*BB, Invoke.getOuterResumeDest())) 640 // Update any PHI nodes in the exceptional block to indicate that there 641 // is now a new entry in them. 642 Invoke.addIncomingPHIValuesFor(NewBB); 643 644 // Forward any resumes that are remaining here. 645 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 646 Invoke.forwardResume(RI, InlinedLPads); 647 } 648 649 // Now that everything is happy, we have one final detail. The PHI nodes in 650 // the exception destination block still have entries due to the original 651 // invoke instruction. Eliminate these entries (which might even delete the 652 // PHI node) now. 653 InvokeDest->removePredecessor(II->getParent()); 654 } 655 656 /// If we inlined an invoke site, we need to convert calls 657 /// in the body of the inlined function into invokes. 658 /// 659 /// II is the invoke instruction being inlined. FirstNewBlock is the first 660 /// block of the inlined code (the last block is the end of the function), 661 /// and InlineCodeInfo is information about the code that got inlined. 662 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 663 ClonedCodeInfo &InlinedCodeInfo) { 664 BasicBlock *UnwindDest = II->getUnwindDest(); 665 Function *Caller = FirstNewBlock->getParent(); 666 667 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 668 669 // If there are PHI nodes in the unwind destination block, we need to keep 670 // track of which values came into them from the invoke before removing the 671 // edge from this block. 672 SmallVector<Value *, 8> UnwindDestPHIValues; 673 BasicBlock *InvokeBB = II->getParent(); 674 for (Instruction &I : *UnwindDest) { 675 // Save the value to use for this edge. 676 PHINode *PHI = dyn_cast<PHINode>(&I); 677 if (!PHI) 678 break; 679 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 680 } 681 682 // Add incoming-PHI values to the unwind destination block for the given basic 683 // block, using the values for the original invoke's source block. 684 auto UpdatePHINodes = [&](BasicBlock *Src) { 685 BasicBlock::iterator I = UnwindDest->begin(); 686 for (Value *V : UnwindDestPHIValues) { 687 PHINode *PHI = cast<PHINode>(I); 688 PHI->addIncoming(V, Src); 689 ++I; 690 } 691 }; 692 693 // This connects all the instructions which 'unwind to caller' to the invoke 694 // destination. 695 UnwindDestMemoTy FuncletUnwindMap; 696 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 697 BB != E; ++BB) { 698 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 699 if (CRI->unwindsToCaller()) { 700 auto *CleanupPad = CRI->getCleanupPad(); 701 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 702 CRI->eraseFromParent(); 703 UpdatePHINodes(&*BB); 704 // Finding a cleanupret with an unwind destination would confuse 705 // subsequent calls to getUnwindDestToken, so map the cleanuppad 706 // to short-circuit any such calls and recognize this as an "unwind 707 // to caller" cleanup. 708 assert(!FuncletUnwindMap.count(CleanupPad) || 709 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 710 FuncletUnwindMap[CleanupPad] = 711 ConstantTokenNone::get(Caller->getContext()); 712 } 713 } 714 715 Instruction *I = BB->getFirstNonPHI(); 716 if (!I->isEHPad()) 717 continue; 718 719 Instruction *Replacement = nullptr; 720 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 721 if (CatchSwitch->unwindsToCaller()) { 722 Value *UnwindDestToken; 723 if (auto *ParentPad = 724 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 725 // This catchswitch is nested inside another funclet. If that 726 // funclet has an unwind destination within the inlinee, then 727 // unwinding out of this catchswitch would be UB. Rewriting this 728 // catchswitch to unwind to the inlined invoke's unwind dest would 729 // give the parent funclet multiple unwind destinations, which is 730 // something that subsequent EH table generation can't handle and 731 // that the veirifer rejects. So when we see such a call, leave it 732 // as "unwind to caller". 733 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 734 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 735 continue; 736 } else { 737 // This catchswitch has no parent to inherit constraints from, and 738 // none of its descendants can have an unwind edge that exits it and 739 // targets another funclet in the inlinee. It may or may not have a 740 // descendant that definitively has an unwind to caller. In either 741 // case, we'll have to assume that any unwinds out of it may need to 742 // be routed to the caller, so treat it as though it has a definitive 743 // unwind to caller. 744 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 745 } 746 auto *NewCatchSwitch = CatchSwitchInst::Create( 747 CatchSwitch->getParentPad(), UnwindDest, 748 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 749 CatchSwitch); 750 for (BasicBlock *PadBB : CatchSwitch->handlers()) 751 NewCatchSwitch->addHandler(PadBB); 752 // Propagate info for the old catchswitch over to the new one in 753 // the unwind map. This also serves to short-circuit any subsequent 754 // checks for the unwind dest of this catchswitch, which would get 755 // confused if they found the outer handler in the callee. 756 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 757 Replacement = NewCatchSwitch; 758 } 759 } else if (!isa<FuncletPadInst>(I)) { 760 llvm_unreachable("unexpected EHPad!"); 761 } 762 763 if (Replacement) { 764 Replacement->takeName(I); 765 I->replaceAllUsesWith(Replacement); 766 I->eraseFromParent(); 767 UpdatePHINodes(&*BB); 768 } 769 } 770 771 if (InlinedCodeInfo.ContainsCalls) 772 for (Function::iterator BB = FirstNewBlock->getIterator(), 773 E = Caller->end(); 774 BB != E; ++BB) 775 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 776 &*BB, UnwindDest, &FuncletUnwindMap)) 777 // Update any PHI nodes in the exceptional block to indicate that there 778 // is now a new entry in them. 779 UpdatePHINodes(NewBB); 780 781 // Now that everything is happy, we have one final detail. The PHI nodes in 782 // the exception destination block still have entries due to the original 783 // invoke instruction. Eliminate these entries (which might even delete the 784 // PHI node) now. 785 UnwindDest->removePredecessor(InvokeBB); 786 } 787 788 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 789 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 790 /// be propagated to all memory-accessing cloned instructions. 791 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart, 792 Function::iterator FEnd) { 793 MDNode *MemParallelLoopAccess = 794 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 795 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 796 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 797 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 798 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 799 return; 800 801 for (BasicBlock &BB : make_range(FStart, FEnd)) { 802 for (Instruction &I : BB) { 803 // This metadata is only relevant for instructions that access memory. 804 if (!I.mayReadOrWriteMemory()) 805 continue; 806 807 if (MemParallelLoopAccess) { 808 // TODO: This probably should not overwrite MemParalleLoopAccess. 809 MemParallelLoopAccess = MDNode::concatenate( 810 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access), 811 MemParallelLoopAccess); 812 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access, 813 MemParallelLoopAccess); 814 } 815 816 if (AccessGroup) 817 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 818 I.getMetadata(LLVMContext::MD_access_group), AccessGroup)); 819 820 if (AliasScope) 821 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 822 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 823 824 if (NoAlias) 825 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 826 I.getMetadata(LLVMContext::MD_noalias), NoAlias)); 827 } 828 } 829 } 830 831 namespace { 832 /// Utility for cloning !noalias and !alias.scope metadata. When a code region 833 /// using scoped alias metadata is inlined, the aliasing relationships may not 834 /// hold between the two version. It is necessary to create a deep clone of the 835 /// metadata, putting the two versions in separate scope domains. 836 class ScopedAliasMetadataDeepCloner { 837 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>; 838 SetVector<const MDNode *> MD; 839 MetadataMap MDMap; 840 void addRecursiveMetadataUses(); 841 842 public: 843 ScopedAliasMetadataDeepCloner(const Function *F); 844 845 /// Create a new clone of the scoped alias metadata, which will be used by 846 /// subsequent remap() calls. 847 void clone(); 848 849 /// Remap instructions in the given range from the original to the cloned 850 /// metadata. 851 void remap(Function::iterator FStart, Function::iterator FEnd); 852 }; 853 } // namespace 854 855 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner( 856 const Function *F) { 857 for (const BasicBlock &BB : *F) { 858 for (const Instruction &I : BB) { 859 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 860 MD.insert(M); 861 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 862 MD.insert(M); 863 864 // We also need to clone the metadata in noalias intrinsics. 865 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 866 MD.insert(Decl->getScopeList()); 867 } 868 } 869 addRecursiveMetadataUses(); 870 } 871 872 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() { 873 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 874 while (!Queue.empty()) { 875 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 876 for (const Metadata *Op : M->operands()) 877 if (const MDNode *OpMD = dyn_cast<MDNode>(Op)) 878 if (MD.insert(OpMD)) 879 Queue.push_back(OpMD); 880 } 881 } 882 883 void ScopedAliasMetadataDeepCloner::clone() { 884 assert(MDMap.empty() && "clone() already called ?"); 885 886 SmallVector<TempMDTuple, 16> DummyNodes; 887 for (const MDNode *I : MD) { 888 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None)); 889 MDMap[I].reset(DummyNodes.back().get()); 890 } 891 892 // Create new metadata nodes to replace the dummy nodes, replacing old 893 // metadata references with either a dummy node or an already-created new 894 // node. 895 SmallVector<Metadata *, 4> NewOps; 896 for (const MDNode *I : MD) { 897 for (const Metadata *Op : I->operands()) { 898 if (const MDNode *M = dyn_cast<MDNode>(Op)) 899 NewOps.push_back(MDMap[M]); 900 else 901 NewOps.push_back(const_cast<Metadata *>(Op)); 902 } 903 904 MDNode *NewM = MDNode::get(I->getContext(), NewOps); 905 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 906 assert(TempM->isTemporary() && "Expected temporary node"); 907 908 TempM->replaceAllUsesWith(NewM); 909 NewOps.clear(); 910 } 911 } 912 913 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart, 914 Function::iterator FEnd) { 915 if (MDMap.empty()) 916 return; // Nothing to do. 917 918 for (BasicBlock &BB : make_range(FStart, FEnd)) { 919 for (Instruction &I : BB) { 920 // TODO: The null checks for the MDMap.lookup() results should no longer 921 // be necessary. 922 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 923 if (MDNode *MNew = MDMap.lookup(M)) 924 I.setMetadata(LLVMContext::MD_alias_scope, MNew); 925 926 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 927 if (MDNode *MNew = MDMap.lookup(M)) 928 I.setMetadata(LLVMContext::MD_noalias, MNew); 929 930 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 931 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList())) 932 Decl->setScopeList(MNew); 933 } 934 } 935 } 936 937 /// If the inlined function has noalias arguments, 938 /// then add new alias scopes for each noalias argument, tag the mapped noalias 939 /// parameters with noalias metadata specifying the new scope, and tag all 940 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 942 const DataLayout &DL, AAResults *CalleeAAR, 943 ClonedCodeInfo &InlinedFunctionInfo) { 944 if (!EnableNoAliasConversion) 945 return; 946 947 const Function *CalledFunc = CB.getCalledFunction(); 948 SmallVector<const Argument *, 4> NoAliasArgs; 949 950 for (const Argument &Arg : CalledFunc->args()) 951 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 952 NoAliasArgs.push_back(&Arg); 953 954 if (NoAliasArgs.empty()) 955 return; 956 957 // To do a good job, if a noalias variable is captured, we need to know if 958 // the capture point dominates the particular use we're considering. 959 DominatorTree DT; 960 DT.recalculate(const_cast<Function&>(*CalledFunc)); 961 962 // noalias indicates that pointer values based on the argument do not alias 963 // pointer values which are not based on it. So we add a new "scope" for each 964 // noalias function argument. Accesses using pointers based on that argument 965 // become part of that alias scope, accesses using pointers not based on that 966 // argument are tagged as noalias with that scope. 967 968 DenseMap<const Argument *, MDNode *> NewScopes; 969 MDBuilder MDB(CalledFunc->getContext()); 970 971 // Create a new scope domain for this function. 972 MDNode *NewDomain = 973 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 974 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 975 const Argument *A = NoAliasArgs[i]; 976 977 std::string Name = std::string(CalledFunc->getName()); 978 if (A->hasName()) { 979 Name += ": %"; 980 Name += A->getName(); 981 } else { 982 Name += ": argument "; 983 Name += utostr(i); 984 } 985 986 // Note: We always create a new anonymous root here. This is true regardless 987 // of the linkage of the callee because the aliasing "scope" is not just a 988 // property of the callee, but also all control dependencies in the caller. 989 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 990 NewScopes.insert(std::make_pair(A, NewScope)); 991 992 if (UseNoAliasIntrinsic) { 993 // Introduce a llvm.experimental.noalias.scope.decl for the noalias 994 // argument. 995 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope); 996 auto *NoAliasDecl = 997 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList); 998 // Ignore the result for now. The result will be used when the 999 // llvm.noalias intrinsic is introduced. 1000 (void)NoAliasDecl; 1001 } 1002 } 1003 1004 // Iterate over all new instructions in the map; for all memory-access 1005 // instructions, add the alias scope metadata. 1006 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 1007 VMI != VMIE; ++VMI) { 1008 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 1009 if (!VMI->second) 1010 continue; 1011 1012 Instruction *NI = dyn_cast<Instruction>(VMI->second); 1013 if (!NI || InlinedFunctionInfo.isSimplified(I, NI)) 1014 continue; 1015 1016 bool IsArgMemOnlyCall = false, IsFuncCall = false; 1017 SmallVector<const Value *, 2> PtrArgs; 1018 1019 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1020 PtrArgs.push_back(LI->getPointerOperand()); 1021 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1022 PtrArgs.push_back(SI->getPointerOperand()); 1023 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1024 PtrArgs.push_back(VAAI->getPointerOperand()); 1025 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1026 PtrArgs.push_back(CXI->getPointerOperand()); 1027 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1028 PtrArgs.push_back(RMWI->getPointerOperand()); 1029 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1030 // If we know that the call does not access memory, then we'll still 1031 // know that about the inlined clone of this call site, and we don't 1032 // need to add metadata. 1033 if (Call->doesNotAccessMemory()) 1034 continue; 1035 1036 IsFuncCall = true; 1037 if (CalleeAAR) { 1038 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1039 1040 // We'll retain this knowledge without additional metadata. 1041 if (AAResults::onlyAccessesInaccessibleMem(MRB)) 1042 continue; 1043 1044 if (AAResults::onlyAccessesArgPointees(MRB)) 1045 IsArgMemOnlyCall = true; 1046 } 1047 1048 for (Value *Arg : Call->args()) { 1049 // We need to check the underlying objects of all arguments, not just 1050 // the pointer arguments, because we might be passing pointers as 1051 // integers, etc. 1052 // However, if we know that the call only accesses pointer arguments, 1053 // then we only need to check the pointer arguments. 1054 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1055 continue; 1056 1057 PtrArgs.push_back(Arg); 1058 } 1059 } 1060 1061 // If we found no pointers, then this instruction is not suitable for 1062 // pairing with an instruction to receive aliasing metadata. 1063 // However, if this is a call, this we might just alias with none of the 1064 // noalias arguments. 1065 if (PtrArgs.empty() && !IsFuncCall) 1066 continue; 1067 1068 // It is possible that there is only one underlying object, but you 1069 // need to go through several PHIs to see it, and thus could be 1070 // repeated in the Objects list. 1071 SmallPtrSet<const Value *, 4> ObjSet; 1072 SmallVector<Metadata *, 4> Scopes, NoAliases; 1073 1074 SmallSetVector<const Argument *, 4> NAPtrArgs; 1075 for (const Value *V : PtrArgs) { 1076 SmallVector<const Value *, 4> Objects; 1077 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1078 1079 for (const Value *O : Objects) 1080 ObjSet.insert(O); 1081 } 1082 1083 // Figure out if we're derived from anything that is not a noalias 1084 // argument. 1085 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1086 for (const Value *V : ObjSet) { 1087 // Is this value a constant that cannot be derived from any pointer 1088 // value (we need to exclude constant expressions, for example, that 1089 // are formed from arithmetic on global symbols). 1090 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1091 isa<ConstantPointerNull>(V) || 1092 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1093 if (IsNonPtrConst) 1094 continue; 1095 1096 // If this is anything other than a noalias argument, then we cannot 1097 // completely describe the aliasing properties using alias.scope 1098 // metadata (and, thus, won't add any). 1099 if (const Argument *A = dyn_cast<Argument>(V)) { 1100 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1101 UsesAliasingPtr = true; 1102 } else { 1103 UsesAliasingPtr = true; 1104 } 1105 1106 // If this is not some identified function-local object (which cannot 1107 // directly alias a noalias argument), or some other argument (which, 1108 // by definition, also cannot alias a noalias argument), then we could 1109 // alias a noalias argument that has been captured). 1110 if (!isa<Argument>(V) && 1111 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1112 CanDeriveViaCapture = true; 1113 } 1114 1115 // A function call can always get captured noalias pointers (via other 1116 // parameters, globals, etc.). 1117 if (IsFuncCall && !IsArgMemOnlyCall) 1118 CanDeriveViaCapture = true; 1119 1120 // First, we want to figure out all of the sets with which we definitely 1121 // don't alias. Iterate over all noalias set, and add those for which: 1122 // 1. The noalias argument is not in the set of objects from which we 1123 // definitely derive. 1124 // 2. The noalias argument has not yet been captured. 1125 // An arbitrary function that might load pointers could see captured 1126 // noalias arguments via other noalias arguments or globals, and so we 1127 // must always check for prior capture. 1128 for (const Argument *A : NoAliasArgs) { 1129 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1130 // It might be tempting to skip the 1131 // PointerMayBeCapturedBefore check if 1132 // A->hasNoCaptureAttr() is true, but this is 1133 // incorrect because nocapture only guarantees 1134 // that no copies outlive the function, not 1135 // that the value cannot be locally captured. 1136 !PointerMayBeCapturedBefore(A, 1137 /* ReturnCaptures */ false, 1138 /* StoreCaptures */ false, I, &DT))) 1139 NoAliases.push_back(NewScopes[A]); 1140 } 1141 1142 if (!NoAliases.empty()) 1143 NI->setMetadata(LLVMContext::MD_noalias, 1144 MDNode::concatenate( 1145 NI->getMetadata(LLVMContext::MD_noalias), 1146 MDNode::get(CalledFunc->getContext(), NoAliases))); 1147 1148 // Next, we want to figure out all of the sets to which we might belong. 1149 // We might belong to a set if the noalias argument is in the set of 1150 // underlying objects. If there is some non-noalias argument in our list 1151 // of underlying objects, then we cannot add a scope because the fact 1152 // that some access does not alias with any set of our noalias arguments 1153 // cannot itself guarantee that it does not alias with this access 1154 // (because there is some pointer of unknown origin involved and the 1155 // other access might also depend on this pointer). We also cannot add 1156 // scopes to arbitrary functions unless we know they don't access any 1157 // non-parameter pointer-values. 1158 bool CanAddScopes = !UsesAliasingPtr; 1159 if (CanAddScopes && IsFuncCall) 1160 CanAddScopes = IsArgMemOnlyCall; 1161 1162 if (CanAddScopes) 1163 for (const Argument *A : NoAliasArgs) { 1164 if (ObjSet.count(A)) 1165 Scopes.push_back(NewScopes[A]); 1166 } 1167 1168 if (!Scopes.empty()) 1169 NI->setMetadata( 1170 LLVMContext::MD_alias_scope, 1171 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1172 MDNode::get(CalledFunc->getContext(), Scopes))); 1173 } 1174 } 1175 } 1176 1177 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1178 Instruction *End) { 1179 1180 assert(Begin->getParent() == End->getParent() && 1181 "Expected to be in same basic block!"); 1182 return !llvm::isGuaranteedToTransferExecutionToSuccessor( 1183 Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1); 1184 } 1185 1186 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1187 1188 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); 1189 if (AB.empty()) 1190 return AB; 1191 AttrBuilder Valid; 1192 // Only allow these white listed attributes to be propagated back to the 1193 // callee. This is because other attributes may only be valid on the call 1194 // itself, i.e. attributes such as signext and zeroext. 1195 if (auto DerefBytes = AB.getDereferenceableBytes()) 1196 Valid.addDereferenceableAttr(DerefBytes); 1197 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1198 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1199 if (AB.contains(Attribute::NoAlias)) 1200 Valid.addAttribute(Attribute::NoAlias); 1201 if (AB.contains(Attribute::NonNull)) 1202 Valid.addAttribute(Attribute::NonNull); 1203 return Valid; 1204 } 1205 1206 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1207 if (!UpdateReturnAttributes) 1208 return; 1209 1210 AttrBuilder Valid = IdentifyValidAttributes(CB); 1211 if (Valid.empty()) 1212 return; 1213 auto *CalledFunction = CB.getCalledFunction(); 1214 auto &Context = CalledFunction->getContext(); 1215 1216 for (auto &BB : *CalledFunction) { 1217 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1218 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1219 continue; 1220 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1221 // Check that the cloned RetVal exists and is a call, otherwise we cannot 1222 // add the attributes on the cloned RetVal. Simplification during inlining 1223 // could have transformed the cloned instruction. 1224 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1225 if (!NewRetVal) 1226 continue; 1227 // Backward propagation of attributes to the returned value may be incorrect 1228 // if it is control flow dependent. 1229 // Consider: 1230 // @callee { 1231 // %rv = call @foo() 1232 // %rv2 = call @bar() 1233 // if (%rv2 != null) 1234 // return %rv2 1235 // if (%rv == null) 1236 // exit() 1237 // return %rv 1238 // } 1239 // caller() { 1240 // %val = call nonnull @callee() 1241 // } 1242 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1243 // limit the check to both RetVal and RI are in the same basic block and 1244 // there are no throwing/exiting instructions between these instructions. 1245 if (RI->getParent() != RetVal->getParent() || 1246 MayContainThrowingOrExitingCall(RetVal, RI)) 1247 continue; 1248 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1249 // instruction. 1250 // NB! When we have the same attribute already existing on NewRetVal, but 1251 // with a differing value, the AttributeList's merge API honours the already 1252 // existing attribute value (i.e. attributes such as dereferenceable, 1253 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1254 AttributeList AL = NewRetVal->getAttributes(); 1255 AttributeList NewAL = AL.addRetAttributes(Context, Valid); 1256 NewRetVal->setAttributes(NewAL); 1257 } 1258 } 1259 1260 /// If the inlined function has non-byval align arguments, then 1261 /// add @llvm.assume-based alignment assumptions to preserve this information. 1262 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1263 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1264 return; 1265 1266 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1267 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1268 1269 // To avoid inserting redundant assumptions, we should check for assumptions 1270 // already in the caller. To do this, we might need a DT of the caller. 1271 DominatorTree DT; 1272 bool DTCalculated = false; 1273 1274 Function *CalledFunc = CB.getCalledFunction(); 1275 for (Argument &Arg : CalledFunc->args()) { 1276 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1277 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1278 if (!DTCalculated) { 1279 DT.recalculate(*CB.getCaller()); 1280 DTCalculated = true; 1281 } 1282 1283 // If we can already prove the asserted alignment in the context of the 1284 // caller, then don't bother inserting the assumption. 1285 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1286 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1287 continue; 1288 1289 CallInst *NewAsmp = 1290 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1291 AC->registerAssumption(cast<AssumeInst>(NewAsmp)); 1292 } 1293 } 1294 } 1295 1296 /// Once we have cloned code over from a callee into the caller, 1297 /// update the specified callgraph to reflect the changes we made. 1298 /// Note that it's possible that not all code was copied over, so only 1299 /// some edges of the callgraph may remain. 1300 static void UpdateCallGraphAfterInlining(CallBase &CB, 1301 Function::iterator FirstNewBlock, 1302 ValueToValueMapTy &VMap, 1303 InlineFunctionInfo &IFI) { 1304 CallGraph &CG = *IFI.CG; 1305 const Function *Caller = CB.getCaller(); 1306 const Function *Callee = CB.getCalledFunction(); 1307 CallGraphNode *CalleeNode = CG[Callee]; 1308 CallGraphNode *CallerNode = CG[Caller]; 1309 1310 // Since we inlined some uninlined call sites in the callee into the caller, 1311 // add edges from the caller to all of the callees of the callee. 1312 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1313 1314 // Consider the case where CalleeNode == CallerNode. 1315 CallGraphNode::CalledFunctionsVector CallCache; 1316 if (CalleeNode == CallerNode) { 1317 CallCache.assign(I, E); 1318 I = CallCache.begin(); 1319 E = CallCache.end(); 1320 } 1321 1322 for (; I != E; ++I) { 1323 // Skip 'refererence' call records. 1324 if (!I->first) 1325 continue; 1326 1327 const Value *OrigCall = *I->first; 1328 1329 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1330 // Only copy the edge if the call was inlined! 1331 if (VMI == VMap.end() || VMI->second == nullptr) 1332 continue; 1333 1334 // If the call was inlined, but then constant folded, there is no edge to 1335 // add. Check for this case. 1336 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1337 if (!NewCall) 1338 continue; 1339 1340 // We do not treat intrinsic calls like real function calls because we 1341 // expect them to become inline code; do not add an edge for an intrinsic. 1342 if (NewCall->getCalledFunction() && 1343 NewCall->getCalledFunction()->isIntrinsic()) 1344 continue; 1345 1346 // Remember that this call site got inlined for the client of 1347 // InlineFunction. 1348 IFI.InlinedCalls.push_back(NewCall); 1349 1350 // It's possible that inlining the callsite will cause it to go from an 1351 // indirect to a direct call by resolving a function pointer. If this 1352 // happens, set the callee of the new call site to a more precise 1353 // destination. This can also happen if the call graph node of the caller 1354 // was just unnecessarily imprecise. 1355 if (!I->second->getFunction()) 1356 if (Function *F = NewCall->getCalledFunction()) { 1357 // Indirect call site resolved to direct call. 1358 CallerNode->addCalledFunction(NewCall, CG[F]); 1359 1360 continue; 1361 } 1362 1363 CallerNode->addCalledFunction(NewCall, I->second); 1364 } 1365 1366 // Update the call graph by deleting the edge from Callee to Caller. We must 1367 // do this after the loop above in case Caller and Callee are the same. 1368 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1369 } 1370 1371 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src, 1372 Module *M, BasicBlock *InsertBlock, 1373 InlineFunctionInfo &IFI) { 1374 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1375 1376 Value *Size = 1377 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType)); 1378 1379 // Always generate a memcpy of alignment 1 here because we don't know 1380 // the alignment of the src pointer. Other optimizations can infer 1381 // better alignment. 1382 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1383 /*SrcAlign*/ Align(1), Size); 1384 } 1385 1386 /// When inlining a call site that has a byval argument, 1387 /// we have to make the implicit memcpy explicit by adding it. 1388 static Value *HandleByValArgument(Type *ByValType, Value *Arg, 1389 Instruction *TheCall, 1390 const Function *CalledFunc, 1391 InlineFunctionInfo &IFI, 1392 unsigned ByValAlignment) { 1393 assert(cast<PointerType>(Arg->getType()) 1394 ->isOpaqueOrPointeeTypeMatches(ByValType)); 1395 Function *Caller = TheCall->getFunction(); 1396 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1397 1398 // If the called function is readonly, then it could not mutate the caller's 1399 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1400 // temporary. 1401 if (CalledFunc->onlyReadsMemory()) { 1402 // If the byval argument has a specified alignment that is greater than the 1403 // passed in pointer, then we either have to round up the input pointer or 1404 // give up on this transformation. 1405 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1406 return Arg; 1407 1408 AssumptionCache *AC = 1409 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1410 1411 // If the pointer is already known to be sufficiently aligned, or if we can 1412 // round it up to a larger alignment, then we don't need a temporary. 1413 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1414 AC) >= ByValAlignment) 1415 return Arg; 1416 1417 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1418 // for code quality, but rarely happens and is required for correctness. 1419 } 1420 1421 // Create the alloca. If we have DataLayout, use nice alignment. 1422 Align Alignment(DL.getPrefTypeAlignment(ByValType)); 1423 1424 // If the byval had an alignment specified, we *must* use at least that 1425 // alignment, as it is required by the byval argument (and uses of the 1426 // pointer inside the callee). 1427 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1428 1429 Value *NewAlloca = 1430 new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment, 1431 Arg->getName(), &*Caller->begin()->begin()); 1432 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1433 1434 // Uses of the argument in the function should use our new alloca 1435 // instead. 1436 return NewAlloca; 1437 } 1438 1439 // Check whether this Value is used by a lifetime intrinsic. 1440 static bool isUsedByLifetimeMarker(Value *V) { 1441 for (User *U : V->users()) 1442 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1443 if (II->isLifetimeStartOrEnd()) 1444 return true; 1445 return false; 1446 } 1447 1448 // Check whether the given alloca already has 1449 // lifetime.start or lifetime.end intrinsics. 1450 static bool hasLifetimeMarkers(AllocaInst *AI) { 1451 Type *Ty = AI->getType(); 1452 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1453 Ty->getPointerAddressSpace()); 1454 if (Ty == Int8PtrTy) 1455 return isUsedByLifetimeMarker(AI); 1456 1457 // Do a scan to find all the casts to i8*. 1458 for (User *U : AI->users()) { 1459 if (U->getType() != Int8PtrTy) continue; 1460 if (U->stripPointerCasts() != AI) continue; 1461 if (isUsedByLifetimeMarker(U)) 1462 return true; 1463 } 1464 return false; 1465 } 1466 1467 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1468 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1469 /// cannot be static. 1470 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1471 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1472 } 1473 1474 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1475 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1476 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1477 LLVMContext &Ctx, 1478 DenseMap<const MDNode *, MDNode *> &IANodes) { 1479 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1480 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(), 1481 OrigDL.getScope(), IA); 1482 } 1483 1484 /// Update inlined instructions' line numbers to 1485 /// to encode location where these instructions are inlined. 1486 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1487 Instruction *TheCall, bool CalleeHasDebugInfo) { 1488 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1489 if (!TheCallDL) 1490 return; 1491 1492 auto &Ctx = Fn->getContext(); 1493 DILocation *InlinedAtNode = TheCallDL; 1494 1495 // Create a unique call site, not to be confused with any other call from the 1496 // same location. 1497 InlinedAtNode = DILocation::getDistinct( 1498 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1499 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1500 1501 // Cache the inlined-at nodes as they're built so they are reused, without 1502 // this every instruction's inlined-at chain would become distinct from each 1503 // other. 1504 DenseMap<const MDNode *, MDNode *> IANodes; 1505 1506 // Check if we are not generating inline line tables and want to use 1507 // the call site location instead. 1508 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1509 1510 for (; FI != Fn->end(); ++FI) { 1511 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1512 BI != BE; ++BI) { 1513 // Loop metadata needs to be updated so that the start and end locs 1514 // reference inlined-at locations. 1515 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, 1516 &IANodes](Metadata *MD) -> Metadata * { 1517 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1518 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get(); 1519 return MD; 1520 }; 1521 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1522 1523 if (!NoInlineLineTables) 1524 if (DebugLoc DL = BI->getDebugLoc()) { 1525 DebugLoc IDL = 1526 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1527 BI->setDebugLoc(IDL); 1528 continue; 1529 } 1530 1531 if (CalleeHasDebugInfo && !NoInlineLineTables) 1532 continue; 1533 1534 // If the inlined instruction has no line number, or if inline info 1535 // is not being generated, make it look as if it originates from the call 1536 // location. This is important for ((__always_inline, __nodebug__)) 1537 // functions which must use caller location for all instructions in their 1538 // function body. 1539 1540 // Don't update static allocas, as they may get moved later. 1541 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1542 if (allocaWouldBeStaticInEntry(AI)) 1543 continue; 1544 1545 BI->setDebugLoc(TheCallDL); 1546 } 1547 1548 // Remove debug info intrinsics if we're not keeping inline info. 1549 if (NoInlineLineTables) { 1550 BasicBlock::iterator BI = FI->begin(); 1551 while (BI != FI->end()) { 1552 if (isa<DbgInfoIntrinsic>(BI)) { 1553 BI = BI->eraseFromParent(); 1554 continue; 1555 } 1556 ++BI; 1557 } 1558 } 1559 1560 } 1561 } 1562 1563 /// Update the block frequencies of the caller after a callee has been inlined. 1564 /// 1565 /// Each block cloned into the caller has its block frequency scaled by the 1566 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1567 /// callee's entry block gets the same frequency as the callsite block and the 1568 /// relative frequencies of all cloned blocks remain the same after cloning. 1569 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1570 const ValueToValueMapTy &VMap, 1571 BlockFrequencyInfo *CallerBFI, 1572 BlockFrequencyInfo *CalleeBFI, 1573 const BasicBlock &CalleeEntryBlock) { 1574 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1575 for (auto Entry : VMap) { 1576 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1577 continue; 1578 auto *OrigBB = cast<BasicBlock>(Entry.first); 1579 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1580 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1581 if (!ClonedBBs.insert(ClonedBB).second) { 1582 // Multiple blocks in the callee might get mapped to one cloned block in 1583 // the caller since we prune the callee as we clone it. When that happens, 1584 // we want to use the maximum among the original blocks' frequencies. 1585 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1586 if (NewFreq > Freq) 1587 Freq = NewFreq; 1588 } 1589 CallerBFI->setBlockFreq(ClonedBB, Freq); 1590 } 1591 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1592 CallerBFI->setBlockFreqAndScale( 1593 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1594 ClonedBBs); 1595 } 1596 1597 /// Update the branch metadata for cloned call instructions. 1598 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1599 const ProfileCount &CalleeEntryCount, 1600 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1601 BlockFrequencyInfo *CallerBFI) { 1602 if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1) 1603 return; 1604 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1605 int64_t CallCount = 1606 std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount()); 1607 updateProfileCallee(Callee, -CallCount, &VMap); 1608 } 1609 1610 void llvm::updateProfileCallee( 1611 Function *Callee, int64_t EntryDelta, 1612 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1613 auto CalleeCount = Callee->getEntryCount(); 1614 if (!CalleeCount.hasValue()) 1615 return; 1616 1617 const uint64_t PriorEntryCount = CalleeCount->getCount(); 1618 1619 // Since CallSiteCount is an estimate, it could exceed the original callee 1620 // count and has to be set to 0 so guard against underflow. 1621 const uint64_t NewEntryCount = 1622 (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount) 1623 ? 0 1624 : PriorEntryCount + EntryDelta; 1625 1626 // During inlining ? 1627 if (VMap) { 1628 uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount; 1629 for (auto Entry : *VMap) 1630 if (isa<CallInst>(Entry.first)) 1631 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1632 CI->updateProfWeight(CloneEntryCount, PriorEntryCount); 1633 } 1634 1635 if (EntryDelta) { 1636 Callee->setEntryCount(NewEntryCount); 1637 1638 for (BasicBlock &BB : *Callee) 1639 // No need to update the callsite if it is pruned during inlining. 1640 if (!VMap || VMap->count(&BB)) 1641 for (Instruction &I : BB) 1642 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1643 CI->updateProfWeight(NewEntryCount, PriorEntryCount); 1644 } 1645 } 1646 1647 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call 1648 /// result is implicitly consumed by a call to retainRV or claimRV immediately 1649 /// after the call. This function inlines the retainRV/claimRV calls. 1650 /// 1651 /// There are three cases to consider: 1652 /// 1653 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned 1654 /// object in the callee return block, the autoreleaseRV call and the 1655 /// retainRV/claimRV call in the caller cancel out. If the call in the caller 1656 /// is a claimRV call, a call to objc_release is emitted. 1657 /// 1658 /// 2. If there is a call in the callee return block that doesn't have operand 1659 /// bundle "clang.arc.attachedcall", the operand bundle on the original call 1660 /// is transferred to the call in the callee. 1661 /// 1662 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is 1663 /// a retainRV call. 1664 static void 1665 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind, 1666 const SmallVectorImpl<ReturnInst *> &Returns) { 1667 Module *Mod = CB.getModule(); 1668 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function"); 1669 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV, 1670 IsClaimRV = !IsRetainRV; 1671 1672 for (auto *RI : Returns) { 1673 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0)); 1674 bool InsertRetainCall = IsRetainRV; 1675 IRBuilder<> Builder(RI->getContext()); 1676 1677 // Walk backwards through the basic block looking for either a matching 1678 // autoreleaseRV call or an unannotated call. 1679 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()), 1680 RI->getParent()->rend()); 1681 for (Instruction &I : llvm::make_early_inc_range(InstRange)) { 1682 // Ignore casts. 1683 if (isa<CastInst>(I)) 1684 continue; 1685 1686 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1687 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue || 1688 !II->hasNUses(0) || 1689 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd) 1690 break; 1691 1692 // If we've found a matching authoreleaseRV call: 1693 // - If claimRV is attached to the call, insert a call to objc_release 1694 // and erase the autoreleaseRV call. 1695 // - If retainRV is attached to the call, just erase the autoreleaseRV 1696 // call. 1697 if (IsClaimRV) { 1698 Builder.SetInsertPoint(II); 1699 Function *IFn = 1700 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release); 1701 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1702 Builder.CreateCall(IFn, BC, ""); 1703 } 1704 II->eraseFromParent(); 1705 InsertRetainCall = false; 1706 break; 1707 } 1708 1709 auto *CI = dyn_cast<CallInst>(&I); 1710 1711 if (!CI) 1712 break; 1713 1714 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd || 1715 objcarc::hasAttachedCallOpBundle(CI)) 1716 break; 1717 1718 // If we've found an unannotated call that defines RetOpnd, add a 1719 // "clang.arc.attachedcall" operand bundle. 1720 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)}; 1721 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs); 1722 auto *NewCall = CallBase::addOperandBundle( 1723 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI); 1724 NewCall->copyMetadata(*CI); 1725 CI->replaceAllUsesWith(NewCall); 1726 CI->eraseFromParent(); 1727 InsertRetainCall = false; 1728 break; 1729 } 1730 1731 if (InsertRetainCall) { 1732 // The retainRV is attached to the call and we've failed to find a 1733 // matching autoreleaseRV or an annotated call in the callee. Emit a call 1734 // to objc_retain. 1735 Builder.SetInsertPoint(RI); 1736 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain); 1737 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1738 Builder.CreateCall(IFn, BC, ""); 1739 } 1740 } 1741 } 1742 1743 /// This function inlines the called function into the basic block of the 1744 /// caller. This returns false if it is not possible to inline this call. 1745 /// The program is still in a well defined state if this occurs though. 1746 /// 1747 /// Note that this only does one level of inlining. For example, if the 1748 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1749 /// exists in the instruction stream. Similarly this will inline a recursive 1750 /// function by one level. 1751 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1752 AAResults *CalleeAAR, 1753 bool InsertLifetime, 1754 Function *ForwardVarArgsTo) { 1755 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1756 1757 // FIXME: we don't inline callbr yet. 1758 if (isa<CallBrInst>(CB)) 1759 return InlineResult::failure("We don't inline callbr yet."); 1760 1761 // If IFI has any state in it, zap it before we fill it in. 1762 IFI.reset(); 1763 1764 Function *CalledFunc = CB.getCalledFunction(); 1765 if (!CalledFunc || // Can't inline external function or indirect 1766 CalledFunc->isDeclaration()) // call! 1767 return InlineResult::failure("external or indirect"); 1768 1769 // The inliner does not know how to inline through calls with operand bundles 1770 // in general ... 1771 if (CB.hasOperandBundles()) { 1772 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1773 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1774 // ... but it knows how to inline through "deopt" operand bundles ... 1775 if (Tag == LLVMContext::OB_deopt) 1776 continue; 1777 // ... and "funclet" operand bundles. 1778 if (Tag == LLVMContext::OB_funclet) 1779 continue; 1780 if (Tag == LLVMContext::OB_clang_arc_attachedcall) 1781 continue; 1782 1783 return InlineResult::failure("unsupported operand bundle"); 1784 } 1785 } 1786 1787 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1788 // calls that we inline. 1789 bool MarkNoUnwind = CB.doesNotThrow(); 1790 1791 BasicBlock *OrigBB = CB.getParent(); 1792 Function *Caller = OrigBB->getParent(); 1793 1794 // GC poses two hazards to inlining, which only occur when the callee has GC: 1795 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1796 // caller. 1797 // 2. If the caller has a differing GC, it is invalid to inline. 1798 if (CalledFunc->hasGC()) { 1799 if (!Caller->hasGC()) 1800 Caller->setGC(CalledFunc->getGC()); 1801 else if (CalledFunc->getGC() != Caller->getGC()) 1802 return InlineResult::failure("incompatible GC"); 1803 } 1804 1805 // Get the personality function from the callee if it contains a landing pad. 1806 Constant *CalledPersonality = 1807 CalledFunc->hasPersonalityFn() 1808 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1809 : nullptr; 1810 1811 // Find the personality function used by the landing pads of the caller. If it 1812 // exists, then check to see that it matches the personality function used in 1813 // the callee. 1814 Constant *CallerPersonality = 1815 Caller->hasPersonalityFn() 1816 ? Caller->getPersonalityFn()->stripPointerCasts() 1817 : nullptr; 1818 if (CalledPersonality) { 1819 if (!CallerPersonality) 1820 Caller->setPersonalityFn(CalledPersonality); 1821 // If the personality functions match, then we can perform the 1822 // inlining. Otherwise, we can't inline. 1823 // TODO: This isn't 100% true. Some personality functions are proper 1824 // supersets of others and can be used in place of the other. 1825 else if (CalledPersonality != CallerPersonality) 1826 return InlineResult::failure("incompatible personality"); 1827 } 1828 1829 // We need to figure out which funclet the callsite was in so that we may 1830 // properly nest the callee. 1831 Instruction *CallSiteEHPad = nullptr; 1832 if (CallerPersonality) { 1833 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1834 if (isScopedEHPersonality(Personality)) { 1835 Optional<OperandBundleUse> ParentFunclet = 1836 CB.getOperandBundle(LLVMContext::OB_funclet); 1837 if (ParentFunclet) 1838 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1839 1840 // OK, the inlining site is legal. What about the target function? 1841 1842 if (CallSiteEHPad) { 1843 if (Personality == EHPersonality::MSVC_CXX) { 1844 // The MSVC personality cannot tolerate catches getting inlined into 1845 // cleanup funclets. 1846 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1847 // Ok, the call site is within a cleanuppad. Let's check the callee 1848 // for catchpads. 1849 for (const BasicBlock &CalledBB : *CalledFunc) { 1850 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1851 return InlineResult::failure("catch in cleanup funclet"); 1852 } 1853 } 1854 } else if (isAsynchronousEHPersonality(Personality)) { 1855 // SEH is even less tolerant, there may not be any sort of exceptional 1856 // funclet in the callee. 1857 for (const BasicBlock &CalledBB : *CalledFunc) { 1858 if (CalledBB.isEHPad()) 1859 return InlineResult::failure("SEH in cleanup funclet"); 1860 } 1861 } 1862 } 1863 } 1864 } 1865 1866 // Determine if we are dealing with a call in an EHPad which does not unwind 1867 // to caller. 1868 bool EHPadForCallUnwindsLocally = false; 1869 if (CallSiteEHPad && isa<CallInst>(CB)) { 1870 UnwindDestMemoTy FuncletUnwindMap; 1871 Value *CallSiteUnwindDestToken = 1872 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1873 1874 EHPadForCallUnwindsLocally = 1875 CallSiteUnwindDestToken && 1876 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1877 } 1878 1879 // Get an iterator to the last basic block in the function, which will have 1880 // the new function inlined after it. 1881 Function::iterator LastBlock = --Caller->end(); 1882 1883 // Make sure to capture all of the return instructions from the cloned 1884 // function. 1885 SmallVector<ReturnInst*, 8> Returns; 1886 ClonedCodeInfo InlinedFunctionInfo; 1887 Function::iterator FirstNewBlock; 1888 1889 { // Scope to destroy VMap after cloning. 1890 ValueToValueMapTy VMap; 1891 struct ByValInit { 1892 Value *Dst; 1893 Value *Src; 1894 Type *Ty; 1895 }; 1896 // Keep a list of pair (dst, src) to emit byval initializations. 1897 SmallVector<ByValInit, 4> ByValInits; 1898 1899 // When inlining a function that contains noalias scope metadata, 1900 // this metadata needs to be cloned so that the inlined blocks 1901 // have different "unique scopes" at every call site. 1902 // Track the metadata that must be cloned. Do this before other changes to 1903 // the function, so that we do not get in trouble when inlining caller == 1904 // callee. 1905 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction()); 1906 1907 auto &DL = Caller->getParent()->getDataLayout(); 1908 1909 // Calculate the vector of arguments to pass into the function cloner, which 1910 // matches up the formal to the actual argument values. 1911 auto AI = CB.arg_begin(); 1912 unsigned ArgNo = 0; 1913 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1914 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1915 Value *ActualArg = *AI; 1916 1917 // When byval arguments actually inlined, we need to make the copy implied 1918 // by them explicit. However, we don't do this if the callee is readonly 1919 // or readnone, because the copy would be unneeded: the callee doesn't 1920 // modify the struct. 1921 if (CB.isByValArgument(ArgNo)) { 1922 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg, 1923 &CB, CalledFunc, IFI, 1924 CalledFunc->getParamAlignment(ArgNo)); 1925 if (ActualArg != *AI) 1926 ByValInits.push_back( 1927 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)}); 1928 } 1929 1930 VMap[&*I] = ActualArg; 1931 } 1932 1933 // TODO: Remove this when users have been updated to the assume bundles. 1934 // Add alignment assumptions if necessary. We do this before the inlined 1935 // instructions are actually cloned into the caller so that we can easily 1936 // check what will be known at the start of the inlined code. 1937 AddAlignmentAssumptions(CB, IFI); 1938 1939 AssumptionCache *AC = 1940 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1941 1942 /// Preserve all attributes on of the call and its parameters. 1943 salvageKnowledge(&CB, AC); 1944 1945 // We want the inliner to prune the code as it copies. We would LOVE to 1946 // have no dead or constant instructions leftover after inlining occurs 1947 // (which can happen, e.g., because an argument was constant), but we'll be 1948 // happy with whatever the cloner can do. 1949 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1950 /*ModuleLevelChanges=*/false, Returns, ".i", 1951 &InlinedFunctionInfo); 1952 // Remember the first block that is newly cloned over. 1953 FirstNewBlock = LastBlock; ++FirstNewBlock; 1954 1955 // Insert retainRV/clainRV runtime calls. 1956 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB); 1957 if (RVCallKind != objcarc::ARCInstKind::None) 1958 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns); 1959 1960 // Updated caller/callee profiles only when requested. For sample loader 1961 // inlining, the context-sensitive inlinee profile doesn't need to be 1962 // subtracted from callee profile, and the inlined clone also doesn't need 1963 // to be scaled based on call site count. 1964 if (IFI.UpdateProfile) { 1965 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1966 // Update the BFI of blocks cloned into the caller. 1967 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1968 CalledFunc->front()); 1969 1970 if (auto Profile = CalledFunc->getEntryCount()) 1971 updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI, 1972 IFI.CallerBFI); 1973 } 1974 1975 // Inject byval arguments initialization. 1976 for (ByValInit &Init : ByValInits) 1977 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(), 1978 &*FirstNewBlock, IFI); 1979 1980 Optional<OperandBundleUse> ParentDeopt = 1981 CB.getOperandBundle(LLVMContext::OB_deopt); 1982 if (ParentDeopt) { 1983 SmallVector<OperandBundleDef, 2> OpDefs; 1984 1985 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1986 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1987 if (!ICS) 1988 continue; // instruction was DCE'd or RAUW'ed to undef 1989 1990 OpDefs.clear(); 1991 1992 OpDefs.reserve(ICS->getNumOperandBundles()); 1993 1994 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1995 ++COBi) { 1996 auto ChildOB = ICS->getOperandBundleAt(COBi); 1997 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1998 // If the inlined call has other operand bundles, let them be 1999 OpDefs.emplace_back(ChildOB); 2000 continue; 2001 } 2002 2003 // It may be useful to separate this logic (of handling operand 2004 // bundles) out to a separate "policy" component if this gets crowded. 2005 // Prepend the parent's deoptimization continuation to the newly 2006 // inlined call's deoptimization continuation. 2007 std::vector<Value *> MergedDeoptArgs; 2008 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 2009 ChildOB.Inputs.size()); 2010 2011 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs); 2012 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs); 2013 2014 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 2015 } 2016 2017 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 2018 2019 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 2020 // this even if the call returns void. 2021 ICS->replaceAllUsesWith(NewI); 2022 2023 VH = nullptr; 2024 ICS->eraseFromParent(); 2025 } 2026 } 2027 2028 // Update the callgraph if requested. 2029 if (IFI.CG) 2030 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 2031 2032 // For 'nodebug' functions, the associated DISubprogram is always null. 2033 // Conservatively avoid propagating the callsite debug location to 2034 // instructions inlined from a function whose DISubprogram is not null. 2035 fixupLineNumbers(Caller, FirstNewBlock, &CB, 2036 CalledFunc->getSubprogram() != nullptr); 2037 2038 // Now clone the inlined noalias scope metadata. 2039 SAMetadataCloner.clone(); 2040 SAMetadataCloner.remap(FirstNewBlock, Caller->end()); 2041 2042 // Add noalias metadata if necessary. 2043 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo); 2044 2045 // Clone return attributes on the callsite into the calls within the inlined 2046 // function which feed into its return value. 2047 AddReturnAttributes(CB, VMap); 2048 2049 // Propagate metadata on the callsite if necessary. 2050 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end()); 2051 2052 // Register any cloned assumptions. 2053 if (IFI.GetAssumptionCache) 2054 for (BasicBlock &NewBlock : 2055 make_range(FirstNewBlock->getIterator(), Caller->end())) 2056 for (Instruction &I : NewBlock) 2057 if (auto *II = dyn_cast<AssumeInst>(&I)) 2058 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 2059 } 2060 2061 // If there are any alloca instructions in the block that used to be the entry 2062 // block for the callee, move them to the entry block of the caller. First 2063 // calculate which instruction they should be inserted before. We insert the 2064 // instructions at the end of the current alloca list. 2065 { 2066 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 2067 for (BasicBlock::iterator I = FirstNewBlock->begin(), 2068 E = FirstNewBlock->end(); I != E; ) { 2069 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 2070 if (!AI) continue; 2071 2072 // If the alloca is now dead, remove it. This often occurs due to code 2073 // specialization. 2074 if (AI->use_empty()) { 2075 AI->eraseFromParent(); 2076 continue; 2077 } 2078 2079 if (!allocaWouldBeStaticInEntry(AI)) 2080 continue; 2081 2082 // Keep track of the static allocas that we inline into the caller. 2083 IFI.StaticAllocas.push_back(AI); 2084 2085 // Scan for the block of allocas that we can move over, and move them 2086 // all at once. 2087 while (isa<AllocaInst>(I) && 2088 !cast<AllocaInst>(I)->use_empty() && 2089 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 2090 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 2091 ++I; 2092 } 2093 2094 // Transfer all of the allocas over in a block. Using splice means 2095 // that the instructions aren't removed from the symbol table, then 2096 // reinserted. 2097 Caller->getEntryBlock().getInstList().splice( 2098 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 2099 } 2100 } 2101 2102 SmallVector<Value*,4> VarArgsToForward; 2103 SmallVector<AttributeSet, 4> VarArgsAttrs; 2104 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2105 i < CB.arg_size(); i++) { 2106 VarArgsToForward.push_back(CB.getArgOperand(i)); 2107 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i)); 2108 } 2109 2110 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2111 if (InlinedFunctionInfo.ContainsCalls) { 2112 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2113 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 2114 CallSiteTailKind = CI->getTailCallKind(); 2115 2116 // For inlining purposes, the "notail" marker is the same as no marker. 2117 if (CallSiteTailKind == CallInst::TCK_NoTail) 2118 CallSiteTailKind = CallInst::TCK_None; 2119 2120 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2121 ++BB) { 2122 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 2123 CallInst *CI = dyn_cast<CallInst>(&I); 2124 if (!CI) 2125 continue; 2126 2127 // Forward varargs from inlined call site to calls to the 2128 // ForwardVarArgsTo function, if requested, and to musttail calls. 2129 if (!VarArgsToForward.empty() && 2130 ((ForwardVarArgsTo && 2131 CI->getCalledFunction() == ForwardVarArgsTo) || 2132 CI->isMustTailCall())) { 2133 // Collect attributes for non-vararg parameters. 2134 AttributeList Attrs = CI->getAttributes(); 2135 SmallVector<AttributeSet, 8> ArgAttrs; 2136 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2137 for (unsigned ArgNo = 0; 2138 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2139 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 2140 } 2141 2142 // Add VarArg attributes. 2143 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2144 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(), 2145 Attrs.getRetAttrs(), ArgAttrs); 2146 // Add VarArgs to existing parameters. 2147 SmallVector<Value *, 6> Params(CI->args()); 2148 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2149 CallInst *NewCI = CallInst::Create( 2150 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2151 NewCI->setDebugLoc(CI->getDebugLoc()); 2152 NewCI->setAttributes(Attrs); 2153 NewCI->setCallingConv(CI->getCallingConv()); 2154 CI->replaceAllUsesWith(NewCI); 2155 CI->eraseFromParent(); 2156 CI = NewCI; 2157 } 2158 2159 if (Function *F = CI->getCalledFunction()) 2160 InlinedDeoptimizeCalls |= 2161 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2162 2163 // We need to reduce the strength of any inlined tail calls. For 2164 // musttail, we have to avoid introducing potential unbounded stack 2165 // growth. For example, if functions 'f' and 'g' are mutually recursive 2166 // with musttail, we can inline 'g' into 'f' so long as we preserve 2167 // musttail on the cloned call to 'f'. If either the inlined call site 2168 // or the cloned call site is *not* musttail, the program already has 2169 // one frame of stack growth, so it's safe to remove musttail. Here is 2170 // a table of example transformations: 2171 // 2172 // f -> musttail g -> musttail f ==> f -> musttail f 2173 // f -> musttail g -> tail f ==> f -> tail f 2174 // f -> g -> musttail f ==> f -> f 2175 // f -> g -> tail f ==> f -> f 2176 // 2177 // Inlined notail calls should remain notail calls. 2178 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2179 if (ChildTCK != CallInst::TCK_NoTail) 2180 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2181 CI->setTailCallKind(ChildTCK); 2182 InlinedMustTailCalls |= CI->isMustTailCall(); 2183 2184 // Calls inlined through a 'nounwind' call site should be marked 2185 // 'nounwind'. 2186 if (MarkNoUnwind) 2187 CI->setDoesNotThrow(); 2188 } 2189 } 2190 } 2191 2192 // Leave lifetime markers for the static alloca's, scoping them to the 2193 // function we just inlined. 2194 // We need to insert lifetime intrinsics even at O0 to avoid invalid 2195 // access caused by multithreaded coroutines. The check 2196 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only. 2197 if ((InsertLifetime || Caller->isPresplitCoroutine()) && 2198 !IFI.StaticAllocas.empty()) { 2199 IRBuilder<> builder(&FirstNewBlock->front()); 2200 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2201 AllocaInst *AI = IFI.StaticAllocas[ai]; 2202 // Don't mark swifterror allocas. They can't have bitcast uses. 2203 if (AI->isSwiftError()) 2204 continue; 2205 2206 // If the alloca is already scoped to something smaller than the whole 2207 // function then there's no need to add redundant, less accurate markers. 2208 if (hasLifetimeMarkers(AI)) 2209 continue; 2210 2211 // Try to determine the size of the allocation. 2212 ConstantInt *AllocaSize = nullptr; 2213 if (ConstantInt *AIArraySize = 2214 dyn_cast<ConstantInt>(AI->getArraySize())) { 2215 auto &DL = Caller->getParent()->getDataLayout(); 2216 Type *AllocaType = AI->getAllocatedType(); 2217 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2218 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2219 2220 // Don't add markers for zero-sized allocas. 2221 if (AllocaArraySize == 0) 2222 continue; 2223 2224 // Check that array size doesn't saturate uint64_t and doesn't 2225 // overflow when it's multiplied by type size. 2226 if (!AllocaTypeSize.isScalable() && 2227 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2228 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2229 AllocaTypeSize.getFixedSize()) { 2230 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2231 AllocaArraySize * AllocaTypeSize); 2232 } 2233 } 2234 2235 builder.CreateLifetimeStart(AI, AllocaSize); 2236 for (ReturnInst *RI : Returns) { 2237 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2238 // call and a return. The return kills all local allocas. 2239 if (InlinedMustTailCalls && 2240 RI->getParent()->getTerminatingMustTailCall()) 2241 continue; 2242 if (InlinedDeoptimizeCalls && 2243 RI->getParent()->getTerminatingDeoptimizeCall()) 2244 continue; 2245 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2246 } 2247 } 2248 } 2249 2250 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2251 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2252 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2253 Module *M = Caller->getParent(); 2254 // Get the two intrinsics we care about. 2255 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2256 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2257 2258 // Insert the llvm.stacksave. 2259 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2260 .CreateCall(StackSave, {}, "savedstack"); 2261 2262 // Insert a call to llvm.stackrestore before any return instructions in the 2263 // inlined function. 2264 for (ReturnInst *RI : Returns) { 2265 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2266 // call and a return. The return will restore the stack pointer. 2267 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2268 continue; 2269 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2270 continue; 2271 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2272 } 2273 } 2274 2275 // If we are inlining for an invoke instruction, we must make sure to rewrite 2276 // any call instructions into invoke instructions. This is sensitive to which 2277 // funclet pads were top-level in the inlinee, so must be done before 2278 // rewriting the "parent pad" links. 2279 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2280 BasicBlock *UnwindDest = II->getUnwindDest(); 2281 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2282 if (isa<LandingPadInst>(FirstNonPHI)) { 2283 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2284 } else { 2285 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2286 } 2287 } 2288 2289 // Update the lexical scopes of the new funclets and callsites. 2290 // Anything that had 'none' as its parent is now nested inside the callsite's 2291 // EHPad. 2292 2293 if (CallSiteEHPad) { 2294 for (Function::iterator BB = FirstNewBlock->getIterator(), 2295 E = Caller->end(); 2296 BB != E; ++BB) { 2297 // Add bundle operands to any top-level call sites. 2298 SmallVector<OperandBundleDef, 1> OpBundles; 2299 for (Instruction &II : llvm::make_early_inc_range(*BB)) { 2300 CallBase *I = dyn_cast<CallBase>(&II); 2301 if (!I) 2302 continue; 2303 2304 // Skip call sites which are nounwind intrinsics. 2305 auto *CalledFn = 2306 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2307 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2308 continue; 2309 2310 // Skip call sites which already have a "funclet" bundle. 2311 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2312 continue; 2313 2314 I->getOperandBundlesAsDefs(OpBundles); 2315 OpBundles.emplace_back("funclet", CallSiteEHPad); 2316 2317 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2318 NewInst->takeName(I); 2319 I->replaceAllUsesWith(NewInst); 2320 I->eraseFromParent(); 2321 2322 OpBundles.clear(); 2323 } 2324 2325 // It is problematic if the inlinee has a cleanupret which unwinds to 2326 // caller and we inline it into a call site which doesn't unwind but into 2327 // an EH pad that does. Such an edge must be dynamically unreachable. 2328 // As such, we replace the cleanupret with unreachable. 2329 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2330 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2331 changeToUnreachable(CleanupRet); 2332 2333 Instruction *I = BB->getFirstNonPHI(); 2334 if (!I->isEHPad()) 2335 continue; 2336 2337 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2338 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2339 CatchSwitch->setParentPad(CallSiteEHPad); 2340 } else { 2341 auto *FPI = cast<FuncletPadInst>(I); 2342 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2343 FPI->setParentPad(CallSiteEHPad); 2344 } 2345 } 2346 } 2347 2348 if (InlinedDeoptimizeCalls) { 2349 // We need to at least remove the deoptimizing returns from the Return set, 2350 // so that the control flow from those returns does not get merged into the 2351 // caller (but terminate it instead). If the caller's return type does not 2352 // match the callee's return type, we also need to change the return type of 2353 // the intrinsic. 2354 if (Caller->getReturnType() == CB.getType()) { 2355 llvm::erase_if(Returns, [](ReturnInst *RI) { 2356 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2357 }); 2358 } else { 2359 SmallVector<ReturnInst *, 8> NormalReturns; 2360 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2361 Caller->getParent(), Intrinsic::experimental_deoptimize, 2362 {Caller->getReturnType()}); 2363 2364 for (ReturnInst *RI : Returns) { 2365 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2366 if (!DeoptCall) { 2367 NormalReturns.push_back(RI); 2368 continue; 2369 } 2370 2371 // The calling convention on the deoptimize call itself may be bogus, 2372 // since the code we're inlining may have undefined behavior (and may 2373 // never actually execute at runtime); but all 2374 // @llvm.experimental.deoptimize declarations have to have the same 2375 // calling convention in a well-formed module. 2376 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2377 NewDeoptIntrinsic->setCallingConv(CallingConv); 2378 auto *CurBB = RI->getParent(); 2379 RI->eraseFromParent(); 2380 2381 SmallVector<Value *, 4> CallArgs(DeoptCall->args()); 2382 2383 SmallVector<OperandBundleDef, 1> OpBundles; 2384 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2385 auto DeoptAttributes = DeoptCall->getAttributes(); 2386 DeoptCall->eraseFromParent(); 2387 assert(!OpBundles.empty() && 2388 "Expected at least the deopt operand bundle"); 2389 2390 IRBuilder<> Builder(CurBB); 2391 CallInst *NewDeoptCall = 2392 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2393 NewDeoptCall->setCallingConv(CallingConv); 2394 NewDeoptCall->setAttributes(DeoptAttributes); 2395 if (NewDeoptCall->getType()->isVoidTy()) 2396 Builder.CreateRetVoid(); 2397 else 2398 Builder.CreateRet(NewDeoptCall); 2399 } 2400 2401 // Leave behind the normal returns so we can merge control flow. 2402 std::swap(Returns, NormalReturns); 2403 } 2404 } 2405 2406 // Handle any inlined musttail call sites. In order for a new call site to be 2407 // musttail, the source of the clone and the inlined call site must have been 2408 // musttail. Therefore it's safe to return without merging control into the 2409 // phi below. 2410 if (InlinedMustTailCalls) { 2411 // Check if we need to bitcast the result of any musttail calls. 2412 Type *NewRetTy = Caller->getReturnType(); 2413 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2414 2415 // Handle the returns preceded by musttail calls separately. 2416 SmallVector<ReturnInst *, 8> NormalReturns; 2417 for (ReturnInst *RI : Returns) { 2418 CallInst *ReturnedMustTail = 2419 RI->getParent()->getTerminatingMustTailCall(); 2420 if (!ReturnedMustTail) { 2421 NormalReturns.push_back(RI); 2422 continue; 2423 } 2424 if (!NeedBitCast) 2425 continue; 2426 2427 // Delete the old return and any preceding bitcast. 2428 BasicBlock *CurBB = RI->getParent(); 2429 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2430 RI->eraseFromParent(); 2431 if (OldCast) 2432 OldCast->eraseFromParent(); 2433 2434 // Insert a new bitcast and return with the right type. 2435 IRBuilder<> Builder(CurBB); 2436 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2437 } 2438 2439 // Leave behind the normal returns so we can merge control flow. 2440 std::swap(Returns, NormalReturns); 2441 } 2442 2443 // Now that all of the transforms on the inlined code have taken place but 2444 // before we splice the inlined code into the CFG and lose track of which 2445 // blocks were actually inlined, collect the call sites. We only do this if 2446 // call graph updates weren't requested, as those provide value handle based 2447 // tracking of inlined call sites instead. Calls to intrinsics are not 2448 // collected because they are not inlineable. 2449 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2450 // Otherwise just collect the raw call sites that were inlined. 2451 for (BasicBlock &NewBB : 2452 make_range(FirstNewBlock->getIterator(), Caller->end())) 2453 for (Instruction &I : NewBB) 2454 if (auto *CB = dyn_cast<CallBase>(&I)) 2455 if (!(CB->getCalledFunction() && 2456 CB->getCalledFunction()->isIntrinsic())) 2457 IFI.InlinedCallSites.push_back(CB); 2458 } 2459 2460 // If we cloned in _exactly one_ basic block, and if that block ends in a 2461 // return instruction, we splice the body of the inlined callee directly into 2462 // the calling basic block. 2463 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2464 // Move all of the instructions right before the call. 2465 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2466 FirstNewBlock->begin(), FirstNewBlock->end()); 2467 // Remove the cloned basic block. 2468 Caller->getBasicBlockList().pop_back(); 2469 2470 // If the call site was an invoke instruction, add a branch to the normal 2471 // destination. 2472 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2473 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2474 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2475 } 2476 2477 // If the return instruction returned a value, replace uses of the call with 2478 // uses of the returned value. 2479 if (!CB.use_empty()) { 2480 ReturnInst *R = Returns[0]; 2481 if (&CB == R->getReturnValue()) 2482 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2483 else 2484 CB.replaceAllUsesWith(R->getReturnValue()); 2485 } 2486 // Since we are now done with the Call/Invoke, we can delete it. 2487 CB.eraseFromParent(); 2488 2489 // Since we are now done with the return instruction, delete it also. 2490 Returns[0]->eraseFromParent(); 2491 2492 // We are now done with the inlining. 2493 return InlineResult::success(); 2494 } 2495 2496 // Otherwise, we have the normal case, of more than one block to inline or 2497 // multiple return sites. 2498 2499 // We want to clone the entire callee function into the hole between the 2500 // "starter" and "ender" blocks. How we accomplish this depends on whether 2501 // this is an invoke instruction or a call instruction. 2502 BasicBlock *AfterCallBB; 2503 BranchInst *CreatedBranchToNormalDest = nullptr; 2504 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2505 2506 // Add an unconditional branch to make this look like the CallInst case... 2507 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2508 2509 // Split the basic block. This guarantees that no PHI nodes will have to be 2510 // updated due to new incoming edges, and make the invoke case more 2511 // symmetric to the call case. 2512 AfterCallBB = 2513 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2514 CalledFunc->getName() + ".exit"); 2515 2516 } else { // It's a call 2517 // If this is a call instruction, we need to split the basic block that 2518 // the call lives in. 2519 // 2520 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2521 CalledFunc->getName() + ".exit"); 2522 } 2523 2524 if (IFI.CallerBFI) { 2525 // Copy original BB's block frequency to AfterCallBB 2526 IFI.CallerBFI->setBlockFreq( 2527 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2528 } 2529 2530 // Change the branch that used to go to AfterCallBB to branch to the first 2531 // basic block of the inlined function. 2532 // 2533 Instruction *Br = OrigBB->getTerminator(); 2534 assert(Br && Br->getOpcode() == Instruction::Br && 2535 "splitBasicBlock broken!"); 2536 Br->setOperand(0, &*FirstNewBlock); 2537 2538 // Now that the function is correct, make it a little bit nicer. In 2539 // particular, move the basic blocks inserted from the end of the function 2540 // into the space made by splitting the source basic block. 2541 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2542 Caller->getBasicBlockList(), FirstNewBlock, 2543 Caller->end()); 2544 2545 // Handle all of the return instructions that we just cloned in, and eliminate 2546 // any users of the original call/invoke instruction. 2547 Type *RTy = CalledFunc->getReturnType(); 2548 2549 PHINode *PHI = nullptr; 2550 if (Returns.size() > 1) { 2551 // The PHI node should go at the front of the new basic block to merge all 2552 // possible incoming values. 2553 if (!CB.use_empty()) { 2554 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2555 &AfterCallBB->front()); 2556 // Anything that used the result of the function call should now use the 2557 // PHI node as their operand. 2558 CB.replaceAllUsesWith(PHI); 2559 } 2560 2561 // Loop over all of the return instructions adding entries to the PHI node 2562 // as appropriate. 2563 if (PHI) { 2564 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2565 ReturnInst *RI = Returns[i]; 2566 assert(RI->getReturnValue()->getType() == PHI->getType() && 2567 "Ret value not consistent in function!"); 2568 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2569 } 2570 } 2571 2572 // Add a branch to the merge points and remove return instructions. 2573 DebugLoc Loc; 2574 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2575 ReturnInst *RI = Returns[i]; 2576 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2577 Loc = RI->getDebugLoc(); 2578 BI->setDebugLoc(Loc); 2579 RI->eraseFromParent(); 2580 } 2581 // We need to set the debug location to *somewhere* inside the 2582 // inlined function. The line number may be nonsensical, but the 2583 // instruction will at least be associated with the right 2584 // function. 2585 if (CreatedBranchToNormalDest) 2586 CreatedBranchToNormalDest->setDebugLoc(Loc); 2587 } else if (!Returns.empty()) { 2588 // Otherwise, if there is exactly one return value, just replace anything 2589 // using the return value of the call with the computed value. 2590 if (!CB.use_empty()) { 2591 if (&CB == Returns[0]->getReturnValue()) 2592 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2593 else 2594 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2595 } 2596 2597 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2598 BasicBlock *ReturnBB = Returns[0]->getParent(); 2599 ReturnBB->replaceAllUsesWith(AfterCallBB); 2600 2601 // Splice the code from the return block into the block that it will return 2602 // to, which contains the code that was after the call. 2603 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2604 ReturnBB->getInstList()); 2605 2606 if (CreatedBranchToNormalDest) 2607 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2608 2609 // Delete the return instruction now and empty ReturnBB now. 2610 Returns[0]->eraseFromParent(); 2611 ReturnBB->eraseFromParent(); 2612 } else if (!CB.use_empty()) { 2613 // No returns, but something is using the return value of the call. Just 2614 // nuke the result. 2615 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2616 } 2617 2618 // Since we are now done with the Call/Invoke, we can delete it. 2619 CB.eraseFromParent(); 2620 2621 // If we inlined any musttail calls and the original return is now 2622 // unreachable, delete it. It can only contain a bitcast and ret. 2623 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 2624 AfterCallBB->eraseFromParent(); 2625 2626 // We should always be able to fold the entry block of the function into the 2627 // single predecessor of the block... 2628 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2629 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2630 2631 // Splice the code entry block into calling block, right before the 2632 // unconditional branch. 2633 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2634 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2635 2636 // Remove the unconditional branch. 2637 OrigBB->getInstList().erase(Br); 2638 2639 // Now we can remove the CalleeEntry block, which is now empty. 2640 Caller->getBasicBlockList().erase(CalleeEntry); 2641 2642 // If we inserted a phi node, check to see if it has a single value (e.g. all 2643 // the entries are the same or undef). If so, remove the PHI so it doesn't 2644 // block other optimizations. 2645 if (PHI) { 2646 AssumptionCache *AC = 2647 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2648 auto &DL = Caller->getParent()->getDataLayout(); 2649 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2650 PHI->replaceAllUsesWith(V); 2651 PHI->eraseFromParent(); 2652 } 2653 } 2654 2655 return InlineResult::success(); 2656 } 2657