xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp (revision 5ffd83dbcc34f10e07f6d3e968ae6365869615f4)
10b57cec5SDimitry Andric //===- InlineFunction.cpp - Code to perform function inlining -------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements inlining of a function into a call site, resolving
100b57cec5SDimitry Andric // parameters and the return value as appropriate.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric 
140b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
150b57cec5SDimitry Andric #include "llvm/ADT/None.h"
160b57cec5SDimitry Andric #include "llvm/ADT/Optional.h"
170b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
180b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h"
190b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
200b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
210b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h"
220b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h"
230b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
240b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
250b57cec5SDimitry Andric #include "llvm/Analysis/BlockFrequencyInfo.h"
260b57cec5SDimitry Andric #include "llvm/Analysis/CallGraph.h"
270b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h"
280b57cec5SDimitry Andric #include "llvm/Analysis/EHPersonalities.h"
290b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
300b57cec5SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h"
310b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
320b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
330b57cec5SDimitry Andric #include "llvm/Analysis/VectorUtils.h"
340b57cec5SDimitry Andric #include "llvm/IR/Argument.h"
350b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
360b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
370b57cec5SDimitry Andric #include "llvm/IR/Constant.h"
380b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
390b57cec5SDimitry Andric #include "llvm/IR/DIBuilder.h"
400b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
410b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h"
420b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
430b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
440b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
450b57cec5SDimitry Andric #include "llvm/IR/Function.h"
460b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
470b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
480b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
490b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
500b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
510b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
520b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
530b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h"
540b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
550b57cec5SDimitry Andric #include "llvm/IR/Module.h"
560b57cec5SDimitry Andric #include "llvm/IR/Type.h"
570b57cec5SDimitry Andric #include "llvm/IR/User.h"
580b57cec5SDimitry Andric #include "llvm/IR/Value.h"
590b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
600b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
610b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
62*5ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
630b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Cloning.h"
640b57cec5SDimitry Andric #include "llvm/Transforms/Utils/ValueMapper.h"
650b57cec5SDimitry Andric #include <algorithm>
660b57cec5SDimitry Andric #include <cassert>
670b57cec5SDimitry Andric #include <cstdint>
680b57cec5SDimitry Andric #include <iterator>
690b57cec5SDimitry Andric #include <limits>
700b57cec5SDimitry Andric #include <string>
710b57cec5SDimitry Andric #include <utility>
720b57cec5SDimitry Andric #include <vector>
730b57cec5SDimitry Andric 
740b57cec5SDimitry Andric using namespace llvm;
750b57cec5SDimitry Andric using ProfileCount = Function::ProfileCount;
760b57cec5SDimitry Andric 
770b57cec5SDimitry Andric static cl::opt<bool>
780b57cec5SDimitry Andric EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
790b57cec5SDimitry Andric   cl::Hidden,
800b57cec5SDimitry Andric   cl::desc("Convert noalias attributes to metadata during inlining."));
810b57cec5SDimitry Andric 
82*5ffd83dbSDimitry Andric // Disabled by default, because the added alignment assumptions may increase
83*5ffd83dbSDimitry Andric // compile-time and block optimizations. This option is not suitable for use
84*5ffd83dbSDimitry Andric // with frontends that emit comprehensive parameter alignment annotations.
850b57cec5SDimitry Andric static cl::opt<bool>
860b57cec5SDimitry Andric PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
87*5ffd83dbSDimitry Andric   cl::init(false), cl::Hidden,
880b57cec5SDimitry Andric   cl::desc("Convert align attributes to assumptions during inlining."));
890b57cec5SDimitry Andric 
90*5ffd83dbSDimitry Andric static cl::opt<bool> UpdateReturnAttributes(
91*5ffd83dbSDimitry Andric         "update-return-attrs", cl::init(true), cl::Hidden,
92*5ffd83dbSDimitry Andric             cl::desc("Update return attributes on calls within inlined body"));
93*5ffd83dbSDimitry Andric 
94*5ffd83dbSDimitry Andric static cl::opt<unsigned> InlinerAttributeWindow(
95*5ffd83dbSDimitry Andric     "max-inst-checked-for-throw-during-inlining", cl::Hidden,
96*5ffd83dbSDimitry Andric     cl::desc("the maximum number of instructions analyzed for may throw during "
97*5ffd83dbSDimitry Andric              "attribute inference in inlined body"),
98*5ffd83dbSDimitry Andric     cl::init(4));
990b57cec5SDimitry Andric 
1000b57cec5SDimitry Andric namespace {
1010b57cec5SDimitry Andric 
1020b57cec5SDimitry Andric   /// A class for recording information about inlining a landing pad.
1030b57cec5SDimitry Andric   class LandingPadInliningInfo {
1040b57cec5SDimitry Andric     /// Destination of the invoke's unwind.
1050b57cec5SDimitry Andric     BasicBlock *OuterResumeDest;
1060b57cec5SDimitry Andric 
1070b57cec5SDimitry Andric     /// Destination for the callee's resume.
1080b57cec5SDimitry Andric     BasicBlock *InnerResumeDest = nullptr;
1090b57cec5SDimitry Andric 
1100b57cec5SDimitry Andric     /// LandingPadInst associated with the invoke.
1110b57cec5SDimitry Andric     LandingPadInst *CallerLPad = nullptr;
1120b57cec5SDimitry Andric 
1130b57cec5SDimitry Andric     /// PHI for EH values from landingpad insts.
1140b57cec5SDimitry Andric     PHINode *InnerEHValuesPHI = nullptr;
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric     SmallVector<Value*, 8> UnwindDestPHIValues;
1170b57cec5SDimitry Andric 
1180b57cec5SDimitry Andric   public:
1190b57cec5SDimitry Andric     LandingPadInliningInfo(InvokeInst *II)
1200b57cec5SDimitry Andric         : OuterResumeDest(II->getUnwindDest()) {
1210b57cec5SDimitry Andric       // If there are PHI nodes in the unwind destination block, we need to keep
1220b57cec5SDimitry Andric       // track of which values came into them from the invoke before removing
1230b57cec5SDimitry Andric       // the edge from this block.
1240b57cec5SDimitry Andric       BasicBlock *InvokeBB = II->getParent();
1250b57cec5SDimitry Andric       BasicBlock::iterator I = OuterResumeDest->begin();
1260b57cec5SDimitry Andric       for (; isa<PHINode>(I); ++I) {
1270b57cec5SDimitry Andric         // Save the value to use for this edge.
1280b57cec5SDimitry Andric         PHINode *PHI = cast<PHINode>(I);
1290b57cec5SDimitry Andric         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
1300b57cec5SDimitry Andric       }
1310b57cec5SDimitry Andric 
1320b57cec5SDimitry Andric       CallerLPad = cast<LandingPadInst>(I);
1330b57cec5SDimitry Andric     }
1340b57cec5SDimitry Andric 
1350b57cec5SDimitry Andric     /// The outer unwind destination is the target of
1360b57cec5SDimitry Andric     /// unwind edges introduced for calls within the inlined function.
1370b57cec5SDimitry Andric     BasicBlock *getOuterResumeDest() const {
1380b57cec5SDimitry Andric       return OuterResumeDest;
1390b57cec5SDimitry Andric     }
1400b57cec5SDimitry Andric 
1410b57cec5SDimitry Andric     BasicBlock *getInnerResumeDest();
1420b57cec5SDimitry Andric 
1430b57cec5SDimitry Andric     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
1440b57cec5SDimitry Andric 
1450b57cec5SDimitry Andric     /// Forward the 'resume' instruction to the caller's landing pad block.
1460b57cec5SDimitry Andric     /// When the landing pad block has only one predecessor, this is
1470b57cec5SDimitry Andric     /// a simple branch. When there is more than one predecessor, we need to
1480b57cec5SDimitry Andric     /// split the landing pad block after the landingpad instruction and jump
1490b57cec5SDimitry Andric     /// to there.
1500b57cec5SDimitry Andric     void forwardResume(ResumeInst *RI,
1510b57cec5SDimitry Andric                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
1520b57cec5SDimitry Andric 
1530b57cec5SDimitry Andric     /// Add incoming-PHI values to the unwind destination block for the given
1540b57cec5SDimitry Andric     /// basic block, using the values for the original invoke's source block.
1550b57cec5SDimitry Andric     void addIncomingPHIValuesFor(BasicBlock *BB) const {
1560b57cec5SDimitry Andric       addIncomingPHIValuesForInto(BB, OuterResumeDest);
1570b57cec5SDimitry Andric     }
1580b57cec5SDimitry Andric 
1590b57cec5SDimitry Andric     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
1600b57cec5SDimitry Andric       BasicBlock::iterator I = dest->begin();
1610b57cec5SDimitry Andric       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
1620b57cec5SDimitry Andric         PHINode *phi = cast<PHINode>(I);
1630b57cec5SDimitry Andric         phi->addIncoming(UnwindDestPHIValues[i], src);
1640b57cec5SDimitry Andric       }
1650b57cec5SDimitry Andric     }
1660b57cec5SDimitry Andric   };
1670b57cec5SDimitry Andric 
1680b57cec5SDimitry Andric } // end anonymous namespace
1690b57cec5SDimitry Andric 
1700b57cec5SDimitry Andric /// Get or create a target for the branch from ResumeInsts.
1710b57cec5SDimitry Andric BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
1720b57cec5SDimitry Andric   if (InnerResumeDest) return InnerResumeDest;
1730b57cec5SDimitry Andric 
1740b57cec5SDimitry Andric   // Split the landing pad.
1750b57cec5SDimitry Andric   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
1760b57cec5SDimitry Andric   InnerResumeDest =
1770b57cec5SDimitry Andric     OuterResumeDest->splitBasicBlock(SplitPoint,
1780b57cec5SDimitry Andric                                      OuterResumeDest->getName() + ".body");
1790b57cec5SDimitry Andric 
1800b57cec5SDimitry Andric   // The number of incoming edges we expect to the inner landing pad.
1810b57cec5SDimitry Andric   const unsigned PHICapacity = 2;
1820b57cec5SDimitry Andric 
1830b57cec5SDimitry Andric   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
1840b57cec5SDimitry Andric   Instruction *InsertPoint = &InnerResumeDest->front();
1850b57cec5SDimitry Andric   BasicBlock::iterator I = OuterResumeDest->begin();
1860b57cec5SDimitry Andric   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
1870b57cec5SDimitry Andric     PHINode *OuterPHI = cast<PHINode>(I);
1880b57cec5SDimitry Andric     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
1890b57cec5SDimitry Andric                                         OuterPHI->getName() + ".lpad-body",
1900b57cec5SDimitry Andric                                         InsertPoint);
1910b57cec5SDimitry Andric     OuterPHI->replaceAllUsesWith(InnerPHI);
1920b57cec5SDimitry Andric     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
1930b57cec5SDimitry Andric   }
1940b57cec5SDimitry Andric 
1950b57cec5SDimitry Andric   // Create a PHI for the exception values.
1960b57cec5SDimitry Andric   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
1970b57cec5SDimitry Andric                                      "eh.lpad-body", InsertPoint);
1980b57cec5SDimitry Andric   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
1990b57cec5SDimitry Andric   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
2000b57cec5SDimitry Andric 
2010b57cec5SDimitry Andric   // All done.
2020b57cec5SDimitry Andric   return InnerResumeDest;
2030b57cec5SDimitry Andric }
2040b57cec5SDimitry Andric 
2050b57cec5SDimitry Andric /// Forward the 'resume' instruction to the caller's landing pad block.
2060b57cec5SDimitry Andric /// When the landing pad block has only one predecessor, this is a simple
2070b57cec5SDimitry Andric /// branch. When there is more than one predecessor, we need to split the
2080b57cec5SDimitry Andric /// landing pad block after the landingpad instruction and jump to there.
2090b57cec5SDimitry Andric void LandingPadInliningInfo::forwardResume(
2100b57cec5SDimitry Andric     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
2110b57cec5SDimitry Andric   BasicBlock *Dest = getInnerResumeDest();
2120b57cec5SDimitry Andric   BasicBlock *Src = RI->getParent();
2130b57cec5SDimitry Andric 
2140b57cec5SDimitry Andric   BranchInst::Create(Dest, Src);
2150b57cec5SDimitry Andric 
2160b57cec5SDimitry Andric   // Update the PHIs in the destination. They were inserted in an order which
2170b57cec5SDimitry Andric   // makes this work.
2180b57cec5SDimitry Andric   addIncomingPHIValuesForInto(Src, Dest);
2190b57cec5SDimitry Andric 
2200b57cec5SDimitry Andric   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
2210b57cec5SDimitry Andric   RI->eraseFromParent();
2220b57cec5SDimitry Andric }
2230b57cec5SDimitry Andric 
2240b57cec5SDimitry Andric /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
2250b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) {
2260b57cec5SDimitry Andric   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
2270b57cec5SDimitry Andric     return FPI->getParentPad();
2280b57cec5SDimitry Andric   return cast<CatchSwitchInst>(EHPad)->getParentPad();
2290b57cec5SDimitry Andric }
2300b57cec5SDimitry Andric 
2310b57cec5SDimitry Andric using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
2320b57cec5SDimitry Andric 
2330b57cec5SDimitry Andric /// Helper for getUnwindDestToken that does the descendant-ward part of
2340b57cec5SDimitry Andric /// the search.
2350b57cec5SDimitry Andric static Value *getUnwindDestTokenHelper(Instruction *EHPad,
2360b57cec5SDimitry Andric                                        UnwindDestMemoTy &MemoMap) {
2370b57cec5SDimitry Andric   SmallVector<Instruction *, 8> Worklist(1, EHPad);
2380b57cec5SDimitry Andric 
2390b57cec5SDimitry Andric   while (!Worklist.empty()) {
2400b57cec5SDimitry Andric     Instruction *CurrentPad = Worklist.pop_back_val();
2410b57cec5SDimitry Andric     // We only put pads on the worklist that aren't in the MemoMap.  When
2420b57cec5SDimitry Andric     // we find an unwind dest for a pad we may update its ancestors, but
2430b57cec5SDimitry Andric     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
2440b57cec5SDimitry Andric     // so they should never get updated while queued on the worklist.
2450b57cec5SDimitry Andric     assert(!MemoMap.count(CurrentPad));
2460b57cec5SDimitry Andric     Value *UnwindDestToken = nullptr;
2470b57cec5SDimitry Andric     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
2480b57cec5SDimitry Andric       if (CatchSwitch->hasUnwindDest()) {
2490b57cec5SDimitry Andric         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
2500b57cec5SDimitry Andric       } else {
2510b57cec5SDimitry Andric         // Catchswitch doesn't have a 'nounwind' variant, and one might be
2520b57cec5SDimitry Andric         // annotated as "unwinds to caller" when really it's nounwind (see
2530b57cec5SDimitry Andric         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
2540b57cec5SDimitry Andric         // parent's unwind dest from this.  We can check its catchpads'
2550b57cec5SDimitry Andric         // descendants, since they might include a cleanuppad with an
2560b57cec5SDimitry Andric         // "unwinds to caller" cleanupret, which can be trusted.
2570b57cec5SDimitry Andric         for (auto HI = CatchSwitch->handler_begin(),
2580b57cec5SDimitry Andric                   HE = CatchSwitch->handler_end();
2590b57cec5SDimitry Andric              HI != HE && !UnwindDestToken; ++HI) {
2600b57cec5SDimitry Andric           BasicBlock *HandlerBlock = *HI;
2610b57cec5SDimitry Andric           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
2620b57cec5SDimitry Andric           for (User *Child : CatchPad->users()) {
2630b57cec5SDimitry Andric             // Intentionally ignore invokes here -- since the catchswitch is
2640b57cec5SDimitry Andric             // marked "unwind to caller", it would be a verifier error if it
2650b57cec5SDimitry Andric             // contained an invoke which unwinds out of it, so any invoke we'd
2660b57cec5SDimitry Andric             // encounter must unwind to some child of the catch.
2670b57cec5SDimitry Andric             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
2680b57cec5SDimitry Andric               continue;
2690b57cec5SDimitry Andric 
2700b57cec5SDimitry Andric             Instruction *ChildPad = cast<Instruction>(Child);
2710b57cec5SDimitry Andric             auto Memo = MemoMap.find(ChildPad);
2720b57cec5SDimitry Andric             if (Memo == MemoMap.end()) {
2730b57cec5SDimitry Andric               // Haven't figured out this child pad yet; queue it.
2740b57cec5SDimitry Andric               Worklist.push_back(ChildPad);
2750b57cec5SDimitry Andric               continue;
2760b57cec5SDimitry Andric             }
2770b57cec5SDimitry Andric             // We've already checked this child, but might have found that
2780b57cec5SDimitry Andric             // it offers no proof either way.
2790b57cec5SDimitry Andric             Value *ChildUnwindDestToken = Memo->second;
2800b57cec5SDimitry Andric             if (!ChildUnwindDestToken)
2810b57cec5SDimitry Andric               continue;
2820b57cec5SDimitry Andric             // We already know the child's unwind dest, which can either
2830b57cec5SDimitry Andric             // be ConstantTokenNone to indicate unwind to caller, or can
2840b57cec5SDimitry Andric             // be another child of the catchpad.  Only the former indicates
2850b57cec5SDimitry Andric             // the unwind dest of the catchswitch.
2860b57cec5SDimitry Andric             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
2870b57cec5SDimitry Andric               UnwindDestToken = ChildUnwindDestToken;
2880b57cec5SDimitry Andric               break;
2890b57cec5SDimitry Andric             }
2900b57cec5SDimitry Andric             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
2910b57cec5SDimitry Andric           }
2920b57cec5SDimitry Andric         }
2930b57cec5SDimitry Andric       }
2940b57cec5SDimitry Andric     } else {
2950b57cec5SDimitry Andric       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
2960b57cec5SDimitry Andric       for (User *U : CleanupPad->users()) {
2970b57cec5SDimitry Andric         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
2980b57cec5SDimitry Andric           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
2990b57cec5SDimitry Andric             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
3000b57cec5SDimitry Andric           else
3010b57cec5SDimitry Andric             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
3020b57cec5SDimitry Andric           break;
3030b57cec5SDimitry Andric         }
3040b57cec5SDimitry Andric         Value *ChildUnwindDestToken;
3050b57cec5SDimitry Andric         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
3060b57cec5SDimitry Andric           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
3070b57cec5SDimitry Andric         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
3080b57cec5SDimitry Andric           Instruction *ChildPad = cast<Instruction>(U);
3090b57cec5SDimitry Andric           auto Memo = MemoMap.find(ChildPad);
3100b57cec5SDimitry Andric           if (Memo == MemoMap.end()) {
3110b57cec5SDimitry Andric             // Haven't resolved this child yet; queue it and keep searching.
3120b57cec5SDimitry Andric             Worklist.push_back(ChildPad);
3130b57cec5SDimitry Andric             continue;
3140b57cec5SDimitry Andric           }
3150b57cec5SDimitry Andric           // We've checked this child, but still need to ignore it if it
3160b57cec5SDimitry Andric           // had no proof either way.
3170b57cec5SDimitry Andric           ChildUnwindDestToken = Memo->second;
3180b57cec5SDimitry Andric           if (!ChildUnwindDestToken)
3190b57cec5SDimitry Andric             continue;
3200b57cec5SDimitry Andric         } else {
3210b57cec5SDimitry Andric           // Not a relevant user of the cleanuppad
3220b57cec5SDimitry Andric           continue;
3230b57cec5SDimitry Andric         }
3240b57cec5SDimitry Andric         // In a well-formed program, the child/invoke must either unwind to
3250b57cec5SDimitry Andric         // an(other) child of the cleanup, or exit the cleanup.  In the
3260b57cec5SDimitry Andric         // first case, continue searching.
3270b57cec5SDimitry Andric         if (isa<Instruction>(ChildUnwindDestToken) &&
3280b57cec5SDimitry Andric             getParentPad(ChildUnwindDestToken) == CleanupPad)
3290b57cec5SDimitry Andric           continue;
3300b57cec5SDimitry Andric         UnwindDestToken = ChildUnwindDestToken;
3310b57cec5SDimitry Andric         break;
3320b57cec5SDimitry Andric       }
3330b57cec5SDimitry Andric     }
3340b57cec5SDimitry Andric     // If we haven't found an unwind dest for CurrentPad, we may have queued its
3350b57cec5SDimitry Andric     // children, so move on to the next in the worklist.
3360b57cec5SDimitry Andric     if (!UnwindDestToken)
3370b57cec5SDimitry Andric       continue;
3380b57cec5SDimitry Andric 
3390b57cec5SDimitry Andric     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
3400b57cec5SDimitry Andric     // any ancestors of CurrentPad up to but not including UnwindDestToken's
3410b57cec5SDimitry Andric     // parent pad.  Record this in the memo map, and check to see if the
3420b57cec5SDimitry Andric     // original EHPad being queried is one of the ones exited.
3430b57cec5SDimitry Andric     Value *UnwindParent;
3440b57cec5SDimitry Andric     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
3450b57cec5SDimitry Andric       UnwindParent = getParentPad(UnwindPad);
3460b57cec5SDimitry Andric     else
3470b57cec5SDimitry Andric       UnwindParent = nullptr;
3480b57cec5SDimitry Andric     bool ExitedOriginalPad = false;
3490b57cec5SDimitry Andric     for (Instruction *ExitedPad = CurrentPad;
3500b57cec5SDimitry Andric          ExitedPad && ExitedPad != UnwindParent;
3510b57cec5SDimitry Andric          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
3520b57cec5SDimitry Andric       // Skip over catchpads since they just follow their catchswitches.
3530b57cec5SDimitry Andric       if (isa<CatchPadInst>(ExitedPad))
3540b57cec5SDimitry Andric         continue;
3550b57cec5SDimitry Andric       MemoMap[ExitedPad] = UnwindDestToken;
3560b57cec5SDimitry Andric       ExitedOriginalPad |= (ExitedPad == EHPad);
3570b57cec5SDimitry Andric     }
3580b57cec5SDimitry Andric 
3590b57cec5SDimitry Andric     if (ExitedOriginalPad)
3600b57cec5SDimitry Andric       return UnwindDestToken;
3610b57cec5SDimitry Andric 
3620b57cec5SDimitry Andric     // Continue the search.
3630b57cec5SDimitry Andric   }
3640b57cec5SDimitry Andric 
3650b57cec5SDimitry Andric   // No definitive information is contained within this funclet.
3660b57cec5SDimitry Andric   return nullptr;
3670b57cec5SDimitry Andric }
3680b57cec5SDimitry Andric 
3690b57cec5SDimitry Andric /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
3700b57cec5SDimitry Andric /// return that pad instruction.  If it unwinds to caller, return
3710b57cec5SDimitry Andric /// ConstantTokenNone.  If it does not have a definitive unwind destination,
3720b57cec5SDimitry Andric /// return nullptr.
3730b57cec5SDimitry Andric ///
3740b57cec5SDimitry Andric /// This routine gets invoked for calls in funclets in inlinees when inlining
3750b57cec5SDimitry Andric /// an invoke.  Since many funclets don't have calls inside them, it's queried
3760b57cec5SDimitry Andric /// on-demand rather than building a map of pads to unwind dests up front.
3770b57cec5SDimitry Andric /// Determining a funclet's unwind dest may require recursively searching its
3780b57cec5SDimitry Andric /// descendants, and also ancestors and cousins if the descendants don't provide
3790b57cec5SDimitry Andric /// an answer.  Since most funclets will have their unwind dest immediately
3800b57cec5SDimitry Andric /// available as the unwind dest of a catchswitch or cleanupret, this routine
3810b57cec5SDimitry Andric /// searches top-down from the given pad and then up. To avoid worst-case
3820b57cec5SDimitry Andric /// quadratic run-time given that approach, it uses a memo map to avoid
3830b57cec5SDimitry Andric /// re-processing funclet trees.  The callers that rewrite the IR as they go
3840b57cec5SDimitry Andric /// take advantage of this, for correctness, by checking/forcing rewritten
3850b57cec5SDimitry Andric /// pads' entries to match the original callee view.
3860b57cec5SDimitry Andric static Value *getUnwindDestToken(Instruction *EHPad,
3870b57cec5SDimitry Andric                                  UnwindDestMemoTy &MemoMap) {
3880b57cec5SDimitry Andric   // Catchpads unwind to the same place as their catchswitch;
3890b57cec5SDimitry Andric   // redirct any queries on catchpads so the code below can
3900b57cec5SDimitry Andric   // deal with just catchswitches and cleanuppads.
3910b57cec5SDimitry Andric   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
3920b57cec5SDimitry Andric     EHPad = CPI->getCatchSwitch();
3930b57cec5SDimitry Andric 
3940b57cec5SDimitry Andric   // Check if we've already determined the unwind dest for this pad.
3950b57cec5SDimitry Andric   auto Memo = MemoMap.find(EHPad);
3960b57cec5SDimitry Andric   if (Memo != MemoMap.end())
3970b57cec5SDimitry Andric     return Memo->second;
3980b57cec5SDimitry Andric 
3990b57cec5SDimitry Andric   // Search EHPad and, if necessary, its descendants.
4000b57cec5SDimitry Andric   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
4010b57cec5SDimitry Andric   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
4020b57cec5SDimitry Andric   if (UnwindDestToken)
4030b57cec5SDimitry Andric     return UnwindDestToken;
4040b57cec5SDimitry Andric 
4050b57cec5SDimitry Andric   // No information is available for this EHPad from itself or any of its
4060b57cec5SDimitry Andric   // descendants.  An unwind all the way out to a pad in the caller would
4070b57cec5SDimitry Andric   // need also to agree with the unwind dest of the parent funclet, so
4080b57cec5SDimitry Andric   // search up the chain to try to find a funclet with information.  Put
4090b57cec5SDimitry Andric   // null entries in the memo map to avoid re-processing as we go up.
4100b57cec5SDimitry Andric   MemoMap[EHPad] = nullptr;
4110b57cec5SDimitry Andric #ifndef NDEBUG
4120b57cec5SDimitry Andric   SmallPtrSet<Instruction *, 4> TempMemos;
4130b57cec5SDimitry Andric   TempMemos.insert(EHPad);
4140b57cec5SDimitry Andric #endif
4150b57cec5SDimitry Andric   Instruction *LastUselessPad = EHPad;
4160b57cec5SDimitry Andric   Value *AncestorToken;
4170b57cec5SDimitry Andric   for (AncestorToken = getParentPad(EHPad);
4180b57cec5SDimitry Andric        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
4190b57cec5SDimitry Andric        AncestorToken = getParentPad(AncestorToken)) {
4200b57cec5SDimitry Andric     // Skip over catchpads since they just follow their catchswitches.
4210b57cec5SDimitry Andric     if (isa<CatchPadInst>(AncestorPad))
4220b57cec5SDimitry Andric       continue;
4230b57cec5SDimitry Andric     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
4240b57cec5SDimitry Andric     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
4250b57cec5SDimitry Andric     // call to getUnwindDestToken, that would mean that AncestorPad had no
4260b57cec5SDimitry Andric     // information in itself, its descendants, or its ancestors.  If that
4270b57cec5SDimitry Andric     // were the case, then we should also have recorded the lack of information
4280b57cec5SDimitry Andric     // for the descendant that we're coming from.  So assert that we don't
4290b57cec5SDimitry Andric     // find a null entry in the MemoMap for AncestorPad.
4300b57cec5SDimitry Andric     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
4310b57cec5SDimitry Andric     auto AncestorMemo = MemoMap.find(AncestorPad);
4320b57cec5SDimitry Andric     if (AncestorMemo == MemoMap.end()) {
4330b57cec5SDimitry Andric       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
4340b57cec5SDimitry Andric     } else {
4350b57cec5SDimitry Andric       UnwindDestToken = AncestorMemo->second;
4360b57cec5SDimitry Andric     }
4370b57cec5SDimitry Andric     if (UnwindDestToken)
4380b57cec5SDimitry Andric       break;
4390b57cec5SDimitry Andric     LastUselessPad = AncestorPad;
4400b57cec5SDimitry Andric     MemoMap[LastUselessPad] = nullptr;
4410b57cec5SDimitry Andric #ifndef NDEBUG
4420b57cec5SDimitry Andric     TempMemos.insert(LastUselessPad);
4430b57cec5SDimitry Andric #endif
4440b57cec5SDimitry Andric   }
4450b57cec5SDimitry Andric 
4460b57cec5SDimitry Andric   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
4470b57cec5SDimitry Andric   // returned nullptr (and likewise for EHPad and any of its ancestors up to
4480b57cec5SDimitry Andric   // LastUselessPad), so LastUselessPad has no information from below.  Since
4490b57cec5SDimitry Andric   // getUnwindDestTokenHelper must investigate all downward paths through
4500b57cec5SDimitry Andric   // no-information nodes to prove that a node has no information like this,
4510b57cec5SDimitry Andric   // and since any time it finds information it records it in the MemoMap for
4520b57cec5SDimitry Andric   // not just the immediately-containing funclet but also any ancestors also
4530b57cec5SDimitry Andric   // exited, it must be the case that, walking downward from LastUselessPad,
4540b57cec5SDimitry Andric   // visiting just those nodes which have not been mapped to an unwind dest
4550b57cec5SDimitry Andric   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
4560b57cec5SDimitry Andric   // they are just used to keep getUnwindDestTokenHelper from repeating work),
4570b57cec5SDimitry Andric   // any node visited must have been exhaustively searched with no information
4580b57cec5SDimitry Andric   // for it found.
4590b57cec5SDimitry Andric   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
4600b57cec5SDimitry Andric   while (!Worklist.empty()) {
4610b57cec5SDimitry Andric     Instruction *UselessPad = Worklist.pop_back_val();
4620b57cec5SDimitry Andric     auto Memo = MemoMap.find(UselessPad);
4630b57cec5SDimitry Andric     if (Memo != MemoMap.end() && Memo->second) {
4640b57cec5SDimitry Andric       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
4650b57cec5SDimitry Andric       // that it is a funclet that does have information about unwinding to
4660b57cec5SDimitry Andric       // a particular destination; its parent was a useless pad.
4670b57cec5SDimitry Andric       // Since its parent has no information, the unwind edge must not escape
4680b57cec5SDimitry Andric       // the parent, and must target a sibling of this pad.  This local unwind
4690b57cec5SDimitry Andric       // gives us no information about EHPad.  Leave it and the subtree rooted
4700b57cec5SDimitry Andric       // at it alone.
4710b57cec5SDimitry Andric       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
4720b57cec5SDimitry Andric       continue;
4730b57cec5SDimitry Andric     }
4740b57cec5SDimitry Andric     // We know we don't have information for UselesPad.  If it has an entry in
4750b57cec5SDimitry Andric     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
4760b57cec5SDimitry Andric     // added on this invocation of getUnwindDestToken; if a previous invocation
4770b57cec5SDimitry Andric     // recorded nullptr, it would have had to prove that the ancestors of
4780b57cec5SDimitry Andric     // UselessPad, which include LastUselessPad, had no information, and that
4790b57cec5SDimitry Andric     // in turn would have required proving that the descendants of
4800b57cec5SDimitry Andric     // LastUselesPad, which include EHPad, have no information about
4810b57cec5SDimitry Andric     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
4820b57cec5SDimitry Andric     // the MemoMap on that invocation, which isn't the case if we got here.
4830b57cec5SDimitry Andric     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
4840b57cec5SDimitry Andric     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
4850b57cec5SDimitry Andric     // information that we'd be contradicting by making a map entry for it
4860b57cec5SDimitry Andric     // (which is something that getUnwindDestTokenHelper must have proved for
4870b57cec5SDimitry Andric     // us to get here).  Just assert on is direct users here; the checks in
4880b57cec5SDimitry Andric     // this downward walk at its descendants will verify that they don't have
4890b57cec5SDimitry Andric     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
4900b57cec5SDimitry Andric     // unwind edges or unwind to a sibling).
4910b57cec5SDimitry Andric     MemoMap[UselessPad] = UnwindDestToken;
4920b57cec5SDimitry Andric     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
4930b57cec5SDimitry Andric       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
4940b57cec5SDimitry Andric       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
4950b57cec5SDimitry Andric         auto *CatchPad = HandlerBlock->getFirstNonPHI();
4960b57cec5SDimitry Andric         for (User *U : CatchPad->users()) {
4970b57cec5SDimitry Andric           assert(
4980b57cec5SDimitry Andric               (!isa<InvokeInst>(U) ||
4990b57cec5SDimitry Andric                (getParentPad(
5000b57cec5SDimitry Andric                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
5010b57cec5SDimitry Andric                 CatchPad)) &&
5020b57cec5SDimitry Andric               "Expected useless pad");
5030b57cec5SDimitry Andric           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
5040b57cec5SDimitry Andric             Worklist.push_back(cast<Instruction>(U));
5050b57cec5SDimitry Andric         }
5060b57cec5SDimitry Andric       }
5070b57cec5SDimitry Andric     } else {
5080b57cec5SDimitry Andric       assert(isa<CleanupPadInst>(UselessPad));
5090b57cec5SDimitry Andric       for (User *U : UselessPad->users()) {
5100b57cec5SDimitry Andric         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
5110b57cec5SDimitry Andric         assert((!isa<InvokeInst>(U) ||
5120b57cec5SDimitry Andric                 (getParentPad(
5130b57cec5SDimitry Andric                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
5140b57cec5SDimitry Andric                  UselessPad)) &&
5150b57cec5SDimitry Andric                "Expected useless pad");
5160b57cec5SDimitry Andric         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
5170b57cec5SDimitry Andric           Worklist.push_back(cast<Instruction>(U));
5180b57cec5SDimitry Andric       }
5190b57cec5SDimitry Andric     }
5200b57cec5SDimitry Andric   }
5210b57cec5SDimitry Andric 
5220b57cec5SDimitry Andric   return UnwindDestToken;
5230b57cec5SDimitry Andric }
5240b57cec5SDimitry Andric 
5250b57cec5SDimitry Andric /// When we inline a basic block into an invoke,
5260b57cec5SDimitry Andric /// we have to turn all of the calls that can throw into invokes.
5270b57cec5SDimitry Andric /// This function analyze BB to see if there are any calls, and if so,
5280b57cec5SDimitry Andric /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
5290b57cec5SDimitry Andric /// nodes in that block with the values specified in InvokeDestPHIValues.
5300b57cec5SDimitry Andric static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
5310b57cec5SDimitry Andric     BasicBlock *BB, BasicBlock *UnwindEdge,
5320b57cec5SDimitry Andric     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
5330b57cec5SDimitry Andric   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
5340b57cec5SDimitry Andric     Instruction *I = &*BBI++;
5350b57cec5SDimitry Andric 
5360b57cec5SDimitry Andric     // We only need to check for function calls: inlined invoke
5370b57cec5SDimitry Andric     // instructions require no special handling.
5380b57cec5SDimitry Andric     CallInst *CI = dyn_cast<CallInst>(I);
5390b57cec5SDimitry Andric 
540*5ffd83dbSDimitry Andric     if (!CI || CI->doesNotThrow() || CI->isInlineAsm())
5410b57cec5SDimitry Andric       continue;
5420b57cec5SDimitry Andric 
5430b57cec5SDimitry Andric     // We do not need to (and in fact, cannot) convert possibly throwing calls
5440b57cec5SDimitry Andric     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
5450b57cec5SDimitry Andric     // invokes.  The caller's "segment" of the deoptimization continuation
5460b57cec5SDimitry Andric     // attached to the newly inlined @llvm.experimental_deoptimize
5470b57cec5SDimitry Andric     // (resp. @llvm.experimental.guard) call should contain the exception
5480b57cec5SDimitry Andric     // handling logic, if any.
5490b57cec5SDimitry Andric     if (auto *F = CI->getCalledFunction())
5500b57cec5SDimitry Andric       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
5510b57cec5SDimitry Andric           F->getIntrinsicID() == Intrinsic::experimental_guard)
5520b57cec5SDimitry Andric         continue;
5530b57cec5SDimitry Andric 
5540b57cec5SDimitry Andric     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
5550b57cec5SDimitry Andric       // This call is nested inside a funclet.  If that funclet has an unwind
5560b57cec5SDimitry Andric       // destination within the inlinee, then unwinding out of this call would
5570b57cec5SDimitry Andric       // be UB.  Rewriting this call to an invoke which targets the inlined
5580b57cec5SDimitry Andric       // invoke's unwind dest would give the call's parent funclet multiple
5590b57cec5SDimitry Andric       // unwind destinations, which is something that subsequent EH table
5600b57cec5SDimitry Andric       // generation can't handle and that the veirifer rejects.  So when we
5610b57cec5SDimitry Andric       // see such a call, leave it as a call.
5620b57cec5SDimitry Andric       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
5630b57cec5SDimitry Andric       Value *UnwindDestToken =
5640b57cec5SDimitry Andric           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
5650b57cec5SDimitry Andric       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
5660b57cec5SDimitry Andric         continue;
5670b57cec5SDimitry Andric #ifndef NDEBUG
5680b57cec5SDimitry Andric       Instruction *MemoKey;
5690b57cec5SDimitry Andric       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
5700b57cec5SDimitry Andric         MemoKey = CatchPad->getCatchSwitch();
5710b57cec5SDimitry Andric       else
5720b57cec5SDimitry Andric         MemoKey = FuncletPad;
5730b57cec5SDimitry Andric       assert(FuncletUnwindMap->count(MemoKey) &&
5740b57cec5SDimitry Andric              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
5750b57cec5SDimitry Andric              "must get memoized to avoid confusing later searches");
5760b57cec5SDimitry Andric #endif // NDEBUG
5770b57cec5SDimitry Andric     }
5780b57cec5SDimitry Andric 
5790b57cec5SDimitry Andric     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
5800b57cec5SDimitry Andric     return BB;
5810b57cec5SDimitry Andric   }
5820b57cec5SDimitry Andric   return nullptr;
5830b57cec5SDimitry Andric }
5840b57cec5SDimitry Andric 
5850b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls
5860b57cec5SDimitry Andric /// in the body of the inlined function into invokes.
5870b57cec5SDimitry Andric ///
5880b57cec5SDimitry Andric /// II is the invoke instruction being inlined.  FirstNewBlock is the first
5890b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function),
5900b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined.
5910b57cec5SDimitry Andric static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
5920b57cec5SDimitry Andric                                     ClonedCodeInfo &InlinedCodeInfo) {
5930b57cec5SDimitry Andric   BasicBlock *InvokeDest = II->getUnwindDest();
5940b57cec5SDimitry Andric 
5950b57cec5SDimitry Andric   Function *Caller = FirstNewBlock->getParent();
5960b57cec5SDimitry Andric 
5970b57cec5SDimitry Andric   // The inlined code is currently at the end of the function, scan from the
5980b57cec5SDimitry Andric   // start of the inlined code to its end, checking for stuff we need to
5990b57cec5SDimitry Andric   // rewrite.
6000b57cec5SDimitry Andric   LandingPadInliningInfo Invoke(II);
6010b57cec5SDimitry Andric 
6020b57cec5SDimitry Andric   // Get all of the inlined landing pad instructions.
6030b57cec5SDimitry Andric   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
6040b57cec5SDimitry Andric   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
6050b57cec5SDimitry Andric        I != E; ++I)
6060b57cec5SDimitry Andric     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
6070b57cec5SDimitry Andric       InlinedLPads.insert(II->getLandingPadInst());
6080b57cec5SDimitry Andric 
6090b57cec5SDimitry Andric   // Append the clauses from the outer landing pad instruction into the inlined
6100b57cec5SDimitry Andric   // landing pad instructions.
6110b57cec5SDimitry Andric   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
6120b57cec5SDimitry Andric   for (LandingPadInst *InlinedLPad : InlinedLPads) {
6130b57cec5SDimitry Andric     unsigned OuterNum = OuterLPad->getNumClauses();
6140b57cec5SDimitry Andric     InlinedLPad->reserveClauses(OuterNum);
6150b57cec5SDimitry Andric     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
6160b57cec5SDimitry Andric       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
6170b57cec5SDimitry Andric     if (OuterLPad->isCleanup())
6180b57cec5SDimitry Andric       InlinedLPad->setCleanup(true);
6190b57cec5SDimitry Andric   }
6200b57cec5SDimitry Andric 
6210b57cec5SDimitry Andric   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
6220b57cec5SDimitry Andric        BB != E; ++BB) {
6230b57cec5SDimitry Andric     if (InlinedCodeInfo.ContainsCalls)
6240b57cec5SDimitry Andric       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
6250b57cec5SDimitry Andric               &*BB, Invoke.getOuterResumeDest()))
6260b57cec5SDimitry Andric         // Update any PHI nodes in the exceptional block to indicate that there
6270b57cec5SDimitry Andric         // is now a new entry in them.
6280b57cec5SDimitry Andric         Invoke.addIncomingPHIValuesFor(NewBB);
6290b57cec5SDimitry Andric 
6300b57cec5SDimitry Andric     // Forward any resumes that are remaining here.
6310b57cec5SDimitry Andric     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
6320b57cec5SDimitry Andric       Invoke.forwardResume(RI, InlinedLPads);
6330b57cec5SDimitry Andric   }
6340b57cec5SDimitry Andric 
6350b57cec5SDimitry Andric   // Now that everything is happy, we have one final detail.  The PHI nodes in
6360b57cec5SDimitry Andric   // the exception destination block still have entries due to the original
6370b57cec5SDimitry Andric   // invoke instruction. Eliminate these entries (which might even delete the
6380b57cec5SDimitry Andric   // PHI node) now.
6390b57cec5SDimitry Andric   InvokeDest->removePredecessor(II->getParent());
6400b57cec5SDimitry Andric }
6410b57cec5SDimitry Andric 
6420b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls
6430b57cec5SDimitry Andric /// in the body of the inlined function into invokes.
6440b57cec5SDimitry Andric ///
6450b57cec5SDimitry Andric /// II is the invoke instruction being inlined.  FirstNewBlock is the first
6460b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function),
6470b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined.
6480b57cec5SDimitry Andric static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
6490b57cec5SDimitry Andric                                ClonedCodeInfo &InlinedCodeInfo) {
6500b57cec5SDimitry Andric   BasicBlock *UnwindDest = II->getUnwindDest();
6510b57cec5SDimitry Andric   Function *Caller = FirstNewBlock->getParent();
6520b57cec5SDimitry Andric 
6530b57cec5SDimitry Andric   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
6540b57cec5SDimitry Andric 
6550b57cec5SDimitry Andric   // If there are PHI nodes in the unwind destination block, we need to keep
6560b57cec5SDimitry Andric   // track of which values came into them from the invoke before removing the
6570b57cec5SDimitry Andric   // edge from this block.
6580b57cec5SDimitry Andric   SmallVector<Value *, 8> UnwindDestPHIValues;
6590b57cec5SDimitry Andric   BasicBlock *InvokeBB = II->getParent();
6600b57cec5SDimitry Andric   for (Instruction &I : *UnwindDest) {
6610b57cec5SDimitry Andric     // Save the value to use for this edge.
6620b57cec5SDimitry Andric     PHINode *PHI = dyn_cast<PHINode>(&I);
6630b57cec5SDimitry Andric     if (!PHI)
6640b57cec5SDimitry Andric       break;
6650b57cec5SDimitry Andric     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
6660b57cec5SDimitry Andric   }
6670b57cec5SDimitry Andric 
6680b57cec5SDimitry Andric   // Add incoming-PHI values to the unwind destination block for the given basic
6690b57cec5SDimitry Andric   // block, using the values for the original invoke's source block.
6700b57cec5SDimitry Andric   auto UpdatePHINodes = [&](BasicBlock *Src) {
6710b57cec5SDimitry Andric     BasicBlock::iterator I = UnwindDest->begin();
6720b57cec5SDimitry Andric     for (Value *V : UnwindDestPHIValues) {
6730b57cec5SDimitry Andric       PHINode *PHI = cast<PHINode>(I);
6740b57cec5SDimitry Andric       PHI->addIncoming(V, Src);
6750b57cec5SDimitry Andric       ++I;
6760b57cec5SDimitry Andric     }
6770b57cec5SDimitry Andric   };
6780b57cec5SDimitry Andric 
6790b57cec5SDimitry Andric   // This connects all the instructions which 'unwind to caller' to the invoke
6800b57cec5SDimitry Andric   // destination.
6810b57cec5SDimitry Andric   UnwindDestMemoTy FuncletUnwindMap;
6820b57cec5SDimitry Andric   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
6830b57cec5SDimitry Andric        BB != E; ++BB) {
6840b57cec5SDimitry Andric     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6850b57cec5SDimitry Andric       if (CRI->unwindsToCaller()) {
6860b57cec5SDimitry Andric         auto *CleanupPad = CRI->getCleanupPad();
6870b57cec5SDimitry Andric         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
6880b57cec5SDimitry Andric         CRI->eraseFromParent();
6890b57cec5SDimitry Andric         UpdatePHINodes(&*BB);
6900b57cec5SDimitry Andric         // Finding a cleanupret with an unwind destination would confuse
6910b57cec5SDimitry Andric         // subsequent calls to getUnwindDestToken, so map the cleanuppad
6920b57cec5SDimitry Andric         // to short-circuit any such calls and recognize this as an "unwind
6930b57cec5SDimitry Andric         // to caller" cleanup.
6940b57cec5SDimitry Andric         assert(!FuncletUnwindMap.count(CleanupPad) ||
6950b57cec5SDimitry Andric                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
6960b57cec5SDimitry Andric         FuncletUnwindMap[CleanupPad] =
6970b57cec5SDimitry Andric             ConstantTokenNone::get(Caller->getContext());
6980b57cec5SDimitry Andric       }
6990b57cec5SDimitry Andric     }
7000b57cec5SDimitry Andric 
7010b57cec5SDimitry Andric     Instruction *I = BB->getFirstNonPHI();
7020b57cec5SDimitry Andric     if (!I->isEHPad())
7030b57cec5SDimitry Andric       continue;
7040b57cec5SDimitry Andric 
7050b57cec5SDimitry Andric     Instruction *Replacement = nullptr;
7060b57cec5SDimitry Andric     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
7070b57cec5SDimitry Andric       if (CatchSwitch->unwindsToCaller()) {
7080b57cec5SDimitry Andric         Value *UnwindDestToken;
7090b57cec5SDimitry Andric         if (auto *ParentPad =
7100b57cec5SDimitry Andric                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
7110b57cec5SDimitry Andric           // This catchswitch is nested inside another funclet.  If that
7120b57cec5SDimitry Andric           // funclet has an unwind destination within the inlinee, then
7130b57cec5SDimitry Andric           // unwinding out of this catchswitch would be UB.  Rewriting this
7140b57cec5SDimitry Andric           // catchswitch to unwind to the inlined invoke's unwind dest would
7150b57cec5SDimitry Andric           // give the parent funclet multiple unwind destinations, which is
7160b57cec5SDimitry Andric           // something that subsequent EH table generation can't handle and
7170b57cec5SDimitry Andric           // that the veirifer rejects.  So when we see such a call, leave it
7180b57cec5SDimitry Andric           // as "unwind to caller".
7190b57cec5SDimitry Andric           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
7200b57cec5SDimitry Andric           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
7210b57cec5SDimitry Andric             continue;
7220b57cec5SDimitry Andric         } else {
7230b57cec5SDimitry Andric           // This catchswitch has no parent to inherit constraints from, and
7240b57cec5SDimitry Andric           // none of its descendants can have an unwind edge that exits it and
7250b57cec5SDimitry Andric           // targets another funclet in the inlinee.  It may or may not have a
7260b57cec5SDimitry Andric           // descendant that definitively has an unwind to caller.  In either
7270b57cec5SDimitry Andric           // case, we'll have to assume that any unwinds out of it may need to
7280b57cec5SDimitry Andric           // be routed to the caller, so treat it as though it has a definitive
7290b57cec5SDimitry Andric           // unwind to caller.
7300b57cec5SDimitry Andric           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
7310b57cec5SDimitry Andric         }
7320b57cec5SDimitry Andric         auto *NewCatchSwitch = CatchSwitchInst::Create(
7330b57cec5SDimitry Andric             CatchSwitch->getParentPad(), UnwindDest,
7340b57cec5SDimitry Andric             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
7350b57cec5SDimitry Andric             CatchSwitch);
7360b57cec5SDimitry Andric         for (BasicBlock *PadBB : CatchSwitch->handlers())
7370b57cec5SDimitry Andric           NewCatchSwitch->addHandler(PadBB);
7380b57cec5SDimitry Andric         // Propagate info for the old catchswitch over to the new one in
7390b57cec5SDimitry Andric         // the unwind map.  This also serves to short-circuit any subsequent
7400b57cec5SDimitry Andric         // checks for the unwind dest of this catchswitch, which would get
7410b57cec5SDimitry Andric         // confused if they found the outer handler in the callee.
7420b57cec5SDimitry Andric         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
7430b57cec5SDimitry Andric         Replacement = NewCatchSwitch;
7440b57cec5SDimitry Andric       }
7450b57cec5SDimitry Andric     } else if (!isa<FuncletPadInst>(I)) {
7460b57cec5SDimitry Andric       llvm_unreachable("unexpected EHPad!");
7470b57cec5SDimitry Andric     }
7480b57cec5SDimitry Andric 
7490b57cec5SDimitry Andric     if (Replacement) {
7500b57cec5SDimitry Andric       Replacement->takeName(I);
7510b57cec5SDimitry Andric       I->replaceAllUsesWith(Replacement);
7520b57cec5SDimitry Andric       I->eraseFromParent();
7530b57cec5SDimitry Andric       UpdatePHINodes(&*BB);
7540b57cec5SDimitry Andric     }
7550b57cec5SDimitry Andric   }
7560b57cec5SDimitry Andric 
7570b57cec5SDimitry Andric   if (InlinedCodeInfo.ContainsCalls)
7580b57cec5SDimitry Andric     for (Function::iterator BB = FirstNewBlock->getIterator(),
7590b57cec5SDimitry Andric                             E = Caller->end();
7600b57cec5SDimitry Andric          BB != E; ++BB)
7610b57cec5SDimitry Andric       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
7620b57cec5SDimitry Andric               &*BB, UnwindDest, &FuncletUnwindMap))
7630b57cec5SDimitry Andric         // Update any PHI nodes in the exceptional block to indicate that there
7640b57cec5SDimitry Andric         // is now a new entry in them.
7650b57cec5SDimitry Andric         UpdatePHINodes(NewBB);
7660b57cec5SDimitry Andric 
7670b57cec5SDimitry Andric   // Now that everything is happy, we have one final detail.  The PHI nodes in
7680b57cec5SDimitry Andric   // the exception destination block still have entries due to the original
7690b57cec5SDimitry Andric   // invoke instruction. Eliminate these entries (which might even delete the
7700b57cec5SDimitry Andric   // PHI node) now.
7710b57cec5SDimitry Andric   UnwindDest->removePredecessor(InvokeBB);
7720b57cec5SDimitry Andric }
7730b57cec5SDimitry Andric 
7740b57cec5SDimitry Andric /// When inlining a call site that has !llvm.mem.parallel_loop_access or
7750b57cec5SDimitry Andric /// llvm.access.group metadata, that metadata should be propagated to all
7760b57cec5SDimitry Andric /// memory-accessing cloned instructions.
777*5ffd83dbSDimitry Andric static void PropagateParallelLoopAccessMetadata(CallBase &CB,
7780b57cec5SDimitry Andric                                                 ValueToValueMapTy &VMap) {
779*5ffd83dbSDimitry Andric   MDNode *M = CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
780*5ffd83dbSDimitry Andric   MDNode *CallAccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
7810b57cec5SDimitry Andric   if (!M && !CallAccessGroup)
7820b57cec5SDimitry Andric     return;
7830b57cec5SDimitry Andric 
7840b57cec5SDimitry Andric   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
7850b57cec5SDimitry Andric        VMI != VMIE; ++VMI) {
7860b57cec5SDimitry Andric     if (!VMI->second)
7870b57cec5SDimitry Andric       continue;
7880b57cec5SDimitry Andric 
7890b57cec5SDimitry Andric     Instruction *NI = dyn_cast<Instruction>(VMI->second);
7900b57cec5SDimitry Andric     if (!NI)
7910b57cec5SDimitry Andric       continue;
7920b57cec5SDimitry Andric 
7930b57cec5SDimitry Andric     if (M) {
7940b57cec5SDimitry Andric       if (MDNode *PM =
7950b57cec5SDimitry Andric               NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
7960b57cec5SDimitry Andric         M = MDNode::concatenate(PM, M);
7970b57cec5SDimitry Andric       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
7980b57cec5SDimitry Andric       } else if (NI->mayReadOrWriteMemory()) {
7990b57cec5SDimitry Andric         NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
8000b57cec5SDimitry Andric       }
8010b57cec5SDimitry Andric     }
8020b57cec5SDimitry Andric 
8030b57cec5SDimitry Andric     if (NI->mayReadOrWriteMemory()) {
8040b57cec5SDimitry Andric       MDNode *UnitedAccGroups = uniteAccessGroups(
8050b57cec5SDimitry Andric           NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
8060b57cec5SDimitry Andric       NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
8070b57cec5SDimitry Andric     }
8080b57cec5SDimitry Andric   }
8090b57cec5SDimitry Andric }
8100b57cec5SDimitry Andric 
8110b57cec5SDimitry Andric /// When inlining a function that contains noalias scope metadata,
8120b57cec5SDimitry Andric /// this metadata needs to be cloned so that the inlined blocks
8130b57cec5SDimitry Andric /// have different "unique scopes" at every call site. Were this not done, then
8140b57cec5SDimitry Andric /// aliasing scopes from a function inlined into a caller multiple times could
8150b57cec5SDimitry Andric /// not be differentiated (and this would lead to miscompiles because the
8160b57cec5SDimitry Andric /// non-aliasing property communicated by the metadata could have
8170b57cec5SDimitry Andric /// call-site-specific control dependencies).
818*5ffd83dbSDimitry Andric static void CloneAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap) {
819*5ffd83dbSDimitry Andric   const Function *CalledFunc = CB.getCalledFunction();
8200b57cec5SDimitry Andric   SetVector<const MDNode *> MD;
8210b57cec5SDimitry Andric 
8220b57cec5SDimitry Andric   // Note: We could only clone the metadata if it is already used in the
8230b57cec5SDimitry Andric   // caller. I'm omitting that check here because it might confuse
8240b57cec5SDimitry Andric   // inter-procedural alias analysis passes. We can revisit this if it becomes
8250b57cec5SDimitry Andric   // an efficiency or overhead problem.
8260b57cec5SDimitry Andric 
8270b57cec5SDimitry Andric   for (const BasicBlock &I : *CalledFunc)
8280b57cec5SDimitry Andric     for (const Instruction &J : I) {
8290b57cec5SDimitry Andric       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
8300b57cec5SDimitry Andric         MD.insert(M);
8310b57cec5SDimitry Andric       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
8320b57cec5SDimitry Andric         MD.insert(M);
8330b57cec5SDimitry Andric     }
8340b57cec5SDimitry Andric 
8350b57cec5SDimitry Andric   if (MD.empty())
8360b57cec5SDimitry Andric     return;
8370b57cec5SDimitry Andric 
8380b57cec5SDimitry Andric   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
8390b57cec5SDimitry Andric   // the set.
8400b57cec5SDimitry Andric   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
8410b57cec5SDimitry Andric   while (!Queue.empty()) {
8420b57cec5SDimitry Andric     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
8430b57cec5SDimitry Andric     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
8440b57cec5SDimitry Andric       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
8450b57cec5SDimitry Andric         if (MD.insert(M1))
8460b57cec5SDimitry Andric           Queue.push_back(M1);
8470b57cec5SDimitry Andric   }
8480b57cec5SDimitry Andric 
8490b57cec5SDimitry Andric   // Now we have a complete set of all metadata in the chains used to specify
8500b57cec5SDimitry Andric   // the noalias scopes and the lists of those scopes.
8510b57cec5SDimitry Andric   SmallVector<TempMDTuple, 16> DummyNodes;
8520b57cec5SDimitry Andric   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
8530b57cec5SDimitry Andric   for (const MDNode *I : MD) {
8540b57cec5SDimitry Andric     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
8550b57cec5SDimitry Andric     MDMap[I].reset(DummyNodes.back().get());
8560b57cec5SDimitry Andric   }
8570b57cec5SDimitry Andric 
8580b57cec5SDimitry Andric   // Create new metadata nodes to replace the dummy nodes, replacing old
8590b57cec5SDimitry Andric   // metadata references with either a dummy node or an already-created new
8600b57cec5SDimitry Andric   // node.
8610b57cec5SDimitry Andric   for (const MDNode *I : MD) {
8620b57cec5SDimitry Andric     SmallVector<Metadata *, 4> NewOps;
8630b57cec5SDimitry Andric     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
8640b57cec5SDimitry Andric       const Metadata *V = I->getOperand(i);
8650b57cec5SDimitry Andric       if (const MDNode *M = dyn_cast<MDNode>(V))
8660b57cec5SDimitry Andric         NewOps.push_back(MDMap[M]);
8670b57cec5SDimitry Andric       else
8680b57cec5SDimitry Andric         NewOps.push_back(const_cast<Metadata *>(V));
8690b57cec5SDimitry Andric     }
8700b57cec5SDimitry Andric 
8710b57cec5SDimitry Andric     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
8720b57cec5SDimitry Andric     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
8730b57cec5SDimitry Andric     assert(TempM->isTemporary() && "Expected temporary node");
8740b57cec5SDimitry Andric 
8750b57cec5SDimitry Andric     TempM->replaceAllUsesWith(NewM);
8760b57cec5SDimitry Andric   }
8770b57cec5SDimitry Andric 
8780b57cec5SDimitry Andric   // Now replace the metadata in the new inlined instructions with the
8790b57cec5SDimitry Andric   // repacements from the map.
8800b57cec5SDimitry Andric   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
8810b57cec5SDimitry Andric        VMI != VMIE; ++VMI) {
8820b57cec5SDimitry Andric     if (!VMI->second)
8830b57cec5SDimitry Andric       continue;
8840b57cec5SDimitry Andric 
8850b57cec5SDimitry Andric     Instruction *NI = dyn_cast<Instruction>(VMI->second);
8860b57cec5SDimitry Andric     if (!NI)
8870b57cec5SDimitry Andric       continue;
8880b57cec5SDimitry Andric 
8890b57cec5SDimitry Andric     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
8900b57cec5SDimitry Andric       MDNode *NewMD = MDMap[M];
8910b57cec5SDimitry Andric       // If the call site also had alias scope metadata (a list of scopes to
8920b57cec5SDimitry Andric       // which instructions inside it might belong), propagate those scopes to
8930b57cec5SDimitry Andric       // the inlined instructions.
894*5ffd83dbSDimitry Andric       if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_alias_scope))
8950b57cec5SDimitry Andric         NewMD = MDNode::concatenate(NewMD, CSM);
8960b57cec5SDimitry Andric       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
8970b57cec5SDimitry Andric     } else if (NI->mayReadOrWriteMemory()) {
898*5ffd83dbSDimitry Andric       if (MDNode *M = CB.getMetadata(LLVMContext::MD_alias_scope))
8990b57cec5SDimitry Andric         NI->setMetadata(LLVMContext::MD_alias_scope, M);
9000b57cec5SDimitry Andric     }
9010b57cec5SDimitry Andric 
9020b57cec5SDimitry Andric     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
9030b57cec5SDimitry Andric       MDNode *NewMD = MDMap[M];
9040b57cec5SDimitry Andric       // If the call site also had noalias metadata (a list of scopes with
9050b57cec5SDimitry Andric       // which instructions inside it don't alias), propagate those scopes to
9060b57cec5SDimitry Andric       // the inlined instructions.
907*5ffd83dbSDimitry Andric       if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_noalias))
9080b57cec5SDimitry Andric         NewMD = MDNode::concatenate(NewMD, CSM);
9090b57cec5SDimitry Andric       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
9100b57cec5SDimitry Andric     } else if (NI->mayReadOrWriteMemory()) {
911*5ffd83dbSDimitry Andric       if (MDNode *M = CB.getMetadata(LLVMContext::MD_noalias))
9120b57cec5SDimitry Andric         NI->setMetadata(LLVMContext::MD_noalias, M);
9130b57cec5SDimitry Andric     }
9140b57cec5SDimitry Andric   }
9150b57cec5SDimitry Andric }
9160b57cec5SDimitry Andric 
9170b57cec5SDimitry Andric /// If the inlined function has noalias arguments,
9180b57cec5SDimitry Andric /// then add new alias scopes for each noalias argument, tag the mapped noalias
9190b57cec5SDimitry Andric /// parameters with noalias metadata specifying the new scope, and tag all
9200b57cec5SDimitry Andric /// non-derived loads, stores and memory intrinsics with the new alias scopes.
921*5ffd83dbSDimitry Andric static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
9220b57cec5SDimitry Andric                                   const DataLayout &DL, AAResults *CalleeAAR) {
9230b57cec5SDimitry Andric   if (!EnableNoAliasConversion)
9240b57cec5SDimitry Andric     return;
9250b57cec5SDimitry Andric 
926*5ffd83dbSDimitry Andric   const Function *CalledFunc = CB.getCalledFunction();
9270b57cec5SDimitry Andric   SmallVector<const Argument *, 4> NoAliasArgs;
9280b57cec5SDimitry Andric 
9290b57cec5SDimitry Andric   for (const Argument &Arg : CalledFunc->args())
930*5ffd83dbSDimitry Andric     if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
9310b57cec5SDimitry Andric       NoAliasArgs.push_back(&Arg);
9320b57cec5SDimitry Andric 
9330b57cec5SDimitry Andric   if (NoAliasArgs.empty())
9340b57cec5SDimitry Andric     return;
9350b57cec5SDimitry Andric 
9360b57cec5SDimitry Andric   // To do a good job, if a noalias variable is captured, we need to know if
9370b57cec5SDimitry Andric   // the capture point dominates the particular use we're considering.
9380b57cec5SDimitry Andric   DominatorTree DT;
9390b57cec5SDimitry Andric   DT.recalculate(const_cast<Function&>(*CalledFunc));
9400b57cec5SDimitry Andric 
9410b57cec5SDimitry Andric   // noalias indicates that pointer values based on the argument do not alias
9420b57cec5SDimitry Andric   // pointer values which are not based on it. So we add a new "scope" for each
9430b57cec5SDimitry Andric   // noalias function argument. Accesses using pointers based on that argument
9440b57cec5SDimitry Andric   // become part of that alias scope, accesses using pointers not based on that
9450b57cec5SDimitry Andric   // argument are tagged as noalias with that scope.
9460b57cec5SDimitry Andric 
9470b57cec5SDimitry Andric   DenseMap<const Argument *, MDNode *> NewScopes;
9480b57cec5SDimitry Andric   MDBuilder MDB(CalledFunc->getContext());
9490b57cec5SDimitry Andric 
9500b57cec5SDimitry Andric   // Create a new scope domain for this function.
9510b57cec5SDimitry Andric   MDNode *NewDomain =
9520b57cec5SDimitry Andric     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
9530b57cec5SDimitry Andric   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
9540b57cec5SDimitry Andric     const Argument *A = NoAliasArgs[i];
9550b57cec5SDimitry Andric 
956*5ffd83dbSDimitry Andric     std::string Name = std::string(CalledFunc->getName());
9570b57cec5SDimitry Andric     if (A->hasName()) {
9580b57cec5SDimitry Andric       Name += ": %";
9590b57cec5SDimitry Andric       Name += A->getName();
9600b57cec5SDimitry Andric     } else {
9610b57cec5SDimitry Andric       Name += ": argument ";
9620b57cec5SDimitry Andric       Name += utostr(i);
9630b57cec5SDimitry Andric     }
9640b57cec5SDimitry Andric 
9650b57cec5SDimitry Andric     // Note: We always create a new anonymous root here. This is true regardless
9660b57cec5SDimitry Andric     // of the linkage of the callee because the aliasing "scope" is not just a
9670b57cec5SDimitry Andric     // property of the callee, but also all control dependencies in the caller.
9680b57cec5SDimitry Andric     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
9690b57cec5SDimitry Andric     NewScopes.insert(std::make_pair(A, NewScope));
9700b57cec5SDimitry Andric   }
9710b57cec5SDimitry Andric 
9720b57cec5SDimitry Andric   // Iterate over all new instructions in the map; for all memory-access
9730b57cec5SDimitry Andric   // instructions, add the alias scope metadata.
9740b57cec5SDimitry Andric   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
9750b57cec5SDimitry Andric        VMI != VMIE; ++VMI) {
9760b57cec5SDimitry Andric     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
9770b57cec5SDimitry Andric       if (!VMI->second)
9780b57cec5SDimitry Andric         continue;
9790b57cec5SDimitry Andric 
9800b57cec5SDimitry Andric       Instruction *NI = dyn_cast<Instruction>(VMI->second);
9810b57cec5SDimitry Andric       if (!NI)
9820b57cec5SDimitry Andric         continue;
9830b57cec5SDimitry Andric 
9840b57cec5SDimitry Andric       bool IsArgMemOnlyCall = false, IsFuncCall = false;
9850b57cec5SDimitry Andric       SmallVector<const Value *, 2> PtrArgs;
9860b57cec5SDimitry Andric 
9870b57cec5SDimitry Andric       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
9880b57cec5SDimitry Andric         PtrArgs.push_back(LI->getPointerOperand());
9890b57cec5SDimitry Andric       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
9900b57cec5SDimitry Andric         PtrArgs.push_back(SI->getPointerOperand());
9910b57cec5SDimitry Andric       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
9920b57cec5SDimitry Andric         PtrArgs.push_back(VAAI->getPointerOperand());
9930b57cec5SDimitry Andric       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
9940b57cec5SDimitry Andric         PtrArgs.push_back(CXI->getPointerOperand());
9950b57cec5SDimitry Andric       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
9960b57cec5SDimitry Andric         PtrArgs.push_back(RMWI->getPointerOperand());
9970b57cec5SDimitry Andric       else if (const auto *Call = dyn_cast<CallBase>(I)) {
9980b57cec5SDimitry Andric         // If we know that the call does not access memory, then we'll still
9990b57cec5SDimitry Andric         // know that about the inlined clone of this call site, and we don't
10000b57cec5SDimitry Andric         // need to add metadata.
10010b57cec5SDimitry Andric         if (Call->doesNotAccessMemory())
10020b57cec5SDimitry Andric           continue;
10030b57cec5SDimitry Andric 
10040b57cec5SDimitry Andric         IsFuncCall = true;
10050b57cec5SDimitry Andric         if (CalleeAAR) {
10060b57cec5SDimitry Andric           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1007*5ffd83dbSDimitry Andric           if (AAResults::onlyAccessesArgPointees(MRB))
10080b57cec5SDimitry Andric             IsArgMemOnlyCall = true;
10090b57cec5SDimitry Andric         }
10100b57cec5SDimitry Andric 
10110b57cec5SDimitry Andric         for (Value *Arg : Call->args()) {
10120b57cec5SDimitry Andric           // We need to check the underlying objects of all arguments, not just
10130b57cec5SDimitry Andric           // the pointer arguments, because we might be passing pointers as
10140b57cec5SDimitry Andric           // integers, etc.
10150b57cec5SDimitry Andric           // However, if we know that the call only accesses pointer arguments,
10160b57cec5SDimitry Andric           // then we only need to check the pointer arguments.
10170b57cec5SDimitry Andric           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
10180b57cec5SDimitry Andric             continue;
10190b57cec5SDimitry Andric 
10200b57cec5SDimitry Andric           PtrArgs.push_back(Arg);
10210b57cec5SDimitry Andric         }
10220b57cec5SDimitry Andric       }
10230b57cec5SDimitry Andric 
10240b57cec5SDimitry Andric       // If we found no pointers, then this instruction is not suitable for
10250b57cec5SDimitry Andric       // pairing with an instruction to receive aliasing metadata.
10260b57cec5SDimitry Andric       // However, if this is a call, this we might just alias with none of the
10270b57cec5SDimitry Andric       // noalias arguments.
10280b57cec5SDimitry Andric       if (PtrArgs.empty() && !IsFuncCall)
10290b57cec5SDimitry Andric         continue;
10300b57cec5SDimitry Andric 
10310b57cec5SDimitry Andric       // It is possible that there is only one underlying object, but you
10320b57cec5SDimitry Andric       // need to go through several PHIs to see it, and thus could be
10330b57cec5SDimitry Andric       // repeated in the Objects list.
10340b57cec5SDimitry Andric       SmallPtrSet<const Value *, 4> ObjSet;
10350b57cec5SDimitry Andric       SmallVector<Metadata *, 4> Scopes, NoAliases;
10360b57cec5SDimitry Andric 
10370b57cec5SDimitry Andric       SmallSetVector<const Argument *, 4> NAPtrArgs;
10380b57cec5SDimitry Andric       for (const Value *V : PtrArgs) {
10390b57cec5SDimitry Andric         SmallVector<const Value *, 4> Objects;
10400b57cec5SDimitry Andric         GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr);
10410b57cec5SDimitry Andric 
10420b57cec5SDimitry Andric         for (const Value *O : Objects)
10430b57cec5SDimitry Andric           ObjSet.insert(O);
10440b57cec5SDimitry Andric       }
10450b57cec5SDimitry Andric 
10460b57cec5SDimitry Andric       // Figure out if we're derived from anything that is not a noalias
10470b57cec5SDimitry Andric       // argument.
10480b57cec5SDimitry Andric       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
10490b57cec5SDimitry Andric       for (const Value *V : ObjSet) {
10500b57cec5SDimitry Andric         // Is this value a constant that cannot be derived from any pointer
10510b57cec5SDimitry Andric         // value (we need to exclude constant expressions, for example, that
10520b57cec5SDimitry Andric         // are formed from arithmetic on global symbols).
10530b57cec5SDimitry Andric         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
10540b57cec5SDimitry Andric                              isa<ConstantPointerNull>(V) ||
10550b57cec5SDimitry Andric                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
10560b57cec5SDimitry Andric         if (IsNonPtrConst)
10570b57cec5SDimitry Andric           continue;
10580b57cec5SDimitry Andric 
10590b57cec5SDimitry Andric         // If this is anything other than a noalias argument, then we cannot
10600b57cec5SDimitry Andric         // completely describe the aliasing properties using alias.scope
10610b57cec5SDimitry Andric         // metadata (and, thus, won't add any).
10620b57cec5SDimitry Andric         if (const Argument *A = dyn_cast<Argument>(V)) {
1063*5ffd83dbSDimitry Andric           if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
10640b57cec5SDimitry Andric             UsesAliasingPtr = true;
10650b57cec5SDimitry Andric         } else {
10660b57cec5SDimitry Andric           UsesAliasingPtr = true;
10670b57cec5SDimitry Andric         }
10680b57cec5SDimitry Andric 
10690b57cec5SDimitry Andric         // If this is not some identified function-local object (which cannot
10700b57cec5SDimitry Andric         // directly alias a noalias argument), or some other argument (which,
10710b57cec5SDimitry Andric         // by definition, also cannot alias a noalias argument), then we could
10720b57cec5SDimitry Andric         // alias a noalias argument that has been captured).
10730b57cec5SDimitry Andric         if (!isa<Argument>(V) &&
10740b57cec5SDimitry Andric             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
10750b57cec5SDimitry Andric           CanDeriveViaCapture = true;
10760b57cec5SDimitry Andric       }
10770b57cec5SDimitry Andric 
10780b57cec5SDimitry Andric       // A function call can always get captured noalias pointers (via other
10790b57cec5SDimitry Andric       // parameters, globals, etc.).
10800b57cec5SDimitry Andric       if (IsFuncCall && !IsArgMemOnlyCall)
10810b57cec5SDimitry Andric         CanDeriveViaCapture = true;
10820b57cec5SDimitry Andric 
10830b57cec5SDimitry Andric       // First, we want to figure out all of the sets with which we definitely
10840b57cec5SDimitry Andric       // don't alias. Iterate over all noalias set, and add those for which:
10850b57cec5SDimitry Andric       //   1. The noalias argument is not in the set of objects from which we
10860b57cec5SDimitry Andric       //      definitely derive.
10870b57cec5SDimitry Andric       //   2. The noalias argument has not yet been captured.
10880b57cec5SDimitry Andric       // An arbitrary function that might load pointers could see captured
10890b57cec5SDimitry Andric       // noalias arguments via other noalias arguments or globals, and so we
10900b57cec5SDimitry Andric       // must always check for prior capture.
10910b57cec5SDimitry Andric       for (const Argument *A : NoAliasArgs) {
10920b57cec5SDimitry Andric         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
10930b57cec5SDimitry Andric                                  // It might be tempting to skip the
10940b57cec5SDimitry Andric                                  // PointerMayBeCapturedBefore check if
10950b57cec5SDimitry Andric                                  // A->hasNoCaptureAttr() is true, but this is
10960b57cec5SDimitry Andric                                  // incorrect because nocapture only guarantees
10970b57cec5SDimitry Andric                                  // that no copies outlive the function, not
10980b57cec5SDimitry Andric                                  // that the value cannot be locally captured.
10990b57cec5SDimitry Andric                                  !PointerMayBeCapturedBefore(A,
11000b57cec5SDimitry Andric                                    /* ReturnCaptures */ false,
11010b57cec5SDimitry Andric                                    /* StoreCaptures */ false, I, &DT)))
11020b57cec5SDimitry Andric           NoAliases.push_back(NewScopes[A]);
11030b57cec5SDimitry Andric       }
11040b57cec5SDimitry Andric 
11050b57cec5SDimitry Andric       if (!NoAliases.empty())
11060b57cec5SDimitry Andric         NI->setMetadata(LLVMContext::MD_noalias,
11070b57cec5SDimitry Andric                         MDNode::concatenate(
11080b57cec5SDimitry Andric                             NI->getMetadata(LLVMContext::MD_noalias),
11090b57cec5SDimitry Andric                             MDNode::get(CalledFunc->getContext(), NoAliases)));
11100b57cec5SDimitry Andric 
11110b57cec5SDimitry Andric       // Next, we want to figure out all of the sets to which we might belong.
11120b57cec5SDimitry Andric       // We might belong to a set if the noalias argument is in the set of
11130b57cec5SDimitry Andric       // underlying objects. If there is some non-noalias argument in our list
11140b57cec5SDimitry Andric       // of underlying objects, then we cannot add a scope because the fact
11150b57cec5SDimitry Andric       // that some access does not alias with any set of our noalias arguments
11160b57cec5SDimitry Andric       // cannot itself guarantee that it does not alias with this access
11170b57cec5SDimitry Andric       // (because there is some pointer of unknown origin involved and the
11180b57cec5SDimitry Andric       // other access might also depend on this pointer). We also cannot add
11190b57cec5SDimitry Andric       // scopes to arbitrary functions unless we know they don't access any
11200b57cec5SDimitry Andric       // non-parameter pointer-values.
11210b57cec5SDimitry Andric       bool CanAddScopes = !UsesAliasingPtr;
11220b57cec5SDimitry Andric       if (CanAddScopes && IsFuncCall)
11230b57cec5SDimitry Andric         CanAddScopes = IsArgMemOnlyCall;
11240b57cec5SDimitry Andric 
11250b57cec5SDimitry Andric       if (CanAddScopes)
11260b57cec5SDimitry Andric         for (const Argument *A : NoAliasArgs) {
11270b57cec5SDimitry Andric           if (ObjSet.count(A))
11280b57cec5SDimitry Andric             Scopes.push_back(NewScopes[A]);
11290b57cec5SDimitry Andric         }
11300b57cec5SDimitry Andric 
11310b57cec5SDimitry Andric       if (!Scopes.empty())
11320b57cec5SDimitry Andric         NI->setMetadata(
11330b57cec5SDimitry Andric             LLVMContext::MD_alias_scope,
11340b57cec5SDimitry Andric             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
11350b57cec5SDimitry Andric                                 MDNode::get(CalledFunc->getContext(), Scopes)));
11360b57cec5SDimitry Andric     }
11370b57cec5SDimitry Andric   }
11380b57cec5SDimitry Andric }
11390b57cec5SDimitry Andric 
1140*5ffd83dbSDimitry Andric static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1141*5ffd83dbSDimitry Andric                                             Instruction *End) {
1142*5ffd83dbSDimitry Andric 
1143*5ffd83dbSDimitry Andric   assert(Begin->getParent() == End->getParent() &&
1144*5ffd83dbSDimitry Andric          "Expected to be in same basic block!");
1145*5ffd83dbSDimitry Andric   unsigned NumInstChecked = 0;
1146*5ffd83dbSDimitry Andric   // Check that all instructions in the range [Begin, End) are guaranteed to
1147*5ffd83dbSDimitry Andric   // transfer execution to successor.
1148*5ffd83dbSDimitry Andric   for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
1149*5ffd83dbSDimitry Andric     if (NumInstChecked++ > InlinerAttributeWindow ||
1150*5ffd83dbSDimitry Andric         !isGuaranteedToTransferExecutionToSuccessor(&I))
1151*5ffd83dbSDimitry Andric       return true;
1152*5ffd83dbSDimitry Andric   return false;
1153*5ffd83dbSDimitry Andric }
1154*5ffd83dbSDimitry Andric 
1155*5ffd83dbSDimitry Andric static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1156*5ffd83dbSDimitry Andric 
1157*5ffd83dbSDimitry Andric   AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1158*5ffd83dbSDimitry Andric   if (AB.empty())
1159*5ffd83dbSDimitry Andric     return AB;
1160*5ffd83dbSDimitry Andric   AttrBuilder Valid;
1161*5ffd83dbSDimitry Andric   // Only allow these white listed attributes to be propagated back to the
1162*5ffd83dbSDimitry Andric   // callee. This is because other attributes may only be valid on the call
1163*5ffd83dbSDimitry Andric   // itself, i.e. attributes such as signext and zeroext.
1164*5ffd83dbSDimitry Andric   if (auto DerefBytes = AB.getDereferenceableBytes())
1165*5ffd83dbSDimitry Andric     Valid.addDereferenceableAttr(DerefBytes);
1166*5ffd83dbSDimitry Andric   if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1167*5ffd83dbSDimitry Andric     Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1168*5ffd83dbSDimitry Andric   if (AB.contains(Attribute::NoAlias))
1169*5ffd83dbSDimitry Andric     Valid.addAttribute(Attribute::NoAlias);
1170*5ffd83dbSDimitry Andric   if (AB.contains(Attribute::NonNull))
1171*5ffd83dbSDimitry Andric     Valid.addAttribute(Attribute::NonNull);
1172*5ffd83dbSDimitry Andric   return Valid;
1173*5ffd83dbSDimitry Andric }
1174*5ffd83dbSDimitry Andric 
1175*5ffd83dbSDimitry Andric static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1176*5ffd83dbSDimitry Andric   if (!UpdateReturnAttributes)
1177*5ffd83dbSDimitry Andric     return;
1178*5ffd83dbSDimitry Andric 
1179*5ffd83dbSDimitry Andric   AttrBuilder Valid = IdentifyValidAttributes(CB);
1180*5ffd83dbSDimitry Andric   if (Valid.empty())
1181*5ffd83dbSDimitry Andric     return;
1182*5ffd83dbSDimitry Andric   auto *CalledFunction = CB.getCalledFunction();
1183*5ffd83dbSDimitry Andric   auto &Context = CalledFunction->getContext();
1184*5ffd83dbSDimitry Andric 
1185*5ffd83dbSDimitry Andric   for (auto &BB : *CalledFunction) {
1186*5ffd83dbSDimitry Andric     auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1187*5ffd83dbSDimitry Andric     if (!RI || !isa<CallBase>(RI->getOperand(0)))
1188*5ffd83dbSDimitry Andric       continue;
1189*5ffd83dbSDimitry Andric     auto *RetVal = cast<CallBase>(RI->getOperand(0));
1190*5ffd83dbSDimitry Andric     // Sanity check that the cloned RetVal exists and is a call, otherwise we
1191*5ffd83dbSDimitry Andric     // cannot add the attributes on the cloned RetVal.
1192*5ffd83dbSDimitry Andric     // Simplification during inlining could have transformed the cloned
1193*5ffd83dbSDimitry Andric     // instruction.
1194*5ffd83dbSDimitry Andric     auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1195*5ffd83dbSDimitry Andric     if (!NewRetVal)
1196*5ffd83dbSDimitry Andric       continue;
1197*5ffd83dbSDimitry Andric     // Backward propagation of attributes to the returned value may be incorrect
1198*5ffd83dbSDimitry Andric     // if it is control flow dependent.
1199*5ffd83dbSDimitry Andric     // Consider:
1200*5ffd83dbSDimitry Andric     // @callee {
1201*5ffd83dbSDimitry Andric     //  %rv = call @foo()
1202*5ffd83dbSDimitry Andric     //  %rv2 = call @bar()
1203*5ffd83dbSDimitry Andric     //  if (%rv2 != null)
1204*5ffd83dbSDimitry Andric     //    return %rv2
1205*5ffd83dbSDimitry Andric     //  if (%rv == null)
1206*5ffd83dbSDimitry Andric     //    exit()
1207*5ffd83dbSDimitry Andric     //  return %rv
1208*5ffd83dbSDimitry Andric     // }
1209*5ffd83dbSDimitry Andric     // caller() {
1210*5ffd83dbSDimitry Andric     //   %val = call nonnull @callee()
1211*5ffd83dbSDimitry Andric     // }
1212*5ffd83dbSDimitry Andric     // Here we cannot add the nonnull attribute on either foo or bar. So, we
1213*5ffd83dbSDimitry Andric     // limit the check to both RetVal and RI are in the same basic block and
1214*5ffd83dbSDimitry Andric     // there are no throwing/exiting instructions between these instructions.
1215*5ffd83dbSDimitry Andric     if (RI->getParent() != RetVal->getParent() ||
1216*5ffd83dbSDimitry Andric         MayContainThrowingOrExitingCall(RetVal, RI))
1217*5ffd83dbSDimitry Andric       continue;
1218*5ffd83dbSDimitry Andric     // Add to the existing attributes of NewRetVal, i.e. the cloned call
1219*5ffd83dbSDimitry Andric     // instruction.
1220*5ffd83dbSDimitry Andric     // NB! When we have the same attribute already existing on NewRetVal, but
1221*5ffd83dbSDimitry Andric     // with a differing value, the AttributeList's merge API honours the already
1222*5ffd83dbSDimitry Andric     // existing attribute value (i.e. attributes such as dereferenceable,
1223*5ffd83dbSDimitry Andric     // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1224*5ffd83dbSDimitry Andric     AttributeList AL = NewRetVal->getAttributes();
1225*5ffd83dbSDimitry Andric     AttributeList NewAL =
1226*5ffd83dbSDimitry Andric         AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
1227*5ffd83dbSDimitry Andric     NewRetVal->setAttributes(NewAL);
1228*5ffd83dbSDimitry Andric   }
1229*5ffd83dbSDimitry Andric }
1230*5ffd83dbSDimitry Andric 
12310b57cec5SDimitry Andric /// If the inlined function has non-byval align arguments, then
12320b57cec5SDimitry Andric /// add @llvm.assume-based alignment assumptions to preserve this information.
1233*5ffd83dbSDimitry Andric static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
12340b57cec5SDimitry Andric   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
12350b57cec5SDimitry Andric     return;
12360b57cec5SDimitry Andric 
1237*5ffd83dbSDimitry Andric   AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1238*5ffd83dbSDimitry Andric   auto &DL = CB.getCaller()->getParent()->getDataLayout();
12390b57cec5SDimitry Andric 
12400b57cec5SDimitry Andric   // To avoid inserting redundant assumptions, we should check for assumptions
12410b57cec5SDimitry Andric   // already in the caller. To do this, we might need a DT of the caller.
12420b57cec5SDimitry Andric   DominatorTree DT;
12430b57cec5SDimitry Andric   bool DTCalculated = false;
12440b57cec5SDimitry Andric 
1245*5ffd83dbSDimitry Andric   Function *CalledFunc = CB.getCalledFunction();
12460b57cec5SDimitry Andric   for (Argument &Arg : CalledFunc->args()) {
12470b57cec5SDimitry Andric     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1248*5ffd83dbSDimitry Andric     if (Align && !Arg.hasPassPointeeByValueAttr() && !Arg.hasNUses(0)) {
12490b57cec5SDimitry Andric       if (!DTCalculated) {
1250*5ffd83dbSDimitry Andric         DT.recalculate(*CB.getCaller());
12510b57cec5SDimitry Andric         DTCalculated = true;
12520b57cec5SDimitry Andric       }
12530b57cec5SDimitry Andric 
12540b57cec5SDimitry Andric       // If we can already prove the asserted alignment in the context of the
12550b57cec5SDimitry Andric       // caller, then don't bother inserting the assumption.
1256*5ffd83dbSDimitry Andric       Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1257*5ffd83dbSDimitry Andric       if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
12580b57cec5SDimitry Andric         continue;
12590b57cec5SDimitry Andric 
1260*5ffd83dbSDimitry Andric       CallInst *NewAsmp =
1261*5ffd83dbSDimitry Andric           IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
12620b57cec5SDimitry Andric       AC->registerAssumption(NewAsmp);
12630b57cec5SDimitry Andric     }
12640b57cec5SDimitry Andric   }
12650b57cec5SDimitry Andric }
12660b57cec5SDimitry Andric 
12670b57cec5SDimitry Andric /// Once we have cloned code over from a callee into the caller,
12680b57cec5SDimitry Andric /// update the specified callgraph to reflect the changes we made.
12690b57cec5SDimitry Andric /// Note that it's possible that not all code was copied over, so only
12700b57cec5SDimitry Andric /// some edges of the callgraph may remain.
1271*5ffd83dbSDimitry Andric static void UpdateCallGraphAfterInlining(CallBase &CB,
12720b57cec5SDimitry Andric                                          Function::iterator FirstNewBlock,
12730b57cec5SDimitry Andric                                          ValueToValueMapTy &VMap,
12740b57cec5SDimitry Andric                                          InlineFunctionInfo &IFI) {
12750b57cec5SDimitry Andric   CallGraph &CG = *IFI.CG;
1276*5ffd83dbSDimitry Andric   const Function *Caller = CB.getCaller();
1277*5ffd83dbSDimitry Andric   const Function *Callee = CB.getCalledFunction();
12780b57cec5SDimitry Andric   CallGraphNode *CalleeNode = CG[Callee];
12790b57cec5SDimitry Andric   CallGraphNode *CallerNode = CG[Caller];
12800b57cec5SDimitry Andric 
12810b57cec5SDimitry Andric   // Since we inlined some uninlined call sites in the callee into the caller,
12820b57cec5SDimitry Andric   // add edges from the caller to all of the callees of the callee.
12830b57cec5SDimitry Andric   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
12840b57cec5SDimitry Andric 
12850b57cec5SDimitry Andric   // Consider the case where CalleeNode == CallerNode.
12860b57cec5SDimitry Andric   CallGraphNode::CalledFunctionsVector CallCache;
12870b57cec5SDimitry Andric   if (CalleeNode == CallerNode) {
12880b57cec5SDimitry Andric     CallCache.assign(I, E);
12890b57cec5SDimitry Andric     I = CallCache.begin();
12900b57cec5SDimitry Andric     E = CallCache.end();
12910b57cec5SDimitry Andric   }
12920b57cec5SDimitry Andric 
12930b57cec5SDimitry Andric   for (; I != E; ++I) {
1294*5ffd83dbSDimitry Andric     // Skip 'refererence' call records.
1295*5ffd83dbSDimitry Andric     if (!I->first)
1296*5ffd83dbSDimitry Andric       continue;
1297*5ffd83dbSDimitry Andric 
1298*5ffd83dbSDimitry Andric     const Value *OrigCall = *I->first;
12990b57cec5SDimitry Andric 
13000b57cec5SDimitry Andric     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
13010b57cec5SDimitry Andric     // Only copy the edge if the call was inlined!
13020b57cec5SDimitry Andric     if (VMI == VMap.end() || VMI->second == nullptr)
13030b57cec5SDimitry Andric       continue;
13040b57cec5SDimitry Andric 
13050b57cec5SDimitry Andric     // If the call was inlined, but then constant folded, there is no edge to
13060b57cec5SDimitry Andric     // add.  Check for this case.
13070b57cec5SDimitry Andric     auto *NewCall = dyn_cast<CallBase>(VMI->second);
13080b57cec5SDimitry Andric     if (!NewCall)
13090b57cec5SDimitry Andric       continue;
13100b57cec5SDimitry Andric 
13110b57cec5SDimitry Andric     // We do not treat intrinsic calls like real function calls because we
13120b57cec5SDimitry Andric     // expect them to become inline code; do not add an edge for an intrinsic.
13130b57cec5SDimitry Andric     if (NewCall->getCalledFunction() &&
13140b57cec5SDimitry Andric         NewCall->getCalledFunction()->isIntrinsic())
13150b57cec5SDimitry Andric       continue;
13160b57cec5SDimitry Andric 
13170b57cec5SDimitry Andric     // Remember that this call site got inlined for the client of
13180b57cec5SDimitry Andric     // InlineFunction.
13190b57cec5SDimitry Andric     IFI.InlinedCalls.push_back(NewCall);
13200b57cec5SDimitry Andric 
13210b57cec5SDimitry Andric     // It's possible that inlining the callsite will cause it to go from an
13220b57cec5SDimitry Andric     // indirect to a direct call by resolving a function pointer.  If this
13230b57cec5SDimitry Andric     // happens, set the callee of the new call site to a more precise
13240b57cec5SDimitry Andric     // destination.  This can also happen if the call graph node of the caller
13250b57cec5SDimitry Andric     // was just unnecessarily imprecise.
13260b57cec5SDimitry Andric     if (!I->second->getFunction())
13270b57cec5SDimitry Andric       if (Function *F = NewCall->getCalledFunction()) {
13280b57cec5SDimitry Andric         // Indirect call site resolved to direct call.
13290b57cec5SDimitry Andric         CallerNode->addCalledFunction(NewCall, CG[F]);
13300b57cec5SDimitry Andric 
13310b57cec5SDimitry Andric         continue;
13320b57cec5SDimitry Andric       }
13330b57cec5SDimitry Andric 
13340b57cec5SDimitry Andric     CallerNode->addCalledFunction(NewCall, I->second);
13350b57cec5SDimitry Andric   }
13360b57cec5SDimitry Andric 
13370b57cec5SDimitry Andric   // Update the call graph by deleting the edge from Callee to Caller.  We must
13380b57cec5SDimitry Andric   // do this after the loop above in case Caller and Callee are the same.
1339*5ffd83dbSDimitry Andric   CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
13400b57cec5SDimitry Andric }
13410b57cec5SDimitry Andric 
13420b57cec5SDimitry Andric static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
13430b57cec5SDimitry Andric                                     BasicBlock *InsertBlock,
13440b57cec5SDimitry Andric                                     InlineFunctionInfo &IFI) {
13450b57cec5SDimitry Andric   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
13460b57cec5SDimitry Andric   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
13470b57cec5SDimitry Andric 
13480b57cec5SDimitry Andric   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
13490b57cec5SDimitry Andric 
13500b57cec5SDimitry Andric   // Always generate a memcpy of alignment 1 here because we don't know
13510b57cec5SDimitry Andric   // the alignment of the src pointer.  Other optimizations can infer
13520b57cec5SDimitry Andric   // better alignment.
1353*5ffd83dbSDimitry Andric   Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1354*5ffd83dbSDimitry Andric                        /*SrcAlign*/ Align(1), Size);
13550b57cec5SDimitry Andric }
13560b57cec5SDimitry Andric 
13570b57cec5SDimitry Andric /// When inlining a call site that has a byval argument,
13580b57cec5SDimitry Andric /// we have to make the implicit memcpy explicit by adding it.
13590b57cec5SDimitry Andric static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
13600b57cec5SDimitry Andric                                   const Function *CalledFunc,
13610b57cec5SDimitry Andric                                   InlineFunctionInfo &IFI,
13620b57cec5SDimitry Andric                                   unsigned ByValAlignment) {
13630b57cec5SDimitry Andric   PointerType *ArgTy = cast<PointerType>(Arg->getType());
13640b57cec5SDimitry Andric   Type *AggTy = ArgTy->getElementType();
13650b57cec5SDimitry Andric 
13660b57cec5SDimitry Andric   Function *Caller = TheCall->getFunction();
13670b57cec5SDimitry Andric   const DataLayout &DL = Caller->getParent()->getDataLayout();
13680b57cec5SDimitry Andric 
13690b57cec5SDimitry Andric   // If the called function is readonly, then it could not mutate the caller's
13700b57cec5SDimitry Andric   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
13710b57cec5SDimitry Andric   // temporary.
13720b57cec5SDimitry Andric   if (CalledFunc->onlyReadsMemory()) {
13730b57cec5SDimitry Andric     // If the byval argument has a specified alignment that is greater than the
13740b57cec5SDimitry Andric     // passed in pointer, then we either have to round up the input pointer or
13750b57cec5SDimitry Andric     // give up on this transformation.
13760b57cec5SDimitry Andric     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
13770b57cec5SDimitry Andric       return Arg;
13780b57cec5SDimitry Andric 
13790b57cec5SDimitry Andric     AssumptionCache *AC =
1380*5ffd83dbSDimitry Andric         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
13810b57cec5SDimitry Andric 
13820b57cec5SDimitry Andric     // If the pointer is already known to be sufficiently aligned, or if we can
13830b57cec5SDimitry Andric     // round it up to a larger alignment, then we don't need a temporary.
1384*5ffd83dbSDimitry Andric     if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1385*5ffd83dbSDimitry Andric                                    AC) >= ByValAlignment)
13860b57cec5SDimitry Andric       return Arg;
13870b57cec5SDimitry Andric 
13880b57cec5SDimitry Andric     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
13890b57cec5SDimitry Andric     // for code quality, but rarely happens and is required for correctness.
13900b57cec5SDimitry Andric   }
13910b57cec5SDimitry Andric 
13920b57cec5SDimitry Andric   // Create the alloca.  If we have DataLayout, use nice alignment.
1393480093f4SDimitry Andric   Align Alignment(DL.getPrefTypeAlignment(AggTy));
13940b57cec5SDimitry Andric 
13950b57cec5SDimitry Andric   // If the byval had an alignment specified, we *must* use at least that
13960b57cec5SDimitry Andric   // alignment, as it is required by the byval argument (and uses of the
13970b57cec5SDimitry Andric   // pointer inside the callee).
1398480093f4SDimitry Andric   Alignment = max(Alignment, MaybeAlign(ByValAlignment));
13990b57cec5SDimitry Andric 
1400480093f4SDimitry Andric   Value *NewAlloca =
1401480093f4SDimitry Andric       new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1402480093f4SDimitry Andric                      Arg->getName(), &*Caller->begin()->begin());
14030b57cec5SDimitry Andric   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
14040b57cec5SDimitry Andric 
14050b57cec5SDimitry Andric   // Uses of the argument in the function should use our new alloca
14060b57cec5SDimitry Andric   // instead.
14070b57cec5SDimitry Andric   return NewAlloca;
14080b57cec5SDimitry Andric }
14090b57cec5SDimitry Andric 
14100b57cec5SDimitry Andric // Check whether this Value is used by a lifetime intrinsic.
14110b57cec5SDimitry Andric static bool isUsedByLifetimeMarker(Value *V) {
14120b57cec5SDimitry Andric   for (User *U : V->users())
14130b57cec5SDimitry Andric     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
14140b57cec5SDimitry Andric       if (II->isLifetimeStartOrEnd())
14150b57cec5SDimitry Andric         return true;
14160b57cec5SDimitry Andric   return false;
14170b57cec5SDimitry Andric }
14180b57cec5SDimitry Andric 
14190b57cec5SDimitry Andric // Check whether the given alloca already has
14200b57cec5SDimitry Andric // lifetime.start or lifetime.end intrinsics.
14210b57cec5SDimitry Andric static bool hasLifetimeMarkers(AllocaInst *AI) {
14220b57cec5SDimitry Andric   Type *Ty = AI->getType();
14230b57cec5SDimitry Andric   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
14240b57cec5SDimitry Andric                                        Ty->getPointerAddressSpace());
14250b57cec5SDimitry Andric   if (Ty == Int8PtrTy)
14260b57cec5SDimitry Andric     return isUsedByLifetimeMarker(AI);
14270b57cec5SDimitry Andric 
14280b57cec5SDimitry Andric   // Do a scan to find all the casts to i8*.
14290b57cec5SDimitry Andric   for (User *U : AI->users()) {
14300b57cec5SDimitry Andric     if (U->getType() != Int8PtrTy) continue;
14310b57cec5SDimitry Andric     if (U->stripPointerCasts() != AI) continue;
14320b57cec5SDimitry Andric     if (isUsedByLifetimeMarker(U))
14330b57cec5SDimitry Andric       return true;
14340b57cec5SDimitry Andric   }
14350b57cec5SDimitry Andric   return false;
14360b57cec5SDimitry Andric }
14370b57cec5SDimitry Andric 
14380b57cec5SDimitry Andric /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
14390b57cec5SDimitry Andric /// block. Allocas used in inalloca calls and allocas of dynamic array size
14400b57cec5SDimitry Andric /// cannot be static.
14410b57cec5SDimitry Andric static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
14420b57cec5SDimitry Andric   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
14430b57cec5SDimitry Andric }
14440b57cec5SDimitry Andric 
14450b57cec5SDimitry Andric /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
14460b57cec5SDimitry Andric /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
14470b57cec5SDimitry Andric static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
14480b57cec5SDimitry Andric                                LLVMContext &Ctx,
14490b57cec5SDimitry Andric                                DenseMap<const MDNode *, MDNode *> &IANodes) {
14500b57cec5SDimitry Andric   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
14510b57cec5SDimitry Andric   return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(),
14520b57cec5SDimitry Andric                        IA);
14530b57cec5SDimitry Andric }
14540b57cec5SDimitry Andric 
14550b57cec5SDimitry Andric /// Update inlined instructions' line numbers to
14560b57cec5SDimitry Andric /// to encode location where these instructions are inlined.
14570b57cec5SDimitry Andric static void fixupLineNumbers(Function *Fn, Function::iterator FI,
14580b57cec5SDimitry Andric                              Instruction *TheCall, bool CalleeHasDebugInfo) {
14590b57cec5SDimitry Andric   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
14600b57cec5SDimitry Andric   if (!TheCallDL)
14610b57cec5SDimitry Andric     return;
14620b57cec5SDimitry Andric 
14630b57cec5SDimitry Andric   auto &Ctx = Fn->getContext();
14640b57cec5SDimitry Andric   DILocation *InlinedAtNode = TheCallDL;
14650b57cec5SDimitry Andric 
14660b57cec5SDimitry Andric   // Create a unique call site, not to be confused with any other call from the
14670b57cec5SDimitry Andric   // same location.
14680b57cec5SDimitry Andric   InlinedAtNode = DILocation::getDistinct(
14690b57cec5SDimitry Andric       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
14700b57cec5SDimitry Andric       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
14710b57cec5SDimitry Andric 
14720b57cec5SDimitry Andric   // Cache the inlined-at nodes as they're built so they are reused, without
14730b57cec5SDimitry Andric   // this every instruction's inlined-at chain would become distinct from each
14740b57cec5SDimitry Andric   // other.
14750b57cec5SDimitry Andric   DenseMap<const MDNode *, MDNode *> IANodes;
14760b57cec5SDimitry Andric 
1477480093f4SDimitry Andric   // Check if we are not generating inline line tables and want to use
1478480093f4SDimitry Andric   // the call site location instead.
1479480093f4SDimitry Andric   bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1480480093f4SDimitry Andric 
14810b57cec5SDimitry Andric   for (; FI != Fn->end(); ++FI) {
14820b57cec5SDimitry Andric     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
14830b57cec5SDimitry Andric          BI != BE; ++BI) {
14840b57cec5SDimitry Andric       // Loop metadata needs to be updated so that the start and end locs
14850b57cec5SDimitry Andric       // reference inlined-at locations.
1486*5ffd83dbSDimitry Andric       auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes](
1487*5ffd83dbSDimitry Andric                                    const DILocation &Loc) -> DILocation * {
1488*5ffd83dbSDimitry Andric         return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get();
1489*5ffd83dbSDimitry Andric       };
1490*5ffd83dbSDimitry Andric       updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
14910b57cec5SDimitry Andric 
1492480093f4SDimitry Andric       if (!NoInlineLineTables)
14930b57cec5SDimitry Andric         if (DebugLoc DL = BI->getDebugLoc()) {
14940b57cec5SDimitry Andric           DebugLoc IDL =
14950b57cec5SDimitry Andric               inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
14960b57cec5SDimitry Andric           BI->setDebugLoc(IDL);
14970b57cec5SDimitry Andric           continue;
14980b57cec5SDimitry Andric         }
14990b57cec5SDimitry Andric 
1500480093f4SDimitry Andric       if (CalleeHasDebugInfo && !NoInlineLineTables)
15010b57cec5SDimitry Andric         continue;
15020b57cec5SDimitry Andric 
1503480093f4SDimitry Andric       // If the inlined instruction has no line number, or if inline info
1504480093f4SDimitry Andric       // is not being generated, make it look as if it originates from the call
1505480093f4SDimitry Andric       // location. This is important for ((__always_inline, __nodebug__))
1506480093f4SDimitry Andric       // functions which must use caller location for all instructions in their
1507480093f4SDimitry Andric       // function body.
15080b57cec5SDimitry Andric 
15090b57cec5SDimitry Andric       // Don't update static allocas, as they may get moved later.
15100b57cec5SDimitry Andric       if (auto *AI = dyn_cast<AllocaInst>(BI))
15110b57cec5SDimitry Andric         if (allocaWouldBeStaticInEntry(AI))
15120b57cec5SDimitry Andric           continue;
15130b57cec5SDimitry Andric 
15140b57cec5SDimitry Andric       BI->setDebugLoc(TheCallDL);
15150b57cec5SDimitry Andric     }
1516480093f4SDimitry Andric 
1517480093f4SDimitry Andric     // Remove debug info intrinsics if we're not keeping inline info.
1518480093f4SDimitry Andric     if (NoInlineLineTables) {
1519480093f4SDimitry Andric       BasicBlock::iterator BI = FI->begin();
1520480093f4SDimitry Andric       while (BI != FI->end()) {
1521480093f4SDimitry Andric         if (isa<DbgInfoIntrinsic>(BI)) {
1522480093f4SDimitry Andric           BI = BI->eraseFromParent();
1523480093f4SDimitry Andric           continue;
1524480093f4SDimitry Andric         }
1525480093f4SDimitry Andric         ++BI;
1526480093f4SDimitry Andric       }
1527480093f4SDimitry Andric     }
1528480093f4SDimitry Andric 
15290b57cec5SDimitry Andric   }
15300b57cec5SDimitry Andric }
15310b57cec5SDimitry Andric 
15320b57cec5SDimitry Andric /// Update the block frequencies of the caller after a callee has been inlined.
15330b57cec5SDimitry Andric ///
15340b57cec5SDimitry Andric /// Each block cloned into the caller has its block frequency scaled by the
15350b57cec5SDimitry Andric /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
15360b57cec5SDimitry Andric /// callee's entry block gets the same frequency as the callsite block and the
15370b57cec5SDimitry Andric /// relative frequencies of all cloned blocks remain the same after cloning.
15380b57cec5SDimitry Andric static void updateCallerBFI(BasicBlock *CallSiteBlock,
15390b57cec5SDimitry Andric                             const ValueToValueMapTy &VMap,
15400b57cec5SDimitry Andric                             BlockFrequencyInfo *CallerBFI,
15410b57cec5SDimitry Andric                             BlockFrequencyInfo *CalleeBFI,
15420b57cec5SDimitry Andric                             const BasicBlock &CalleeEntryBlock) {
15430b57cec5SDimitry Andric   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1544480093f4SDimitry Andric   for (auto Entry : VMap) {
15450b57cec5SDimitry Andric     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
15460b57cec5SDimitry Andric       continue;
15470b57cec5SDimitry Andric     auto *OrigBB = cast<BasicBlock>(Entry.first);
15480b57cec5SDimitry Andric     auto *ClonedBB = cast<BasicBlock>(Entry.second);
15490b57cec5SDimitry Andric     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
15500b57cec5SDimitry Andric     if (!ClonedBBs.insert(ClonedBB).second) {
15510b57cec5SDimitry Andric       // Multiple blocks in the callee might get mapped to one cloned block in
15520b57cec5SDimitry Andric       // the caller since we prune the callee as we clone it. When that happens,
15530b57cec5SDimitry Andric       // we want to use the maximum among the original blocks' frequencies.
15540b57cec5SDimitry Andric       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
15550b57cec5SDimitry Andric       if (NewFreq > Freq)
15560b57cec5SDimitry Andric         Freq = NewFreq;
15570b57cec5SDimitry Andric     }
15580b57cec5SDimitry Andric     CallerBFI->setBlockFreq(ClonedBB, Freq);
15590b57cec5SDimitry Andric   }
15600b57cec5SDimitry Andric   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
15610b57cec5SDimitry Andric   CallerBFI->setBlockFreqAndScale(
15620b57cec5SDimitry Andric       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
15630b57cec5SDimitry Andric       ClonedBBs);
15640b57cec5SDimitry Andric }
15650b57cec5SDimitry Andric 
15660b57cec5SDimitry Andric /// Update the branch metadata for cloned call instructions.
15670b57cec5SDimitry Andric static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
15680b57cec5SDimitry Andric                               const ProfileCount &CalleeEntryCount,
1569*5ffd83dbSDimitry Andric                               const CallBase &TheCall, ProfileSummaryInfo *PSI,
15700b57cec5SDimitry Andric                               BlockFrequencyInfo *CallerBFI) {
15710b57cec5SDimitry Andric   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
15720b57cec5SDimitry Andric       CalleeEntryCount.getCount() < 1)
15730b57cec5SDimitry Andric     return;
15740b57cec5SDimitry Andric   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
15750b57cec5SDimitry Andric   int64_t CallCount =
15760b57cec5SDimitry Andric       std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
15770b57cec5SDimitry Andric                CalleeEntryCount.getCount());
15780b57cec5SDimitry Andric   updateProfileCallee(Callee, -CallCount, &VMap);
15790b57cec5SDimitry Andric }
15800b57cec5SDimitry Andric 
15810b57cec5SDimitry Andric void llvm::updateProfileCallee(
15820b57cec5SDimitry Andric     Function *Callee, int64_t entryDelta,
15830b57cec5SDimitry Andric     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
15840b57cec5SDimitry Andric   auto CalleeCount = Callee->getEntryCount();
15850b57cec5SDimitry Andric   if (!CalleeCount.hasValue())
15860b57cec5SDimitry Andric     return;
15870b57cec5SDimitry Andric 
15880b57cec5SDimitry Andric   uint64_t priorEntryCount = CalleeCount.getCount();
15890b57cec5SDimitry Andric   uint64_t newEntryCount;
15900b57cec5SDimitry Andric 
15910b57cec5SDimitry Andric   // Since CallSiteCount is an estimate, it could exceed the original callee
15920b57cec5SDimitry Andric   // count and has to be set to 0 so guard against underflow.
15930b57cec5SDimitry Andric   if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
15940b57cec5SDimitry Andric     newEntryCount = 0;
15950b57cec5SDimitry Andric   else
15960b57cec5SDimitry Andric     newEntryCount = priorEntryCount + entryDelta;
15970b57cec5SDimitry Andric 
15980b57cec5SDimitry Andric   // During inlining ?
15990b57cec5SDimitry Andric   if (VMap) {
16000b57cec5SDimitry Andric     uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1601480093f4SDimitry Andric     for (auto Entry : *VMap)
16020b57cec5SDimitry Andric       if (isa<CallInst>(Entry.first))
16030b57cec5SDimitry Andric         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
16040b57cec5SDimitry Andric           CI->updateProfWeight(cloneEntryCount, priorEntryCount);
16050b57cec5SDimitry Andric   }
1606480093f4SDimitry Andric 
1607480093f4SDimitry Andric   if (entryDelta) {
1608480093f4SDimitry Andric     Callee->setEntryCount(newEntryCount);
1609480093f4SDimitry Andric 
16100b57cec5SDimitry Andric     for (BasicBlock &BB : *Callee)
16110b57cec5SDimitry Andric       // No need to update the callsite if it is pruned during inlining.
16120b57cec5SDimitry Andric       if (!VMap || VMap->count(&BB))
16130b57cec5SDimitry Andric         for (Instruction &I : BB)
16140b57cec5SDimitry Andric           if (CallInst *CI = dyn_cast<CallInst>(&I))
16150b57cec5SDimitry Andric             CI->updateProfWeight(newEntryCount, priorEntryCount);
16160b57cec5SDimitry Andric   }
1617480093f4SDimitry Andric }
16180b57cec5SDimitry Andric 
16190b57cec5SDimitry Andric /// This function inlines the called function into the basic block of the
16200b57cec5SDimitry Andric /// caller. This returns false if it is not possible to inline this call.
16210b57cec5SDimitry Andric /// The program is still in a well defined state if this occurs though.
16220b57cec5SDimitry Andric ///
16230b57cec5SDimitry Andric /// Note that this only does one level of inlining.  For example, if the
16240b57cec5SDimitry Andric /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
16250b57cec5SDimitry Andric /// exists in the instruction stream.  Similarly this will inline a recursive
16260b57cec5SDimitry Andric /// function by one level.
1627*5ffd83dbSDimitry Andric llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
16280b57cec5SDimitry Andric                                         AAResults *CalleeAAR,
16290b57cec5SDimitry Andric                                         bool InsertLifetime,
16300b57cec5SDimitry Andric                                         Function *ForwardVarArgsTo) {
1631*5ffd83dbSDimitry Andric   assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
16320b57cec5SDimitry Andric 
16330b57cec5SDimitry Andric   // FIXME: we don't inline callbr yet.
1634*5ffd83dbSDimitry Andric   if (isa<CallBrInst>(CB))
1635*5ffd83dbSDimitry Andric     return InlineResult::failure("We don't inline callbr yet.");
16360b57cec5SDimitry Andric 
16370b57cec5SDimitry Andric   // If IFI has any state in it, zap it before we fill it in.
16380b57cec5SDimitry Andric   IFI.reset();
16390b57cec5SDimitry Andric 
1640*5ffd83dbSDimitry Andric   Function *CalledFunc = CB.getCalledFunction();
16410b57cec5SDimitry Andric   if (!CalledFunc ||               // Can't inline external function or indirect
16420b57cec5SDimitry Andric       CalledFunc->isDeclaration()) // call!
1643*5ffd83dbSDimitry Andric     return InlineResult::failure("external or indirect");
16440b57cec5SDimitry Andric 
16450b57cec5SDimitry Andric   // The inliner does not know how to inline through calls with operand bundles
16460b57cec5SDimitry Andric   // in general ...
1647*5ffd83dbSDimitry Andric   if (CB.hasOperandBundles()) {
1648*5ffd83dbSDimitry Andric     for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1649*5ffd83dbSDimitry Andric       uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
16500b57cec5SDimitry Andric       // ... but it knows how to inline through "deopt" operand bundles ...
16510b57cec5SDimitry Andric       if (Tag == LLVMContext::OB_deopt)
16520b57cec5SDimitry Andric         continue;
16530b57cec5SDimitry Andric       // ... and "funclet" operand bundles.
16540b57cec5SDimitry Andric       if (Tag == LLVMContext::OB_funclet)
16550b57cec5SDimitry Andric         continue;
16560b57cec5SDimitry Andric 
1657*5ffd83dbSDimitry Andric       return InlineResult::failure("unsupported operand bundle");
16580b57cec5SDimitry Andric     }
16590b57cec5SDimitry Andric   }
16600b57cec5SDimitry Andric 
16610b57cec5SDimitry Andric   // If the call to the callee cannot throw, set the 'nounwind' flag on any
16620b57cec5SDimitry Andric   // calls that we inline.
1663*5ffd83dbSDimitry Andric   bool MarkNoUnwind = CB.doesNotThrow();
16640b57cec5SDimitry Andric 
1665*5ffd83dbSDimitry Andric   BasicBlock *OrigBB = CB.getParent();
16660b57cec5SDimitry Andric   Function *Caller = OrigBB->getParent();
16670b57cec5SDimitry Andric 
16680b57cec5SDimitry Andric   // GC poses two hazards to inlining, which only occur when the callee has GC:
16690b57cec5SDimitry Andric   //  1. If the caller has no GC, then the callee's GC must be propagated to the
16700b57cec5SDimitry Andric   //     caller.
16710b57cec5SDimitry Andric   //  2. If the caller has a differing GC, it is invalid to inline.
16720b57cec5SDimitry Andric   if (CalledFunc->hasGC()) {
16730b57cec5SDimitry Andric     if (!Caller->hasGC())
16740b57cec5SDimitry Andric       Caller->setGC(CalledFunc->getGC());
16750b57cec5SDimitry Andric     else if (CalledFunc->getGC() != Caller->getGC())
1676*5ffd83dbSDimitry Andric       return InlineResult::failure("incompatible GC");
16770b57cec5SDimitry Andric   }
16780b57cec5SDimitry Andric 
16790b57cec5SDimitry Andric   // Get the personality function from the callee if it contains a landing pad.
16800b57cec5SDimitry Andric   Constant *CalledPersonality =
16810b57cec5SDimitry Andric       CalledFunc->hasPersonalityFn()
16820b57cec5SDimitry Andric           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
16830b57cec5SDimitry Andric           : nullptr;
16840b57cec5SDimitry Andric 
16850b57cec5SDimitry Andric   // Find the personality function used by the landing pads of the caller. If it
16860b57cec5SDimitry Andric   // exists, then check to see that it matches the personality function used in
16870b57cec5SDimitry Andric   // the callee.
16880b57cec5SDimitry Andric   Constant *CallerPersonality =
16890b57cec5SDimitry Andric       Caller->hasPersonalityFn()
16900b57cec5SDimitry Andric           ? Caller->getPersonalityFn()->stripPointerCasts()
16910b57cec5SDimitry Andric           : nullptr;
16920b57cec5SDimitry Andric   if (CalledPersonality) {
16930b57cec5SDimitry Andric     if (!CallerPersonality)
16940b57cec5SDimitry Andric       Caller->setPersonalityFn(CalledPersonality);
16950b57cec5SDimitry Andric     // If the personality functions match, then we can perform the
16960b57cec5SDimitry Andric     // inlining. Otherwise, we can't inline.
16970b57cec5SDimitry Andric     // TODO: This isn't 100% true. Some personality functions are proper
16980b57cec5SDimitry Andric     //       supersets of others and can be used in place of the other.
16990b57cec5SDimitry Andric     else if (CalledPersonality != CallerPersonality)
1700*5ffd83dbSDimitry Andric       return InlineResult::failure("incompatible personality");
17010b57cec5SDimitry Andric   }
17020b57cec5SDimitry Andric 
17030b57cec5SDimitry Andric   // We need to figure out which funclet the callsite was in so that we may
17040b57cec5SDimitry Andric   // properly nest the callee.
17050b57cec5SDimitry Andric   Instruction *CallSiteEHPad = nullptr;
17060b57cec5SDimitry Andric   if (CallerPersonality) {
17070b57cec5SDimitry Andric     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
17080b57cec5SDimitry Andric     if (isScopedEHPersonality(Personality)) {
17090b57cec5SDimitry Andric       Optional<OperandBundleUse> ParentFunclet =
1710*5ffd83dbSDimitry Andric           CB.getOperandBundle(LLVMContext::OB_funclet);
17110b57cec5SDimitry Andric       if (ParentFunclet)
17120b57cec5SDimitry Andric         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
17130b57cec5SDimitry Andric 
17140b57cec5SDimitry Andric       // OK, the inlining site is legal.  What about the target function?
17150b57cec5SDimitry Andric 
17160b57cec5SDimitry Andric       if (CallSiteEHPad) {
17170b57cec5SDimitry Andric         if (Personality == EHPersonality::MSVC_CXX) {
17180b57cec5SDimitry Andric           // The MSVC personality cannot tolerate catches getting inlined into
17190b57cec5SDimitry Andric           // cleanup funclets.
17200b57cec5SDimitry Andric           if (isa<CleanupPadInst>(CallSiteEHPad)) {
17210b57cec5SDimitry Andric             // Ok, the call site is within a cleanuppad.  Let's check the callee
17220b57cec5SDimitry Andric             // for catchpads.
17230b57cec5SDimitry Andric             for (const BasicBlock &CalledBB : *CalledFunc) {
17240b57cec5SDimitry Andric               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1725*5ffd83dbSDimitry Andric                 return InlineResult::failure("catch in cleanup funclet");
17260b57cec5SDimitry Andric             }
17270b57cec5SDimitry Andric           }
17280b57cec5SDimitry Andric         } else if (isAsynchronousEHPersonality(Personality)) {
17290b57cec5SDimitry Andric           // SEH is even less tolerant, there may not be any sort of exceptional
17300b57cec5SDimitry Andric           // funclet in the callee.
17310b57cec5SDimitry Andric           for (const BasicBlock &CalledBB : *CalledFunc) {
17320b57cec5SDimitry Andric             if (CalledBB.isEHPad())
1733*5ffd83dbSDimitry Andric               return InlineResult::failure("SEH in cleanup funclet");
17340b57cec5SDimitry Andric           }
17350b57cec5SDimitry Andric         }
17360b57cec5SDimitry Andric       }
17370b57cec5SDimitry Andric     }
17380b57cec5SDimitry Andric   }
17390b57cec5SDimitry Andric 
17400b57cec5SDimitry Andric   // Determine if we are dealing with a call in an EHPad which does not unwind
17410b57cec5SDimitry Andric   // to caller.
17420b57cec5SDimitry Andric   bool EHPadForCallUnwindsLocally = false;
1743*5ffd83dbSDimitry Andric   if (CallSiteEHPad && isa<CallInst>(CB)) {
17440b57cec5SDimitry Andric     UnwindDestMemoTy FuncletUnwindMap;
17450b57cec5SDimitry Andric     Value *CallSiteUnwindDestToken =
17460b57cec5SDimitry Andric         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
17470b57cec5SDimitry Andric 
17480b57cec5SDimitry Andric     EHPadForCallUnwindsLocally =
17490b57cec5SDimitry Andric         CallSiteUnwindDestToken &&
17500b57cec5SDimitry Andric         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
17510b57cec5SDimitry Andric   }
17520b57cec5SDimitry Andric 
17530b57cec5SDimitry Andric   // Get an iterator to the last basic block in the function, which will have
17540b57cec5SDimitry Andric   // the new function inlined after it.
17550b57cec5SDimitry Andric   Function::iterator LastBlock = --Caller->end();
17560b57cec5SDimitry Andric 
17570b57cec5SDimitry Andric   // Make sure to capture all of the return instructions from the cloned
17580b57cec5SDimitry Andric   // function.
17590b57cec5SDimitry Andric   SmallVector<ReturnInst*, 8> Returns;
17600b57cec5SDimitry Andric   ClonedCodeInfo InlinedFunctionInfo;
17610b57cec5SDimitry Andric   Function::iterator FirstNewBlock;
17620b57cec5SDimitry Andric 
17630b57cec5SDimitry Andric   { // Scope to destroy VMap after cloning.
17640b57cec5SDimitry Andric     ValueToValueMapTy VMap;
17650b57cec5SDimitry Andric     // Keep a list of pair (dst, src) to emit byval initializations.
17660b57cec5SDimitry Andric     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
17670b57cec5SDimitry Andric 
17680b57cec5SDimitry Andric     auto &DL = Caller->getParent()->getDataLayout();
17690b57cec5SDimitry Andric 
17700b57cec5SDimitry Andric     // Calculate the vector of arguments to pass into the function cloner, which
17710b57cec5SDimitry Andric     // matches up the formal to the actual argument values.
1772*5ffd83dbSDimitry Andric     auto AI = CB.arg_begin();
17730b57cec5SDimitry Andric     unsigned ArgNo = 0;
17740b57cec5SDimitry Andric     for (Function::arg_iterator I = CalledFunc->arg_begin(),
17750b57cec5SDimitry Andric          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
17760b57cec5SDimitry Andric       Value *ActualArg = *AI;
17770b57cec5SDimitry Andric 
17780b57cec5SDimitry Andric       // When byval arguments actually inlined, we need to make the copy implied
17790b57cec5SDimitry Andric       // by them explicit.  However, we don't do this if the callee is readonly
17800b57cec5SDimitry Andric       // or readnone, because the copy would be unneeded: the callee doesn't
17810b57cec5SDimitry Andric       // modify the struct.
1782*5ffd83dbSDimitry Andric       if (CB.isByValArgument(ArgNo)) {
1783*5ffd83dbSDimitry Andric         ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
17840b57cec5SDimitry Andric                                         CalledFunc->getParamAlignment(ArgNo));
17850b57cec5SDimitry Andric         if (ActualArg != *AI)
17860b57cec5SDimitry Andric           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
17870b57cec5SDimitry Andric       }
17880b57cec5SDimitry Andric 
17890b57cec5SDimitry Andric       VMap[&*I] = ActualArg;
17900b57cec5SDimitry Andric     }
17910b57cec5SDimitry Andric 
1792*5ffd83dbSDimitry Andric     // TODO: Remove this when users have been updated to the assume bundles.
17930b57cec5SDimitry Andric     // Add alignment assumptions if necessary. We do this before the inlined
17940b57cec5SDimitry Andric     // instructions are actually cloned into the caller so that we can easily
17950b57cec5SDimitry Andric     // check what will be known at the start of the inlined code.
1796*5ffd83dbSDimitry Andric     AddAlignmentAssumptions(CB, IFI);
1797*5ffd83dbSDimitry Andric 
1798*5ffd83dbSDimitry Andric     AssumptionCache *AC =
1799*5ffd83dbSDimitry Andric         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1800*5ffd83dbSDimitry Andric 
1801*5ffd83dbSDimitry Andric     /// Preserve all attributes on of the call and its parameters.
1802*5ffd83dbSDimitry Andric     salvageKnowledge(&CB, AC);
18030b57cec5SDimitry Andric 
18040b57cec5SDimitry Andric     // We want the inliner to prune the code as it copies.  We would LOVE to
18050b57cec5SDimitry Andric     // have no dead or constant instructions leftover after inlining occurs
18060b57cec5SDimitry Andric     // (which can happen, e.g., because an argument was constant), but we'll be
18070b57cec5SDimitry Andric     // happy with whatever the cloner can do.
18080b57cec5SDimitry Andric     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
18090b57cec5SDimitry Andric                               /*ModuleLevelChanges=*/false, Returns, ".i",
1810*5ffd83dbSDimitry Andric                               &InlinedFunctionInfo, &CB);
18110b57cec5SDimitry Andric     // Remember the first block that is newly cloned over.
18120b57cec5SDimitry Andric     FirstNewBlock = LastBlock; ++FirstNewBlock;
18130b57cec5SDimitry Andric 
18140b57cec5SDimitry Andric     if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
18150b57cec5SDimitry Andric       // Update the BFI of blocks cloned into the caller.
18160b57cec5SDimitry Andric       updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
18170b57cec5SDimitry Andric                       CalledFunc->front());
18180b57cec5SDimitry Andric 
1819*5ffd83dbSDimitry Andric     updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
18200b57cec5SDimitry Andric                       IFI.PSI, IFI.CallerBFI);
18210b57cec5SDimitry Andric 
18220b57cec5SDimitry Andric     // Inject byval arguments initialization.
18230b57cec5SDimitry Andric     for (std::pair<Value*, Value*> &Init : ByValInit)
18240b57cec5SDimitry Andric       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
18250b57cec5SDimitry Andric                               &*FirstNewBlock, IFI);
18260b57cec5SDimitry Andric 
18270b57cec5SDimitry Andric     Optional<OperandBundleUse> ParentDeopt =
1828*5ffd83dbSDimitry Andric         CB.getOperandBundle(LLVMContext::OB_deopt);
18290b57cec5SDimitry Andric     if (ParentDeopt) {
18300b57cec5SDimitry Andric       SmallVector<OperandBundleDef, 2> OpDefs;
18310b57cec5SDimitry Andric 
18320b57cec5SDimitry Andric       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1833*5ffd83dbSDimitry Andric         CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1834*5ffd83dbSDimitry Andric         if (!ICS)
1835*5ffd83dbSDimitry Andric           continue; // instruction was DCE'd or RAUW'ed to undef
18360b57cec5SDimitry Andric 
18370b57cec5SDimitry Andric         OpDefs.clear();
18380b57cec5SDimitry Andric 
1839*5ffd83dbSDimitry Andric         OpDefs.reserve(ICS->getNumOperandBundles());
18400b57cec5SDimitry Andric 
1841*5ffd83dbSDimitry Andric         for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1842*5ffd83dbSDimitry Andric              ++COBi) {
1843*5ffd83dbSDimitry Andric           auto ChildOB = ICS->getOperandBundleAt(COBi);
18440b57cec5SDimitry Andric           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
18450b57cec5SDimitry Andric             // If the inlined call has other operand bundles, let them be
18460b57cec5SDimitry Andric             OpDefs.emplace_back(ChildOB);
18470b57cec5SDimitry Andric             continue;
18480b57cec5SDimitry Andric           }
18490b57cec5SDimitry Andric 
18500b57cec5SDimitry Andric           // It may be useful to separate this logic (of handling operand
18510b57cec5SDimitry Andric           // bundles) out to a separate "policy" component if this gets crowded.
18520b57cec5SDimitry Andric           // Prepend the parent's deoptimization continuation to the newly
18530b57cec5SDimitry Andric           // inlined call's deoptimization continuation.
18540b57cec5SDimitry Andric           std::vector<Value *> MergedDeoptArgs;
18550b57cec5SDimitry Andric           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
18560b57cec5SDimitry Andric                                   ChildOB.Inputs.size());
18570b57cec5SDimitry Andric 
18580b57cec5SDimitry Andric           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
18590b57cec5SDimitry Andric                                  ParentDeopt->Inputs.begin(),
18600b57cec5SDimitry Andric                                  ParentDeopt->Inputs.end());
18610b57cec5SDimitry Andric           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
18620b57cec5SDimitry Andric                                  ChildOB.Inputs.end());
18630b57cec5SDimitry Andric 
18640b57cec5SDimitry Andric           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
18650b57cec5SDimitry Andric         }
18660b57cec5SDimitry Andric 
1867*5ffd83dbSDimitry Andric         Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
18680b57cec5SDimitry Andric 
18690b57cec5SDimitry Andric         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
18700b57cec5SDimitry Andric         // this even if the call returns void.
1871*5ffd83dbSDimitry Andric         ICS->replaceAllUsesWith(NewI);
18720b57cec5SDimitry Andric 
18730b57cec5SDimitry Andric         VH = nullptr;
1874*5ffd83dbSDimitry Andric         ICS->eraseFromParent();
18750b57cec5SDimitry Andric       }
18760b57cec5SDimitry Andric     }
18770b57cec5SDimitry Andric 
18780b57cec5SDimitry Andric     // Update the callgraph if requested.
18790b57cec5SDimitry Andric     if (IFI.CG)
1880*5ffd83dbSDimitry Andric       UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
18810b57cec5SDimitry Andric 
18820b57cec5SDimitry Andric     // For 'nodebug' functions, the associated DISubprogram is always null.
18830b57cec5SDimitry Andric     // Conservatively avoid propagating the callsite debug location to
18840b57cec5SDimitry Andric     // instructions inlined from a function whose DISubprogram is not null.
1885*5ffd83dbSDimitry Andric     fixupLineNumbers(Caller, FirstNewBlock, &CB,
18860b57cec5SDimitry Andric                      CalledFunc->getSubprogram() != nullptr);
18870b57cec5SDimitry Andric 
18880b57cec5SDimitry Andric     // Clone existing noalias metadata if necessary.
1889*5ffd83dbSDimitry Andric     CloneAliasScopeMetadata(CB, VMap);
18900b57cec5SDimitry Andric 
18910b57cec5SDimitry Andric     // Add noalias metadata if necessary.
1892*5ffd83dbSDimitry Andric     AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR);
1893*5ffd83dbSDimitry Andric 
1894*5ffd83dbSDimitry Andric     // Clone return attributes on the callsite into the calls within the inlined
1895*5ffd83dbSDimitry Andric     // function which feed into its return value.
1896*5ffd83dbSDimitry Andric     AddReturnAttributes(CB, VMap);
18970b57cec5SDimitry Andric 
18980b57cec5SDimitry Andric     // Propagate llvm.mem.parallel_loop_access if necessary.
1899*5ffd83dbSDimitry Andric     PropagateParallelLoopAccessMetadata(CB, VMap);
19000b57cec5SDimitry Andric 
19010b57cec5SDimitry Andric     // Register any cloned assumptions.
19020b57cec5SDimitry Andric     if (IFI.GetAssumptionCache)
19030b57cec5SDimitry Andric       for (BasicBlock &NewBlock :
19040b57cec5SDimitry Andric            make_range(FirstNewBlock->getIterator(), Caller->end()))
1905*5ffd83dbSDimitry Andric         for (Instruction &I : NewBlock)
19060b57cec5SDimitry Andric           if (auto *II = dyn_cast<IntrinsicInst>(&I))
19070b57cec5SDimitry Andric             if (II->getIntrinsicID() == Intrinsic::assume)
1908*5ffd83dbSDimitry Andric               IFI.GetAssumptionCache(*Caller).registerAssumption(II);
19090b57cec5SDimitry Andric   }
19100b57cec5SDimitry Andric 
19110b57cec5SDimitry Andric   // If there are any alloca instructions in the block that used to be the entry
19120b57cec5SDimitry Andric   // block for the callee, move them to the entry block of the caller.  First
19130b57cec5SDimitry Andric   // calculate which instruction they should be inserted before.  We insert the
19140b57cec5SDimitry Andric   // instructions at the end of the current alloca list.
19150b57cec5SDimitry Andric   {
19160b57cec5SDimitry Andric     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
19170b57cec5SDimitry Andric     for (BasicBlock::iterator I = FirstNewBlock->begin(),
19180b57cec5SDimitry Andric          E = FirstNewBlock->end(); I != E; ) {
19190b57cec5SDimitry Andric       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
19200b57cec5SDimitry Andric       if (!AI) continue;
19210b57cec5SDimitry Andric 
19220b57cec5SDimitry Andric       // If the alloca is now dead, remove it.  This often occurs due to code
19230b57cec5SDimitry Andric       // specialization.
19240b57cec5SDimitry Andric       if (AI->use_empty()) {
19250b57cec5SDimitry Andric         AI->eraseFromParent();
19260b57cec5SDimitry Andric         continue;
19270b57cec5SDimitry Andric       }
19280b57cec5SDimitry Andric 
19290b57cec5SDimitry Andric       if (!allocaWouldBeStaticInEntry(AI))
19300b57cec5SDimitry Andric         continue;
19310b57cec5SDimitry Andric 
19320b57cec5SDimitry Andric       // Keep track of the static allocas that we inline into the caller.
19330b57cec5SDimitry Andric       IFI.StaticAllocas.push_back(AI);
19340b57cec5SDimitry Andric 
19350b57cec5SDimitry Andric       // Scan for the block of allocas that we can move over, and move them
19360b57cec5SDimitry Andric       // all at once.
19370b57cec5SDimitry Andric       while (isa<AllocaInst>(I) &&
1938480093f4SDimitry Andric              !cast<AllocaInst>(I)->use_empty() &&
19390b57cec5SDimitry Andric              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
19400b57cec5SDimitry Andric         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
19410b57cec5SDimitry Andric         ++I;
19420b57cec5SDimitry Andric       }
19430b57cec5SDimitry Andric 
19440b57cec5SDimitry Andric       // Transfer all of the allocas over in a block.  Using splice means
19450b57cec5SDimitry Andric       // that the instructions aren't removed from the symbol table, then
19460b57cec5SDimitry Andric       // reinserted.
19470b57cec5SDimitry Andric       Caller->getEntryBlock().getInstList().splice(
19480b57cec5SDimitry Andric           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
19490b57cec5SDimitry Andric     }
19500b57cec5SDimitry Andric   }
19510b57cec5SDimitry Andric 
19520b57cec5SDimitry Andric   SmallVector<Value*,4> VarArgsToForward;
19530b57cec5SDimitry Andric   SmallVector<AttributeSet, 4> VarArgsAttrs;
19540b57cec5SDimitry Andric   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
1955*5ffd83dbSDimitry Andric        i < CB.getNumArgOperands(); i++) {
1956*5ffd83dbSDimitry Andric     VarArgsToForward.push_back(CB.getArgOperand(i));
1957*5ffd83dbSDimitry Andric     VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
19580b57cec5SDimitry Andric   }
19590b57cec5SDimitry Andric 
19600b57cec5SDimitry Andric   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
19610b57cec5SDimitry Andric   if (InlinedFunctionInfo.ContainsCalls) {
19620b57cec5SDimitry Andric     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1963*5ffd83dbSDimitry Andric     if (CallInst *CI = dyn_cast<CallInst>(&CB))
19640b57cec5SDimitry Andric       CallSiteTailKind = CI->getTailCallKind();
19650b57cec5SDimitry Andric 
19660b57cec5SDimitry Andric     // For inlining purposes, the "notail" marker is the same as no marker.
19670b57cec5SDimitry Andric     if (CallSiteTailKind == CallInst::TCK_NoTail)
19680b57cec5SDimitry Andric       CallSiteTailKind = CallInst::TCK_None;
19690b57cec5SDimitry Andric 
19700b57cec5SDimitry Andric     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
19710b57cec5SDimitry Andric          ++BB) {
19720b57cec5SDimitry Andric       for (auto II = BB->begin(); II != BB->end();) {
19730b57cec5SDimitry Andric         Instruction &I = *II++;
19740b57cec5SDimitry Andric         CallInst *CI = dyn_cast<CallInst>(&I);
19750b57cec5SDimitry Andric         if (!CI)
19760b57cec5SDimitry Andric           continue;
19770b57cec5SDimitry Andric 
19780b57cec5SDimitry Andric         // Forward varargs from inlined call site to calls to the
19790b57cec5SDimitry Andric         // ForwardVarArgsTo function, if requested, and to musttail calls.
19800b57cec5SDimitry Andric         if (!VarArgsToForward.empty() &&
19810b57cec5SDimitry Andric             ((ForwardVarArgsTo &&
19820b57cec5SDimitry Andric               CI->getCalledFunction() == ForwardVarArgsTo) ||
19830b57cec5SDimitry Andric              CI->isMustTailCall())) {
19840b57cec5SDimitry Andric           // Collect attributes for non-vararg parameters.
19850b57cec5SDimitry Andric           AttributeList Attrs = CI->getAttributes();
19860b57cec5SDimitry Andric           SmallVector<AttributeSet, 8> ArgAttrs;
19870b57cec5SDimitry Andric           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
19880b57cec5SDimitry Andric             for (unsigned ArgNo = 0;
19890b57cec5SDimitry Andric                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
19900b57cec5SDimitry Andric               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
19910b57cec5SDimitry Andric           }
19920b57cec5SDimitry Andric 
19930b57cec5SDimitry Andric           // Add VarArg attributes.
19940b57cec5SDimitry Andric           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
19950b57cec5SDimitry Andric           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
19960b57cec5SDimitry Andric                                      Attrs.getRetAttributes(), ArgAttrs);
19970b57cec5SDimitry Andric           // Add VarArgs to existing parameters.
19980b57cec5SDimitry Andric           SmallVector<Value *, 6> Params(CI->arg_operands());
19990b57cec5SDimitry Andric           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
20000b57cec5SDimitry Andric           CallInst *NewCI = CallInst::Create(
20010b57cec5SDimitry Andric               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
20020b57cec5SDimitry Andric           NewCI->setDebugLoc(CI->getDebugLoc());
20030b57cec5SDimitry Andric           NewCI->setAttributes(Attrs);
20040b57cec5SDimitry Andric           NewCI->setCallingConv(CI->getCallingConv());
20050b57cec5SDimitry Andric           CI->replaceAllUsesWith(NewCI);
20060b57cec5SDimitry Andric           CI->eraseFromParent();
20070b57cec5SDimitry Andric           CI = NewCI;
20080b57cec5SDimitry Andric         }
20090b57cec5SDimitry Andric 
20100b57cec5SDimitry Andric         if (Function *F = CI->getCalledFunction())
20110b57cec5SDimitry Andric           InlinedDeoptimizeCalls |=
20120b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
20130b57cec5SDimitry Andric 
20140b57cec5SDimitry Andric         // We need to reduce the strength of any inlined tail calls.  For
20150b57cec5SDimitry Andric         // musttail, we have to avoid introducing potential unbounded stack
20160b57cec5SDimitry Andric         // growth.  For example, if functions 'f' and 'g' are mutually recursive
20170b57cec5SDimitry Andric         // with musttail, we can inline 'g' into 'f' so long as we preserve
20180b57cec5SDimitry Andric         // musttail on the cloned call to 'f'.  If either the inlined call site
20190b57cec5SDimitry Andric         // or the cloned call site is *not* musttail, the program already has
20200b57cec5SDimitry Andric         // one frame of stack growth, so it's safe to remove musttail.  Here is
20210b57cec5SDimitry Andric         // a table of example transformations:
20220b57cec5SDimitry Andric         //
20230b57cec5SDimitry Andric         //    f -> musttail g -> musttail f  ==>  f -> musttail f
20240b57cec5SDimitry Andric         //    f -> musttail g ->     tail f  ==>  f ->     tail f
20250b57cec5SDimitry Andric         //    f ->          g -> musttail f  ==>  f ->          f
20260b57cec5SDimitry Andric         //    f ->          g ->     tail f  ==>  f ->          f
20270b57cec5SDimitry Andric         //
20280b57cec5SDimitry Andric         // Inlined notail calls should remain notail calls.
20290b57cec5SDimitry Andric         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
20300b57cec5SDimitry Andric         if (ChildTCK != CallInst::TCK_NoTail)
20310b57cec5SDimitry Andric           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
20320b57cec5SDimitry Andric         CI->setTailCallKind(ChildTCK);
20330b57cec5SDimitry Andric         InlinedMustTailCalls |= CI->isMustTailCall();
20340b57cec5SDimitry Andric 
20350b57cec5SDimitry Andric         // Calls inlined through a 'nounwind' call site should be marked
20360b57cec5SDimitry Andric         // 'nounwind'.
20370b57cec5SDimitry Andric         if (MarkNoUnwind)
20380b57cec5SDimitry Andric           CI->setDoesNotThrow();
20390b57cec5SDimitry Andric       }
20400b57cec5SDimitry Andric     }
20410b57cec5SDimitry Andric   }
20420b57cec5SDimitry Andric 
20430b57cec5SDimitry Andric   // Leave lifetime markers for the static alloca's, scoping them to the
20440b57cec5SDimitry Andric   // function we just inlined.
20450b57cec5SDimitry Andric   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
20460b57cec5SDimitry Andric     IRBuilder<> builder(&FirstNewBlock->front());
20470b57cec5SDimitry Andric     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
20480b57cec5SDimitry Andric       AllocaInst *AI = IFI.StaticAllocas[ai];
20490b57cec5SDimitry Andric       // Don't mark swifterror allocas. They can't have bitcast uses.
20500b57cec5SDimitry Andric       if (AI->isSwiftError())
20510b57cec5SDimitry Andric         continue;
20520b57cec5SDimitry Andric 
20530b57cec5SDimitry Andric       // If the alloca is already scoped to something smaller than the whole
20540b57cec5SDimitry Andric       // function then there's no need to add redundant, less accurate markers.
20550b57cec5SDimitry Andric       if (hasLifetimeMarkers(AI))
20560b57cec5SDimitry Andric         continue;
20570b57cec5SDimitry Andric 
20580b57cec5SDimitry Andric       // Try to determine the size of the allocation.
20590b57cec5SDimitry Andric       ConstantInt *AllocaSize = nullptr;
20600b57cec5SDimitry Andric       if (ConstantInt *AIArraySize =
20610b57cec5SDimitry Andric           dyn_cast<ConstantInt>(AI->getArraySize())) {
20620b57cec5SDimitry Andric         auto &DL = Caller->getParent()->getDataLayout();
20630b57cec5SDimitry Andric         Type *AllocaType = AI->getAllocatedType();
20640b57cec5SDimitry Andric         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
20650b57cec5SDimitry Andric         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
20660b57cec5SDimitry Andric 
20670b57cec5SDimitry Andric         // Don't add markers for zero-sized allocas.
20680b57cec5SDimitry Andric         if (AllocaArraySize == 0)
20690b57cec5SDimitry Andric           continue;
20700b57cec5SDimitry Andric 
20710b57cec5SDimitry Andric         // Check that array size doesn't saturate uint64_t and doesn't
20720b57cec5SDimitry Andric         // overflow when it's multiplied by type size.
20730b57cec5SDimitry Andric         if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
20740b57cec5SDimitry Andric             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
20750b57cec5SDimitry Andric                 AllocaTypeSize) {
20760b57cec5SDimitry Andric           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
20770b57cec5SDimitry Andric                                         AllocaArraySize * AllocaTypeSize);
20780b57cec5SDimitry Andric         }
20790b57cec5SDimitry Andric       }
20800b57cec5SDimitry Andric 
20810b57cec5SDimitry Andric       builder.CreateLifetimeStart(AI, AllocaSize);
20820b57cec5SDimitry Andric       for (ReturnInst *RI : Returns) {
20830b57cec5SDimitry Andric         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
20840b57cec5SDimitry Andric         // call and a return.  The return kills all local allocas.
20850b57cec5SDimitry Andric         if (InlinedMustTailCalls &&
20860b57cec5SDimitry Andric             RI->getParent()->getTerminatingMustTailCall())
20870b57cec5SDimitry Andric           continue;
20880b57cec5SDimitry Andric         if (InlinedDeoptimizeCalls &&
20890b57cec5SDimitry Andric             RI->getParent()->getTerminatingDeoptimizeCall())
20900b57cec5SDimitry Andric           continue;
20910b57cec5SDimitry Andric         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
20920b57cec5SDimitry Andric       }
20930b57cec5SDimitry Andric     }
20940b57cec5SDimitry Andric   }
20950b57cec5SDimitry Andric 
20960b57cec5SDimitry Andric   // If the inlined code contained dynamic alloca instructions, wrap the inlined
20970b57cec5SDimitry Andric   // code with llvm.stacksave/llvm.stackrestore intrinsics.
20980b57cec5SDimitry Andric   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
20990b57cec5SDimitry Andric     Module *M = Caller->getParent();
21000b57cec5SDimitry Andric     // Get the two intrinsics we care about.
21010b57cec5SDimitry Andric     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
21020b57cec5SDimitry Andric     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
21030b57cec5SDimitry Andric 
21040b57cec5SDimitry Andric     // Insert the llvm.stacksave.
21050b57cec5SDimitry Andric     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
21060b57cec5SDimitry Andric                              .CreateCall(StackSave, {}, "savedstack");
21070b57cec5SDimitry Andric 
21080b57cec5SDimitry Andric     // Insert a call to llvm.stackrestore before any return instructions in the
21090b57cec5SDimitry Andric     // inlined function.
21100b57cec5SDimitry Andric     for (ReturnInst *RI : Returns) {
21110b57cec5SDimitry Andric       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
21120b57cec5SDimitry Andric       // call and a return.  The return will restore the stack pointer.
21130b57cec5SDimitry Andric       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
21140b57cec5SDimitry Andric         continue;
21150b57cec5SDimitry Andric       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
21160b57cec5SDimitry Andric         continue;
21170b57cec5SDimitry Andric       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
21180b57cec5SDimitry Andric     }
21190b57cec5SDimitry Andric   }
21200b57cec5SDimitry Andric 
21210b57cec5SDimitry Andric   // If we are inlining for an invoke instruction, we must make sure to rewrite
21220b57cec5SDimitry Andric   // any call instructions into invoke instructions.  This is sensitive to which
21230b57cec5SDimitry Andric   // funclet pads were top-level in the inlinee, so must be done before
21240b57cec5SDimitry Andric   // rewriting the "parent pad" links.
2125*5ffd83dbSDimitry Andric   if (auto *II = dyn_cast<InvokeInst>(&CB)) {
21260b57cec5SDimitry Andric     BasicBlock *UnwindDest = II->getUnwindDest();
21270b57cec5SDimitry Andric     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
21280b57cec5SDimitry Andric     if (isa<LandingPadInst>(FirstNonPHI)) {
21290b57cec5SDimitry Andric       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
21300b57cec5SDimitry Andric     } else {
21310b57cec5SDimitry Andric       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
21320b57cec5SDimitry Andric     }
21330b57cec5SDimitry Andric   }
21340b57cec5SDimitry Andric 
21350b57cec5SDimitry Andric   // Update the lexical scopes of the new funclets and callsites.
21360b57cec5SDimitry Andric   // Anything that had 'none' as its parent is now nested inside the callsite's
21370b57cec5SDimitry Andric   // EHPad.
21380b57cec5SDimitry Andric 
21390b57cec5SDimitry Andric   if (CallSiteEHPad) {
21400b57cec5SDimitry Andric     for (Function::iterator BB = FirstNewBlock->getIterator(),
21410b57cec5SDimitry Andric                             E = Caller->end();
21420b57cec5SDimitry Andric          BB != E; ++BB) {
21430b57cec5SDimitry Andric       // Add bundle operands to any top-level call sites.
21440b57cec5SDimitry Andric       SmallVector<OperandBundleDef, 1> OpBundles;
21450b57cec5SDimitry Andric       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2146*5ffd83dbSDimitry Andric         CallBase *I = dyn_cast<CallBase>(&*BBI++);
2147*5ffd83dbSDimitry Andric         if (!I)
21480b57cec5SDimitry Andric           continue;
21490b57cec5SDimitry Andric 
21500b57cec5SDimitry Andric         // Skip call sites which are nounwind intrinsics.
21510b57cec5SDimitry Andric         auto *CalledFn =
2152*5ffd83dbSDimitry Andric             dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2153*5ffd83dbSDimitry Andric         if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
21540b57cec5SDimitry Andric           continue;
21550b57cec5SDimitry Andric 
21560b57cec5SDimitry Andric         // Skip call sites which already have a "funclet" bundle.
2157*5ffd83dbSDimitry Andric         if (I->getOperandBundle(LLVMContext::OB_funclet))
21580b57cec5SDimitry Andric           continue;
21590b57cec5SDimitry Andric 
2160*5ffd83dbSDimitry Andric         I->getOperandBundlesAsDefs(OpBundles);
21610b57cec5SDimitry Andric         OpBundles.emplace_back("funclet", CallSiteEHPad);
21620b57cec5SDimitry Andric 
2163*5ffd83dbSDimitry Andric         Instruction *NewInst = CallBase::Create(I, OpBundles, I);
21640b57cec5SDimitry Andric         NewInst->takeName(I);
21650b57cec5SDimitry Andric         I->replaceAllUsesWith(NewInst);
21660b57cec5SDimitry Andric         I->eraseFromParent();
21670b57cec5SDimitry Andric 
21680b57cec5SDimitry Andric         OpBundles.clear();
21690b57cec5SDimitry Andric       }
21700b57cec5SDimitry Andric 
21710b57cec5SDimitry Andric       // It is problematic if the inlinee has a cleanupret which unwinds to
21720b57cec5SDimitry Andric       // caller and we inline it into a call site which doesn't unwind but into
21730b57cec5SDimitry Andric       // an EH pad that does.  Such an edge must be dynamically unreachable.
21740b57cec5SDimitry Andric       // As such, we replace the cleanupret with unreachable.
21750b57cec5SDimitry Andric       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
21760b57cec5SDimitry Andric         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
21770b57cec5SDimitry Andric           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
21780b57cec5SDimitry Andric 
21790b57cec5SDimitry Andric       Instruction *I = BB->getFirstNonPHI();
21800b57cec5SDimitry Andric       if (!I->isEHPad())
21810b57cec5SDimitry Andric         continue;
21820b57cec5SDimitry Andric 
21830b57cec5SDimitry Andric       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
21840b57cec5SDimitry Andric         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
21850b57cec5SDimitry Andric           CatchSwitch->setParentPad(CallSiteEHPad);
21860b57cec5SDimitry Andric       } else {
21870b57cec5SDimitry Andric         auto *FPI = cast<FuncletPadInst>(I);
21880b57cec5SDimitry Andric         if (isa<ConstantTokenNone>(FPI->getParentPad()))
21890b57cec5SDimitry Andric           FPI->setParentPad(CallSiteEHPad);
21900b57cec5SDimitry Andric       }
21910b57cec5SDimitry Andric     }
21920b57cec5SDimitry Andric   }
21930b57cec5SDimitry Andric 
21940b57cec5SDimitry Andric   if (InlinedDeoptimizeCalls) {
21950b57cec5SDimitry Andric     // We need to at least remove the deoptimizing returns from the Return set,
21960b57cec5SDimitry Andric     // so that the control flow from those returns does not get merged into the
21970b57cec5SDimitry Andric     // caller (but terminate it instead).  If the caller's return type does not
21980b57cec5SDimitry Andric     // match the callee's return type, we also need to change the return type of
21990b57cec5SDimitry Andric     // the intrinsic.
2200*5ffd83dbSDimitry Andric     if (Caller->getReturnType() == CB.getType()) {
22010b57cec5SDimitry Andric       auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
22020b57cec5SDimitry Andric         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
22030b57cec5SDimitry Andric       });
22040b57cec5SDimitry Andric       Returns.erase(NewEnd, Returns.end());
22050b57cec5SDimitry Andric     } else {
22060b57cec5SDimitry Andric       SmallVector<ReturnInst *, 8> NormalReturns;
22070b57cec5SDimitry Andric       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
22080b57cec5SDimitry Andric           Caller->getParent(), Intrinsic::experimental_deoptimize,
22090b57cec5SDimitry Andric           {Caller->getReturnType()});
22100b57cec5SDimitry Andric 
22110b57cec5SDimitry Andric       for (ReturnInst *RI : Returns) {
22120b57cec5SDimitry Andric         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
22130b57cec5SDimitry Andric         if (!DeoptCall) {
22140b57cec5SDimitry Andric           NormalReturns.push_back(RI);
22150b57cec5SDimitry Andric           continue;
22160b57cec5SDimitry Andric         }
22170b57cec5SDimitry Andric 
22180b57cec5SDimitry Andric         // The calling convention on the deoptimize call itself may be bogus,
22190b57cec5SDimitry Andric         // since the code we're inlining may have undefined behavior (and may
22200b57cec5SDimitry Andric         // never actually execute at runtime); but all
22210b57cec5SDimitry Andric         // @llvm.experimental.deoptimize declarations have to have the same
22220b57cec5SDimitry Andric         // calling convention in a well-formed module.
22230b57cec5SDimitry Andric         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
22240b57cec5SDimitry Andric         NewDeoptIntrinsic->setCallingConv(CallingConv);
22250b57cec5SDimitry Andric         auto *CurBB = RI->getParent();
22260b57cec5SDimitry Andric         RI->eraseFromParent();
22270b57cec5SDimitry Andric 
22280b57cec5SDimitry Andric         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
22290b57cec5SDimitry Andric                                          DeoptCall->arg_end());
22300b57cec5SDimitry Andric 
22310b57cec5SDimitry Andric         SmallVector<OperandBundleDef, 1> OpBundles;
22320b57cec5SDimitry Andric         DeoptCall->getOperandBundlesAsDefs(OpBundles);
22330b57cec5SDimitry Andric         DeoptCall->eraseFromParent();
22340b57cec5SDimitry Andric         assert(!OpBundles.empty() &&
22350b57cec5SDimitry Andric                "Expected at least the deopt operand bundle");
22360b57cec5SDimitry Andric 
22370b57cec5SDimitry Andric         IRBuilder<> Builder(CurBB);
22380b57cec5SDimitry Andric         CallInst *NewDeoptCall =
22390b57cec5SDimitry Andric             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
22400b57cec5SDimitry Andric         NewDeoptCall->setCallingConv(CallingConv);
22410b57cec5SDimitry Andric         if (NewDeoptCall->getType()->isVoidTy())
22420b57cec5SDimitry Andric           Builder.CreateRetVoid();
22430b57cec5SDimitry Andric         else
22440b57cec5SDimitry Andric           Builder.CreateRet(NewDeoptCall);
22450b57cec5SDimitry Andric       }
22460b57cec5SDimitry Andric 
22470b57cec5SDimitry Andric       // Leave behind the normal returns so we can merge control flow.
22480b57cec5SDimitry Andric       std::swap(Returns, NormalReturns);
22490b57cec5SDimitry Andric     }
22500b57cec5SDimitry Andric   }
22510b57cec5SDimitry Andric 
22520b57cec5SDimitry Andric   // Handle any inlined musttail call sites.  In order for a new call site to be
22530b57cec5SDimitry Andric   // musttail, the source of the clone and the inlined call site must have been
22540b57cec5SDimitry Andric   // musttail.  Therefore it's safe to return without merging control into the
22550b57cec5SDimitry Andric   // phi below.
22560b57cec5SDimitry Andric   if (InlinedMustTailCalls) {
22570b57cec5SDimitry Andric     // Check if we need to bitcast the result of any musttail calls.
22580b57cec5SDimitry Andric     Type *NewRetTy = Caller->getReturnType();
2259*5ffd83dbSDimitry Andric     bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
22600b57cec5SDimitry Andric 
22610b57cec5SDimitry Andric     // Handle the returns preceded by musttail calls separately.
22620b57cec5SDimitry Andric     SmallVector<ReturnInst *, 8> NormalReturns;
22630b57cec5SDimitry Andric     for (ReturnInst *RI : Returns) {
22640b57cec5SDimitry Andric       CallInst *ReturnedMustTail =
22650b57cec5SDimitry Andric           RI->getParent()->getTerminatingMustTailCall();
22660b57cec5SDimitry Andric       if (!ReturnedMustTail) {
22670b57cec5SDimitry Andric         NormalReturns.push_back(RI);
22680b57cec5SDimitry Andric         continue;
22690b57cec5SDimitry Andric       }
22700b57cec5SDimitry Andric       if (!NeedBitCast)
22710b57cec5SDimitry Andric         continue;
22720b57cec5SDimitry Andric 
22730b57cec5SDimitry Andric       // Delete the old return and any preceding bitcast.
22740b57cec5SDimitry Andric       BasicBlock *CurBB = RI->getParent();
22750b57cec5SDimitry Andric       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
22760b57cec5SDimitry Andric       RI->eraseFromParent();
22770b57cec5SDimitry Andric       if (OldCast)
22780b57cec5SDimitry Andric         OldCast->eraseFromParent();
22790b57cec5SDimitry Andric 
22800b57cec5SDimitry Andric       // Insert a new bitcast and return with the right type.
22810b57cec5SDimitry Andric       IRBuilder<> Builder(CurBB);
22820b57cec5SDimitry Andric       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
22830b57cec5SDimitry Andric     }
22840b57cec5SDimitry Andric 
22850b57cec5SDimitry Andric     // Leave behind the normal returns so we can merge control flow.
22860b57cec5SDimitry Andric     std::swap(Returns, NormalReturns);
22870b57cec5SDimitry Andric   }
22880b57cec5SDimitry Andric 
22890b57cec5SDimitry Andric   // Now that all of the transforms on the inlined code have taken place but
22900b57cec5SDimitry Andric   // before we splice the inlined code into the CFG and lose track of which
22910b57cec5SDimitry Andric   // blocks were actually inlined, collect the call sites. We only do this if
22920b57cec5SDimitry Andric   // call graph updates weren't requested, as those provide value handle based
22930b57cec5SDimitry Andric   // tracking of inlined call sites instead.
22940b57cec5SDimitry Andric   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
22950b57cec5SDimitry Andric     // Otherwise just collect the raw call sites that were inlined.
22960b57cec5SDimitry Andric     for (BasicBlock &NewBB :
22970b57cec5SDimitry Andric          make_range(FirstNewBlock->getIterator(), Caller->end()))
22980b57cec5SDimitry Andric       for (Instruction &I : NewBB)
2299*5ffd83dbSDimitry Andric         if (auto *CB = dyn_cast<CallBase>(&I))
2300*5ffd83dbSDimitry Andric           IFI.InlinedCallSites.push_back(CB);
23010b57cec5SDimitry Andric   }
23020b57cec5SDimitry Andric 
23030b57cec5SDimitry Andric   // If we cloned in _exactly one_ basic block, and if that block ends in a
23040b57cec5SDimitry Andric   // return instruction, we splice the body of the inlined callee directly into
23050b57cec5SDimitry Andric   // the calling basic block.
23060b57cec5SDimitry Andric   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
23070b57cec5SDimitry Andric     // Move all of the instructions right before the call.
2308*5ffd83dbSDimitry Andric     OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
23090b57cec5SDimitry Andric                                  FirstNewBlock->begin(), FirstNewBlock->end());
23100b57cec5SDimitry Andric     // Remove the cloned basic block.
23110b57cec5SDimitry Andric     Caller->getBasicBlockList().pop_back();
23120b57cec5SDimitry Andric 
23130b57cec5SDimitry Andric     // If the call site was an invoke instruction, add a branch to the normal
23140b57cec5SDimitry Andric     // destination.
2315*5ffd83dbSDimitry Andric     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2316*5ffd83dbSDimitry Andric       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
23170b57cec5SDimitry Andric       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
23180b57cec5SDimitry Andric     }
23190b57cec5SDimitry Andric 
23200b57cec5SDimitry Andric     // If the return instruction returned a value, replace uses of the call with
23210b57cec5SDimitry Andric     // uses of the returned value.
2322*5ffd83dbSDimitry Andric     if (!CB.use_empty()) {
23230b57cec5SDimitry Andric       ReturnInst *R = Returns[0];
2324*5ffd83dbSDimitry Andric       if (&CB == R->getReturnValue())
2325*5ffd83dbSDimitry Andric         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
23260b57cec5SDimitry Andric       else
2327*5ffd83dbSDimitry Andric         CB.replaceAllUsesWith(R->getReturnValue());
23280b57cec5SDimitry Andric     }
23290b57cec5SDimitry Andric     // Since we are now done with the Call/Invoke, we can delete it.
2330*5ffd83dbSDimitry Andric     CB.eraseFromParent();
23310b57cec5SDimitry Andric 
23320b57cec5SDimitry Andric     // Since we are now done with the return instruction, delete it also.
23330b57cec5SDimitry Andric     Returns[0]->eraseFromParent();
23340b57cec5SDimitry Andric 
23350b57cec5SDimitry Andric     // We are now done with the inlining.
2336*5ffd83dbSDimitry Andric     return InlineResult::success();
23370b57cec5SDimitry Andric   }
23380b57cec5SDimitry Andric 
23390b57cec5SDimitry Andric   // Otherwise, we have the normal case, of more than one block to inline or
23400b57cec5SDimitry Andric   // multiple return sites.
23410b57cec5SDimitry Andric 
23420b57cec5SDimitry Andric   // We want to clone the entire callee function into the hole between the
23430b57cec5SDimitry Andric   // "starter" and "ender" blocks.  How we accomplish this depends on whether
23440b57cec5SDimitry Andric   // this is an invoke instruction or a call instruction.
23450b57cec5SDimitry Andric   BasicBlock *AfterCallBB;
23460b57cec5SDimitry Andric   BranchInst *CreatedBranchToNormalDest = nullptr;
2347*5ffd83dbSDimitry Andric   if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
23480b57cec5SDimitry Andric 
23490b57cec5SDimitry Andric     // Add an unconditional branch to make this look like the CallInst case...
2350*5ffd83dbSDimitry Andric     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
23510b57cec5SDimitry Andric 
23520b57cec5SDimitry Andric     // Split the basic block.  This guarantees that no PHI nodes will have to be
23530b57cec5SDimitry Andric     // updated due to new incoming edges, and make the invoke case more
23540b57cec5SDimitry Andric     // symmetric to the call case.
23550b57cec5SDimitry Andric     AfterCallBB =
23560b57cec5SDimitry Andric         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
23570b57cec5SDimitry Andric                                 CalledFunc->getName() + ".exit");
23580b57cec5SDimitry Andric 
23590b57cec5SDimitry Andric   } else { // It's a call
23600b57cec5SDimitry Andric     // If this is a call instruction, we need to split the basic block that
23610b57cec5SDimitry Andric     // the call lives in.
23620b57cec5SDimitry Andric     //
2363*5ffd83dbSDimitry Andric     AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
23640b57cec5SDimitry Andric                                           CalledFunc->getName() + ".exit");
23650b57cec5SDimitry Andric   }
23660b57cec5SDimitry Andric 
23670b57cec5SDimitry Andric   if (IFI.CallerBFI) {
23680b57cec5SDimitry Andric     // Copy original BB's block frequency to AfterCallBB
23690b57cec5SDimitry Andric     IFI.CallerBFI->setBlockFreq(
23700b57cec5SDimitry Andric         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
23710b57cec5SDimitry Andric   }
23720b57cec5SDimitry Andric 
23730b57cec5SDimitry Andric   // Change the branch that used to go to AfterCallBB to branch to the first
23740b57cec5SDimitry Andric   // basic block of the inlined function.
23750b57cec5SDimitry Andric   //
23760b57cec5SDimitry Andric   Instruction *Br = OrigBB->getTerminator();
23770b57cec5SDimitry Andric   assert(Br && Br->getOpcode() == Instruction::Br &&
23780b57cec5SDimitry Andric          "splitBasicBlock broken!");
23790b57cec5SDimitry Andric   Br->setOperand(0, &*FirstNewBlock);
23800b57cec5SDimitry Andric 
23810b57cec5SDimitry Andric   // Now that the function is correct, make it a little bit nicer.  In
23820b57cec5SDimitry Andric   // particular, move the basic blocks inserted from the end of the function
23830b57cec5SDimitry Andric   // into the space made by splitting the source basic block.
23840b57cec5SDimitry Andric   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
23850b57cec5SDimitry Andric                                      Caller->getBasicBlockList(), FirstNewBlock,
23860b57cec5SDimitry Andric                                      Caller->end());
23870b57cec5SDimitry Andric 
23880b57cec5SDimitry Andric   // Handle all of the return instructions that we just cloned in, and eliminate
23890b57cec5SDimitry Andric   // any users of the original call/invoke instruction.
23900b57cec5SDimitry Andric   Type *RTy = CalledFunc->getReturnType();
23910b57cec5SDimitry Andric 
23920b57cec5SDimitry Andric   PHINode *PHI = nullptr;
23930b57cec5SDimitry Andric   if (Returns.size() > 1) {
23940b57cec5SDimitry Andric     // The PHI node should go at the front of the new basic block to merge all
23950b57cec5SDimitry Andric     // possible incoming values.
2396*5ffd83dbSDimitry Andric     if (!CB.use_empty()) {
2397*5ffd83dbSDimitry Andric       PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
23980b57cec5SDimitry Andric                             &AfterCallBB->front());
23990b57cec5SDimitry Andric       // Anything that used the result of the function call should now use the
24000b57cec5SDimitry Andric       // PHI node as their operand.
2401*5ffd83dbSDimitry Andric       CB.replaceAllUsesWith(PHI);
24020b57cec5SDimitry Andric     }
24030b57cec5SDimitry Andric 
24040b57cec5SDimitry Andric     // Loop over all of the return instructions adding entries to the PHI node
24050b57cec5SDimitry Andric     // as appropriate.
24060b57cec5SDimitry Andric     if (PHI) {
24070b57cec5SDimitry Andric       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
24080b57cec5SDimitry Andric         ReturnInst *RI = Returns[i];
24090b57cec5SDimitry Andric         assert(RI->getReturnValue()->getType() == PHI->getType() &&
24100b57cec5SDimitry Andric                "Ret value not consistent in function!");
24110b57cec5SDimitry Andric         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
24120b57cec5SDimitry Andric       }
24130b57cec5SDimitry Andric     }
24140b57cec5SDimitry Andric 
24150b57cec5SDimitry Andric     // Add a branch to the merge points and remove return instructions.
24160b57cec5SDimitry Andric     DebugLoc Loc;
24170b57cec5SDimitry Andric     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
24180b57cec5SDimitry Andric       ReturnInst *RI = Returns[i];
24190b57cec5SDimitry Andric       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
24200b57cec5SDimitry Andric       Loc = RI->getDebugLoc();
24210b57cec5SDimitry Andric       BI->setDebugLoc(Loc);
24220b57cec5SDimitry Andric       RI->eraseFromParent();
24230b57cec5SDimitry Andric     }
24240b57cec5SDimitry Andric     // We need to set the debug location to *somewhere* inside the
24250b57cec5SDimitry Andric     // inlined function. The line number may be nonsensical, but the
24260b57cec5SDimitry Andric     // instruction will at least be associated with the right
24270b57cec5SDimitry Andric     // function.
24280b57cec5SDimitry Andric     if (CreatedBranchToNormalDest)
24290b57cec5SDimitry Andric       CreatedBranchToNormalDest->setDebugLoc(Loc);
24300b57cec5SDimitry Andric   } else if (!Returns.empty()) {
24310b57cec5SDimitry Andric     // Otherwise, if there is exactly one return value, just replace anything
24320b57cec5SDimitry Andric     // using the return value of the call with the computed value.
2433*5ffd83dbSDimitry Andric     if (!CB.use_empty()) {
2434*5ffd83dbSDimitry Andric       if (&CB == Returns[0]->getReturnValue())
2435*5ffd83dbSDimitry Andric         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
24360b57cec5SDimitry Andric       else
2437*5ffd83dbSDimitry Andric         CB.replaceAllUsesWith(Returns[0]->getReturnValue());
24380b57cec5SDimitry Andric     }
24390b57cec5SDimitry Andric 
24400b57cec5SDimitry Andric     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
24410b57cec5SDimitry Andric     BasicBlock *ReturnBB = Returns[0]->getParent();
24420b57cec5SDimitry Andric     ReturnBB->replaceAllUsesWith(AfterCallBB);
24430b57cec5SDimitry Andric 
24440b57cec5SDimitry Andric     // Splice the code from the return block into the block that it will return
24450b57cec5SDimitry Andric     // to, which contains the code that was after the call.
24460b57cec5SDimitry Andric     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
24470b57cec5SDimitry Andric                                       ReturnBB->getInstList());
24480b57cec5SDimitry Andric 
24490b57cec5SDimitry Andric     if (CreatedBranchToNormalDest)
24500b57cec5SDimitry Andric       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
24510b57cec5SDimitry Andric 
24520b57cec5SDimitry Andric     // Delete the return instruction now and empty ReturnBB now.
24530b57cec5SDimitry Andric     Returns[0]->eraseFromParent();
24540b57cec5SDimitry Andric     ReturnBB->eraseFromParent();
2455*5ffd83dbSDimitry Andric   } else if (!CB.use_empty()) {
24560b57cec5SDimitry Andric     // No returns, but something is using the return value of the call.  Just
24570b57cec5SDimitry Andric     // nuke the result.
2458*5ffd83dbSDimitry Andric     CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
24590b57cec5SDimitry Andric   }
24600b57cec5SDimitry Andric 
24610b57cec5SDimitry Andric   // Since we are now done with the Call/Invoke, we can delete it.
2462*5ffd83dbSDimitry Andric   CB.eraseFromParent();
24630b57cec5SDimitry Andric 
24640b57cec5SDimitry Andric   // If we inlined any musttail calls and the original return is now
24650b57cec5SDimitry Andric   // unreachable, delete it.  It can only contain a bitcast and ret.
24660b57cec5SDimitry Andric   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
24670b57cec5SDimitry Andric     AfterCallBB->eraseFromParent();
24680b57cec5SDimitry Andric 
24690b57cec5SDimitry Andric   // We should always be able to fold the entry block of the function into the
24700b57cec5SDimitry Andric   // single predecessor of the block...
24710b57cec5SDimitry Andric   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
24720b57cec5SDimitry Andric   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
24730b57cec5SDimitry Andric 
24740b57cec5SDimitry Andric   // Splice the code entry block into calling block, right before the
24750b57cec5SDimitry Andric   // unconditional branch.
24760b57cec5SDimitry Andric   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
24770b57cec5SDimitry Andric   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
24780b57cec5SDimitry Andric 
24790b57cec5SDimitry Andric   // Remove the unconditional branch.
24800b57cec5SDimitry Andric   OrigBB->getInstList().erase(Br);
24810b57cec5SDimitry Andric 
24820b57cec5SDimitry Andric   // Now we can remove the CalleeEntry block, which is now empty.
24830b57cec5SDimitry Andric   Caller->getBasicBlockList().erase(CalleeEntry);
24840b57cec5SDimitry Andric 
24850b57cec5SDimitry Andric   // If we inserted a phi node, check to see if it has a single value (e.g. all
24860b57cec5SDimitry Andric   // the entries are the same or undef).  If so, remove the PHI so it doesn't
24870b57cec5SDimitry Andric   // block other optimizations.
24880b57cec5SDimitry Andric   if (PHI) {
24890b57cec5SDimitry Andric     AssumptionCache *AC =
2490*5ffd83dbSDimitry Andric         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
24910b57cec5SDimitry Andric     auto &DL = Caller->getParent()->getDataLayout();
24920b57cec5SDimitry Andric     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
24930b57cec5SDimitry Andric       PHI->replaceAllUsesWith(V);
24940b57cec5SDimitry Andric       PHI->eraseFromParent();
24950b57cec5SDimitry Andric     }
24960b57cec5SDimitry Andric   }
24970b57cec5SDimitry Andric 
2498*5ffd83dbSDimitry Andric   return InlineResult::success();
24990b57cec5SDimitry Andric }
2500