xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 81ad626541db97eb356e2c1d4a20eb2a26a766ab)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/Verifier.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include <cassert>
65 #include <cstdint>
66 #include <iterator>
67 #include <map>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 using namespace llvm::PatternMatch;
73 using ProfileCount = Function::ProfileCount;
74 
75 #define DEBUG_TYPE "code-extractor"
76 
77 // Provide a command-line option to aggregate function arguments into a struct
78 // for functions produced by the code extractor. This is useful when converting
79 // extracted functions to pthread-based code, as only one argument (void*) can
80 // be passed in to pthread_create().
81 static cl::opt<bool>
82 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
83                  cl::desc("Aggregate arguments to code-extracted functions"));
84 
85 /// Test whether a block is valid for extraction.
86 static bool isBlockValidForExtraction(const BasicBlock &BB,
87                                       const SetVector<BasicBlock *> &Result,
88                                       bool AllowVarArgs, bool AllowAlloca) {
89   // taking the address of a basic block moved to another function is illegal
90   if (BB.hasAddressTaken())
91     return false;
92 
93   // don't hoist code that uses another basicblock address, as it's likely to
94   // lead to unexpected behavior, like cross-function jumps
95   SmallPtrSet<User const *, 16> Visited;
96   SmallVector<User const *, 16> ToVisit;
97 
98   for (Instruction const &Inst : BB)
99     ToVisit.push_back(&Inst);
100 
101   while (!ToVisit.empty()) {
102     User const *Curr = ToVisit.pop_back_val();
103     if (!Visited.insert(Curr).second)
104       continue;
105     if (isa<BlockAddress const>(Curr))
106       return false; // even a reference to self is likely to be not compatible
107 
108     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
109       continue;
110 
111     for (auto const &U : Curr->operands()) {
112       if (auto *UU = dyn_cast<User>(U))
113         ToVisit.push_back(UU);
114     }
115   }
116 
117   // If explicitly requested, allow vastart and alloca. For invoke instructions
118   // verify that extraction is valid.
119   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
120     if (isa<AllocaInst>(I)) {
121        if (!AllowAlloca)
122          return false;
123        continue;
124     }
125 
126     if (const auto *II = dyn_cast<InvokeInst>(I)) {
127       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
128       // must be a part of the subgraph which is being extracted.
129       if (auto *UBB = II->getUnwindDest())
130         if (!Result.count(UBB))
131           return false;
132       continue;
133     }
134 
135     // All catch handlers of a catchswitch instruction as well as the unwind
136     // destination must be in the subgraph.
137     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
138       if (auto *UBB = CSI->getUnwindDest())
139         if (!Result.count(UBB))
140           return false;
141       for (auto *HBB : CSI->handlers())
142         if (!Result.count(const_cast<BasicBlock*>(HBB)))
143           return false;
144       continue;
145     }
146 
147     // Make sure that entire catch handler is within subgraph. It is sufficient
148     // to check that catch return's block is in the list.
149     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
150       for (const auto *U : CPI->users())
151         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
152           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
153             return false;
154       continue;
155     }
156 
157     // And do similar checks for cleanup handler - the entire handler must be
158     // in subgraph which is going to be extracted. For cleanup return should
159     // additionally check that the unwind destination is also in the subgraph.
160     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
161       for (const auto *U : CPI->users())
162         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
163           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
164             return false;
165       continue;
166     }
167     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
168       if (auto *UBB = CRI->getUnwindDest())
169         if (!Result.count(UBB))
170           return false;
171       continue;
172     }
173 
174     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
175       if (const Function *F = CI->getCalledFunction()) {
176         auto IID = F->getIntrinsicID();
177         if (IID == Intrinsic::vastart) {
178           if (AllowVarArgs)
179             continue;
180           else
181             return false;
182         }
183 
184         // Currently, we miscompile outlined copies of eh_typid_for. There are
185         // proposals for fixing this in llvm.org/PR39545.
186         if (IID == Intrinsic::eh_typeid_for)
187           return false;
188       }
189     }
190   }
191 
192   return true;
193 }
194 
195 /// Build a set of blocks to extract if the input blocks are viable.
196 static SetVector<BasicBlock *>
197 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
198                         bool AllowVarArgs, bool AllowAlloca) {
199   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
200   SetVector<BasicBlock *> Result;
201 
202   // Loop over the blocks, adding them to our set-vector, and aborting with an
203   // empty set if we encounter invalid blocks.
204   for (BasicBlock *BB : BBs) {
205     // If this block is dead, don't process it.
206     if (DT && !DT->isReachableFromEntry(BB))
207       continue;
208 
209     if (!Result.insert(BB))
210       llvm_unreachable("Repeated basic blocks in extraction input");
211   }
212 
213   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
214                     << '\n');
215 
216   for (auto *BB : Result) {
217     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
218       return {};
219 
220     // Make sure that the first block is not a landing pad.
221     if (BB == Result.front()) {
222       if (BB->isEHPad()) {
223         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
224         return {};
225       }
226       continue;
227     }
228 
229     // All blocks other than the first must not have predecessors outside of
230     // the subgraph which is being extracted.
231     for (auto *PBB : predecessors(BB))
232       if (!Result.count(PBB)) {
233         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
234                              "outside the region except for the first block!\n"
235                           << "Problematic source BB: " << BB->getName() << "\n"
236                           << "Problematic destination BB: " << PBB->getName()
237                           << "\n");
238         return {};
239       }
240   }
241 
242   return Result;
243 }
244 
245 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
246                              bool AggregateArgs, BlockFrequencyInfo *BFI,
247                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
248                              bool AllowVarArgs, bool AllowAlloca,
249                              BasicBlock *AllocationBlock, std::string Suffix)
250     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
251       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
252       AllowVarArgs(AllowVarArgs),
253       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
254       Suffix(Suffix) {}
255 
256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
257                              BlockFrequencyInfo *BFI,
258                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
259                              std::string Suffix)
260     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
261       BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
262       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
263                                      /* AllowVarArgs */ false,
264                                      /* AllowAlloca */ false)),
265       Suffix(Suffix) {}
266 
267 /// definedInRegion - Return true if the specified value is defined in the
268 /// extracted region.
269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
270   if (Instruction *I = dyn_cast<Instruction>(V))
271     if (Blocks.count(I->getParent()))
272       return true;
273   return false;
274 }
275 
276 /// definedInCaller - Return true if the specified value is defined in the
277 /// function being code extracted, but not in the region being extracted.
278 /// These values must be passed in as live-ins to the function.
279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
280   if (isa<Argument>(V)) return true;
281   if (Instruction *I = dyn_cast<Instruction>(V))
282     if (!Blocks.count(I->getParent()))
283       return true;
284   return false;
285 }
286 
287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
288   BasicBlock *CommonExitBlock = nullptr;
289   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
290     for (auto *Succ : successors(Block)) {
291       // Internal edges, ok.
292       if (Blocks.count(Succ))
293         continue;
294       if (!CommonExitBlock) {
295         CommonExitBlock = Succ;
296         continue;
297       }
298       if (CommonExitBlock != Succ)
299         return true;
300     }
301     return false;
302   };
303 
304   if (any_of(Blocks, hasNonCommonExitSucc))
305     return nullptr;
306 
307   return CommonExitBlock;
308 }
309 
310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
311   for (BasicBlock &BB : F) {
312     for (Instruction &II : BB.instructionsWithoutDebug())
313       if (auto *AI = dyn_cast<AllocaInst>(&II))
314         Allocas.push_back(AI);
315 
316     findSideEffectInfoForBlock(BB);
317   }
318 }
319 
320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
321   for (Instruction &II : BB.instructionsWithoutDebug()) {
322     unsigned Opcode = II.getOpcode();
323     Value *MemAddr = nullptr;
324     switch (Opcode) {
325     case Instruction::Store:
326     case Instruction::Load: {
327       if (Opcode == Instruction::Store) {
328         StoreInst *SI = cast<StoreInst>(&II);
329         MemAddr = SI->getPointerOperand();
330       } else {
331         LoadInst *LI = cast<LoadInst>(&II);
332         MemAddr = LI->getPointerOperand();
333       }
334       // Global variable can not be aliased with locals.
335       if (isa<Constant>(MemAddr))
336         break;
337       Value *Base = MemAddr->stripInBoundsConstantOffsets();
338       if (!isa<AllocaInst>(Base)) {
339         SideEffectingBlocks.insert(&BB);
340         return;
341       }
342       BaseMemAddrs[&BB].insert(Base);
343       break;
344     }
345     default: {
346       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
347       if (IntrInst) {
348         if (IntrInst->isLifetimeStartOrEnd())
349           break;
350         SideEffectingBlocks.insert(&BB);
351         return;
352       }
353       // Treat all the other cases conservatively if it has side effects.
354       if (II.mayHaveSideEffects()) {
355         SideEffectingBlocks.insert(&BB);
356         return;
357       }
358     }
359     }
360   }
361 }
362 
363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
364     BasicBlock &BB, AllocaInst *Addr) const {
365   if (SideEffectingBlocks.count(&BB))
366     return true;
367   auto It = BaseMemAddrs.find(&BB);
368   if (It != BaseMemAddrs.end())
369     return It->second.count(Addr);
370   return false;
371 }
372 
373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
374     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
375   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
376   Function *Func = (*Blocks.begin())->getParent();
377   for (BasicBlock &BB : *Func) {
378     if (Blocks.count(&BB))
379       continue;
380     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
381       return false;
382   }
383   return true;
384 }
385 
386 BasicBlock *
387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
388   BasicBlock *SinglePredFromOutlineRegion = nullptr;
389   assert(!Blocks.count(CommonExitBlock) &&
390          "Expect a block outside the region!");
391   for (auto *Pred : predecessors(CommonExitBlock)) {
392     if (!Blocks.count(Pred))
393       continue;
394     if (!SinglePredFromOutlineRegion) {
395       SinglePredFromOutlineRegion = Pred;
396     } else if (SinglePredFromOutlineRegion != Pred) {
397       SinglePredFromOutlineRegion = nullptr;
398       break;
399     }
400   }
401 
402   if (SinglePredFromOutlineRegion)
403     return SinglePredFromOutlineRegion;
404 
405 #ifndef NDEBUG
406   auto getFirstPHI = [](BasicBlock *BB) {
407     BasicBlock::iterator I = BB->begin();
408     PHINode *FirstPhi = nullptr;
409     while (I != BB->end()) {
410       PHINode *Phi = dyn_cast<PHINode>(I);
411       if (!Phi)
412         break;
413       if (!FirstPhi) {
414         FirstPhi = Phi;
415         break;
416       }
417     }
418     return FirstPhi;
419   };
420   // If there are any phi nodes, the single pred either exists or has already
421   // be created before code extraction.
422   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
423 #endif
424 
425   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
426       CommonExitBlock->getFirstNonPHI()->getIterator());
427 
428   for (BasicBlock *Pred :
429        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
430     if (Blocks.count(Pred))
431       continue;
432     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433   }
434   // Now add the old exit block to the outline region.
435   Blocks.insert(CommonExitBlock);
436   OldTargets.push_back(NewExitBlock);
437   return CommonExitBlock;
438 }
439 
440 // Find the pair of life time markers for address 'Addr' that are either
441 // defined inside the outline region or can legally be shrinkwrapped into the
442 // outline region. If there are not other untracked uses of the address, return
443 // the pair of markers if found; otherwise return a pair of nullptr.
444 CodeExtractor::LifetimeMarkerInfo
445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
446                                   Instruction *Addr,
447                                   BasicBlock *ExitBlock) const {
448   LifetimeMarkerInfo Info;
449 
450   for (User *U : Addr->users()) {
451     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
452     if (IntrInst) {
453       // We don't model addresses with multiple start/end markers, but the
454       // markers do not need to be in the region.
455       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
456         if (Info.LifeStart)
457           return {};
458         Info.LifeStart = IntrInst;
459         continue;
460       }
461       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
462         if (Info.LifeEnd)
463           return {};
464         Info.LifeEnd = IntrInst;
465         continue;
466       }
467       // At this point, permit debug uses outside of the region.
468       // This is fixed in a later call to fixupDebugInfoPostExtraction().
469       if (isa<DbgInfoIntrinsic>(IntrInst))
470         continue;
471     }
472     // Find untracked uses of the address, bail.
473     if (!definedInRegion(Blocks, U))
474       return {};
475   }
476 
477   if (!Info.LifeStart || !Info.LifeEnd)
478     return {};
479 
480   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
481   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
482   // Do legality check.
483   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
484       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
485     return {};
486 
487   // Check to see if we have a place to do hoisting, if not, bail.
488   if (Info.HoistLifeEnd && !ExitBlock)
489     return {};
490 
491   return Info;
492 }
493 
494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
495                                 ValueSet &SinkCands, ValueSet &HoistCands,
496                                 BasicBlock *&ExitBlock) const {
497   Function *Func = (*Blocks.begin())->getParent();
498   ExitBlock = getCommonExitBlock(Blocks);
499 
500   auto moveOrIgnoreLifetimeMarkers =
501       [&](const LifetimeMarkerInfo &LMI) -> bool {
502     if (!LMI.LifeStart)
503       return false;
504     if (LMI.SinkLifeStart) {
505       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
506                         << "\n");
507       SinkCands.insert(LMI.LifeStart);
508     }
509     if (LMI.HoistLifeEnd) {
510       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
511       HoistCands.insert(LMI.LifeEnd);
512     }
513     return true;
514   };
515 
516   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
517   // this is much faster than walking all the instructions.
518   for (AllocaInst *AI : CEAC.getAllocas()) {
519     BasicBlock *BB = AI->getParent();
520     if (Blocks.count(BB))
521       continue;
522 
523     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
524     // check whether it is actually still in the original function.
525     Function *AIFunc = BB->getParent();
526     if (AIFunc != Func)
527       continue;
528 
529     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
530     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
531     if (Moved) {
532       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
533       SinkCands.insert(AI);
534       continue;
535     }
536 
537     // Find bitcasts in the outlined region that have lifetime marker users
538     // outside that region. Replace the lifetime marker use with an
539     // outside region bitcast to avoid unnecessary alloca/reload instructions
540     // and extra lifetime markers.
541     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
542     for (User *U : AI->users()) {
543       if (!definedInRegion(Blocks, U))
544         continue;
545 
546       if (U->stripInBoundsConstantOffsets() != AI)
547         continue;
548 
549       Instruction *Bitcast = cast<Instruction>(U);
550       for (User *BU : Bitcast->users()) {
551         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
552         if (!IntrInst)
553           continue;
554 
555         if (!IntrInst->isLifetimeStartOrEnd())
556           continue;
557 
558         if (definedInRegion(Blocks, IntrInst))
559           continue;
560 
561         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
562                           << *Bitcast << " in out-of-region lifetime marker "
563                           << *IntrInst << "\n");
564         LifetimeBitcastUsers.push_back(IntrInst);
565       }
566     }
567 
568     for (Instruction *I : LifetimeBitcastUsers) {
569       Module *M = AIFunc->getParent();
570       LLVMContext &Ctx = M->getContext();
571       auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
572       CastInst *CastI =
573           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
574       I->replaceUsesOfWith(I->getOperand(1), CastI);
575     }
576 
577     // Follow any bitcasts.
578     SmallVector<Instruction *, 2> Bitcasts;
579     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
580     for (User *U : AI->users()) {
581       if (U->stripInBoundsConstantOffsets() == AI) {
582         Instruction *Bitcast = cast<Instruction>(U);
583         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
584         if (LMI.LifeStart) {
585           Bitcasts.push_back(Bitcast);
586           BitcastLifetimeInfo.push_back(LMI);
587           continue;
588         }
589       }
590 
591       // Found unknown use of AI.
592       if (!definedInRegion(Blocks, U)) {
593         Bitcasts.clear();
594         break;
595       }
596     }
597 
598     // Either no bitcasts reference the alloca or there are unknown uses.
599     if (Bitcasts.empty())
600       continue;
601 
602     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
603     SinkCands.insert(AI);
604     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
605       Instruction *BitcastAddr = Bitcasts[I];
606       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
607       assert(LMI.LifeStart &&
608              "Unsafe to sink bitcast without lifetime markers");
609       moveOrIgnoreLifetimeMarkers(LMI);
610       if (!definedInRegion(Blocks, BitcastAddr)) {
611         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
612                           << "\n");
613         SinkCands.insert(BitcastAddr);
614       }
615     }
616   }
617 }
618 
619 bool CodeExtractor::isEligible() const {
620   if (Blocks.empty())
621     return false;
622   BasicBlock *Header = *Blocks.begin();
623   Function *F = Header->getParent();
624 
625   // For functions with varargs, check that varargs handling is only done in the
626   // outlined function, i.e vastart and vaend are only used in outlined blocks.
627   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
628     auto containsVarArgIntrinsic = [](const Instruction &I) {
629       if (const CallInst *CI = dyn_cast<CallInst>(&I))
630         if (const Function *Callee = CI->getCalledFunction())
631           return Callee->getIntrinsicID() == Intrinsic::vastart ||
632                  Callee->getIntrinsicID() == Intrinsic::vaend;
633       return false;
634     };
635 
636     for (auto &BB : *F) {
637       if (Blocks.count(&BB))
638         continue;
639       if (llvm::any_of(BB, containsVarArgIntrinsic))
640         return false;
641     }
642   }
643   return true;
644 }
645 
646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
647                                       const ValueSet &SinkCands) const {
648   for (BasicBlock *BB : Blocks) {
649     // If a used value is defined outside the region, it's an input.  If an
650     // instruction is used outside the region, it's an output.
651     for (Instruction &II : *BB) {
652       for (auto &OI : II.operands()) {
653         Value *V = OI;
654         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
655           Inputs.insert(V);
656       }
657 
658       for (User *U : II.users())
659         if (!definedInRegion(Blocks, U)) {
660           Outputs.insert(&II);
661           break;
662         }
663     }
664   }
665 }
666 
667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
668 /// of the region, we need to split the entry block of the region so that the
669 /// PHI node is easier to deal with.
670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
671   unsigned NumPredsFromRegion = 0;
672   unsigned NumPredsOutsideRegion = 0;
673 
674   if (Header != &Header->getParent()->getEntryBlock()) {
675     PHINode *PN = dyn_cast<PHINode>(Header->begin());
676     if (!PN) return;  // No PHI nodes.
677 
678     // If the header node contains any PHI nodes, check to see if there is more
679     // than one entry from outside the region.  If so, we need to sever the
680     // header block into two.
681     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
682       if (Blocks.count(PN->getIncomingBlock(i)))
683         ++NumPredsFromRegion;
684       else
685         ++NumPredsOutsideRegion;
686 
687     // If there is one (or fewer) predecessor from outside the region, we don't
688     // need to do anything special.
689     if (NumPredsOutsideRegion <= 1) return;
690   }
691 
692   // Otherwise, we need to split the header block into two pieces: one
693   // containing PHI nodes merging values from outside of the region, and a
694   // second that contains all of the code for the block and merges back any
695   // incoming values from inside of the region.
696   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697 
698   // We only want to code extract the second block now, and it becomes the new
699   // header of the region.
700   BasicBlock *OldPred = Header;
701   Blocks.remove(OldPred);
702   Blocks.insert(NewBB);
703   Header = NewBB;
704 
705   // Okay, now we need to adjust the PHI nodes and any branches from within the
706   // region to go to the new header block instead of the old header block.
707   if (NumPredsFromRegion) {
708     PHINode *PN = cast<PHINode>(OldPred->begin());
709     // Loop over all of the predecessors of OldPred that are in the region,
710     // changing them to branch to NewBB instead.
711     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
712       if (Blocks.count(PN->getIncomingBlock(i))) {
713         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
714         TI->replaceUsesOfWith(OldPred, NewBB);
715       }
716 
717     // Okay, everything within the region is now branching to the right block, we
718     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
719     BasicBlock::iterator AfterPHIs;
720     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
721       PHINode *PN = cast<PHINode>(AfterPHIs);
722       // Create a new PHI node in the new region, which has an incoming value
723       // from OldPred of PN.
724       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
725                                        PN->getName() + ".ce", &NewBB->front());
726       PN->replaceAllUsesWith(NewPN);
727       NewPN->addIncoming(PN, OldPred);
728 
729       // Loop over all of the incoming value in PN, moving them to NewPN if they
730       // are from the extracted region.
731       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
732         if (Blocks.count(PN->getIncomingBlock(i))) {
733           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
734           PN->removeIncomingValue(i);
735           --i;
736         }
737       }
738     }
739   }
740 }
741 
742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
743 /// outlined region, we split these PHIs on two: one with inputs from region
744 /// and other with remaining incoming blocks; then first PHIs are placed in
745 /// outlined region.
746 void CodeExtractor::severSplitPHINodesOfExits(
747     const SmallPtrSetImpl<BasicBlock *> &Exits) {
748   for (BasicBlock *ExitBB : Exits) {
749     BasicBlock *NewBB = nullptr;
750 
751     for (PHINode &PN : ExitBB->phis()) {
752       // Find all incoming values from the outlining region.
753       SmallVector<unsigned, 2> IncomingVals;
754       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
755         if (Blocks.count(PN.getIncomingBlock(i)))
756           IncomingVals.push_back(i);
757 
758       // Do not process PHI if there is one (or fewer) predecessor from region.
759       // If PHI has exactly one predecessor from region, only this one incoming
760       // will be replaced on codeRepl block, so it should be safe to skip PHI.
761       if (IncomingVals.size() <= 1)
762         continue;
763 
764       // Create block for new PHIs and add it to the list of outlined if it
765       // wasn't done before.
766       if (!NewBB) {
767         NewBB = BasicBlock::Create(ExitBB->getContext(),
768                                    ExitBB->getName() + ".split",
769                                    ExitBB->getParent(), ExitBB);
770         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
771         for (BasicBlock *PredBB : Preds)
772           if (Blocks.count(PredBB))
773             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
774         BranchInst::Create(ExitBB, NewBB);
775         Blocks.insert(NewBB);
776       }
777 
778       // Split this PHI.
779       PHINode *NewPN =
780           PHINode::Create(PN.getType(), IncomingVals.size(),
781                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
782       for (unsigned i : IncomingVals)
783         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
784       for (unsigned i : reverse(IncomingVals))
785         PN.removeIncomingValue(i, false);
786       PN.addIncoming(NewPN, NewBB);
787     }
788   }
789 }
790 
791 void CodeExtractor::splitReturnBlocks() {
792   for (BasicBlock *Block : Blocks)
793     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
794       BasicBlock *New =
795           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
796       if (DT) {
797         // Old dominates New. New node dominates all other nodes dominated
798         // by Old.
799         DomTreeNode *OldNode = DT->getNode(Block);
800         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
801                                                OldNode->end());
802 
803         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
804 
805         for (DomTreeNode *I : Children)
806           DT->changeImmediateDominator(I, NewNode);
807       }
808     }
809 }
810 
811 /// constructFunction - make a function based on inputs and outputs, as follows:
812 /// f(in0, ..., inN, out0, ..., outN)
813 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
814                                            const ValueSet &outputs,
815                                            BasicBlock *header,
816                                            BasicBlock *newRootNode,
817                                            BasicBlock *newHeader,
818                                            Function *oldFunction,
819                                            Module *M) {
820   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
821   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
822 
823   // This function returns unsigned, outputs will go back by reference.
824   switch (NumExitBlocks) {
825   case 0:
826   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
827   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
828   default: RetTy = Type::getInt16Ty(header->getContext()); break;
829   }
830 
831   std::vector<Type *> ParamTy;
832   std::vector<Type *> AggParamTy;
833   ValueSet StructValues;
834 
835   // Add the types of the input values to the function's argument list
836   for (Value *value : inputs) {
837     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
838     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
839       AggParamTy.push_back(value->getType());
840       StructValues.insert(value);
841     } else
842       ParamTy.push_back(value->getType());
843   }
844 
845   // Add the types of the output values to the function's argument list.
846   for (Value *output : outputs) {
847     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
848     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
849       AggParamTy.push_back(output->getType());
850       StructValues.insert(output);
851     } else
852       ParamTy.push_back(PointerType::getUnqual(output->getType()));
853   }
854 
855   assert(
856       (ParamTy.size() + AggParamTy.size()) ==
857           (inputs.size() + outputs.size()) &&
858       "Number of scalar and aggregate params does not match inputs, outputs");
859   assert((StructValues.empty() || AggregateArgs) &&
860          "Expeced StructValues only with AggregateArgs set");
861 
862   // Concatenate scalar and aggregate params in ParamTy.
863   size_t NumScalarParams = ParamTy.size();
864   StructType *StructTy = nullptr;
865   if (AggregateArgs && !AggParamTy.empty()) {
866     StructTy = StructType::get(M->getContext(), AggParamTy);
867     ParamTy.push_back(PointerType::getUnqual(StructTy));
868   }
869 
870   LLVM_DEBUG({
871     dbgs() << "Function type: " << *RetTy << " f(";
872     for (Type *i : ParamTy)
873       dbgs() << *i << ", ";
874     dbgs() << ")\n";
875   });
876 
877   FunctionType *funcType = FunctionType::get(
878       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
879 
880   std::string SuffixToUse =
881       Suffix.empty()
882           ? (header->getName().empty() ? "extracted" : header->getName().str())
883           : Suffix;
884   // Create the new function
885   Function *newFunction = Function::Create(
886       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
887       oldFunction->getName() + "." + SuffixToUse, M);
888 
889   // Inherit all of the target dependent attributes and white-listed
890   // target independent attributes.
891   //  (e.g. If the extracted region contains a call to an x86.sse
892   //  instruction we need to make sure that the extracted region has the
893   //  "target-features" attribute allowing it to be lowered.
894   // FIXME: This should be changed to check to see if a specific
895   //           attribute can not be inherited.
896   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
897     if (Attr.isStringAttribute()) {
898       if (Attr.getKindAsString() == "thunk")
899         continue;
900     } else
901       switch (Attr.getKindAsEnum()) {
902       // Those attributes cannot be propagated safely. Explicitly list them
903       // here so we get a warning if new attributes are added.
904       case Attribute::AllocSize:
905       case Attribute::ArgMemOnly:
906       case Attribute::Builtin:
907       case Attribute::Convergent:
908       case Attribute::InaccessibleMemOnly:
909       case Attribute::InaccessibleMemOrArgMemOnly:
910       case Attribute::JumpTable:
911       case Attribute::Naked:
912       case Attribute::NoBuiltin:
913       case Attribute::NoMerge:
914       case Attribute::NoReturn:
915       case Attribute::NoSync:
916       case Attribute::ReadNone:
917       case Attribute::ReadOnly:
918       case Attribute::ReturnsTwice:
919       case Attribute::Speculatable:
920       case Attribute::StackAlignment:
921       case Attribute::WillReturn:
922       case Attribute::WriteOnly:
923       case Attribute::AllocKind:
924       case Attribute::PresplitCoroutine:
925         continue;
926       // Those attributes should be safe to propagate to the extracted function.
927       case Attribute::AlwaysInline:
928       case Attribute::Cold:
929       case Attribute::DisableSanitizerInstrumentation:
930       case Attribute::Hot:
931       case Attribute::NoRecurse:
932       case Attribute::InlineHint:
933       case Attribute::MinSize:
934       case Attribute::NoCallback:
935       case Attribute::NoDuplicate:
936       case Attribute::NoFree:
937       case Attribute::NoImplicitFloat:
938       case Attribute::NoInline:
939       case Attribute::NonLazyBind:
940       case Attribute::NoRedZone:
941       case Attribute::NoUnwind:
942       case Attribute::NoSanitizeBounds:
943       case Attribute::NoSanitizeCoverage:
944       case Attribute::NullPointerIsValid:
945       case Attribute::OptForFuzzing:
946       case Attribute::OptimizeNone:
947       case Attribute::OptimizeForSize:
948       case Attribute::SafeStack:
949       case Attribute::ShadowCallStack:
950       case Attribute::SanitizeAddress:
951       case Attribute::SanitizeMemory:
952       case Attribute::SanitizeThread:
953       case Attribute::SanitizeHWAddress:
954       case Attribute::SanitizeMemTag:
955       case Attribute::SpeculativeLoadHardening:
956       case Attribute::StackProtect:
957       case Attribute::StackProtectReq:
958       case Attribute::StackProtectStrong:
959       case Attribute::StrictFP:
960       case Attribute::UWTable:
961       case Attribute::VScaleRange:
962       case Attribute::NoCfCheck:
963       case Attribute::MustProgress:
964       case Attribute::NoProfile:
965         break;
966       // These attributes cannot be applied to functions.
967       case Attribute::Alignment:
968       case Attribute::AllocatedPointer:
969       case Attribute::AllocAlign:
970       case Attribute::ByVal:
971       case Attribute::Dereferenceable:
972       case Attribute::DereferenceableOrNull:
973       case Attribute::ElementType:
974       case Attribute::InAlloca:
975       case Attribute::InReg:
976       case Attribute::Nest:
977       case Attribute::NoAlias:
978       case Attribute::NoCapture:
979       case Attribute::NoUndef:
980       case Attribute::NonNull:
981       case Attribute::Preallocated:
982       case Attribute::Returned:
983       case Attribute::SExt:
984       case Attribute::StructRet:
985       case Attribute::SwiftError:
986       case Attribute::SwiftSelf:
987       case Attribute::SwiftAsync:
988       case Attribute::ZExt:
989       case Attribute::ImmArg:
990       case Attribute::ByRef:
991       //  These are not really attributes.
992       case Attribute::None:
993       case Attribute::EndAttrKinds:
994       case Attribute::EmptyKey:
995       case Attribute::TombstoneKey:
996         llvm_unreachable("Not a function attribute");
997       }
998 
999     newFunction->addFnAttr(Attr);
1000   }
1001   newFunction->getBasicBlockList().push_back(newRootNode);
1002 
1003   // Create scalar and aggregate iterators to name all of the arguments we
1004   // inserted.
1005   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1006   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1007 
1008   // Rewrite all users of the inputs in the extracted region to use the
1009   // arguments (or appropriate addressing into struct) instead.
1010   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1011     Value *RewriteVal;
1012     if (AggregateArgs && StructValues.contains(inputs[i])) {
1013       Value *Idx[2];
1014       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1015       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1016       Instruction *TI = newFunction->begin()->getTerminator();
1017       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1018           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1019       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1020                                 "loadgep_" + inputs[i]->getName(), TI);
1021       ++aggIdx;
1022     } else
1023       RewriteVal = &*ScalarAI++;
1024 
1025     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1026     for (User *use : Users)
1027       if (Instruction *inst = dyn_cast<Instruction>(use))
1028         if (Blocks.count(inst->getParent()))
1029           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1030   }
1031 
1032   // Set names for input and output arguments.
1033   if (NumScalarParams) {
1034     ScalarAI = newFunction->arg_begin();
1035     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1036       if (!StructValues.contains(inputs[i]))
1037         ScalarAI->setName(inputs[i]->getName());
1038     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1039       if (!StructValues.contains(outputs[i]))
1040         ScalarAI->setName(outputs[i]->getName() + ".out");
1041   }
1042 
1043   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1044   // within the new function. This must be done before we lose track of which
1045   // blocks were originally in the code region.
1046   std::vector<User *> Users(header->user_begin(), header->user_end());
1047   for (auto &U : Users)
1048     // The BasicBlock which contains the branch is not in the region
1049     // modify the branch target to a new block
1050     if (Instruction *I = dyn_cast<Instruction>(U))
1051       if (I->isTerminator() && I->getFunction() == oldFunction &&
1052           !Blocks.count(I->getParent()))
1053         I->replaceUsesOfWith(header, newHeader);
1054 
1055   return newFunction;
1056 }
1057 
1058 /// Erase lifetime.start markers which reference inputs to the extraction
1059 /// region, and insert the referenced memory into \p LifetimesStart.
1060 ///
1061 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1062 /// of allocas which will be moved from the caller function into the extracted
1063 /// function (\p SunkAllocas).
1064 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1065                                          const SetVector<Value *> &SunkAllocas,
1066                                          SetVector<Value *> &LifetimesStart) {
1067   for (BasicBlock *BB : Blocks) {
1068     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1069       auto *II = dyn_cast<IntrinsicInst>(&I);
1070       if (!II || !II->isLifetimeStartOrEnd())
1071         continue;
1072 
1073       // Get the memory operand of the lifetime marker. If the underlying
1074       // object is a sunk alloca, or is otherwise defined in the extraction
1075       // region, the lifetime marker must not be erased.
1076       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1077       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1078         continue;
1079 
1080       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1081         LifetimesStart.insert(Mem);
1082       II->eraseFromParent();
1083     }
1084   }
1085 }
1086 
1087 /// Insert lifetime start/end markers surrounding the call to the new function
1088 /// for objects defined in the caller.
1089 static void insertLifetimeMarkersSurroundingCall(
1090     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1091     CallInst *TheCall) {
1092   LLVMContext &Ctx = M->getContext();
1093   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1094   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1095   Instruction *Term = TheCall->getParent()->getTerminator();
1096 
1097   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1098   // needed to satisfy this requirement so they may be reused.
1099   DenseMap<Value *, Value *> Bitcasts;
1100 
1101   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1102   // markers before the call if \p InsertBefore, and after the call otherwise.
1103   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1104                            bool InsertBefore) {
1105     for (Value *Mem : Objects) {
1106       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1107                                             TheCall->getFunction()) &&
1108              "Input memory not defined in original function");
1109       Value *&MemAsI8Ptr = Bitcasts[Mem];
1110       if (!MemAsI8Ptr) {
1111         if (Mem->getType() == Int8PtrTy)
1112           MemAsI8Ptr = Mem;
1113         else
1114           MemAsI8Ptr =
1115               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1116       }
1117 
1118       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1119       if (InsertBefore)
1120         Marker->insertBefore(TheCall);
1121       else
1122         Marker->insertBefore(Term);
1123     }
1124   };
1125 
1126   if (!LifetimesStart.empty()) {
1127     auto StartFn = llvm::Intrinsic::getDeclaration(
1128         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1129     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1130   }
1131 
1132   if (!LifetimesEnd.empty()) {
1133     auto EndFn = llvm::Intrinsic::getDeclaration(
1134         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1135     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1136   }
1137 }
1138 
1139 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1140 /// the call instruction, splitting any PHI nodes in the header block as
1141 /// necessary.
1142 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1143                                                     BasicBlock *codeReplacer,
1144                                                     ValueSet &inputs,
1145                                                     ValueSet &outputs) {
1146   // Emit a call to the new function, passing in: *pointer to struct (if
1147   // aggregating parameters), or plan inputs and allocated memory for outputs
1148   std::vector<Value *> params, ReloadOutputs, Reloads;
1149   ValueSet StructValues;
1150 
1151   Module *M = newFunction->getParent();
1152   LLVMContext &Context = M->getContext();
1153   const DataLayout &DL = M->getDataLayout();
1154   CallInst *call = nullptr;
1155 
1156   // Add inputs as params, or to be filled into the struct
1157   unsigned ScalarInputArgNo = 0;
1158   SmallVector<unsigned, 1> SwiftErrorArgs;
1159   for (Value *input : inputs) {
1160     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1161       StructValues.insert(input);
1162     else {
1163       params.push_back(input);
1164       if (input->isSwiftError())
1165         SwiftErrorArgs.push_back(ScalarInputArgNo);
1166     }
1167     ++ScalarInputArgNo;
1168   }
1169 
1170   // Create allocas for the outputs
1171   unsigned ScalarOutputArgNo = 0;
1172   for (Value *output : outputs) {
1173     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1174       StructValues.insert(output);
1175     } else {
1176       AllocaInst *alloca =
1177         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1178                        nullptr, output->getName() + ".loc",
1179                        &codeReplacer->getParent()->front().front());
1180       ReloadOutputs.push_back(alloca);
1181       params.push_back(alloca);
1182       ++ScalarOutputArgNo;
1183     }
1184   }
1185 
1186   StructType *StructArgTy = nullptr;
1187   AllocaInst *Struct = nullptr;
1188   unsigned NumAggregatedInputs = 0;
1189   if (AggregateArgs && !StructValues.empty()) {
1190     std::vector<Type *> ArgTypes;
1191     for (Value *V : StructValues)
1192       ArgTypes.push_back(V->getType());
1193 
1194     // Allocate a struct at the beginning of this function
1195     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1196     Struct = new AllocaInst(
1197         StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1198         AllocationBlock ? &*AllocationBlock->getFirstInsertionPt()
1199                         : &codeReplacer->getParent()->front().front());
1200     params.push_back(Struct);
1201 
1202     // Store aggregated inputs in the struct.
1203     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1204       if (inputs.contains(StructValues[i])) {
1205         Value *Idx[2];
1206         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1207         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1208         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1209             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1210         codeReplacer->getInstList().push_back(GEP);
1211         new StoreInst(StructValues[i], GEP, codeReplacer);
1212         NumAggregatedInputs++;
1213       }
1214     }
1215   }
1216 
1217   // Emit the call to the function
1218   call = CallInst::Create(newFunction, params,
1219                           NumExitBlocks > 1 ? "targetBlock" : "");
1220   // Add debug location to the new call, if the original function has debug
1221   // info. In that case, the terminator of the entry block of the extracted
1222   // function contains the first debug location of the extracted function,
1223   // set in extractCodeRegion.
1224   if (codeReplacer->getParent()->getSubprogram()) {
1225     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1226       call->setDebugLoc(DL);
1227   }
1228   codeReplacer->getInstList().push_back(call);
1229 
1230   // Set swifterror parameter attributes.
1231   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1232     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1233     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1234   }
1235 
1236   // Reload the outputs passed in by reference, use the struct if output is in
1237   // the aggregate or reload from the scalar argument.
1238   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1239                 aggIdx = NumAggregatedInputs;
1240        i != e; ++i) {
1241     Value *Output = nullptr;
1242     if (AggregateArgs && StructValues.contains(outputs[i])) {
1243       Value *Idx[2];
1244       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1245       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1246       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1247           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1248       codeReplacer->getInstList().push_back(GEP);
1249       Output = GEP;
1250       ++aggIdx;
1251     } else {
1252       Output = ReloadOutputs[scalarIdx];
1253       ++scalarIdx;
1254     }
1255     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1256                                   outputs[i]->getName() + ".reload",
1257                                   codeReplacer);
1258     Reloads.push_back(load);
1259     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1260     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1261       Instruction *inst = cast<Instruction>(Users[u]);
1262       if (!Blocks.count(inst->getParent()))
1263         inst->replaceUsesOfWith(outputs[i], load);
1264     }
1265   }
1266 
1267   // Now we can emit a switch statement using the call as a value.
1268   SwitchInst *TheSwitch =
1269       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1270                          codeReplacer, 0, codeReplacer);
1271 
1272   // Since there may be multiple exits from the original region, make the new
1273   // function return an unsigned, switch on that number.  This loop iterates
1274   // over all of the blocks in the extracted region, updating any terminator
1275   // instructions in the to-be-extracted region that branch to blocks that are
1276   // not in the region to be extracted.
1277   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1278 
1279   // Iterate over the previously collected targets, and create new blocks inside
1280   // the function to branch to.
1281   unsigned switchVal = 0;
1282   for (BasicBlock *OldTarget : OldTargets) {
1283     if (Blocks.count(OldTarget))
1284       continue;
1285     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1286     if (NewTarget)
1287       continue;
1288 
1289     // If we don't already have an exit stub for this non-extracted
1290     // destination, create one now!
1291     NewTarget = BasicBlock::Create(Context,
1292                                     OldTarget->getName() + ".exitStub",
1293                                     newFunction);
1294     unsigned SuccNum = switchVal++;
1295 
1296     Value *brVal = nullptr;
1297     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1298     switch (NumExitBlocks) {
1299     case 0:
1300     case 1: break;  // No value needed.
1301     case 2:         // Conditional branch, return a bool
1302       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1303       break;
1304     default:
1305       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1306       break;
1307     }
1308 
1309     ReturnInst::Create(Context, brVal, NewTarget);
1310 
1311     // Update the switch instruction.
1312     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1313                                         SuccNum),
1314                         OldTarget);
1315   }
1316 
1317   for (BasicBlock *Block : Blocks) {
1318     Instruction *TI = Block->getTerminator();
1319     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1320       if (Blocks.count(TI->getSuccessor(i)))
1321         continue;
1322       BasicBlock *OldTarget = TI->getSuccessor(i);
1323       // add a new basic block which returns the appropriate value
1324       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1325       assert(NewTarget && "Unknown target block!");
1326 
1327       // rewrite the original branch instruction with this new target
1328       TI->setSuccessor(i, NewTarget);
1329    }
1330   }
1331 
1332   // Store the arguments right after the definition of output value.
1333   // This should be proceeded after creating exit stubs to be ensure that invoke
1334   // result restore will be placed in the outlined function.
1335   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1336   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1337   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1338   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1339 
1340   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1341        ++i) {
1342     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1343     if (!OutI)
1344       continue;
1345 
1346     // Find proper insertion point.
1347     BasicBlock::iterator InsertPt;
1348     // In case OutI is an invoke, we insert the store at the beginning in the
1349     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1350     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1351       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1352     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1353       InsertPt = Phi->getParent()->getFirstInsertionPt();
1354     else
1355       InsertPt = std::next(OutI->getIterator());
1356 
1357     Instruction *InsertBefore = &*InsertPt;
1358     assert((InsertBefore->getFunction() == newFunction ||
1359             Blocks.count(InsertBefore->getParent())) &&
1360            "InsertPt should be in new function");
1361     if (AggregateArgs && StructValues.contains(outputs[i])) {
1362       assert(AggOutputArgBegin != newFunction->arg_end() &&
1363              "Number of aggregate output arguments should match "
1364              "the number of defined values");
1365       Value *Idx[2];
1366       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1367       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1368       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1369           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1370           InsertBefore);
1371       new StoreInst(outputs[i], GEP, InsertBefore);
1372       ++aggIdx;
1373       // Since there should be only one struct argument aggregating
1374       // all the output values, we shouldn't increment AggOutputArgBegin, which
1375       // always points to the struct argument, in this case.
1376     } else {
1377       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1378              "Number of scalar output arguments should match "
1379              "the number of defined values");
1380       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1381       ++ScalarOutputArgBegin;
1382     }
1383   }
1384 
1385   // Now that we've done the deed, simplify the switch instruction.
1386   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1387   switch (NumExitBlocks) {
1388   case 0:
1389     // There are no successors (the block containing the switch itself), which
1390     // means that previously this was the last part of the function, and hence
1391     // this should be rewritten as a `ret'
1392 
1393     // Check if the function should return a value
1394     if (OldFnRetTy->isVoidTy()) {
1395       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1396     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1397       // return what we have
1398       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1399     } else {
1400       // Otherwise we must have code extracted an unwind or something, just
1401       // return whatever we want.
1402       ReturnInst::Create(Context,
1403                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1404     }
1405 
1406     TheSwitch->eraseFromParent();
1407     break;
1408   case 1:
1409     // Only a single destination, change the switch into an unconditional
1410     // branch.
1411     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1412     TheSwitch->eraseFromParent();
1413     break;
1414   case 2:
1415     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1416                        call, TheSwitch);
1417     TheSwitch->eraseFromParent();
1418     break;
1419   default:
1420     // Otherwise, make the default destination of the switch instruction be one
1421     // of the other successors.
1422     TheSwitch->setCondition(call);
1423     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1424     // Remove redundant case
1425     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1426     break;
1427   }
1428 
1429   // Insert lifetime markers around the reloads of any output values. The
1430   // allocas output values are stored in are only in-use in the codeRepl block.
1431   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1432 
1433   return call;
1434 }
1435 
1436 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1437   Function *oldFunc = (*Blocks.begin())->getParent();
1438   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1439   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1440 
1441   auto newFuncIt = newFunction->front().getIterator();
1442   for (BasicBlock *Block : Blocks) {
1443     // Delete the basic block from the old function, and the list of blocks
1444     oldBlocks.remove(Block);
1445 
1446     // Insert this basic block into the new function
1447     // Insert the original blocks after the entry block created
1448     // for the new function. The entry block may be followed
1449     // by a set of exit blocks at this point, but these exit
1450     // blocks better be placed at the end of the new function.
1451     newFuncIt = newBlocks.insertAfter(newFuncIt, Block);
1452   }
1453 }
1454 
1455 void CodeExtractor::calculateNewCallTerminatorWeights(
1456     BasicBlock *CodeReplacer,
1457     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1458     BranchProbabilityInfo *BPI) {
1459   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1460   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1461 
1462   // Update the branch weights for the exit block.
1463   Instruction *TI = CodeReplacer->getTerminator();
1464   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1465 
1466   // Block Frequency distribution with dummy node.
1467   Distribution BranchDist;
1468 
1469   SmallVector<BranchProbability, 4> EdgeProbabilities(
1470       TI->getNumSuccessors(), BranchProbability::getUnknown());
1471 
1472   // Add each of the frequencies of the successors.
1473   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1474     BlockNode ExitNode(i);
1475     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1476     if (ExitFreq != 0)
1477       BranchDist.addExit(ExitNode, ExitFreq);
1478     else
1479       EdgeProbabilities[i] = BranchProbability::getZero();
1480   }
1481 
1482   // Check for no total weight.
1483   if (BranchDist.Total == 0) {
1484     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1485     return;
1486   }
1487 
1488   // Normalize the distribution so that they can fit in unsigned.
1489   BranchDist.normalize();
1490 
1491   // Create normalized branch weights and set the metadata.
1492   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1493     const auto &Weight = BranchDist.Weights[I];
1494 
1495     // Get the weight and update the current BFI.
1496     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1497     BranchProbability BP(Weight.Amount, BranchDist.Total);
1498     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1499   }
1500   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1501   TI->setMetadata(
1502       LLVMContext::MD_prof,
1503       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1504 }
1505 
1506 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1507 /// \p F.
1508 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1509   for (Instruction &I : instructions(F)) {
1510     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1511     findDbgUsers(DbgUsers, &I);
1512     for (DbgVariableIntrinsic *DVI : DbgUsers)
1513       if (DVI->getFunction() != &F)
1514         DVI->eraseFromParent();
1515   }
1516 }
1517 
1518 /// Fix up the debug info in the old and new functions by pointing line
1519 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1520 /// intrinsics which point to values outside of the new function.
1521 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1522                                          CallInst &TheCall) {
1523   DISubprogram *OldSP = OldFunc.getSubprogram();
1524   LLVMContext &Ctx = OldFunc.getContext();
1525 
1526   if (!OldSP) {
1527     // Erase any debug info the new function contains.
1528     stripDebugInfo(NewFunc);
1529     // Make sure the old function doesn't contain any non-local metadata refs.
1530     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1531     return;
1532   }
1533 
1534   // Create a subprogram for the new function. Leave out a description of the
1535   // function arguments, as the parameters don't correspond to anything at the
1536   // source level.
1537   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1538   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1539                 OldSP->getUnit());
1540   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1541   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1542                                     DISubprogram::SPFlagOptimized |
1543                                     DISubprogram::SPFlagLocalToUnit;
1544   auto NewSP = DIB.createFunction(
1545       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1546       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1547   NewFunc.setSubprogram(NewSP);
1548 
1549   // Debug intrinsics in the new function need to be updated in one of two
1550   // ways:
1551   //  1) They need to be deleted, because they describe a value in the old
1552   //     function.
1553   //  2) They need to point to fresh metadata, e.g. because they currently
1554   //     point to a variable in the wrong scope.
1555   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1556   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1557   for (Instruction &I : instructions(NewFunc)) {
1558     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1559     if (!DII)
1560       continue;
1561 
1562     // Point the intrinsic to a fresh label within the new function.
1563     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1564       DILabel *OldLabel = DLI->getLabel();
1565       DINode *&NewLabel = RemappedMetadata[OldLabel];
1566       if (!NewLabel)
1567         NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1568                                 OldLabel->getFile(), OldLabel->getLine());
1569       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1570       continue;
1571     }
1572 
1573     auto IsInvalidLocation = [&NewFunc](Value *Location) {
1574       // Location is invalid if it isn't a constant or an instruction, or is an
1575       // instruction but isn't in the new function.
1576       if (!Location ||
1577           (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1578         return true;
1579       Instruction *LocationInst = dyn_cast<Instruction>(Location);
1580       return LocationInst && LocationInst->getFunction() != &NewFunc;
1581     };
1582 
1583     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1584     // If any of the used locations are invalid, delete the intrinsic.
1585     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1586       DebugIntrinsicsToDelete.push_back(DVI);
1587       continue;
1588     }
1589 
1590     // Point the intrinsic to a fresh variable within the new function.
1591     DILocalVariable *OldVar = DVI->getVariable();
1592     DINode *&NewVar = RemappedMetadata[OldVar];
1593     if (!NewVar)
1594       NewVar = DIB.createAutoVariable(
1595           NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1596           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1597           OldVar->getAlignInBits());
1598     DVI->setVariable(cast<DILocalVariable>(NewVar));
1599   }
1600   for (auto *DII : DebugIntrinsicsToDelete)
1601     DII->eraseFromParent();
1602   DIB.finalizeSubprogram(NewSP);
1603 
1604   // Fix up the scope information attached to the line locations in the new
1605   // function.
1606   for (Instruction &I : instructions(NewFunc)) {
1607     if (const DebugLoc &DL = I.getDebugLoc())
1608       I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP));
1609 
1610     // Loop info metadata may contain line locations. Fix them up.
1611     auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * {
1612       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1613         return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP,
1614                                nullptr);
1615       return MD;
1616     };
1617     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1618   }
1619   if (!TheCall.getDebugLoc())
1620     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1621 
1622   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1623 }
1624 
1625 Function *
1626 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1627   ValueSet Inputs, Outputs;
1628   return extractCodeRegion(CEAC, Inputs, Outputs);
1629 }
1630 
1631 Function *
1632 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1633                                  ValueSet &inputs, ValueSet &outputs) {
1634   if (!isEligible())
1635     return nullptr;
1636 
1637   // Assumption: this is a single-entry code region, and the header is the first
1638   // block in the region.
1639   BasicBlock *header = *Blocks.begin();
1640   Function *oldFunction = header->getParent();
1641 
1642   // Calculate the entry frequency of the new function before we change the root
1643   //   block.
1644   BlockFrequency EntryFreq;
1645   if (BFI) {
1646     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1647     for (BasicBlock *Pred : predecessors(header)) {
1648       if (Blocks.count(Pred))
1649         continue;
1650       EntryFreq +=
1651           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1652     }
1653   }
1654 
1655   // Remove @llvm.assume calls that will be moved to the new function from the
1656   // old function's assumption cache.
1657   for (BasicBlock *Block : Blocks) {
1658     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1659       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1660         if (AC)
1661           AC->unregisterAssumption(AI);
1662         AI->eraseFromParent();
1663       }
1664     }
1665   }
1666 
1667   // If we have any return instructions in the region, split those blocks so
1668   // that the return is not in the region.
1669   splitReturnBlocks();
1670 
1671   // Calculate the exit blocks for the extracted region and the total exit
1672   // weights for each of those blocks.
1673   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1674   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1675   for (BasicBlock *Block : Blocks) {
1676     for (BasicBlock *Succ : successors(Block)) {
1677       if (!Blocks.count(Succ)) {
1678         // Update the branch weight for this successor.
1679         if (BFI) {
1680           BlockFrequency &BF = ExitWeights[Succ];
1681           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1682         }
1683         ExitBlocks.insert(Succ);
1684       }
1685     }
1686   }
1687   NumExitBlocks = ExitBlocks.size();
1688 
1689   for (BasicBlock *Block : Blocks) {
1690     Instruction *TI = Block->getTerminator();
1691     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1692       if (Blocks.count(TI->getSuccessor(i)))
1693         continue;
1694       BasicBlock *OldTarget = TI->getSuccessor(i);
1695       OldTargets.push_back(OldTarget);
1696     }
1697   }
1698 
1699   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1700   severSplitPHINodesOfEntry(header);
1701   severSplitPHINodesOfExits(ExitBlocks);
1702 
1703   // This takes place of the original loop
1704   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1705                                                 "codeRepl", oldFunction,
1706                                                 header);
1707 
1708   // The new function needs a root node because other nodes can branch to the
1709   // head of the region, but the entry node of a function cannot have preds.
1710   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1711                                                "newFuncRoot");
1712   auto *BranchI = BranchInst::Create(header);
1713   // If the original function has debug info, we have to add a debug location
1714   // to the new branch instruction from the artificial entry block.
1715   // We use the debug location of the first instruction in the extracted
1716   // blocks, as there is no other equivalent line in the source code.
1717   if (oldFunction->getSubprogram()) {
1718     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1719       return any_of(*BB, [&BranchI](const Instruction &I) {
1720         if (!I.getDebugLoc())
1721           return false;
1722         BranchI->setDebugLoc(I.getDebugLoc());
1723         return true;
1724       });
1725     });
1726   }
1727   newFuncRoot->getInstList().push_back(BranchI);
1728 
1729   ValueSet SinkingCands, HoistingCands;
1730   BasicBlock *CommonExit = nullptr;
1731   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1732   assert(HoistingCands.empty() || CommonExit);
1733 
1734   // Find inputs to, outputs from the code region.
1735   findInputsOutputs(inputs, outputs, SinkingCands);
1736 
1737   // Now sink all instructions which only have non-phi uses inside the region.
1738   // Group the allocas at the start of the block, so that any bitcast uses of
1739   // the allocas are well-defined.
1740   AllocaInst *FirstSunkAlloca = nullptr;
1741   for (auto *II : SinkingCands) {
1742     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1743       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1744       if (!FirstSunkAlloca)
1745         FirstSunkAlloca = AI;
1746     }
1747   }
1748   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1749          "Did not expect a sink candidate without any allocas");
1750   for (auto *II : SinkingCands) {
1751     if (!isa<AllocaInst>(II)) {
1752       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1753     }
1754   }
1755 
1756   if (!HoistingCands.empty()) {
1757     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1758     Instruction *TI = HoistToBlock->getTerminator();
1759     for (auto *II : HoistingCands)
1760       cast<Instruction>(II)->moveBefore(TI);
1761   }
1762 
1763   // Collect objects which are inputs to the extraction region and also
1764   // referenced by lifetime start markers within it. The effects of these
1765   // markers must be replicated in the calling function to prevent the stack
1766   // coloring pass from merging slots which store input objects.
1767   ValueSet LifetimesStart;
1768   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1769 
1770   // Construct new function based on inputs/outputs & add allocas for all defs.
1771   Function *newFunction =
1772       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1773                         oldFunction, oldFunction->getParent());
1774 
1775   // Update the entry count of the function.
1776   if (BFI) {
1777     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1778     if (Count)
1779       newFunction->setEntryCount(
1780           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1781     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1782   }
1783 
1784   CallInst *TheCall =
1785       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1786 
1787   moveCodeToFunction(newFunction);
1788 
1789   // Replicate the effects of any lifetime start/end markers which referenced
1790   // input objects in the extraction region by placing markers around the call.
1791   insertLifetimeMarkersSurroundingCall(
1792       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1793 
1794   // Propagate personality info to the new function if there is one.
1795   if (oldFunction->hasPersonalityFn())
1796     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1797 
1798   // Update the branch weights for the exit block.
1799   if (BFI && NumExitBlocks > 1)
1800     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1801 
1802   // Loop over all of the PHI nodes in the header and exit blocks, and change
1803   // any references to the old incoming edge to be the new incoming edge.
1804   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1805     PHINode *PN = cast<PHINode>(I);
1806     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1807       if (!Blocks.count(PN->getIncomingBlock(i)))
1808         PN->setIncomingBlock(i, newFuncRoot);
1809   }
1810 
1811   for (BasicBlock *ExitBB : ExitBlocks)
1812     for (PHINode &PN : ExitBB->phis()) {
1813       Value *IncomingCodeReplacerVal = nullptr;
1814       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1815         // Ignore incoming values from outside of the extracted region.
1816         if (!Blocks.count(PN.getIncomingBlock(i)))
1817           continue;
1818 
1819         // Ensure that there is only one incoming value from codeReplacer.
1820         if (!IncomingCodeReplacerVal) {
1821           PN.setIncomingBlock(i, codeReplacer);
1822           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1823         } else
1824           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1825                  "PHI has two incompatbile incoming values from codeRepl");
1826       }
1827     }
1828 
1829   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1830 
1831   // Mark the new function `noreturn` if applicable. Terminators which resume
1832   // exception propagation are treated as returning instructions. This is to
1833   // avoid inserting traps after calls to outlined functions which unwind.
1834   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1835     const Instruction *Term = BB.getTerminator();
1836     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1837   });
1838   if (doesNotReturn)
1839     newFunction->setDoesNotReturn();
1840 
1841   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1842     newFunction->dump();
1843     report_fatal_error("verification of newFunction failed!");
1844   });
1845   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1846              report_fatal_error("verification of oldFunction failed!"));
1847   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1848                  report_fatal_error("Stale Asumption cache for old Function!"));
1849   return newFunction;
1850 }
1851 
1852 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1853                                           const Function &NewFunc,
1854                                           AssumptionCache *AC) {
1855   for (auto AssumeVH : AC->assumptions()) {
1856     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1857     if (!I)
1858       continue;
1859 
1860     // There shouldn't be any llvm.assume intrinsics in the new function.
1861     if (I->getFunction() != &OldFunc)
1862       return true;
1863 
1864     // There shouldn't be any stale affected values in the assumption cache
1865     // that were previously in the old function, but that have now been moved
1866     // to the new function.
1867     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1868       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1869       if (!AffectedCI)
1870         continue;
1871       if (AffectedCI->getFunction() != &OldFunc)
1872         return true;
1873       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1874       if (AssumedInst->getFunction() != &OldFunc)
1875         return true;
1876     }
1877   }
1878   return false;
1879 }
1880 
1881 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1882   ExcludeArgsFromAggregate.insert(Arg);
1883 }
1884