xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 480093f4440d54b30b3025afeac24b48f2ba7a2e)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132 
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135 
136   return !DeadBlocks.empty();
137 }
138 
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin())) return;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154 }
155 
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157   // Recursively deleting a PHI may cause multiple PHIs to be deleted
158   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159   SmallVector<WeakTrackingVH, 8> PHIs;
160   for (PHINode &PN : BB->phis())
161     PHIs.push_back(&PN);
162 
163   bool Changed = false;
164   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
167 
168   return Changed;
169 }
170 
171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
173                                      MemoryDependenceResults *MemDep,
174                                      bool PredecessorWithTwoSuccessors) {
175   if (BB->hasAddressTaken())
176     return false;
177 
178   // Can't merge if there are multiple predecessors, or no predecessors.
179   BasicBlock *PredBB = BB->getUniquePredecessor();
180   if (!PredBB) return false;
181 
182   // Don't break self-loops.
183   if (PredBB == BB) return false;
184   // Don't break unwinding instructions.
185   if (PredBB->getTerminator()->isExceptionalTerminator())
186     return false;
187 
188   // Can't merge if there are multiple distinct successors.
189   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
190     return false;
191 
192   // Currently only allow PredBB to have two predecessors, one being BB.
193   // Update BI to branch to BB's only successor instead of BB.
194   BranchInst *PredBB_BI;
195   BasicBlock *NewSucc = nullptr;
196   unsigned FallThruPath;
197   if (PredecessorWithTwoSuccessors) {
198     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
199       return false;
200     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
201     if (!BB_JmpI || !BB_JmpI->isUnconditional())
202       return false;
203     NewSucc = BB_JmpI->getSuccessor(0);
204     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
205   }
206 
207   // Can't merge if there is PHI loop.
208   for (PHINode &PN : BB->phis())
209     for (Value *IncValue : PN.incoming_values())
210       if (IncValue == &PN)
211         return false;
212 
213   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
214                     << PredBB->getName() << "\n");
215 
216   // Begin by getting rid of unneeded PHIs.
217   SmallVector<AssertingVH<Value>, 4> IncomingValues;
218   if (isa<PHINode>(BB->front())) {
219     for (PHINode &PN : BB->phis())
220       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
221           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
222         IncomingValues.push_back(PN.getIncomingValue(0));
223     FoldSingleEntryPHINodes(BB, MemDep);
224   }
225 
226   // DTU update: Collect all the edges that exit BB.
227   // These dominator edges will be redirected from Pred.
228   std::vector<DominatorTree::UpdateType> Updates;
229   if (DTU) {
230     Updates.reserve(1 + (2 * succ_size(BB)));
231     // Add insert edges first. Experimentally, for the particular case of two
232     // blocks that can be merged, with a single successor and single predecessor
233     // respectively, it is beneficial to have all insert updates first. Deleting
234     // edges first may lead to unreachable blocks, followed by inserting edges
235     // making the blocks reachable again. Such DT updates lead to high compile
236     // times. We add inserts before deletes here to reduce compile time.
237     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
238       // This successor of BB may already have PredBB as a predecessor.
239       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
240         Updates.push_back({DominatorTree::Insert, PredBB, *I});
241     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
242       Updates.push_back({DominatorTree::Delete, BB, *I});
243     Updates.push_back({DominatorTree::Delete, PredBB, BB});
244   }
245 
246   Instruction *PTI = PredBB->getTerminator();
247   Instruction *STI = BB->getTerminator();
248   Instruction *Start = &*BB->begin();
249   // If there's nothing to move, mark the starting instruction as the last
250   // instruction in the block. Terminator instruction is handled separately.
251   if (Start == STI)
252     Start = PTI;
253 
254   // Move all definitions in the successor to the predecessor...
255   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
256                                BB->begin(), STI->getIterator());
257 
258   if (MSSAU)
259     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
260 
261   // Make all PHI nodes that referred to BB now refer to Pred as their
262   // source...
263   BB->replaceAllUsesWith(PredBB);
264 
265   if (PredecessorWithTwoSuccessors) {
266     // Delete the unconditional branch from BB.
267     BB->getInstList().pop_back();
268 
269     // Update branch in the predecessor.
270     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
271   } else {
272     // Delete the unconditional branch from the predecessor.
273     PredBB->getInstList().pop_back();
274 
275     // Move terminator instruction.
276     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
277 
278     // Terminator may be a memory accessing instruction too.
279     if (MSSAU)
280       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
281               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
282         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
283   }
284   // Add unreachable to now empty BB.
285   new UnreachableInst(BB->getContext(), BB);
286 
287   // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
288   // do that since we might end up with redundant dbg.values describing the
289   // entry PHI node post-splice.
290   RemoveRedundantDbgInstrs(PredBB);
291 
292   // Inherit predecessors name if it exists.
293   if (!PredBB->hasName())
294     PredBB->takeName(BB);
295 
296   if (LI)
297     LI->removeBlock(BB);
298 
299   if (MemDep)
300     MemDep->invalidateCachedPredecessors();
301 
302   // Finally, erase the old block and update dominator info.
303   if (DTU) {
304     assert(BB->getInstList().size() == 1 &&
305            isa<UnreachableInst>(BB->getTerminator()) &&
306            "The successor list of BB isn't empty before "
307            "applying corresponding DTU updates.");
308     DTU->applyUpdatesPermissive(Updates);
309     DTU->deleteBB(BB);
310   } else {
311     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
312   }
313 
314   return true;
315 }
316 
317 /// Remove redundant instructions within sequences of consecutive dbg.value
318 /// instructions. This is done using a backward scan to keep the last dbg.value
319 /// describing a specific variable/fragment.
320 ///
321 /// BackwardScan strategy:
322 /// ----------------------
323 /// Given a sequence of consecutive DbgValueInst like this
324 ///
325 ///   dbg.value ..., "x", FragmentX1  (*)
326 ///   dbg.value ..., "y", FragmentY1
327 ///   dbg.value ..., "x", FragmentX2
328 ///   dbg.value ..., "x", FragmentX1  (**)
329 ///
330 /// then the instruction marked with (*) can be removed (it is guaranteed to be
331 /// obsoleted by the instruction marked with (**) as the latter instruction is
332 /// describing the same variable using the same fragment info).
333 ///
334 /// Possible improvements:
335 /// - Check fully overlapping fragments and not only identical fragments.
336 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
337 ///   instructions being part of the sequence of consecutive instructions.
338 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
339   SmallVector<DbgValueInst *, 8> ToBeRemoved;
340   SmallDenseSet<DebugVariable> VariableSet;
341   for (auto &I : reverse(*BB)) {
342     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
343       DebugVariable Key(DVI->getVariable(),
344                         DVI->getExpression(),
345                         DVI->getDebugLoc()->getInlinedAt());
346       auto R = VariableSet.insert(Key);
347       // If the same variable fragment is described more than once it is enough
348       // to keep the last one (i.e. the first found since we for reverse
349       // iteration).
350       if (!R.second)
351         ToBeRemoved.push_back(DVI);
352       continue;
353     }
354     // Sequence with consecutive dbg.value instrs ended. Clear the map to
355     // restart identifying redundant instructions if case we find another
356     // dbg.value sequence.
357     VariableSet.clear();
358   }
359 
360   for (auto &Instr : ToBeRemoved)
361     Instr->eraseFromParent();
362 
363   return !ToBeRemoved.empty();
364 }
365 
366 /// Remove redundant dbg.value instructions using a forward scan. This can
367 /// remove a dbg.value instruction that is redundant due to indicating that a
368 /// variable has the same value as already being indicated by an earlier
369 /// dbg.value.
370 ///
371 /// ForwardScan strategy:
372 /// ---------------------
373 /// Given two identical dbg.value instructions, separated by a block of
374 /// instructions that isn't describing the same variable, like this
375 ///
376 ///   dbg.value X1, "x", FragmentX1  (**)
377 ///   <block of instructions, none being "dbg.value ..., "x", ...">
378 ///   dbg.value X1, "x", FragmentX1  (*)
379 ///
380 /// then the instruction marked with (*) can be removed. Variable "x" is already
381 /// described as being mapped to the SSA value X1.
382 ///
383 /// Possible improvements:
384 /// - Keep track of non-overlapping fragments.
385 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
386   SmallVector<DbgValueInst *, 8> ToBeRemoved;
387   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
388   for (auto &I : *BB) {
389     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
390       DebugVariable Key(DVI->getVariable(),
391                         NoneType(),
392                         DVI->getDebugLoc()->getInlinedAt());
393       auto VMI = VariableMap.find(Key);
394       // Update the map if we found a new value/expression describing the
395       // variable, or if the variable wasn't mapped already.
396       if (VMI == VariableMap.end() ||
397           VMI->second.first != DVI->getValue() ||
398           VMI->second.second != DVI->getExpression()) {
399         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
400         continue;
401       }
402       // Found an identical mapping. Remember the instruction for later removal.
403       ToBeRemoved.push_back(DVI);
404     }
405   }
406 
407   for (auto &Instr : ToBeRemoved)
408     Instr->eraseFromParent();
409 
410   return !ToBeRemoved.empty();
411 }
412 
413 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
414   bool MadeChanges = false;
415   // By using the "backward scan" strategy before the "forward scan" strategy we
416   // can remove both dbg.value (2) and (3) in a situation like this:
417   //
418   //   (1) dbg.value V1, "x", DIExpression()
419   //       ...
420   //   (2) dbg.value V2, "x", DIExpression()
421   //   (3) dbg.value V1, "x", DIExpression()
422   //
423   // The backward scan will remove (2), it is made obsolete by (3). After
424   // getting (2) out of the way, the foward scan will remove (3) since "x"
425   // already is described as having the value V1 at (1).
426   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
427   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
428 
429   if (MadeChanges)
430     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
431                       << BB->getName() << "\n");
432   return MadeChanges;
433 }
434 
435 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
436                                 BasicBlock::iterator &BI, Value *V) {
437   Instruction &I = *BI;
438   // Replaces all of the uses of the instruction with uses of the value
439   I.replaceAllUsesWith(V);
440 
441   // Make sure to propagate a name if there is one already.
442   if (I.hasName() && !V->hasName())
443     V->takeName(&I);
444 
445   // Delete the unnecessary instruction now...
446   BI = BIL.erase(BI);
447 }
448 
449 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
450                                BasicBlock::iterator &BI, Instruction *I) {
451   assert(I->getParent() == nullptr &&
452          "ReplaceInstWithInst: Instruction already inserted into basic block!");
453 
454   // Copy debug location to newly added instruction, if it wasn't already set
455   // by the caller.
456   if (!I->getDebugLoc())
457     I->setDebugLoc(BI->getDebugLoc());
458 
459   // Insert the new instruction into the basic block...
460   BasicBlock::iterator New = BIL.insert(BI, I);
461 
462   // Replace all uses of the old instruction, and delete it.
463   ReplaceInstWithValue(BIL, BI, I);
464 
465   // Move BI back to point to the newly inserted instruction
466   BI = New;
467 }
468 
469 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
470   BasicBlock::iterator BI(From);
471   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
472 }
473 
474 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
475                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
476   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
477 
478   // If this is a critical edge, let SplitCriticalEdge do it.
479   Instruction *LatchTerm = BB->getTerminator();
480   if (SplitCriticalEdge(
481           LatchTerm, SuccNum,
482           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
483     return LatchTerm->getSuccessor(SuccNum);
484 
485   // If the edge isn't critical, then BB has a single successor or Succ has a
486   // single pred.  Split the block.
487   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
488     // If the successor only has a single pred, split the top of the successor
489     // block.
490     assert(SP == BB && "CFG broken");
491     SP = nullptr;
492     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
493   }
494 
495   // Otherwise, if BB has a single successor, split it at the bottom of the
496   // block.
497   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
498          "Should have a single succ!");
499   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
500 }
501 
502 unsigned
503 llvm::SplitAllCriticalEdges(Function &F,
504                             const CriticalEdgeSplittingOptions &Options) {
505   unsigned NumBroken = 0;
506   for (BasicBlock &BB : F) {
507     Instruction *TI = BB.getTerminator();
508     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
509       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
510         if (SplitCriticalEdge(TI, i, Options))
511           ++NumBroken;
512   }
513   return NumBroken;
514 }
515 
516 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
517                              DominatorTree *DT, LoopInfo *LI,
518                              MemorySSAUpdater *MSSAU, const Twine &BBName) {
519   BasicBlock::iterator SplitIt = SplitPt->getIterator();
520   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
521     ++SplitIt;
522   std::string Name = BBName.str();
523   BasicBlock *New = Old->splitBasicBlock(
524       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
525 
526   // The new block lives in whichever loop the old one did. This preserves
527   // LCSSA as well, because we force the split point to be after any PHI nodes.
528   if (LI)
529     if (Loop *L = LI->getLoopFor(Old))
530       L->addBasicBlockToLoop(New, *LI);
531 
532   if (DT)
533     // Old dominates New. New node dominates all other nodes dominated by Old.
534     if (DomTreeNode *OldNode = DT->getNode(Old)) {
535       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
536 
537       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
538       for (DomTreeNode *I : Children)
539         DT->changeImmediateDominator(I, NewNode);
540     }
541 
542   // Move MemoryAccesses still tracked in Old, but part of New now.
543   // Update accesses in successor blocks accordingly.
544   if (MSSAU)
545     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
546 
547   return New;
548 }
549 
550 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
551 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
552                                       ArrayRef<BasicBlock *> Preds,
553                                       DominatorTree *DT, LoopInfo *LI,
554                                       MemorySSAUpdater *MSSAU,
555                                       bool PreserveLCSSA, bool &HasLoopExit) {
556   // Update dominator tree if available.
557   if (DT) {
558     if (OldBB == DT->getRootNode()->getBlock()) {
559       assert(NewBB == &NewBB->getParent()->getEntryBlock());
560       DT->setNewRoot(NewBB);
561     } else {
562       // Split block expects NewBB to have a non-empty set of predecessors.
563       DT->splitBlock(NewBB);
564     }
565   }
566 
567   // Update MemoryPhis after split if MemorySSA is available
568   if (MSSAU)
569     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
570 
571   // The rest of the logic is only relevant for updating the loop structures.
572   if (!LI)
573     return;
574 
575   assert(DT && "DT should be available to update LoopInfo!");
576   Loop *L = LI->getLoopFor(OldBB);
577 
578   // If we need to preserve loop analyses, collect some information about how
579   // this split will affect loops.
580   bool IsLoopEntry = !!L;
581   bool SplitMakesNewLoopHeader = false;
582   for (BasicBlock *Pred : Preds) {
583     // Preds that are not reachable from entry should not be used to identify if
584     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
585     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
586     // as true and make the NewBB the header of some loop. This breaks LI.
587     if (!DT->isReachableFromEntry(Pred))
588       continue;
589     // If we need to preserve LCSSA, determine if any of the preds is a loop
590     // exit.
591     if (PreserveLCSSA)
592       if (Loop *PL = LI->getLoopFor(Pred))
593         if (!PL->contains(OldBB))
594           HasLoopExit = true;
595 
596     // If we need to preserve LoopInfo, note whether any of the preds crosses
597     // an interesting loop boundary.
598     if (!L)
599       continue;
600     if (L->contains(Pred))
601       IsLoopEntry = false;
602     else
603       SplitMakesNewLoopHeader = true;
604   }
605 
606   // Unless we have a loop for OldBB, nothing else to do here.
607   if (!L)
608     return;
609 
610   if (IsLoopEntry) {
611     // Add the new block to the nearest enclosing loop (and not an adjacent
612     // loop). To find this, examine each of the predecessors and determine which
613     // loops enclose them, and select the most-nested loop which contains the
614     // loop containing the block being split.
615     Loop *InnermostPredLoop = nullptr;
616     for (BasicBlock *Pred : Preds) {
617       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
618         // Seek a loop which actually contains the block being split (to avoid
619         // adjacent loops).
620         while (PredLoop && !PredLoop->contains(OldBB))
621           PredLoop = PredLoop->getParentLoop();
622 
623         // Select the most-nested of these loops which contains the block.
624         if (PredLoop && PredLoop->contains(OldBB) &&
625             (!InnermostPredLoop ||
626              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
627           InnermostPredLoop = PredLoop;
628       }
629     }
630 
631     if (InnermostPredLoop)
632       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
633   } else {
634     L->addBasicBlockToLoop(NewBB, *LI);
635     if (SplitMakesNewLoopHeader)
636       L->moveToHeader(NewBB);
637   }
638 }
639 
640 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
641 /// This also updates AliasAnalysis, if available.
642 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
643                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
644                            bool HasLoopExit) {
645   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
646   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
647   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
648     PHINode *PN = cast<PHINode>(I++);
649 
650     // Check to see if all of the values coming in are the same.  If so, we
651     // don't need to create a new PHI node, unless it's needed for LCSSA.
652     Value *InVal = nullptr;
653     if (!HasLoopExit) {
654       InVal = PN->getIncomingValueForBlock(Preds[0]);
655       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
656         if (!PredSet.count(PN->getIncomingBlock(i)))
657           continue;
658         if (!InVal)
659           InVal = PN->getIncomingValue(i);
660         else if (InVal != PN->getIncomingValue(i)) {
661           InVal = nullptr;
662           break;
663         }
664       }
665     }
666 
667     if (InVal) {
668       // If all incoming values for the new PHI would be the same, just don't
669       // make a new PHI.  Instead, just remove the incoming values from the old
670       // PHI.
671 
672       // NOTE! This loop walks backwards for a reason! First off, this minimizes
673       // the cost of removal if we end up removing a large number of values, and
674       // second off, this ensures that the indices for the incoming values
675       // aren't invalidated when we remove one.
676       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
677         if (PredSet.count(PN->getIncomingBlock(i)))
678           PN->removeIncomingValue(i, false);
679 
680       // Add an incoming value to the PHI node in the loop for the preheader
681       // edge.
682       PN->addIncoming(InVal, NewBB);
683       continue;
684     }
685 
686     // If the values coming into the block are not the same, we need a new
687     // PHI.
688     // Create the new PHI node, insert it into NewBB at the end of the block
689     PHINode *NewPHI =
690         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
691 
692     // NOTE! This loop walks backwards for a reason! First off, this minimizes
693     // the cost of removal if we end up removing a large number of values, and
694     // second off, this ensures that the indices for the incoming values aren't
695     // invalidated when we remove one.
696     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
697       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
698       if (PredSet.count(IncomingBB)) {
699         Value *V = PN->removeIncomingValue(i, false);
700         NewPHI->addIncoming(V, IncomingBB);
701       }
702     }
703 
704     PN->addIncoming(NewPHI, NewBB);
705   }
706 }
707 
708 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
709                                          ArrayRef<BasicBlock *> Preds,
710                                          const char *Suffix, DominatorTree *DT,
711                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
712                                          bool PreserveLCSSA) {
713   // Do not attempt to split that which cannot be split.
714   if (!BB->canSplitPredecessors())
715     return nullptr;
716 
717   // For the landingpads we need to act a bit differently.
718   // Delegate this work to the SplitLandingPadPredecessors.
719   if (BB->isLandingPad()) {
720     SmallVector<BasicBlock*, 2> NewBBs;
721     std::string NewName = std::string(Suffix) + ".split-lp";
722 
723     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
724                                 LI, MSSAU, PreserveLCSSA);
725     return NewBBs[0];
726   }
727 
728   // Create new basic block, insert right before the original block.
729   BasicBlock *NewBB = BasicBlock::Create(
730       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
731 
732   // The new block unconditionally branches to the old block.
733   BranchInst *BI = BranchInst::Create(BB, NewBB);
734   // Splitting the predecessors of a loop header creates a preheader block.
735   if (LI && LI->isLoopHeader(BB))
736     // Using the loop start line number prevents debuggers stepping into the
737     // loop body for this instruction.
738     BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
739   else
740     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
741 
742   // Move the edges from Preds to point to NewBB instead of BB.
743   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
744     // This is slightly more strict than necessary; the minimum requirement
745     // is that there be no more than one indirectbr branching to BB. And
746     // all BlockAddress uses would need to be updated.
747     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
748            "Cannot split an edge from an IndirectBrInst");
749     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
750            "Cannot split an edge from a CallBrInst");
751     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
752   }
753 
754   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
755   // node becomes an incoming value for BB's phi node.  However, if the Preds
756   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
757   // account for the newly created predecessor.
758   if (Preds.empty()) {
759     // Insert dummy values as the incoming value.
760     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
761       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
762   }
763 
764   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
765   bool HasLoopExit = false;
766   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
767                             HasLoopExit);
768 
769   if (!Preds.empty()) {
770     // Update the PHI nodes in BB with the values coming from NewBB.
771     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
772   }
773 
774   return NewBB;
775 }
776 
777 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
778                                        ArrayRef<BasicBlock *> Preds,
779                                        const char *Suffix1, const char *Suffix2,
780                                        SmallVectorImpl<BasicBlock *> &NewBBs,
781                                        DominatorTree *DT, LoopInfo *LI,
782                                        MemorySSAUpdater *MSSAU,
783                                        bool PreserveLCSSA) {
784   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
785 
786   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
787   // it right before the original block.
788   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
789                                           OrigBB->getName() + Suffix1,
790                                           OrigBB->getParent(), OrigBB);
791   NewBBs.push_back(NewBB1);
792 
793   // The new block unconditionally branches to the old block.
794   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
795   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
796 
797   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
798   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
799     // This is slightly more strict than necessary; the minimum requirement
800     // is that there be no more than one indirectbr branching to BB. And
801     // all BlockAddress uses would need to be updated.
802     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
803            "Cannot split an edge from an IndirectBrInst");
804     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
805   }
806 
807   bool HasLoopExit = false;
808   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
809                             HasLoopExit);
810 
811   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
812   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
813 
814   // Move the remaining edges from OrigBB to point to NewBB2.
815   SmallVector<BasicBlock*, 8> NewBB2Preds;
816   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
817        i != e; ) {
818     BasicBlock *Pred = *i++;
819     if (Pred == NewBB1) continue;
820     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
821            "Cannot split an edge from an IndirectBrInst");
822     NewBB2Preds.push_back(Pred);
823     e = pred_end(OrigBB);
824   }
825 
826   BasicBlock *NewBB2 = nullptr;
827   if (!NewBB2Preds.empty()) {
828     // Create another basic block for the rest of OrigBB's predecessors.
829     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
830                                 OrigBB->getName() + Suffix2,
831                                 OrigBB->getParent(), OrigBB);
832     NewBBs.push_back(NewBB2);
833 
834     // The new block unconditionally branches to the old block.
835     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
836     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
837 
838     // Move the remaining edges from OrigBB to point to NewBB2.
839     for (BasicBlock *NewBB2Pred : NewBB2Preds)
840       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
841 
842     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
843     HasLoopExit = false;
844     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
845                               PreserveLCSSA, HasLoopExit);
846 
847     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
848     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
849   }
850 
851   LandingPadInst *LPad = OrigBB->getLandingPadInst();
852   Instruction *Clone1 = LPad->clone();
853   Clone1->setName(Twine("lpad") + Suffix1);
854   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
855 
856   if (NewBB2) {
857     Instruction *Clone2 = LPad->clone();
858     Clone2->setName(Twine("lpad") + Suffix2);
859     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
860 
861     // Create a PHI node for the two cloned landingpad instructions only
862     // if the original landingpad instruction has some uses.
863     if (!LPad->use_empty()) {
864       assert(!LPad->getType()->isTokenTy() &&
865              "Split cannot be applied if LPad is token type. Otherwise an "
866              "invalid PHINode of token type would be created.");
867       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
868       PN->addIncoming(Clone1, NewBB1);
869       PN->addIncoming(Clone2, NewBB2);
870       LPad->replaceAllUsesWith(PN);
871     }
872     LPad->eraseFromParent();
873   } else {
874     // There is no second clone. Just replace the landing pad with the first
875     // clone.
876     LPad->replaceAllUsesWith(Clone1);
877     LPad->eraseFromParent();
878   }
879 }
880 
881 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
882                                              BasicBlock *Pred,
883                                              DomTreeUpdater *DTU) {
884   Instruction *UncondBranch = Pred->getTerminator();
885   // Clone the return and add it to the end of the predecessor.
886   Instruction *NewRet = RI->clone();
887   Pred->getInstList().push_back(NewRet);
888 
889   // If the return instruction returns a value, and if the value was a
890   // PHI node in "BB", propagate the right value into the return.
891   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
892        i != e; ++i) {
893     Value *V = *i;
894     Instruction *NewBC = nullptr;
895     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
896       // Return value might be bitcasted. Clone and insert it before the
897       // return instruction.
898       V = BCI->getOperand(0);
899       NewBC = BCI->clone();
900       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
901       *i = NewBC;
902     }
903     if (PHINode *PN = dyn_cast<PHINode>(V)) {
904       if (PN->getParent() == BB) {
905         if (NewBC)
906           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
907         else
908           *i = PN->getIncomingValueForBlock(Pred);
909       }
910     }
911   }
912 
913   // Update any PHI nodes in the returning block to realize that we no
914   // longer branch to them.
915   BB->removePredecessor(Pred);
916   UncondBranch->eraseFromParent();
917 
918   if (DTU)
919     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
920 
921   return cast<ReturnInst>(NewRet);
922 }
923 
924 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
925                                              Instruction *SplitBefore,
926                                              bool Unreachable,
927                                              MDNode *BranchWeights,
928                                              DominatorTree *DT, LoopInfo *LI,
929                                              BasicBlock *ThenBlock) {
930   BasicBlock *Head = SplitBefore->getParent();
931   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
932   Instruction *HeadOldTerm = Head->getTerminator();
933   LLVMContext &C = Head->getContext();
934   Instruction *CheckTerm;
935   bool CreateThenBlock = (ThenBlock == nullptr);
936   if (CreateThenBlock) {
937     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
938     if (Unreachable)
939       CheckTerm = new UnreachableInst(C, ThenBlock);
940     else
941       CheckTerm = BranchInst::Create(Tail, ThenBlock);
942     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
943   } else
944     CheckTerm = ThenBlock->getTerminator();
945   BranchInst *HeadNewTerm =
946     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
947   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
948   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
949 
950   if (DT) {
951     if (DomTreeNode *OldNode = DT->getNode(Head)) {
952       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
953 
954       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
955       for (DomTreeNode *Child : Children)
956         DT->changeImmediateDominator(Child, NewNode);
957 
958       // Head dominates ThenBlock.
959       if (CreateThenBlock)
960         DT->addNewBlock(ThenBlock, Head);
961       else
962         DT->changeImmediateDominator(ThenBlock, Head);
963     }
964   }
965 
966   if (LI) {
967     if (Loop *L = LI->getLoopFor(Head)) {
968       L->addBasicBlockToLoop(ThenBlock, *LI);
969       L->addBasicBlockToLoop(Tail, *LI);
970     }
971   }
972 
973   return CheckTerm;
974 }
975 
976 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
977                                          Instruction **ThenTerm,
978                                          Instruction **ElseTerm,
979                                          MDNode *BranchWeights) {
980   BasicBlock *Head = SplitBefore->getParent();
981   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
982   Instruction *HeadOldTerm = Head->getTerminator();
983   LLVMContext &C = Head->getContext();
984   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
985   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
986   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
987   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
988   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
989   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
990   BranchInst *HeadNewTerm =
991     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
992   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
993   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
994 }
995 
996 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
997                              BasicBlock *&IfFalse) {
998   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
999   BasicBlock *Pred1 = nullptr;
1000   BasicBlock *Pred2 = nullptr;
1001 
1002   if (SomePHI) {
1003     if (SomePHI->getNumIncomingValues() != 2)
1004       return nullptr;
1005     Pred1 = SomePHI->getIncomingBlock(0);
1006     Pred2 = SomePHI->getIncomingBlock(1);
1007   } else {
1008     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1009     if (PI == PE) // No predecessor
1010       return nullptr;
1011     Pred1 = *PI++;
1012     if (PI == PE) // Only one predecessor
1013       return nullptr;
1014     Pred2 = *PI++;
1015     if (PI != PE) // More than two predecessors
1016       return nullptr;
1017   }
1018 
1019   // We can only handle branches.  Other control flow will be lowered to
1020   // branches if possible anyway.
1021   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1022   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1023   if (!Pred1Br || !Pred2Br)
1024     return nullptr;
1025 
1026   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1027   // either are.
1028   if (Pred2Br->isConditional()) {
1029     // If both branches are conditional, we don't have an "if statement".  In
1030     // reality, we could transform this case, but since the condition will be
1031     // required anyway, we stand no chance of eliminating it, so the xform is
1032     // probably not profitable.
1033     if (Pred1Br->isConditional())
1034       return nullptr;
1035 
1036     std::swap(Pred1, Pred2);
1037     std::swap(Pred1Br, Pred2Br);
1038   }
1039 
1040   if (Pred1Br->isConditional()) {
1041     // The only thing we have to watch out for here is to make sure that Pred2
1042     // doesn't have incoming edges from other blocks.  If it does, the condition
1043     // doesn't dominate BB.
1044     if (!Pred2->getSinglePredecessor())
1045       return nullptr;
1046 
1047     // If we found a conditional branch predecessor, make sure that it branches
1048     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1049     if (Pred1Br->getSuccessor(0) == BB &&
1050         Pred1Br->getSuccessor(1) == Pred2) {
1051       IfTrue = Pred1;
1052       IfFalse = Pred2;
1053     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1054                Pred1Br->getSuccessor(1) == BB) {
1055       IfTrue = Pred2;
1056       IfFalse = Pred1;
1057     } else {
1058       // We know that one arm of the conditional goes to BB, so the other must
1059       // go somewhere unrelated, and this must not be an "if statement".
1060       return nullptr;
1061     }
1062 
1063     return Pred1Br->getCondition();
1064   }
1065 
1066   // Ok, if we got here, both predecessors end with an unconditional branch to
1067   // BB.  Don't panic!  If both blocks only have a single (identical)
1068   // predecessor, and THAT is a conditional branch, then we're all ok!
1069   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1070   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1071     return nullptr;
1072 
1073   // Otherwise, if this is a conditional branch, then we can use it!
1074   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1075   if (!BI) return nullptr;
1076 
1077   assert(BI->isConditional() && "Two successors but not conditional?");
1078   if (BI->getSuccessor(0) == Pred1) {
1079     IfTrue = Pred1;
1080     IfFalse = Pred2;
1081   } else {
1082     IfTrue = Pred2;
1083     IfFalse = Pred1;
1084   }
1085   return BI->getCondition();
1086 }
1087