10b57cec5SDimitry Andric //===- InlineFunction.cpp - Code to perform function inlining -------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file implements inlining of a function into a call site, resolving 100b57cec5SDimitry Andric // parameters and the return value as appropriate. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 150b57cec5SDimitry Andric #include "llvm/ADT/None.h" 160b57cec5SDimitry Andric #include "llvm/ADT/Optional.h" 170b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 180b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h" 190b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 200b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 210b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h" 220b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h" 230b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h" 240b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 250b57cec5SDimitry Andric #include "llvm/Analysis/BlockFrequencyInfo.h" 260b57cec5SDimitry Andric #include "llvm/Analysis/CallGraph.h" 270b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h" 280b57cec5SDimitry Andric #include "llvm/Analysis/EHPersonalities.h" 290b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 300b57cec5SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h" 310b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 320b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 330b57cec5SDimitry Andric #include "llvm/Analysis/VectorUtils.h" 340b57cec5SDimitry Andric #include "llvm/IR/Argument.h" 350b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 360b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 370b57cec5SDimitry Andric #include "llvm/IR/Constant.h" 380b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 390b57cec5SDimitry Andric #include "llvm/IR/DIBuilder.h" 400b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 410b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h" 420b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h" 430b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 440b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 450b57cec5SDimitry Andric #include "llvm/IR/Function.h" 460b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 470b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 480b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 490b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 500b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 510b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 520b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h" 530b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h" 540b57cec5SDimitry Andric #include "llvm/IR/Metadata.h" 550b57cec5SDimitry Andric #include "llvm/IR/Module.h" 560b57cec5SDimitry Andric #include "llvm/IR/Type.h" 570b57cec5SDimitry Andric #include "llvm/IR/User.h" 580b57cec5SDimitry Andric #include "llvm/IR/Value.h" 590b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 600b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 610b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 62*5ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 630b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Cloning.h" 640b57cec5SDimitry Andric #include "llvm/Transforms/Utils/ValueMapper.h" 650b57cec5SDimitry Andric #include <algorithm> 660b57cec5SDimitry Andric #include <cassert> 670b57cec5SDimitry Andric #include <cstdint> 680b57cec5SDimitry Andric #include <iterator> 690b57cec5SDimitry Andric #include <limits> 700b57cec5SDimitry Andric #include <string> 710b57cec5SDimitry Andric #include <utility> 720b57cec5SDimitry Andric #include <vector> 730b57cec5SDimitry Andric 740b57cec5SDimitry Andric using namespace llvm; 750b57cec5SDimitry Andric using ProfileCount = Function::ProfileCount; 760b57cec5SDimitry Andric 770b57cec5SDimitry Andric static cl::opt<bool> 780b57cec5SDimitry Andric EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 790b57cec5SDimitry Andric cl::Hidden, 800b57cec5SDimitry Andric cl::desc("Convert noalias attributes to metadata during inlining.")); 810b57cec5SDimitry Andric 82*5ffd83dbSDimitry Andric // Disabled by default, because the added alignment assumptions may increase 83*5ffd83dbSDimitry Andric // compile-time and block optimizations. This option is not suitable for use 84*5ffd83dbSDimitry Andric // with frontends that emit comprehensive parameter alignment annotations. 850b57cec5SDimitry Andric static cl::opt<bool> 860b57cec5SDimitry Andric PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 87*5ffd83dbSDimitry Andric cl::init(false), cl::Hidden, 880b57cec5SDimitry Andric cl::desc("Convert align attributes to assumptions during inlining.")); 890b57cec5SDimitry Andric 90*5ffd83dbSDimitry Andric static cl::opt<bool> UpdateReturnAttributes( 91*5ffd83dbSDimitry Andric "update-return-attrs", cl::init(true), cl::Hidden, 92*5ffd83dbSDimitry Andric cl::desc("Update return attributes on calls within inlined body")); 93*5ffd83dbSDimitry Andric 94*5ffd83dbSDimitry Andric static cl::opt<unsigned> InlinerAttributeWindow( 95*5ffd83dbSDimitry Andric "max-inst-checked-for-throw-during-inlining", cl::Hidden, 96*5ffd83dbSDimitry Andric cl::desc("the maximum number of instructions analyzed for may throw during " 97*5ffd83dbSDimitry Andric "attribute inference in inlined body"), 98*5ffd83dbSDimitry Andric cl::init(4)); 990b57cec5SDimitry Andric 1000b57cec5SDimitry Andric namespace { 1010b57cec5SDimitry Andric 1020b57cec5SDimitry Andric /// A class for recording information about inlining a landing pad. 1030b57cec5SDimitry Andric class LandingPadInliningInfo { 1040b57cec5SDimitry Andric /// Destination of the invoke's unwind. 1050b57cec5SDimitry Andric BasicBlock *OuterResumeDest; 1060b57cec5SDimitry Andric 1070b57cec5SDimitry Andric /// Destination for the callee's resume. 1080b57cec5SDimitry Andric BasicBlock *InnerResumeDest = nullptr; 1090b57cec5SDimitry Andric 1100b57cec5SDimitry Andric /// LandingPadInst associated with the invoke. 1110b57cec5SDimitry Andric LandingPadInst *CallerLPad = nullptr; 1120b57cec5SDimitry Andric 1130b57cec5SDimitry Andric /// PHI for EH values from landingpad insts. 1140b57cec5SDimitry Andric PHINode *InnerEHValuesPHI = nullptr; 1150b57cec5SDimitry Andric 1160b57cec5SDimitry Andric SmallVector<Value*, 8> UnwindDestPHIValues; 1170b57cec5SDimitry Andric 1180b57cec5SDimitry Andric public: 1190b57cec5SDimitry Andric LandingPadInliningInfo(InvokeInst *II) 1200b57cec5SDimitry Andric : OuterResumeDest(II->getUnwindDest()) { 1210b57cec5SDimitry Andric // If there are PHI nodes in the unwind destination block, we need to keep 1220b57cec5SDimitry Andric // track of which values came into them from the invoke before removing 1230b57cec5SDimitry Andric // the edge from this block. 1240b57cec5SDimitry Andric BasicBlock *InvokeBB = II->getParent(); 1250b57cec5SDimitry Andric BasicBlock::iterator I = OuterResumeDest->begin(); 1260b57cec5SDimitry Andric for (; isa<PHINode>(I); ++I) { 1270b57cec5SDimitry Andric // Save the value to use for this edge. 1280b57cec5SDimitry Andric PHINode *PHI = cast<PHINode>(I); 1290b57cec5SDimitry Andric UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 1300b57cec5SDimitry Andric } 1310b57cec5SDimitry Andric 1320b57cec5SDimitry Andric CallerLPad = cast<LandingPadInst>(I); 1330b57cec5SDimitry Andric } 1340b57cec5SDimitry Andric 1350b57cec5SDimitry Andric /// The outer unwind destination is the target of 1360b57cec5SDimitry Andric /// unwind edges introduced for calls within the inlined function. 1370b57cec5SDimitry Andric BasicBlock *getOuterResumeDest() const { 1380b57cec5SDimitry Andric return OuterResumeDest; 1390b57cec5SDimitry Andric } 1400b57cec5SDimitry Andric 1410b57cec5SDimitry Andric BasicBlock *getInnerResumeDest(); 1420b57cec5SDimitry Andric 1430b57cec5SDimitry Andric LandingPadInst *getLandingPadInst() const { return CallerLPad; } 1440b57cec5SDimitry Andric 1450b57cec5SDimitry Andric /// Forward the 'resume' instruction to the caller's landing pad block. 1460b57cec5SDimitry Andric /// When the landing pad block has only one predecessor, this is 1470b57cec5SDimitry Andric /// a simple branch. When there is more than one predecessor, we need to 1480b57cec5SDimitry Andric /// split the landing pad block after the landingpad instruction and jump 1490b57cec5SDimitry Andric /// to there. 1500b57cec5SDimitry Andric void forwardResume(ResumeInst *RI, 1510b57cec5SDimitry Andric SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 1520b57cec5SDimitry Andric 1530b57cec5SDimitry Andric /// Add incoming-PHI values to the unwind destination block for the given 1540b57cec5SDimitry Andric /// basic block, using the values for the original invoke's source block. 1550b57cec5SDimitry Andric void addIncomingPHIValuesFor(BasicBlock *BB) const { 1560b57cec5SDimitry Andric addIncomingPHIValuesForInto(BB, OuterResumeDest); 1570b57cec5SDimitry Andric } 1580b57cec5SDimitry Andric 1590b57cec5SDimitry Andric void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 1600b57cec5SDimitry Andric BasicBlock::iterator I = dest->begin(); 1610b57cec5SDimitry Andric for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 1620b57cec5SDimitry Andric PHINode *phi = cast<PHINode>(I); 1630b57cec5SDimitry Andric phi->addIncoming(UnwindDestPHIValues[i], src); 1640b57cec5SDimitry Andric } 1650b57cec5SDimitry Andric } 1660b57cec5SDimitry Andric }; 1670b57cec5SDimitry Andric 1680b57cec5SDimitry Andric } // end anonymous namespace 1690b57cec5SDimitry Andric 1700b57cec5SDimitry Andric /// Get or create a target for the branch from ResumeInsts. 1710b57cec5SDimitry Andric BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 1720b57cec5SDimitry Andric if (InnerResumeDest) return InnerResumeDest; 1730b57cec5SDimitry Andric 1740b57cec5SDimitry Andric // Split the landing pad. 1750b57cec5SDimitry Andric BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 1760b57cec5SDimitry Andric InnerResumeDest = 1770b57cec5SDimitry Andric OuterResumeDest->splitBasicBlock(SplitPoint, 1780b57cec5SDimitry Andric OuterResumeDest->getName() + ".body"); 1790b57cec5SDimitry Andric 1800b57cec5SDimitry Andric // The number of incoming edges we expect to the inner landing pad. 1810b57cec5SDimitry Andric const unsigned PHICapacity = 2; 1820b57cec5SDimitry Andric 1830b57cec5SDimitry Andric // Create corresponding new PHIs for all the PHIs in the outer landing pad. 1840b57cec5SDimitry Andric Instruction *InsertPoint = &InnerResumeDest->front(); 1850b57cec5SDimitry Andric BasicBlock::iterator I = OuterResumeDest->begin(); 1860b57cec5SDimitry Andric for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 1870b57cec5SDimitry Andric PHINode *OuterPHI = cast<PHINode>(I); 1880b57cec5SDimitry Andric PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 1890b57cec5SDimitry Andric OuterPHI->getName() + ".lpad-body", 1900b57cec5SDimitry Andric InsertPoint); 1910b57cec5SDimitry Andric OuterPHI->replaceAllUsesWith(InnerPHI); 1920b57cec5SDimitry Andric InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 1930b57cec5SDimitry Andric } 1940b57cec5SDimitry Andric 1950b57cec5SDimitry Andric // Create a PHI for the exception values. 1960b57cec5SDimitry Andric InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 1970b57cec5SDimitry Andric "eh.lpad-body", InsertPoint); 1980b57cec5SDimitry Andric CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 1990b57cec5SDimitry Andric InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 2000b57cec5SDimitry Andric 2010b57cec5SDimitry Andric // All done. 2020b57cec5SDimitry Andric return InnerResumeDest; 2030b57cec5SDimitry Andric } 2040b57cec5SDimitry Andric 2050b57cec5SDimitry Andric /// Forward the 'resume' instruction to the caller's landing pad block. 2060b57cec5SDimitry Andric /// When the landing pad block has only one predecessor, this is a simple 2070b57cec5SDimitry Andric /// branch. When there is more than one predecessor, we need to split the 2080b57cec5SDimitry Andric /// landing pad block after the landingpad instruction and jump to there. 2090b57cec5SDimitry Andric void LandingPadInliningInfo::forwardResume( 2100b57cec5SDimitry Andric ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 2110b57cec5SDimitry Andric BasicBlock *Dest = getInnerResumeDest(); 2120b57cec5SDimitry Andric BasicBlock *Src = RI->getParent(); 2130b57cec5SDimitry Andric 2140b57cec5SDimitry Andric BranchInst::Create(Dest, Src); 2150b57cec5SDimitry Andric 2160b57cec5SDimitry Andric // Update the PHIs in the destination. They were inserted in an order which 2170b57cec5SDimitry Andric // makes this work. 2180b57cec5SDimitry Andric addIncomingPHIValuesForInto(Src, Dest); 2190b57cec5SDimitry Andric 2200b57cec5SDimitry Andric InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 2210b57cec5SDimitry Andric RI->eraseFromParent(); 2220b57cec5SDimitry Andric } 2230b57cec5SDimitry Andric 2240b57cec5SDimitry Andric /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 2250b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) { 2260b57cec5SDimitry Andric if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 2270b57cec5SDimitry Andric return FPI->getParentPad(); 2280b57cec5SDimitry Andric return cast<CatchSwitchInst>(EHPad)->getParentPad(); 2290b57cec5SDimitry Andric } 2300b57cec5SDimitry Andric 2310b57cec5SDimitry Andric using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 2320b57cec5SDimitry Andric 2330b57cec5SDimitry Andric /// Helper for getUnwindDestToken that does the descendant-ward part of 2340b57cec5SDimitry Andric /// the search. 2350b57cec5SDimitry Andric static Value *getUnwindDestTokenHelper(Instruction *EHPad, 2360b57cec5SDimitry Andric UnwindDestMemoTy &MemoMap) { 2370b57cec5SDimitry Andric SmallVector<Instruction *, 8> Worklist(1, EHPad); 2380b57cec5SDimitry Andric 2390b57cec5SDimitry Andric while (!Worklist.empty()) { 2400b57cec5SDimitry Andric Instruction *CurrentPad = Worklist.pop_back_val(); 2410b57cec5SDimitry Andric // We only put pads on the worklist that aren't in the MemoMap. When 2420b57cec5SDimitry Andric // we find an unwind dest for a pad we may update its ancestors, but 2430b57cec5SDimitry Andric // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 2440b57cec5SDimitry Andric // so they should never get updated while queued on the worklist. 2450b57cec5SDimitry Andric assert(!MemoMap.count(CurrentPad)); 2460b57cec5SDimitry Andric Value *UnwindDestToken = nullptr; 2470b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 2480b57cec5SDimitry Andric if (CatchSwitch->hasUnwindDest()) { 2490b57cec5SDimitry Andric UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 2500b57cec5SDimitry Andric } else { 2510b57cec5SDimitry Andric // Catchswitch doesn't have a 'nounwind' variant, and one might be 2520b57cec5SDimitry Andric // annotated as "unwinds to caller" when really it's nounwind (see 2530b57cec5SDimitry Andric // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 2540b57cec5SDimitry Andric // parent's unwind dest from this. We can check its catchpads' 2550b57cec5SDimitry Andric // descendants, since they might include a cleanuppad with an 2560b57cec5SDimitry Andric // "unwinds to caller" cleanupret, which can be trusted. 2570b57cec5SDimitry Andric for (auto HI = CatchSwitch->handler_begin(), 2580b57cec5SDimitry Andric HE = CatchSwitch->handler_end(); 2590b57cec5SDimitry Andric HI != HE && !UnwindDestToken; ++HI) { 2600b57cec5SDimitry Andric BasicBlock *HandlerBlock = *HI; 2610b57cec5SDimitry Andric auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 2620b57cec5SDimitry Andric for (User *Child : CatchPad->users()) { 2630b57cec5SDimitry Andric // Intentionally ignore invokes here -- since the catchswitch is 2640b57cec5SDimitry Andric // marked "unwind to caller", it would be a verifier error if it 2650b57cec5SDimitry Andric // contained an invoke which unwinds out of it, so any invoke we'd 2660b57cec5SDimitry Andric // encounter must unwind to some child of the catch. 2670b57cec5SDimitry Andric if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 2680b57cec5SDimitry Andric continue; 2690b57cec5SDimitry Andric 2700b57cec5SDimitry Andric Instruction *ChildPad = cast<Instruction>(Child); 2710b57cec5SDimitry Andric auto Memo = MemoMap.find(ChildPad); 2720b57cec5SDimitry Andric if (Memo == MemoMap.end()) { 2730b57cec5SDimitry Andric // Haven't figured out this child pad yet; queue it. 2740b57cec5SDimitry Andric Worklist.push_back(ChildPad); 2750b57cec5SDimitry Andric continue; 2760b57cec5SDimitry Andric } 2770b57cec5SDimitry Andric // We've already checked this child, but might have found that 2780b57cec5SDimitry Andric // it offers no proof either way. 2790b57cec5SDimitry Andric Value *ChildUnwindDestToken = Memo->second; 2800b57cec5SDimitry Andric if (!ChildUnwindDestToken) 2810b57cec5SDimitry Andric continue; 2820b57cec5SDimitry Andric // We already know the child's unwind dest, which can either 2830b57cec5SDimitry Andric // be ConstantTokenNone to indicate unwind to caller, or can 2840b57cec5SDimitry Andric // be another child of the catchpad. Only the former indicates 2850b57cec5SDimitry Andric // the unwind dest of the catchswitch. 2860b57cec5SDimitry Andric if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 2870b57cec5SDimitry Andric UnwindDestToken = ChildUnwindDestToken; 2880b57cec5SDimitry Andric break; 2890b57cec5SDimitry Andric } 2900b57cec5SDimitry Andric assert(getParentPad(ChildUnwindDestToken) == CatchPad); 2910b57cec5SDimitry Andric } 2920b57cec5SDimitry Andric } 2930b57cec5SDimitry Andric } 2940b57cec5SDimitry Andric } else { 2950b57cec5SDimitry Andric auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 2960b57cec5SDimitry Andric for (User *U : CleanupPad->users()) { 2970b57cec5SDimitry Andric if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 2980b57cec5SDimitry Andric if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 2990b57cec5SDimitry Andric UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 3000b57cec5SDimitry Andric else 3010b57cec5SDimitry Andric UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 3020b57cec5SDimitry Andric break; 3030b57cec5SDimitry Andric } 3040b57cec5SDimitry Andric Value *ChildUnwindDestToken; 3050b57cec5SDimitry Andric if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 3060b57cec5SDimitry Andric ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 3070b57cec5SDimitry Andric } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 3080b57cec5SDimitry Andric Instruction *ChildPad = cast<Instruction>(U); 3090b57cec5SDimitry Andric auto Memo = MemoMap.find(ChildPad); 3100b57cec5SDimitry Andric if (Memo == MemoMap.end()) { 3110b57cec5SDimitry Andric // Haven't resolved this child yet; queue it and keep searching. 3120b57cec5SDimitry Andric Worklist.push_back(ChildPad); 3130b57cec5SDimitry Andric continue; 3140b57cec5SDimitry Andric } 3150b57cec5SDimitry Andric // We've checked this child, but still need to ignore it if it 3160b57cec5SDimitry Andric // had no proof either way. 3170b57cec5SDimitry Andric ChildUnwindDestToken = Memo->second; 3180b57cec5SDimitry Andric if (!ChildUnwindDestToken) 3190b57cec5SDimitry Andric continue; 3200b57cec5SDimitry Andric } else { 3210b57cec5SDimitry Andric // Not a relevant user of the cleanuppad 3220b57cec5SDimitry Andric continue; 3230b57cec5SDimitry Andric } 3240b57cec5SDimitry Andric // In a well-formed program, the child/invoke must either unwind to 3250b57cec5SDimitry Andric // an(other) child of the cleanup, or exit the cleanup. In the 3260b57cec5SDimitry Andric // first case, continue searching. 3270b57cec5SDimitry Andric if (isa<Instruction>(ChildUnwindDestToken) && 3280b57cec5SDimitry Andric getParentPad(ChildUnwindDestToken) == CleanupPad) 3290b57cec5SDimitry Andric continue; 3300b57cec5SDimitry Andric UnwindDestToken = ChildUnwindDestToken; 3310b57cec5SDimitry Andric break; 3320b57cec5SDimitry Andric } 3330b57cec5SDimitry Andric } 3340b57cec5SDimitry Andric // If we haven't found an unwind dest for CurrentPad, we may have queued its 3350b57cec5SDimitry Andric // children, so move on to the next in the worklist. 3360b57cec5SDimitry Andric if (!UnwindDestToken) 3370b57cec5SDimitry Andric continue; 3380b57cec5SDimitry Andric 3390b57cec5SDimitry Andric // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 3400b57cec5SDimitry Andric // any ancestors of CurrentPad up to but not including UnwindDestToken's 3410b57cec5SDimitry Andric // parent pad. Record this in the memo map, and check to see if the 3420b57cec5SDimitry Andric // original EHPad being queried is one of the ones exited. 3430b57cec5SDimitry Andric Value *UnwindParent; 3440b57cec5SDimitry Andric if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 3450b57cec5SDimitry Andric UnwindParent = getParentPad(UnwindPad); 3460b57cec5SDimitry Andric else 3470b57cec5SDimitry Andric UnwindParent = nullptr; 3480b57cec5SDimitry Andric bool ExitedOriginalPad = false; 3490b57cec5SDimitry Andric for (Instruction *ExitedPad = CurrentPad; 3500b57cec5SDimitry Andric ExitedPad && ExitedPad != UnwindParent; 3510b57cec5SDimitry Andric ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 3520b57cec5SDimitry Andric // Skip over catchpads since they just follow their catchswitches. 3530b57cec5SDimitry Andric if (isa<CatchPadInst>(ExitedPad)) 3540b57cec5SDimitry Andric continue; 3550b57cec5SDimitry Andric MemoMap[ExitedPad] = UnwindDestToken; 3560b57cec5SDimitry Andric ExitedOriginalPad |= (ExitedPad == EHPad); 3570b57cec5SDimitry Andric } 3580b57cec5SDimitry Andric 3590b57cec5SDimitry Andric if (ExitedOriginalPad) 3600b57cec5SDimitry Andric return UnwindDestToken; 3610b57cec5SDimitry Andric 3620b57cec5SDimitry Andric // Continue the search. 3630b57cec5SDimitry Andric } 3640b57cec5SDimitry Andric 3650b57cec5SDimitry Andric // No definitive information is contained within this funclet. 3660b57cec5SDimitry Andric return nullptr; 3670b57cec5SDimitry Andric } 3680b57cec5SDimitry Andric 3690b57cec5SDimitry Andric /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 3700b57cec5SDimitry Andric /// return that pad instruction. If it unwinds to caller, return 3710b57cec5SDimitry Andric /// ConstantTokenNone. If it does not have a definitive unwind destination, 3720b57cec5SDimitry Andric /// return nullptr. 3730b57cec5SDimitry Andric /// 3740b57cec5SDimitry Andric /// This routine gets invoked for calls in funclets in inlinees when inlining 3750b57cec5SDimitry Andric /// an invoke. Since many funclets don't have calls inside them, it's queried 3760b57cec5SDimitry Andric /// on-demand rather than building a map of pads to unwind dests up front. 3770b57cec5SDimitry Andric /// Determining a funclet's unwind dest may require recursively searching its 3780b57cec5SDimitry Andric /// descendants, and also ancestors and cousins if the descendants don't provide 3790b57cec5SDimitry Andric /// an answer. Since most funclets will have their unwind dest immediately 3800b57cec5SDimitry Andric /// available as the unwind dest of a catchswitch or cleanupret, this routine 3810b57cec5SDimitry Andric /// searches top-down from the given pad and then up. To avoid worst-case 3820b57cec5SDimitry Andric /// quadratic run-time given that approach, it uses a memo map to avoid 3830b57cec5SDimitry Andric /// re-processing funclet trees. The callers that rewrite the IR as they go 3840b57cec5SDimitry Andric /// take advantage of this, for correctness, by checking/forcing rewritten 3850b57cec5SDimitry Andric /// pads' entries to match the original callee view. 3860b57cec5SDimitry Andric static Value *getUnwindDestToken(Instruction *EHPad, 3870b57cec5SDimitry Andric UnwindDestMemoTy &MemoMap) { 3880b57cec5SDimitry Andric // Catchpads unwind to the same place as their catchswitch; 3890b57cec5SDimitry Andric // redirct any queries on catchpads so the code below can 3900b57cec5SDimitry Andric // deal with just catchswitches and cleanuppads. 3910b57cec5SDimitry Andric if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 3920b57cec5SDimitry Andric EHPad = CPI->getCatchSwitch(); 3930b57cec5SDimitry Andric 3940b57cec5SDimitry Andric // Check if we've already determined the unwind dest for this pad. 3950b57cec5SDimitry Andric auto Memo = MemoMap.find(EHPad); 3960b57cec5SDimitry Andric if (Memo != MemoMap.end()) 3970b57cec5SDimitry Andric return Memo->second; 3980b57cec5SDimitry Andric 3990b57cec5SDimitry Andric // Search EHPad and, if necessary, its descendants. 4000b57cec5SDimitry Andric Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 4010b57cec5SDimitry Andric assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 4020b57cec5SDimitry Andric if (UnwindDestToken) 4030b57cec5SDimitry Andric return UnwindDestToken; 4040b57cec5SDimitry Andric 4050b57cec5SDimitry Andric // No information is available for this EHPad from itself or any of its 4060b57cec5SDimitry Andric // descendants. An unwind all the way out to a pad in the caller would 4070b57cec5SDimitry Andric // need also to agree with the unwind dest of the parent funclet, so 4080b57cec5SDimitry Andric // search up the chain to try to find a funclet with information. Put 4090b57cec5SDimitry Andric // null entries in the memo map to avoid re-processing as we go up. 4100b57cec5SDimitry Andric MemoMap[EHPad] = nullptr; 4110b57cec5SDimitry Andric #ifndef NDEBUG 4120b57cec5SDimitry Andric SmallPtrSet<Instruction *, 4> TempMemos; 4130b57cec5SDimitry Andric TempMemos.insert(EHPad); 4140b57cec5SDimitry Andric #endif 4150b57cec5SDimitry Andric Instruction *LastUselessPad = EHPad; 4160b57cec5SDimitry Andric Value *AncestorToken; 4170b57cec5SDimitry Andric for (AncestorToken = getParentPad(EHPad); 4180b57cec5SDimitry Andric auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 4190b57cec5SDimitry Andric AncestorToken = getParentPad(AncestorToken)) { 4200b57cec5SDimitry Andric // Skip over catchpads since they just follow their catchswitches. 4210b57cec5SDimitry Andric if (isa<CatchPadInst>(AncestorPad)) 4220b57cec5SDimitry Andric continue; 4230b57cec5SDimitry Andric // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 4240b57cec5SDimitry Andric // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 4250b57cec5SDimitry Andric // call to getUnwindDestToken, that would mean that AncestorPad had no 4260b57cec5SDimitry Andric // information in itself, its descendants, or its ancestors. If that 4270b57cec5SDimitry Andric // were the case, then we should also have recorded the lack of information 4280b57cec5SDimitry Andric // for the descendant that we're coming from. So assert that we don't 4290b57cec5SDimitry Andric // find a null entry in the MemoMap for AncestorPad. 4300b57cec5SDimitry Andric assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 4310b57cec5SDimitry Andric auto AncestorMemo = MemoMap.find(AncestorPad); 4320b57cec5SDimitry Andric if (AncestorMemo == MemoMap.end()) { 4330b57cec5SDimitry Andric UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 4340b57cec5SDimitry Andric } else { 4350b57cec5SDimitry Andric UnwindDestToken = AncestorMemo->second; 4360b57cec5SDimitry Andric } 4370b57cec5SDimitry Andric if (UnwindDestToken) 4380b57cec5SDimitry Andric break; 4390b57cec5SDimitry Andric LastUselessPad = AncestorPad; 4400b57cec5SDimitry Andric MemoMap[LastUselessPad] = nullptr; 4410b57cec5SDimitry Andric #ifndef NDEBUG 4420b57cec5SDimitry Andric TempMemos.insert(LastUselessPad); 4430b57cec5SDimitry Andric #endif 4440b57cec5SDimitry Andric } 4450b57cec5SDimitry Andric 4460b57cec5SDimitry Andric // We know that getUnwindDestTokenHelper was called on LastUselessPad and 4470b57cec5SDimitry Andric // returned nullptr (and likewise for EHPad and any of its ancestors up to 4480b57cec5SDimitry Andric // LastUselessPad), so LastUselessPad has no information from below. Since 4490b57cec5SDimitry Andric // getUnwindDestTokenHelper must investigate all downward paths through 4500b57cec5SDimitry Andric // no-information nodes to prove that a node has no information like this, 4510b57cec5SDimitry Andric // and since any time it finds information it records it in the MemoMap for 4520b57cec5SDimitry Andric // not just the immediately-containing funclet but also any ancestors also 4530b57cec5SDimitry Andric // exited, it must be the case that, walking downward from LastUselessPad, 4540b57cec5SDimitry Andric // visiting just those nodes which have not been mapped to an unwind dest 4550b57cec5SDimitry Andric // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 4560b57cec5SDimitry Andric // they are just used to keep getUnwindDestTokenHelper from repeating work), 4570b57cec5SDimitry Andric // any node visited must have been exhaustively searched with no information 4580b57cec5SDimitry Andric // for it found. 4590b57cec5SDimitry Andric SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 4600b57cec5SDimitry Andric while (!Worklist.empty()) { 4610b57cec5SDimitry Andric Instruction *UselessPad = Worklist.pop_back_val(); 4620b57cec5SDimitry Andric auto Memo = MemoMap.find(UselessPad); 4630b57cec5SDimitry Andric if (Memo != MemoMap.end() && Memo->second) { 4640b57cec5SDimitry Andric // Here the name 'UselessPad' is a bit of a misnomer, because we've found 4650b57cec5SDimitry Andric // that it is a funclet that does have information about unwinding to 4660b57cec5SDimitry Andric // a particular destination; its parent was a useless pad. 4670b57cec5SDimitry Andric // Since its parent has no information, the unwind edge must not escape 4680b57cec5SDimitry Andric // the parent, and must target a sibling of this pad. This local unwind 4690b57cec5SDimitry Andric // gives us no information about EHPad. Leave it and the subtree rooted 4700b57cec5SDimitry Andric // at it alone. 4710b57cec5SDimitry Andric assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 4720b57cec5SDimitry Andric continue; 4730b57cec5SDimitry Andric } 4740b57cec5SDimitry Andric // We know we don't have information for UselesPad. If it has an entry in 4750b57cec5SDimitry Andric // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 4760b57cec5SDimitry Andric // added on this invocation of getUnwindDestToken; if a previous invocation 4770b57cec5SDimitry Andric // recorded nullptr, it would have had to prove that the ancestors of 4780b57cec5SDimitry Andric // UselessPad, which include LastUselessPad, had no information, and that 4790b57cec5SDimitry Andric // in turn would have required proving that the descendants of 4800b57cec5SDimitry Andric // LastUselesPad, which include EHPad, have no information about 4810b57cec5SDimitry Andric // LastUselessPad, which would imply that EHPad was mapped to nullptr in 4820b57cec5SDimitry Andric // the MemoMap on that invocation, which isn't the case if we got here. 4830b57cec5SDimitry Andric assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 4840b57cec5SDimitry Andric // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 4850b57cec5SDimitry Andric // information that we'd be contradicting by making a map entry for it 4860b57cec5SDimitry Andric // (which is something that getUnwindDestTokenHelper must have proved for 4870b57cec5SDimitry Andric // us to get here). Just assert on is direct users here; the checks in 4880b57cec5SDimitry Andric // this downward walk at its descendants will verify that they don't have 4890b57cec5SDimitry Andric // any unwind edges that exit 'UselessPad' either (i.e. they either have no 4900b57cec5SDimitry Andric // unwind edges or unwind to a sibling). 4910b57cec5SDimitry Andric MemoMap[UselessPad] = UnwindDestToken; 4920b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 4930b57cec5SDimitry Andric assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 4940b57cec5SDimitry Andric for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 4950b57cec5SDimitry Andric auto *CatchPad = HandlerBlock->getFirstNonPHI(); 4960b57cec5SDimitry Andric for (User *U : CatchPad->users()) { 4970b57cec5SDimitry Andric assert( 4980b57cec5SDimitry Andric (!isa<InvokeInst>(U) || 4990b57cec5SDimitry Andric (getParentPad( 5000b57cec5SDimitry Andric cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 5010b57cec5SDimitry Andric CatchPad)) && 5020b57cec5SDimitry Andric "Expected useless pad"); 5030b57cec5SDimitry Andric if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 5040b57cec5SDimitry Andric Worklist.push_back(cast<Instruction>(U)); 5050b57cec5SDimitry Andric } 5060b57cec5SDimitry Andric } 5070b57cec5SDimitry Andric } else { 5080b57cec5SDimitry Andric assert(isa<CleanupPadInst>(UselessPad)); 5090b57cec5SDimitry Andric for (User *U : UselessPad->users()) { 5100b57cec5SDimitry Andric assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 5110b57cec5SDimitry Andric assert((!isa<InvokeInst>(U) || 5120b57cec5SDimitry Andric (getParentPad( 5130b57cec5SDimitry Andric cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 5140b57cec5SDimitry Andric UselessPad)) && 5150b57cec5SDimitry Andric "Expected useless pad"); 5160b57cec5SDimitry Andric if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 5170b57cec5SDimitry Andric Worklist.push_back(cast<Instruction>(U)); 5180b57cec5SDimitry Andric } 5190b57cec5SDimitry Andric } 5200b57cec5SDimitry Andric } 5210b57cec5SDimitry Andric 5220b57cec5SDimitry Andric return UnwindDestToken; 5230b57cec5SDimitry Andric } 5240b57cec5SDimitry Andric 5250b57cec5SDimitry Andric /// When we inline a basic block into an invoke, 5260b57cec5SDimitry Andric /// we have to turn all of the calls that can throw into invokes. 5270b57cec5SDimitry Andric /// This function analyze BB to see if there are any calls, and if so, 5280b57cec5SDimitry Andric /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 5290b57cec5SDimitry Andric /// nodes in that block with the values specified in InvokeDestPHIValues. 5300b57cec5SDimitry Andric static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 5310b57cec5SDimitry Andric BasicBlock *BB, BasicBlock *UnwindEdge, 5320b57cec5SDimitry Andric UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 5330b57cec5SDimitry Andric for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 5340b57cec5SDimitry Andric Instruction *I = &*BBI++; 5350b57cec5SDimitry Andric 5360b57cec5SDimitry Andric // We only need to check for function calls: inlined invoke 5370b57cec5SDimitry Andric // instructions require no special handling. 5380b57cec5SDimitry Andric CallInst *CI = dyn_cast<CallInst>(I); 5390b57cec5SDimitry Andric 540*5ffd83dbSDimitry Andric if (!CI || CI->doesNotThrow() || CI->isInlineAsm()) 5410b57cec5SDimitry Andric continue; 5420b57cec5SDimitry Andric 5430b57cec5SDimitry Andric // We do not need to (and in fact, cannot) convert possibly throwing calls 5440b57cec5SDimitry Andric // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 5450b57cec5SDimitry Andric // invokes. The caller's "segment" of the deoptimization continuation 5460b57cec5SDimitry Andric // attached to the newly inlined @llvm.experimental_deoptimize 5470b57cec5SDimitry Andric // (resp. @llvm.experimental.guard) call should contain the exception 5480b57cec5SDimitry Andric // handling logic, if any. 5490b57cec5SDimitry Andric if (auto *F = CI->getCalledFunction()) 5500b57cec5SDimitry Andric if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 5510b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_guard) 5520b57cec5SDimitry Andric continue; 5530b57cec5SDimitry Andric 5540b57cec5SDimitry Andric if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 5550b57cec5SDimitry Andric // This call is nested inside a funclet. If that funclet has an unwind 5560b57cec5SDimitry Andric // destination within the inlinee, then unwinding out of this call would 5570b57cec5SDimitry Andric // be UB. Rewriting this call to an invoke which targets the inlined 5580b57cec5SDimitry Andric // invoke's unwind dest would give the call's parent funclet multiple 5590b57cec5SDimitry Andric // unwind destinations, which is something that subsequent EH table 5600b57cec5SDimitry Andric // generation can't handle and that the veirifer rejects. So when we 5610b57cec5SDimitry Andric // see such a call, leave it as a call. 5620b57cec5SDimitry Andric auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 5630b57cec5SDimitry Andric Value *UnwindDestToken = 5640b57cec5SDimitry Andric getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 5650b57cec5SDimitry Andric if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 5660b57cec5SDimitry Andric continue; 5670b57cec5SDimitry Andric #ifndef NDEBUG 5680b57cec5SDimitry Andric Instruction *MemoKey; 5690b57cec5SDimitry Andric if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 5700b57cec5SDimitry Andric MemoKey = CatchPad->getCatchSwitch(); 5710b57cec5SDimitry Andric else 5720b57cec5SDimitry Andric MemoKey = FuncletPad; 5730b57cec5SDimitry Andric assert(FuncletUnwindMap->count(MemoKey) && 5740b57cec5SDimitry Andric (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 5750b57cec5SDimitry Andric "must get memoized to avoid confusing later searches"); 5760b57cec5SDimitry Andric #endif // NDEBUG 5770b57cec5SDimitry Andric } 5780b57cec5SDimitry Andric 5790b57cec5SDimitry Andric changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 5800b57cec5SDimitry Andric return BB; 5810b57cec5SDimitry Andric } 5820b57cec5SDimitry Andric return nullptr; 5830b57cec5SDimitry Andric } 5840b57cec5SDimitry Andric 5850b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls 5860b57cec5SDimitry Andric /// in the body of the inlined function into invokes. 5870b57cec5SDimitry Andric /// 5880b57cec5SDimitry Andric /// II is the invoke instruction being inlined. FirstNewBlock is the first 5890b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function), 5900b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined. 5910b57cec5SDimitry Andric static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 5920b57cec5SDimitry Andric ClonedCodeInfo &InlinedCodeInfo) { 5930b57cec5SDimitry Andric BasicBlock *InvokeDest = II->getUnwindDest(); 5940b57cec5SDimitry Andric 5950b57cec5SDimitry Andric Function *Caller = FirstNewBlock->getParent(); 5960b57cec5SDimitry Andric 5970b57cec5SDimitry Andric // The inlined code is currently at the end of the function, scan from the 5980b57cec5SDimitry Andric // start of the inlined code to its end, checking for stuff we need to 5990b57cec5SDimitry Andric // rewrite. 6000b57cec5SDimitry Andric LandingPadInliningInfo Invoke(II); 6010b57cec5SDimitry Andric 6020b57cec5SDimitry Andric // Get all of the inlined landing pad instructions. 6030b57cec5SDimitry Andric SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 6040b57cec5SDimitry Andric for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 6050b57cec5SDimitry Andric I != E; ++I) 6060b57cec5SDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 6070b57cec5SDimitry Andric InlinedLPads.insert(II->getLandingPadInst()); 6080b57cec5SDimitry Andric 6090b57cec5SDimitry Andric // Append the clauses from the outer landing pad instruction into the inlined 6100b57cec5SDimitry Andric // landing pad instructions. 6110b57cec5SDimitry Andric LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 6120b57cec5SDimitry Andric for (LandingPadInst *InlinedLPad : InlinedLPads) { 6130b57cec5SDimitry Andric unsigned OuterNum = OuterLPad->getNumClauses(); 6140b57cec5SDimitry Andric InlinedLPad->reserveClauses(OuterNum); 6150b57cec5SDimitry Andric for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 6160b57cec5SDimitry Andric InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 6170b57cec5SDimitry Andric if (OuterLPad->isCleanup()) 6180b57cec5SDimitry Andric InlinedLPad->setCleanup(true); 6190b57cec5SDimitry Andric } 6200b57cec5SDimitry Andric 6210b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 6220b57cec5SDimitry Andric BB != E; ++BB) { 6230b57cec5SDimitry Andric if (InlinedCodeInfo.ContainsCalls) 6240b57cec5SDimitry Andric if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 6250b57cec5SDimitry Andric &*BB, Invoke.getOuterResumeDest())) 6260b57cec5SDimitry Andric // Update any PHI nodes in the exceptional block to indicate that there 6270b57cec5SDimitry Andric // is now a new entry in them. 6280b57cec5SDimitry Andric Invoke.addIncomingPHIValuesFor(NewBB); 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric // Forward any resumes that are remaining here. 6310b57cec5SDimitry Andric if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 6320b57cec5SDimitry Andric Invoke.forwardResume(RI, InlinedLPads); 6330b57cec5SDimitry Andric } 6340b57cec5SDimitry Andric 6350b57cec5SDimitry Andric // Now that everything is happy, we have one final detail. The PHI nodes in 6360b57cec5SDimitry Andric // the exception destination block still have entries due to the original 6370b57cec5SDimitry Andric // invoke instruction. Eliminate these entries (which might even delete the 6380b57cec5SDimitry Andric // PHI node) now. 6390b57cec5SDimitry Andric InvokeDest->removePredecessor(II->getParent()); 6400b57cec5SDimitry Andric } 6410b57cec5SDimitry Andric 6420b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls 6430b57cec5SDimitry Andric /// in the body of the inlined function into invokes. 6440b57cec5SDimitry Andric /// 6450b57cec5SDimitry Andric /// II is the invoke instruction being inlined. FirstNewBlock is the first 6460b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function), 6470b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined. 6480b57cec5SDimitry Andric static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 6490b57cec5SDimitry Andric ClonedCodeInfo &InlinedCodeInfo) { 6500b57cec5SDimitry Andric BasicBlock *UnwindDest = II->getUnwindDest(); 6510b57cec5SDimitry Andric Function *Caller = FirstNewBlock->getParent(); 6520b57cec5SDimitry Andric 6530b57cec5SDimitry Andric assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 6540b57cec5SDimitry Andric 6550b57cec5SDimitry Andric // If there are PHI nodes in the unwind destination block, we need to keep 6560b57cec5SDimitry Andric // track of which values came into them from the invoke before removing the 6570b57cec5SDimitry Andric // edge from this block. 6580b57cec5SDimitry Andric SmallVector<Value *, 8> UnwindDestPHIValues; 6590b57cec5SDimitry Andric BasicBlock *InvokeBB = II->getParent(); 6600b57cec5SDimitry Andric for (Instruction &I : *UnwindDest) { 6610b57cec5SDimitry Andric // Save the value to use for this edge. 6620b57cec5SDimitry Andric PHINode *PHI = dyn_cast<PHINode>(&I); 6630b57cec5SDimitry Andric if (!PHI) 6640b57cec5SDimitry Andric break; 6650b57cec5SDimitry Andric UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 6660b57cec5SDimitry Andric } 6670b57cec5SDimitry Andric 6680b57cec5SDimitry Andric // Add incoming-PHI values to the unwind destination block for the given basic 6690b57cec5SDimitry Andric // block, using the values for the original invoke's source block. 6700b57cec5SDimitry Andric auto UpdatePHINodes = [&](BasicBlock *Src) { 6710b57cec5SDimitry Andric BasicBlock::iterator I = UnwindDest->begin(); 6720b57cec5SDimitry Andric for (Value *V : UnwindDestPHIValues) { 6730b57cec5SDimitry Andric PHINode *PHI = cast<PHINode>(I); 6740b57cec5SDimitry Andric PHI->addIncoming(V, Src); 6750b57cec5SDimitry Andric ++I; 6760b57cec5SDimitry Andric } 6770b57cec5SDimitry Andric }; 6780b57cec5SDimitry Andric 6790b57cec5SDimitry Andric // This connects all the instructions which 'unwind to caller' to the invoke 6800b57cec5SDimitry Andric // destination. 6810b57cec5SDimitry Andric UnwindDestMemoTy FuncletUnwindMap; 6820b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 6830b57cec5SDimitry Andric BB != E; ++BB) { 6840b57cec5SDimitry Andric if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6850b57cec5SDimitry Andric if (CRI->unwindsToCaller()) { 6860b57cec5SDimitry Andric auto *CleanupPad = CRI->getCleanupPad(); 6870b57cec5SDimitry Andric CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 6880b57cec5SDimitry Andric CRI->eraseFromParent(); 6890b57cec5SDimitry Andric UpdatePHINodes(&*BB); 6900b57cec5SDimitry Andric // Finding a cleanupret with an unwind destination would confuse 6910b57cec5SDimitry Andric // subsequent calls to getUnwindDestToken, so map the cleanuppad 6920b57cec5SDimitry Andric // to short-circuit any such calls and recognize this as an "unwind 6930b57cec5SDimitry Andric // to caller" cleanup. 6940b57cec5SDimitry Andric assert(!FuncletUnwindMap.count(CleanupPad) || 6950b57cec5SDimitry Andric isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 6960b57cec5SDimitry Andric FuncletUnwindMap[CleanupPad] = 6970b57cec5SDimitry Andric ConstantTokenNone::get(Caller->getContext()); 6980b57cec5SDimitry Andric } 6990b57cec5SDimitry Andric } 7000b57cec5SDimitry Andric 7010b57cec5SDimitry Andric Instruction *I = BB->getFirstNonPHI(); 7020b57cec5SDimitry Andric if (!I->isEHPad()) 7030b57cec5SDimitry Andric continue; 7040b57cec5SDimitry Andric 7050b57cec5SDimitry Andric Instruction *Replacement = nullptr; 7060b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 7070b57cec5SDimitry Andric if (CatchSwitch->unwindsToCaller()) { 7080b57cec5SDimitry Andric Value *UnwindDestToken; 7090b57cec5SDimitry Andric if (auto *ParentPad = 7100b57cec5SDimitry Andric dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 7110b57cec5SDimitry Andric // This catchswitch is nested inside another funclet. If that 7120b57cec5SDimitry Andric // funclet has an unwind destination within the inlinee, then 7130b57cec5SDimitry Andric // unwinding out of this catchswitch would be UB. Rewriting this 7140b57cec5SDimitry Andric // catchswitch to unwind to the inlined invoke's unwind dest would 7150b57cec5SDimitry Andric // give the parent funclet multiple unwind destinations, which is 7160b57cec5SDimitry Andric // something that subsequent EH table generation can't handle and 7170b57cec5SDimitry Andric // that the veirifer rejects. So when we see such a call, leave it 7180b57cec5SDimitry Andric // as "unwind to caller". 7190b57cec5SDimitry Andric UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 7200b57cec5SDimitry Andric if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 7210b57cec5SDimitry Andric continue; 7220b57cec5SDimitry Andric } else { 7230b57cec5SDimitry Andric // This catchswitch has no parent to inherit constraints from, and 7240b57cec5SDimitry Andric // none of its descendants can have an unwind edge that exits it and 7250b57cec5SDimitry Andric // targets another funclet in the inlinee. It may or may not have a 7260b57cec5SDimitry Andric // descendant that definitively has an unwind to caller. In either 7270b57cec5SDimitry Andric // case, we'll have to assume that any unwinds out of it may need to 7280b57cec5SDimitry Andric // be routed to the caller, so treat it as though it has a definitive 7290b57cec5SDimitry Andric // unwind to caller. 7300b57cec5SDimitry Andric UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 7310b57cec5SDimitry Andric } 7320b57cec5SDimitry Andric auto *NewCatchSwitch = CatchSwitchInst::Create( 7330b57cec5SDimitry Andric CatchSwitch->getParentPad(), UnwindDest, 7340b57cec5SDimitry Andric CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 7350b57cec5SDimitry Andric CatchSwitch); 7360b57cec5SDimitry Andric for (BasicBlock *PadBB : CatchSwitch->handlers()) 7370b57cec5SDimitry Andric NewCatchSwitch->addHandler(PadBB); 7380b57cec5SDimitry Andric // Propagate info for the old catchswitch over to the new one in 7390b57cec5SDimitry Andric // the unwind map. This also serves to short-circuit any subsequent 7400b57cec5SDimitry Andric // checks for the unwind dest of this catchswitch, which would get 7410b57cec5SDimitry Andric // confused if they found the outer handler in the callee. 7420b57cec5SDimitry Andric FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 7430b57cec5SDimitry Andric Replacement = NewCatchSwitch; 7440b57cec5SDimitry Andric } 7450b57cec5SDimitry Andric } else if (!isa<FuncletPadInst>(I)) { 7460b57cec5SDimitry Andric llvm_unreachable("unexpected EHPad!"); 7470b57cec5SDimitry Andric } 7480b57cec5SDimitry Andric 7490b57cec5SDimitry Andric if (Replacement) { 7500b57cec5SDimitry Andric Replacement->takeName(I); 7510b57cec5SDimitry Andric I->replaceAllUsesWith(Replacement); 7520b57cec5SDimitry Andric I->eraseFromParent(); 7530b57cec5SDimitry Andric UpdatePHINodes(&*BB); 7540b57cec5SDimitry Andric } 7550b57cec5SDimitry Andric } 7560b57cec5SDimitry Andric 7570b57cec5SDimitry Andric if (InlinedCodeInfo.ContainsCalls) 7580b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(), 7590b57cec5SDimitry Andric E = Caller->end(); 7600b57cec5SDimitry Andric BB != E; ++BB) 7610b57cec5SDimitry Andric if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 7620b57cec5SDimitry Andric &*BB, UnwindDest, &FuncletUnwindMap)) 7630b57cec5SDimitry Andric // Update any PHI nodes in the exceptional block to indicate that there 7640b57cec5SDimitry Andric // is now a new entry in them. 7650b57cec5SDimitry Andric UpdatePHINodes(NewBB); 7660b57cec5SDimitry Andric 7670b57cec5SDimitry Andric // Now that everything is happy, we have one final detail. The PHI nodes in 7680b57cec5SDimitry Andric // the exception destination block still have entries due to the original 7690b57cec5SDimitry Andric // invoke instruction. Eliminate these entries (which might even delete the 7700b57cec5SDimitry Andric // PHI node) now. 7710b57cec5SDimitry Andric UnwindDest->removePredecessor(InvokeBB); 7720b57cec5SDimitry Andric } 7730b57cec5SDimitry Andric 7740b57cec5SDimitry Andric /// When inlining a call site that has !llvm.mem.parallel_loop_access or 7750b57cec5SDimitry Andric /// llvm.access.group metadata, that metadata should be propagated to all 7760b57cec5SDimitry Andric /// memory-accessing cloned instructions. 777*5ffd83dbSDimitry Andric static void PropagateParallelLoopAccessMetadata(CallBase &CB, 7780b57cec5SDimitry Andric ValueToValueMapTy &VMap) { 779*5ffd83dbSDimitry Andric MDNode *M = CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 780*5ffd83dbSDimitry Andric MDNode *CallAccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 7810b57cec5SDimitry Andric if (!M && !CallAccessGroup) 7820b57cec5SDimitry Andric return; 7830b57cec5SDimitry Andric 7840b57cec5SDimitry Andric for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 7850b57cec5SDimitry Andric VMI != VMIE; ++VMI) { 7860b57cec5SDimitry Andric if (!VMI->second) 7870b57cec5SDimitry Andric continue; 7880b57cec5SDimitry Andric 7890b57cec5SDimitry Andric Instruction *NI = dyn_cast<Instruction>(VMI->second); 7900b57cec5SDimitry Andric if (!NI) 7910b57cec5SDimitry Andric continue; 7920b57cec5SDimitry Andric 7930b57cec5SDimitry Andric if (M) { 7940b57cec5SDimitry Andric if (MDNode *PM = 7950b57cec5SDimitry Andric NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 7960b57cec5SDimitry Andric M = MDNode::concatenate(PM, M); 7970b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 7980b57cec5SDimitry Andric } else if (NI->mayReadOrWriteMemory()) { 7990b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 8000b57cec5SDimitry Andric } 8010b57cec5SDimitry Andric } 8020b57cec5SDimitry Andric 8030b57cec5SDimitry Andric if (NI->mayReadOrWriteMemory()) { 8040b57cec5SDimitry Andric MDNode *UnitedAccGroups = uniteAccessGroups( 8050b57cec5SDimitry Andric NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); 8060b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); 8070b57cec5SDimitry Andric } 8080b57cec5SDimitry Andric } 8090b57cec5SDimitry Andric } 8100b57cec5SDimitry Andric 8110b57cec5SDimitry Andric /// When inlining a function that contains noalias scope metadata, 8120b57cec5SDimitry Andric /// this metadata needs to be cloned so that the inlined blocks 8130b57cec5SDimitry Andric /// have different "unique scopes" at every call site. Were this not done, then 8140b57cec5SDimitry Andric /// aliasing scopes from a function inlined into a caller multiple times could 8150b57cec5SDimitry Andric /// not be differentiated (and this would lead to miscompiles because the 8160b57cec5SDimitry Andric /// non-aliasing property communicated by the metadata could have 8170b57cec5SDimitry Andric /// call-site-specific control dependencies). 818*5ffd83dbSDimitry Andric static void CloneAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap) { 819*5ffd83dbSDimitry Andric const Function *CalledFunc = CB.getCalledFunction(); 8200b57cec5SDimitry Andric SetVector<const MDNode *> MD; 8210b57cec5SDimitry Andric 8220b57cec5SDimitry Andric // Note: We could only clone the metadata if it is already used in the 8230b57cec5SDimitry Andric // caller. I'm omitting that check here because it might confuse 8240b57cec5SDimitry Andric // inter-procedural alias analysis passes. We can revisit this if it becomes 8250b57cec5SDimitry Andric // an efficiency or overhead problem. 8260b57cec5SDimitry Andric 8270b57cec5SDimitry Andric for (const BasicBlock &I : *CalledFunc) 8280b57cec5SDimitry Andric for (const Instruction &J : I) { 8290b57cec5SDimitry Andric if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 8300b57cec5SDimitry Andric MD.insert(M); 8310b57cec5SDimitry Andric if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 8320b57cec5SDimitry Andric MD.insert(M); 8330b57cec5SDimitry Andric } 8340b57cec5SDimitry Andric 8350b57cec5SDimitry Andric if (MD.empty()) 8360b57cec5SDimitry Andric return; 8370b57cec5SDimitry Andric 8380b57cec5SDimitry Andric // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 8390b57cec5SDimitry Andric // the set. 8400b57cec5SDimitry Andric SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 8410b57cec5SDimitry Andric while (!Queue.empty()) { 8420b57cec5SDimitry Andric const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 8430b57cec5SDimitry Andric for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 8440b57cec5SDimitry Andric if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 8450b57cec5SDimitry Andric if (MD.insert(M1)) 8460b57cec5SDimitry Andric Queue.push_back(M1); 8470b57cec5SDimitry Andric } 8480b57cec5SDimitry Andric 8490b57cec5SDimitry Andric // Now we have a complete set of all metadata in the chains used to specify 8500b57cec5SDimitry Andric // the noalias scopes and the lists of those scopes. 8510b57cec5SDimitry Andric SmallVector<TempMDTuple, 16> DummyNodes; 8520b57cec5SDimitry Andric DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 8530b57cec5SDimitry Andric for (const MDNode *I : MD) { 8540b57cec5SDimitry Andric DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 8550b57cec5SDimitry Andric MDMap[I].reset(DummyNodes.back().get()); 8560b57cec5SDimitry Andric } 8570b57cec5SDimitry Andric 8580b57cec5SDimitry Andric // Create new metadata nodes to replace the dummy nodes, replacing old 8590b57cec5SDimitry Andric // metadata references with either a dummy node or an already-created new 8600b57cec5SDimitry Andric // node. 8610b57cec5SDimitry Andric for (const MDNode *I : MD) { 8620b57cec5SDimitry Andric SmallVector<Metadata *, 4> NewOps; 8630b57cec5SDimitry Andric for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 8640b57cec5SDimitry Andric const Metadata *V = I->getOperand(i); 8650b57cec5SDimitry Andric if (const MDNode *M = dyn_cast<MDNode>(V)) 8660b57cec5SDimitry Andric NewOps.push_back(MDMap[M]); 8670b57cec5SDimitry Andric else 8680b57cec5SDimitry Andric NewOps.push_back(const_cast<Metadata *>(V)); 8690b57cec5SDimitry Andric } 8700b57cec5SDimitry Andric 8710b57cec5SDimitry Andric MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 8720b57cec5SDimitry Andric MDTuple *TempM = cast<MDTuple>(MDMap[I]); 8730b57cec5SDimitry Andric assert(TempM->isTemporary() && "Expected temporary node"); 8740b57cec5SDimitry Andric 8750b57cec5SDimitry Andric TempM->replaceAllUsesWith(NewM); 8760b57cec5SDimitry Andric } 8770b57cec5SDimitry Andric 8780b57cec5SDimitry Andric // Now replace the metadata in the new inlined instructions with the 8790b57cec5SDimitry Andric // repacements from the map. 8800b57cec5SDimitry Andric for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 8810b57cec5SDimitry Andric VMI != VMIE; ++VMI) { 8820b57cec5SDimitry Andric if (!VMI->second) 8830b57cec5SDimitry Andric continue; 8840b57cec5SDimitry Andric 8850b57cec5SDimitry Andric Instruction *NI = dyn_cast<Instruction>(VMI->second); 8860b57cec5SDimitry Andric if (!NI) 8870b57cec5SDimitry Andric continue; 8880b57cec5SDimitry Andric 8890b57cec5SDimitry Andric if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 8900b57cec5SDimitry Andric MDNode *NewMD = MDMap[M]; 8910b57cec5SDimitry Andric // If the call site also had alias scope metadata (a list of scopes to 8920b57cec5SDimitry Andric // which instructions inside it might belong), propagate those scopes to 8930b57cec5SDimitry Andric // the inlined instructions. 894*5ffd83dbSDimitry Andric if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_alias_scope)) 8950b57cec5SDimitry Andric NewMD = MDNode::concatenate(NewMD, CSM); 8960b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 8970b57cec5SDimitry Andric } else if (NI->mayReadOrWriteMemory()) { 898*5ffd83dbSDimitry Andric if (MDNode *M = CB.getMetadata(LLVMContext::MD_alias_scope)) 8990b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_alias_scope, M); 9000b57cec5SDimitry Andric } 9010b57cec5SDimitry Andric 9020b57cec5SDimitry Andric if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 9030b57cec5SDimitry Andric MDNode *NewMD = MDMap[M]; 9040b57cec5SDimitry Andric // If the call site also had noalias metadata (a list of scopes with 9050b57cec5SDimitry Andric // which instructions inside it don't alias), propagate those scopes to 9060b57cec5SDimitry Andric // the inlined instructions. 907*5ffd83dbSDimitry Andric if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_noalias)) 9080b57cec5SDimitry Andric NewMD = MDNode::concatenate(NewMD, CSM); 9090b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_noalias, NewMD); 9100b57cec5SDimitry Andric } else if (NI->mayReadOrWriteMemory()) { 911*5ffd83dbSDimitry Andric if (MDNode *M = CB.getMetadata(LLVMContext::MD_noalias)) 9120b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_noalias, M); 9130b57cec5SDimitry Andric } 9140b57cec5SDimitry Andric } 9150b57cec5SDimitry Andric } 9160b57cec5SDimitry Andric 9170b57cec5SDimitry Andric /// If the inlined function has noalias arguments, 9180b57cec5SDimitry Andric /// then add new alias scopes for each noalias argument, tag the mapped noalias 9190b57cec5SDimitry Andric /// parameters with noalias metadata specifying the new scope, and tag all 9200b57cec5SDimitry Andric /// non-derived loads, stores and memory intrinsics with the new alias scopes. 921*5ffd83dbSDimitry Andric static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 9220b57cec5SDimitry Andric const DataLayout &DL, AAResults *CalleeAAR) { 9230b57cec5SDimitry Andric if (!EnableNoAliasConversion) 9240b57cec5SDimitry Andric return; 9250b57cec5SDimitry Andric 926*5ffd83dbSDimitry Andric const Function *CalledFunc = CB.getCalledFunction(); 9270b57cec5SDimitry Andric SmallVector<const Argument *, 4> NoAliasArgs; 9280b57cec5SDimitry Andric 9290b57cec5SDimitry Andric for (const Argument &Arg : CalledFunc->args()) 930*5ffd83dbSDimitry Andric if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 9310b57cec5SDimitry Andric NoAliasArgs.push_back(&Arg); 9320b57cec5SDimitry Andric 9330b57cec5SDimitry Andric if (NoAliasArgs.empty()) 9340b57cec5SDimitry Andric return; 9350b57cec5SDimitry Andric 9360b57cec5SDimitry Andric // To do a good job, if a noalias variable is captured, we need to know if 9370b57cec5SDimitry Andric // the capture point dominates the particular use we're considering. 9380b57cec5SDimitry Andric DominatorTree DT; 9390b57cec5SDimitry Andric DT.recalculate(const_cast<Function&>(*CalledFunc)); 9400b57cec5SDimitry Andric 9410b57cec5SDimitry Andric // noalias indicates that pointer values based on the argument do not alias 9420b57cec5SDimitry Andric // pointer values which are not based on it. So we add a new "scope" for each 9430b57cec5SDimitry Andric // noalias function argument. Accesses using pointers based on that argument 9440b57cec5SDimitry Andric // become part of that alias scope, accesses using pointers not based on that 9450b57cec5SDimitry Andric // argument are tagged as noalias with that scope. 9460b57cec5SDimitry Andric 9470b57cec5SDimitry Andric DenseMap<const Argument *, MDNode *> NewScopes; 9480b57cec5SDimitry Andric MDBuilder MDB(CalledFunc->getContext()); 9490b57cec5SDimitry Andric 9500b57cec5SDimitry Andric // Create a new scope domain for this function. 9510b57cec5SDimitry Andric MDNode *NewDomain = 9520b57cec5SDimitry Andric MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 9530b57cec5SDimitry Andric for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 9540b57cec5SDimitry Andric const Argument *A = NoAliasArgs[i]; 9550b57cec5SDimitry Andric 956*5ffd83dbSDimitry Andric std::string Name = std::string(CalledFunc->getName()); 9570b57cec5SDimitry Andric if (A->hasName()) { 9580b57cec5SDimitry Andric Name += ": %"; 9590b57cec5SDimitry Andric Name += A->getName(); 9600b57cec5SDimitry Andric } else { 9610b57cec5SDimitry Andric Name += ": argument "; 9620b57cec5SDimitry Andric Name += utostr(i); 9630b57cec5SDimitry Andric } 9640b57cec5SDimitry Andric 9650b57cec5SDimitry Andric // Note: We always create a new anonymous root here. This is true regardless 9660b57cec5SDimitry Andric // of the linkage of the callee because the aliasing "scope" is not just a 9670b57cec5SDimitry Andric // property of the callee, but also all control dependencies in the caller. 9680b57cec5SDimitry Andric MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 9690b57cec5SDimitry Andric NewScopes.insert(std::make_pair(A, NewScope)); 9700b57cec5SDimitry Andric } 9710b57cec5SDimitry Andric 9720b57cec5SDimitry Andric // Iterate over all new instructions in the map; for all memory-access 9730b57cec5SDimitry Andric // instructions, add the alias scope metadata. 9740b57cec5SDimitry Andric for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 9750b57cec5SDimitry Andric VMI != VMIE; ++VMI) { 9760b57cec5SDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 9770b57cec5SDimitry Andric if (!VMI->second) 9780b57cec5SDimitry Andric continue; 9790b57cec5SDimitry Andric 9800b57cec5SDimitry Andric Instruction *NI = dyn_cast<Instruction>(VMI->second); 9810b57cec5SDimitry Andric if (!NI) 9820b57cec5SDimitry Andric continue; 9830b57cec5SDimitry Andric 9840b57cec5SDimitry Andric bool IsArgMemOnlyCall = false, IsFuncCall = false; 9850b57cec5SDimitry Andric SmallVector<const Value *, 2> PtrArgs; 9860b57cec5SDimitry Andric 9870b57cec5SDimitry Andric if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 9880b57cec5SDimitry Andric PtrArgs.push_back(LI->getPointerOperand()); 9890b57cec5SDimitry Andric else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 9900b57cec5SDimitry Andric PtrArgs.push_back(SI->getPointerOperand()); 9910b57cec5SDimitry Andric else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 9920b57cec5SDimitry Andric PtrArgs.push_back(VAAI->getPointerOperand()); 9930b57cec5SDimitry Andric else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 9940b57cec5SDimitry Andric PtrArgs.push_back(CXI->getPointerOperand()); 9950b57cec5SDimitry Andric else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 9960b57cec5SDimitry Andric PtrArgs.push_back(RMWI->getPointerOperand()); 9970b57cec5SDimitry Andric else if (const auto *Call = dyn_cast<CallBase>(I)) { 9980b57cec5SDimitry Andric // If we know that the call does not access memory, then we'll still 9990b57cec5SDimitry Andric // know that about the inlined clone of this call site, and we don't 10000b57cec5SDimitry Andric // need to add metadata. 10010b57cec5SDimitry Andric if (Call->doesNotAccessMemory()) 10020b57cec5SDimitry Andric continue; 10030b57cec5SDimitry Andric 10040b57cec5SDimitry Andric IsFuncCall = true; 10050b57cec5SDimitry Andric if (CalleeAAR) { 10060b57cec5SDimitry Andric FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1007*5ffd83dbSDimitry Andric if (AAResults::onlyAccessesArgPointees(MRB)) 10080b57cec5SDimitry Andric IsArgMemOnlyCall = true; 10090b57cec5SDimitry Andric } 10100b57cec5SDimitry Andric 10110b57cec5SDimitry Andric for (Value *Arg : Call->args()) { 10120b57cec5SDimitry Andric // We need to check the underlying objects of all arguments, not just 10130b57cec5SDimitry Andric // the pointer arguments, because we might be passing pointers as 10140b57cec5SDimitry Andric // integers, etc. 10150b57cec5SDimitry Andric // However, if we know that the call only accesses pointer arguments, 10160b57cec5SDimitry Andric // then we only need to check the pointer arguments. 10170b57cec5SDimitry Andric if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 10180b57cec5SDimitry Andric continue; 10190b57cec5SDimitry Andric 10200b57cec5SDimitry Andric PtrArgs.push_back(Arg); 10210b57cec5SDimitry Andric } 10220b57cec5SDimitry Andric } 10230b57cec5SDimitry Andric 10240b57cec5SDimitry Andric // If we found no pointers, then this instruction is not suitable for 10250b57cec5SDimitry Andric // pairing with an instruction to receive aliasing metadata. 10260b57cec5SDimitry Andric // However, if this is a call, this we might just alias with none of the 10270b57cec5SDimitry Andric // noalias arguments. 10280b57cec5SDimitry Andric if (PtrArgs.empty() && !IsFuncCall) 10290b57cec5SDimitry Andric continue; 10300b57cec5SDimitry Andric 10310b57cec5SDimitry Andric // It is possible that there is only one underlying object, but you 10320b57cec5SDimitry Andric // need to go through several PHIs to see it, and thus could be 10330b57cec5SDimitry Andric // repeated in the Objects list. 10340b57cec5SDimitry Andric SmallPtrSet<const Value *, 4> ObjSet; 10350b57cec5SDimitry Andric SmallVector<Metadata *, 4> Scopes, NoAliases; 10360b57cec5SDimitry Andric 10370b57cec5SDimitry Andric SmallSetVector<const Argument *, 4> NAPtrArgs; 10380b57cec5SDimitry Andric for (const Value *V : PtrArgs) { 10390b57cec5SDimitry Andric SmallVector<const Value *, 4> Objects; 10400b57cec5SDimitry Andric GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); 10410b57cec5SDimitry Andric 10420b57cec5SDimitry Andric for (const Value *O : Objects) 10430b57cec5SDimitry Andric ObjSet.insert(O); 10440b57cec5SDimitry Andric } 10450b57cec5SDimitry Andric 10460b57cec5SDimitry Andric // Figure out if we're derived from anything that is not a noalias 10470b57cec5SDimitry Andric // argument. 10480b57cec5SDimitry Andric bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 10490b57cec5SDimitry Andric for (const Value *V : ObjSet) { 10500b57cec5SDimitry Andric // Is this value a constant that cannot be derived from any pointer 10510b57cec5SDimitry Andric // value (we need to exclude constant expressions, for example, that 10520b57cec5SDimitry Andric // are formed from arithmetic on global symbols). 10530b57cec5SDimitry Andric bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 10540b57cec5SDimitry Andric isa<ConstantPointerNull>(V) || 10550b57cec5SDimitry Andric isa<ConstantDataVector>(V) || isa<UndefValue>(V); 10560b57cec5SDimitry Andric if (IsNonPtrConst) 10570b57cec5SDimitry Andric continue; 10580b57cec5SDimitry Andric 10590b57cec5SDimitry Andric // If this is anything other than a noalias argument, then we cannot 10600b57cec5SDimitry Andric // completely describe the aliasing properties using alias.scope 10610b57cec5SDimitry Andric // metadata (and, thus, won't add any). 10620b57cec5SDimitry Andric if (const Argument *A = dyn_cast<Argument>(V)) { 1063*5ffd83dbSDimitry Andric if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 10640b57cec5SDimitry Andric UsesAliasingPtr = true; 10650b57cec5SDimitry Andric } else { 10660b57cec5SDimitry Andric UsesAliasingPtr = true; 10670b57cec5SDimitry Andric } 10680b57cec5SDimitry Andric 10690b57cec5SDimitry Andric // If this is not some identified function-local object (which cannot 10700b57cec5SDimitry Andric // directly alias a noalias argument), or some other argument (which, 10710b57cec5SDimitry Andric // by definition, also cannot alias a noalias argument), then we could 10720b57cec5SDimitry Andric // alias a noalias argument that has been captured). 10730b57cec5SDimitry Andric if (!isa<Argument>(V) && 10740b57cec5SDimitry Andric !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 10750b57cec5SDimitry Andric CanDeriveViaCapture = true; 10760b57cec5SDimitry Andric } 10770b57cec5SDimitry Andric 10780b57cec5SDimitry Andric // A function call can always get captured noalias pointers (via other 10790b57cec5SDimitry Andric // parameters, globals, etc.). 10800b57cec5SDimitry Andric if (IsFuncCall && !IsArgMemOnlyCall) 10810b57cec5SDimitry Andric CanDeriveViaCapture = true; 10820b57cec5SDimitry Andric 10830b57cec5SDimitry Andric // First, we want to figure out all of the sets with which we definitely 10840b57cec5SDimitry Andric // don't alias. Iterate over all noalias set, and add those for which: 10850b57cec5SDimitry Andric // 1. The noalias argument is not in the set of objects from which we 10860b57cec5SDimitry Andric // definitely derive. 10870b57cec5SDimitry Andric // 2. The noalias argument has not yet been captured. 10880b57cec5SDimitry Andric // An arbitrary function that might load pointers could see captured 10890b57cec5SDimitry Andric // noalias arguments via other noalias arguments or globals, and so we 10900b57cec5SDimitry Andric // must always check for prior capture. 10910b57cec5SDimitry Andric for (const Argument *A : NoAliasArgs) { 10920b57cec5SDimitry Andric if (!ObjSet.count(A) && (!CanDeriveViaCapture || 10930b57cec5SDimitry Andric // It might be tempting to skip the 10940b57cec5SDimitry Andric // PointerMayBeCapturedBefore check if 10950b57cec5SDimitry Andric // A->hasNoCaptureAttr() is true, but this is 10960b57cec5SDimitry Andric // incorrect because nocapture only guarantees 10970b57cec5SDimitry Andric // that no copies outlive the function, not 10980b57cec5SDimitry Andric // that the value cannot be locally captured. 10990b57cec5SDimitry Andric !PointerMayBeCapturedBefore(A, 11000b57cec5SDimitry Andric /* ReturnCaptures */ false, 11010b57cec5SDimitry Andric /* StoreCaptures */ false, I, &DT))) 11020b57cec5SDimitry Andric NoAliases.push_back(NewScopes[A]); 11030b57cec5SDimitry Andric } 11040b57cec5SDimitry Andric 11050b57cec5SDimitry Andric if (!NoAliases.empty()) 11060b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_noalias, 11070b57cec5SDimitry Andric MDNode::concatenate( 11080b57cec5SDimitry Andric NI->getMetadata(LLVMContext::MD_noalias), 11090b57cec5SDimitry Andric MDNode::get(CalledFunc->getContext(), NoAliases))); 11100b57cec5SDimitry Andric 11110b57cec5SDimitry Andric // Next, we want to figure out all of the sets to which we might belong. 11120b57cec5SDimitry Andric // We might belong to a set if the noalias argument is in the set of 11130b57cec5SDimitry Andric // underlying objects. If there is some non-noalias argument in our list 11140b57cec5SDimitry Andric // of underlying objects, then we cannot add a scope because the fact 11150b57cec5SDimitry Andric // that some access does not alias with any set of our noalias arguments 11160b57cec5SDimitry Andric // cannot itself guarantee that it does not alias with this access 11170b57cec5SDimitry Andric // (because there is some pointer of unknown origin involved and the 11180b57cec5SDimitry Andric // other access might also depend on this pointer). We also cannot add 11190b57cec5SDimitry Andric // scopes to arbitrary functions unless we know they don't access any 11200b57cec5SDimitry Andric // non-parameter pointer-values. 11210b57cec5SDimitry Andric bool CanAddScopes = !UsesAliasingPtr; 11220b57cec5SDimitry Andric if (CanAddScopes && IsFuncCall) 11230b57cec5SDimitry Andric CanAddScopes = IsArgMemOnlyCall; 11240b57cec5SDimitry Andric 11250b57cec5SDimitry Andric if (CanAddScopes) 11260b57cec5SDimitry Andric for (const Argument *A : NoAliasArgs) { 11270b57cec5SDimitry Andric if (ObjSet.count(A)) 11280b57cec5SDimitry Andric Scopes.push_back(NewScopes[A]); 11290b57cec5SDimitry Andric } 11300b57cec5SDimitry Andric 11310b57cec5SDimitry Andric if (!Scopes.empty()) 11320b57cec5SDimitry Andric NI->setMetadata( 11330b57cec5SDimitry Andric LLVMContext::MD_alias_scope, 11340b57cec5SDimitry Andric MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 11350b57cec5SDimitry Andric MDNode::get(CalledFunc->getContext(), Scopes))); 11360b57cec5SDimitry Andric } 11370b57cec5SDimitry Andric } 11380b57cec5SDimitry Andric } 11390b57cec5SDimitry Andric 1140*5ffd83dbSDimitry Andric static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1141*5ffd83dbSDimitry Andric Instruction *End) { 1142*5ffd83dbSDimitry Andric 1143*5ffd83dbSDimitry Andric assert(Begin->getParent() == End->getParent() && 1144*5ffd83dbSDimitry Andric "Expected to be in same basic block!"); 1145*5ffd83dbSDimitry Andric unsigned NumInstChecked = 0; 1146*5ffd83dbSDimitry Andric // Check that all instructions in the range [Begin, End) are guaranteed to 1147*5ffd83dbSDimitry Andric // transfer execution to successor. 1148*5ffd83dbSDimitry Andric for (auto &I : make_range(Begin->getIterator(), End->getIterator())) 1149*5ffd83dbSDimitry Andric if (NumInstChecked++ > InlinerAttributeWindow || 1150*5ffd83dbSDimitry Andric !isGuaranteedToTransferExecutionToSuccessor(&I)) 1151*5ffd83dbSDimitry Andric return true; 1152*5ffd83dbSDimitry Andric return false; 1153*5ffd83dbSDimitry Andric } 1154*5ffd83dbSDimitry Andric 1155*5ffd83dbSDimitry Andric static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1156*5ffd83dbSDimitry Andric 1157*5ffd83dbSDimitry Andric AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); 1158*5ffd83dbSDimitry Andric if (AB.empty()) 1159*5ffd83dbSDimitry Andric return AB; 1160*5ffd83dbSDimitry Andric AttrBuilder Valid; 1161*5ffd83dbSDimitry Andric // Only allow these white listed attributes to be propagated back to the 1162*5ffd83dbSDimitry Andric // callee. This is because other attributes may only be valid on the call 1163*5ffd83dbSDimitry Andric // itself, i.e. attributes such as signext and zeroext. 1164*5ffd83dbSDimitry Andric if (auto DerefBytes = AB.getDereferenceableBytes()) 1165*5ffd83dbSDimitry Andric Valid.addDereferenceableAttr(DerefBytes); 1166*5ffd83dbSDimitry Andric if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1167*5ffd83dbSDimitry Andric Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1168*5ffd83dbSDimitry Andric if (AB.contains(Attribute::NoAlias)) 1169*5ffd83dbSDimitry Andric Valid.addAttribute(Attribute::NoAlias); 1170*5ffd83dbSDimitry Andric if (AB.contains(Attribute::NonNull)) 1171*5ffd83dbSDimitry Andric Valid.addAttribute(Attribute::NonNull); 1172*5ffd83dbSDimitry Andric return Valid; 1173*5ffd83dbSDimitry Andric } 1174*5ffd83dbSDimitry Andric 1175*5ffd83dbSDimitry Andric static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1176*5ffd83dbSDimitry Andric if (!UpdateReturnAttributes) 1177*5ffd83dbSDimitry Andric return; 1178*5ffd83dbSDimitry Andric 1179*5ffd83dbSDimitry Andric AttrBuilder Valid = IdentifyValidAttributes(CB); 1180*5ffd83dbSDimitry Andric if (Valid.empty()) 1181*5ffd83dbSDimitry Andric return; 1182*5ffd83dbSDimitry Andric auto *CalledFunction = CB.getCalledFunction(); 1183*5ffd83dbSDimitry Andric auto &Context = CalledFunction->getContext(); 1184*5ffd83dbSDimitry Andric 1185*5ffd83dbSDimitry Andric for (auto &BB : *CalledFunction) { 1186*5ffd83dbSDimitry Andric auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1187*5ffd83dbSDimitry Andric if (!RI || !isa<CallBase>(RI->getOperand(0))) 1188*5ffd83dbSDimitry Andric continue; 1189*5ffd83dbSDimitry Andric auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1190*5ffd83dbSDimitry Andric // Sanity check that the cloned RetVal exists and is a call, otherwise we 1191*5ffd83dbSDimitry Andric // cannot add the attributes on the cloned RetVal. 1192*5ffd83dbSDimitry Andric // Simplification during inlining could have transformed the cloned 1193*5ffd83dbSDimitry Andric // instruction. 1194*5ffd83dbSDimitry Andric auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1195*5ffd83dbSDimitry Andric if (!NewRetVal) 1196*5ffd83dbSDimitry Andric continue; 1197*5ffd83dbSDimitry Andric // Backward propagation of attributes to the returned value may be incorrect 1198*5ffd83dbSDimitry Andric // if it is control flow dependent. 1199*5ffd83dbSDimitry Andric // Consider: 1200*5ffd83dbSDimitry Andric // @callee { 1201*5ffd83dbSDimitry Andric // %rv = call @foo() 1202*5ffd83dbSDimitry Andric // %rv2 = call @bar() 1203*5ffd83dbSDimitry Andric // if (%rv2 != null) 1204*5ffd83dbSDimitry Andric // return %rv2 1205*5ffd83dbSDimitry Andric // if (%rv == null) 1206*5ffd83dbSDimitry Andric // exit() 1207*5ffd83dbSDimitry Andric // return %rv 1208*5ffd83dbSDimitry Andric // } 1209*5ffd83dbSDimitry Andric // caller() { 1210*5ffd83dbSDimitry Andric // %val = call nonnull @callee() 1211*5ffd83dbSDimitry Andric // } 1212*5ffd83dbSDimitry Andric // Here we cannot add the nonnull attribute on either foo or bar. So, we 1213*5ffd83dbSDimitry Andric // limit the check to both RetVal and RI are in the same basic block and 1214*5ffd83dbSDimitry Andric // there are no throwing/exiting instructions between these instructions. 1215*5ffd83dbSDimitry Andric if (RI->getParent() != RetVal->getParent() || 1216*5ffd83dbSDimitry Andric MayContainThrowingOrExitingCall(RetVal, RI)) 1217*5ffd83dbSDimitry Andric continue; 1218*5ffd83dbSDimitry Andric // Add to the existing attributes of NewRetVal, i.e. the cloned call 1219*5ffd83dbSDimitry Andric // instruction. 1220*5ffd83dbSDimitry Andric // NB! When we have the same attribute already existing on NewRetVal, but 1221*5ffd83dbSDimitry Andric // with a differing value, the AttributeList's merge API honours the already 1222*5ffd83dbSDimitry Andric // existing attribute value (i.e. attributes such as dereferenceable, 1223*5ffd83dbSDimitry Andric // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1224*5ffd83dbSDimitry Andric AttributeList AL = NewRetVal->getAttributes(); 1225*5ffd83dbSDimitry Andric AttributeList NewAL = 1226*5ffd83dbSDimitry Andric AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); 1227*5ffd83dbSDimitry Andric NewRetVal->setAttributes(NewAL); 1228*5ffd83dbSDimitry Andric } 1229*5ffd83dbSDimitry Andric } 1230*5ffd83dbSDimitry Andric 12310b57cec5SDimitry Andric /// If the inlined function has non-byval align arguments, then 12320b57cec5SDimitry Andric /// add @llvm.assume-based alignment assumptions to preserve this information. 1233*5ffd83dbSDimitry Andric static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 12340b57cec5SDimitry Andric if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 12350b57cec5SDimitry Andric return; 12360b57cec5SDimitry Andric 1237*5ffd83dbSDimitry Andric AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1238*5ffd83dbSDimitry Andric auto &DL = CB.getCaller()->getParent()->getDataLayout(); 12390b57cec5SDimitry Andric 12400b57cec5SDimitry Andric // To avoid inserting redundant assumptions, we should check for assumptions 12410b57cec5SDimitry Andric // already in the caller. To do this, we might need a DT of the caller. 12420b57cec5SDimitry Andric DominatorTree DT; 12430b57cec5SDimitry Andric bool DTCalculated = false; 12440b57cec5SDimitry Andric 1245*5ffd83dbSDimitry Andric Function *CalledFunc = CB.getCalledFunction(); 12460b57cec5SDimitry Andric for (Argument &Arg : CalledFunc->args()) { 12470b57cec5SDimitry Andric unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1248*5ffd83dbSDimitry Andric if (Align && !Arg.hasPassPointeeByValueAttr() && !Arg.hasNUses(0)) { 12490b57cec5SDimitry Andric if (!DTCalculated) { 1250*5ffd83dbSDimitry Andric DT.recalculate(*CB.getCaller()); 12510b57cec5SDimitry Andric DTCalculated = true; 12520b57cec5SDimitry Andric } 12530b57cec5SDimitry Andric 12540b57cec5SDimitry Andric // If we can already prove the asserted alignment in the context of the 12550b57cec5SDimitry Andric // caller, then don't bother inserting the assumption. 1256*5ffd83dbSDimitry Andric Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1257*5ffd83dbSDimitry Andric if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 12580b57cec5SDimitry Andric continue; 12590b57cec5SDimitry Andric 1260*5ffd83dbSDimitry Andric CallInst *NewAsmp = 1261*5ffd83dbSDimitry Andric IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 12620b57cec5SDimitry Andric AC->registerAssumption(NewAsmp); 12630b57cec5SDimitry Andric } 12640b57cec5SDimitry Andric } 12650b57cec5SDimitry Andric } 12660b57cec5SDimitry Andric 12670b57cec5SDimitry Andric /// Once we have cloned code over from a callee into the caller, 12680b57cec5SDimitry Andric /// update the specified callgraph to reflect the changes we made. 12690b57cec5SDimitry Andric /// Note that it's possible that not all code was copied over, so only 12700b57cec5SDimitry Andric /// some edges of the callgraph may remain. 1271*5ffd83dbSDimitry Andric static void UpdateCallGraphAfterInlining(CallBase &CB, 12720b57cec5SDimitry Andric Function::iterator FirstNewBlock, 12730b57cec5SDimitry Andric ValueToValueMapTy &VMap, 12740b57cec5SDimitry Andric InlineFunctionInfo &IFI) { 12750b57cec5SDimitry Andric CallGraph &CG = *IFI.CG; 1276*5ffd83dbSDimitry Andric const Function *Caller = CB.getCaller(); 1277*5ffd83dbSDimitry Andric const Function *Callee = CB.getCalledFunction(); 12780b57cec5SDimitry Andric CallGraphNode *CalleeNode = CG[Callee]; 12790b57cec5SDimitry Andric CallGraphNode *CallerNode = CG[Caller]; 12800b57cec5SDimitry Andric 12810b57cec5SDimitry Andric // Since we inlined some uninlined call sites in the callee into the caller, 12820b57cec5SDimitry Andric // add edges from the caller to all of the callees of the callee. 12830b57cec5SDimitry Andric CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 12840b57cec5SDimitry Andric 12850b57cec5SDimitry Andric // Consider the case where CalleeNode == CallerNode. 12860b57cec5SDimitry Andric CallGraphNode::CalledFunctionsVector CallCache; 12870b57cec5SDimitry Andric if (CalleeNode == CallerNode) { 12880b57cec5SDimitry Andric CallCache.assign(I, E); 12890b57cec5SDimitry Andric I = CallCache.begin(); 12900b57cec5SDimitry Andric E = CallCache.end(); 12910b57cec5SDimitry Andric } 12920b57cec5SDimitry Andric 12930b57cec5SDimitry Andric for (; I != E; ++I) { 1294*5ffd83dbSDimitry Andric // Skip 'refererence' call records. 1295*5ffd83dbSDimitry Andric if (!I->first) 1296*5ffd83dbSDimitry Andric continue; 1297*5ffd83dbSDimitry Andric 1298*5ffd83dbSDimitry Andric const Value *OrigCall = *I->first; 12990b57cec5SDimitry Andric 13000b57cec5SDimitry Andric ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 13010b57cec5SDimitry Andric // Only copy the edge if the call was inlined! 13020b57cec5SDimitry Andric if (VMI == VMap.end() || VMI->second == nullptr) 13030b57cec5SDimitry Andric continue; 13040b57cec5SDimitry Andric 13050b57cec5SDimitry Andric // If the call was inlined, but then constant folded, there is no edge to 13060b57cec5SDimitry Andric // add. Check for this case. 13070b57cec5SDimitry Andric auto *NewCall = dyn_cast<CallBase>(VMI->second); 13080b57cec5SDimitry Andric if (!NewCall) 13090b57cec5SDimitry Andric continue; 13100b57cec5SDimitry Andric 13110b57cec5SDimitry Andric // We do not treat intrinsic calls like real function calls because we 13120b57cec5SDimitry Andric // expect them to become inline code; do not add an edge for an intrinsic. 13130b57cec5SDimitry Andric if (NewCall->getCalledFunction() && 13140b57cec5SDimitry Andric NewCall->getCalledFunction()->isIntrinsic()) 13150b57cec5SDimitry Andric continue; 13160b57cec5SDimitry Andric 13170b57cec5SDimitry Andric // Remember that this call site got inlined for the client of 13180b57cec5SDimitry Andric // InlineFunction. 13190b57cec5SDimitry Andric IFI.InlinedCalls.push_back(NewCall); 13200b57cec5SDimitry Andric 13210b57cec5SDimitry Andric // It's possible that inlining the callsite will cause it to go from an 13220b57cec5SDimitry Andric // indirect to a direct call by resolving a function pointer. If this 13230b57cec5SDimitry Andric // happens, set the callee of the new call site to a more precise 13240b57cec5SDimitry Andric // destination. This can also happen if the call graph node of the caller 13250b57cec5SDimitry Andric // was just unnecessarily imprecise. 13260b57cec5SDimitry Andric if (!I->second->getFunction()) 13270b57cec5SDimitry Andric if (Function *F = NewCall->getCalledFunction()) { 13280b57cec5SDimitry Andric // Indirect call site resolved to direct call. 13290b57cec5SDimitry Andric CallerNode->addCalledFunction(NewCall, CG[F]); 13300b57cec5SDimitry Andric 13310b57cec5SDimitry Andric continue; 13320b57cec5SDimitry Andric } 13330b57cec5SDimitry Andric 13340b57cec5SDimitry Andric CallerNode->addCalledFunction(NewCall, I->second); 13350b57cec5SDimitry Andric } 13360b57cec5SDimitry Andric 13370b57cec5SDimitry Andric // Update the call graph by deleting the edge from Callee to Caller. We must 13380b57cec5SDimitry Andric // do this after the loop above in case Caller and Callee are the same. 1339*5ffd83dbSDimitry Andric CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 13400b57cec5SDimitry Andric } 13410b57cec5SDimitry Andric 13420b57cec5SDimitry Andric static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 13430b57cec5SDimitry Andric BasicBlock *InsertBlock, 13440b57cec5SDimitry Andric InlineFunctionInfo &IFI) { 13450b57cec5SDimitry Andric Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 13460b57cec5SDimitry Andric IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 13470b57cec5SDimitry Andric 13480b57cec5SDimitry Andric Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 13490b57cec5SDimitry Andric 13500b57cec5SDimitry Andric // Always generate a memcpy of alignment 1 here because we don't know 13510b57cec5SDimitry Andric // the alignment of the src pointer. Other optimizations can infer 13520b57cec5SDimitry Andric // better alignment. 1353*5ffd83dbSDimitry Andric Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1354*5ffd83dbSDimitry Andric /*SrcAlign*/ Align(1), Size); 13550b57cec5SDimitry Andric } 13560b57cec5SDimitry Andric 13570b57cec5SDimitry Andric /// When inlining a call site that has a byval argument, 13580b57cec5SDimitry Andric /// we have to make the implicit memcpy explicit by adding it. 13590b57cec5SDimitry Andric static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 13600b57cec5SDimitry Andric const Function *CalledFunc, 13610b57cec5SDimitry Andric InlineFunctionInfo &IFI, 13620b57cec5SDimitry Andric unsigned ByValAlignment) { 13630b57cec5SDimitry Andric PointerType *ArgTy = cast<PointerType>(Arg->getType()); 13640b57cec5SDimitry Andric Type *AggTy = ArgTy->getElementType(); 13650b57cec5SDimitry Andric 13660b57cec5SDimitry Andric Function *Caller = TheCall->getFunction(); 13670b57cec5SDimitry Andric const DataLayout &DL = Caller->getParent()->getDataLayout(); 13680b57cec5SDimitry Andric 13690b57cec5SDimitry Andric // If the called function is readonly, then it could not mutate the caller's 13700b57cec5SDimitry Andric // copy of the byval'd memory. In this case, it is safe to elide the copy and 13710b57cec5SDimitry Andric // temporary. 13720b57cec5SDimitry Andric if (CalledFunc->onlyReadsMemory()) { 13730b57cec5SDimitry Andric // If the byval argument has a specified alignment that is greater than the 13740b57cec5SDimitry Andric // passed in pointer, then we either have to round up the input pointer or 13750b57cec5SDimitry Andric // give up on this transformation. 13760b57cec5SDimitry Andric if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 13770b57cec5SDimitry Andric return Arg; 13780b57cec5SDimitry Andric 13790b57cec5SDimitry Andric AssumptionCache *AC = 1380*5ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 13810b57cec5SDimitry Andric 13820b57cec5SDimitry Andric // If the pointer is already known to be sufficiently aligned, or if we can 13830b57cec5SDimitry Andric // round it up to a larger alignment, then we don't need a temporary. 1384*5ffd83dbSDimitry Andric if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1385*5ffd83dbSDimitry Andric AC) >= ByValAlignment) 13860b57cec5SDimitry Andric return Arg; 13870b57cec5SDimitry Andric 13880b57cec5SDimitry Andric // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 13890b57cec5SDimitry Andric // for code quality, but rarely happens and is required for correctness. 13900b57cec5SDimitry Andric } 13910b57cec5SDimitry Andric 13920b57cec5SDimitry Andric // Create the alloca. If we have DataLayout, use nice alignment. 1393480093f4SDimitry Andric Align Alignment(DL.getPrefTypeAlignment(AggTy)); 13940b57cec5SDimitry Andric 13950b57cec5SDimitry Andric // If the byval had an alignment specified, we *must* use at least that 13960b57cec5SDimitry Andric // alignment, as it is required by the byval argument (and uses of the 13970b57cec5SDimitry Andric // pointer inside the callee). 1398480093f4SDimitry Andric Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 13990b57cec5SDimitry Andric 1400480093f4SDimitry Andric Value *NewAlloca = 1401480093f4SDimitry Andric new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1402480093f4SDimitry Andric Arg->getName(), &*Caller->begin()->begin()); 14030b57cec5SDimitry Andric IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 14040b57cec5SDimitry Andric 14050b57cec5SDimitry Andric // Uses of the argument in the function should use our new alloca 14060b57cec5SDimitry Andric // instead. 14070b57cec5SDimitry Andric return NewAlloca; 14080b57cec5SDimitry Andric } 14090b57cec5SDimitry Andric 14100b57cec5SDimitry Andric // Check whether this Value is used by a lifetime intrinsic. 14110b57cec5SDimitry Andric static bool isUsedByLifetimeMarker(Value *V) { 14120b57cec5SDimitry Andric for (User *U : V->users()) 14130b57cec5SDimitry Andric if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 14140b57cec5SDimitry Andric if (II->isLifetimeStartOrEnd()) 14150b57cec5SDimitry Andric return true; 14160b57cec5SDimitry Andric return false; 14170b57cec5SDimitry Andric } 14180b57cec5SDimitry Andric 14190b57cec5SDimitry Andric // Check whether the given alloca already has 14200b57cec5SDimitry Andric // lifetime.start or lifetime.end intrinsics. 14210b57cec5SDimitry Andric static bool hasLifetimeMarkers(AllocaInst *AI) { 14220b57cec5SDimitry Andric Type *Ty = AI->getType(); 14230b57cec5SDimitry Andric Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 14240b57cec5SDimitry Andric Ty->getPointerAddressSpace()); 14250b57cec5SDimitry Andric if (Ty == Int8PtrTy) 14260b57cec5SDimitry Andric return isUsedByLifetimeMarker(AI); 14270b57cec5SDimitry Andric 14280b57cec5SDimitry Andric // Do a scan to find all the casts to i8*. 14290b57cec5SDimitry Andric for (User *U : AI->users()) { 14300b57cec5SDimitry Andric if (U->getType() != Int8PtrTy) continue; 14310b57cec5SDimitry Andric if (U->stripPointerCasts() != AI) continue; 14320b57cec5SDimitry Andric if (isUsedByLifetimeMarker(U)) 14330b57cec5SDimitry Andric return true; 14340b57cec5SDimitry Andric } 14350b57cec5SDimitry Andric return false; 14360b57cec5SDimitry Andric } 14370b57cec5SDimitry Andric 14380b57cec5SDimitry Andric /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 14390b57cec5SDimitry Andric /// block. Allocas used in inalloca calls and allocas of dynamic array size 14400b57cec5SDimitry Andric /// cannot be static. 14410b57cec5SDimitry Andric static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 14420b57cec5SDimitry Andric return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 14430b57cec5SDimitry Andric } 14440b57cec5SDimitry Andric 14450b57cec5SDimitry Andric /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 14460b57cec5SDimitry Andric /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 14470b57cec5SDimitry Andric static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 14480b57cec5SDimitry Andric LLVMContext &Ctx, 14490b57cec5SDimitry Andric DenseMap<const MDNode *, MDNode *> &IANodes) { 14500b57cec5SDimitry Andric auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 14510b57cec5SDimitry Andric return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 14520b57cec5SDimitry Andric IA); 14530b57cec5SDimitry Andric } 14540b57cec5SDimitry Andric 14550b57cec5SDimitry Andric /// Update inlined instructions' line numbers to 14560b57cec5SDimitry Andric /// to encode location where these instructions are inlined. 14570b57cec5SDimitry Andric static void fixupLineNumbers(Function *Fn, Function::iterator FI, 14580b57cec5SDimitry Andric Instruction *TheCall, bool CalleeHasDebugInfo) { 14590b57cec5SDimitry Andric const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 14600b57cec5SDimitry Andric if (!TheCallDL) 14610b57cec5SDimitry Andric return; 14620b57cec5SDimitry Andric 14630b57cec5SDimitry Andric auto &Ctx = Fn->getContext(); 14640b57cec5SDimitry Andric DILocation *InlinedAtNode = TheCallDL; 14650b57cec5SDimitry Andric 14660b57cec5SDimitry Andric // Create a unique call site, not to be confused with any other call from the 14670b57cec5SDimitry Andric // same location. 14680b57cec5SDimitry Andric InlinedAtNode = DILocation::getDistinct( 14690b57cec5SDimitry Andric Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 14700b57cec5SDimitry Andric InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 14710b57cec5SDimitry Andric 14720b57cec5SDimitry Andric // Cache the inlined-at nodes as they're built so they are reused, without 14730b57cec5SDimitry Andric // this every instruction's inlined-at chain would become distinct from each 14740b57cec5SDimitry Andric // other. 14750b57cec5SDimitry Andric DenseMap<const MDNode *, MDNode *> IANodes; 14760b57cec5SDimitry Andric 1477480093f4SDimitry Andric // Check if we are not generating inline line tables and want to use 1478480093f4SDimitry Andric // the call site location instead. 1479480093f4SDimitry Andric bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1480480093f4SDimitry Andric 14810b57cec5SDimitry Andric for (; FI != Fn->end(); ++FI) { 14820b57cec5SDimitry Andric for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 14830b57cec5SDimitry Andric BI != BE; ++BI) { 14840b57cec5SDimitry Andric // Loop metadata needs to be updated so that the start and end locs 14850b57cec5SDimitry Andric // reference inlined-at locations. 1486*5ffd83dbSDimitry Andric auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1487*5ffd83dbSDimitry Andric const DILocation &Loc) -> DILocation * { 1488*5ffd83dbSDimitry Andric return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1489*5ffd83dbSDimitry Andric }; 1490*5ffd83dbSDimitry Andric updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 14910b57cec5SDimitry Andric 1492480093f4SDimitry Andric if (!NoInlineLineTables) 14930b57cec5SDimitry Andric if (DebugLoc DL = BI->getDebugLoc()) { 14940b57cec5SDimitry Andric DebugLoc IDL = 14950b57cec5SDimitry Andric inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 14960b57cec5SDimitry Andric BI->setDebugLoc(IDL); 14970b57cec5SDimitry Andric continue; 14980b57cec5SDimitry Andric } 14990b57cec5SDimitry Andric 1500480093f4SDimitry Andric if (CalleeHasDebugInfo && !NoInlineLineTables) 15010b57cec5SDimitry Andric continue; 15020b57cec5SDimitry Andric 1503480093f4SDimitry Andric // If the inlined instruction has no line number, or if inline info 1504480093f4SDimitry Andric // is not being generated, make it look as if it originates from the call 1505480093f4SDimitry Andric // location. This is important for ((__always_inline, __nodebug__)) 1506480093f4SDimitry Andric // functions which must use caller location for all instructions in their 1507480093f4SDimitry Andric // function body. 15080b57cec5SDimitry Andric 15090b57cec5SDimitry Andric // Don't update static allocas, as they may get moved later. 15100b57cec5SDimitry Andric if (auto *AI = dyn_cast<AllocaInst>(BI)) 15110b57cec5SDimitry Andric if (allocaWouldBeStaticInEntry(AI)) 15120b57cec5SDimitry Andric continue; 15130b57cec5SDimitry Andric 15140b57cec5SDimitry Andric BI->setDebugLoc(TheCallDL); 15150b57cec5SDimitry Andric } 1516480093f4SDimitry Andric 1517480093f4SDimitry Andric // Remove debug info intrinsics if we're not keeping inline info. 1518480093f4SDimitry Andric if (NoInlineLineTables) { 1519480093f4SDimitry Andric BasicBlock::iterator BI = FI->begin(); 1520480093f4SDimitry Andric while (BI != FI->end()) { 1521480093f4SDimitry Andric if (isa<DbgInfoIntrinsic>(BI)) { 1522480093f4SDimitry Andric BI = BI->eraseFromParent(); 1523480093f4SDimitry Andric continue; 1524480093f4SDimitry Andric } 1525480093f4SDimitry Andric ++BI; 1526480093f4SDimitry Andric } 1527480093f4SDimitry Andric } 1528480093f4SDimitry Andric 15290b57cec5SDimitry Andric } 15300b57cec5SDimitry Andric } 15310b57cec5SDimitry Andric 15320b57cec5SDimitry Andric /// Update the block frequencies of the caller after a callee has been inlined. 15330b57cec5SDimitry Andric /// 15340b57cec5SDimitry Andric /// Each block cloned into the caller has its block frequency scaled by the 15350b57cec5SDimitry Andric /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 15360b57cec5SDimitry Andric /// callee's entry block gets the same frequency as the callsite block and the 15370b57cec5SDimitry Andric /// relative frequencies of all cloned blocks remain the same after cloning. 15380b57cec5SDimitry Andric static void updateCallerBFI(BasicBlock *CallSiteBlock, 15390b57cec5SDimitry Andric const ValueToValueMapTy &VMap, 15400b57cec5SDimitry Andric BlockFrequencyInfo *CallerBFI, 15410b57cec5SDimitry Andric BlockFrequencyInfo *CalleeBFI, 15420b57cec5SDimitry Andric const BasicBlock &CalleeEntryBlock) { 15430b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1544480093f4SDimitry Andric for (auto Entry : VMap) { 15450b57cec5SDimitry Andric if (!isa<BasicBlock>(Entry.first) || !Entry.second) 15460b57cec5SDimitry Andric continue; 15470b57cec5SDimitry Andric auto *OrigBB = cast<BasicBlock>(Entry.first); 15480b57cec5SDimitry Andric auto *ClonedBB = cast<BasicBlock>(Entry.second); 15490b57cec5SDimitry Andric uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 15500b57cec5SDimitry Andric if (!ClonedBBs.insert(ClonedBB).second) { 15510b57cec5SDimitry Andric // Multiple blocks in the callee might get mapped to one cloned block in 15520b57cec5SDimitry Andric // the caller since we prune the callee as we clone it. When that happens, 15530b57cec5SDimitry Andric // we want to use the maximum among the original blocks' frequencies. 15540b57cec5SDimitry Andric uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 15550b57cec5SDimitry Andric if (NewFreq > Freq) 15560b57cec5SDimitry Andric Freq = NewFreq; 15570b57cec5SDimitry Andric } 15580b57cec5SDimitry Andric CallerBFI->setBlockFreq(ClonedBB, Freq); 15590b57cec5SDimitry Andric } 15600b57cec5SDimitry Andric BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 15610b57cec5SDimitry Andric CallerBFI->setBlockFreqAndScale( 15620b57cec5SDimitry Andric EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 15630b57cec5SDimitry Andric ClonedBBs); 15640b57cec5SDimitry Andric } 15650b57cec5SDimitry Andric 15660b57cec5SDimitry Andric /// Update the branch metadata for cloned call instructions. 15670b57cec5SDimitry Andric static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 15680b57cec5SDimitry Andric const ProfileCount &CalleeEntryCount, 1569*5ffd83dbSDimitry Andric const CallBase &TheCall, ProfileSummaryInfo *PSI, 15700b57cec5SDimitry Andric BlockFrequencyInfo *CallerBFI) { 15710b57cec5SDimitry Andric if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 15720b57cec5SDimitry Andric CalleeEntryCount.getCount() < 1) 15730b57cec5SDimitry Andric return; 15740b57cec5SDimitry Andric auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 15750b57cec5SDimitry Andric int64_t CallCount = 15760b57cec5SDimitry Andric std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 15770b57cec5SDimitry Andric CalleeEntryCount.getCount()); 15780b57cec5SDimitry Andric updateProfileCallee(Callee, -CallCount, &VMap); 15790b57cec5SDimitry Andric } 15800b57cec5SDimitry Andric 15810b57cec5SDimitry Andric void llvm::updateProfileCallee( 15820b57cec5SDimitry Andric Function *Callee, int64_t entryDelta, 15830b57cec5SDimitry Andric const ValueMap<const Value *, WeakTrackingVH> *VMap) { 15840b57cec5SDimitry Andric auto CalleeCount = Callee->getEntryCount(); 15850b57cec5SDimitry Andric if (!CalleeCount.hasValue()) 15860b57cec5SDimitry Andric return; 15870b57cec5SDimitry Andric 15880b57cec5SDimitry Andric uint64_t priorEntryCount = CalleeCount.getCount(); 15890b57cec5SDimitry Andric uint64_t newEntryCount; 15900b57cec5SDimitry Andric 15910b57cec5SDimitry Andric // Since CallSiteCount is an estimate, it could exceed the original callee 15920b57cec5SDimitry Andric // count and has to be set to 0 so guard against underflow. 15930b57cec5SDimitry Andric if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 15940b57cec5SDimitry Andric newEntryCount = 0; 15950b57cec5SDimitry Andric else 15960b57cec5SDimitry Andric newEntryCount = priorEntryCount + entryDelta; 15970b57cec5SDimitry Andric 15980b57cec5SDimitry Andric // During inlining ? 15990b57cec5SDimitry Andric if (VMap) { 16000b57cec5SDimitry Andric uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1601480093f4SDimitry Andric for (auto Entry : *VMap) 16020b57cec5SDimitry Andric if (isa<CallInst>(Entry.first)) 16030b57cec5SDimitry Andric if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 16040b57cec5SDimitry Andric CI->updateProfWeight(cloneEntryCount, priorEntryCount); 16050b57cec5SDimitry Andric } 1606480093f4SDimitry Andric 1607480093f4SDimitry Andric if (entryDelta) { 1608480093f4SDimitry Andric Callee->setEntryCount(newEntryCount); 1609480093f4SDimitry Andric 16100b57cec5SDimitry Andric for (BasicBlock &BB : *Callee) 16110b57cec5SDimitry Andric // No need to update the callsite if it is pruned during inlining. 16120b57cec5SDimitry Andric if (!VMap || VMap->count(&BB)) 16130b57cec5SDimitry Andric for (Instruction &I : BB) 16140b57cec5SDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(&I)) 16150b57cec5SDimitry Andric CI->updateProfWeight(newEntryCount, priorEntryCount); 16160b57cec5SDimitry Andric } 1617480093f4SDimitry Andric } 16180b57cec5SDimitry Andric 16190b57cec5SDimitry Andric /// This function inlines the called function into the basic block of the 16200b57cec5SDimitry Andric /// caller. This returns false if it is not possible to inline this call. 16210b57cec5SDimitry Andric /// The program is still in a well defined state if this occurs though. 16220b57cec5SDimitry Andric /// 16230b57cec5SDimitry Andric /// Note that this only does one level of inlining. For example, if the 16240b57cec5SDimitry Andric /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 16250b57cec5SDimitry Andric /// exists in the instruction stream. Similarly this will inline a recursive 16260b57cec5SDimitry Andric /// function by one level. 1627*5ffd83dbSDimitry Andric llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 16280b57cec5SDimitry Andric AAResults *CalleeAAR, 16290b57cec5SDimitry Andric bool InsertLifetime, 16300b57cec5SDimitry Andric Function *ForwardVarArgsTo) { 1631*5ffd83dbSDimitry Andric assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 16320b57cec5SDimitry Andric 16330b57cec5SDimitry Andric // FIXME: we don't inline callbr yet. 1634*5ffd83dbSDimitry Andric if (isa<CallBrInst>(CB)) 1635*5ffd83dbSDimitry Andric return InlineResult::failure("We don't inline callbr yet."); 16360b57cec5SDimitry Andric 16370b57cec5SDimitry Andric // If IFI has any state in it, zap it before we fill it in. 16380b57cec5SDimitry Andric IFI.reset(); 16390b57cec5SDimitry Andric 1640*5ffd83dbSDimitry Andric Function *CalledFunc = CB.getCalledFunction(); 16410b57cec5SDimitry Andric if (!CalledFunc || // Can't inline external function or indirect 16420b57cec5SDimitry Andric CalledFunc->isDeclaration()) // call! 1643*5ffd83dbSDimitry Andric return InlineResult::failure("external or indirect"); 16440b57cec5SDimitry Andric 16450b57cec5SDimitry Andric // The inliner does not know how to inline through calls with operand bundles 16460b57cec5SDimitry Andric // in general ... 1647*5ffd83dbSDimitry Andric if (CB.hasOperandBundles()) { 1648*5ffd83dbSDimitry Andric for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1649*5ffd83dbSDimitry Andric uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 16500b57cec5SDimitry Andric // ... but it knows how to inline through "deopt" operand bundles ... 16510b57cec5SDimitry Andric if (Tag == LLVMContext::OB_deopt) 16520b57cec5SDimitry Andric continue; 16530b57cec5SDimitry Andric // ... and "funclet" operand bundles. 16540b57cec5SDimitry Andric if (Tag == LLVMContext::OB_funclet) 16550b57cec5SDimitry Andric continue; 16560b57cec5SDimitry Andric 1657*5ffd83dbSDimitry Andric return InlineResult::failure("unsupported operand bundle"); 16580b57cec5SDimitry Andric } 16590b57cec5SDimitry Andric } 16600b57cec5SDimitry Andric 16610b57cec5SDimitry Andric // If the call to the callee cannot throw, set the 'nounwind' flag on any 16620b57cec5SDimitry Andric // calls that we inline. 1663*5ffd83dbSDimitry Andric bool MarkNoUnwind = CB.doesNotThrow(); 16640b57cec5SDimitry Andric 1665*5ffd83dbSDimitry Andric BasicBlock *OrigBB = CB.getParent(); 16660b57cec5SDimitry Andric Function *Caller = OrigBB->getParent(); 16670b57cec5SDimitry Andric 16680b57cec5SDimitry Andric // GC poses two hazards to inlining, which only occur when the callee has GC: 16690b57cec5SDimitry Andric // 1. If the caller has no GC, then the callee's GC must be propagated to the 16700b57cec5SDimitry Andric // caller. 16710b57cec5SDimitry Andric // 2. If the caller has a differing GC, it is invalid to inline. 16720b57cec5SDimitry Andric if (CalledFunc->hasGC()) { 16730b57cec5SDimitry Andric if (!Caller->hasGC()) 16740b57cec5SDimitry Andric Caller->setGC(CalledFunc->getGC()); 16750b57cec5SDimitry Andric else if (CalledFunc->getGC() != Caller->getGC()) 1676*5ffd83dbSDimitry Andric return InlineResult::failure("incompatible GC"); 16770b57cec5SDimitry Andric } 16780b57cec5SDimitry Andric 16790b57cec5SDimitry Andric // Get the personality function from the callee if it contains a landing pad. 16800b57cec5SDimitry Andric Constant *CalledPersonality = 16810b57cec5SDimitry Andric CalledFunc->hasPersonalityFn() 16820b57cec5SDimitry Andric ? CalledFunc->getPersonalityFn()->stripPointerCasts() 16830b57cec5SDimitry Andric : nullptr; 16840b57cec5SDimitry Andric 16850b57cec5SDimitry Andric // Find the personality function used by the landing pads of the caller. If it 16860b57cec5SDimitry Andric // exists, then check to see that it matches the personality function used in 16870b57cec5SDimitry Andric // the callee. 16880b57cec5SDimitry Andric Constant *CallerPersonality = 16890b57cec5SDimitry Andric Caller->hasPersonalityFn() 16900b57cec5SDimitry Andric ? Caller->getPersonalityFn()->stripPointerCasts() 16910b57cec5SDimitry Andric : nullptr; 16920b57cec5SDimitry Andric if (CalledPersonality) { 16930b57cec5SDimitry Andric if (!CallerPersonality) 16940b57cec5SDimitry Andric Caller->setPersonalityFn(CalledPersonality); 16950b57cec5SDimitry Andric // If the personality functions match, then we can perform the 16960b57cec5SDimitry Andric // inlining. Otherwise, we can't inline. 16970b57cec5SDimitry Andric // TODO: This isn't 100% true. Some personality functions are proper 16980b57cec5SDimitry Andric // supersets of others and can be used in place of the other. 16990b57cec5SDimitry Andric else if (CalledPersonality != CallerPersonality) 1700*5ffd83dbSDimitry Andric return InlineResult::failure("incompatible personality"); 17010b57cec5SDimitry Andric } 17020b57cec5SDimitry Andric 17030b57cec5SDimitry Andric // We need to figure out which funclet the callsite was in so that we may 17040b57cec5SDimitry Andric // properly nest the callee. 17050b57cec5SDimitry Andric Instruction *CallSiteEHPad = nullptr; 17060b57cec5SDimitry Andric if (CallerPersonality) { 17070b57cec5SDimitry Andric EHPersonality Personality = classifyEHPersonality(CallerPersonality); 17080b57cec5SDimitry Andric if (isScopedEHPersonality(Personality)) { 17090b57cec5SDimitry Andric Optional<OperandBundleUse> ParentFunclet = 1710*5ffd83dbSDimitry Andric CB.getOperandBundle(LLVMContext::OB_funclet); 17110b57cec5SDimitry Andric if (ParentFunclet) 17120b57cec5SDimitry Andric CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 17130b57cec5SDimitry Andric 17140b57cec5SDimitry Andric // OK, the inlining site is legal. What about the target function? 17150b57cec5SDimitry Andric 17160b57cec5SDimitry Andric if (CallSiteEHPad) { 17170b57cec5SDimitry Andric if (Personality == EHPersonality::MSVC_CXX) { 17180b57cec5SDimitry Andric // The MSVC personality cannot tolerate catches getting inlined into 17190b57cec5SDimitry Andric // cleanup funclets. 17200b57cec5SDimitry Andric if (isa<CleanupPadInst>(CallSiteEHPad)) { 17210b57cec5SDimitry Andric // Ok, the call site is within a cleanuppad. Let's check the callee 17220b57cec5SDimitry Andric // for catchpads. 17230b57cec5SDimitry Andric for (const BasicBlock &CalledBB : *CalledFunc) { 17240b57cec5SDimitry Andric if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1725*5ffd83dbSDimitry Andric return InlineResult::failure("catch in cleanup funclet"); 17260b57cec5SDimitry Andric } 17270b57cec5SDimitry Andric } 17280b57cec5SDimitry Andric } else if (isAsynchronousEHPersonality(Personality)) { 17290b57cec5SDimitry Andric // SEH is even less tolerant, there may not be any sort of exceptional 17300b57cec5SDimitry Andric // funclet in the callee. 17310b57cec5SDimitry Andric for (const BasicBlock &CalledBB : *CalledFunc) { 17320b57cec5SDimitry Andric if (CalledBB.isEHPad()) 1733*5ffd83dbSDimitry Andric return InlineResult::failure("SEH in cleanup funclet"); 17340b57cec5SDimitry Andric } 17350b57cec5SDimitry Andric } 17360b57cec5SDimitry Andric } 17370b57cec5SDimitry Andric } 17380b57cec5SDimitry Andric } 17390b57cec5SDimitry Andric 17400b57cec5SDimitry Andric // Determine if we are dealing with a call in an EHPad which does not unwind 17410b57cec5SDimitry Andric // to caller. 17420b57cec5SDimitry Andric bool EHPadForCallUnwindsLocally = false; 1743*5ffd83dbSDimitry Andric if (CallSiteEHPad && isa<CallInst>(CB)) { 17440b57cec5SDimitry Andric UnwindDestMemoTy FuncletUnwindMap; 17450b57cec5SDimitry Andric Value *CallSiteUnwindDestToken = 17460b57cec5SDimitry Andric getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 17470b57cec5SDimitry Andric 17480b57cec5SDimitry Andric EHPadForCallUnwindsLocally = 17490b57cec5SDimitry Andric CallSiteUnwindDestToken && 17500b57cec5SDimitry Andric !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 17510b57cec5SDimitry Andric } 17520b57cec5SDimitry Andric 17530b57cec5SDimitry Andric // Get an iterator to the last basic block in the function, which will have 17540b57cec5SDimitry Andric // the new function inlined after it. 17550b57cec5SDimitry Andric Function::iterator LastBlock = --Caller->end(); 17560b57cec5SDimitry Andric 17570b57cec5SDimitry Andric // Make sure to capture all of the return instructions from the cloned 17580b57cec5SDimitry Andric // function. 17590b57cec5SDimitry Andric SmallVector<ReturnInst*, 8> Returns; 17600b57cec5SDimitry Andric ClonedCodeInfo InlinedFunctionInfo; 17610b57cec5SDimitry Andric Function::iterator FirstNewBlock; 17620b57cec5SDimitry Andric 17630b57cec5SDimitry Andric { // Scope to destroy VMap after cloning. 17640b57cec5SDimitry Andric ValueToValueMapTy VMap; 17650b57cec5SDimitry Andric // Keep a list of pair (dst, src) to emit byval initializations. 17660b57cec5SDimitry Andric SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 17670b57cec5SDimitry Andric 17680b57cec5SDimitry Andric auto &DL = Caller->getParent()->getDataLayout(); 17690b57cec5SDimitry Andric 17700b57cec5SDimitry Andric // Calculate the vector of arguments to pass into the function cloner, which 17710b57cec5SDimitry Andric // matches up the formal to the actual argument values. 1772*5ffd83dbSDimitry Andric auto AI = CB.arg_begin(); 17730b57cec5SDimitry Andric unsigned ArgNo = 0; 17740b57cec5SDimitry Andric for (Function::arg_iterator I = CalledFunc->arg_begin(), 17750b57cec5SDimitry Andric E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 17760b57cec5SDimitry Andric Value *ActualArg = *AI; 17770b57cec5SDimitry Andric 17780b57cec5SDimitry Andric // When byval arguments actually inlined, we need to make the copy implied 17790b57cec5SDimitry Andric // by them explicit. However, we don't do this if the callee is readonly 17800b57cec5SDimitry Andric // or readnone, because the copy would be unneeded: the callee doesn't 17810b57cec5SDimitry Andric // modify the struct. 1782*5ffd83dbSDimitry Andric if (CB.isByValArgument(ArgNo)) { 1783*5ffd83dbSDimitry Andric ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI, 17840b57cec5SDimitry Andric CalledFunc->getParamAlignment(ArgNo)); 17850b57cec5SDimitry Andric if (ActualArg != *AI) 17860b57cec5SDimitry Andric ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 17870b57cec5SDimitry Andric } 17880b57cec5SDimitry Andric 17890b57cec5SDimitry Andric VMap[&*I] = ActualArg; 17900b57cec5SDimitry Andric } 17910b57cec5SDimitry Andric 1792*5ffd83dbSDimitry Andric // TODO: Remove this when users have been updated to the assume bundles. 17930b57cec5SDimitry Andric // Add alignment assumptions if necessary. We do this before the inlined 17940b57cec5SDimitry Andric // instructions are actually cloned into the caller so that we can easily 17950b57cec5SDimitry Andric // check what will be known at the start of the inlined code. 1796*5ffd83dbSDimitry Andric AddAlignmentAssumptions(CB, IFI); 1797*5ffd83dbSDimitry Andric 1798*5ffd83dbSDimitry Andric AssumptionCache *AC = 1799*5ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1800*5ffd83dbSDimitry Andric 1801*5ffd83dbSDimitry Andric /// Preserve all attributes on of the call and its parameters. 1802*5ffd83dbSDimitry Andric salvageKnowledge(&CB, AC); 18030b57cec5SDimitry Andric 18040b57cec5SDimitry Andric // We want the inliner to prune the code as it copies. We would LOVE to 18050b57cec5SDimitry Andric // have no dead or constant instructions leftover after inlining occurs 18060b57cec5SDimitry Andric // (which can happen, e.g., because an argument was constant), but we'll be 18070b57cec5SDimitry Andric // happy with whatever the cloner can do. 18080b57cec5SDimitry Andric CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 18090b57cec5SDimitry Andric /*ModuleLevelChanges=*/false, Returns, ".i", 1810*5ffd83dbSDimitry Andric &InlinedFunctionInfo, &CB); 18110b57cec5SDimitry Andric // Remember the first block that is newly cloned over. 18120b57cec5SDimitry Andric FirstNewBlock = LastBlock; ++FirstNewBlock; 18130b57cec5SDimitry Andric 18140b57cec5SDimitry Andric if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 18150b57cec5SDimitry Andric // Update the BFI of blocks cloned into the caller. 18160b57cec5SDimitry Andric updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 18170b57cec5SDimitry Andric CalledFunc->front()); 18180b57cec5SDimitry Andric 1819*5ffd83dbSDimitry Andric updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB, 18200b57cec5SDimitry Andric IFI.PSI, IFI.CallerBFI); 18210b57cec5SDimitry Andric 18220b57cec5SDimitry Andric // Inject byval arguments initialization. 18230b57cec5SDimitry Andric for (std::pair<Value*, Value*> &Init : ByValInit) 18240b57cec5SDimitry Andric HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 18250b57cec5SDimitry Andric &*FirstNewBlock, IFI); 18260b57cec5SDimitry Andric 18270b57cec5SDimitry Andric Optional<OperandBundleUse> ParentDeopt = 1828*5ffd83dbSDimitry Andric CB.getOperandBundle(LLVMContext::OB_deopt); 18290b57cec5SDimitry Andric if (ParentDeopt) { 18300b57cec5SDimitry Andric SmallVector<OperandBundleDef, 2> OpDefs; 18310b57cec5SDimitry Andric 18320b57cec5SDimitry Andric for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1833*5ffd83dbSDimitry Andric CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1834*5ffd83dbSDimitry Andric if (!ICS) 1835*5ffd83dbSDimitry Andric continue; // instruction was DCE'd or RAUW'ed to undef 18360b57cec5SDimitry Andric 18370b57cec5SDimitry Andric OpDefs.clear(); 18380b57cec5SDimitry Andric 1839*5ffd83dbSDimitry Andric OpDefs.reserve(ICS->getNumOperandBundles()); 18400b57cec5SDimitry Andric 1841*5ffd83dbSDimitry Andric for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1842*5ffd83dbSDimitry Andric ++COBi) { 1843*5ffd83dbSDimitry Andric auto ChildOB = ICS->getOperandBundleAt(COBi); 18440b57cec5SDimitry Andric if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 18450b57cec5SDimitry Andric // If the inlined call has other operand bundles, let them be 18460b57cec5SDimitry Andric OpDefs.emplace_back(ChildOB); 18470b57cec5SDimitry Andric continue; 18480b57cec5SDimitry Andric } 18490b57cec5SDimitry Andric 18500b57cec5SDimitry Andric // It may be useful to separate this logic (of handling operand 18510b57cec5SDimitry Andric // bundles) out to a separate "policy" component if this gets crowded. 18520b57cec5SDimitry Andric // Prepend the parent's deoptimization continuation to the newly 18530b57cec5SDimitry Andric // inlined call's deoptimization continuation. 18540b57cec5SDimitry Andric std::vector<Value *> MergedDeoptArgs; 18550b57cec5SDimitry Andric MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 18560b57cec5SDimitry Andric ChildOB.Inputs.size()); 18570b57cec5SDimitry Andric 18580b57cec5SDimitry Andric MergedDeoptArgs.insert(MergedDeoptArgs.end(), 18590b57cec5SDimitry Andric ParentDeopt->Inputs.begin(), 18600b57cec5SDimitry Andric ParentDeopt->Inputs.end()); 18610b57cec5SDimitry Andric MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 18620b57cec5SDimitry Andric ChildOB.Inputs.end()); 18630b57cec5SDimitry Andric 18640b57cec5SDimitry Andric OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 18650b57cec5SDimitry Andric } 18660b57cec5SDimitry Andric 1867*5ffd83dbSDimitry Andric Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 18680b57cec5SDimitry Andric 18690b57cec5SDimitry Andric // Note: the RAUW does the appropriate fixup in VMap, so we need to do 18700b57cec5SDimitry Andric // this even if the call returns void. 1871*5ffd83dbSDimitry Andric ICS->replaceAllUsesWith(NewI); 18720b57cec5SDimitry Andric 18730b57cec5SDimitry Andric VH = nullptr; 1874*5ffd83dbSDimitry Andric ICS->eraseFromParent(); 18750b57cec5SDimitry Andric } 18760b57cec5SDimitry Andric } 18770b57cec5SDimitry Andric 18780b57cec5SDimitry Andric // Update the callgraph if requested. 18790b57cec5SDimitry Andric if (IFI.CG) 1880*5ffd83dbSDimitry Andric UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 18810b57cec5SDimitry Andric 18820b57cec5SDimitry Andric // For 'nodebug' functions, the associated DISubprogram is always null. 18830b57cec5SDimitry Andric // Conservatively avoid propagating the callsite debug location to 18840b57cec5SDimitry Andric // instructions inlined from a function whose DISubprogram is not null. 1885*5ffd83dbSDimitry Andric fixupLineNumbers(Caller, FirstNewBlock, &CB, 18860b57cec5SDimitry Andric CalledFunc->getSubprogram() != nullptr); 18870b57cec5SDimitry Andric 18880b57cec5SDimitry Andric // Clone existing noalias metadata if necessary. 1889*5ffd83dbSDimitry Andric CloneAliasScopeMetadata(CB, VMap); 18900b57cec5SDimitry Andric 18910b57cec5SDimitry Andric // Add noalias metadata if necessary. 1892*5ffd83dbSDimitry Andric AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR); 1893*5ffd83dbSDimitry Andric 1894*5ffd83dbSDimitry Andric // Clone return attributes on the callsite into the calls within the inlined 1895*5ffd83dbSDimitry Andric // function which feed into its return value. 1896*5ffd83dbSDimitry Andric AddReturnAttributes(CB, VMap); 18970b57cec5SDimitry Andric 18980b57cec5SDimitry Andric // Propagate llvm.mem.parallel_loop_access if necessary. 1899*5ffd83dbSDimitry Andric PropagateParallelLoopAccessMetadata(CB, VMap); 19000b57cec5SDimitry Andric 19010b57cec5SDimitry Andric // Register any cloned assumptions. 19020b57cec5SDimitry Andric if (IFI.GetAssumptionCache) 19030b57cec5SDimitry Andric for (BasicBlock &NewBlock : 19040b57cec5SDimitry Andric make_range(FirstNewBlock->getIterator(), Caller->end())) 1905*5ffd83dbSDimitry Andric for (Instruction &I : NewBlock) 19060b57cec5SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(&I)) 19070b57cec5SDimitry Andric if (II->getIntrinsicID() == Intrinsic::assume) 1908*5ffd83dbSDimitry Andric IFI.GetAssumptionCache(*Caller).registerAssumption(II); 19090b57cec5SDimitry Andric } 19100b57cec5SDimitry Andric 19110b57cec5SDimitry Andric // If there are any alloca instructions in the block that used to be the entry 19120b57cec5SDimitry Andric // block for the callee, move them to the entry block of the caller. First 19130b57cec5SDimitry Andric // calculate which instruction they should be inserted before. We insert the 19140b57cec5SDimitry Andric // instructions at the end of the current alloca list. 19150b57cec5SDimitry Andric { 19160b57cec5SDimitry Andric BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 19170b57cec5SDimitry Andric for (BasicBlock::iterator I = FirstNewBlock->begin(), 19180b57cec5SDimitry Andric E = FirstNewBlock->end(); I != E; ) { 19190b57cec5SDimitry Andric AllocaInst *AI = dyn_cast<AllocaInst>(I++); 19200b57cec5SDimitry Andric if (!AI) continue; 19210b57cec5SDimitry Andric 19220b57cec5SDimitry Andric // If the alloca is now dead, remove it. This often occurs due to code 19230b57cec5SDimitry Andric // specialization. 19240b57cec5SDimitry Andric if (AI->use_empty()) { 19250b57cec5SDimitry Andric AI->eraseFromParent(); 19260b57cec5SDimitry Andric continue; 19270b57cec5SDimitry Andric } 19280b57cec5SDimitry Andric 19290b57cec5SDimitry Andric if (!allocaWouldBeStaticInEntry(AI)) 19300b57cec5SDimitry Andric continue; 19310b57cec5SDimitry Andric 19320b57cec5SDimitry Andric // Keep track of the static allocas that we inline into the caller. 19330b57cec5SDimitry Andric IFI.StaticAllocas.push_back(AI); 19340b57cec5SDimitry Andric 19350b57cec5SDimitry Andric // Scan for the block of allocas that we can move over, and move them 19360b57cec5SDimitry Andric // all at once. 19370b57cec5SDimitry Andric while (isa<AllocaInst>(I) && 1938480093f4SDimitry Andric !cast<AllocaInst>(I)->use_empty() && 19390b57cec5SDimitry Andric allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 19400b57cec5SDimitry Andric IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 19410b57cec5SDimitry Andric ++I; 19420b57cec5SDimitry Andric } 19430b57cec5SDimitry Andric 19440b57cec5SDimitry Andric // Transfer all of the allocas over in a block. Using splice means 19450b57cec5SDimitry Andric // that the instructions aren't removed from the symbol table, then 19460b57cec5SDimitry Andric // reinserted. 19470b57cec5SDimitry Andric Caller->getEntryBlock().getInstList().splice( 19480b57cec5SDimitry Andric InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 19490b57cec5SDimitry Andric } 19500b57cec5SDimitry Andric } 19510b57cec5SDimitry Andric 19520b57cec5SDimitry Andric SmallVector<Value*,4> VarArgsToForward; 19530b57cec5SDimitry Andric SmallVector<AttributeSet, 4> VarArgsAttrs; 19540b57cec5SDimitry Andric for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1955*5ffd83dbSDimitry Andric i < CB.getNumArgOperands(); i++) { 1956*5ffd83dbSDimitry Andric VarArgsToForward.push_back(CB.getArgOperand(i)); 1957*5ffd83dbSDimitry Andric VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i)); 19580b57cec5SDimitry Andric } 19590b57cec5SDimitry Andric 19600b57cec5SDimitry Andric bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 19610b57cec5SDimitry Andric if (InlinedFunctionInfo.ContainsCalls) { 19620b57cec5SDimitry Andric CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1963*5ffd83dbSDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(&CB)) 19640b57cec5SDimitry Andric CallSiteTailKind = CI->getTailCallKind(); 19650b57cec5SDimitry Andric 19660b57cec5SDimitry Andric // For inlining purposes, the "notail" marker is the same as no marker. 19670b57cec5SDimitry Andric if (CallSiteTailKind == CallInst::TCK_NoTail) 19680b57cec5SDimitry Andric CallSiteTailKind = CallInst::TCK_None; 19690b57cec5SDimitry Andric 19700b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 19710b57cec5SDimitry Andric ++BB) { 19720b57cec5SDimitry Andric for (auto II = BB->begin(); II != BB->end();) { 19730b57cec5SDimitry Andric Instruction &I = *II++; 19740b57cec5SDimitry Andric CallInst *CI = dyn_cast<CallInst>(&I); 19750b57cec5SDimitry Andric if (!CI) 19760b57cec5SDimitry Andric continue; 19770b57cec5SDimitry Andric 19780b57cec5SDimitry Andric // Forward varargs from inlined call site to calls to the 19790b57cec5SDimitry Andric // ForwardVarArgsTo function, if requested, and to musttail calls. 19800b57cec5SDimitry Andric if (!VarArgsToForward.empty() && 19810b57cec5SDimitry Andric ((ForwardVarArgsTo && 19820b57cec5SDimitry Andric CI->getCalledFunction() == ForwardVarArgsTo) || 19830b57cec5SDimitry Andric CI->isMustTailCall())) { 19840b57cec5SDimitry Andric // Collect attributes for non-vararg parameters. 19850b57cec5SDimitry Andric AttributeList Attrs = CI->getAttributes(); 19860b57cec5SDimitry Andric SmallVector<AttributeSet, 8> ArgAttrs; 19870b57cec5SDimitry Andric if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 19880b57cec5SDimitry Andric for (unsigned ArgNo = 0; 19890b57cec5SDimitry Andric ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 19900b57cec5SDimitry Andric ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 19910b57cec5SDimitry Andric } 19920b57cec5SDimitry Andric 19930b57cec5SDimitry Andric // Add VarArg attributes. 19940b57cec5SDimitry Andric ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 19950b57cec5SDimitry Andric Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 19960b57cec5SDimitry Andric Attrs.getRetAttributes(), ArgAttrs); 19970b57cec5SDimitry Andric // Add VarArgs to existing parameters. 19980b57cec5SDimitry Andric SmallVector<Value *, 6> Params(CI->arg_operands()); 19990b57cec5SDimitry Andric Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 20000b57cec5SDimitry Andric CallInst *NewCI = CallInst::Create( 20010b57cec5SDimitry Andric CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 20020b57cec5SDimitry Andric NewCI->setDebugLoc(CI->getDebugLoc()); 20030b57cec5SDimitry Andric NewCI->setAttributes(Attrs); 20040b57cec5SDimitry Andric NewCI->setCallingConv(CI->getCallingConv()); 20050b57cec5SDimitry Andric CI->replaceAllUsesWith(NewCI); 20060b57cec5SDimitry Andric CI->eraseFromParent(); 20070b57cec5SDimitry Andric CI = NewCI; 20080b57cec5SDimitry Andric } 20090b57cec5SDimitry Andric 20100b57cec5SDimitry Andric if (Function *F = CI->getCalledFunction()) 20110b57cec5SDimitry Andric InlinedDeoptimizeCalls |= 20120b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 20130b57cec5SDimitry Andric 20140b57cec5SDimitry Andric // We need to reduce the strength of any inlined tail calls. For 20150b57cec5SDimitry Andric // musttail, we have to avoid introducing potential unbounded stack 20160b57cec5SDimitry Andric // growth. For example, if functions 'f' and 'g' are mutually recursive 20170b57cec5SDimitry Andric // with musttail, we can inline 'g' into 'f' so long as we preserve 20180b57cec5SDimitry Andric // musttail on the cloned call to 'f'. If either the inlined call site 20190b57cec5SDimitry Andric // or the cloned call site is *not* musttail, the program already has 20200b57cec5SDimitry Andric // one frame of stack growth, so it's safe to remove musttail. Here is 20210b57cec5SDimitry Andric // a table of example transformations: 20220b57cec5SDimitry Andric // 20230b57cec5SDimitry Andric // f -> musttail g -> musttail f ==> f -> musttail f 20240b57cec5SDimitry Andric // f -> musttail g -> tail f ==> f -> tail f 20250b57cec5SDimitry Andric // f -> g -> musttail f ==> f -> f 20260b57cec5SDimitry Andric // f -> g -> tail f ==> f -> f 20270b57cec5SDimitry Andric // 20280b57cec5SDimitry Andric // Inlined notail calls should remain notail calls. 20290b57cec5SDimitry Andric CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 20300b57cec5SDimitry Andric if (ChildTCK != CallInst::TCK_NoTail) 20310b57cec5SDimitry Andric ChildTCK = std::min(CallSiteTailKind, ChildTCK); 20320b57cec5SDimitry Andric CI->setTailCallKind(ChildTCK); 20330b57cec5SDimitry Andric InlinedMustTailCalls |= CI->isMustTailCall(); 20340b57cec5SDimitry Andric 20350b57cec5SDimitry Andric // Calls inlined through a 'nounwind' call site should be marked 20360b57cec5SDimitry Andric // 'nounwind'. 20370b57cec5SDimitry Andric if (MarkNoUnwind) 20380b57cec5SDimitry Andric CI->setDoesNotThrow(); 20390b57cec5SDimitry Andric } 20400b57cec5SDimitry Andric } 20410b57cec5SDimitry Andric } 20420b57cec5SDimitry Andric 20430b57cec5SDimitry Andric // Leave lifetime markers for the static alloca's, scoping them to the 20440b57cec5SDimitry Andric // function we just inlined. 20450b57cec5SDimitry Andric if (InsertLifetime && !IFI.StaticAllocas.empty()) { 20460b57cec5SDimitry Andric IRBuilder<> builder(&FirstNewBlock->front()); 20470b57cec5SDimitry Andric for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 20480b57cec5SDimitry Andric AllocaInst *AI = IFI.StaticAllocas[ai]; 20490b57cec5SDimitry Andric // Don't mark swifterror allocas. They can't have bitcast uses. 20500b57cec5SDimitry Andric if (AI->isSwiftError()) 20510b57cec5SDimitry Andric continue; 20520b57cec5SDimitry Andric 20530b57cec5SDimitry Andric // If the alloca is already scoped to something smaller than the whole 20540b57cec5SDimitry Andric // function then there's no need to add redundant, less accurate markers. 20550b57cec5SDimitry Andric if (hasLifetimeMarkers(AI)) 20560b57cec5SDimitry Andric continue; 20570b57cec5SDimitry Andric 20580b57cec5SDimitry Andric // Try to determine the size of the allocation. 20590b57cec5SDimitry Andric ConstantInt *AllocaSize = nullptr; 20600b57cec5SDimitry Andric if (ConstantInt *AIArraySize = 20610b57cec5SDimitry Andric dyn_cast<ConstantInt>(AI->getArraySize())) { 20620b57cec5SDimitry Andric auto &DL = Caller->getParent()->getDataLayout(); 20630b57cec5SDimitry Andric Type *AllocaType = AI->getAllocatedType(); 20640b57cec5SDimitry Andric uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 20650b57cec5SDimitry Andric uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 20660b57cec5SDimitry Andric 20670b57cec5SDimitry Andric // Don't add markers for zero-sized allocas. 20680b57cec5SDimitry Andric if (AllocaArraySize == 0) 20690b57cec5SDimitry Andric continue; 20700b57cec5SDimitry Andric 20710b57cec5SDimitry Andric // Check that array size doesn't saturate uint64_t and doesn't 20720b57cec5SDimitry Andric // overflow when it's multiplied by type size. 20730b57cec5SDimitry Andric if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && 20740b57cec5SDimitry Andric std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 20750b57cec5SDimitry Andric AllocaTypeSize) { 20760b57cec5SDimitry Andric AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 20770b57cec5SDimitry Andric AllocaArraySize * AllocaTypeSize); 20780b57cec5SDimitry Andric } 20790b57cec5SDimitry Andric } 20800b57cec5SDimitry Andric 20810b57cec5SDimitry Andric builder.CreateLifetimeStart(AI, AllocaSize); 20820b57cec5SDimitry Andric for (ReturnInst *RI : Returns) { 20830b57cec5SDimitry Andric // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 20840b57cec5SDimitry Andric // call and a return. The return kills all local allocas. 20850b57cec5SDimitry Andric if (InlinedMustTailCalls && 20860b57cec5SDimitry Andric RI->getParent()->getTerminatingMustTailCall()) 20870b57cec5SDimitry Andric continue; 20880b57cec5SDimitry Andric if (InlinedDeoptimizeCalls && 20890b57cec5SDimitry Andric RI->getParent()->getTerminatingDeoptimizeCall()) 20900b57cec5SDimitry Andric continue; 20910b57cec5SDimitry Andric IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 20920b57cec5SDimitry Andric } 20930b57cec5SDimitry Andric } 20940b57cec5SDimitry Andric } 20950b57cec5SDimitry Andric 20960b57cec5SDimitry Andric // If the inlined code contained dynamic alloca instructions, wrap the inlined 20970b57cec5SDimitry Andric // code with llvm.stacksave/llvm.stackrestore intrinsics. 20980b57cec5SDimitry Andric if (InlinedFunctionInfo.ContainsDynamicAllocas) { 20990b57cec5SDimitry Andric Module *M = Caller->getParent(); 21000b57cec5SDimitry Andric // Get the two intrinsics we care about. 21010b57cec5SDimitry Andric Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 21020b57cec5SDimitry Andric Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 21030b57cec5SDimitry Andric 21040b57cec5SDimitry Andric // Insert the llvm.stacksave. 21050b57cec5SDimitry Andric CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 21060b57cec5SDimitry Andric .CreateCall(StackSave, {}, "savedstack"); 21070b57cec5SDimitry Andric 21080b57cec5SDimitry Andric // Insert a call to llvm.stackrestore before any return instructions in the 21090b57cec5SDimitry Andric // inlined function. 21100b57cec5SDimitry Andric for (ReturnInst *RI : Returns) { 21110b57cec5SDimitry Andric // Don't insert llvm.stackrestore calls between a musttail or deoptimize 21120b57cec5SDimitry Andric // call and a return. The return will restore the stack pointer. 21130b57cec5SDimitry Andric if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 21140b57cec5SDimitry Andric continue; 21150b57cec5SDimitry Andric if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 21160b57cec5SDimitry Andric continue; 21170b57cec5SDimitry Andric IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 21180b57cec5SDimitry Andric } 21190b57cec5SDimitry Andric } 21200b57cec5SDimitry Andric 21210b57cec5SDimitry Andric // If we are inlining for an invoke instruction, we must make sure to rewrite 21220b57cec5SDimitry Andric // any call instructions into invoke instructions. This is sensitive to which 21230b57cec5SDimitry Andric // funclet pads were top-level in the inlinee, so must be done before 21240b57cec5SDimitry Andric // rewriting the "parent pad" links. 2125*5ffd83dbSDimitry Andric if (auto *II = dyn_cast<InvokeInst>(&CB)) { 21260b57cec5SDimitry Andric BasicBlock *UnwindDest = II->getUnwindDest(); 21270b57cec5SDimitry Andric Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 21280b57cec5SDimitry Andric if (isa<LandingPadInst>(FirstNonPHI)) { 21290b57cec5SDimitry Andric HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 21300b57cec5SDimitry Andric } else { 21310b57cec5SDimitry Andric HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 21320b57cec5SDimitry Andric } 21330b57cec5SDimitry Andric } 21340b57cec5SDimitry Andric 21350b57cec5SDimitry Andric // Update the lexical scopes of the new funclets and callsites. 21360b57cec5SDimitry Andric // Anything that had 'none' as its parent is now nested inside the callsite's 21370b57cec5SDimitry Andric // EHPad. 21380b57cec5SDimitry Andric 21390b57cec5SDimitry Andric if (CallSiteEHPad) { 21400b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(), 21410b57cec5SDimitry Andric E = Caller->end(); 21420b57cec5SDimitry Andric BB != E; ++BB) { 21430b57cec5SDimitry Andric // Add bundle operands to any top-level call sites. 21440b57cec5SDimitry Andric SmallVector<OperandBundleDef, 1> OpBundles; 21450b57cec5SDimitry Andric for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2146*5ffd83dbSDimitry Andric CallBase *I = dyn_cast<CallBase>(&*BBI++); 2147*5ffd83dbSDimitry Andric if (!I) 21480b57cec5SDimitry Andric continue; 21490b57cec5SDimitry Andric 21500b57cec5SDimitry Andric // Skip call sites which are nounwind intrinsics. 21510b57cec5SDimitry Andric auto *CalledFn = 2152*5ffd83dbSDimitry Andric dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2153*5ffd83dbSDimitry Andric if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 21540b57cec5SDimitry Andric continue; 21550b57cec5SDimitry Andric 21560b57cec5SDimitry Andric // Skip call sites which already have a "funclet" bundle. 2157*5ffd83dbSDimitry Andric if (I->getOperandBundle(LLVMContext::OB_funclet)) 21580b57cec5SDimitry Andric continue; 21590b57cec5SDimitry Andric 2160*5ffd83dbSDimitry Andric I->getOperandBundlesAsDefs(OpBundles); 21610b57cec5SDimitry Andric OpBundles.emplace_back("funclet", CallSiteEHPad); 21620b57cec5SDimitry Andric 2163*5ffd83dbSDimitry Andric Instruction *NewInst = CallBase::Create(I, OpBundles, I); 21640b57cec5SDimitry Andric NewInst->takeName(I); 21650b57cec5SDimitry Andric I->replaceAllUsesWith(NewInst); 21660b57cec5SDimitry Andric I->eraseFromParent(); 21670b57cec5SDimitry Andric 21680b57cec5SDimitry Andric OpBundles.clear(); 21690b57cec5SDimitry Andric } 21700b57cec5SDimitry Andric 21710b57cec5SDimitry Andric // It is problematic if the inlinee has a cleanupret which unwinds to 21720b57cec5SDimitry Andric // caller and we inline it into a call site which doesn't unwind but into 21730b57cec5SDimitry Andric // an EH pad that does. Such an edge must be dynamically unreachable. 21740b57cec5SDimitry Andric // As such, we replace the cleanupret with unreachable. 21750b57cec5SDimitry Andric if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 21760b57cec5SDimitry Andric if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 21770b57cec5SDimitry Andric changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 21780b57cec5SDimitry Andric 21790b57cec5SDimitry Andric Instruction *I = BB->getFirstNonPHI(); 21800b57cec5SDimitry Andric if (!I->isEHPad()) 21810b57cec5SDimitry Andric continue; 21820b57cec5SDimitry Andric 21830b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 21840b57cec5SDimitry Andric if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 21850b57cec5SDimitry Andric CatchSwitch->setParentPad(CallSiteEHPad); 21860b57cec5SDimitry Andric } else { 21870b57cec5SDimitry Andric auto *FPI = cast<FuncletPadInst>(I); 21880b57cec5SDimitry Andric if (isa<ConstantTokenNone>(FPI->getParentPad())) 21890b57cec5SDimitry Andric FPI->setParentPad(CallSiteEHPad); 21900b57cec5SDimitry Andric } 21910b57cec5SDimitry Andric } 21920b57cec5SDimitry Andric } 21930b57cec5SDimitry Andric 21940b57cec5SDimitry Andric if (InlinedDeoptimizeCalls) { 21950b57cec5SDimitry Andric // We need to at least remove the deoptimizing returns from the Return set, 21960b57cec5SDimitry Andric // so that the control flow from those returns does not get merged into the 21970b57cec5SDimitry Andric // caller (but terminate it instead). If the caller's return type does not 21980b57cec5SDimitry Andric // match the callee's return type, we also need to change the return type of 21990b57cec5SDimitry Andric // the intrinsic. 2200*5ffd83dbSDimitry Andric if (Caller->getReturnType() == CB.getType()) { 22010b57cec5SDimitry Andric auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 22020b57cec5SDimitry Andric return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 22030b57cec5SDimitry Andric }); 22040b57cec5SDimitry Andric Returns.erase(NewEnd, Returns.end()); 22050b57cec5SDimitry Andric } else { 22060b57cec5SDimitry Andric SmallVector<ReturnInst *, 8> NormalReturns; 22070b57cec5SDimitry Andric Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 22080b57cec5SDimitry Andric Caller->getParent(), Intrinsic::experimental_deoptimize, 22090b57cec5SDimitry Andric {Caller->getReturnType()}); 22100b57cec5SDimitry Andric 22110b57cec5SDimitry Andric for (ReturnInst *RI : Returns) { 22120b57cec5SDimitry Andric CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 22130b57cec5SDimitry Andric if (!DeoptCall) { 22140b57cec5SDimitry Andric NormalReturns.push_back(RI); 22150b57cec5SDimitry Andric continue; 22160b57cec5SDimitry Andric } 22170b57cec5SDimitry Andric 22180b57cec5SDimitry Andric // The calling convention on the deoptimize call itself may be bogus, 22190b57cec5SDimitry Andric // since the code we're inlining may have undefined behavior (and may 22200b57cec5SDimitry Andric // never actually execute at runtime); but all 22210b57cec5SDimitry Andric // @llvm.experimental.deoptimize declarations have to have the same 22220b57cec5SDimitry Andric // calling convention in a well-formed module. 22230b57cec5SDimitry Andric auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 22240b57cec5SDimitry Andric NewDeoptIntrinsic->setCallingConv(CallingConv); 22250b57cec5SDimitry Andric auto *CurBB = RI->getParent(); 22260b57cec5SDimitry Andric RI->eraseFromParent(); 22270b57cec5SDimitry Andric 22280b57cec5SDimitry Andric SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 22290b57cec5SDimitry Andric DeoptCall->arg_end()); 22300b57cec5SDimitry Andric 22310b57cec5SDimitry Andric SmallVector<OperandBundleDef, 1> OpBundles; 22320b57cec5SDimitry Andric DeoptCall->getOperandBundlesAsDefs(OpBundles); 22330b57cec5SDimitry Andric DeoptCall->eraseFromParent(); 22340b57cec5SDimitry Andric assert(!OpBundles.empty() && 22350b57cec5SDimitry Andric "Expected at least the deopt operand bundle"); 22360b57cec5SDimitry Andric 22370b57cec5SDimitry Andric IRBuilder<> Builder(CurBB); 22380b57cec5SDimitry Andric CallInst *NewDeoptCall = 22390b57cec5SDimitry Andric Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 22400b57cec5SDimitry Andric NewDeoptCall->setCallingConv(CallingConv); 22410b57cec5SDimitry Andric if (NewDeoptCall->getType()->isVoidTy()) 22420b57cec5SDimitry Andric Builder.CreateRetVoid(); 22430b57cec5SDimitry Andric else 22440b57cec5SDimitry Andric Builder.CreateRet(NewDeoptCall); 22450b57cec5SDimitry Andric } 22460b57cec5SDimitry Andric 22470b57cec5SDimitry Andric // Leave behind the normal returns so we can merge control flow. 22480b57cec5SDimitry Andric std::swap(Returns, NormalReturns); 22490b57cec5SDimitry Andric } 22500b57cec5SDimitry Andric } 22510b57cec5SDimitry Andric 22520b57cec5SDimitry Andric // Handle any inlined musttail call sites. In order for a new call site to be 22530b57cec5SDimitry Andric // musttail, the source of the clone and the inlined call site must have been 22540b57cec5SDimitry Andric // musttail. Therefore it's safe to return without merging control into the 22550b57cec5SDimitry Andric // phi below. 22560b57cec5SDimitry Andric if (InlinedMustTailCalls) { 22570b57cec5SDimitry Andric // Check if we need to bitcast the result of any musttail calls. 22580b57cec5SDimitry Andric Type *NewRetTy = Caller->getReturnType(); 2259*5ffd83dbSDimitry Andric bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 22600b57cec5SDimitry Andric 22610b57cec5SDimitry Andric // Handle the returns preceded by musttail calls separately. 22620b57cec5SDimitry Andric SmallVector<ReturnInst *, 8> NormalReturns; 22630b57cec5SDimitry Andric for (ReturnInst *RI : Returns) { 22640b57cec5SDimitry Andric CallInst *ReturnedMustTail = 22650b57cec5SDimitry Andric RI->getParent()->getTerminatingMustTailCall(); 22660b57cec5SDimitry Andric if (!ReturnedMustTail) { 22670b57cec5SDimitry Andric NormalReturns.push_back(RI); 22680b57cec5SDimitry Andric continue; 22690b57cec5SDimitry Andric } 22700b57cec5SDimitry Andric if (!NeedBitCast) 22710b57cec5SDimitry Andric continue; 22720b57cec5SDimitry Andric 22730b57cec5SDimitry Andric // Delete the old return and any preceding bitcast. 22740b57cec5SDimitry Andric BasicBlock *CurBB = RI->getParent(); 22750b57cec5SDimitry Andric auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 22760b57cec5SDimitry Andric RI->eraseFromParent(); 22770b57cec5SDimitry Andric if (OldCast) 22780b57cec5SDimitry Andric OldCast->eraseFromParent(); 22790b57cec5SDimitry Andric 22800b57cec5SDimitry Andric // Insert a new bitcast and return with the right type. 22810b57cec5SDimitry Andric IRBuilder<> Builder(CurBB); 22820b57cec5SDimitry Andric Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 22830b57cec5SDimitry Andric } 22840b57cec5SDimitry Andric 22850b57cec5SDimitry Andric // Leave behind the normal returns so we can merge control flow. 22860b57cec5SDimitry Andric std::swap(Returns, NormalReturns); 22870b57cec5SDimitry Andric } 22880b57cec5SDimitry Andric 22890b57cec5SDimitry Andric // Now that all of the transforms on the inlined code have taken place but 22900b57cec5SDimitry Andric // before we splice the inlined code into the CFG and lose track of which 22910b57cec5SDimitry Andric // blocks were actually inlined, collect the call sites. We only do this if 22920b57cec5SDimitry Andric // call graph updates weren't requested, as those provide value handle based 22930b57cec5SDimitry Andric // tracking of inlined call sites instead. 22940b57cec5SDimitry Andric if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 22950b57cec5SDimitry Andric // Otherwise just collect the raw call sites that were inlined. 22960b57cec5SDimitry Andric for (BasicBlock &NewBB : 22970b57cec5SDimitry Andric make_range(FirstNewBlock->getIterator(), Caller->end())) 22980b57cec5SDimitry Andric for (Instruction &I : NewBB) 2299*5ffd83dbSDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I)) 2300*5ffd83dbSDimitry Andric IFI.InlinedCallSites.push_back(CB); 23010b57cec5SDimitry Andric } 23020b57cec5SDimitry Andric 23030b57cec5SDimitry Andric // If we cloned in _exactly one_ basic block, and if that block ends in a 23040b57cec5SDimitry Andric // return instruction, we splice the body of the inlined callee directly into 23050b57cec5SDimitry Andric // the calling basic block. 23060b57cec5SDimitry Andric if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 23070b57cec5SDimitry Andric // Move all of the instructions right before the call. 2308*5ffd83dbSDimitry Andric OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 23090b57cec5SDimitry Andric FirstNewBlock->begin(), FirstNewBlock->end()); 23100b57cec5SDimitry Andric // Remove the cloned basic block. 23110b57cec5SDimitry Andric Caller->getBasicBlockList().pop_back(); 23120b57cec5SDimitry Andric 23130b57cec5SDimitry Andric // If the call site was an invoke instruction, add a branch to the normal 23140b57cec5SDimitry Andric // destination. 2315*5ffd83dbSDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2316*5ffd83dbSDimitry Andric BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 23170b57cec5SDimitry Andric NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 23180b57cec5SDimitry Andric } 23190b57cec5SDimitry Andric 23200b57cec5SDimitry Andric // If the return instruction returned a value, replace uses of the call with 23210b57cec5SDimitry Andric // uses of the returned value. 2322*5ffd83dbSDimitry Andric if (!CB.use_empty()) { 23230b57cec5SDimitry Andric ReturnInst *R = Returns[0]; 2324*5ffd83dbSDimitry Andric if (&CB == R->getReturnValue()) 2325*5ffd83dbSDimitry Andric CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 23260b57cec5SDimitry Andric else 2327*5ffd83dbSDimitry Andric CB.replaceAllUsesWith(R->getReturnValue()); 23280b57cec5SDimitry Andric } 23290b57cec5SDimitry Andric // Since we are now done with the Call/Invoke, we can delete it. 2330*5ffd83dbSDimitry Andric CB.eraseFromParent(); 23310b57cec5SDimitry Andric 23320b57cec5SDimitry Andric // Since we are now done with the return instruction, delete it also. 23330b57cec5SDimitry Andric Returns[0]->eraseFromParent(); 23340b57cec5SDimitry Andric 23350b57cec5SDimitry Andric // We are now done with the inlining. 2336*5ffd83dbSDimitry Andric return InlineResult::success(); 23370b57cec5SDimitry Andric } 23380b57cec5SDimitry Andric 23390b57cec5SDimitry Andric // Otherwise, we have the normal case, of more than one block to inline or 23400b57cec5SDimitry Andric // multiple return sites. 23410b57cec5SDimitry Andric 23420b57cec5SDimitry Andric // We want to clone the entire callee function into the hole between the 23430b57cec5SDimitry Andric // "starter" and "ender" blocks. How we accomplish this depends on whether 23440b57cec5SDimitry Andric // this is an invoke instruction or a call instruction. 23450b57cec5SDimitry Andric BasicBlock *AfterCallBB; 23460b57cec5SDimitry Andric BranchInst *CreatedBranchToNormalDest = nullptr; 2347*5ffd83dbSDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 23480b57cec5SDimitry Andric 23490b57cec5SDimitry Andric // Add an unconditional branch to make this look like the CallInst case... 2350*5ffd83dbSDimitry Andric CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 23510b57cec5SDimitry Andric 23520b57cec5SDimitry Andric // Split the basic block. This guarantees that no PHI nodes will have to be 23530b57cec5SDimitry Andric // updated due to new incoming edges, and make the invoke case more 23540b57cec5SDimitry Andric // symmetric to the call case. 23550b57cec5SDimitry Andric AfterCallBB = 23560b57cec5SDimitry Andric OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 23570b57cec5SDimitry Andric CalledFunc->getName() + ".exit"); 23580b57cec5SDimitry Andric 23590b57cec5SDimitry Andric } else { // It's a call 23600b57cec5SDimitry Andric // If this is a call instruction, we need to split the basic block that 23610b57cec5SDimitry Andric // the call lives in. 23620b57cec5SDimitry Andric // 2363*5ffd83dbSDimitry Andric AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 23640b57cec5SDimitry Andric CalledFunc->getName() + ".exit"); 23650b57cec5SDimitry Andric } 23660b57cec5SDimitry Andric 23670b57cec5SDimitry Andric if (IFI.CallerBFI) { 23680b57cec5SDimitry Andric // Copy original BB's block frequency to AfterCallBB 23690b57cec5SDimitry Andric IFI.CallerBFI->setBlockFreq( 23700b57cec5SDimitry Andric AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 23710b57cec5SDimitry Andric } 23720b57cec5SDimitry Andric 23730b57cec5SDimitry Andric // Change the branch that used to go to AfterCallBB to branch to the first 23740b57cec5SDimitry Andric // basic block of the inlined function. 23750b57cec5SDimitry Andric // 23760b57cec5SDimitry Andric Instruction *Br = OrigBB->getTerminator(); 23770b57cec5SDimitry Andric assert(Br && Br->getOpcode() == Instruction::Br && 23780b57cec5SDimitry Andric "splitBasicBlock broken!"); 23790b57cec5SDimitry Andric Br->setOperand(0, &*FirstNewBlock); 23800b57cec5SDimitry Andric 23810b57cec5SDimitry Andric // Now that the function is correct, make it a little bit nicer. In 23820b57cec5SDimitry Andric // particular, move the basic blocks inserted from the end of the function 23830b57cec5SDimitry Andric // into the space made by splitting the source basic block. 23840b57cec5SDimitry Andric Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 23850b57cec5SDimitry Andric Caller->getBasicBlockList(), FirstNewBlock, 23860b57cec5SDimitry Andric Caller->end()); 23870b57cec5SDimitry Andric 23880b57cec5SDimitry Andric // Handle all of the return instructions that we just cloned in, and eliminate 23890b57cec5SDimitry Andric // any users of the original call/invoke instruction. 23900b57cec5SDimitry Andric Type *RTy = CalledFunc->getReturnType(); 23910b57cec5SDimitry Andric 23920b57cec5SDimitry Andric PHINode *PHI = nullptr; 23930b57cec5SDimitry Andric if (Returns.size() > 1) { 23940b57cec5SDimitry Andric // The PHI node should go at the front of the new basic block to merge all 23950b57cec5SDimitry Andric // possible incoming values. 2396*5ffd83dbSDimitry Andric if (!CB.use_empty()) { 2397*5ffd83dbSDimitry Andric PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 23980b57cec5SDimitry Andric &AfterCallBB->front()); 23990b57cec5SDimitry Andric // Anything that used the result of the function call should now use the 24000b57cec5SDimitry Andric // PHI node as their operand. 2401*5ffd83dbSDimitry Andric CB.replaceAllUsesWith(PHI); 24020b57cec5SDimitry Andric } 24030b57cec5SDimitry Andric 24040b57cec5SDimitry Andric // Loop over all of the return instructions adding entries to the PHI node 24050b57cec5SDimitry Andric // as appropriate. 24060b57cec5SDimitry Andric if (PHI) { 24070b57cec5SDimitry Andric for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 24080b57cec5SDimitry Andric ReturnInst *RI = Returns[i]; 24090b57cec5SDimitry Andric assert(RI->getReturnValue()->getType() == PHI->getType() && 24100b57cec5SDimitry Andric "Ret value not consistent in function!"); 24110b57cec5SDimitry Andric PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 24120b57cec5SDimitry Andric } 24130b57cec5SDimitry Andric } 24140b57cec5SDimitry Andric 24150b57cec5SDimitry Andric // Add a branch to the merge points and remove return instructions. 24160b57cec5SDimitry Andric DebugLoc Loc; 24170b57cec5SDimitry Andric for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 24180b57cec5SDimitry Andric ReturnInst *RI = Returns[i]; 24190b57cec5SDimitry Andric BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 24200b57cec5SDimitry Andric Loc = RI->getDebugLoc(); 24210b57cec5SDimitry Andric BI->setDebugLoc(Loc); 24220b57cec5SDimitry Andric RI->eraseFromParent(); 24230b57cec5SDimitry Andric } 24240b57cec5SDimitry Andric // We need to set the debug location to *somewhere* inside the 24250b57cec5SDimitry Andric // inlined function. The line number may be nonsensical, but the 24260b57cec5SDimitry Andric // instruction will at least be associated with the right 24270b57cec5SDimitry Andric // function. 24280b57cec5SDimitry Andric if (CreatedBranchToNormalDest) 24290b57cec5SDimitry Andric CreatedBranchToNormalDest->setDebugLoc(Loc); 24300b57cec5SDimitry Andric } else if (!Returns.empty()) { 24310b57cec5SDimitry Andric // Otherwise, if there is exactly one return value, just replace anything 24320b57cec5SDimitry Andric // using the return value of the call with the computed value. 2433*5ffd83dbSDimitry Andric if (!CB.use_empty()) { 2434*5ffd83dbSDimitry Andric if (&CB == Returns[0]->getReturnValue()) 2435*5ffd83dbSDimitry Andric CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 24360b57cec5SDimitry Andric else 2437*5ffd83dbSDimitry Andric CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 24380b57cec5SDimitry Andric } 24390b57cec5SDimitry Andric 24400b57cec5SDimitry Andric // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 24410b57cec5SDimitry Andric BasicBlock *ReturnBB = Returns[0]->getParent(); 24420b57cec5SDimitry Andric ReturnBB->replaceAllUsesWith(AfterCallBB); 24430b57cec5SDimitry Andric 24440b57cec5SDimitry Andric // Splice the code from the return block into the block that it will return 24450b57cec5SDimitry Andric // to, which contains the code that was after the call. 24460b57cec5SDimitry Andric AfterCallBB->getInstList().splice(AfterCallBB->begin(), 24470b57cec5SDimitry Andric ReturnBB->getInstList()); 24480b57cec5SDimitry Andric 24490b57cec5SDimitry Andric if (CreatedBranchToNormalDest) 24500b57cec5SDimitry Andric CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 24510b57cec5SDimitry Andric 24520b57cec5SDimitry Andric // Delete the return instruction now and empty ReturnBB now. 24530b57cec5SDimitry Andric Returns[0]->eraseFromParent(); 24540b57cec5SDimitry Andric ReturnBB->eraseFromParent(); 2455*5ffd83dbSDimitry Andric } else if (!CB.use_empty()) { 24560b57cec5SDimitry Andric // No returns, but something is using the return value of the call. Just 24570b57cec5SDimitry Andric // nuke the result. 2458*5ffd83dbSDimitry Andric CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 24590b57cec5SDimitry Andric } 24600b57cec5SDimitry Andric 24610b57cec5SDimitry Andric // Since we are now done with the Call/Invoke, we can delete it. 2462*5ffd83dbSDimitry Andric CB.eraseFromParent(); 24630b57cec5SDimitry Andric 24640b57cec5SDimitry Andric // If we inlined any musttail calls and the original return is now 24650b57cec5SDimitry Andric // unreachable, delete it. It can only contain a bitcast and ret. 24660b57cec5SDimitry Andric if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 24670b57cec5SDimitry Andric AfterCallBB->eraseFromParent(); 24680b57cec5SDimitry Andric 24690b57cec5SDimitry Andric // We should always be able to fold the entry block of the function into the 24700b57cec5SDimitry Andric // single predecessor of the block... 24710b57cec5SDimitry Andric assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 24720b57cec5SDimitry Andric BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 24730b57cec5SDimitry Andric 24740b57cec5SDimitry Andric // Splice the code entry block into calling block, right before the 24750b57cec5SDimitry Andric // unconditional branch. 24760b57cec5SDimitry Andric CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 24770b57cec5SDimitry Andric OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 24780b57cec5SDimitry Andric 24790b57cec5SDimitry Andric // Remove the unconditional branch. 24800b57cec5SDimitry Andric OrigBB->getInstList().erase(Br); 24810b57cec5SDimitry Andric 24820b57cec5SDimitry Andric // Now we can remove the CalleeEntry block, which is now empty. 24830b57cec5SDimitry Andric Caller->getBasicBlockList().erase(CalleeEntry); 24840b57cec5SDimitry Andric 24850b57cec5SDimitry Andric // If we inserted a phi node, check to see if it has a single value (e.g. all 24860b57cec5SDimitry Andric // the entries are the same or undef). If so, remove the PHI so it doesn't 24870b57cec5SDimitry Andric // block other optimizations. 24880b57cec5SDimitry Andric if (PHI) { 24890b57cec5SDimitry Andric AssumptionCache *AC = 2490*5ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 24910b57cec5SDimitry Andric auto &DL = Caller->getParent()->getDataLayout(); 24920b57cec5SDimitry Andric if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 24930b57cec5SDimitry Andric PHI->replaceAllUsesWith(V); 24940b57cec5SDimitry Andric PHI->eraseFromParent(); 24950b57cec5SDimitry Andric } 24960b57cec5SDimitry Andric } 24970b57cec5SDimitry Andric 2498*5ffd83dbSDimitry Andric return InlineResult::success(); 24990b57cec5SDimitry Andric } 2500