xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1*0b57cec5SDimitry Andric //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2*0b57cec5SDimitry Andric //
3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0b57cec5SDimitry Andric //
7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
8*0b57cec5SDimitry Andric //
9*0b57cec5SDimitry Andric // This file implements inlining of a function into a call site, resolving
10*0b57cec5SDimitry Andric // parameters and the return value as appropriate.
11*0b57cec5SDimitry Andric //
12*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
13*0b57cec5SDimitry Andric 
14*0b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
15*0b57cec5SDimitry Andric #include "llvm/ADT/None.h"
16*0b57cec5SDimitry Andric #include "llvm/ADT/Optional.h"
17*0b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
18*0b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h"
19*0b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
20*0b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
21*0b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h"
22*0b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h"
23*0b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
24*0b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
25*0b57cec5SDimitry Andric #include "llvm/Analysis/BlockFrequencyInfo.h"
26*0b57cec5SDimitry Andric #include "llvm/Analysis/CallGraph.h"
27*0b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h"
28*0b57cec5SDimitry Andric #include "llvm/Analysis/EHPersonalities.h"
29*0b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
30*0b57cec5SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h"
31*0b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
32*0b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
33*0b57cec5SDimitry Andric #include "llvm/Analysis/VectorUtils.h"
34*0b57cec5SDimitry Andric #include "llvm/IR/Argument.h"
35*0b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
36*0b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
37*0b57cec5SDimitry Andric #include "llvm/IR/CallSite.h"
38*0b57cec5SDimitry Andric #include "llvm/IR/Constant.h"
39*0b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
40*0b57cec5SDimitry Andric #include "llvm/IR/DIBuilder.h"
41*0b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
42*0b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h"
43*0b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
44*0b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
45*0b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
46*0b57cec5SDimitry Andric #include "llvm/IR/Function.h"
47*0b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
48*0b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
49*0b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
50*0b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
51*0b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
52*0b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
53*0b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
54*0b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h"
55*0b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
56*0b57cec5SDimitry Andric #include "llvm/IR/Module.h"
57*0b57cec5SDimitry Andric #include "llvm/IR/Type.h"
58*0b57cec5SDimitry Andric #include "llvm/IR/User.h"
59*0b57cec5SDimitry Andric #include "llvm/IR/Value.h"
60*0b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
61*0b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
62*0b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
63*0b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Cloning.h"
64*0b57cec5SDimitry Andric #include "llvm/Transforms/Utils/ValueMapper.h"
65*0b57cec5SDimitry Andric #include <algorithm>
66*0b57cec5SDimitry Andric #include <cassert>
67*0b57cec5SDimitry Andric #include <cstdint>
68*0b57cec5SDimitry Andric #include <iterator>
69*0b57cec5SDimitry Andric #include <limits>
70*0b57cec5SDimitry Andric #include <string>
71*0b57cec5SDimitry Andric #include <utility>
72*0b57cec5SDimitry Andric #include <vector>
73*0b57cec5SDimitry Andric 
74*0b57cec5SDimitry Andric using namespace llvm;
75*0b57cec5SDimitry Andric using ProfileCount = Function::ProfileCount;
76*0b57cec5SDimitry Andric 
77*0b57cec5SDimitry Andric static cl::opt<bool>
78*0b57cec5SDimitry Andric EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
79*0b57cec5SDimitry Andric   cl::Hidden,
80*0b57cec5SDimitry Andric   cl::desc("Convert noalias attributes to metadata during inlining."));
81*0b57cec5SDimitry Andric 
82*0b57cec5SDimitry Andric static cl::opt<bool>
83*0b57cec5SDimitry Andric PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
84*0b57cec5SDimitry Andric   cl::init(true), cl::Hidden,
85*0b57cec5SDimitry Andric   cl::desc("Convert align attributes to assumptions during inlining."));
86*0b57cec5SDimitry Andric 
87*0b57cec5SDimitry Andric llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI,
88*0b57cec5SDimitry Andric                                         AAResults *CalleeAAR,
89*0b57cec5SDimitry Andric                                         bool InsertLifetime) {
90*0b57cec5SDimitry Andric   return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime);
91*0b57cec5SDimitry Andric }
92*0b57cec5SDimitry Andric 
93*0b57cec5SDimitry Andric namespace {
94*0b57cec5SDimitry Andric 
95*0b57cec5SDimitry Andric   /// A class for recording information about inlining a landing pad.
96*0b57cec5SDimitry Andric   class LandingPadInliningInfo {
97*0b57cec5SDimitry Andric     /// Destination of the invoke's unwind.
98*0b57cec5SDimitry Andric     BasicBlock *OuterResumeDest;
99*0b57cec5SDimitry Andric 
100*0b57cec5SDimitry Andric     /// Destination for the callee's resume.
101*0b57cec5SDimitry Andric     BasicBlock *InnerResumeDest = nullptr;
102*0b57cec5SDimitry Andric 
103*0b57cec5SDimitry Andric     /// LandingPadInst associated with the invoke.
104*0b57cec5SDimitry Andric     LandingPadInst *CallerLPad = nullptr;
105*0b57cec5SDimitry Andric 
106*0b57cec5SDimitry Andric     /// PHI for EH values from landingpad insts.
107*0b57cec5SDimitry Andric     PHINode *InnerEHValuesPHI = nullptr;
108*0b57cec5SDimitry Andric 
109*0b57cec5SDimitry Andric     SmallVector<Value*, 8> UnwindDestPHIValues;
110*0b57cec5SDimitry Andric 
111*0b57cec5SDimitry Andric   public:
112*0b57cec5SDimitry Andric     LandingPadInliningInfo(InvokeInst *II)
113*0b57cec5SDimitry Andric         : OuterResumeDest(II->getUnwindDest()) {
114*0b57cec5SDimitry Andric       // If there are PHI nodes in the unwind destination block, we need to keep
115*0b57cec5SDimitry Andric       // track of which values came into them from the invoke before removing
116*0b57cec5SDimitry Andric       // the edge from this block.
117*0b57cec5SDimitry Andric       BasicBlock *InvokeBB = II->getParent();
118*0b57cec5SDimitry Andric       BasicBlock::iterator I = OuterResumeDest->begin();
119*0b57cec5SDimitry Andric       for (; isa<PHINode>(I); ++I) {
120*0b57cec5SDimitry Andric         // Save the value to use for this edge.
121*0b57cec5SDimitry Andric         PHINode *PHI = cast<PHINode>(I);
122*0b57cec5SDimitry Andric         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
123*0b57cec5SDimitry Andric       }
124*0b57cec5SDimitry Andric 
125*0b57cec5SDimitry Andric       CallerLPad = cast<LandingPadInst>(I);
126*0b57cec5SDimitry Andric     }
127*0b57cec5SDimitry Andric 
128*0b57cec5SDimitry Andric     /// The outer unwind destination is the target of
129*0b57cec5SDimitry Andric     /// unwind edges introduced for calls within the inlined function.
130*0b57cec5SDimitry Andric     BasicBlock *getOuterResumeDest() const {
131*0b57cec5SDimitry Andric       return OuterResumeDest;
132*0b57cec5SDimitry Andric     }
133*0b57cec5SDimitry Andric 
134*0b57cec5SDimitry Andric     BasicBlock *getInnerResumeDest();
135*0b57cec5SDimitry Andric 
136*0b57cec5SDimitry Andric     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
137*0b57cec5SDimitry Andric 
138*0b57cec5SDimitry Andric     /// Forward the 'resume' instruction to the caller's landing pad block.
139*0b57cec5SDimitry Andric     /// When the landing pad block has only one predecessor, this is
140*0b57cec5SDimitry Andric     /// a simple branch. When there is more than one predecessor, we need to
141*0b57cec5SDimitry Andric     /// split the landing pad block after the landingpad instruction and jump
142*0b57cec5SDimitry Andric     /// to there.
143*0b57cec5SDimitry Andric     void forwardResume(ResumeInst *RI,
144*0b57cec5SDimitry Andric                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
145*0b57cec5SDimitry Andric 
146*0b57cec5SDimitry Andric     /// Add incoming-PHI values to the unwind destination block for the given
147*0b57cec5SDimitry Andric     /// basic block, using the values for the original invoke's source block.
148*0b57cec5SDimitry Andric     void addIncomingPHIValuesFor(BasicBlock *BB) const {
149*0b57cec5SDimitry Andric       addIncomingPHIValuesForInto(BB, OuterResumeDest);
150*0b57cec5SDimitry Andric     }
151*0b57cec5SDimitry Andric 
152*0b57cec5SDimitry Andric     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
153*0b57cec5SDimitry Andric       BasicBlock::iterator I = dest->begin();
154*0b57cec5SDimitry Andric       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
155*0b57cec5SDimitry Andric         PHINode *phi = cast<PHINode>(I);
156*0b57cec5SDimitry Andric         phi->addIncoming(UnwindDestPHIValues[i], src);
157*0b57cec5SDimitry Andric       }
158*0b57cec5SDimitry Andric     }
159*0b57cec5SDimitry Andric   };
160*0b57cec5SDimitry Andric 
161*0b57cec5SDimitry Andric } // end anonymous namespace
162*0b57cec5SDimitry Andric 
163*0b57cec5SDimitry Andric /// Get or create a target for the branch from ResumeInsts.
164*0b57cec5SDimitry Andric BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
165*0b57cec5SDimitry Andric   if (InnerResumeDest) return InnerResumeDest;
166*0b57cec5SDimitry Andric 
167*0b57cec5SDimitry Andric   // Split the landing pad.
168*0b57cec5SDimitry Andric   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
169*0b57cec5SDimitry Andric   InnerResumeDest =
170*0b57cec5SDimitry Andric     OuterResumeDest->splitBasicBlock(SplitPoint,
171*0b57cec5SDimitry Andric                                      OuterResumeDest->getName() + ".body");
172*0b57cec5SDimitry Andric 
173*0b57cec5SDimitry Andric   // The number of incoming edges we expect to the inner landing pad.
174*0b57cec5SDimitry Andric   const unsigned PHICapacity = 2;
175*0b57cec5SDimitry Andric 
176*0b57cec5SDimitry Andric   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
177*0b57cec5SDimitry Andric   Instruction *InsertPoint = &InnerResumeDest->front();
178*0b57cec5SDimitry Andric   BasicBlock::iterator I = OuterResumeDest->begin();
179*0b57cec5SDimitry Andric   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
180*0b57cec5SDimitry Andric     PHINode *OuterPHI = cast<PHINode>(I);
181*0b57cec5SDimitry Andric     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
182*0b57cec5SDimitry Andric                                         OuterPHI->getName() + ".lpad-body",
183*0b57cec5SDimitry Andric                                         InsertPoint);
184*0b57cec5SDimitry Andric     OuterPHI->replaceAllUsesWith(InnerPHI);
185*0b57cec5SDimitry Andric     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
186*0b57cec5SDimitry Andric   }
187*0b57cec5SDimitry Andric 
188*0b57cec5SDimitry Andric   // Create a PHI for the exception values.
189*0b57cec5SDimitry Andric   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
190*0b57cec5SDimitry Andric                                      "eh.lpad-body", InsertPoint);
191*0b57cec5SDimitry Andric   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
192*0b57cec5SDimitry Andric   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
193*0b57cec5SDimitry Andric 
194*0b57cec5SDimitry Andric   // All done.
195*0b57cec5SDimitry Andric   return InnerResumeDest;
196*0b57cec5SDimitry Andric }
197*0b57cec5SDimitry Andric 
198*0b57cec5SDimitry Andric /// Forward the 'resume' instruction to the caller's landing pad block.
199*0b57cec5SDimitry Andric /// When the landing pad block has only one predecessor, this is a simple
200*0b57cec5SDimitry Andric /// branch. When there is more than one predecessor, we need to split the
201*0b57cec5SDimitry Andric /// landing pad block after the landingpad instruction and jump to there.
202*0b57cec5SDimitry Andric void LandingPadInliningInfo::forwardResume(
203*0b57cec5SDimitry Andric     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
204*0b57cec5SDimitry Andric   BasicBlock *Dest = getInnerResumeDest();
205*0b57cec5SDimitry Andric   BasicBlock *Src = RI->getParent();
206*0b57cec5SDimitry Andric 
207*0b57cec5SDimitry Andric   BranchInst::Create(Dest, Src);
208*0b57cec5SDimitry Andric 
209*0b57cec5SDimitry Andric   // Update the PHIs in the destination. They were inserted in an order which
210*0b57cec5SDimitry Andric   // makes this work.
211*0b57cec5SDimitry Andric   addIncomingPHIValuesForInto(Src, Dest);
212*0b57cec5SDimitry Andric 
213*0b57cec5SDimitry Andric   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
214*0b57cec5SDimitry Andric   RI->eraseFromParent();
215*0b57cec5SDimitry Andric }
216*0b57cec5SDimitry Andric 
217*0b57cec5SDimitry Andric /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
218*0b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) {
219*0b57cec5SDimitry Andric   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
220*0b57cec5SDimitry Andric     return FPI->getParentPad();
221*0b57cec5SDimitry Andric   return cast<CatchSwitchInst>(EHPad)->getParentPad();
222*0b57cec5SDimitry Andric }
223*0b57cec5SDimitry Andric 
224*0b57cec5SDimitry Andric using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
225*0b57cec5SDimitry Andric 
226*0b57cec5SDimitry Andric /// Helper for getUnwindDestToken that does the descendant-ward part of
227*0b57cec5SDimitry Andric /// the search.
228*0b57cec5SDimitry Andric static Value *getUnwindDestTokenHelper(Instruction *EHPad,
229*0b57cec5SDimitry Andric                                        UnwindDestMemoTy &MemoMap) {
230*0b57cec5SDimitry Andric   SmallVector<Instruction *, 8> Worklist(1, EHPad);
231*0b57cec5SDimitry Andric 
232*0b57cec5SDimitry Andric   while (!Worklist.empty()) {
233*0b57cec5SDimitry Andric     Instruction *CurrentPad = Worklist.pop_back_val();
234*0b57cec5SDimitry Andric     // We only put pads on the worklist that aren't in the MemoMap.  When
235*0b57cec5SDimitry Andric     // we find an unwind dest for a pad we may update its ancestors, but
236*0b57cec5SDimitry Andric     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
237*0b57cec5SDimitry Andric     // so they should never get updated while queued on the worklist.
238*0b57cec5SDimitry Andric     assert(!MemoMap.count(CurrentPad));
239*0b57cec5SDimitry Andric     Value *UnwindDestToken = nullptr;
240*0b57cec5SDimitry Andric     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
241*0b57cec5SDimitry Andric       if (CatchSwitch->hasUnwindDest()) {
242*0b57cec5SDimitry Andric         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
243*0b57cec5SDimitry Andric       } else {
244*0b57cec5SDimitry Andric         // Catchswitch doesn't have a 'nounwind' variant, and one might be
245*0b57cec5SDimitry Andric         // annotated as "unwinds to caller" when really it's nounwind (see
246*0b57cec5SDimitry Andric         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
247*0b57cec5SDimitry Andric         // parent's unwind dest from this.  We can check its catchpads'
248*0b57cec5SDimitry Andric         // descendants, since they might include a cleanuppad with an
249*0b57cec5SDimitry Andric         // "unwinds to caller" cleanupret, which can be trusted.
250*0b57cec5SDimitry Andric         for (auto HI = CatchSwitch->handler_begin(),
251*0b57cec5SDimitry Andric                   HE = CatchSwitch->handler_end();
252*0b57cec5SDimitry Andric              HI != HE && !UnwindDestToken; ++HI) {
253*0b57cec5SDimitry Andric           BasicBlock *HandlerBlock = *HI;
254*0b57cec5SDimitry Andric           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
255*0b57cec5SDimitry Andric           for (User *Child : CatchPad->users()) {
256*0b57cec5SDimitry Andric             // Intentionally ignore invokes here -- since the catchswitch is
257*0b57cec5SDimitry Andric             // marked "unwind to caller", it would be a verifier error if it
258*0b57cec5SDimitry Andric             // contained an invoke which unwinds out of it, so any invoke we'd
259*0b57cec5SDimitry Andric             // encounter must unwind to some child of the catch.
260*0b57cec5SDimitry Andric             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
261*0b57cec5SDimitry Andric               continue;
262*0b57cec5SDimitry Andric 
263*0b57cec5SDimitry Andric             Instruction *ChildPad = cast<Instruction>(Child);
264*0b57cec5SDimitry Andric             auto Memo = MemoMap.find(ChildPad);
265*0b57cec5SDimitry Andric             if (Memo == MemoMap.end()) {
266*0b57cec5SDimitry Andric               // Haven't figured out this child pad yet; queue it.
267*0b57cec5SDimitry Andric               Worklist.push_back(ChildPad);
268*0b57cec5SDimitry Andric               continue;
269*0b57cec5SDimitry Andric             }
270*0b57cec5SDimitry Andric             // We've already checked this child, but might have found that
271*0b57cec5SDimitry Andric             // it offers no proof either way.
272*0b57cec5SDimitry Andric             Value *ChildUnwindDestToken = Memo->second;
273*0b57cec5SDimitry Andric             if (!ChildUnwindDestToken)
274*0b57cec5SDimitry Andric               continue;
275*0b57cec5SDimitry Andric             // We already know the child's unwind dest, which can either
276*0b57cec5SDimitry Andric             // be ConstantTokenNone to indicate unwind to caller, or can
277*0b57cec5SDimitry Andric             // be another child of the catchpad.  Only the former indicates
278*0b57cec5SDimitry Andric             // the unwind dest of the catchswitch.
279*0b57cec5SDimitry Andric             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
280*0b57cec5SDimitry Andric               UnwindDestToken = ChildUnwindDestToken;
281*0b57cec5SDimitry Andric               break;
282*0b57cec5SDimitry Andric             }
283*0b57cec5SDimitry Andric             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
284*0b57cec5SDimitry Andric           }
285*0b57cec5SDimitry Andric         }
286*0b57cec5SDimitry Andric       }
287*0b57cec5SDimitry Andric     } else {
288*0b57cec5SDimitry Andric       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
289*0b57cec5SDimitry Andric       for (User *U : CleanupPad->users()) {
290*0b57cec5SDimitry Andric         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
291*0b57cec5SDimitry Andric           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
292*0b57cec5SDimitry Andric             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
293*0b57cec5SDimitry Andric           else
294*0b57cec5SDimitry Andric             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
295*0b57cec5SDimitry Andric           break;
296*0b57cec5SDimitry Andric         }
297*0b57cec5SDimitry Andric         Value *ChildUnwindDestToken;
298*0b57cec5SDimitry Andric         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
299*0b57cec5SDimitry Andric           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
300*0b57cec5SDimitry Andric         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
301*0b57cec5SDimitry Andric           Instruction *ChildPad = cast<Instruction>(U);
302*0b57cec5SDimitry Andric           auto Memo = MemoMap.find(ChildPad);
303*0b57cec5SDimitry Andric           if (Memo == MemoMap.end()) {
304*0b57cec5SDimitry Andric             // Haven't resolved this child yet; queue it and keep searching.
305*0b57cec5SDimitry Andric             Worklist.push_back(ChildPad);
306*0b57cec5SDimitry Andric             continue;
307*0b57cec5SDimitry Andric           }
308*0b57cec5SDimitry Andric           // We've checked this child, but still need to ignore it if it
309*0b57cec5SDimitry Andric           // had no proof either way.
310*0b57cec5SDimitry Andric           ChildUnwindDestToken = Memo->second;
311*0b57cec5SDimitry Andric           if (!ChildUnwindDestToken)
312*0b57cec5SDimitry Andric             continue;
313*0b57cec5SDimitry Andric         } else {
314*0b57cec5SDimitry Andric           // Not a relevant user of the cleanuppad
315*0b57cec5SDimitry Andric           continue;
316*0b57cec5SDimitry Andric         }
317*0b57cec5SDimitry Andric         // In a well-formed program, the child/invoke must either unwind to
318*0b57cec5SDimitry Andric         // an(other) child of the cleanup, or exit the cleanup.  In the
319*0b57cec5SDimitry Andric         // first case, continue searching.
320*0b57cec5SDimitry Andric         if (isa<Instruction>(ChildUnwindDestToken) &&
321*0b57cec5SDimitry Andric             getParentPad(ChildUnwindDestToken) == CleanupPad)
322*0b57cec5SDimitry Andric           continue;
323*0b57cec5SDimitry Andric         UnwindDestToken = ChildUnwindDestToken;
324*0b57cec5SDimitry Andric         break;
325*0b57cec5SDimitry Andric       }
326*0b57cec5SDimitry Andric     }
327*0b57cec5SDimitry Andric     // If we haven't found an unwind dest for CurrentPad, we may have queued its
328*0b57cec5SDimitry Andric     // children, so move on to the next in the worklist.
329*0b57cec5SDimitry Andric     if (!UnwindDestToken)
330*0b57cec5SDimitry Andric       continue;
331*0b57cec5SDimitry Andric 
332*0b57cec5SDimitry Andric     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
333*0b57cec5SDimitry Andric     // any ancestors of CurrentPad up to but not including UnwindDestToken's
334*0b57cec5SDimitry Andric     // parent pad.  Record this in the memo map, and check to see if the
335*0b57cec5SDimitry Andric     // original EHPad being queried is one of the ones exited.
336*0b57cec5SDimitry Andric     Value *UnwindParent;
337*0b57cec5SDimitry Andric     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
338*0b57cec5SDimitry Andric       UnwindParent = getParentPad(UnwindPad);
339*0b57cec5SDimitry Andric     else
340*0b57cec5SDimitry Andric       UnwindParent = nullptr;
341*0b57cec5SDimitry Andric     bool ExitedOriginalPad = false;
342*0b57cec5SDimitry Andric     for (Instruction *ExitedPad = CurrentPad;
343*0b57cec5SDimitry Andric          ExitedPad && ExitedPad != UnwindParent;
344*0b57cec5SDimitry Andric          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
345*0b57cec5SDimitry Andric       // Skip over catchpads since they just follow their catchswitches.
346*0b57cec5SDimitry Andric       if (isa<CatchPadInst>(ExitedPad))
347*0b57cec5SDimitry Andric         continue;
348*0b57cec5SDimitry Andric       MemoMap[ExitedPad] = UnwindDestToken;
349*0b57cec5SDimitry Andric       ExitedOriginalPad |= (ExitedPad == EHPad);
350*0b57cec5SDimitry Andric     }
351*0b57cec5SDimitry Andric 
352*0b57cec5SDimitry Andric     if (ExitedOriginalPad)
353*0b57cec5SDimitry Andric       return UnwindDestToken;
354*0b57cec5SDimitry Andric 
355*0b57cec5SDimitry Andric     // Continue the search.
356*0b57cec5SDimitry Andric   }
357*0b57cec5SDimitry Andric 
358*0b57cec5SDimitry Andric   // No definitive information is contained within this funclet.
359*0b57cec5SDimitry Andric   return nullptr;
360*0b57cec5SDimitry Andric }
361*0b57cec5SDimitry Andric 
362*0b57cec5SDimitry Andric /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
363*0b57cec5SDimitry Andric /// return that pad instruction.  If it unwinds to caller, return
364*0b57cec5SDimitry Andric /// ConstantTokenNone.  If it does not have a definitive unwind destination,
365*0b57cec5SDimitry Andric /// return nullptr.
366*0b57cec5SDimitry Andric ///
367*0b57cec5SDimitry Andric /// This routine gets invoked for calls in funclets in inlinees when inlining
368*0b57cec5SDimitry Andric /// an invoke.  Since many funclets don't have calls inside them, it's queried
369*0b57cec5SDimitry Andric /// on-demand rather than building a map of pads to unwind dests up front.
370*0b57cec5SDimitry Andric /// Determining a funclet's unwind dest may require recursively searching its
371*0b57cec5SDimitry Andric /// descendants, and also ancestors and cousins if the descendants don't provide
372*0b57cec5SDimitry Andric /// an answer.  Since most funclets will have their unwind dest immediately
373*0b57cec5SDimitry Andric /// available as the unwind dest of a catchswitch or cleanupret, this routine
374*0b57cec5SDimitry Andric /// searches top-down from the given pad and then up. To avoid worst-case
375*0b57cec5SDimitry Andric /// quadratic run-time given that approach, it uses a memo map to avoid
376*0b57cec5SDimitry Andric /// re-processing funclet trees.  The callers that rewrite the IR as they go
377*0b57cec5SDimitry Andric /// take advantage of this, for correctness, by checking/forcing rewritten
378*0b57cec5SDimitry Andric /// pads' entries to match the original callee view.
379*0b57cec5SDimitry Andric static Value *getUnwindDestToken(Instruction *EHPad,
380*0b57cec5SDimitry Andric                                  UnwindDestMemoTy &MemoMap) {
381*0b57cec5SDimitry Andric   // Catchpads unwind to the same place as their catchswitch;
382*0b57cec5SDimitry Andric   // redirct any queries on catchpads so the code below can
383*0b57cec5SDimitry Andric   // deal with just catchswitches and cleanuppads.
384*0b57cec5SDimitry Andric   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
385*0b57cec5SDimitry Andric     EHPad = CPI->getCatchSwitch();
386*0b57cec5SDimitry Andric 
387*0b57cec5SDimitry Andric   // Check if we've already determined the unwind dest for this pad.
388*0b57cec5SDimitry Andric   auto Memo = MemoMap.find(EHPad);
389*0b57cec5SDimitry Andric   if (Memo != MemoMap.end())
390*0b57cec5SDimitry Andric     return Memo->second;
391*0b57cec5SDimitry Andric 
392*0b57cec5SDimitry Andric   // Search EHPad and, if necessary, its descendants.
393*0b57cec5SDimitry Andric   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
394*0b57cec5SDimitry Andric   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
395*0b57cec5SDimitry Andric   if (UnwindDestToken)
396*0b57cec5SDimitry Andric     return UnwindDestToken;
397*0b57cec5SDimitry Andric 
398*0b57cec5SDimitry Andric   // No information is available for this EHPad from itself or any of its
399*0b57cec5SDimitry Andric   // descendants.  An unwind all the way out to a pad in the caller would
400*0b57cec5SDimitry Andric   // need also to agree with the unwind dest of the parent funclet, so
401*0b57cec5SDimitry Andric   // search up the chain to try to find a funclet with information.  Put
402*0b57cec5SDimitry Andric   // null entries in the memo map to avoid re-processing as we go up.
403*0b57cec5SDimitry Andric   MemoMap[EHPad] = nullptr;
404*0b57cec5SDimitry Andric #ifndef NDEBUG
405*0b57cec5SDimitry Andric   SmallPtrSet<Instruction *, 4> TempMemos;
406*0b57cec5SDimitry Andric   TempMemos.insert(EHPad);
407*0b57cec5SDimitry Andric #endif
408*0b57cec5SDimitry Andric   Instruction *LastUselessPad = EHPad;
409*0b57cec5SDimitry Andric   Value *AncestorToken;
410*0b57cec5SDimitry Andric   for (AncestorToken = getParentPad(EHPad);
411*0b57cec5SDimitry Andric        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
412*0b57cec5SDimitry Andric        AncestorToken = getParentPad(AncestorToken)) {
413*0b57cec5SDimitry Andric     // Skip over catchpads since they just follow their catchswitches.
414*0b57cec5SDimitry Andric     if (isa<CatchPadInst>(AncestorPad))
415*0b57cec5SDimitry Andric       continue;
416*0b57cec5SDimitry Andric     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
417*0b57cec5SDimitry Andric     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
418*0b57cec5SDimitry Andric     // call to getUnwindDestToken, that would mean that AncestorPad had no
419*0b57cec5SDimitry Andric     // information in itself, its descendants, or its ancestors.  If that
420*0b57cec5SDimitry Andric     // were the case, then we should also have recorded the lack of information
421*0b57cec5SDimitry Andric     // for the descendant that we're coming from.  So assert that we don't
422*0b57cec5SDimitry Andric     // find a null entry in the MemoMap for AncestorPad.
423*0b57cec5SDimitry Andric     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
424*0b57cec5SDimitry Andric     auto AncestorMemo = MemoMap.find(AncestorPad);
425*0b57cec5SDimitry Andric     if (AncestorMemo == MemoMap.end()) {
426*0b57cec5SDimitry Andric       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
427*0b57cec5SDimitry Andric     } else {
428*0b57cec5SDimitry Andric       UnwindDestToken = AncestorMemo->second;
429*0b57cec5SDimitry Andric     }
430*0b57cec5SDimitry Andric     if (UnwindDestToken)
431*0b57cec5SDimitry Andric       break;
432*0b57cec5SDimitry Andric     LastUselessPad = AncestorPad;
433*0b57cec5SDimitry Andric     MemoMap[LastUselessPad] = nullptr;
434*0b57cec5SDimitry Andric #ifndef NDEBUG
435*0b57cec5SDimitry Andric     TempMemos.insert(LastUselessPad);
436*0b57cec5SDimitry Andric #endif
437*0b57cec5SDimitry Andric   }
438*0b57cec5SDimitry Andric 
439*0b57cec5SDimitry Andric   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
440*0b57cec5SDimitry Andric   // returned nullptr (and likewise for EHPad and any of its ancestors up to
441*0b57cec5SDimitry Andric   // LastUselessPad), so LastUselessPad has no information from below.  Since
442*0b57cec5SDimitry Andric   // getUnwindDestTokenHelper must investigate all downward paths through
443*0b57cec5SDimitry Andric   // no-information nodes to prove that a node has no information like this,
444*0b57cec5SDimitry Andric   // and since any time it finds information it records it in the MemoMap for
445*0b57cec5SDimitry Andric   // not just the immediately-containing funclet but also any ancestors also
446*0b57cec5SDimitry Andric   // exited, it must be the case that, walking downward from LastUselessPad,
447*0b57cec5SDimitry Andric   // visiting just those nodes which have not been mapped to an unwind dest
448*0b57cec5SDimitry Andric   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
449*0b57cec5SDimitry Andric   // they are just used to keep getUnwindDestTokenHelper from repeating work),
450*0b57cec5SDimitry Andric   // any node visited must have been exhaustively searched with no information
451*0b57cec5SDimitry Andric   // for it found.
452*0b57cec5SDimitry Andric   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
453*0b57cec5SDimitry Andric   while (!Worklist.empty()) {
454*0b57cec5SDimitry Andric     Instruction *UselessPad = Worklist.pop_back_val();
455*0b57cec5SDimitry Andric     auto Memo = MemoMap.find(UselessPad);
456*0b57cec5SDimitry Andric     if (Memo != MemoMap.end() && Memo->second) {
457*0b57cec5SDimitry Andric       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
458*0b57cec5SDimitry Andric       // that it is a funclet that does have information about unwinding to
459*0b57cec5SDimitry Andric       // a particular destination; its parent was a useless pad.
460*0b57cec5SDimitry Andric       // Since its parent has no information, the unwind edge must not escape
461*0b57cec5SDimitry Andric       // the parent, and must target a sibling of this pad.  This local unwind
462*0b57cec5SDimitry Andric       // gives us no information about EHPad.  Leave it and the subtree rooted
463*0b57cec5SDimitry Andric       // at it alone.
464*0b57cec5SDimitry Andric       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
465*0b57cec5SDimitry Andric       continue;
466*0b57cec5SDimitry Andric     }
467*0b57cec5SDimitry Andric     // We know we don't have information for UselesPad.  If it has an entry in
468*0b57cec5SDimitry Andric     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
469*0b57cec5SDimitry Andric     // added on this invocation of getUnwindDestToken; if a previous invocation
470*0b57cec5SDimitry Andric     // recorded nullptr, it would have had to prove that the ancestors of
471*0b57cec5SDimitry Andric     // UselessPad, which include LastUselessPad, had no information, and that
472*0b57cec5SDimitry Andric     // in turn would have required proving that the descendants of
473*0b57cec5SDimitry Andric     // LastUselesPad, which include EHPad, have no information about
474*0b57cec5SDimitry Andric     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
475*0b57cec5SDimitry Andric     // the MemoMap on that invocation, which isn't the case if we got here.
476*0b57cec5SDimitry Andric     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
477*0b57cec5SDimitry Andric     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
478*0b57cec5SDimitry Andric     // information that we'd be contradicting by making a map entry for it
479*0b57cec5SDimitry Andric     // (which is something that getUnwindDestTokenHelper must have proved for
480*0b57cec5SDimitry Andric     // us to get here).  Just assert on is direct users here; the checks in
481*0b57cec5SDimitry Andric     // this downward walk at its descendants will verify that they don't have
482*0b57cec5SDimitry Andric     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
483*0b57cec5SDimitry Andric     // unwind edges or unwind to a sibling).
484*0b57cec5SDimitry Andric     MemoMap[UselessPad] = UnwindDestToken;
485*0b57cec5SDimitry Andric     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
486*0b57cec5SDimitry Andric       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
487*0b57cec5SDimitry Andric       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
488*0b57cec5SDimitry Andric         auto *CatchPad = HandlerBlock->getFirstNonPHI();
489*0b57cec5SDimitry Andric         for (User *U : CatchPad->users()) {
490*0b57cec5SDimitry Andric           assert(
491*0b57cec5SDimitry Andric               (!isa<InvokeInst>(U) ||
492*0b57cec5SDimitry Andric                (getParentPad(
493*0b57cec5SDimitry Andric                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
494*0b57cec5SDimitry Andric                 CatchPad)) &&
495*0b57cec5SDimitry Andric               "Expected useless pad");
496*0b57cec5SDimitry Andric           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
497*0b57cec5SDimitry Andric             Worklist.push_back(cast<Instruction>(U));
498*0b57cec5SDimitry Andric         }
499*0b57cec5SDimitry Andric       }
500*0b57cec5SDimitry Andric     } else {
501*0b57cec5SDimitry Andric       assert(isa<CleanupPadInst>(UselessPad));
502*0b57cec5SDimitry Andric       for (User *U : UselessPad->users()) {
503*0b57cec5SDimitry Andric         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
504*0b57cec5SDimitry Andric         assert((!isa<InvokeInst>(U) ||
505*0b57cec5SDimitry Andric                 (getParentPad(
506*0b57cec5SDimitry Andric                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
507*0b57cec5SDimitry Andric                  UselessPad)) &&
508*0b57cec5SDimitry Andric                "Expected useless pad");
509*0b57cec5SDimitry Andric         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
510*0b57cec5SDimitry Andric           Worklist.push_back(cast<Instruction>(U));
511*0b57cec5SDimitry Andric       }
512*0b57cec5SDimitry Andric     }
513*0b57cec5SDimitry Andric   }
514*0b57cec5SDimitry Andric 
515*0b57cec5SDimitry Andric   return UnwindDestToken;
516*0b57cec5SDimitry Andric }
517*0b57cec5SDimitry Andric 
518*0b57cec5SDimitry Andric /// When we inline a basic block into an invoke,
519*0b57cec5SDimitry Andric /// we have to turn all of the calls that can throw into invokes.
520*0b57cec5SDimitry Andric /// This function analyze BB to see if there are any calls, and if so,
521*0b57cec5SDimitry Andric /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
522*0b57cec5SDimitry Andric /// nodes in that block with the values specified in InvokeDestPHIValues.
523*0b57cec5SDimitry Andric static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
524*0b57cec5SDimitry Andric     BasicBlock *BB, BasicBlock *UnwindEdge,
525*0b57cec5SDimitry Andric     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
526*0b57cec5SDimitry Andric   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
527*0b57cec5SDimitry Andric     Instruction *I = &*BBI++;
528*0b57cec5SDimitry Andric 
529*0b57cec5SDimitry Andric     // We only need to check for function calls: inlined invoke
530*0b57cec5SDimitry Andric     // instructions require no special handling.
531*0b57cec5SDimitry Andric     CallInst *CI = dyn_cast<CallInst>(I);
532*0b57cec5SDimitry Andric 
533*0b57cec5SDimitry Andric     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
534*0b57cec5SDimitry Andric       continue;
535*0b57cec5SDimitry Andric 
536*0b57cec5SDimitry Andric     // We do not need to (and in fact, cannot) convert possibly throwing calls
537*0b57cec5SDimitry Andric     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
538*0b57cec5SDimitry Andric     // invokes.  The caller's "segment" of the deoptimization continuation
539*0b57cec5SDimitry Andric     // attached to the newly inlined @llvm.experimental_deoptimize
540*0b57cec5SDimitry Andric     // (resp. @llvm.experimental.guard) call should contain the exception
541*0b57cec5SDimitry Andric     // handling logic, if any.
542*0b57cec5SDimitry Andric     if (auto *F = CI->getCalledFunction())
543*0b57cec5SDimitry Andric       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
544*0b57cec5SDimitry Andric           F->getIntrinsicID() == Intrinsic::experimental_guard)
545*0b57cec5SDimitry Andric         continue;
546*0b57cec5SDimitry Andric 
547*0b57cec5SDimitry Andric     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
548*0b57cec5SDimitry Andric       // This call is nested inside a funclet.  If that funclet has an unwind
549*0b57cec5SDimitry Andric       // destination within the inlinee, then unwinding out of this call would
550*0b57cec5SDimitry Andric       // be UB.  Rewriting this call to an invoke which targets the inlined
551*0b57cec5SDimitry Andric       // invoke's unwind dest would give the call's parent funclet multiple
552*0b57cec5SDimitry Andric       // unwind destinations, which is something that subsequent EH table
553*0b57cec5SDimitry Andric       // generation can't handle and that the veirifer rejects.  So when we
554*0b57cec5SDimitry Andric       // see such a call, leave it as a call.
555*0b57cec5SDimitry Andric       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
556*0b57cec5SDimitry Andric       Value *UnwindDestToken =
557*0b57cec5SDimitry Andric           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
558*0b57cec5SDimitry Andric       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
559*0b57cec5SDimitry Andric         continue;
560*0b57cec5SDimitry Andric #ifndef NDEBUG
561*0b57cec5SDimitry Andric       Instruction *MemoKey;
562*0b57cec5SDimitry Andric       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
563*0b57cec5SDimitry Andric         MemoKey = CatchPad->getCatchSwitch();
564*0b57cec5SDimitry Andric       else
565*0b57cec5SDimitry Andric         MemoKey = FuncletPad;
566*0b57cec5SDimitry Andric       assert(FuncletUnwindMap->count(MemoKey) &&
567*0b57cec5SDimitry Andric              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
568*0b57cec5SDimitry Andric              "must get memoized to avoid confusing later searches");
569*0b57cec5SDimitry Andric #endif // NDEBUG
570*0b57cec5SDimitry Andric     }
571*0b57cec5SDimitry Andric 
572*0b57cec5SDimitry Andric     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
573*0b57cec5SDimitry Andric     return BB;
574*0b57cec5SDimitry Andric   }
575*0b57cec5SDimitry Andric   return nullptr;
576*0b57cec5SDimitry Andric }
577*0b57cec5SDimitry Andric 
578*0b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls
579*0b57cec5SDimitry Andric /// in the body of the inlined function into invokes.
580*0b57cec5SDimitry Andric ///
581*0b57cec5SDimitry Andric /// II is the invoke instruction being inlined.  FirstNewBlock is the first
582*0b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function),
583*0b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined.
584*0b57cec5SDimitry Andric static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
585*0b57cec5SDimitry Andric                                     ClonedCodeInfo &InlinedCodeInfo) {
586*0b57cec5SDimitry Andric   BasicBlock *InvokeDest = II->getUnwindDest();
587*0b57cec5SDimitry Andric 
588*0b57cec5SDimitry Andric   Function *Caller = FirstNewBlock->getParent();
589*0b57cec5SDimitry Andric 
590*0b57cec5SDimitry Andric   // The inlined code is currently at the end of the function, scan from the
591*0b57cec5SDimitry Andric   // start of the inlined code to its end, checking for stuff we need to
592*0b57cec5SDimitry Andric   // rewrite.
593*0b57cec5SDimitry Andric   LandingPadInliningInfo Invoke(II);
594*0b57cec5SDimitry Andric 
595*0b57cec5SDimitry Andric   // Get all of the inlined landing pad instructions.
596*0b57cec5SDimitry Andric   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
597*0b57cec5SDimitry Andric   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
598*0b57cec5SDimitry Andric        I != E; ++I)
599*0b57cec5SDimitry Andric     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
600*0b57cec5SDimitry Andric       InlinedLPads.insert(II->getLandingPadInst());
601*0b57cec5SDimitry Andric 
602*0b57cec5SDimitry Andric   // Append the clauses from the outer landing pad instruction into the inlined
603*0b57cec5SDimitry Andric   // landing pad instructions.
604*0b57cec5SDimitry Andric   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
605*0b57cec5SDimitry Andric   for (LandingPadInst *InlinedLPad : InlinedLPads) {
606*0b57cec5SDimitry Andric     unsigned OuterNum = OuterLPad->getNumClauses();
607*0b57cec5SDimitry Andric     InlinedLPad->reserveClauses(OuterNum);
608*0b57cec5SDimitry Andric     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
609*0b57cec5SDimitry Andric       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
610*0b57cec5SDimitry Andric     if (OuterLPad->isCleanup())
611*0b57cec5SDimitry Andric       InlinedLPad->setCleanup(true);
612*0b57cec5SDimitry Andric   }
613*0b57cec5SDimitry Andric 
614*0b57cec5SDimitry Andric   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
615*0b57cec5SDimitry Andric        BB != E; ++BB) {
616*0b57cec5SDimitry Andric     if (InlinedCodeInfo.ContainsCalls)
617*0b57cec5SDimitry Andric       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
618*0b57cec5SDimitry Andric               &*BB, Invoke.getOuterResumeDest()))
619*0b57cec5SDimitry Andric         // Update any PHI nodes in the exceptional block to indicate that there
620*0b57cec5SDimitry Andric         // is now a new entry in them.
621*0b57cec5SDimitry Andric         Invoke.addIncomingPHIValuesFor(NewBB);
622*0b57cec5SDimitry Andric 
623*0b57cec5SDimitry Andric     // Forward any resumes that are remaining here.
624*0b57cec5SDimitry Andric     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
625*0b57cec5SDimitry Andric       Invoke.forwardResume(RI, InlinedLPads);
626*0b57cec5SDimitry Andric   }
627*0b57cec5SDimitry Andric 
628*0b57cec5SDimitry Andric   // Now that everything is happy, we have one final detail.  The PHI nodes in
629*0b57cec5SDimitry Andric   // the exception destination block still have entries due to the original
630*0b57cec5SDimitry Andric   // invoke instruction. Eliminate these entries (which might even delete the
631*0b57cec5SDimitry Andric   // PHI node) now.
632*0b57cec5SDimitry Andric   InvokeDest->removePredecessor(II->getParent());
633*0b57cec5SDimitry Andric }
634*0b57cec5SDimitry Andric 
635*0b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls
636*0b57cec5SDimitry Andric /// in the body of the inlined function into invokes.
637*0b57cec5SDimitry Andric ///
638*0b57cec5SDimitry Andric /// II is the invoke instruction being inlined.  FirstNewBlock is the first
639*0b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function),
640*0b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined.
641*0b57cec5SDimitry Andric static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
642*0b57cec5SDimitry Andric                                ClonedCodeInfo &InlinedCodeInfo) {
643*0b57cec5SDimitry Andric   BasicBlock *UnwindDest = II->getUnwindDest();
644*0b57cec5SDimitry Andric   Function *Caller = FirstNewBlock->getParent();
645*0b57cec5SDimitry Andric 
646*0b57cec5SDimitry Andric   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
647*0b57cec5SDimitry Andric 
648*0b57cec5SDimitry Andric   // If there are PHI nodes in the unwind destination block, we need to keep
649*0b57cec5SDimitry Andric   // track of which values came into them from the invoke before removing the
650*0b57cec5SDimitry Andric   // edge from this block.
651*0b57cec5SDimitry Andric   SmallVector<Value *, 8> UnwindDestPHIValues;
652*0b57cec5SDimitry Andric   BasicBlock *InvokeBB = II->getParent();
653*0b57cec5SDimitry Andric   for (Instruction &I : *UnwindDest) {
654*0b57cec5SDimitry Andric     // Save the value to use for this edge.
655*0b57cec5SDimitry Andric     PHINode *PHI = dyn_cast<PHINode>(&I);
656*0b57cec5SDimitry Andric     if (!PHI)
657*0b57cec5SDimitry Andric       break;
658*0b57cec5SDimitry Andric     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
659*0b57cec5SDimitry Andric   }
660*0b57cec5SDimitry Andric 
661*0b57cec5SDimitry Andric   // Add incoming-PHI values to the unwind destination block for the given basic
662*0b57cec5SDimitry Andric   // block, using the values for the original invoke's source block.
663*0b57cec5SDimitry Andric   auto UpdatePHINodes = [&](BasicBlock *Src) {
664*0b57cec5SDimitry Andric     BasicBlock::iterator I = UnwindDest->begin();
665*0b57cec5SDimitry Andric     for (Value *V : UnwindDestPHIValues) {
666*0b57cec5SDimitry Andric       PHINode *PHI = cast<PHINode>(I);
667*0b57cec5SDimitry Andric       PHI->addIncoming(V, Src);
668*0b57cec5SDimitry Andric       ++I;
669*0b57cec5SDimitry Andric     }
670*0b57cec5SDimitry Andric   };
671*0b57cec5SDimitry Andric 
672*0b57cec5SDimitry Andric   // This connects all the instructions which 'unwind to caller' to the invoke
673*0b57cec5SDimitry Andric   // destination.
674*0b57cec5SDimitry Andric   UnwindDestMemoTy FuncletUnwindMap;
675*0b57cec5SDimitry Andric   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
676*0b57cec5SDimitry Andric        BB != E; ++BB) {
677*0b57cec5SDimitry Andric     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
678*0b57cec5SDimitry Andric       if (CRI->unwindsToCaller()) {
679*0b57cec5SDimitry Andric         auto *CleanupPad = CRI->getCleanupPad();
680*0b57cec5SDimitry Andric         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
681*0b57cec5SDimitry Andric         CRI->eraseFromParent();
682*0b57cec5SDimitry Andric         UpdatePHINodes(&*BB);
683*0b57cec5SDimitry Andric         // Finding a cleanupret with an unwind destination would confuse
684*0b57cec5SDimitry Andric         // subsequent calls to getUnwindDestToken, so map the cleanuppad
685*0b57cec5SDimitry Andric         // to short-circuit any such calls and recognize this as an "unwind
686*0b57cec5SDimitry Andric         // to caller" cleanup.
687*0b57cec5SDimitry Andric         assert(!FuncletUnwindMap.count(CleanupPad) ||
688*0b57cec5SDimitry Andric                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
689*0b57cec5SDimitry Andric         FuncletUnwindMap[CleanupPad] =
690*0b57cec5SDimitry Andric             ConstantTokenNone::get(Caller->getContext());
691*0b57cec5SDimitry Andric       }
692*0b57cec5SDimitry Andric     }
693*0b57cec5SDimitry Andric 
694*0b57cec5SDimitry Andric     Instruction *I = BB->getFirstNonPHI();
695*0b57cec5SDimitry Andric     if (!I->isEHPad())
696*0b57cec5SDimitry Andric       continue;
697*0b57cec5SDimitry Andric 
698*0b57cec5SDimitry Andric     Instruction *Replacement = nullptr;
699*0b57cec5SDimitry Andric     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
700*0b57cec5SDimitry Andric       if (CatchSwitch->unwindsToCaller()) {
701*0b57cec5SDimitry Andric         Value *UnwindDestToken;
702*0b57cec5SDimitry Andric         if (auto *ParentPad =
703*0b57cec5SDimitry Andric                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
704*0b57cec5SDimitry Andric           // This catchswitch is nested inside another funclet.  If that
705*0b57cec5SDimitry Andric           // funclet has an unwind destination within the inlinee, then
706*0b57cec5SDimitry Andric           // unwinding out of this catchswitch would be UB.  Rewriting this
707*0b57cec5SDimitry Andric           // catchswitch to unwind to the inlined invoke's unwind dest would
708*0b57cec5SDimitry Andric           // give the parent funclet multiple unwind destinations, which is
709*0b57cec5SDimitry Andric           // something that subsequent EH table generation can't handle and
710*0b57cec5SDimitry Andric           // that the veirifer rejects.  So when we see such a call, leave it
711*0b57cec5SDimitry Andric           // as "unwind to caller".
712*0b57cec5SDimitry Andric           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
713*0b57cec5SDimitry Andric           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
714*0b57cec5SDimitry Andric             continue;
715*0b57cec5SDimitry Andric         } else {
716*0b57cec5SDimitry Andric           // This catchswitch has no parent to inherit constraints from, and
717*0b57cec5SDimitry Andric           // none of its descendants can have an unwind edge that exits it and
718*0b57cec5SDimitry Andric           // targets another funclet in the inlinee.  It may or may not have a
719*0b57cec5SDimitry Andric           // descendant that definitively has an unwind to caller.  In either
720*0b57cec5SDimitry Andric           // case, we'll have to assume that any unwinds out of it may need to
721*0b57cec5SDimitry Andric           // be routed to the caller, so treat it as though it has a definitive
722*0b57cec5SDimitry Andric           // unwind to caller.
723*0b57cec5SDimitry Andric           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
724*0b57cec5SDimitry Andric         }
725*0b57cec5SDimitry Andric         auto *NewCatchSwitch = CatchSwitchInst::Create(
726*0b57cec5SDimitry Andric             CatchSwitch->getParentPad(), UnwindDest,
727*0b57cec5SDimitry Andric             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
728*0b57cec5SDimitry Andric             CatchSwitch);
729*0b57cec5SDimitry Andric         for (BasicBlock *PadBB : CatchSwitch->handlers())
730*0b57cec5SDimitry Andric           NewCatchSwitch->addHandler(PadBB);
731*0b57cec5SDimitry Andric         // Propagate info for the old catchswitch over to the new one in
732*0b57cec5SDimitry Andric         // the unwind map.  This also serves to short-circuit any subsequent
733*0b57cec5SDimitry Andric         // checks for the unwind dest of this catchswitch, which would get
734*0b57cec5SDimitry Andric         // confused if they found the outer handler in the callee.
735*0b57cec5SDimitry Andric         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
736*0b57cec5SDimitry Andric         Replacement = NewCatchSwitch;
737*0b57cec5SDimitry Andric       }
738*0b57cec5SDimitry Andric     } else if (!isa<FuncletPadInst>(I)) {
739*0b57cec5SDimitry Andric       llvm_unreachable("unexpected EHPad!");
740*0b57cec5SDimitry Andric     }
741*0b57cec5SDimitry Andric 
742*0b57cec5SDimitry Andric     if (Replacement) {
743*0b57cec5SDimitry Andric       Replacement->takeName(I);
744*0b57cec5SDimitry Andric       I->replaceAllUsesWith(Replacement);
745*0b57cec5SDimitry Andric       I->eraseFromParent();
746*0b57cec5SDimitry Andric       UpdatePHINodes(&*BB);
747*0b57cec5SDimitry Andric     }
748*0b57cec5SDimitry Andric   }
749*0b57cec5SDimitry Andric 
750*0b57cec5SDimitry Andric   if (InlinedCodeInfo.ContainsCalls)
751*0b57cec5SDimitry Andric     for (Function::iterator BB = FirstNewBlock->getIterator(),
752*0b57cec5SDimitry Andric                             E = Caller->end();
753*0b57cec5SDimitry Andric          BB != E; ++BB)
754*0b57cec5SDimitry Andric       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
755*0b57cec5SDimitry Andric               &*BB, UnwindDest, &FuncletUnwindMap))
756*0b57cec5SDimitry Andric         // Update any PHI nodes in the exceptional block to indicate that there
757*0b57cec5SDimitry Andric         // is now a new entry in them.
758*0b57cec5SDimitry Andric         UpdatePHINodes(NewBB);
759*0b57cec5SDimitry Andric 
760*0b57cec5SDimitry Andric   // Now that everything is happy, we have one final detail.  The PHI nodes in
761*0b57cec5SDimitry Andric   // the exception destination block still have entries due to the original
762*0b57cec5SDimitry Andric   // invoke instruction. Eliminate these entries (which might even delete the
763*0b57cec5SDimitry Andric   // PHI node) now.
764*0b57cec5SDimitry Andric   UnwindDest->removePredecessor(InvokeBB);
765*0b57cec5SDimitry Andric }
766*0b57cec5SDimitry Andric 
767*0b57cec5SDimitry Andric /// When inlining a call site that has !llvm.mem.parallel_loop_access or
768*0b57cec5SDimitry Andric /// llvm.access.group metadata, that metadata should be propagated to all
769*0b57cec5SDimitry Andric /// memory-accessing cloned instructions.
770*0b57cec5SDimitry Andric static void PropagateParallelLoopAccessMetadata(CallSite CS,
771*0b57cec5SDimitry Andric                                                 ValueToValueMapTy &VMap) {
772*0b57cec5SDimitry Andric   MDNode *M =
773*0b57cec5SDimitry Andric     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
774*0b57cec5SDimitry Andric   MDNode *CallAccessGroup =
775*0b57cec5SDimitry Andric       CS.getInstruction()->getMetadata(LLVMContext::MD_access_group);
776*0b57cec5SDimitry Andric   if (!M && !CallAccessGroup)
777*0b57cec5SDimitry Andric     return;
778*0b57cec5SDimitry Andric 
779*0b57cec5SDimitry Andric   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
780*0b57cec5SDimitry Andric        VMI != VMIE; ++VMI) {
781*0b57cec5SDimitry Andric     if (!VMI->second)
782*0b57cec5SDimitry Andric       continue;
783*0b57cec5SDimitry Andric 
784*0b57cec5SDimitry Andric     Instruction *NI = dyn_cast<Instruction>(VMI->second);
785*0b57cec5SDimitry Andric     if (!NI)
786*0b57cec5SDimitry Andric       continue;
787*0b57cec5SDimitry Andric 
788*0b57cec5SDimitry Andric     if (M) {
789*0b57cec5SDimitry Andric       if (MDNode *PM =
790*0b57cec5SDimitry Andric               NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
791*0b57cec5SDimitry Andric         M = MDNode::concatenate(PM, M);
792*0b57cec5SDimitry Andric       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
793*0b57cec5SDimitry Andric       } else if (NI->mayReadOrWriteMemory()) {
794*0b57cec5SDimitry Andric         NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
795*0b57cec5SDimitry Andric       }
796*0b57cec5SDimitry Andric     }
797*0b57cec5SDimitry Andric 
798*0b57cec5SDimitry Andric     if (NI->mayReadOrWriteMemory()) {
799*0b57cec5SDimitry Andric       MDNode *UnitedAccGroups = uniteAccessGroups(
800*0b57cec5SDimitry Andric           NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
801*0b57cec5SDimitry Andric       NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
802*0b57cec5SDimitry Andric     }
803*0b57cec5SDimitry Andric   }
804*0b57cec5SDimitry Andric }
805*0b57cec5SDimitry Andric 
806*0b57cec5SDimitry Andric /// When inlining a function that contains noalias scope metadata,
807*0b57cec5SDimitry Andric /// this metadata needs to be cloned so that the inlined blocks
808*0b57cec5SDimitry Andric /// have different "unique scopes" at every call site. Were this not done, then
809*0b57cec5SDimitry Andric /// aliasing scopes from a function inlined into a caller multiple times could
810*0b57cec5SDimitry Andric /// not be differentiated (and this would lead to miscompiles because the
811*0b57cec5SDimitry Andric /// non-aliasing property communicated by the metadata could have
812*0b57cec5SDimitry Andric /// call-site-specific control dependencies).
813*0b57cec5SDimitry Andric static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
814*0b57cec5SDimitry Andric   const Function *CalledFunc = CS.getCalledFunction();
815*0b57cec5SDimitry Andric   SetVector<const MDNode *> MD;
816*0b57cec5SDimitry Andric 
817*0b57cec5SDimitry Andric   // Note: We could only clone the metadata if it is already used in the
818*0b57cec5SDimitry Andric   // caller. I'm omitting that check here because it might confuse
819*0b57cec5SDimitry Andric   // inter-procedural alias analysis passes. We can revisit this if it becomes
820*0b57cec5SDimitry Andric   // an efficiency or overhead problem.
821*0b57cec5SDimitry Andric 
822*0b57cec5SDimitry Andric   for (const BasicBlock &I : *CalledFunc)
823*0b57cec5SDimitry Andric     for (const Instruction &J : I) {
824*0b57cec5SDimitry Andric       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
825*0b57cec5SDimitry Andric         MD.insert(M);
826*0b57cec5SDimitry Andric       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
827*0b57cec5SDimitry Andric         MD.insert(M);
828*0b57cec5SDimitry Andric     }
829*0b57cec5SDimitry Andric 
830*0b57cec5SDimitry Andric   if (MD.empty())
831*0b57cec5SDimitry Andric     return;
832*0b57cec5SDimitry Andric 
833*0b57cec5SDimitry Andric   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
834*0b57cec5SDimitry Andric   // the set.
835*0b57cec5SDimitry Andric   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
836*0b57cec5SDimitry Andric   while (!Queue.empty()) {
837*0b57cec5SDimitry Andric     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
838*0b57cec5SDimitry Andric     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
839*0b57cec5SDimitry Andric       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
840*0b57cec5SDimitry Andric         if (MD.insert(M1))
841*0b57cec5SDimitry Andric           Queue.push_back(M1);
842*0b57cec5SDimitry Andric   }
843*0b57cec5SDimitry Andric 
844*0b57cec5SDimitry Andric   // Now we have a complete set of all metadata in the chains used to specify
845*0b57cec5SDimitry Andric   // the noalias scopes and the lists of those scopes.
846*0b57cec5SDimitry Andric   SmallVector<TempMDTuple, 16> DummyNodes;
847*0b57cec5SDimitry Andric   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
848*0b57cec5SDimitry Andric   for (const MDNode *I : MD) {
849*0b57cec5SDimitry Andric     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
850*0b57cec5SDimitry Andric     MDMap[I].reset(DummyNodes.back().get());
851*0b57cec5SDimitry Andric   }
852*0b57cec5SDimitry Andric 
853*0b57cec5SDimitry Andric   // Create new metadata nodes to replace the dummy nodes, replacing old
854*0b57cec5SDimitry Andric   // metadata references with either a dummy node or an already-created new
855*0b57cec5SDimitry Andric   // node.
856*0b57cec5SDimitry Andric   for (const MDNode *I : MD) {
857*0b57cec5SDimitry Andric     SmallVector<Metadata *, 4> NewOps;
858*0b57cec5SDimitry Andric     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
859*0b57cec5SDimitry Andric       const Metadata *V = I->getOperand(i);
860*0b57cec5SDimitry Andric       if (const MDNode *M = dyn_cast<MDNode>(V))
861*0b57cec5SDimitry Andric         NewOps.push_back(MDMap[M]);
862*0b57cec5SDimitry Andric       else
863*0b57cec5SDimitry Andric         NewOps.push_back(const_cast<Metadata *>(V));
864*0b57cec5SDimitry Andric     }
865*0b57cec5SDimitry Andric 
866*0b57cec5SDimitry Andric     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
867*0b57cec5SDimitry Andric     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
868*0b57cec5SDimitry Andric     assert(TempM->isTemporary() && "Expected temporary node");
869*0b57cec5SDimitry Andric 
870*0b57cec5SDimitry Andric     TempM->replaceAllUsesWith(NewM);
871*0b57cec5SDimitry Andric   }
872*0b57cec5SDimitry Andric 
873*0b57cec5SDimitry Andric   // Now replace the metadata in the new inlined instructions with the
874*0b57cec5SDimitry Andric   // repacements from the map.
875*0b57cec5SDimitry Andric   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
876*0b57cec5SDimitry Andric        VMI != VMIE; ++VMI) {
877*0b57cec5SDimitry Andric     if (!VMI->second)
878*0b57cec5SDimitry Andric       continue;
879*0b57cec5SDimitry Andric 
880*0b57cec5SDimitry Andric     Instruction *NI = dyn_cast<Instruction>(VMI->second);
881*0b57cec5SDimitry Andric     if (!NI)
882*0b57cec5SDimitry Andric       continue;
883*0b57cec5SDimitry Andric 
884*0b57cec5SDimitry Andric     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
885*0b57cec5SDimitry Andric       MDNode *NewMD = MDMap[M];
886*0b57cec5SDimitry Andric       // If the call site also had alias scope metadata (a list of scopes to
887*0b57cec5SDimitry Andric       // which instructions inside it might belong), propagate those scopes to
888*0b57cec5SDimitry Andric       // the inlined instructions.
889*0b57cec5SDimitry Andric       if (MDNode *CSM =
890*0b57cec5SDimitry Andric               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
891*0b57cec5SDimitry Andric         NewMD = MDNode::concatenate(NewMD, CSM);
892*0b57cec5SDimitry Andric       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
893*0b57cec5SDimitry Andric     } else if (NI->mayReadOrWriteMemory()) {
894*0b57cec5SDimitry Andric       if (MDNode *M =
895*0b57cec5SDimitry Andric               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
896*0b57cec5SDimitry Andric         NI->setMetadata(LLVMContext::MD_alias_scope, M);
897*0b57cec5SDimitry Andric     }
898*0b57cec5SDimitry Andric 
899*0b57cec5SDimitry Andric     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
900*0b57cec5SDimitry Andric       MDNode *NewMD = MDMap[M];
901*0b57cec5SDimitry Andric       // If the call site also had noalias metadata (a list of scopes with
902*0b57cec5SDimitry Andric       // which instructions inside it don't alias), propagate those scopes to
903*0b57cec5SDimitry Andric       // the inlined instructions.
904*0b57cec5SDimitry Andric       if (MDNode *CSM =
905*0b57cec5SDimitry Andric               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
906*0b57cec5SDimitry Andric         NewMD = MDNode::concatenate(NewMD, CSM);
907*0b57cec5SDimitry Andric       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
908*0b57cec5SDimitry Andric     } else if (NI->mayReadOrWriteMemory()) {
909*0b57cec5SDimitry Andric       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
910*0b57cec5SDimitry Andric         NI->setMetadata(LLVMContext::MD_noalias, M);
911*0b57cec5SDimitry Andric     }
912*0b57cec5SDimitry Andric   }
913*0b57cec5SDimitry Andric }
914*0b57cec5SDimitry Andric 
915*0b57cec5SDimitry Andric /// If the inlined function has noalias arguments,
916*0b57cec5SDimitry Andric /// then add new alias scopes for each noalias argument, tag the mapped noalias
917*0b57cec5SDimitry Andric /// parameters with noalias metadata specifying the new scope, and tag all
918*0b57cec5SDimitry Andric /// non-derived loads, stores and memory intrinsics with the new alias scopes.
919*0b57cec5SDimitry Andric static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
920*0b57cec5SDimitry Andric                                   const DataLayout &DL, AAResults *CalleeAAR) {
921*0b57cec5SDimitry Andric   if (!EnableNoAliasConversion)
922*0b57cec5SDimitry Andric     return;
923*0b57cec5SDimitry Andric 
924*0b57cec5SDimitry Andric   const Function *CalledFunc = CS.getCalledFunction();
925*0b57cec5SDimitry Andric   SmallVector<const Argument *, 4> NoAliasArgs;
926*0b57cec5SDimitry Andric 
927*0b57cec5SDimitry Andric   for (const Argument &Arg : CalledFunc->args())
928*0b57cec5SDimitry Andric     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
929*0b57cec5SDimitry Andric       NoAliasArgs.push_back(&Arg);
930*0b57cec5SDimitry Andric 
931*0b57cec5SDimitry Andric   if (NoAliasArgs.empty())
932*0b57cec5SDimitry Andric     return;
933*0b57cec5SDimitry Andric 
934*0b57cec5SDimitry Andric   // To do a good job, if a noalias variable is captured, we need to know if
935*0b57cec5SDimitry Andric   // the capture point dominates the particular use we're considering.
936*0b57cec5SDimitry Andric   DominatorTree DT;
937*0b57cec5SDimitry Andric   DT.recalculate(const_cast<Function&>(*CalledFunc));
938*0b57cec5SDimitry Andric 
939*0b57cec5SDimitry Andric   // noalias indicates that pointer values based on the argument do not alias
940*0b57cec5SDimitry Andric   // pointer values which are not based on it. So we add a new "scope" for each
941*0b57cec5SDimitry Andric   // noalias function argument. Accesses using pointers based on that argument
942*0b57cec5SDimitry Andric   // become part of that alias scope, accesses using pointers not based on that
943*0b57cec5SDimitry Andric   // argument are tagged as noalias with that scope.
944*0b57cec5SDimitry Andric 
945*0b57cec5SDimitry Andric   DenseMap<const Argument *, MDNode *> NewScopes;
946*0b57cec5SDimitry Andric   MDBuilder MDB(CalledFunc->getContext());
947*0b57cec5SDimitry Andric 
948*0b57cec5SDimitry Andric   // Create a new scope domain for this function.
949*0b57cec5SDimitry Andric   MDNode *NewDomain =
950*0b57cec5SDimitry Andric     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
951*0b57cec5SDimitry Andric   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
952*0b57cec5SDimitry Andric     const Argument *A = NoAliasArgs[i];
953*0b57cec5SDimitry Andric 
954*0b57cec5SDimitry Andric     std::string Name = CalledFunc->getName();
955*0b57cec5SDimitry Andric     if (A->hasName()) {
956*0b57cec5SDimitry Andric       Name += ": %";
957*0b57cec5SDimitry Andric       Name += A->getName();
958*0b57cec5SDimitry Andric     } else {
959*0b57cec5SDimitry Andric       Name += ": argument ";
960*0b57cec5SDimitry Andric       Name += utostr(i);
961*0b57cec5SDimitry Andric     }
962*0b57cec5SDimitry Andric 
963*0b57cec5SDimitry Andric     // Note: We always create a new anonymous root here. This is true regardless
964*0b57cec5SDimitry Andric     // of the linkage of the callee because the aliasing "scope" is not just a
965*0b57cec5SDimitry Andric     // property of the callee, but also all control dependencies in the caller.
966*0b57cec5SDimitry Andric     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
967*0b57cec5SDimitry Andric     NewScopes.insert(std::make_pair(A, NewScope));
968*0b57cec5SDimitry Andric   }
969*0b57cec5SDimitry Andric 
970*0b57cec5SDimitry Andric   // Iterate over all new instructions in the map; for all memory-access
971*0b57cec5SDimitry Andric   // instructions, add the alias scope metadata.
972*0b57cec5SDimitry Andric   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
973*0b57cec5SDimitry Andric        VMI != VMIE; ++VMI) {
974*0b57cec5SDimitry Andric     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
975*0b57cec5SDimitry Andric       if (!VMI->second)
976*0b57cec5SDimitry Andric         continue;
977*0b57cec5SDimitry Andric 
978*0b57cec5SDimitry Andric       Instruction *NI = dyn_cast<Instruction>(VMI->second);
979*0b57cec5SDimitry Andric       if (!NI)
980*0b57cec5SDimitry Andric         continue;
981*0b57cec5SDimitry Andric 
982*0b57cec5SDimitry Andric       bool IsArgMemOnlyCall = false, IsFuncCall = false;
983*0b57cec5SDimitry Andric       SmallVector<const Value *, 2> PtrArgs;
984*0b57cec5SDimitry Andric 
985*0b57cec5SDimitry Andric       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
986*0b57cec5SDimitry Andric         PtrArgs.push_back(LI->getPointerOperand());
987*0b57cec5SDimitry Andric       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
988*0b57cec5SDimitry Andric         PtrArgs.push_back(SI->getPointerOperand());
989*0b57cec5SDimitry Andric       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
990*0b57cec5SDimitry Andric         PtrArgs.push_back(VAAI->getPointerOperand());
991*0b57cec5SDimitry Andric       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
992*0b57cec5SDimitry Andric         PtrArgs.push_back(CXI->getPointerOperand());
993*0b57cec5SDimitry Andric       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
994*0b57cec5SDimitry Andric         PtrArgs.push_back(RMWI->getPointerOperand());
995*0b57cec5SDimitry Andric       else if (const auto *Call = dyn_cast<CallBase>(I)) {
996*0b57cec5SDimitry Andric         // If we know that the call does not access memory, then we'll still
997*0b57cec5SDimitry Andric         // know that about the inlined clone of this call site, and we don't
998*0b57cec5SDimitry Andric         // need to add metadata.
999*0b57cec5SDimitry Andric         if (Call->doesNotAccessMemory())
1000*0b57cec5SDimitry Andric           continue;
1001*0b57cec5SDimitry Andric 
1002*0b57cec5SDimitry Andric         IsFuncCall = true;
1003*0b57cec5SDimitry Andric         if (CalleeAAR) {
1004*0b57cec5SDimitry Andric           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1005*0b57cec5SDimitry Andric           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
1006*0b57cec5SDimitry Andric               MRB == FMRB_OnlyReadsArgumentPointees)
1007*0b57cec5SDimitry Andric             IsArgMemOnlyCall = true;
1008*0b57cec5SDimitry Andric         }
1009*0b57cec5SDimitry Andric 
1010*0b57cec5SDimitry Andric         for (Value *Arg : Call->args()) {
1011*0b57cec5SDimitry Andric           // We need to check the underlying objects of all arguments, not just
1012*0b57cec5SDimitry Andric           // the pointer arguments, because we might be passing pointers as
1013*0b57cec5SDimitry Andric           // integers, etc.
1014*0b57cec5SDimitry Andric           // However, if we know that the call only accesses pointer arguments,
1015*0b57cec5SDimitry Andric           // then we only need to check the pointer arguments.
1016*0b57cec5SDimitry Andric           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1017*0b57cec5SDimitry Andric             continue;
1018*0b57cec5SDimitry Andric 
1019*0b57cec5SDimitry Andric           PtrArgs.push_back(Arg);
1020*0b57cec5SDimitry Andric         }
1021*0b57cec5SDimitry Andric       }
1022*0b57cec5SDimitry Andric 
1023*0b57cec5SDimitry Andric       // If we found no pointers, then this instruction is not suitable for
1024*0b57cec5SDimitry Andric       // pairing with an instruction to receive aliasing metadata.
1025*0b57cec5SDimitry Andric       // However, if this is a call, this we might just alias with none of the
1026*0b57cec5SDimitry Andric       // noalias arguments.
1027*0b57cec5SDimitry Andric       if (PtrArgs.empty() && !IsFuncCall)
1028*0b57cec5SDimitry Andric         continue;
1029*0b57cec5SDimitry Andric 
1030*0b57cec5SDimitry Andric       // It is possible that there is only one underlying object, but you
1031*0b57cec5SDimitry Andric       // need to go through several PHIs to see it, and thus could be
1032*0b57cec5SDimitry Andric       // repeated in the Objects list.
1033*0b57cec5SDimitry Andric       SmallPtrSet<const Value *, 4> ObjSet;
1034*0b57cec5SDimitry Andric       SmallVector<Metadata *, 4> Scopes, NoAliases;
1035*0b57cec5SDimitry Andric 
1036*0b57cec5SDimitry Andric       SmallSetVector<const Argument *, 4> NAPtrArgs;
1037*0b57cec5SDimitry Andric       for (const Value *V : PtrArgs) {
1038*0b57cec5SDimitry Andric         SmallVector<const Value *, 4> Objects;
1039*0b57cec5SDimitry Andric         GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr);
1040*0b57cec5SDimitry Andric 
1041*0b57cec5SDimitry Andric         for (const Value *O : Objects)
1042*0b57cec5SDimitry Andric           ObjSet.insert(O);
1043*0b57cec5SDimitry Andric       }
1044*0b57cec5SDimitry Andric 
1045*0b57cec5SDimitry Andric       // Figure out if we're derived from anything that is not a noalias
1046*0b57cec5SDimitry Andric       // argument.
1047*0b57cec5SDimitry Andric       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1048*0b57cec5SDimitry Andric       for (const Value *V : ObjSet) {
1049*0b57cec5SDimitry Andric         // Is this value a constant that cannot be derived from any pointer
1050*0b57cec5SDimitry Andric         // value (we need to exclude constant expressions, for example, that
1051*0b57cec5SDimitry Andric         // are formed from arithmetic on global symbols).
1052*0b57cec5SDimitry Andric         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1053*0b57cec5SDimitry Andric                              isa<ConstantPointerNull>(V) ||
1054*0b57cec5SDimitry Andric                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1055*0b57cec5SDimitry Andric         if (IsNonPtrConst)
1056*0b57cec5SDimitry Andric           continue;
1057*0b57cec5SDimitry Andric 
1058*0b57cec5SDimitry Andric         // If this is anything other than a noalias argument, then we cannot
1059*0b57cec5SDimitry Andric         // completely describe the aliasing properties using alias.scope
1060*0b57cec5SDimitry Andric         // metadata (and, thus, won't add any).
1061*0b57cec5SDimitry Andric         if (const Argument *A = dyn_cast<Argument>(V)) {
1062*0b57cec5SDimitry Andric           if (!A->hasNoAliasAttr())
1063*0b57cec5SDimitry Andric             UsesAliasingPtr = true;
1064*0b57cec5SDimitry Andric         } else {
1065*0b57cec5SDimitry Andric           UsesAliasingPtr = true;
1066*0b57cec5SDimitry Andric         }
1067*0b57cec5SDimitry Andric 
1068*0b57cec5SDimitry Andric         // If this is not some identified function-local object (which cannot
1069*0b57cec5SDimitry Andric         // directly alias a noalias argument), or some other argument (which,
1070*0b57cec5SDimitry Andric         // by definition, also cannot alias a noalias argument), then we could
1071*0b57cec5SDimitry Andric         // alias a noalias argument that has been captured).
1072*0b57cec5SDimitry Andric         if (!isa<Argument>(V) &&
1073*0b57cec5SDimitry Andric             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1074*0b57cec5SDimitry Andric           CanDeriveViaCapture = true;
1075*0b57cec5SDimitry Andric       }
1076*0b57cec5SDimitry Andric 
1077*0b57cec5SDimitry Andric       // A function call can always get captured noalias pointers (via other
1078*0b57cec5SDimitry Andric       // parameters, globals, etc.).
1079*0b57cec5SDimitry Andric       if (IsFuncCall && !IsArgMemOnlyCall)
1080*0b57cec5SDimitry Andric         CanDeriveViaCapture = true;
1081*0b57cec5SDimitry Andric 
1082*0b57cec5SDimitry Andric       // First, we want to figure out all of the sets with which we definitely
1083*0b57cec5SDimitry Andric       // don't alias. Iterate over all noalias set, and add those for which:
1084*0b57cec5SDimitry Andric       //   1. The noalias argument is not in the set of objects from which we
1085*0b57cec5SDimitry Andric       //      definitely derive.
1086*0b57cec5SDimitry Andric       //   2. The noalias argument has not yet been captured.
1087*0b57cec5SDimitry Andric       // An arbitrary function that might load pointers could see captured
1088*0b57cec5SDimitry Andric       // noalias arguments via other noalias arguments or globals, and so we
1089*0b57cec5SDimitry Andric       // must always check for prior capture.
1090*0b57cec5SDimitry Andric       for (const Argument *A : NoAliasArgs) {
1091*0b57cec5SDimitry Andric         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1092*0b57cec5SDimitry Andric                                  // It might be tempting to skip the
1093*0b57cec5SDimitry Andric                                  // PointerMayBeCapturedBefore check if
1094*0b57cec5SDimitry Andric                                  // A->hasNoCaptureAttr() is true, but this is
1095*0b57cec5SDimitry Andric                                  // incorrect because nocapture only guarantees
1096*0b57cec5SDimitry Andric                                  // that no copies outlive the function, not
1097*0b57cec5SDimitry Andric                                  // that the value cannot be locally captured.
1098*0b57cec5SDimitry Andric                                  !PointerMayBeCapturedBefore(A,
1099*0b57cec5SDimitry Andric                                    /* ReturnCaptures */ false,
1100*0b57cec5SDimitry Andric                                    /* StoreCaptures */ false, I, &DT)))
1101*0b57cec5SDimitry Andric           NoAliases.push_back(NewScopes[A]);
1102*0b57cec5SDimitry Andric       }
1103*0b57cec5SDimitry Andric 
1104*0b57cec5SDimitry Andric       if (!NoAliases.empty())
1105*0b57cec5SDimitry Andric         NI->setMetadata(LLVMContext::MD_noalias,
1106*0b57cec5SDimitry Andric                         MDNode::concatenate(
1107*0b57cec5SDimitry Andric                             NI->getMetadata(LLVMContext::MD_noalias),
1108*0b57cec5SDimitry Andric                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1109*0b57cec5SDimitry Andric 
1110*0b57cec5SDimitry Andric       // Next, we want to figure out all of the sets to which we might belong.
1111*0b57cec5SDimitry Andric       // We might belong to a set if the noalias argument is in the set of
1112*0b57cec5SDimitry Andric       // underlying objects. If there is some non-noalias argument in our list
1113*0b57cec5SDimitry Andric       // of underlying objects, then we cannot add a scope because the fact
1114*0b57cec5SDimitry Andric       // that some access does not alias with any set of our noalias arguments
1115*0b57cec5SDimitry Andric       // cannot itself guarantee that it does not alias with this access
1116*0b57cec5SDimitry Andric       // (because there is some pointer of unknown origin involved and the
1117*0b57cec5SDimitry Andric       // other access might also depend on this pointer). We also cannot add
1118*0b57cec5SDimitry Andric       // scopes to arbitrary functions unless we know they don't access any
1119*0b57cec5SDimitry Andric       // non-parameter pointer-values.
1120*0b57cec5SDimitry Andric       bool CanAddScopes = !UsesAliasingPtr;
1121*0b57cec5SDimitry Andric       if (CanAddScopes && IsFuncCall)
1122*0b57cec5SDimitry Andric         CanAddScopes = IsArgMemOnlyCall;
1123*0b57cec5SDimitry Andric 
1124*0b57cec5SDimitry Andric       if (CanAddScopes)
1125*0b57cec5SDimitry Andric         for (const Argument *A : NoAliasArgs) {
1126*0b57cec5SDimitry Andric           if (ObjSet.count(A))
1127*0b57cec5SDimitry Andric             Scopes.push_back(NewScopes[A]);
1128*0b57cec5SDimitry Andric         }
1129*0b57cec5SDimitry Andric 
1130*0b57cec5SDimitry Andric       if (!Scopes.empty())
1131*0b57cec5SDimitry Andric         NI->setMetadata(
1132*0b57cec5SDimitry Andric             LLVMContext::MD_alias_scope,
1133*0b57cec5SDimitry Andric             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1134*0b57cec5SDimitry Andric                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1135*0b57cec5SDimitry Andric     }
1136*0b57cec5SDimitry Andric   }
1137*0b57cec5SDimitry Andric }
1138*0b57cec5SDimitry Andric 
1139*0b57cec5SDimitry Andric /// If the inlined function has non-byval align arguments, then
1140*0b57cec5SDimitry Andric /// add @llvm.assume-based alignment assumptions to preserve this information.
1141*0b57cec5SDimitry Andric static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1142*0b57cec5SDimitry Andric   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1143*0b57cec5SDimitry Andric     return;
1144*0b57cec5SDimitry Andric 
1145*0b57cec5SDimitry Andric   AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
1146*0b57cec5SDimitry Andric   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1147*0b57cec5SDimitry Andric 
1148*0b57cec5SDimitry Andric   // To avoid inserting redundant assumptions, we should check for assumptions
1149*0b57cec5SDimitry Andric   // already in the caller. To do this, we might need a DT of the caller.
1150*0b57cec5SDimitry Andric   DominatorTree DT;
1151*0b57cec5SDimitry Andric   bool DTCalculated = false;
1152*0b57cec5SDimitry Andric 
1153*0b57cec5SDimitry Andric   Function *CalledFunc = CS.getCalledFunction();
1154*0b57cec5SDimitry Andric   for (Argument &Arg : CalledFunc->args()) {
1155*0b57cec5SDimitry Andric     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1156*0b57cec5SDimitry Andric     if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
1157*0b57cec5SDimitry Andric       if (!DTCalculated) {
1158*0b57cec5SDimitry Andric         DT.recalculate(*CS.getCaller());
1159*0b57cec5SDimitry Andric         DTCalculated = true;
1160*0b57cec5SDimitry Andric       }
1161*0b57cec5SDimitry Andric 
1162*0b57cec5SDimitry Andric       // If we can already prove the asserted alignment in the context of the
1163*0b57cec5SDimitry Andric       // caller, then don't bother inserting the assumption.
1164*0b57cec5SDimitry Andric       Value *ArgVal = CS.getArgument(Arg.getArgNo());
1165*0b57cec5SDimitry Andric       if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
1166*0b57cec5SDimitry Andric         continue;
1167*0b57cec5SDimitry Andric 
1168*0b57cec5SDimitry Andric       CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
1169*0b57cec5SDimitry Andric                               .CreateAlignmentAssumption(DL, ArgVal, Align);
1170*0b57cec5SDimitry Andric       AC->registerAssumption(NewAsmp);
1171*0b57cec5SDimitry Andric     }
1172*0b57cec5SDimitry Andric   }
1173*0b57cec5SDimitry Andric }
1174*0b57cec5SDimitry Andric 
1175*0b57cec5SDimitry Andric /// Once we have cloned code over from a callee into the caller,
1176*0b57cec5SDimitry Andric /// update the specified callgraph to reflect the changes we made.
1177*0b57cec5SDimitry Andric /// Note that it's possible that not all code was copied over, so only
1178*0b57cec5SDimitry Andric /// some edges of the callgraph may remain.
1179*0b57cec5SDimitry Andric static void UpdateCallGraphAfterInlining(CallSite CS,
1180*0b57cec5SDimitry Andric                                          Function::iterator FirstNewBlock,
1181*0b57cec5SDimitry Andric                                          ValueToValueMapTy &VMap,
1182*0b57cec5SDimitry Andric                                          InlineFunctionInfo &IFI) {
1183*0b57cec5SDimitry Andric   CallGraph &CG = *IFI.CG;
1184*0b57cec5SDimitry Andric   const Function *Caller = CS.getCaller();
1185*0b57cec5SDimitry Andric   const Function *Callee = CS.getCalledFunction();
1186*0b57cec5SDimitry Andric   CallGraphNode *CalleeNode = CG[Callee];
1187*0b57cec5SDimitry Andric   CallGraphNode *CallerNode = CG[Caller];
1188*0b57cec5SDimitry Andric 
1189*0b57cec5SDimitry Andric   // Since we inlined some uninlined call sites in the callee into the caller,
1190*0b57cec5SDimitry Andric   // add edges from the caller to all of the callees of the callee.
1191*0b57cec5SDimitry Andric   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1192*0b57cec5SDimitry Andric 
1193*0b57cec5SDimitry Andric   // Consider the case where CalleeNode == CallerNode.
1194*0b57cec5SDimitry Andric   CallGraphNode::CalledFunctionsVector CallCache;
1195*0b57cec5SDimitry Andric   if (CalleeNode == CallerNode) {
1196*0b57cec5SDimitry Andric     CallCache.assign(I, E);
1197*0b57cec5SDimitry Andric     I = CallCache.begin();
1198*0b57cec5SDimitry Andric     E = CallCache.end();
1199*0b57cec5SDimitry Andric   }
1200*0b57cec5SDimitry Andric 
1201*0b57cec5SDimitry Andric   for (; I != E; ++I) {
1202*0b57cec5SDimitry Andric     const Value *OrigCall = I->first;
1203*0b57cec5SDimitry Andric 
1204*0b57cec5SDimitry Andric     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1205*0b57cec5SDimitry Andric     // Only copy the edge if the call was inlined!
1206*0b57cec5SDimitry Andric     if (VMI == VMap.end() || VMI->second == nullptr)
1207*0b57cec5SDimitry Andric       continue;
1208*0b57cec5SDimitry Andric 
1209*0b57cec5SDimitry Andric     // If the call was inlined, but then constant folded, there is no edge to
1210*0b57cec5SDimitry Andric     // add.  Check for this case.
1211*0b57cec5SDimitry Andric     auto *NewCall = dyn_cast<CallBase>(VMI->second);
1212*0b57cec5SDimitry Andric     if (!NewCall)
1213*0b57cec5SDimitry Andric       continue;
1214*0b57cec5SDimitry Andric 
1215*0b57cec5SDimitry Andric     // We do not treat intrinsic calls like real function calls because we
1216*0b57cec5SDimitry Andric     // expect them to become inline code; do not add an edge for an intrinsic.
1217*0b57cec5SDimitry Andric     if (NewCall->getCalledFunction() &&
1218*0b57cec5SDimitry Andric         NewCall->getCalledFunction()->isIntrinsic())
1219*0b57cec5SDimitry Andric       continue;
1220*0b57cec5SDimitry Andric 
1221*0b57cec5SDimitry Andric     // Remember that this call site got inlined for the client of
1222*0b57cec5SDimitry Andric     // InlineFunction.
1223*0b57cec5SDimitry Andric     IFI.InlinedCalls.push_back(NewCall);
1224*0b57cec5SDimitry Andric 
1225*0b57cec5SDimitry Andric     // It's possible that inlining the callsite will cause it to go from an
1226*0b57cec5SDimitry Andric     // indirect to a direct call by resolving a function pointer.  If this
1227*0b57cec5SDimitry Andric     // happens, set the callee of the new call site to a more precise
1228*0b57cec5SDimitry Andric     // destination.  This can also happen if the call graph node of the caller
1229*0b57cec5SDimitry Andric     // was just unnecessarily imprecise.
1230*0b57cec5SDimitry Andric     if (!I->second->getFunction())
1231*0b57cec5SDimitry Andric       if (Function *F = NewCall->getCalledFunction()) {
1232*0b57cec5SDimitry Andric         // Indirect call site resolved to direct call.
1233*0b57cec5SDimitry Andric         CallerNode->addCalledFunction(NewCall, CG[F]);
1234*0b57cec5SDimitry Andric 
1235*0b57cec5SDimitry Andric         continue;
1236*0b57cec5SDimitry Andric       }
1237*0b57cec5SDimitry Andric 
1238*0b57cec5SDimitry Andric     CallerNode->addCalledFunction(NewCall, I->second);
1239*0b57cec5SDimitry Andric   }
1240*0b57cec5SDimitry Andric 
1241*0b57cec5SDimitry Andric   // Update the call graph by deleting the edge from Callee to Caller.  We must
1242*0b57cec5SDimitry Andric   // do this after the loop above in case Caller and Callee are the same.
1243*0b57cec5SDimitry Andric   CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
1244*0b57cec5SDimitry Andric }
1245*0b57cec5SDimitry Andric 
1246*0b57cec5SDimitry Andric static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1247*0b57cec5SDimitry Andric                                     BasicBlock *InsertBlock,
1248*0b57cec5SDimitry Andric                                     InlineFunctionInfo &IFI) {
1249*0b57cec5SDimitry Andric   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1250*0b57cec5SDimitry Andric   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1251*0b57cec5SDimitry Andric 
1252*0b57cec5SDimitry Andric   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1253*0b57cec5SDimitry Andric 
1254*0b57cec5SDimitry Andric   // Always generate a memcpy of alignment 1 here because we don't know
1255*0b57cec5SDimitry Andric   // the alignment of the src pointer.  Other optimizations can infer
1256*0b57cec5SDimitry Andric   // better alignment.
1257*0b57cec5SDimitry Andric   Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
1258*0b57cec5SDimitry Andric }
1259*0b57cec5SDimitry Andric 
1260*0b57cec5SDimitry Andric /// When inlining a call site that has a byval argument,
1261*0b57cec5SDimitry Andric /// we have to make the implicit memcpy explicit by adding it.
1262*0b57cec5SDimitry Andric static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1263*0b57cec5SDimitry Andric                                   const Function *CalledFunc,
1264*0b57cec5SDimitry Andric                                   InlineFunctionInfo &IFI,
1265*0b57cec5SDimitry Andric                                   unsigned ByValAlignment) {
1266*0b57cec5SDimitry Andric   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1267*0b57cec5SDimitry Andric   Type *AggTy = ArgTy->getElementType();
1268*0b57cec5SDimitry Andric 
1269*0b57cec5SDimitry Andric   Function *Caller = TheCall->getFunction();
1270*0b57cec5SDimitry Andric   const DataLayout &DL = Caller->getParent()->getDataLayout();
1271*0b57cec5SDimitry Andric 
1272*0b57cec5SDimitry Andric   // If the called function is readonly, then it could not mutate the caller's
1273*0b57cec5SDimitry Andric   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1274*0b57cec5SDimitry Andric   // temporary.
1275*0b57cec5SDimitry Andric   if (CalledFunc->onlyReadsMemory()) {
1276*0b57cec5SDimitry Andric     // If the byval argument has a specified alignment that is greater than the
1277*0b57cec5SDimitry Andric     // passed in pointer, then we either have to round up the input pointer or
1278*0b57cec5SDimitry Andric     // give up on this transformation.
1279*0b57cec5SDimitry Andric     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1280*0b57cec5SDimitry Andric       return Arg;
1281*0b57cec5SDimitry Andric 
1282*0b57cec5SDimitry Andric     AssumptionCache *AC =
1283*0b57cec5SDimitry Andric         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1284*0b57cec5SDimitry Andric 
1285*0b57cec5SDimitry Andric     // If the pointer is already known to be sufficiently aligned, or if we can
1286*0b57cec5SDimitry Andric     // round it up to a larger alignment, then we don't need a temporary.
1287*0b57cec5SDimitry Andric     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1288*0b57cec5SDimitry Andric         ByValAlignment)
1289*0b57cec5SDimitry Andric       return Arg;
1290*0b57cec5SDimitry Andric 
1291*0b57cec5SDimitry Andric     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1292*0b57cec5SDimitry Andric     // for code quality, but rarely happens and is required for correctness.
1293*0b57cec5SDimitry Andric   }
1294*0b57cec5SDimitry Andric 
1295*0b57cec5SDimitry Andric   // Create the alloca.  If we have DataLayout, use nice alignment.
1296*0b57cec5SDimitry Andric   unsigned Align = DL.getPrefTypeAlignment(AggTy);
1297*0b57cec5SDimitry Andric 
1298*0b57cec5SDimitry Andric   // If the byval had an alignment specified, we *must* use at least that
1299*0b57cec5SDimitry Andric   // alignment, as it is required by the byval argument (and uses of the
1300*0b57cec5SDimitry Andric   // pointer inside the callee).
1301*0b57cec5SDimitry Andric   Align = std::max(Align, ByValAlignment);
1302*0b57cec5SDimitry Andric 
1303*0b57cec5SDimitry Andric   Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
1304*0b57cec5SDimitry Andric                                     nullptr, Align, Arg->getName(),
1305*0b57cec5SDimitry Andric                                     &*Caller->begin()->begin());
1306*0b57cec5SDimitry Andric   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1307*0b57cec5SDimitry Andric 
1308*0b57cec5SDimitry Andric   // Uses of the argument in the function should use our new alloca
1309*0b57cec5SDimitry Andric   // instead.
1310*0b57cec5SDimitry Andric   return NewAlloca;
1311*0b57cec5SDimitry Andric }
1312*0b57cec5SDimitry Andric 
1313*0b57cec5SDimitry Andric // Check whether this Value is used by a lifetime intrinsic.
1314*0b57cec5SDimitry Andric static bool isUsedByLifetimeMarker(Value *V) {
1315*0b57cec5SDimitry Andric   for (User *U : V->users())
1316*0b57cec5SDimitry Andric     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1317*0b57cec5SDimitry Andric       if (II->isLifetimeStartOrEnd())
1318*0b57cec5SDimitry Andric         return true;
1319*0b57cec5SDimitry Andric   return false;
1320*0b57cec5SDimitry Andric }
1321*0b57cec5SDimitry Andric 
1322*0b57cec5SDimitry Andric // Check whether the given alloca already has
1323*0b57cec5SDimitry Andric // lifetime.start or lifetime.end intrinsics.
1324*0b57cec5SDimitry Andric static bool hasLifetimeMarkers(AllocaInst *AI) {
1325*0b57cec5SDimitry Andric   Type *Ty = AI->getType();
1326*0b57cec5SDimitry Andric   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1327*0b57cec5SDimitry Andric                                        Ty->getPointerAddressSpace());
1328*0b57cec5SDimitry Andric   if (Ty == Int8PtrTy)
1329*0b57cec5SDimitry Andric     return isUsedByLifetimeMarker(AI);
1330*0b57cec5SDimitry Andric 
1331*0b57cec5SDimitry Andric   // Do a scan to find all the casts to i8*.
1332*0b57cec5SDimitry Andric   for (User *U : AI->users()) {
1333*0b57cec5SDimitry Andric     if (U->getType() != Int8PtrTy) continue;
1334*0b57cec5SDimitry Andric     if (U->stripPointerCasts() != AI) continue;
1335*0b57cec5SDimitry Andric     if (isUsedByLifetimeMarker(U))
1336*0b57cec5SDimitry Andric       return true;
1337*0b57cec5SDimitry Andric   }
1338*0b57cec5SDimitry Andric   return false;
1339*0b57cec5SDimitry Andric }
1340*0b57cec5SDimitry Andric 
1341*0b57cec5SDimitry Andric /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1342*0b57cec5SDimitry Andric /// block. Allocas used in inalloca calls and allocas of dynamic array size
1343*0b57cec5SDimitry Andric /// cannot be static.
1344*0b57cec5SDimitry Andric static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1345*0b57cec5SDimitry Andric   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1346*0b57cec5SDimitry Andric }
1347*0b57cec5SDimitry Andric 
1348*0b57cec5SDimitry Andric /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1349*0b57cec5SDimitry Andric /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1350*0b57cec5SDimitry Andric static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1351*0b57cec5SDimitry Andric                                LLVMContext &Ctx,
1352*0b57cec5SDimitry Andric                                DenseMap<const MDNode *, MDNode *> &IANodes) {
1353*0b57cec5SDimitry Andric   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1354*0b57cec5SDimitry Andric   return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(),
1355*0b57cec5SDimitry Andric                        IA);
1356*0b57cec5SDimitry Andric }
1357*0b57cec5SDimitry Andric 
1358*0b57cec5SDimitry Andric /// Returns the LoopID for a loop which has has been cloned from another
1359*0b57cec5SDimitry Andric /// function for inlining with the new inlined-at start and end locs.
1360*0b57cec5SDimitry Andric static MDNode *inlineLoopID(const MDNode *OrigLoopId, DILocation *InlinedAt,
1361*0b57cec5SDimitry Andric                             LLVMContext &Ctx,
1362*0b57cec5SDimitry Andric                             DenseMap<const MDNode *, MDNode *> &IANodes) {
1363*0b57cec5SDimitry Andric   assert(OrigLoopId && OrigLoopId->getNumOperands() > 0 &&
1364*0b57cec5SDimitry Andric          "Loop ID needs at least one operand");
1365*0b57cec5SDimitry Andric   assert(OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId &&
1366*0b57cec5SDimitry Andric          "Loop ID should refer to itself");
1367*0b57cec5SDimitry Andric 
1368*0b57cec5SDimitry Andric   // Save space for the self-referential LoopID.
1369*0b57cec5SDimitry Andric   SmallVector<Metadata *, 4> MDs = {nullptr};
1370*0b57cec5SDimitry Andric 
1371*0b57cec5SDimitry Andric   for (unsigned i = 1; i < OrigLoopId->getNumOperands(); ++i) {
1372*0b57cec5SDimitry Andric     Metadata *MD = OrigLoopId->getOperand(i);
1373*0b57cec5SDimitry Andric     // Update the DILocations to encode the inlined-at metadata.
1374*0b57cec5SDimitry Andric     if (DILocation *DL = dyn_cast<DILocation>(MD))
1375*0b57cec5SDimitry Andric       MDs.push_back(inlineDebugLoc(DL, InlinedAt, Ctx, IANodes));
1376*0b57cec5SDimitry Andric     else
1377*0b57cec5SDimitry Andric       MDs.push_back(MD);
1378*0b57cec5SDimitry Andric   }
1379*0b57cec5SDimitry Andric 
1380*0b57cec5SDimitry Andric   MDNode *NewLoopID = MDNode::getDistinct(Ctx, MDs);
1381*0b57cec5SDimitry Andric   // Insert the self-referential LoopID.
1382*0b57cec5SDimitry Andric   NewLoopID->replaceOperandWith(0, NewLoopID);
1383*0b57cec5SDimitry Andric   return NewLoopID;
1384*0b57cec5SDimitry Andric }
1385*0b57cec5SDimitry Andric 
1386*0b57cec5SDimitry Andric /// Update inlined instructions' line numbers to
1387*0b57cec5SDimitry Andric /// to encode location where these instructions are inlined.
1388*0b57cec5SDimitry Andric static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1389*0b57cec5SDimitry Andric                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1390*0b57cec5SDimitry Andric   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1391*0b57cec5SDimitry Andric   if (!TheCallDL)
1392*0b57cec5SDimitry Andric     return;
1393*0b57cec5SDimitry Andric 
1394*0b57cec5SDimitry Andric   auto &Ctx = Fn->getContext();
1395*0b57cec5SDimitry Andric   DILocation *InlinedAtNode = TheCallDL;
1396*0b57cec5SDimitry Andric 
1397*0b57cec5SDimitry Andric   // Create a unique call site, not to be confused with any other call from the
1398*0b57cec5SDimitry Andric   // same location.
1399*0b57cec5SDimitry Andric   InlinedAtNode = DILocation::getDistinct(
1400*0b57cec5SDimitry Andric       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1401*0b57cec5SDimitry Andric       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1402*0b57cec5SDimitry Andric 
1403*0b57cec5SDimitry Andric   // Cache the inlined-at nodes as they're built so they are reused, without
1404*0b57cec5SDimitry Andric   // this every instruction's inlined-at chain would become distinct from each
1405*0b57cec5SDimitry Andric   // other.
1406*0b57cec5SDimitry Andric   DenseMap<const MDNode *, MDNode *> IANodes;
1407*0b57cec5SDimitry Andric 
1408*0b57cec5SDimitry Andric   for (; FI != Fn->end(); ++FI) {
1409*0b57cec5SDimitry Andric     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1410*0b57cec5SDimitry Andric          BI != BE; ++BI) {
1411*0b57cec5SDimitry Andric       // Loop metadata needs to be updated so that the start and end locs
1412*0b57cec5SDimitry Andric       // reference inlined-at locations.
1413*0b57cec5SDimitry Andric       if (MDNode *LoopID = BI->getMetadata(LLVMContext::MD_loop)) {
1414*0b57cec5SDimitry Andric         MDNode *NewLoopID =
1415*0b57cec5SDimitry Andric             inlineLoopID(LoopID, InlinedAtNode, BI->getContext(), IANodes);
1416*0b57cec5SDimitry Andric         BI->setMetadata(LLVMContext::MD_loop, NewLoopID);
1417*0b57cec5SDimitry Andric       }
1418*0b57cec5SDimitry Andric 
1419*0b57cec5SDimitry Andric       if (DebugLoc DL = BI->getDebugLoc()) {
1420*0b57cec5SDimitry Andric         DebugLoc IDL =
1421*0b57cec5SDimitry Andric             inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1422*0b57cec5SDimitry Andric         BI->setDebugLoc(IDL);
1423*0b57cec5SDimitry Andric         continue;
1424*0b57cec5SDimitry Andric       }
1425*0b57cec5SDimitry Andric 
1426*0b57cec5SDimitry Andric       if (CalleeHasDebugInfo)
1427*0b57cec5SDimitry Andric         continue;
1428*0b57cec5SDimitry Andric 
1429*0b57cec5SDimitry Andric       // If the inlined instruction has no line number, make it look as if it
1430*0b57cec5SDimitry Andric       // originates from the call location. This is important for
1431*0b57cec5SDimitry Andric       // ((__always_inline__, __nodebug__)) functions which must use caller
1432*0b57cec5SDimitry Andric       // location for all instructions in their function body.
1433*0b57cec5SDimitry Andric 
1434*0b57cec5SDimitry Andric       // Don't update static allocas, as they may get moved later.
1435*0b57cec5SDimitry Andric       if (auto *AI = dyn_cast<AllocaInst>(BI))
1436*0b57cec5SDimitry Andric         if (allocaWouldBeStaticInEntry(AI))
1437*0b57cec5SDimitry Andric           continue;
1438*0b57cec5SDimitry Andric 
1439*0b57cec5SDimitry Andric       BI->setDebugLoc(TheCallDL);
1440*0b57cec5SDimitry Andric     }
1441*0b57cec5SDimitry Andric   }
1442*0b57cec5SDimitry Andric }
1443*0b57cec5SDimitry Andric 
1444*0b57cec5SDimitry Andric /// Update the block frequencies of the caller after a callee has been inlined.
1445*0b57cec5SDimitry Andric ///
1446*0b57cec5SDimitry Andric /// Each block cloned into the caller has its block frequency scaled by the
1447*0b57cec5SDimitry Andric /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1448*0b57cec5SDimitry Andric /// callee's entry block gets the same frequency as the callsite block and the
1449*0b57cec5SDimitry Andric /// relative frequencies of all cloned blocks remain the same after cloning.
1450*0b57cec5SDimitry Andric static void updateCallerBFI(BasicBlock *CallSiteBlock,
1451*0b57cec5SDimitry Andric                             const ValueToValueMapTy &VMap,
1452*0b57cec5SDimitry Andric                             BlockFrequencyInfo *CallerBFI,
1453*0b57cec5SDimitry Andric                             BlockFrequencyInfo *CalleeBFI,
1454*0b57cec5SDimitry Andric                             const BasicBlock &CalleeEntryBlock) {
1455*0b57cec5SDimitry Andric   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1456*0b57cec5SDimitry Andric   for (auto const &Entry : VMap) {
1457*0b57cec5SDimitry Andric     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1458*0b57cec5SDimitry Andric       continue;
1459*0b57cec5SDimitry Andric     auto *OrigBB = cast<BasicBlock>(Entry.first);
1460*0b57cec5SDimitry Andric     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1461*0b57cec5SDimitry Andric     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1462*0b57cec5SDimitry Andric     if (!ClonedBBs.insert(ClonedBB).second) {
1463*0b57cec5SDimitry Andric       // Multiple blocks in the callee might get mapped to one cloned block in
1464*0b57cec5SDimitry Andric       // the caller since we prune the callee as we clone it. When that happens,
1465*0b57cec5SDimitry Andric       // we want to use the maximum among the original blocks' frequencies.
1466*0b57cec5SDimitry Andric       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1467*0b57cec5SDimitry Andric       if (NewFreq > Freq)
1468*0b57cec5SDimitry Andric         Freq = NewFreq;
1469*0b57cec5SDimitry Andric     }
1470*0b57cec5SDimitry Andric     CallerBFI->setBlockFreq(ClonedBB, Freq);
1471*0b57cec5SDimitry Andric   }
1472*0b57cec5SDimitry Andric   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1473*0b57cec5SDimitry Andric   CallerBFI->setBlockFreqAndScale(
1474*0b57cec5SDimitry Andric       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1475*0b57cec5SDimitry Andric       ClonedBBs);
1476*0b57cec5SDimitry Andric }
1477*0b57cec5SDimitry Andric 
1478*0b57cec5SDimitry Andric /// Update the branch metadata for cloned call instructions.
1479*0b57cec5SDimitry Andric static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1480*0b57cec5SDimitry Andric                               const ProfileCount &CalleeEntryCount,
1481*0b57cec5SDimitry Andric                               const Instruction *TheCall,
1482*0b57cec5SDimitry Andric                               ProfileSummaryInfo *PSI,
1483*0b57cec5SDimitry Andric                               BlockFrequencyInfo *CallerBFI) {
1484*0b57cec5SDimitry Andric   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1485*0b57cec5SDimitry Andric       CalleeEntryCount.getCount() < 1)
1486*0b57cec5SDimitry Andric     return;
1487*0b57cec5SDimitry Andric   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1488*0b57cec5SDimitry Andric   int64_t CallCount =
1489*0b57cec5SDimitry Andric       std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
1490*0b57cec5SDimitry Andric                CalleeEntryCount.getCount());
1491*0b57cec5SDimitry Andric   updateProfileCallee(Callee, -CallCount, &VMap);
1492*0b57cec5SDimitry Andric }
1493*0b57cec5SDimitry Andric 
1494*0b57cec5SDimitry Andric void llvm::updateProfileCallee(
1495*0b57cec5SDimitry Andric     Function *Callee, int64_t entryDelta,
1496*0b57cec5SDimitry Andric     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1497*0b57cec5SDimitry Andric   auto CalleeCount = Callee->getEntryCount();
1498*0b57cec5SDimitry Andric   if (!CalleeCount.hasValue())
1499*0b57cec5SDimitry Andric     return;
1500*0b57cec5SDimitry Andric 
1501*0b57cec5SDimitry Andric   uint64_t priorEntryCount = CalleeCount.getCount();
1502*0b57cec5SDimitry Andric   uint64_t newEntryCount;
1503*0b57cec5SDimitry Andric 
1504*0b57cec5SDimitry Andric   // Since CallSiteCount is an estimate, it could exceed the original callee
1505*0b57cec5SDimitry Andric   // count and has to be set to 0 so guard against underflow.
1506*0b57cec5SDimitry Andric   if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1507*0b57cec5SDimitry Andric     newEntryCount = 0;
1508*0b57cec5SDimitry Andric   else
1509*0b57cec5SDimitry Andric     newEntryCount = priorEntryCount + entryDelta;
1510*0b57cec5SDimitry Andric 
1511*0b57cec5SDimitry Andric   Callee->setEntryCount(newEntryCount);
1512*0b57cec5SDimitry Andric 
1513*0b57cec5SDimitry Andric   // During inlining ?
1514*0b57cec5SDimitry Andric   if (VMap) {
1515*0b57cec5SDimitry Andric     uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1516*0b57cec5SDimitry Andric     for (auto const &Entry : *VMap)
1517*0b57cec5SDimitry Andric       if (isa<CallInst>(Entry.first))
1518*0b57cec5SDimitry Andric         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1519*0b57cec5SDimitry Andric           CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1520*0b57cec5SDimitry Andric   }
1521*0b57cec5SDimitry Andric   for (BasicBlock &BB : *Callee)
1522*0b57cec5SDimitry Andric     // No need to update the callsite if it is pruned during inlining.
1523*0b57cec5SDimitry Andric     if (!VMap || VMap->count(&BB))
1524*0b57cec5SDimitry Andric       for (Instruction &I : BB)
1525*0b57cec5SDimitry Andric         if (CallInst *CI = dyn_cast<CallInst>(&I))
1526*0b57cec5SDimitry Andric           CI->updateProfWeight(newEntryCount, priorEntryCount);
1527*0b57cec5SDimitry Andric }
1528*0b57cec5SDimitry Andric 
1529*0b57cec5SDimitry Andric /// This function inlines the called function into the basic block of the
1530*0b57cec5SDimitry Andric /// caller. This returns false if it is not possible to inline this call.
1531*0b57cec5SDimitry Andric /// The program is still in a well defined state if this occurs though.
1532*0b57cec5SDimitry Andric ///
1533*0b57cec5SDimitry Andric /// Note that this only does one level of inlining.  For example, if the
1534*0b57cec5SDimitry Andric /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1535*0b57cec5SDimitry Andric /// exists in the instruction stream.  Similarly this will inline a recursive
1536*0b57cec5SDimitry Andric /// function by one level.
1537*0b57cec5SDimitry Andric llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1538*0b57cec5SDimitry Andric                                         AAResults *CalleeAAR,
1539*0b57cec5SDimitry Andric                                         bool InsertLifetime,
1540*0b57cec5SDimitry Andric                                         Function *ForwardVarArgsTo) {
1541*0b57cec5SDimitry Andric   Instruction *TheCall = CS.getInstruction();
1542*0b57cec5SDimitry Andric   assert(TheCall->getParent() && TheCall->getFunction()
1543*0b57cec5SDimitry Andric          && "Instruction not in function!");
1544*0b57cec5SDimitry Andric 
1545*0b57cec5SDimitry Andric   // FIXME: we don't inline callbr yet.
1546*0b57cec5SDimitry Andric   if (isa<CallBrInst>(TheCall))
1547*0b57cec5SDimitry Andric     return false;
1548*0b57cec5SDimitry Andric 
1549*0b57cec5SDimitry Andric   // If IFI has any state in it, zap it before we fill it in.
1550*0b57cec5SDimitry Andric   IFI.reset();
1551*0b57cec5SDimitry Andric 
1552*0b57cec5SDimitry Andric   Function *CalledFunc = CS.getCalledFunction();
1553*0b57cec5SDimitry Andric   if (!CalledFunc ||               // Can't inline external function or indirect
1554*0b57cec5SDimitry Andric       CalledFunc->isDeclaration()) // call!
1555*0b57cec5SDimitry Andric     return "external or indirect";
1556*0b57cec5SDimitry Andric 
1557*0b57cec5SDimitry Andric   // The inliner does not know how to inline through calls with operand bundles
1558*0b57cec5SDimitry Andric   // in general ...
1559*0b57cec5SDimitry Andric   if (CS.hasOperandBundles()) {
1560*0b57cec5SDimitry Andric     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1561*0b57cec5SDimitry Andric       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1562*0b57cec5SDimitry Andric       // ... but it knows how to inline through "deopt" operand bundles ...
1563*0b57cec5SDimitry Andric       if (Tag == LLVMContext::OB_deopt)
1564*0b57cec5SDimitry Andric         continue;
1565*0b57cec5SDimitry Andric       // ... and "funclet" operand bundles.
1566*0b57cec5SDimitry Andric       if (Tag == LLVMContext::OB_funclet)
1567*0b57cec5SDimitry Andric         continue;
1568*0b57cec5SDimitry Andric 
1569*0b57cec5SDimitry Andric       return "unsupported operand bundle";
1570*0b57cec5SDimitry Andric     }
1571*0b57cec5SDimitry Andric   }
1572*0b57cec5SDimitry Andric 
1573*0b57cec5SDimitry Andric   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1574*0b57cec5SDimitry Andric   // calls that we inline.
1575*0b57cec5SDimitry Andric   bool MarkNoUnwind = CS.doesNotThrow();
1576*0b57cec5SDimitry Andric 
1577*0b57cec5SDimitry Andric   BasicBlock *OrigBB = TheCall->getParent();
1578*0b57cec5SDimitry Andric   Function *Caller = OrigBB->getParent();
1579*0b57cec5SDimitry Andric 
1580*0b57cec5SDimitry Andric   // GC poses two hazards to inlining, which only occur when the callee has GC:
1581*0b57cec5SDimitry Andric   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1582*0b57cec5SDimitry Andric   //     caller.
1583*0b57cec5SDimitry Andric   //  2. If the caller has a differing GC, it is invalid to inline.
1584*0b57cec5SDimitry Andric   if (CalledFunc->hasGC()) {
1585*0b57cec5SDimitry Andric     if (!Caller->hasGC())
1586*0b57cec5SDimitry Andric       Caller->setGC(CalledFunc->getGC());
1587*0b57cec5SDimitry Andric     else if (CalledFunc->getGC() != Caller->getGC())
1588*0b57cec5SDimitry Andric       return "incompatible GC";
1589*0b57cec5SDimitry Andric   }
1590*0b57cec5SDimitry Andric 
1591*0b57cec5SDimitry Andric   // Get the personality function from the callee if it contains a landing pad.
1592*0b57cec5SDimitry Andric   Constant *CalledPersonality =
1593*0b57cec5SDimitry Andric       CalledFunc->hasPersonalityFn()
1594*0b57cec5SDimitry Andric           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1595*0b57cec5SDimitry Andric           : nullptr;
1596*0b57cec5SDimitry Andric 
1597*0b57cec5SDimitry Andric   // Find the personality function used by the landing pads of the caller. If it
1598*0b57cec5SDimitry Andric   // exists, then check to see that it matches the personality function used in
1599*0b57cec5SDimitry Andric   // the callee.
1600*0b57cec5SDimitry Andric   Constant *CallerPersonality =
1601*0b57cec5SDimitry Andric       Caller->hasPersonalityFn()
1602*0b57cec5SDimitry Andric           ? Caller->getPersonalityFn()->stripPointerCasts()
1603*0b57cec5SDimitry Andric           : nullptr;
1604*0b57cec5SDimitry Andric   if (CalledPersonality) {
1605*0b57cec5SDimitry Andric     if (!CallerPersonality)
1606*0b57cec5SDimitry Andric       Caller->setPersonalityFn(CalledPersonality);
1607*0b57cec5SDimitry Andric     // If the personality functions match, then we can perform the
1608*0b57cec5SDimitry Andric     // inlining. Otherwise, we can't inline.
1609*0b57cec5SDimitry Andric     // TODO: This isn't 100% true. Some personality functions are proper
1610*0b57cec5SDimitry Andric     //       supersets of others and can be used in place of the other.
1611*0b57cec5SDimitry Andric     else if (CalledPersonality != CallerPersonality)
1612*0b57cec5SDimitry Andric       return "incompatible personality";
1613*0b57cec5SDimitry Andric   }
1614*0b57cec5SDimitry Andric 
1615*0b57cec5SDimitry Andric   // We need to figure out which funclet the callsite was in so that we may
1616*0b57cec5SDimitry Andric   // properly nest the callee.
1617*0b57cec5SDimitry Andric   Instruction *CallSiteEHPad = nullptr;
1618*0b57cec5SDimitry Andric   if (CallerPersonality) {
1619*0b57cec5SDimitry Andric     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1620*0b57cec5SDimitry Andric     if (isScopedEHPersonality(Personality)) {
1621*0b57cec5SDimitry Andric       Optional<OperandBundleUse> ParentFunclet =
1622*0b57cec5SDimitry Andric           CS.getOperandBundle(LLVMContext::OB_funclet);
1623*0b57cec5SDimitry Andric       if (ParentFunclet)
1624*0b57cec5SDimitry Andric         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1625*0b57cec5SDimitry Andric 
1626*0b57cec5SDimitry Andric       // OK, the inlining site is legal.  What about the target function?
1627*0b57cec5SDimitry Andric 
1628*0b57cec5SDimitry Andric       if (CallSiteEHPad) {
1629*0b57cec5SDimitry Andric         if (Personality == EHPersonality::MSVC_CXX) {
1630*0b57cec5SDimitry Andric           // The MSVC personality cannot tolerate catches getting inlined into
1631*0b57cec5SDimitry Andric           // cleanup funclets.
1632*0b57cec5SDimitry Andric           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1633*0b57cec5SDimitry Andric             // Ok, the call site is within a cleanuppad.  Let's check the callee
1634*0b57cec5SDimitry Andric             // for catchpads.
1635*0b57cec5SDimitry Andric             for (const BasicBlock &CalledBB : *CalledFunc) {
1636*0b57cec5SDimitry Andric               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1637*0b57cec5SDimitry Andric                 return "catch in cleanup funclet";
1638*0b57cec5SDimitry Andric             }
1639*0b57cec5SDimitry Andric           }
1640*0b57cec5SDimitry Andric         } else if (isAsynchronousEHPersonality(Personality)) {
1641*0b57cec5SDimitry Andric           // SEH is even less tolerant, there may not be any sort of exceptional
1642*0b57cec5SDimitry Andric           // funclet in the callee.
1643*0b57cec5SDimitry Andric           for (const BasicBlock &CalledBB : *CalledFunc) {
1644*0b57cec5SDimitry Andric             if (CalledBB.isEHPad())
1645*0b57cec5SDimitry Andric               return "SEH in cleanup funclet";
1646*0b57cec5SDimitry Andric           }
1647*0b57cec5SDimitry Andric         }
1648*0b57cec5SDimitry Andric       }
1649*0b57cec5SDimitry Andric     }
1650*0b57cec5SDimitry Andric   }
1651*0b57cec5SDimitry Andric 
1652*0b57cec5SDimitry Andric   // Determine if we are dealing with a call in an EHPad which does not unwind
1653*0b57cec5SDimitry Andric   // to caller.
1654*0b57cec5SDimitry Andric   bool EHPadForCallUnwindsLocally = false;
1655*0b57cec5SDimitry Andric   if (CallSiteEHPad && CS.isCall()) {
1656*0b57cec5SDimitry Andric     UnwindDestMemoTy FuncletUnwindMap;
1657*0b57cec5SDimitry Andric     Value *CallSiteUnwindDestToken =
1658*0b57cec5SDimitry Andric         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1659*0b57cec5SDimitry Andric 
1660*0b57cec5SDimitry Andric     EHPadForCallUnwindsLocally =
1661*0b57cec5SDimitry Andric         CallSiteUnwindDestToken &&
1662*0b57cec5SDimitry Andric         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1663*0b57cec5SDimitry Andric   }
1664*0b57cec5SDimitry Andric 
1665*0b57cec5SDimitry Andric   // Get an iterator to the last basic block in the function, which will have
1666*0b57cec5SDimitry Andric   // the new function inlined after it.
1667*0b57cec5SDimitry Andric   Function::iterator LastBlock = --Caller->end();
1668*0b57cec5SDimitry Andric 
1669*0b57cec5SDimitry Andric   // Make sure to capture all of the return instructions from the cloned
1670*0b57cec5SDimitry Andric   // function.
1671*0b57cec5SDimitry Andric   SmallVector<ReturnInst*, 8> Returns;
1672*0b57cec5SDimitry Andric   ClonedCodeInfo InlinedFunctionInfo;
1673*0b57cec5SDimitry Andric   Function::iterator FirstNewBlock;
1674*0b57cec5SDimitry Andric 
1675*0b57cec5SDimitry Andric   { // Scope to destroy VMap after cloning.
1676*0b57cec5SDimitry Andric     ValueToValueMapTy VMap;
1677*0b57cec5SDimitry Andric     // Keep a list of pair (dst, src) to emit byval initializations.
1678*0b57cec5SDimitry Andric     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1679*0b57cec5SDimitry Andric 
1680*0b57cec5SDimitry Andric     auto &DL = Caller->getParent()->getDataLayout();
1681*0b57cec5SDimitry Andric 
1682*0b57cec5SDimitry Andric     // Calculate the vector of arguments to pass into the function cloner, which
1683*0b57cec5SDimitry Andric     // matches up the formal to the actual argument values.
1684*0b57cec5SDimitry Andric     CallSite::arg_iterator AI = CS.arg_begin();
1685*0b57cec5SDimitry Andric     unsigned ArgNo = 0;
1686*0b57cec5SDimitry Andric     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1687*0b57cec5SDimitry Andric          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1688*0b57cec5SDimitry Andric       Value *ActualArg = *AI;
1689*0b57cec5SDimitry Andric 
1690*0b57cec5SDimitry Andric       // When byval arguments actually inlined, we need to make the copy implied
1691*0b57cec5SDimitry Andric       // by them explicit.  However, we don't do this if the callee is readonly
1692*0b57cec5SDimitry Andric       // or readnone, because the copy would be unneeded: the callee doesn't
1693*0b57cec5SDimitry Andric       // modify the struct.
1694*0b57cec5SDimitry Andric       if (CS.isByValArgument(ArgNo)) {
1695*0b57cec5SDimitry Andric         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1696*0b57cec5SDimitry Andric                                         CalledFunc->getParamAlignment(ArgNo));
1697*0b57cec5SDimitry Andric         if (ActualArg != *AI)
1698*0b57cec5SDimitry Andric           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1699*0b57cec5SDimitry Andric       }
1700*0b57cec5SDimitry Andric 
1701*0b57cec5SDimitry Andric       VMap[&*I] = ActualArg;
1702*0b57cec5SDimitry Andric     }
1703*0b57cec5SDimitry Andric 
1704*0b57cec5SDimitry Andric     // Add alignment assumptions if necessary. We do this before the inlined
1705*0b57cec5SDimitry Andric     // instructions are actually cloned into the caller so that we can easily
1706*0b57cec5SDimitry Andric     // check what will be known at the start of the inlined code.
1707*0b57cec5SDimitry Andric     AddAlignmentAssumptions(CS, IFI);
1708*0b57cec5SDimitry Andric 
1709*0b57cec5SDimitry Andric     // We want the inliner to prune the code as it copies.  We would LOVE to
1710*0b57cec5SDimitry Andric     // have no dead or constant instructions leftover after inlining occurs
1711*0b57cec5SDimitry Andric     // (which can happen, e.g., because an argument was constant), but we'll be
1712*0b57cec5SDimitry Andric     // happy with whatever the cloner can do.
1713*0b57cec5SDimitry Andric     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1714*0b57cec5SDimitry Andric                               /*ModuleLevelChanges=*/false, Returns, ".i",
1715*0b57cec5SDimitry Andric                               &InlinedFunctionInfo, TheCall);
1716*0b57cec5SDimitry Andric     // Remember the first block that is newly cloned over.
1717*0b57cec5SDimitry Andric     FirstNewBlock = LastBlock; ++FirstNewBlock;
1718*0b57cec5SDimitry Andric 
1719*0b57cec5SDimitry Andric     if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1720*0b57cec5SDimitry Andric       // Update the BFI of blocks cloned into the caller.
1721*0b57cec5SDimitry Andric       updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1722*0b57cec5SDimitry Andric                       CalledFunc->front());
1723*0b57cec5SDimitry Andric 
1724*0b57cec5SDimitry Andric     updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
1725*0b57cec5SDimitry Andric                       IFI.PSI, IFI.CallerBFI);
1726*0b57cec5SDimitry Andric 
1727*0b57cec5SDimitry Andric     // Inject byval arguments initialization.
1728*0b57cec5SDimitry Andric     for (std::pair<Value*, Value*> &Init : ByValInit)
1729*0b57cec5SDimitry Andric       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1730*0b57cec5SDimitry Andric                               &*FirstNewBlock, IFI);
1731*0b57cec5SDimitry Andric 
1732*0b57cec5SDimitry Andric     Optional<OperandBundleUse> ParentDeopt =
1733*0b57cec5SDimitry Andric         CS.getOperandBundle(LLVMContext::OB_deopt);
1734*0b57cec5SDimitry Andric     if (ParentDeopt) {
1735*0b57cec5SDimitry Andric       SmallVector<OperandBundleDef, 2> OpDefs;
1736*0b57cec5SDimitry Andric 
1737*0b57cec5SDimitry Andric       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1738*0b57cec5SDimitry Andric         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1739*0b57cec5SDimitry Andric         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1740*0b57cec5SDimitry Andric 
1741*0b57cec5SDimitry Andric         OpDefs.clear();
1742*0b57cec5SDimitry Andric 
1743*0b57cec5SDimitry Andric         CallSite ICS(I);
1744*0b57cec5SDimitry Andric         OpDefs.reserve(ICS.getNumOperandBundles());
1745*0b57cec5SDimitry Andric 
1746*0b57cec5SDimitry Andric         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1747*0b57cec5SDimitry Andric           auto ChildOB = ICS.getOperandBundleAt(i);
1748*0b57cec5SDimitry Andric           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1749*0b57cec5SDimitry Andric             // If the inlined call has other operand bundles, let them be
1750*0b57cec5SDimitry Andric             OpDefs.emplace_back(ChildOB);
1751*0b57cec5SDimitry Andric             continue;
1752*0b57cec5SDimitry Andric           }
1753*0b57cec5SDimitry Andric 
1754*0b57cec5SDimitry Andric           // It may be useful to separate this logic (of handling operand
1755*0b57cec5SDimitry Andric           // bundles) out to a separate "policy" component if this gets crowded.
1756*0b57cec5SDimitry Andric           // Prepend the parent's deoptimization continuation to the newly
1757*0b57cec5SDimitry Andric           // inlined call's deoptimization continuation.
1758*0b57cec5SDimitry Andric           std::vector<Value *> MergedDeoptArgs;
1759*0b57cec5SDimitry Andric           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1760*0b57cec5SDimitry Andric                                   ChildOB.Inputs.size());
1761*0b57cec5SDimitry Andric 
1762*0b57cec5SDimitry Andric           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1763*0b57cec5SDimitry Andric                                  ParentDeopt->Inputs.begin(),
1764*0b57cec5SDimitry Andric                                  ParentDeopt->Inputs.end());
1765*0b57cec5SDimitry Andric           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1766*0b57cec5SDimitry Andric                                  ChildOB.Inputs.end());
1767*0b57cec5SDimitry Andric 
1768*0b57cec5SDimitry Andric           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1769*0b57cec5SDimitry Andric         }
1770*0b57cec5SDimitry Andric 
1771*0b57cec5SDimitry Andric         Instruction *NewI = nullptr;
1772*0b57cec5SDimitry Andric         if (isa<CallInst>(I))
1773*0b57cec5SDimitry Andric           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1774*0b57cec5SDimitry Andric         else if (isa<CallBrInst>(I))
1775*0b57cec5SDimitry Andric           NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I);
1776*0b57cec5SDimitry Andric         else
1777*0b57cec5SDimitry Andric           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1778*0b57cec5SDimitry Andric 
1779*0b57cec5SDimitry Andric         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1780*0b57cec5SDimitry Andric         // this even if the call returns void.
1781*0b57cec5SDimitry Andric         I->replaceAllUsesWith(NewI);
1782*0b57cec5SDimitry Andric 
1783*0b57cec5SDimitry Andric         VH = nullptr;
1784*0b57cec5SDimitry Andric         I->eraseFromParent();
1785*0b57cec5SDimitry Andric       }
1786*0b57cec5SDimitry Andric     }
1787*0b57cec5SDimitry Andric 
1788*0b57cec5SDimitry Andric     // Update the callgraph if requested.
1789*0b57cec5SDimitry Andric     if (IFI.CG)
1790*0b57cec5SDimitry Andric       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1791*0b57cec5SDimitry Andric 
1792*0b57cec5SDimitry Andric     // For 'nodebug' functions, the associated DISubprogram is always null.
1793*0b57cec5SDimitry Andric     // Conservatively avoid propagating the callsite debug location to
1794*0b57cec5SDimitry Andric     // instructions inlined from a function whose DISubprogram is not null.
1795*0b57cec5SDimitry Andric     fixupLineNumbers(Caller, FirstNewBlock, TheCall,
1796*0b57cec5SDimitry Andric                      CalledFunc->getSubprogram() != nullptr);
1797*0b57cec5SDimitry Andric 
1798*0b57cec5SDimitry Andric     // Clone existing noalias metadata if necessary.
1799*0b57cec5SDimitry Andric     CloneAliasScopeMetadata(CS, VMap);
1800*0b57cec5SDimitry Andric 
1801*0b57cec5SDimitry Andric     // Add noalias metadata if necessary.
1802*0b57cec5SDimitry Andric     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1803*0b57cec5SDimitry Andric 
1804*0b57cec5SDimitry Andric     // Propagate llvm.mem.parallel_loop_access if necessary.
1805*0b57cec5SDimitry Andric     PropagateParallelLoopAccessMetadata(CS, VMap);
1806*0b57cec5SDimitry Andric 
1807*0b57cec5SDimitry Andric     // Register any cloned assumptions.
1808*0b57cec5SDimitry Andric     if (IFI.GetAssumptionCache)
1809*0b57cec5SDimitry Andric       for (BasicBlock &NewBlock :
1810*0b57cec5SDimitry Andric            make_range(FirstNewBlock->getIterator(), Caller->end()))
1811*0b57cec5SDimitry Andric         for (Instruction &I : NewBlock) {
1812*0b57cec5SDimitry Andric           if (auto *II = dyn_cast<IntrinsicInst>(&I))
1813*0b57cec5SDimitry Andric             if (II->getIntrinsicID() == Intrinsic::assume)
1814*0b57cec5SDimitry Andric               (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1815*0b57cec5SDimitry Andric         }
1816*0b57cec5SDimitry Andric   }
1817*0b57cec5SDimitry Andric 
1818*0b57cec5SDimitry Andric   // If there are any alloca instructions in the block that used to be the entry
1819*0b57cec5SDimitry Andric   // block for the callee, move them to the entry block of the caller.  First
1820*0b57cec5SDimitry Andric   // calculate which instruction they should be inserted before.  We insert the
1821*0b57cec5SDimitry Andric   // instructions at the end of the current alloca list.
1822*0b57cec5SDimitry Andric   {
1823*0b57cec5SDimitry Andric     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1824*0b57cec5SDimitry Andric     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1825*0b57cec5SDimitry Andric          E = FirstNewBlock->end(); I != E; ) {
1826*0b57cec5SDimitry Andric       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1827*0b57cec5SDimitry Andric       if (!AI) continue;
1828*0b57cec5SDimitry Andric 
1829*0b57cec5SDimitry Andric       // If the alloca is now dead, remove it.  This often occurs due to code
1830*0b57cec5SDimitry Andric       // specialization.
1831*0b57cec5SDimitry Andric       if (AI->use_empty()) {
1832*0b57cec5SDimitry Andric         AI->eraseFromParent();
1833*0b57cec5SDimitry Andric         continue;
1834*0b57cec5SDimitry Andric       }
1835*0b57cec5SDimitry Andric 
1836*0b57cec5SDimitry Andric       if (!allocaWouldBeStaticInEntry(AI))
1837*0b57cec5SDimitry Andric         continue;
1838*0b57cec5SDimitry Andric 
1839*0b57cec5SDimitry Andric       // Keep track of the static allocas that we inline into the caller.
1840*0b57cec5SDimitry Andric       IFI.StaticAllocas.push_back(AI);
1841*0b57cec5SDimitry Andric 
1842*0b57cec5SDimitry Andric       // Scan for the block of allocas that we can move over, and move them
1843*0b57cec5SDimitry Andric       // all at once.
1844*0b57cec5SDimitry Andric       while (isa<AllocaInst>(I) &&
1845*0b57cec5SDimitry Andric              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1846*0b57cec5SDimitry Andric         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1847*0b57cec5SDimitry Andric         ++I;
1848*0b57cec5SDimitry Andric       }
1849*0b57cec5SDimitry Andric 
1850*0b57cec5SDimitry Andric       // Transfer all of the allocas over in a block.  Using splice means
1851*0b57cec5SDimitry Andric       // that the instructions aren't removed from the symbol table, then
1852*0b57cec5SDimitry Andric       // reinserted.
1853*0b57cec5SDimitry Andric       Caller->getEntryBlock().getInstList().splice(
1854*0b57cec5SDimitry Andric           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1855*0b57cec5SDimitry Andric     }
1856*0b57cec5SDimitry Andric     // Move any dbg.declares describing the allocas into the entry basic block.
1857*0b57cec5SDimitry Andric     DIBuilder DIB(*Caller->getParent());
1858*0b57cec5SDimitry Andric     for (auto &AI : IFI.StaticAllocas)
1859*0b57cec5SDimitry Andric       replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::ApplyOffset, 0);
1860*0b57cec5SDimitry Andric   }
1861*0b57cec5SDimitry Andric 
1862*0b57cec5SDimitry Andric   SmallVector<Value*,4> VarArgsToForward;
1863*0b57cec5SDimitry Andric   SmallVector<AttributeSet, 4> VarArgsAttrs;
1864*0b57cec5SDimitry Andric   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
1865*0b57cec5SDimitry Andric        i < CS.getNumArgOperands(); i++) {
1866*0b57cec5SDimitry Andric     VarArgsToForward.push_back(CS.getArgOperand(i));
1867*0b57cec5SDimitry Andric     VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
1868*0b57cec5SDimitry Andric   }
1869*0b57cec5SDimitry Andric 
1870*0b57cec5SDimitry Andric   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1871*0b57cec5SDimitry Andric   if (InlinedFunctionInfo.ContainsCalls) {
1872*0b57cec5SDimitry Andric     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1873*0b57cec5SDimitry Andric     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1874*0b57cec5SDimitry Andric       CallSiteTailKind = CI->getTailCallKind();
1875*0b57cec5SDimitry Andric 
1876*0b57cec5SDimitry Andric     // For inlining purposes, the "notail" marker is the same as no marker.
1877*0b57cec5SDimitry Andric     if (CallSiteTailKind == CallInst::TCK_NoTail)
1878*0b57cec5SDimitry Andric       CallSiteTailKind = CallInst::TCK_None;
1879*0b57cec5SDimitry Andric 
1880*0b57cec5SDimitry Andric     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1881*0b57cec5SDimitry Andric          ++BB) {
1882*0b57cec5SDimitry Andric       for (auto II = BB->begin(); II != BB->end();) {
1883*0b57cec5SDimitry Andric         Instruction &I = *II++;
1884*0b57cec5SDimitry Andric         CallInst *CI = dyn_cast<CallInst>(&I);
1885*0b57cec5SDimitry Andric         if (!CI)
1886*0b57cec5SDimitry Andric           continue;
1887*0b57cec5SDimitry Andric 
1888*0b57cec5SDimitry Andric         // Forward varargs from inlined call site to calls to the
1889*0b57cec5SDimitry Andric         // ForwardVarArgsTo function, if requested, and to musttail calls.
1890*0b57cec5SDimitry Andric         if (!VarArgsToForward.empty() &&
1891*0b57cec5SDimitry Andric             ((ForwardVarArgsTo &&
1892*0b57cec5SDimitry Andric               CI->getCalledFunction() == ForwardVarArgsTo) ||
1893*0b57cec5SDimitry Andric              CI->isMustTailCall())) {
1894*0b57cec5SDimitry Andric           // Collect attributes for non-vararg parameters.
1895*0b57cec5SDimitry Andric           AttributeList Attrs = CI->getAttributes();
1896*0b57cec5SDimitry Andric           SmallVector<AttributeSet, 8> ArgAttrs;
1897*0b57cec5SDimitry Andric           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
1898*0b57cec5SDimitry Andric             for (unsigned ArgNo = 0;
1899*0b57cec5SDimitry Andric                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
1900*0b57cec5SDimitry Andric               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
1901*0b57cec5SDimitry Andric           }
1902*0b57cec5SDimitry Andric 
1903*0b57cec5SDimitry Andric           // Add VarArg attributes.
1904*0b57cec5SDimitry Andric           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
1905*0b57cec5SDimitry Andric           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
1906*0b57cec5SDimitry Andric                                      Attrs.getRetAttributes(), ArgAttrs);
1907*0b57cec5SDimitry Andric           // Add VarArgs to existing parameters.
1908*0b57cec5SDimitry Andric           SmallVector<Value *, 6> Params(CI->arg_operands());
1909*0b57cec5SDimitry Andric           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
1910*0b57cec5SDimitry Andric           CallInst *NewCI = CallInst::Create(
1911*0b57cec5SDimitry Andric               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
1912*0b57cec5SDimitry Andric           NewCI->setDebugLoc(CI->getDebugLoc());
1913*0b57cec5SDimitry Andric           NewCI->setAttributes(Attrs);
1914*0b57cec5SDimitry Andric           NewCI->setCallingConv(CI->getCallingConv());
1915*0b57cec5SDimitry Andric           CI->replaceAllUsesWith(NewCI);
1916*0b57cec5SDimitry Andric           CI->eraseFromParent();
1917*0b57cec5SDimitry Andric           CI = NewCI;
1918*0b57cec5SDimitry Andric         }
1919*0b57cec5SDimitry Andric 
1920*0b57cec5SDimitry Andric         if (Function *F = CI->getCalledFunction())
1921*0b57cec5SDimitry Andric           InlinedDeoptimizeCalls |=
1922*0b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1923*0b57cec5SDimitry Andric 
1924*0b57cec5SDimitry Andric         // We need to reduce the strength of any inlined tail calls.  For
1925*0b57cec5SDimitry Andric         // musttail, we have to avoid introducing potential unbounded stack
1926*0b57cec5SDimitry Andric         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1927*0b57cec5SDimitry Andric         // with musttail, we can inline 'g' into 'f' so long as we preserve
1928*0b57cec5SDimitry Andric         // musttail on the cloned call to 'f'.  If either the inlined call site
1929*0b57cec5SDimitry Andric         // or the cloned call site is *not* musttail, the program already has
1930*0b57cec5SDimitry Andric         // one frame of stack growth, so it's safe to remove musttail.  Here is
1931*0b57cec5SDimitry Andric         // a table of example transformations:
1932*0b57cec5SDimitry Andric         //
1933*0b57cec5SDimitry Andric         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1934*0b57cec5SDimitry Andric         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1935*0b57cec5SDimitry Andric         //    f ->          g -> musttail f  ==>  f ->          f
1936*0b57cec5SDimitry Andric         //    f ->          g ->     tail f  ==>  f ->          f
1937*0b57cec5SDimitry Andric         //
1938*0b57cec5SDimitry Andric         // Inlined notail calls should remain notail calls.
1939*0b57cec5SDimitry Andric         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1940*0b57cec5SDimitry Andric         if (ChildTCK != CallInst::TCK_NoTail)
1941*0b57cec5SDimitry Andric           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1942*0b57cec5SDimitry Andric         CI->setTailCallKind(ChildTCK);
1943*0b57cec5SDimitry Andric         InlinedMustTailCalls |= CI->isMustTailCall();
1944*0b57cec5SDimitry Andric 
1945*0b57cec5SDimitry Andric         // Calls inlined through a 'nounwind' call site should be marked
1946*0b57cec5SDimitry Andric         // 'nounwind'.
1947*0b57cec5SDimitry Andric         if (MarkNoUnwind)
1948*0b57cec5SDimitry Andric           CI->setDoesNotThrow();
1949*0b57cec5SDimitry Andric       }
1950*0b57cec5SDimitry Andric     }
1951*0b57cec5SDimitry Andric   }
1952*0b57cec5SDimitry Andric 
1953*0b57cec5SDimitry Andric   // Leave lifetime markers for the static alloca's, scoping them to the
1954*0b57cec5SDimitry Andric   // function we just inlined.
1955*0b57cec5SDimitry Andric   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1956*0b57cec5SDimitry Andric     IRBuilder<> builder(&FirstNewBlock->front());
1957*0b57cec5SDimitry Andric     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1958*0b57cec5SDimitry Andric       AllocaInst *AI = IFI.StaticAllocas[ai];
1959*0b57cec5SDimitry Andric       // Don't mark swifterror allocas. They can't have bitcast uses.
1960*0b57cec5SDimitry Andric       if (AI->isSwiftError())
1961*0b57cec5SDimitry Andric         continue;
1962*0b57cec5SDimitry Andric 
1963*0b57cec5SDimitry Andric       // If the alloca is already scoped to something smaller than the whole
1964*0b57cec5SDimitry Andric       // function then there's no need to add redundant, less accurate markers.
1965*0b57cec5SDimitry Andric       if (hasLifetimeMarkers(AI))
1966*0b57cec5SDimitry Andric         continue;
1967*0b57cec5SDimitry Andric 
1968*0b57cec5SDimitry Andric       // Try to determine the size of the allocation.
1969*0b57cec5SDimitry Andric       ConstantInt *AllocaSize = nullptr;
1970*0b57cec5SDimitry Andric       if (ConstantInt *AIArraySize =
1971*0b57cec5SDimitry Andric           dyn_cast<ConstantInt>(AI->getArraySize())) {
1972*0b57cec5SDimitry Andric         auto &DL = Caller->getParent()->getDataLayout();
1973*0b57cec5SDimitry Andric         Type *AllocaType = AI->getAllocatedType();
1974*0b57cec5SDimitry Andric         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1975*0b57cec5SDimitry Andric         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1976*0b57cec5SDimitry Andric 
1977*0b57cec5SDimitry Andric         // Don't add markers for zero-sized allocas.
1978*0b57cec5SDimitry Andric         if (AllocaArraySize == 0)
1979*0b57cec5SDimitry Andric           continue;
1980*0b57cec5SDimitry Andric 
1981*0b57cec5SDimitry Andric         // Check that array size doesn't saturate uint64_t and doesn't
1982*0b57cec5SDimitry Andric         // overflow when it's multiplied by type size.
1983*0b57cec5SDimitry Andric         if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
1984*0b57cec5SDimitry Andric             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
1985*0b57cec5SDimitry Andric                 AllocaTypeSize) {
1986*0b57cec5SDimitry Andric           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1987*0b57cec5SDimitry Andric                                         AllocaArraySize * AllocaTypeSize);
1988*0b57cec5SDimitry Andric         }
1989*0b57cec5SDimitry Andric       }
1990*0b57cec5SDimitry Andric 
1991*0b57cec5SDimitry Andric       builder.CreateLifetimeStart(AI, AllocaSize);
1992*0b57cec5SDimitry Andric       for (ReturnInst *RI : Returns) {
1993*0b57cec5SDimitry Andric         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1994*0b57cec5SDimitry Andric         // call and a return.  The return kills all local allocas.
1995*0b57cec5SDimitry Andric         if (InlinedMustTailCalls &&
1996*0b57cec5SDimitry Andric             RI->getParent()->getTerminatingMustTailCall())
1997*0b57cec5SDimitry Andric           continue;
1998*0b57cec5SDimitry Andric         if (InlinedDeoptimizeCalls &&
1999*0b57cec5SDimitry Andric             RI->getParent()->getTerminatingDeoptimizeCall())
2000*0b57cec5SDimitry Andric           continue;
2001*0b57cec5SDimitry Andric         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2002*0b57cec5SDimitry Andric       }
2003*0b57cec5SDimitry Andric     }
2004*0b57cec5SDimitry Andric   }
2005*0b57cec5SDimitry Andric 
2006*0b57cec5SDimitry Andric   // If the inlined code contained dynamic alloca instructions, wrap the inlined
2007*0b57cec5SDimitry Andric   // code with llvm.stacksave/llvm.stackrestore intrinsics.
2008*0b57cec5SDimitry Andric   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2009*0b57cec5SDimitry Andric     Module *M = Caller->getParent();
2010*0b57cec5SDimitry Andric     // Get the two intrinsics we care about.
2011*0b57cec5SDimitry Andric     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2012*0b57cec5SDimitry Andric     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2013*0b57cec5SDimitry Andric 
2014*0b57cec5SDimitry Andric     // Insert the llvm.stacksave.
2015*0b57cec5SDimitry Andric     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2016*0b57cec5SDimitry Andric                              .CreateCall(StackSave, {}, "savedstack");
2017*0b57cec5SDimitry Andric 
2018*0b57cec5SDimitry Andric     // Insert a call to llvm.stackrestore before any return instructions in the
2019*0b57cec5SDimitry Andric     // inlined function.
2020*0b57cec5SDimitry Andric     for (ReturnInst *RI : Returns) {
2021*0b57cec5SDimitry Andric       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2022*0b57cec5SDimitry Andric       // call and a return.  The return will restore the stack pointer.
2023*0b57cec5SDimitry Andric       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2024*0b57cec5SDimitry Andric         continue;
2025*0b57cec5SDimitry Andric       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2026*0b57cec5SDimitry Andric         continue;
2027*0b57cec5SDimitry Andric       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2028*0b57cec5SDimitry Andric     }
2029*0b57cec5SDimitry Andric   }
2030*0b57cec5SDimitry Andric 
2031*0b57cec5SDimitry Andric   // If we are inlining for an invoke instruction, we must make sure to rewrite
2032*0b57cec5SDimitry Andric   // any call instructions into invoke instructions.  This is sensitive to which
2033*0b57cec5SDimitry Andric   // funclet pads were top-level in the inlinee, so must be done before
2034*0b57cec5SDimitry Andric   // rewriting the "parent pad" links.
2035*0b57cec5SDimitry Andric   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
2036*0b57cec5SDimitry Andric     BasicBlock *UnwindDest = II->getUnwindDest();
2037*0b57cec5SDimitry Andric     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2038*0b57cec5SDimitry Andric     if (isa<LandingPadInst>(FirstNonPHI)) {
2039*0b57cec5SDimitry Andric       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2040*0b57cec5SDimitry Andric     } else {
2041*0b57cec5SDimitry Andric       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2042*0b57cec5SDimitry Andric     }
2043*0b57cec5SDimitry Andric   }
2044*0b57cec5SDimitry Andric 
2045*0b57cec5SDimitry Andric   // Update the lexical scopes of the new funclets and callsites.
2046*0b57cec5SDimitry Andric   // Anything that had 'none' as its parent is now nested inside the callsite's
2047*0b57cec5SDimitry Andric   // EHPad.
2048*0b57cec5SDimitry Andric 
2049*0b57cec5SDimitry Andric   if (CallSiteEHPad) {
2050*0b57cec5SDimitry Andric     for (Function::iterator BB = FirstNewBlock->getIterator(),
2051*0b57cec5SDimitry Andric                             E = Caller->end();
2052*0b57cec5SDimitry Andric          BB != E; ++BB) {
2053*0b57cec5SDimitry Andric       // Add bundle operands to any top-level call sites.
2054*0b57cec5SDimitry Andric       SmallVector<OperandBundleDef, 1> OpBundles;
2055*0b57cec5SDimitry Andric       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2056*0b57cec5SDimitry Andric         Instruction *I = &*BBI++;
2057*0b57cec5SDimitry Andric         CallSite CS(I);
2058*0b57cec5SDimitry Andric         if (!CS)
2059*0b57cec5SDimitry Andric           continue;
2060*0b57cec5SDimitry Andric 
2061*0b57cec5SDimitry Andric         // Skip call sites which are nounwind intrinsics.
2062*0b57cec5SDimitry Andric         auto *CalledFn =
2063*0b57cec5SDimitry Andric             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2064*0b57cec5SDimitry Andric         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
2065*0b57cec5SDimitry Andric           continue;
2066*0b57cec5SDimitry Andric 
2067*0b57cec5SDimitry Andric         // Skip call sites which already have a "funclet" bundle.
2068*0b57cec5SDimitry Andric         if (CS.getOperandBundle(LLVMContext::OB_funclet))
2069*0b57cec5SDimitry Andric           continue;
2070*0b57cec5SDimitry Andric 
2071*0b57cec5SDimitry Andric         CS.getOperandBundlesAsDefs(OpBundles);
2072*0b57cec5SDimitry Andric         OpBundles.emplace_back("funclet", CallSiteEHPad);
2073*0b57cec5SDimitry Andric 
2074*0b57cec5SDimitry Andric         Instruction *NewInst;
2075*0b57cec5SDimitry Andric         if (CS.isCall())
2076*0b57cec5SDimitry Andric           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
2077*0b57cec5SDimitry Andric         else if (CS.isCallBr())
2078*0b57cec5SDimitry Andric           NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I);
2079*0b57cec5SDimitry Andric         else
2080*0b57cec5SDimitry Andric           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
2081*0b57cec5SDimitry Andric         NewInst->takeName(I);
2082*0b57cec5SDimitry Andric         I->replaceAllUsesWith(NewInst);
2083*0b57cec5SDimitry Andric         I->eraseFromParent();
2084*0b57cec5SDimitry Andric 
2085*0b57cec5SDimitry Andric         OpBundles.clear();
2086*0b57cec5SDimitry Andric       }
2087*0b57cec5SDimitry Andric 
2088*0b57cec5SDimitry Andric       // It is problematic if the inlinee has a cleanupret which unwinds to
2089*0b57cec5SDimitry Andric       // caller and we inline it into a call site which doesn't unwind but into
2090*0b57cec5SDimitry Andric       // an EH pad that does.  Such an edge must be dynamically unreachable.
2091*0b57cec5SDimitry Andric       // As such, we replace the cleanupret with unreachable.
2092*0b57cec5SDimitry Andric       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2093*0b57cec5SDimitry Andric         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2094*0b57cec5SDimitry Andric           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2095*0b57cec5SDimitry Andric 
2096*0b57cec5SDimitry Andric       Instruction *I = BB->getFirstNonPHI();
2097*0b57cec5SDimitry Andric       if (!I->isEHPad())
2098*0b57cec5SDimitry Andric         continue;
2099*0b57cec5SDimitry Andric 
2100*0b57cec5SDimitry Andric       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2101*0b57cec5SDimitry Andric         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2102*0b57cec5SDimitry Andric           CatchSwitch->setParentPad(CallSiteEHPad);
2103*0b57cec5SDimitry Andric       } else {
2104*0b57cec5SDimitry Andric         auto *FPI = cast<FuncletPadInst>(I);
2105*0b57cec5SDimitry Andric         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2106*0b57cec5SDimitry Andric           FPI->setParentPad(CallSiteEHPad);
2107*0b57cec5SDimitry Andric       }
2108*0b57cec5SDimitry Andric     }
2109*0b57cec5SDimitry Andric   }
2110*0b57cec5SDimitry Andric 
2111*0b57cec5SDimitry Andric   if (InlinedDeoptimizeCalls) {
2112*0b57cec5SDimitry Andric     // We need to at least remove the deoptimizing returns from the Return set,
2113*0b57cec5SDimitry Andric     // so that the control flow from those returns does not get merged into the
2114*0b57cec5SDimitry Andric     // caller (but terminate it instead).  If the caller's return type does not
2115*0b57cec5SDimitry Andric     // match the callee's return type, we also need to change the return type of
2116*0b57cec5SDimitry Andric     // the intrinsic.
2117*0b57cec5SDimitry Andric     if (Caller->getReturnType() == TheCall->getType()) {
2118*0b57cec5SDimitry Andric       auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
2119*0b57cec5SDimitry Andric         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2120*0b57cec5SDimitry Andric       });
2121*0b57cec5SDimitry Andric       Returns.erase(NewEnd, Returns.end());
2122*0b57cec5SDimitry Andric     } else {
2123*0b57cec5SDimitry Andric       SmallVector<ReturnInst *, 8> NormalReturns;
2124*0b57cec5SDimitry Andric       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2125*0b57cec5SDimitry Andric           Caller->getParent(), Intrinsic::experimental_deoptimize,
2126*0b57cec5SDimitry Andric           {Caller->getReturnType()});
2127*0b57cec5SDimitry Andric 
2128*0b57cec5SDimitry Andric       for (ReturnInst *RI : Returns) {
2129*0b57cec5SDimitry Andric         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2130*0b57cec5SDimitry Andric         if (!DeoptCall) {
2131*0b57cec5SDimitry Andric           NormalReturns.push_back(RI);
2132*0b57cec5SDimitry Andric           continue;
2133*0b57cec5SDimitry Andric         }
2134*0b57cec5SDimitry Andric 
2135*0b57cec5SDimitry Andric         // The calling convention on the deoptimize call itself may be bogus,
2136*0b57cec5SDimitry Andric         // since the code we're inlining may have undefined behavior (and may
2137*0b57cec5SDimitry Andric         // never actually execute at runtime); but all
2138*0b57cec5SDimitry Andric         // @llvm.experimental.deoptimize declarations have to have the same
2139*0b57cec5SDimitry Andric         // calling convention in a well-formed module.
2140*0b57cec5SDimitry Andric         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2141*0b57cec5SDimitry Andric         NewDeoptIntrinsic->setCallingConv(CallingConv);
2142*0b57cec5SDimitry Andric         auto *CurBB = RI->getParent();
2143*0b57cec5SDimitry Andric         RI->eraseFromParent();
2144*0b57cec5SDimitry Andric 
2145*0b57cec5SDimitry Andric         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
2146*0b57cec5SDimitry Andric                                          DeoptCall->arg_end());
2147*0b57cec5SDimitry Andric 
2148*0b57cec5SDimitry Andric         SmallVector<OperandBundleDef, 1> OpBundles;
2149*0b57cec5SDimitry Andric         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2150*0b57cec5SDimitry Andric         DeoptCall->eraseFromParent();
2151*0b57cec5SDimitry Andric         assert(!OpBundles.empty() &&
2152*0b57cec5SDimitry Andric                "Expected at least the deopt operand bundle");
2153*0b57cec5SDimitry Andric 
2154*0b57cec5SDimitry Andric         IRBuilder<> Builder(CurBB);
2155*0b57cec5SDimitry Andric         CallInst *NewDeoptCall =
2156*0b57cec5SDimitry Andric             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2157*0b57cec5SDimitry Andric         NewDeoptCall->setCallingConv(CallingConv);
2158*0b57cec5SDimitry Andric         if (NewDeoptCall->getType()->isVoidTy())
2159*0b57cec5SDimitry Andric           Builder.CreateRetVoid();
2160*0b57cec5SDimitry Andric         else
2161*0b57cec5SDimitry Andric           Builder.CreateRet(NewDeoptCall);
2162*0b57cec5SDimitry Andric       }
2163*0b57cec5SDimitry Andric 
2164*0b57cec5SDimitry Andric       // Leave behind the normal returns so we can merge control flow.
2165*0b57cec5SDimitry Andric       std::swap(Returns, NormalReturns);
2166*0b57cec5SDimitry Andric     }
2167*0b57cec5SDimitry Andric   }
2168*0b57cec5SDimitry Andric 
2169*0b57cec5SDimitry Andric   // Handle any inlined musttail call sites.  In order for a new call site to be
2170*0b57cec5SDimitry Andric   // musttail, the source of the clone and the inlined call site must have been
2171*0b57cec5SDimitry Andric   // musttail.  Therefore it's safe to return without merging control into the
2172*0b57cec5SDimitry Andric   // phi below.
2173*0b57cec5SDimitry Andric   if (InlinedMustTailCalls) {
2174*0b57cec5SDimitry Andric     // Check if we need to bitcast the result of any musttail calls.
2175*0b57cec5SDimitry Andric     Type *NewRetTy = Caller->getReturnType();
2176*0b57cec5SDimitry Andric     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
2177*0b57cec5SDimitry Andric 
2178*0b57cec5SDimitry Andric     // Handle the returns preceded by musttail calls separately.
2179*0b57cec5SDimitry Andric     SmallVector<ReturnInst *, 8> NormalReturns;
2180*0b57cec5SDimitry Andric     for (ReturnInst *RI : Returns) {
2181*0b57cec5SDimitry Andric       CallInst *ReturnedMustTail =
2182*0b57cec5SDimitry Andric           RI->getParent()->getTerminatingMustTailCall();
2183*0b57cec5SDimitry Andric       if (!ReturnedMustTail) {
2184*0b57cec5SDimitry Andric         NormalReturns.push_back(RI);
2185*0b57cec5SDimitry Andric         continue;
2186*0b57cec5SDimitry Andric       }
2187*0b57cec5SDimitry Andric       if (!NeedBitCast)
2188*0b57cec5SDimitry Andric         continue;
2189*0b57cec5SDimitry Andric 
2190*0b57cec5SDimitry Andric       // Delete the old return and any preceding bitcast.
2191*0b57cec5SDimitry Andric       BasicBlock *CurBB = RI->getParent();
2192*0b57cec5SDimitry Andric       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2193*0b57cec5SDimitry Andric       RI->eraseFromParent();
2194*0b57cec5SDimitry Andric       if (OldCast)
2195*0b57cec5SDimitry Andric         OldCast->eraseFromParent();
2196*0b57cec5SDimitry Andric 
2197*0b57cec5SDimitry Andric       // Insert a new bitcast and return with the right type.
2198*0b57cec5SDimitry Andric       IRBuilder<> Builder(CurBB);
2199*0b57cec5SDimitry Andric       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2200*0b57cec5SDimitry Andric     }
2201*0b57cec5SDimitry Andric 
2202*0b57cec5SDimitry Andric     // Leave behind the normal returns so we can merge control flow.
2203*0b57cec5SDimitry Andric     std::swap(Returns, NormalReturns);
2204*0b57cec5SDimitry Andric   }
2205*0b57cec5SDimitry Andric 
2206*0b57cec5SDimitry Andric   // Now that all of the transforms on the inlined code have taken place but
2207*0b57cec5SDimitry Andric   // before we splice the inlined code into the CFG and lose track of which
2208*0b57cec5SDimitry Andric   // blocks were actually inlined, collect the call sites. We only do this if
2209*0b57cec5SDimitry Andric   // call graph updates weren't requested, as those provide value handle based
2210*0b57cec5SDimitry Andric   // tracking of inlined call sites instead.
2211*0b57cec5SDimitry Andric   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2212*0b57cec5SDimitry Andric     // Otherwise just collect the raw call sites that were inlined.
2213*0b57cec5SDimitry Andric     for (BasicBlock &NewBB :
2214*0b57cec5SDimitry Andric          make_range(FirstNewBlock->getIterator(), Caller->end()))
2215*0b57cec5SDimitry Andric       for (Instruction &I : NewBB)
2216*0b57cec5SDimitry Andric         if (auto CS = CallSite(&I))
2217*0b57cec5SDimitry Andric           IFI.InlinedCallSites.push_back(CS);
2218*0b57cec5SDimitry Andric   }
2219*0b57cec5SDimitry Andric 
2220*0b57cec5SDimitry Andric   // If we cloned in _exactly one_ basic block, and if that block ends in a
2221*0b57cec5SDimitry Andric   // return instruction, we splice the body of the inlined callee directly into
2222*0b57cec5SDimitry Andric   // the calling basic block.
2223*0b57cec5SDimitry Andric   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2224*0b57cec5SDimitry Andric     // Move all of the instructions right before the call.
2225*0b57cec5SDimitry Andric     OrigBB->getInstList().splice(TheCall->getIterator(),
2226*0b57cec5SDimitry Andric                                  FirstNewBlock->getInstList(),
2227*0b57cec5SDimitry Andric                                  FirstNewBlock->begin(), FirstNewBlock->end());
2228*0b57cec5SDimitry Andric     // Remove the cloned basic block.
2229*0b57cec5SDimitry Andric     Caller->getBasicBlockList().pop_back();
2230*0b57cec5SDimitry Andric 
2231*0b57cec5SDimitry Andric     // If the call site was an invoke instruction, add a branch to the normal
2232*0b57cec5SDimitry Andric     // destination.
2233*0b57cec5SDimitry Andric     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2234*0b57cec5SDimitry Andric       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
2235*0b57cec5SDimitry Andric       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2236*0b57cec5SDimitry Andric     }
2237*0b57cec5SDimitry Andric 
2238*0b57cec5SDimitry Andric     // If the return instruction returned a value, replace uses of the call with
2239*0b57cec5SDimitry Andric     // uses of the returned value.
2240*0b57cec5SDimitry Andric     if (!TheCall->use_empty()) {
2241*0b57cec5SDimitry Andric       ReturnInst *R = Returns[0];
2242*0b57cec5SDimitry Andric       if (TheCall == R->getReturnValue())
2243*0b57cec5SDimitry Andric         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2244*0b57cec5SDimitry Andric       else
2245*0b57cec5SDimitry Andric         TheCall->replaceAllUsesWith(R->getReturnValue());
2246*0b57cec5SDimitry Andric     }
2247*0b57cec5SDimitry Andric     // Since we are now done with the Call/Invoke, we can delete it.
2248*0b57cec5SDimitry Andric     TheCall->eraseFromParent();
2249*0b57cec5SDimitry Andric 
2250*0b57cec5SDimitry Andric     // Since we are now done with the return instruction, delete it also.
2251*0b57cec5SDimitry Andric     Returns[0]->eraseFromParent();
2252*0b57cec5SDimitry Andric 
2253*0b57cec5SDimitry Andric     // We are now done with the inlining.
2254*0b57cec5SDimitry Andric     return true;
2255*0b57cec5SDimitry Andric   }
2256*0b57cec5SDimitry Andric 
2257*0b57cec5SDimitry Andric   // Otherwise, we have the normal case, of more than one block to inline or
2258*0b57cec5SDimitry Andric   // multiple return sites.
2259*0b57cec5SDimitry Andric 
2260*0b57cec5SDimitry Andric   // We want to clone the entire callee function into the hole between the
2261*0b57cec5SDimitry Andric   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2262*0b57cec5SDimitry Andric   // this is an invoke instruction or a call instruction.
2263*0b57cec5SDimitry Andric   BasicBlock *AfterCallBB;
2264*0b57cec5SDimitry Andric   BranchInst *CreatedBranchToNormalDest = nullptr;
2265*0b57cec5SDimitry Andric   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2266*0b57cec5SDimitry Andric 
2267*0b57cec5SDimitry Andric     // Add an unconditional branch to make this look like the CallInst case...
2268*0b57cec5SDimitry Andric     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2269*0b57cec5SDimitry Andric 
2270*0b57cec5SDimitry Andric     // Split the basic block.  This guarantees that no PHI nodes will have to be
2271*0b57cec5SDimitry Andric     // updated due to new incoming edges, and make the invoke case more
2272*0b57cec5SDimitry Andric     // symmetric to the call case.
2273*0b57cec5SDimitry Andric     AfterCallBB =
2274*0b57cec5SDimitry Andric         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2275*0b57cec5SDimitry Andric                                 CalledFunc->getName() + ".exit");
2276*0b57cec5SDimitry Andric 
2277*0b57cec5SDimitry Andric   } else {  // It's a call
2278*0b57cec5SDimitry Andric     // If this is a call instruction, we need to split the basic block that
2279*0b57cec5SDimitry Andric     // the call lives in.
2280*0b57cec5SDimitry Andric     //
2281*0b57cec5SDimitry Andric     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2282*0b57cec5SDimitry Andric                                           CalledFunc->getName() + ".exit");
2283*0b57cec5SDimitry Andric   }
2284*0b57cec5SDimitry Andric 
2285*0b57cec5SDimitry Andric   if (IFI.CallerBFI) {
2286*0b57cec5SDimitry Andric     // Copy original BB's block frequency to AfterCallBB
2287*0b57cec5SDimitry Andric     IFI.CallerBFI->setBlockFreq(
2288*0b57cec5SDimitry Andric         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2289*0b57cec5SDimitry Andric   }
2290*0b57cec5SDimitry Andric 
2291*0b57cec5SDimitry Andric   // Change the branch that used to go to AfterCallBB to branch to the first
2292*0b57cec5SDimitry Andric   // basic block of the inlined function.
2293*0b57cec5SDimitry Andric   //
2294*0b57cec5SDimitry Andric   Instruction *Br = OrigBB->getTerminator();
2295*0b57cec5SDimitry Andric   assert(Br && Br->getOpcode() == Instruction::Br &&
2296*0b57cec5SDimitry Andric          "splitBasicBlock broken!");
2297*0b57cec5SDimitry Andric   Br->setOperand(0, &*FirstNewBlock);
2298*0b57cec5SDimitry Andric 
2299*0b57cec5SDimitry Andric   // Now that the function is correct, make it a little bit nicer.  In
2300*0b57cec5SDimitry Andric   // particular, move the basic blocks inserted from the end of the function
2301*0b57cec5SDimitry Andric   // into the space made by splitting the source basic block.
2302*0b57cec5SDimitry Andric   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2303*0b57cec5SDimitry Andric                                      Caller->getBasicBlockList(), FirstNewBlock,
2304*0b57cec5SDimitry Andric                                      Caller->end());
2305*0b57cec5SDimitry Andric 
2306*0b57cec5SDimitry Andric   // Handle all of the return instructions that we just cloned in, and eliminate
2307*0b57cec5SDimitry Andric   // any users of the original call/invoke instruction.
2308*0b57cec5SDimitry Andric   Type *RTy = CalledFunc->getReturnType();
2309*0b57cec5SDimitry Andric 
2310*0b57cec5SDimitry Andric   PHINode *PHI = nullptr;
2311*0b57cec5SDimitry Andric   if (Returns.size() > 1) {
2312*0b57cec5SDimitry Andric     // The PHI node should go at the front of the new basic block to merge all
2313*0b57cec5SDimitry Andric     // possible incoming values.
2314*0b57cec5SDimitry Andric     if (!TheCall->use_empty()) {
2315*0b57cec5SDimitry Andric       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2316*0b57cec5SDimitry Andric                             &AfterCallBB->front());
2317*0b57cec5SDimitry Andric       // Anything that used the result of the function call should now use the
2318*0b57cec5SDimitry Andric       // PHI node as their operand.
2319*0b57cec5SDimitry Andric       TheCall->replaceAllUsesWith(PHI);
2320*0b57cec5SDimitry Andric     }
2321*0b57cec5SDimitry Andric 
2322*0b57cec5SDimitry Andric     // Loop over all of the return instructions adding entries to the PHI node
2323*0b57cec5SDimitry Andric     // as appropriate.
2324*0b57cec5SDimitry Andric     if (PHI) {
2325*0b57cec5SDimitry Andric       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2326*0b57cec5SDimitry Andric         ReturnInst *RI = Returns[i];
2327*0b57cec5SDimitry Andric         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2328*0b57cec5SDimitry Andric                "Ret value not consistent in function!");
2329*0b57cec5SDimitry Andric         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2330*0b57cec5SDimitry Andric       }
2331*0b57cec5SDimitry Andric     }
2332*0b57cec5SDimitry Andric 
2333*0b57cec5SDimitry Andric     // Add a branch to the merge points and remove return instructions.
2334*0b57cec5SDimitry Andric     DebugLoc Loc;
2335*0b57cec5SDimitry Andric     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2336*0b57cec5SDimitry Andric       ReturnInst *RI = Returns[i];
2337*0b57cec5SDimitry Andric       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2338*0b57cec5SDimitry Andric       Loc = RI->getDebugLoc();
2339*0b57cec5SDimitry Andric       BI->setDebugLoc(Loc);
2340*0b57cec5SDimitry Andric       RI->eraseFromParent();
2341*0b57cec5SDimitry Andric     }
2342*0b57cec5SDimitry Andric     // We need to set the debug location to *somewhere* inside the
2343*0b57cec5SDimitry Andric     // inlined function. The line number may be nonsensical, but the
2344*0b57cec5SDimitry Andric     // instruction will at least be associated with the right
2345*0b57cec5SDimitry Andric     // function.
2346*0b57cec5SDimitry Andric     if (CreatedBranchToNormalDest)
2347*0b57cec5SDimitry Andric       CreatedBranchToNormalDest->setDebugLoc(Loc);
2348*0b57cec5SDimitry Andric   } else if (!Returns.empty()) {
2349*0b57cec5SDimitry Andric     // Otherwise, if there is exactly one return value, just replace anything
2350*0b57cec5SDimitry Andric     // using the return value of the call with the computed value.
2351*0b57cec5SDimitry Andric     if (!TheCall->use_empty()) {
2352*0b57cec5SDimitry Andric       if (TheCall == Returns[0]->getReturnValue())
2353*0b57cec5SDimitry Andric         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2354*0b57cec5SDimitry Andric       else
2355*0b57cec5SDimitry Andric         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2356*0b57cec5SDimitry Andric     }
2357*0b57cec5SDimitry Andric 
2358*0b57cec5SDimitry Andric     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2359*0b57cec5SDimitry Andric     BasicBlock *ReturnBB = Returns[0]->getParent();
2360*0b57cec5SDimitry Andric     ReturnBB->replaceAllUsesWith(AfterCallBB);
2361*0b57cec5SDimitry Andric 
2362*0b57cec5SDimitry Andric     // Splice the code from the return block into the block that it will return
2363*0b57cec5SDimitry Andric     // to, which contains the code that was after the call.
2364*0b57cec5SDimitry Andric     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2365*0b57cec5SDimitry Andric                                       ReturnBB->getInstList());
2366*0b57cec5SDimitry Andric 
2367*0b57cec5SDimitry Andric     if (CreatedBranchToNormalDest)
2368*0b57cec5SDimitry Andric       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2369*0b57cec5SDimitry Andric 
2370*0b57cec5SDimitry Andric     // Delete the return instruction now and empty ReturnBB now.
2371*0b57cec5SDimitry Andric     Returns[0]->eraseFromParent();
2372*0b57cec5SDimitry Andric     ReturnBB->eraseFromParent();
2373*0b57cec5SDimitry Andric   } else if (!TheCall->use_empty()) {
2374*0b57cec5SDimitry Andric     // No returns, but something is using the return value of the call.  Just
2375*0b57cec5SDimitry Andric     // nuke the result.
2376*0b57cec5SDimitry Andric     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2377*0b57cec5SDimitry Andric   }
2378*0b57cec5SDimitry Andric 
2379*0b57cec5SDimitry Andric   // Since we are now done with the Call/Invoke, we can delete it.
2380*0b57cec5SDimitry Andric   TheCall->eraseFromParent();
2381*0b57cec5SDimitry Andric 
2382*0b57cec5SDimitry Andric   // If we inlined any musttail calls and the original return is now
2383*0b57cec5SDimitry Andric   // unreachable, delete it.  It can only contain a bitcast and ret.
2384*0b57cec5SDimitry Andric   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2385*0b57cec5SDimitry Andric     AfterCallBB->eraseFromParent();
2386*0b57cec5SDimitry Andric 
2387*0b57cec5SDimitry Andric   // We should always be able to fold the entry block of the function into the
2388*0b57cec5SDimitry Andric   // single predecessor of the block...
2389*0b57cec5SDimitry Andric   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2390*0b57cec5SDimitry Andric   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2391*0b57cec5SDimitry Andric 
2392*0b57cec5SDimitry Andric   // Splice the code entry block into calling block, right before the
2393*0b57cec5SDimitry Andric   // unconditional branch.
2394*0b57cec5SDimitry Andric   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2395*0b57cec5SDimitry Andric   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2396*0b57cec5SDimitry Andric 
2397*0b57cec5SDimitry Andric   // Remove the unconditional branch.
2398*0b57cec5SDimitry Andric   OrigBB->getInstList().erase(Br);
2399*0b57cec5SDimitry Andric 
2400*0b57cec5SDimitry Andric   // Now we can remove the CalleeEntry block, which is now empty.
2401*0b57cec5SDimitry Andric   Caller->getBasicBlockList().erase(CalleeEntry);
2402*0b57cec5SDimitry Andric 
2403*0b57cec5SDimitry Andric   // If we inserted a phi node, check to see if it has a single value (e.g. all
2404*0b57cec5SDimitry Andric   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2405*0b57cec5SDimitry Andric   // block other optimizations.
2406*0b57cec5SDimitry Andric   if (PHI) {
2407*0b57cec5SDimitry Andric     AssumptionCache *AC =
2408*0b57cec5SDimitry Andric         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2409*0b57cec5SDimitry Andric     auto &DL = Caller->getParent()->getDataLayout();
2410*0b57cec5SDimitry Andric     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2411*0b57cec5SDimitry Andric       PHI->replaceAllUsesWith(V);
2412*0b57cec5SDimitry Andric       PHI->eraseFromParent();
2413*0b57cec5SDimitry Andric     }
2414*0b57cec5SDimitry Andric   }
2415*0b57cec5SDimitry Andric 
2416*0b57cec5SDimitry Andric   return true;
2417*0b57cec5SDimitry Andric }
2418