1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements straight-line strength reduction (SLSR). Unlike loop 10 // strength reduction, this algorithm is designed to reduce arithmetic 11 // redundancy in straight-line code instead of loops. It has proven to be 12 // effective in simplifying arithmetic statements derived from an unrolled loop. 13 // It can also simplify the logic of SeparateConstOffsetFromGEP. 14 // 15 // There are many optimizations we can perform in the domain of SLSR. This file 16 // for now contains only an initial step. Specifically, we look for strength 17 // reduction candidates in the following forms: 18 // 19 // Form 1: B + i * S 20 // Form 2: (B + i) * S 21 // Form 3: &B[i * S] 22 // 23 // where S is an integer variable, and i is a constant integer. If we found two 24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 25 // in a simpler way with respect to S1. For example, 26 // 27 // S1: X = B + i * S 28 // S2: Y = B + i' * S => X + (i' - i) * S 29 // 30 // S1: X = (B + i) * S 31 // S2: Y = (B + i') * S => X + (i' - i) * S 32 // 33 // S1: X = &B[i * S] 34 // S2: Y = &B[i' * S] => &X[(i' - i) * S] 35 // 36 // Note: (i' - i) * S is folded to the extent possible. 37 // 38 // This rewriting is in general a good idea. The code patterns we focus on 39 // usually come from loop unrolling, so (i' - i) * S is likely the same 40 // across iterations and can be reused. When that happens, the optimized form 41 // takes only one add starting from the second iteration. 42 // 43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has 44 // multiple bases, we choose to rewrite S2 with respect to its "immediate" 45 // basis, the basis that is the closest ancestor in the dominator tree. 46 // 47 // TODO: 48 // 49 // - Floating point arithmetics when fast math is enabled. 50 // 51 // - SLSR may decrease ILP at the architecture level. Targets that are very 52 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is 53 // left as future work. 54 // 55 // - When (i' - i) is constant but i and i' are not, we could still perform 56 // SLSR. 57 58 #include "llvm/ADT/APInt.h" 59 #include "llvm/ADT/DepthFirstIterator.h" 60 #include "llvm/ADT/SmallVector.h" 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/Analysis/ValueTracking.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/GetElementPtrTypeIterator.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instruction.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/Module.h" 75 #include "llvm/IR/Operator.h" 76 #include "llvm/IR/PatternMatch.h" 77 #include "llvm/IR/Type.h" 78 #include "llvm/IR/Value.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <limits> 86 #include <list> 87 #include <vector> 88 89 using namespace llvm; 90 using namespace PatternMatch; 91 92 static const unsigned UnknownAddressSpace = 93 std::numeric_limits<unsigned>::max(); 94 95 namespace { 96 97 class StraightLineStrengthReduce : public FunctionPass { 98 public: 99 // SLSR candidate. Such a candidate must be in one of the forms described in 100 // the header comments. 101 struct Candidate { 102 enum Kind { 103 Invalid, // reserved for the default constructor 104 Add, // B + i * S 105 Mul, // (B + i) * S 106 GEP, // &B[..][i * S][..] 107 }; 108 109 Candidate() = default; 110 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 111 Instruction *I) 112 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {} 113 114 Kind CandidateKind = Invalid; 115 116 const SCEV *Base = nullptr; 117 118 // Note that Index and Stride of a GEP candidate do not necessarily have the 119 // same integer type. In that case, during rewriting, Stride will be 120 // sign-extended or truncated to Index's type. 121 ConstantInt *Index = nullptr; 122 123 Value *Stride = nullptr; 124 125 // The instruction this candidate corresponds to. It helps us to rewrite a 126 // candidate with respect to its immediate basis. Note that one instruction 127 // can correspond to multiple candidates depending on how you associate the 128 // expression. For instance, 129 // 130 // (a + 1) * (b + 2) 131 // 132 // can be treated as 133 // 134 // <Base: a, Index: 1, Stride: b + 2> 135 // 136 // or 137 // 138 // <Base: b, Index: 2, Stride: a + 1> 139 Instruction *Ins = nullptr; 140 141 // Points to the immediate basis of this candidate, or nullptr if we cannot 142 // find any basis for this candidate. 143 Candidate *Basis = nullptr; 144 }; 145 146 static char ID; 147 148 StraightLineStrengthReduce() : FunctionPass(ID) { 149 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); 150 } 151 152 void getAnalysisUsage(AnalysisUsage &AU) const override { 153 AU.addRequired<DominatorTreeWrapperPass>(); 154 AU.addRequired<ScalarEvolutionWrapperPass>(); 155 AU.addRequired<TargetTransformInfoWrapperPass>(); 156 // We do not modify the shape of the CFG. 157 AU.setPreservesCFG(); 158 } 159 160 bool doInitialization(Module &M) override { 161 DL = &M.getDataLayout(); 162 return false; 163 } 164 165 bool runOnFunction(Function &F) override; 166 167 private: 168 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they 169 // share the same base and stride. 170 bool isBasisFor(const Candidate &Basis, const Candidate &C); 171 172 // Returns whether the candidate can be folded into an addressing mode. 173 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, 174 const DataLayout *DL); 175 176 // Returns true if C is already in a simplest form and not worth being 177 // rewritten. 178 bool isSimplestForm(const Candidate &C); 179 180 // Checks whether I is in a candidate form. If so, adds all the matching forms 181 // to Candidates, and tries to find the immediate basis for each of them. 182 void allocateCandidatesAndFindBasis(Instruction *I); 183 184 // Allocate candidates and find bases for Add instructions. 185 void allocateCandidatesAndFindBasisForAdd(Instruction *I); 186 187 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a 188 // candidate. 189 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, 190 Instruction *I); 191 // Allocate candidates and find bases for Mul instructions. 192 void allocateCandidatesAndFindBasisForMul(Instruction *I); 193 194 // Splits LHS into Base + Index and, if succeeds, calls 195 // allocateCandidatesAndFindBasis. 196 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, 197 Instruction *I); 198 199 // Allocate candidates and find bases for GetElementPtr instructions. 200 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); 201 202 // A helper function that scales Idx with ElementSize before invoking 203 // allocateCandidatesAndFindBasis. 204 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, 205 Value *S, uint64_t ElementSize, 206 Instruction *I); 207 208 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate 209 // basis. 210 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, 211 ConstantInt *Idx, Value *S, 212 Instruction *I); 213 214 // Rewrites candidate C with respect to Basis. 215 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); 216 217 // A helper function that factors ArrayIdx to a product of a stride and a 218 // constant index, and invokes allocateCandidatesAndFindBasis with the 219 // factorings. 220 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, 221 GetElementPtrInst *GEP); 222 223 // Emit code that computes the "bump" from Basis to C. If the candidate is a 224 // GEP and the bump is not divisible by the element size of the GEP, this 225 // function sets the BumpWithUglyGEP flag to notify its caller to bump the 226 // basis using an ugly GEP. 227 static Value *emitBump(const Candidate &Basis, const Candidate &C, 228 IRBuilder<> &Builder, const DataLayout *DL, 229 bool &BumpWithUglyGEP); 230 231 const DataLayout *DL = nullptr; 232 DominatorTree *DT = nullptr; 233 ScalarEvolution *SE; 234 TargetTransformInfo *TTI = nullptr; 235 std::list<Candidate> Candidates; 236 237 // Temporarily holds all instructions that are unlinked (but not deleted) by 238 // rewriteCandidateWithBasis. These instructions will be actually removed 239 // after all rewriting finishes. 240 std::vector<Instruction *> UnlinkedInstructions; 241 }; 242 243 } // end anonymous namespace 244 245 char StraightLineStrengthReduce::ID = 0; 246 247 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", 248 "Straight line strength reduction", false, false) 249 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 250 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 251 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 252 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", 253 "Straight line strength reduction", false, false) 254 255 FunctionPass *llvm::createStraightLineStrengthReducePass() { 256 return new StraightLineStrengthReduce(); 257 } 258 259 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, 260 const Candidate &C) { 261 return (Basis.Ins != C.Ins && // skip the same instruction 262 // They must have the same type too. Basis.Base == C.Base doesn't 263 // guarantee their types are the same (PR23975). 264 Basis.Ins->getType() == C.Ins->getType() && 265 // Basis must dominate C in order to rewrite C with respect to Basis. 266 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && 267 // They share the same base, stride, and candidate kind. 268 Basis.Base == C.Base && Basis.Stride == C.Stride && 269 Basis.CandidateKind == C.CandidateKind); 270 } 271 272 static bool isGEPFoldable(GetElementPtrInst *GEP, 273 const TargetTransformInfo *TTI) { 274 SmallVector<const Value*, 4> Indices; 275 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) 276 Indices.push_back(*I); 277 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), 278 Indices) == TargetTransformInfo::TCC_Free; 279 } 280 281 // Returns whether (Base + Index * Stride) can be folded to an addressing mode. 282 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, 283 TargetTransformInfo *TTI) { 284 // Index->getSExtValue() may crash if Index is wider than 64-bit. 285 return Index->getBitWidth() <= 64 && 286 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, 287 Index->getSExtValue(), UnknownAddressSpace); 288 } 289 290 bool StraightLineStrengthReduce::isFoldable(const Candidate &C, 291 TargetTransformInfo *TTI, 292 const DataLayout *DL) { 293 if (C.CandidateKind == Candidate::Add) 294 return isAddFoldable(C.Base, C.Index, C.Stride, TTI); 295 if (C.CandidateKind == Candidate::GEP) 296 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI); 297 return false; 298 } 299 300 // Returns true if GEP has zero or one non-zero index. 301 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { 302 unsigned NumNonZeroIndices = 0; 303 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { 304 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); 305 if (ConstIdx == nullptr || !ConstIdx->isZero()) 306 ++NumNonZeroIndices; 307 } 308 return NumNonZeroIndices <= 1; 309 } 310 311 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { 312 if (C.CandidateKind == Candidate::Add) { 313 // B + 1 * S or B + (-1) * S 314 return C.Index->isOne() || C.Index->isMinusOne(); 315 } 316 if (C.CandidateKind == Candidate::Mul) { 317 // (B + 0) * S 318 return C.Index->isZero(); 319 } 320 if (C.CandidateKind == Candidate::GEP) { 321 // (char*)B + S or (char*)B - S 322 return ((C.Index->isOne() || C.Index->isMinusOne()) && 323 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); 324 } 325 return false; 326 } 327 328 // TODO: We currently implement an algorithm whose time complexity is linear in 329 // the number of existing candidates. However, we could do better by using 330 // ScopedHashTable. Specifically, while traversing the dominator tree, we could 331 // maintain all the candidates that dominate the basic block being traversed in 332 // a ScopedHashTable. This hash table is indexed by the base and the stride of 333 // a candidate. Therefore, finding the immediate basis of a candidate boils down 334 // to one hash-table look up. 335 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 336 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 337 Instruction *I) { 338 Candidate C(CT, B, Idx, S, I); 339 // SLSR can complicate an instruction in two cases: 340 // 341 // 1. If we can fold I into an addressing mode, computing I is likely free or 342 // takes only one instruction. 343 // 344 // 2. I is already in a simplest form. For example, when 345 // X = B + 8 * S 346 // Y = B + S, 347 // rewriting Y to X - 7 * S is probably a bad idea. 348 // 349 // In the above cases, we still add I to the candidate list so that I can be 350 // the basis of other candidates, but we leave I's basis blank so that I 351 // won't be rewritten. 352 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { 353 // Try to compute the immediate basis of C. 354 unsigned NumIterations = 0; 355 // Limit the scan radius to avoid running in quadratice time. 356 static const unsigned MaxNumIterations = 50; 357 for (auto Basis = Candidates.rbegin(); 358 Basis != Candidates.rend() && NumIterations < MaxNumIterations; 359 ++Basis, ++NumIterations) { 360 if (isBasisFor(*Basis, C)) { 361 C.Basis = &(*Basis); 362 break; 363 } 364 } 365 } 366 // Regardless of whether we find a basis for C, we need to push C to the 367 // candidate list so that it can be the basis of other candidates. 368 Candidates.push_back(C); 369 } 370 371 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 372 Instruction *I) { 373 switch (I->getOpcode()) { 374 case Instruction::Add: 375 allocateCandidatesAndFindBasisForAdd(I); 376 break; 377 case Instruction::Mul: 378 allocateCandidatesAndFindBasisForMul(I); 379 break; 380 case Instruction::GetElementPtr: 381 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); 382 break; 383 } 384 } 385 386 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 387 Instruction *I) { 388 // Try matching B + i * S. 389 if (!isa<IntegerType>(I->getType())) 390 return; 391 392 assert(I->getNumOperands() == 2 && "isn't I an add?"); 393 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 394 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); 395 if (LHS != RHS) 396 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); 397 } 398 399 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 400 Value *LHS, Value *RHS, Instruction *I) { 401 Value *S = nullptr; 402 ConstantInt *Idx = nullptr; 403 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { 404 // I = LHS + RHS = LHS + Idx * S 405 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 406 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { 407 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) 408 APInt One(Idx->getBitWidth(), 1); 409 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); 410 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 411 } else { 412 // At least, I = LHS + 1 * RHS 413 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); 414 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, 415 I); 416 } 417 } 418 419 // Returns true if A matches B + C where C is constant. 420 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { 421 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) || 422 match(A, m_Add(m_ConstantInt(C), m_Value(B)))); 423 } 424 425 // Returns true if A matches B | C where C is constant. 426 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { 427 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) || 428 match(A, m_Or(m_ConstantInt(C), m_Value(B)))); 429 } 430 431 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 432 Value *LHS, Value *RHS, Instruction *I) { 433 Value *B = nullptr; 434 ConstantInt *Idx = nullptr; 435 if (matchesAdd(LHS, B, Idx)) { 436 // If LHS is in the form of "Base + Index", then I is in the form of 437 // "(Base + Index) * RHS". 438 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 439 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { 440 // If LHS is in the form of "Base | Index" and Base and Index have no common 441 // bits set, then 442 // Base | Index = Base + Index 443 // and I is thus in the form of "(Base + Index) * RHS". 444 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 445 } else { 446 // Otherwise, at least try the form (LHS + 0) * RHS. 447 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); 448 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, 449 I); 450 } 451 } 452 453 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 454 Instruction *I) { 455 // Try matching (B + i) * S. 456 // TODO: we could extend SLSR to float and vector types. 457 if (!isa<IntegerType>(I->getType())) 458 return; 459 460 assert(I->getNumOperands() == 2 && "isn't I a mul?"); 461 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 462 allocateCandidatesAndFindBasisForMul(LHS, RHS, I); 463 if (LHS != RHS) { 464 // Symmetrically, try to split RHS to Base + Index. 465 allocateCandidatesAndFindBasisForMul(RHS, LHS, I); 466 } 467 } 468 469 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 470 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, 471 Instruction *I) { 472 // I = B + sext(Idx *nsw S) * ElementSize 473 // = B + (sext(Idx) * sext(S)) * ElementSize 474 // = B + (sext(Idx) * ElementSize) * sext(S) 475 // Casting to IntegerType is safe because we skipped vector GEPs. 476 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); 477 ConstantInt *ScaledIdx = ConstantInt::get( 478 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); 479 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); 480 } 481 482 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, 483 const SCEV *Base, 484 uint64_t ElementSize, 485 GetElementPtrInst *GEP) { 486 // At least, ArrayIdx = ArrayIdx *nsw 1. 487 allocateCandidatesAndFindBasisForGEP( 488 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), 489 ArrayIdx, ElementSize, GEP); 490 Value *LHS = nullptr; 491 ConstantInt *RHS = nullptr; 492 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx 493 // itself. This would allow us to handle the shl case for free. However, 494 // matching SCEVs has two issues: 495 // 496 // 1. this would complicate rewriting because the rewriting procedure 497 // would have to translate SCEVs back to IR instructions. This translation 498 // is difficult when LHS is further evaluated to a composite SCEV. 499 // 500 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends 501 // to strip nsw/nuw flags which are critical for SLSR to trace into 502 // sext'ed multiplication. 503 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { 504 // SLSR is currently unsafe if i * S may overflow. 505 // GEP = Base + sext(LHS *nsw RHS) * ElementSize 506 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); 507 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { 508 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize 509 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize 510 APInt One(RHS->getBitWidth(), 1); 511 ConstantInt *PowerOf2 = 512 ConstantInt::get(RHS->getContext(), One << RHS->getValue()); 513 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); 514 } 515 } 516 517 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 518 GetElementPtrInst *GEP) { 519 // TODO: handle vector GEPs 520 if (GEP->getType()->isVectorTy()) 521 return; 522 523 SmallVector<const SCEV *, 4> IndexExprs; 524 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) 525 IndexExprs.push_back(SE->getSCEV(*I)); 526 527 gep_type_iterator GTI = gep_type_begin(GEP); 528 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 529 if (GTI.isStruct()) 530 continue; 531 532 const SCEV *OrigIndexExpr = IndexExprs[I - 1]; 533 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); 534 535 // The base of this candidate is GEP's base plus the offsets of all 536 // indices except this current one. 537 const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs); 538 Value *ArrayIdx = GEP->getOperand(I); 539 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 540 if (ArrayIdx->getType()->getIntegerBitWidth() <= 541 DL->getPointerSizeInBits(GEP->getAddressSpace())) { 542 // Skip factoring if ArrayIdx is wider than the pointer size, because 543 // ArrayIdx is implicitly truncated to the pointer size. 544 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); 545 } 546 // When ArrayIdx is the sext of a value, we try to factor that value as 547 // well. Handling this case is important because array indices are 548 // typically sign-extended to the pointer size. 549 Value *TruncatedArrayIdx = nullptr; 550 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) && 551 TruncatedArrayIdx->getType()->getIntegerBitWidth() <= 552 DL->getPointerSizeInBits(GEP->getAddressSpace())) { 553 // Skip factoring if TruncatedArrayIdx is wider than the pointer size, 554 // because TruncatedArrayIdx is implicitly truncated to the pointer size. 555 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); 556 } 557 558 IndexExprs[I - 1] = OrigIndexExpr; 559 } 560 } 561 562 // A helper function that unifies the bitwidth of A and B. 563 static void unifyBitWidth(APInt &A, APInt &B) { 564 if (A.getBitWidth() < B.getBitWidth()) 565 A = A.sext(B.getBitWidth()); 566 else if (A.getBitWidth() > B.getBitWidth()) 567 B = B.sext(A.getBitWidth()); 568 } 569 570 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, 571 const Candidate &C, 572 IRBuilder<> &Builder, 573 const DataLayout *DL, 574 bool &BumpWithUglyGEP) { 575 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); 576 unifyBitWidth(Idx, BasisIdx); 577 APInt IndexOffset = Idx - BasisIdx; 578 579 BumpWithUglyGEP = false; 580 if (Basis.CandidateKind == Candidate::GEP) { 581 APInt ElementSize( 582 IndexOffset.getBitWidth(), 583 DL->getTypeAllocSize( 584 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType())); 585 APInt Q, R; 586 APInt::sdivrem(IndexOffset, ElementSize, Q, R); 587 if (R == 0) 588 IndexOffset = Q; 589 else 590 BumpWithUglyGEP = true; 591 } 592 593 // Compute Bump = C - Basis = (i' - i) * S. 594 // Common case 1: if (i' - i) is 1, Bump = S. 595 if (IndexOffset == 1) 596 return C.Stride; 597 // Common case 2: if (i' - i) is -1, Bump = -S. 598 if (IndexOffset.isAllOnesValue()) 599 return Builder.CreateNeg(C.Stride); 600 601 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may 602 // have different bit widths. 603 IntegerType *DeltaType = 604 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); 605 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); 606 if (IndexOffset.isPowerOf2()) { 607 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). 608 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); 609 return Builder.CreateShl(ExtendedStride, Exponent); 610 } 611 if ((-IndexOffset).isPowerOf2()) { 612 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). 613 ConstantInt *Exponent = 614 ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); 615 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); 616 } 617 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); 618 return Builder.CreateMul(ExtendedStride, Delta); 619 } 620 621 void StraightLineStrengthReduce::rewriteCandidateWithBasis( 622 const Candidate &C, const Candidate &Basis) { 623 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && 624 C.Stride == Basis.Stride); 625 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the 626 // basis of a candidate cannot be unlinked before the candidate. 627 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); 628 629 // An instruction can correspond to multiple candidates. Therefore, instead of 630 // simply deleting an instruction when we rewrite it, we mark its parent as 631 // nullptr (i.e. unlink it) so that we can skip the candidates whose 632 // instruction is already rewritten. 633 if (!C.Ins->getParent()) 634 return; 635 636 IRBuilder<> Builder(C.Ins); 637 bool BumpWithUglyGEP; 638 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); 639 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins 640 switch (C.CandidateKind) { 641 case Candidate::Add: 642 case Candidate::Mul: { 643 // C = Basis + Bump 644 Value *NegBump; 645 if (match(Bump, m_Neg(m_Value(NegBump)))) { 646 // If Bump is a neg instruction, emit C = Basis - (-Bump). 647 Reduced = Builder.CreateSub(Basis.Ins, NegBump); 648 // We only use the negative argument of Bump, and Bump itself may be 649 // trivially dead. 650 RecursivelyDeleteTriviallyDeadInstructions(Bump); 651 } else { 652 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's 653 // usually unsound, e.g., 654 // 655 // X = (-2 +nsw 1) *nsw INT_MAX 656 // Y = (-2 +nsw 3) *nsw INT_MAX 657 // => 658 // Y = X + 2 * INT_MAX 659 // 660 // Neither + and * in the resultant expression are nsw. 661 Reduced = Builder.CreateAdd(Basis.Ins, Bump); 662 } 663 break; 664 } 665 case Candidate::GEP: 666 { 667 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); 668 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); 669 if (BumpWithUglyGEP) { 670 // C = (char *)Basis + Bump 671 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); 672 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); 673 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); 674 if (InBounds) 675 Reduced = 676 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); 677 else 678 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); 679 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); 680 } else { 681 // C = gep Basis, Bump 682 // Canonicalize bump to pointer size. 683 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); 684 if (InBounds) 685 Reduced = Builder.CreateInBoundsGEP( 686 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(), 687 Basis.Ins, Bump); 688 else 689 Reduced = Builder.CreateGEP( 690 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(), 691 Basis.Ins, Bump); 692 } 693 break; 694 } 695 default: 696 llvm_unreachable("C.CandidateKind is invalid"); 697 }; 698 Reduced->takeName(C.Ins); 699 C.Ins->replaceAllUsesWith(Reduced); 700 // Unlink C.Ins so that we can skip other candidates also corresponding to 701 // C.Ins. The actual deletion is postponed to the end of runOnFunction. 702 C.Ins->removeFromParent(); 703 UnlinkedInstructions.push_back(C.Ins); 704 } 705 706 bool StraightLineStrengthReduce::runOnFunction(Function &F) { 707 if (skipFunction(F)) 708 return false; 709 710 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 711 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 712 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 713 // Traverse the dominator tree in the depth-first order. This order makes sure 714 // all bases of a candidate are in Candidates when we process it. 715 for (const auto Node : depth_first(DT)) 716 for (auto &I : *(Node->getBlock())) 717 allocateCandidatesAndFindBasis(&I); 718 719 // Rewrite candidates in the reverse depth-first order. This order makes sure 720 // a candidate being rewritten is not a basis for any other candidate. 721 while (!Candidates.empty()) { 722 const Candidate &C = Candidates.back(); 723 if (C.Basis != nullptr) { 724 rewriteCandidateWithBasis(C, *C.Basis); 725 } 726 Candidates.pop_back(); 727 } 728 729 // Delete all unlink instructions. 730 for (auto *UnlinkedInst : UnlinkedInstructions) { 731 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { 732 Value *Op = UnlinkedInst->getOperand(I); 733 UnlinkedInst->setOperand(I, nullptr); 734 RecursivelyDeleteTriviallyDeadInstructions(Op); 735 } 736 UnlinkedInst->deleteValue(); 737 } 738 bool Ret = !UnlinkedInstructions.empty(); 739 UnlinkedInstructions.clear(); 740 return Ret; 741 } 742