xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 81ad626541db97eb356e2c1d4a20eb2a26a766ab)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
55     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
56     cl::desc("Set the maximum path length when checking whether a basic block "
57              "is followed by a block that either has a terminating "
58              "deoptimizing call or is terminated with an unreachable"));
59 
60 void llvm::detachDeadBlocks(
61     ArrayRef<BasicBlock *> BBs,
62     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
63     bool KeepOneInputPHIs) {
64   for (auto *BB : BBs) {
65     // Loop through all of our successors and make sure they know that one
66     // of their predecessors is going away.
67     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
68     for (BasicBlock *Succ : successors(BB)) {
69       Succ->removePredecessor(BB, KeepOneInputPHIs);
70       if (Updates && UniqueSuccessors.insert(Succ).second)
71         Updates->push_back({DominatorTree::Delete, BB, Succ});
72     }
73 
74     // Zap all the instructions in the block.
75     while (!BB->empty()) {
76       Instruction &I = BB->back();
77       // If this instruction is used, replace uses with an arbitrary value.
78       // Because control flow can't get here, we don't care what we replace the
79       // value with.  Note that since this block is unreachable, and all values
80       // contained within it must dominate their uses, that all uses will
81       // eventually be removed (they are themselves dead).
82       if (!I.use_empty())
83         I.replaceAllUsesWith(UndefValue::get(I.getType()));
84       BB->getInstList().pop_back();
85     }
86     new UnreachableInst(BB->getContext(), BB);
87     assert(BB->getInstList().size() == 1 &&
88            isa<UnreachableInst>(BB->getTerminator()) &&
89            "The successor list of BB isn't empty before "
90            "applying corresponding DTU updates.");
91   }
92 }
93 
94 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
95                            bool KeepOneInputPHIs) {
96   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
97 }
98 
99 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
100                             bool KeepOneInputPHIs) {
101 #ifndef NDEBUG
102   // Make sure that all predecessors of each dead block is also dead.
103   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
104   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
105   for (auto *BB : Dead)
106     for (BasicBlock *Pred : predecessors(BB))
107       assert(Dead.count(Pred) && "All predecessors must be dead!");
108 #endif
109 
110   SmallVector<DominatorTree::UpdateType, 4> Updates;
111   detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
112 
113   if (DTU)
114     DTU->applyUpdates(Updates);
115 
116   for (BasicBlock *BB : BBs)
117     if (DTU)
118       DTU->deleteBB(BB);
119     else
120       BB->eraseFromParent();
121 }
122 
123 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
124                                       bool KeepOneInputPHIs) {
125   df_iterator_default_set<BasicBlock*> Reachable;
126 
127   // Mark all reachable blocks.
128   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
129     (void)BB/* Mark all reachable blocks */;
130 
131   // Collect all dead blocks.
132   std::vector<BasicBlock*> DeadBlocks;
133   for (BasicBlock &BB : F)
134     if (!Reachable.count(&BB))
135       DeadBlocks.push_back(&BB);
136 
137   // Delete the dead blocks.
138   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
139 
140   return !DeadBlocks.empty();
141 }
142 
143 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
144                                    MemoryDependenceResults *MemDep) {
145   if (!isa<PHINode>(BB->begin()))
146     return false;
147 
148   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
149     if (PN->getIncomingValue(0) != PN)
150       PN->replaceAllUsesWith(PN->getIncomingValue(0));
151     else
152       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
153 
154     if (MemDep)
155       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
156 
157     PN->eraseFromParent();
158   }
159   return true;
160 }
161 
162 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
163                           MemorySSAUpdater *MSSAU) {
164   // Recursively deleting a PHI may cause multiple PHIs to be deleted
165   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
166   SmallVector<WeakTrackingVH, 8> PHIs;
167   for (PHINode &PN : BB->phis())
168     PHIs.push_back(&PN);
169 
170   bool Changed = false;
171   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
172     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
173       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
174 
175   return Changed;
176 }
177 
178 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
179                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
180                                      MemoryDependenceResults *MemDep,
181                                      bool PredecessorWithTwoSuccessors) {
182   if (BB->hasAddressTaken())
183     return false;
184 
185   // Can't merge if there are multiple predecessors, or no predecessors.
186   BasicBlock *PredBB = BB->getUniquePredecessor();
187   if (!PredBB) return false;
188 
189   // Don't break self-loops.
190   if (PredBB == BB) return false;
191   // Don't break unwinding instructions.
192   if (PredBB->getTerminator()->isExceptionalTerminator())
193     return false;
194 
195   // Can't merge if there are multiple distinct successors.
196   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
197     return false;
198 
199   // Currently only allow PredBB to have two predecessors, one being BB.
200   // Update BI to branch to BB's only successor instead of BB.
201   BranchInst *PredBB_BI;
202   BasicBlock *NewSucc = nullptr;
203   unsigned FallThruPath;
204   if (PredecessorWithTwoSuccessors) {
205     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
206       return false;
207     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
208     if (!BB_JmpI || !BB_JmpI->isUnconditional())
209       return false;
210     NewSucc = BB_JmpI->getSuccessor(0);
211     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
212   }
213 
214   // Can't merge if there is PHI loop.
215   for (PHINode &PN : BB->phis())
216     if (llvm::is_contained(PN.incoming_values(), &PN))
217       return false;
218 
219   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
220                     << PredBB->getName() << "\n");
221 
222   // Begin by getting rid of unneeded PHIs.
223   SmallVector<AssertingVH<Value>, 4> IncomingValues;
224   if (isa<PHINode>(BB->front())) {
225     for (PHINode &PN : BB->phis())
226       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
227           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
228         IncomingValues.push_back(PN.getIncomingValue(0));
229     FoldSingleEntryPHINodes(BB, MemDep);
230   }
231 
232   // DTU update: Collect all the edges that exit BB.
233   // These dominator edges will be redirected from Pred.
234   std::vector<DominatorTree::UpdateType> Updates;
235   if (DTU) {
236     // To avoid processing the same predecessor more than once.
237     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
238     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
239                                                succ_end(PredBB));
240     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
241     // Add insert edges first. Experimentally, for the particular case of two
242     // blocks that can be merged, with a single successor and single predecessor
243     // respectively, it is beneficial to have all insert updates first. Deleting
244     // edges first may lead to unreachable blocks, followed by inserting edges
245     // making the blocks reachable again. Such DT updates lead to high compile
246     // times. We add inserts before deletes here to reduce compile time.
247     for (BasicBlock *SuccOfBB : successors(BB))
248       // This successor of BB may already be a PredBB's successor.
249       if (!SuccsOfPredBB.contains(SuccOfBB))
250         if (SeenSuccs.insert(SuccOfBB).second)
251           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
252     SeenSuccs.clear();
253     for (BasicBlock *SuccOfBB : successors(BB))
254       if (SeenSuccs.insert(SuccOfBB).second)
255         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
256     Updates.push_back({DominatorTree::Delete, PredBB, BB});
257   }
258 
259   Instruction *PTI = PredBB->getTerminator();
260   Instruction *STI = BB->getTerminator();
261   Instruction *Start = &*BB->begin();
262   // If there's nothing to move, mark the starting instruction as the last
263   // instruction in the block. Terminator instruction is handled separately.
264   if (Start == STI)
265     Start = PTI;
266 
267   // Move all definitions in the successor to the predecessor...
268   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
269                                BB->begin(), STI->getIterator());
270 
271   if (MSSAU)
272     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
273 
274   // Make all PHI nodes that referred to BB now refer to Pred as their
275   // source...
276   BB->replaceAllUsesWith(PredBB);
277 
278   if (PredecessorWithTwoSuccessors) {
279     // Delete the unconditional branch from BB.
280     BB->getInstList().pop_back();
281 
282     // Update branch in the predecessor.
283     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
284   } else {
285     // Delete the unconditional branch from the predecessor.
286     PredBB->getInstList().pop_back();
287 
288     // Move terminator instruction.
289     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
290 
291     // Terminator may be a memory accessing instruction too.
292     if (MSSAU)
293       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
294               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
295         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
296   }
297   // Add unreachable to now empty BB.
298   new UnreachableInst(BB->getContext(), BB);
299 
300   // Inherit predecessors name if it exists.
301   if (!PredBB->hasName())
302     PredBB->takeName(BB);
303 
304   if (LI)
305     LI->removeBlock(BB);
306 
307   if (MemDep)
308     MemDep->invalidateCachedPredecessors();
309 
310   if (DTU)
311     DTU->applyUpdates(Updates);
312 
313   // Finally, erase the old block and update dominator info.
314   DeleteDeadBlock(BB, DTU);
315 
316   return true;
317 }
318 
319 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
320     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
321     LoopInfo *LI) {
322   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
323 
324   bool BlocksHaveBeenMerged = false;
325   while (!MergeBlocks.empty()) {
326     BasicBlock *BB = *MergeBlocks.begin();
327     BasicBlock *Dest = BB->getSingleSuccessor();
328     if (Dest && (!L || L->contains(Dest))) {
329       BasicBlock *Fold = Dest->getUniquePredecessor();
330       (void)Fold;
331       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
332         assert(Fold == BB &&
333                "Expecting BB to be unique predecessor of the Dest block");
334         MergeBlocks.erase(Dest);
335         BlocksHaveBeenMerged = true;
336       } else
337         MergeBlocks.erase(BB);
338     } else
339       MergeBlocks.erase(BB);
340   }
341   return BlocksHaveBeenMerged;
342 }
343 
344 /// Remove redundant instructions within sequences of consecutive dbg.value
345 /// instructions. This is done using a backward scan to keep the last dbg.value
346 /// describing a specific variable/fragment.
347 ///
348 /// BackwardScan strategy:
349 /// ----------------------
350 /// Given a sequence of consecutive DbgValueInst like this
351 ///
352 ///   dbg.value ..., "x", FragmentX1  (*)
353 ///   dbg.value ..., "y", FragmentY1
354 ///   dbg.value ..., "x", FragmentX2
355 ///   dbg.value ..., "x", FragmentX1  (**)
356 ///
357 /// then the instruction marked with (*) can be removed (it is guaranteed to be
358 /// obsoleted by the instruction marked with (**) as the latter instruction is
359 /// describing the same variable using the same fragment info).
360 ///
361 /// Possible improvements:
362 /// - Check fully overlapping fragments and not only identical fragments.
363 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
364 ///   instructions being part of the sequence of consecutive instructions.
365 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
366   SmallVector<DbgValueInst *, 8> ToBeRemoved;
367   SmallDenseSet<DebugVariable> VariableSet;
368   for (auto &I : reverse(*BB)) {
369     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
370       DebugVariable Key(DVI->getVariable(),
371                         DVI->getExpression(),
372                         DVI->getDebugLoc()->getInlinedAt());
373       auto R = VariableSet.insert(Key);
374       // If the same variable fragment is described more than once it is enough
375       // to keep the last one (i.e. the first found since we for reverse
376       // iteration).
377       if (!R.second)
378         ToBeRemoved.push_back(DVI);
379       continue;
380     }
381     // Sequence with consecutive dbg.value instrs ended. Clear the map to
382     // restart identifying redundant instructions if case we find another
383     // dbg.value sequence.
384     VariableSet.clear();
385   }
386 
387   for (auto &Instr : ToBeRemoved)
388     Instr->eraseFromParent();
389 
390   return !ToBeRemoved.empty();
391 }
392 
393 /// Remove redundant dbg.value instructions using a forward scan. This can
394 /// remove a dbg.value instruction that is redundant due to indicating that a
395 /// variable has the same value as already being indicated by an earlier
396 /// dbg.value.
397 ///
398 /// ForwardScan strategy:
399 /// ---------------------
400 /// Given two identical dbg.value instructions, separated by a block of
401 /// instructions that isn't describing the same variable, like this
402 ///
403 ///   dbg.value X1, "x", FragmentX1  (**)
404 ///   <block of instructions, none being "dbg.value ..., "x", ...">
405 ///   dbg.value X1, "x", FragmentX1  (*)
406 ///
407 /// then the instruction marked with (*) can be removed. Variable "x" is already
408 /// described as being mapped to the SSA value X1.
409 ///
410 /// Possible improvements:
411 /// - Keep track of non-overlapping fragments.
412 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
413   SmallVector<DbgValueInst *, 8> ToBeRemoved;
414   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
415       VariableMap;
416   for (auto &I : *BB) {
417     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
418       DebugVariable Key(DVI->getVariable(),
419                         NoneType(),
420                         DVI->getDebugLoc()->getInlinedAt());
421       auto VMI = VariableMap.find(Key);
422       // Update the map if we found a new value/expression describing the
423       // variable, or if the variable wasn't mapped already.
424       SmallVector<Value *, 4> Values(DVI->getValues());
425       if (VMI == VariableMap.end() || VMI->second.first != Values ||
426           VMI->second.second != DVI->getExpression()) {
427         VariableMap[Key] = {Values, DVI->getExpression()};
428         continue;
429       }
430       // Found an identical mapping. Remember the instruction for later removal.
431       ToBeRemoved.push_back(DVI);
432     }
433   }
434 
435   for (auto &Instr : ToBeRemoved)
436     Instr->eraseFromParent();
437 
438   return !ToBeRemoved.empty();
439 }
440 
441 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
442   bool MadeChanges = false;
443   // By using the "backward scan" strategy before the "forward scan" strategy we
444   // can remove both dbg.value (2) and (3) in a situation like this:
445   //
446   //   (1) dbg.value V1, "x", DIExpression()
447   //       ...
448   //   (2) dbg.value V2, "x", DIExpression()
449   //   (3) dbg.value V1, "x", DIExpression()
450   //
451   // The backward scan will remove (2), it is made obsolete by (3). After
452   // getting (2) out of the way, the foward scan will remove (3) since "x"
453   // already is described as having the value V1 at (1).
454   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
455   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
456 
457   if (MadeChanges)
458     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
459                       << BB->getName() << "\n");
460   return MadeChanges;
461 }
462 
463 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
464                                 BasicBlock::iterator &BI, Value *V) {
465   Instruction &I = *BI;
466   // Replaces all of the uses of the instruction with uses of the value
467   I.replaceAllUsesWith(V);
468 
469   // Make sure to propagate a name if there is one already.
470   if (I.hasName() && !V->hasName())
471     V->takeName(&I);
472 
473   // Delete the unnecessary instruction now...
474   BI = BIL.erase(BI);
475 }
476 
477 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
478                                BasicBlock::iterator &BI, Instruction *I) {
479   assert(I->getParent() == nullptr &&
480          "ReplaceInstWithInst: Instruction already inserted into basic block!");
481 
482   // Copy debug location to newly added instruction, if it wasn't already set
483   // by the caller.
484   if (!I->getDebugLoc())
485     I->setDebugLoc(BI->getDebugLoc());
486 
487   // Insert the new instruction into the basic block...
488   BasicBlock::iterator New = BIL.insert(BI, I);
489 
490   // Replace all uses of the old instruction, and delete it.
491   ReplaceInstWithValue(BIL, BI, I);
492 
493   // Move BI back to point to the newly inserted instruction
494   BI = New;
495 }
496 
497 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
498   // Remember visited blocks to avoid infinite loop
499   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
500   unsigned Depth = 0;
501   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
502          VisitedBlocks.insert(BB).second) {
503     if (BB->getTerminatingDeoptimizeCall() ||
504         isa<UnreachableInst>(BB->getTerminator()))
505       return true;
506     BB = BB->getUniqueSuccessor();
507   }
508   return false;
509 }
510 
511 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
512   BasicBlock::iterator BI(From);
513   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
514 }
515 
516 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
517                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
518                             const Twine &BBName) {
519   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
520 
521   Instruction *LatchTerm = BB->getTerminator();
522 
523   CriticalEdgeSplittingOptions Options =
524       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
525 
526   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
527     // If it is a critical edge, and the succesor is an exception block, handle
528     // the split edge logic in this specific function
529     if (Succ->isEHPad())
530       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
531 
532     // If this is a critical edge, let SplitKnownCriticalEdge do it.
533     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
534   }
535 
536   // If the edge isn't critical, then BB has a single successor or Succ has a
537   // single pred.  Split the block.
538   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
539     // If the successor only has a single pred, split the top of the successor
540     // block.
541     assert(SP == BB && "CFG broken");
542     SP = nullptr;
543     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
544                       /*Before=*/true);
545   }
546 
547   // Otherwise, if BB has a single successor, split it at the bottom of the
548   // block.
549   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
550          "Should have a single succ!");
551   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
552 }
553 
554 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
555   if (auto *II = dyn_cast<InvokeInst>(TI))
556     II->setUnwindDest(Succ);
557   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
558     CS->setUnwindDest(Succ);
559   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
560     CR->setUnwindDest(Succ);
561   else
562     llvm_unreachable("unexpected terminator instruction");
563 }
564 
565 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
566                           BasicBlock *NewPred, PHINode *Until) {
567   int BBIdx = 0;
568   for (PHINode &PN : DestBB->phis()) {
569     // We manually update the LandingPadReplacement PHINode and it is the last
570     // PHI Node. So, if we find it, we are done.
571     if (Until == &PN)
572       break;
573 
574     // Reuse the previous value of BBIdx if it lines up.  In cases where we
575     // have multiple phi nodes with *lots* of predecessors, this is a speed
576     // win because we don't have to scan the PHI looking for TIBB.  This
577     // happens because the BB list of PHI nodes are usually in the same
578     // order.
579     if (PN.getIncomingBlock(BBIdx) != OldPred)
580       BBIdx = PN.getBasicBlockIndex(OldPred);
581 
582     assert(BBIdx != -1 && "Invalid PHI Index!");
583     PN.setIncomingBlock(BBIdx, NewPred);
584   }
585 }
586 
587 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
588                                    LandingPadInst *OriginalPad,
589                                    PHINode *LandingPadReplacement,
590                                    const CriticalEdgeSplittingOptions &Options,
591                                    const Twine &BBName) {
592 
593   auto *PadInst = Succ->getFirstNonPHI();
594   if (!LandingPadReplacement && !PadInst->isEHPad())
595     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
596 
597   auto *LI = Options.LI;
598   SmallVector<BasicBlock *, 4> LoopPreds;
599   // Check if extra modifications will be required to preserve loop-simplify
600   // form after splitting. If it would require splitting blocks with IndirectBr
601   // terminators, bail out if preserving loop-simplify form is requested.
602   if (Options.PreserveLoopSimplify && LI) {
603     if (Loop *BBLoop = LI->getLoopFor(BB)) {
604 
605       // The only way that we can break LoopSimplify form by splitting a
606       // critical edge is when there exists some edge from BBLoop to Succ *and*
607       // the only edge into Succ from outside of BBLoop is that of NewBB after
608       // the split. If the first isn't true, then LoopSimplify still holds,
609       // NewBB is the new exit block and it has no non-loop predecessors. If the
610       // second isn't true, then Succ was not in LoopSimplify form prior to
611       // the split as it had a non-loop predecessor. In both of these cases,
612       // the predecessor must be directly in BBLoop, not in a subloop, or again
613       // LoopSimplify doesn't hold.
614       for (BasicBlock *P : predecessors(Succ)) {
615         if (P == BB)
616           continue; // The new block is known.
617         if (LI->getLoopFor(P) != BBLoop) {
618           // Loop is not in LoopSimplify form, no need to re simplify after
619           // splitting edge.
620           LoopPreds.clear();
621           break;
622         }
623         LoopPreds.push_back(P);
624       }
625       // Loop-simplify form can be preserved, if we can split all in-loop
626       // predecessors.
627       if (any_of(LoopPreds, [](BasicBlock *Pred) {
628             return isa<IndirectBrInst>(Pred->getTerminator());
629           })) {
630         return nullptr;
631       }
632     }
633   }
634 
635   auto *NewBB =
636       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
637   setUnwindEdgeTo(BB->getTerminator(), NewBB);
638   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
639 
640   if (LandingPadReplacement) {
641     auto *NewLP = OriginalPad->clone();
642     auto *Terminator = BranchInst::Create(Succ, NewBB);
643     NewLP->insertBefore(Terminator);
644     LandingPadReplacement->addIncoming(NewLP, NewBB);
645   } else {
646     Value *ParentPad = nullptr;
647     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
648       ParentPad = FuncletPad->getParentPad();
649     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
650       ParentPad = CatchSwitch->getParentPad();
651     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
652       ParentPad = CleanupPad->getParentPad();
653     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
654       ParentPad = LandingPad->getParent();
655     else
656       llvm_unreachable("handling for other EHPads not implemented yet");
657 
658     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
659     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
660   }
661 
662   auto *DT = Options.DT;
663   auto *MSSAU = Options.MSSAU;
664   if (!DT && !LI)
665     return NewBB;
666 
667   if (DT) {
668     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
669     SmallVector<DominatorTree::UpdateType, 3> Updates;
670 
671     Updates.push_back({DominatorTree::Insert, BB, NewBB});
672     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
673     Updates.push_back({DominatorTree::Delete, BB, Succ});
674 
675     DTU.applyUpdates(Updates);
676     DTU.flush();
677 
678     if (MSSAU) {
679       MSSAU->applyUpdates(Updates, *DT);
680       if (VerifyMemorySSA)
681         MSSAU->getMemorySSA()->verifyMemorySSA();
682     }
683   }
684 
685   if (LI) {
686     if (Loop *BBLoop = LI->getLoopFor(BB)) {
687       // If one or the other blocks were not in a loop, the new block is not
688       // either, and thus LI doesn't need to be updated.
689       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
690         if (BBLoop == SuccLoop) {
691           // Both in the same loop, the NewBB joins loop.
692           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
693         } else if (BBLoop->contains(SuccLoop)) {
694           // Edge from an outer loop to an inner loop.  Add to the outer loop.
695           BBLoop->addBasicBlockToLoop(NewBB, *LI);
696         } else if (SuccLoop->contains(BBLoop)) {
697           // Edge from an inner loop to an outer loop.  Add to the outer loop.
698           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
699         } else {
700           // Edge from two loops with no containment relation.  Because these
701           // are natural loops, we know that the destination block must be the
702           // header of its loop (adding a branch into a loop elsewhere would
703           // create an irreducible loop).
704           assert(SuccLoop->getHeader() == Succ &&
705                  "Should not create irreducible loops!");
706           if (Loop *P = SuccLoop->getParentLoop())
707             P->addBasicBlockToLoop(NewBB, *LI);
708         }
709       }
710 
711       // If BB is in a loop and Succ is outside of that loop, we may need to
712       // update LoopSimplify form and LCSSA form.
713       if (!BBLoop->contains(Succ)) {
714         assert(!BBLoop->contains(NewBB) &&
715                "Split point for loop exit is contained in loop!");
716 
717         // Update LCSSA form in the newly created exit block.
718         if (Options.PreserveLCSSA) {
719           createPHIsForSplitLoopExit(BB, NewBB, Succ);
720         }
721 
722         if (!LoopPreds.empty()) {
723           BasicBlock *NewExitBB = SplitBlockPredecessors(
724               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
725           if (Options.PreserveLCSSA)
726             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
727         }
728       }
729     }
730   }
731 
732   return NewBB;
733 }
734 
735 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
736                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
737   // SplitBB shouldn't have anything non-trivial in it yet.
738   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
739           SplitBB->isLandingPad()) &&
740          "SplitBB has non-PHI nodes!");
741 
742   // For each PHI in the destination block.
743   for (PHINode &PN : DestBB->phis()) {
744     int Idx = PN.getBasicBlockIndex(SplitBB);
745     assert(Idx >= 0 && "Invalid Block Index");
746     Value *V = PN.getIncomingValue(Idx);
747 
748     // If the input is a PHI which already satisfies LCSSA, don't create
749     // a new one.
750     if (const PHINode *VP = dyn_cast<PHINode>(V))
751       if (VP->getParent() == SplitBB)
752         continue;
753 
754     // Otherwise a new PHI is needed. Create one and populate it.
755     PHINode *NewPN = PHINode::Create(
756         PN.getType(), Preds.size(), "split",
757         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
758     for (BasicBlock *BB : Preds)
759       NewPN->addIncoming(V, BB);
760 
761     // Update the original PHI.
762     PN.setIncomingValue(Idx, NewPN);
763   }
764 }
765 
766 unsigned
767 llvm::SplitAllCriticalEdges(Function &F,
768                             const CriticalEdgeSplittingOptions &Options) {
769   unsigned NumBroken = 0;
770   for (BasicBlock &BB : F) {
771     Instruction *TI = BB.getTerminator();
772     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
773         !isa<CallBrInst>(TI))
774       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
775         if (SplitCriticalEdge(TI, i, Options))
776           ++NumBroken;
777   }
778   return NumBroken;
779 }
780 
781 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
782                                   DomTreeUpdater *DTU, DominatorTree *DT,
783                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
784                                   const Twine &BBName, bool Before) {
785   if (Before) {
786     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
787     return splitBlockBefore(Old, SplitPt,
788                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
789                             BBName);
790   }
791   BasicBlock::iterator SplitIt = SplitPt->getIterator();
792   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
793     ++SplitIt;
794     assert(SplitIt != SplitPt->getParent()->end());
795   }
796   std::string Name = BBName.str();
797   BasicBlock *New = Old->splitBasicBlock(
798       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
799 
800   // The new block lives in whichever loop the old one did. This preserves
801   // LCSSA as well, because we force the split point to be after any PHI nodes.
802   if (LI)
803     if (Loop *L = LI->getLoopFor(Old))
804       L->addBasicBlockToLoop(New, *LI);
805 
806   if (DTU) {
807     SmallVector<DominatorTree::UpdateType, 8> Updates;
808     // Old dominates New. New node dominates all other nodes dominated by Old.
809     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
810     Updates.push_back({DominatorTree::Insert, Old, New});
811     Updates.reserve(Updates.size() + 2 * succ_size(New));
812     for (BasicBlock *SuccessorOfOld : successors(New))
813       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
814         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
815         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
816       }
817 
818     DTU->applyUpdates(Updates);
819   } else if (DT)
820     // Old dominates New. New node dominates all other nodes dominated by Old.
821     if (DomTreeNode *OldNode = DT->getNode(Old)) {
822       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
823 
824       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
825       for (DomTreeNode *I : Children)
826         DT->changeImmediateDominator(I, NewNode);
827     }
828 
829   // Move MemoryAccesses still tracked in Old, but part of New now.
830   // Update accesses in successor blocks accordingly.
831   if (MSSAU)
832     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
833 
834   return New;
835 }
836 
837 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
838                              DominatorTree *DT, LoopInfo *LI,
839                              MemorySSAUpdater *MSSAU, const Twine &BBName,
840                              bool Before) {
841   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
842                         Before);
843 }
844 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
845                              DomTreeUpdater *DTU, LoopInfo *LI,
846                              MemorySSAUpdater *MSSAU, const Twine &BBName,
847                              bool Before) {
848   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
849                         Before);
850 }
851 
852 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
853                                    DomTreeUpdater *DTU, LoopInfo *LI,
854                                    MemorySSAUpdater *MSSAU,
855                                    const Twine &BBName) {
856 
857   BasicBlock::iterator SplitIt = SplitPt->getIterator();
858   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
859     ++SplitIt;
860   std::string Name = BBName.str();
861   BasicBlock *New = Old->splitBasicBlock(
862       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
863       /* Before=*/true);
864 
865   // The new block lives in whichever loop the old one did. This preserves
866   // LCSSA as well, because we force the split point to be after any PHI nodes.
867   if (LI)
868     if (Loop *L = LI->getLoopFor(Old))
869       L->addBasicBlockToLoop(New, *LI);
870 
871   if (DTU) {
872     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
873     // New dominates Old. The predecessor nodes of the Old node dominate
874     // New node.
875     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
876     DTUpdates.push_back({DominatorTree::Insert, New, Old});
877     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
878     for (BasicBlock *PredecessorOfOld : predecessors(New))
879       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
880         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
881         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
882       }
883 
884     DTU->applyUpdates(DTUpdates);
885 
886     // Move MemoryAccesses still tracked in Old, but part of New now.
887     // Update accesses in successor blocks accordingly.
888     if (MSSAU) {
889       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
890       if (VerifyMemorySSA)
891         MSSAU->getMemorySSA()->verifyMemorySSA();
892     }
893   }
894   return New;
895 }
896 
897 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
898 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
899                                       ArrayRef<BasicBlock *> Preds,
900                                       DomTreeUpdater *DTU, DominatorTree *DT,
901                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
902                                       bool PreserveLCSSA, bool &HasLoopExit) {
903   // Update dominator tree if available.
904   if (DTU) {
905     // Recalculation of DomTree is needed when updating a forward DomTree and
906     // the Entry BB is replaced.
907     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
908       // The entry block was removed and there is no external interface for
909       // the dominator tree to be notified of this change. In this corner-case
910       // we recalculate the entire tree.
911       DTU->recalculate(*NewBB->getParent());
912     } else {
913       // Split block expects NewBB to have a non-empty set of predecessors.
914       SmallVector<DominatorTree::UpdateType, 8> Updates;
915       SmallPtrSet<BasicBlock *, 8> UniquePreds;
916       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
917       Updates.reserve(Updates.size() + 2 * Preds.size());
918       for (auto *Pred : Preds)
919         if (UniquePreds.insert(Pred).second) {
920           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
921           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
922         }
923       DTU->applyUpdates(Updates);
924     }
925   } else if (DT) {
926     if (OldBB == DT->getRootNode()->getBlock()) {
927       assert(NewBB->isEntryBlock());
928       DT->setNewRoot(NewBB);
929     } else {
930       // Split block expects NewBB to have a non-empty set of predecessors.
931       DT->splitBlock(NewBB);
932     }
933   }
934 
935   // Update MemoryPhis after split if MemorySSA is available
936   if (MSSAU)
937     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
938 
939   // The rest of the logic is only relevant for updating the loop structures.
940   if (!LI)
941     return;
942 
943   if (DTU && DTU->hasDomTree())
944     DT = &DTU->getDomTree();
945   assert(DT && "DT should be available to update LoopInfo!");
946   Loop *L = LI->getLoopFor(OldBB);
947 
948   // If we need to preserve loop analyses, collect some information about how
949   // this split will affect loops.
950   bool IsLoopEntry = !!L;
951   bool SplitMakesNewLoopHeader = false;
952   for (BasicBlock *Pred : Preds) {
953     // Preds that are not reachable from entry should not be used to identify if
954     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
955     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
956     // as true and make the NewBB the header of some loop. This breaks LI.
957     if (!DT->isReachableFromEntry(Pred))
958       continue;
959     // If we need to preserve LCSSA, determine if any of the preds is a loop
960     // exit.
961     if (PreserveLCSSA)
962       if (Loop *PL = LI->getLoopFor(Pred))
963         if (!PL->contains(OldBB))
964           HasLoopExit = true;
965 
966     // If we need to preserve LoopInfo, note whether any of the preds crosses
967     // an interesting loop boundary.
968     if (!L)
969       continue;
970     if (L->contains(Pred))
971       IsLoopEntry = false;
972     else
973       SplitMakesNewLoopHeader = true;
974   }
975 
976   // Unless we have a loop for OldBB, nothing else to do here.
977   if (!L)
978     return;
979 
980   if (IsLoopEntry) {
981     // Add the new block to the nearest enclosing loop (and not an adjacent
982     // loop). To find this, examine each of the predecessors and determine which
983     // loops enclose them, and select the most-nested loop which contains the
984     // loop containing the block being split.
985     Loop *InnermostPredLoop = nullptr;
986     for (BasicBlock *Pred : Preds) {
987       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
988         // Seek a loop which actually contains the block being split (to avoid
989         // adjacent loops).
990         while (PredLoop && !PredLoop->contains(OldBB))
991           PredLoop = PredLoop->getParentLoop();
992 
993         // Select the most-nested of these loops which contains the block.
994         if (PredLoop && PredLoop->contains(OldBB) &&
995             (!InnermostPredLoop ||
996              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
997           InnermostPredLoop = PredLoop;
998       }
999     }
1000 
1001     if (InnermostPredLoop)
1002       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1003   } else {
1004     L->addBasicBlockToLoop(NewBB, *LI);
1005     if (SplitMakesNewLoopHeader)
1006       L->moveToHeader(NewBB);
1007   }
1008 }
1009 
1010 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1011 /// This also updates AliasAnalysis, if available.
1012 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1013                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1014                            bool HasLoopExit) {
1015   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1016   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1017   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1018     PHINode *PN = cast<PHINode>(I++);
1019 
1020     // Check to see if all of the values coming in are the same.  If so, we
1021     // don't need to create a new PHI node, unless it's needed for LCSSA.
1022     Value *InVal = nullptr;
1023     if (!HasLoopExit) {
1024       InVal = PN->getIncomingValueForBlock(Preds[0]);
1025       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1026         if (!PredSet.count(PN->getIncomingBlock(i)))
1027           continue;
1028         if (!InVal)
1029           InVal = PN->getIncomingValue(i);
1030         else if (InVal != PN->getIncomingValue(i)) {
1031           InVal = nullptr;
1032           break;
1033         }
1034       }
1035     }
1036 
1037     if (InVal) {
1038       // If all incoming values for the new PHI would be the same, just don't
1039       // make a new PHI.  Instead, just remove the incoming values from the old
1040       // PHI.
1041 
1042       // NOTE! This loop walks backwards for a reason! First off, this minimizes
1043       // the cost of removal if we end up removing a large number of values, and
1044       // second off, this ensures that the indices for the incoming values
1045       // aren't invalidated when we remove one.
1046       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
1047         if (PredSet.count(PN->getIncomingBlock(i)))
1048           PN->removeIncomingValue(i, false);
1049 
1050       // Add an incoming value to the PHI node in the loop for the preheader
1051       // edge.
1052       PN->addIncoming(InVal, NewBB);
1053       continue;
1054     }
1055 
1056     // If the values coming into the block are not the same, we need a new
1057     // PHI.
1058     // Create the new PHI node, insert it into NewBB at the end of the block
1059     PHINode *NewPHI =
1060         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1061 
1062     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1063     // the cost of removal if we end up removing a large number of values, and
1064     // second off, this ensures that the indices for the incoming values aren't
1065     // invalidated when we remove one.
1066     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1067       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1068       if (PredSet.count(IncomingBB)) {
1069         Value *V = PN->removeIncomingValue(i, false);
1070         NewPHI->addIncoming(V, IncomingBB);
1071       }
1072     }
1073 
1074     PN->addIncoming(NewPHI, NewBB);
1075   }
1076 }
1077 
1078 static void SplitLandingPadPredecessorsImpl(
1079     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1080     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1081     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1082     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1083 
1084 static BasicBlock *
1085 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1086                            const char *Suffix, DomTreeUpdater *DTU,
1087                            DominatorTree *DT, LoopInfo *LI,
1088                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1089   // Do not attempt to split that which cannot be split.
1090   if (!BB->canSplitPredecessors())
1091     return nullptr;
1092 
1093   // For the landingpads we need to act a bit differently.
1094   // Delegate this work to the SplitLandingPadPredecessors.
1095   if (BB->isLandingPad()) {
1096     SmallVector<BasicBlock*, 2> NewBBs;
1097     std::string NewName = std::string(Suffix) + ".split-lp";
1098 
1099     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1100                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1101     return NewBBs[0];
1102   }
1103 
1104   // Create new basic block, insert right before the original block.
1105   BasicBlock *NewBB = BasicBlock::Create(
1106       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1107 
1108   // The new block unconditionally branches to the old block.
1109   BranchInst *BI = BranchInst::Create(BB, NewBB);
1110 
1111   Loop *L = nullptr;
1112   BasicBlock *OldLatch = nullptr;
1113   // Splitting the predecessors of a loop header creates a preheader block.
1114   if (LI && LI->isLoopHeader(BB)) {
1115     L = LI->getLoopFor(BB);
1116     // Using the loop start line number prevents debuggers stepping into the
1117     // loop body for this instruction.
1118     BI->setDebugLoc(L->getStartLoc());
1119 
1120     // If BB is the header of the Loop, it is possible that the loop is
1121     // modified, such that the current latch does not remain the latch of the
1122     // loop. If that is the case, the loop metadata from the current latch needs
1123     // to be applied to the new latch.
1124     OldLatch = L->getLoopLatch();
1125   } else
1126     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1127 
1128   // Move the edges from Preds to point to NewBB instead of BB.
1129   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1130     // This is slightly more strict than necessary; the minimum requirement
1131     // is that there be no more than one indirectbr branching to BB. And
1132     // all BlockAddress uses would need to be updated.
1133     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1134            "Cannot split an edge from an IndirectBrInst");
1135     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
1136            "Cannot split an edge from a CallBrInst");
1137     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
1138   }
1139 
1140   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1141   // node becomes an incoming value for BB's phi node.  However, if the Preds
1142   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1143   // account for the newly created predecessor.
1144   if (Preds.empty()) {
1145     // Insert dummy values as the incoming value.
1146     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1147       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
1148   }
1149 
1150   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1151   bool HasLoopExit = false;
1152   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1153                             HasLoopExit);
1154 
1155   if (!Preds.empty()) {
1156     // Update the PHI nodes in BB with the values coming from NewBB.
1157     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1158   }
1159 
1160   if (OldLatch) {
1161     BasicBlock *NewLatch = L->getLoopLatch();
1162     if (NewLatch != OldLatch) {
1163       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1164       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1165       // It's still possible that OldLatch is the latch of another inner loop,
1166       // in which case we do not remove the metadata.
1167       Loop *IL = LI->getLoopFor(OldLatch);
1168       if (IL && IL->getLoopLatch() != OldLatch)
1169         OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1170     }
1171   }
1172 
1173   return NewBB;
1174 }
1175 
1176 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1177                                          ArrayRef<BasicBlock *> Preds,
1178                                          const char *Suffix, DominatorTree *DT,
1179                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1180                                          bool PreserveLCSSA) {
1181   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1182                                     MSSAU, PreserveLCSSA);
1183 }
1184 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1185                                          ArrayRef<BasicBlock *> Preds,
1186                                          const char *Suffix,
1187                                          DomTreeUpdater *DTU, LoopInfo *LI,
1188                                          MemorySSAUpdater *MSSAU,
1189                                          bool PreserveLCSSA) {
1190   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1191                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1192 }
1193 
1194 static void SplitLandingPadPredecessorsImpl(
1195     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1196     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1197     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1198     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1199   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1200 
1201   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1202   // it right before the original block.
1203   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1204                                           OrigBB->getName() + Suffix1,
1205                                           OrigBB->getParent(), OrigBB);
1206   NewBBs.push_back(NewBB1);
1207 
1208   // The new block unconditionally branches to the old block.
1209   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1210   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1211 
1212   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1213   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1214     // This is slightly more strict than necessary; the minimum requirement
1215     // is that there be no more than one indirectbr branching to BB. And
1216     // all BlockAddress uses would need to be updated.
1217     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1218            "Cannot split an edge from an IndirectBrInst");
1219     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1220   }
1221 
1222   bool HasLoopExit = false;
1223   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1224                             PreserveLCSSA, HasLoopExit);
1225 
1226   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1227   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1228 
1229   // Move the remaining edges from OrigBB to point to NewBB2.
1230   SmallVector<BasicBlock*, 8> NewBB2Preds;
1231   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1232        i != e; ) {
1233     BasicBlock *Pred = *i++;
1234     if (Pred == NewBB1) continue;
1235     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1236            "Cannot split an edge from an IndirectBrInst");
1237     NewBB2Preds.push_back(Pred);
1238     e = pred_end(OrigBB);
1239   }
1240 
1241   BasicBlock *NewBB2 = nullptr;
1242   if (!NewBB2Preds.empty()) {
1243     // Create another basic block for the rest of OrigBB's predecessors.
1244     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1245                                 OrigBB->getName() + Suffix2,
1246                                 OrigBB->getParent(), OrigBB);
1247     NewBBs.push_back(NewBB2);
1248 
1249     // The new block unconditionally branches to the old block.
1250     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1251     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1252 
1253     // Move the remaining edges from OrigBB to point to NewBB2.
1254     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1255       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1256 
1257     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1258     HasLoopExit = false;
1259     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1260                               PreserveLCSSA, HasLoopExit);
1261 
1262     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1263     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1264   }
1265 
1266   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1267   Instruction *Clone1 = LPad->clone();
1268   Clone1->setName(Twine("lpad") + Suffix1);
1269   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1270 
1271   if (NewBB2) {
1272     Instruction *Clone2 = LPad->clone();
1273     Clone2->setName(Twine("lpad") + Suffix2);
1274     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1275 
1276     // Create a PHI node for the two cloned landingpad instructions only
1277     // if the original landingpad instruction has some uses.
1278     if (!LPad->use_empty()) {
1279       assert(!LPad->getType()->isTokenTy() &&
1280              "Split cannot be applied if LPad is token type. Otherwise an "
1281              "invalid PHINode of token type would be created.");
1282       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1283       PN->addIncoming(Clone1, NewBB1);
1284       PN->addIncoming(Clone2, NewBB2);
1285       LPad->replaceAllUsesWith(PN);
1286     }
1287     LPad->eraseFromParent();
1288   } else {
1289     // There is no second clone. Just replace the landing pad with the first
1290     // clone.
1291     LPad->replaceAllUsesWith(Clone1);
1292     LPad->eraseFromParent();
1293   }
1294 }
1295 
1296 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1297                                        ArrayRef<BasicBlock *> Preds,
1298                                        const char *Suffix1, const char *Suffix2,
1299                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1300                                        DominatorTree *DT, LoopInfo *LI,
1301                                        MemorySSAUpdater *MSSAU,
1302                                        bool PreserveLCSSA) {
1303   return SplitLandingPadPredecessorsImpl(
1304       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1305       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1306 }
1307 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1308                                        ArrayRef<BasicBlock *> Preds,
1309                                        const char *Suffix1, const char *Suffix2,
1310                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1311                                        DomTreeUpdater *DTU, LoopInfo *LI,
1312                                        MemorySSAUpdater *MSSAU,
1313                                        bool PreserveLCSSA) {
1314   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1315                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1316                                          PreserveLCSSA);
1317 }
1318 
1319 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1320                                              BasicBlock *Pred,
1321                                              DomTreeUpdater *DTU) {
1322   Instruction *UncondBranch = Pred->getTerminator();
1323   // Clone the return and add it to the end of the predecessor.
1324   Instruction *NewRet = RI->clone();
1325   Pred->getInstList().push_back(NewRet);
1326 
1327   // If the return instruction returns a value, and if the value was a
1328   // PHI node in "BB", propagate the right value into the return.
1329   for (Use &Op : NewRet->operands()) {
1330     Value *V = Op;
1331     Instruction *NewBC = nullptr;
1332     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1333       // Return value might be bitcasted. Clone and insert it before the
1334       // return instruction.
1335       V = BCI->getOperand(0);
1336       NewBC = BCI->clone();
1337       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1338       Op = NewBC;
1339     }
1340 
1341     Instruction *NewEV = nullptr;
1342     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1343       V = EVI->getOperand(0);
1344       NewEV = EVI->clone();
1345       if (NewBC) {
1346         NewBC->setOperand(0, NewEV);
1347         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1348       } else {
1349         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1350         Op = NewEV;
1351       }
1352     }
1353 
1354     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1355       if (PN->getParent() == BB) {
1356         if (NewEV) {
1357           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1358         } else if (NewBC)
1359           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1360         else
1361           Op = PN->getIncomingValueForBlock(Pred);
1362       }
1363     }
1364   }
1365 
1366   // Update any PHI nodes in the returning block to realize that we no
1367   // longer branch to them.
1368   BB->removePredecessor(Pred);
1369   UncondBranch->eraseFromParent();
1370 
1371   if (DTU)
1372     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1373 
1374   return cast<ReturnInst>(NewRet);
1375 }
1376 
1377 static Instruction *
1378 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1379                               bool Unreachable, MDNode *BranchWeights,
1380                               DomTreeUpdater *DTU, DominatorTree *DT,
1381                               LoopInfo *LI, BasicBlock *ThenBlock) {
1382   SmallVector<DominatorTree::UpdateType, 8> Updates;
1383   BasicBlock *Head = SplitBefore->getParent();
1384   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1385   if (DTU) {
1386     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead;
1387     Updates.push_back({DominatorTree::Insert, Head, Tail});
1388     Updates.reserve(Updates.size() + 2 * succ_size(Tail));
1389     for (BasicBlock *SuccessorOfHead : successors(Tail))
1390       if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) {
1391         Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead});
1392         Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead});
1393       }
1394   }
1395   Instruction *HeadOldTerm = Head->getTerminator();
1396   LLVMContext &C = Head->getContext();
1397   Instruction *CheckTerm;
1398   bool CreateThenBlock = (ThenBlock == nullptr);
1399   if (CreateThenBlock) {
1400     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1401     if (Unreachable)
1402       CheckTerm = new UnreachableInst(C, ThenBlock);
1403     else {
1404       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1405       if (DTU)
1406         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1407     }
1408     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1409   } else
1410     CheckTerm = ThenBlock->getTerminator();
1411   BranchInst *HeadNewTerm =
1412       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1413   if (DTU)
1414     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1415   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1416   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1417 
1418   if (DTU)
1419     DTU->applyUpdates(Updates);
1420   else if (DT) {
1421     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1422       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1423 
1424       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1425       for (DomTreeNode *Child : Children)
1426         DT->changeImmediateDominator(Child, NewNode);
1427 
1428       // Head dominates ThenBlock.
1429       if (CreateThenBlock)
1430         DT->addNewBlock(ThenBlock, Head);
1431       else
1432         DT->changeImmediateDominator(ThenBlock, Head);
1433     }
1434   }
1435 
1436   if (LI) {
1437     if (Loop *L = LI->getLoopFor(Head)) {
1438       L->addBasicBlockToLoop(ThenBlock, *LI);
1439       L->addBasicBlockToLoop(Tail, *LI);
1440     }
1441   }
1442 
1443   return CheckTerm;
1444 }
1445 
1446 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1447                                              Instruction *SplitBefore,
1448                                              bool Unreachable,
1449                                              MDNode *BranchWeights,
1450                                              DominatorTree *DT, LoopInfo *LI,
1451                                              BasicBlock *ThenBlock) {
1452   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1453                                        BranchWeights,
1454                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1455 }
1456 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1457                                              Instruction *SplitBefore,
1458                                              bool Unreachable,
1459                                              MDNode *BranchWeights,
1460                                              DomTreeUpdater *DTU, LoopInfo *LI,
1461                                              BasicBlock *ThenBlock) {
1462   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1463                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1464                                        ThenBlock);
1465 }
1466 
1467 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1468                                          Instruction **ThenTerm,
1469                                          Instruction **ElseTerm,
1470                                          MDNode *BranchWeights) {
1471   BasicBlock *Head = SplitBefore->getParent();
1472   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1473   Instruction *HeadOldTerm = Head->getTerminator();
1474   LLVMContext &C = Head->getContext();
1475   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1476   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1477   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1478   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1479   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1480   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1481   BranchInst *HeadNewTerm =
1482     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1483   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1484   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1485 }
1486 
1487 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1488                                  BasicBlock *&IfFalse) {
1489   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1490   BasicBlock *Pred1 = nullptr;
1491   BasicBlock *Pred2 = nullptr;
1492 
1493   if (SomePHI) {
1494     if (SomePHI->getNumIncomingValues() != 2)
1495       return nullptr;
1496     Pred1 = SomePHI->getIncomingBlock(0);
1497     Pred2 = SomePHI->getIncomingBlock(1);
1498   } else {
1499     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1500     if (PI == PE) // No predecessor
1501       return nullptr;
1502     Pred1 = *PI++;
1503     if (PI == PE) // Only one predecessor
1504       return nullptr;
1505     Pred2 = *PI++;
1506     if (PI != PE) // More than two predecessors
1507       return nullptr;
1508   }
1509 
1510   // We can only handle branches.  Other control flow will be lowered to
1511   // branches if possible anyway.
1512   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1513   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1514   if (!Pred1Br || !Pred2Br)
1515     return nullptr;
1516 
1517   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1518   // either are.
1519   if (Pred2Br->isConditional()) {
1520     // If both branches are conditional, we don't have an "if statement".  In
1521     // reality, we could transform this case, but since the condition will be
1522     // required anyway, we stand no chance of eliminating it, so the xform is
1523     // probably not profitable.
1524     if (Pred1Br->isConditional())
1525       return nullptr;
1526 
1527     std::swap(Pred1, Pred2);
1528     std::swap(Pred1Br, Pred2Br);
1529   }
1530 
1531   if (Pred1Br->isConditional()) {
1532     // The only thing we have to watch out for here is to make sure that Pred2
1533     // doesn't have incoming edges from other blocks.  If it does, the condition
1534     // doesn't dominate BB.
1535     if (!Pred2->getSinglePredecessor())
1536       return nullptr;
1537 
1538     // If we found a conditional branch predecessor, make sure that it branches
1539     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1540     if (Pred1Br->getSuccessor(0) == BB &&
1541         Pred1Br->getSuccessor(1) == Pred2) {
1542       IfTrue = Pred1;
1543       IfFalse = Pred2;
1544     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1545                Pred1Br->getSuccessor(1) == BB) {
1546       IfTrue = Pred2;
1547       IfFalse = Pred1;
1548     } else {
1549       // We know that one arm of the conditional goes to BB, so the other must
1550       // go somewhere unrelated, and this must not be an "if statement".
1551       return nullptr;
1552     }
1553 
1554     return Pred1Br;
1555   }
1556 
1557   // Ok, if we got here, both predecessors end with an unconditional branch to
1558   // BB.  Don't panic!  If both blocks only have a single (identical)
1559   // predecessor, and THAT is a conditional branch, then we're all ok!
1560   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1561   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1562     return nullptr;
1563 
1564   // Otherwise, if this is a conditional branch, then we can use it!
1565   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1566   if (!BI) return nullptr;
1567 
1568   assert(BI->isConditional() && "Two successors but not conditional?");
1569   if (BI->getSuccessor(0) == Pred1) {
1570     IfTrue = Pred1;
1571     IfFalse = Pred2;
1572   } else {
1573     IfTrue = Pred2;
1574     IfFalse = Pred1;
1575   }
1576   return BI;
1577 }
1578 
1579 // After creating a control flow hub, the operands of PHINodes in an outgoing
1580 // block Out no longer match the predecessors of that block. Predecessors of Out
1581 // that are incoming blocks to the hub are now replaced by just one edge from
1582 // the hub. To match this new control flow, the corresponding values from each
1583 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1584 //
1585 // This operation cannot be performed with SSAUpdater, because it involves one
1586 // new use: If the block Out is in the list of Incoming blocks, then the newly
1587 // created PHI in the Hub will use itself along that edge from Out to Hub.
1588 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1589                           const SetVector<BasicBlock *> &Incoming,
1590                           BasicBlock *FirstGuardBlock) {
1591   auto I = Out->begin();
1592   while (I != Out->end() && isa<PHINode>(I)) {
1593     auto Phi = cast<PHINode>(I);
1594     auto NewPhi =
1595         PHINode::Create(Phi->getType(), Incoming.size(),
1596                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1597     for (auto In : Incoming) {
1598       Value *V = UndefValue::get(Phi->getType());
1599       if (In == Out) {
1600         V = NewPhi;
1601       } else if (Phi->getBasicBlockIndex(In) != -1) {
1602         V = Phi->removeIncomingValue(In, false);
1603       }
1604       NewPhi->addIncoming(V, In);
1605     }
1606     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1607     if (Phi->getNumOperands() == 0) {
1608       Phi->replaceAllUsesWith(NewPhi);
1609       I = Phi->eraseFromParent();
1610       continue;
1611     }
1612     Phi->addIncoming(NewPhi, GuardBlock);
1613     ++I;
1614   }
1615 }
1616 
1617 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1618 using BBSetVector = SetVector<BasicBlock *>;
1619 
1620 // Redirects the terminator of the incoming block to the first guard
1621 // block in the hub. The condition of the original terminator (if it
1622 // was conditional) and its original successors are returned as a
1623 // tuple <condition, succ0, succ1>. The function additionally filters
1624 // out successors that are not in the set of outgoing blocks.
1625 //
1626 // - condition is non-null iff the branch is conditional.
1627 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1628 // - Succ2 is non-null iff condition is non-null and the fallthrough
1629 //         target is an outgoing block.
1630 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1631 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1632               const BBSetVector &Outgoing) {
1633   auto Branch = cast<BranchInst>(BB->getTerminator());
1634   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1635 
1636   BasicBlock *Succ0 = Branch->getSuccessor(0);
1637   BasicBlock *Succ1 = nullptr;
1638   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1639 
1640   if (Branch->isUnconditional()) {
1641     Branch->setSuccessor(0, FirstGuardBlock);
1642     assert(Succ0);
1643   } else {
1644     Succ1 = Branch->getSuccessor(1);
1645     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1646     assert(Succ0 || Succ1);
1647     if (Succ0 && !Succ1) {
1648       Branch->setSuccessor(0, FirstGuardBlock);
1649     } else if (Succ1 && !Succ0) {
1650       Branch->setSuccessor(1, FirstGuardBlock);
1651     } else {
1652       Branch->eraseFromParent();
1653       BranchInst::Create(FirstGuardBlock, BB);
1654     }
1655   }
1656 
1657   assert(Succ0 || Succ1);
1658   return std::make_tuple(Condition, Succ0, Succ1);
1659 }
1660 
1661 // Capture the existing control flow as guard predicates, and redirect
1662 // control flow from every incoming block to the first guard block in
1663 // the hub.
1664 //
1665 // There is one guard predicate for each outgoing block OutBB. The
1666 // predicate is a PHINode with one input for each InBB which
1667 // represents whether the hub should transfer control flow to OutBB if
1668 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1669 // evaluates them in the same order as the Outgoing set-vector, and
1670 // control branches to the first outgoing block whose predicate
1671 // evaluates to true.
1672 static void convertToGuardPredicates(
1673     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1674     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1675     const BBSetVector &Outgoing) {
1676   auto &Context = Incoming.front()->getContext();
1677   auto BoolTrue = ConstantInt::getTrue(Context);
1678   auto BoolFalse = ConstantInt::getFalse(Context);
1679 
1680   // The predicate for the last outgoing is trivially true, and so we
1681   // process only the first N-1 successors.
1682   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1683     auto Out = Outgoing[i];
1684     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1685     auto Phi =
1686         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1687                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1688     GuardPredicates[Out] = Phi;
1689   }
1690 
1691   for (auto In : Incoming) {
1692     Value *Condition;
1693     BasicBlock *Succ0;
1694     BasicBlock *Succ1;
1695     std::tie(Condition, Succ0, Succ1) =
1696         redirectToHub(In, FirstGuardBlock, Outgoing);
1697 
1698     // Optimization: Consider an incoming block A with both successors
1699     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1700     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1701     // first in the loop below, control will branch to Succ0 using the
1702     // corresponding predicate. But if that branch is not taken, then
1703     // control must reach Succ1, which means that the predicate for
1704     // Succ1 is always true.
1705     bool OneSuccessorDone = false;
1706     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1707       auto Out = Outgoing[i];
1708       auto Phi = GuardPredicates[Out];
1709       if (Out != Succ0 && Out != Succ1) {
1710         Phi->addIncoming(BoolFalse, In);
1711         continue;
1712       }
1713       // Optimization: When only one successor is an outgoing block,
1714       // the predicate is always true.
1715       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1716         Phi->addIncoming(BoolTrue, In);
1717         continue;
1718       }
1719       assert(Succ0 && Succ1);
1720       OneSuccessorDone = true;
1721       if (Out == Succ0) {
1722         Phi->addIncoming(Condition, In);
1723         continue;
1724       }
1725       auto Inverted = invertCondition(Condition);
1726       DeletionCandidates.push_back(Condition);
1727       Phi->addIncoming(Inverted, In);
1728     }
1729   }
1730 }
1731 
1732 // For each outgoing block OutBB, create a guard block in the Hub. The
1733 // first guard block was already created outside, and available as the
1734 // first element in the vector of guard blocks.
1735 //
1736 // Each guard block terminates in a conditional branch that transfers
1737 // control to the corresponding outgoing block or the next guard
1738 // block. The last guard block has two outgoing blocks as successors
1739 // since the condition for the final outgoing block is trivially
1740 // true. So we create one less block (including the first guard block)
1741 // than the number of outgoing blocks.
1742 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1743                               Function *F, const BBSetVector &Outgoing,
1744                               BBPredicates &GuardPredicates, StringRef Prefix) {
1745   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1746     GuardBlocks.push_back(
1747         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1748   }
1749   assert(GuardBlocks.size() == GuardPredicates.size());
1750 
1751   // To help keep the loop simple, temporarily append the last
1752   // outgoing block to the list of guard blocks.
1753   GuardBlocks.push_back(Outgoing.back());
1754 
1755   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1756     auto Out = Outgoing[i];
1757     assert(GuardPredicates.count(Out));
1758     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1759                        GuardBlocks[i]);
1760   }
1761 
1762   // Remove the last block from the guard list.
1763   GuardBlocks.pop_back();
1764 }
1765 
1766 BasicBlock *llvm::CreateControlFlowHub(
1767     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1768     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1769     const StringRef Prefix) {
1770   auto F = Incoming.front()->getParent();
1771   auto FirstGuardBlock =
1772       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1773 
1774   SmallVector<DominatorTree::UpdateType, 16> Updates;
1775   if (DTU) {
1776     for (auto In : Incoming) {
1777       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1778       for (auto Succ : successors(In)) {
1779         if (Outgoing.count(Succ))
1780           Updates.push_back({DominatorTree::Delete, In, Succ});
1781       }
1782     }
1783   }
1784 
1785   BBPredicates GuardPredicates;
1786   SmallVector<WeakVH, 8> DeletionCandidates;
1787   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1788                            Incoming, Outgoing);
1789 
1790   GuardBlocks.push_back(FirstGuardBlock);
1791   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1792 
1793   // Update the PHINodes in each outgoing block to match the new control flow.
1794   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1795     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1796   }
1797   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1798 
1799   if (DTU) {
1800     int NumGuards = GuardBlocks.size();
1801     assert((int)Outgoing.size() == NumGuards + 1);
1802     for (int i = 0; i != NumGuards - 1; ++i) {
1803       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1804       Updates.push_back(
1805           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1806     }
1807     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1808                        Outgoing[NumGuards - 1]});
1809     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1810                        Outgoing[NumGuards]});
1811     DTU->applyUpdates(Updates);
1812   }
1813 
1814   for (auto I : DeletionCandidates) {
1815     if (I->use_empty())
1816       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1817         Inst->eraseFromParent();
1818   }
1819 
1820   return FirstGuardBlock;
1821 }
1822