1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass converts vector operations into scalar operations, in order 10 // to expose optimization opportunities on the individual scalar operations. 11 // It is mainly intended for targets that do not have vector units, but it 12 // may also be useful for revectorizing code to different vector widths. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/Scalarizer.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/VectorUtils.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstVisitor.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <map> 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "scalarizer" 54 55 static cl::opt<bool> ScalarizeVariableInsertExtract( 56 "scalarize-variable-insert-extract", cl::init(true), cl::Hidden, 57 cl::desc("Allow the scalarizer pass to scalarize " 58 "insertelement/extractelement with variable index")); 59 60 // This is disabled by default because having separate loads and stores 61 // makes it more likely that the -combiner-alias-analysis limits will be 62 // reached. 63 static cl::opt<bool> 64 ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden, 65 cl::desc("Allow the scalarizer pass to scalarize loads and store")); 66 67 namespace { 68 69 BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) { 70 BasicBlock *BB = Itr->getParent(); 71 if (isa<PHINode>(Itr)) 72 Itr = BB->getFirstInsertionPt(); 73 if (Itr != BB->end()) 74 Itr = skipDebugIntrinsics(Itr); 75 return Itr; 76 } 77 78 // Used to store the scattered form of a vector. 79 using ValueVector = SmallVector<Value *, 8>; 80 81 // Used to map a vector Value to its scattered form. We use std::map 82 // because we want iterators to persist across insertion and because the 83 // values are relatively large. 84 using ScatterMap = std::map<Value *, ValueVector>; 85 86 // Lists Instructions that have been replaced with scalar implementations, 87 // along with a pointer to their scattered forms. 88 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>; 89 90 // Provides a very limited vector-like interface for lazily accessing one 91 // component of a scattered vector or vector pointer. 92 class Scatterer { 93 public: 94 Scatterer() = default; 95 96 // Scatter V into Size components. If new instructions are needed, 97 // insert them before BBI in BB. If Cache is nonnull, use it to cache 98 // the results. 99 Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, 100 ValueVector *cachePtr = nullptr); 101 102 // Return component I, creating a new Value for it if necessary. 103 Value *operator[](unsigned I); 104 105 // Return the number of components. 106 unsigned size() const { return Size; } 107 108 private: 109 BasicBlock *BB; 110 BasicBlock::iterator BBI; 111 Value *V; 112 ValueVector *CachePtr; 113 PointerType *PtrTy; 114 ValueVector Tmp; 115 unsigned Size; 116 }; 117 118 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp 119 // called Name that compares X and Y in the same way as FCI. 120 struct FCmpSplitter { 121 FCmpSplitter(FCmpInst &fci) : FCI(fci) {} 122 123 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 124 const Twine &Name) const { 125 return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name); 126 } 127 128 FCmpInst &FCI; 129 }; 130 131 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp 132 // called Name that compares X and Y in the same way as ICI. 133 struct ICmpSplitter { 134 ICmpSplitter(ICmpInst &ici) : ICI(ici) {} 135 136 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 137 const Twine &Name) const { 138 return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name); 139 } 140 141 ICmpInst &ICI; 142 }; 143 144 // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create 145 // a unary operator like UO called Name with operand X. 146 struct UnarySplitter { 147 UnarySplitter(UnaryOperator &uo) : UO(uo) {} 148 149 Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const { 150 return Builder.CreateUnOp(UO.getOpcode(), Op, Name); 151 } 152 153 UnaryOperator &UO; 154 }; 155 156 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create 157 // a binary operator like BO called Name with operands X and Y. 158 struct BinarySplitter { 159 BinarySplitter(BinaryOperator &bo) : BO(bo) {} 160 161 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 162 const Twine &Name) const { 163 return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name); 164 } 165 166 BinaryOperator &BO; 167 }; 168 169 // Information about a load or store that we're scalarizing. 170 struct VectorLayout { 171 VectorLayout() = default; 172 173 // Return the alignment of element I. 174 Align getElemAlign(unsigned I) { 175 return commonAlignment(VecAlign, I * ElemSize); 176 } 177 178 // The type of the vector. 179 VectorType *VecTy = nullptr; 180 181 // The type of each element. 182 Type *ElemTy = nullptr; 183 184 // The alignment of the vector. 185 Align VecAlign; 186 187 // The size of each element. 188 uint64_t ElemSize = 0; 189 }; 190 191 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> { 192 public: 193 ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT) 194 : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) { 195 } 196 197 bool visit(Function &F); 198 199 // InstVisitor methods. They return true if the instruction was scalarized, 200 // false if nothing changed. 201 bool visitInstruction(Instruction &I) { return false; } 202 bool visitSelectInst(SelectInst &SI); 203 bool visitICmpInst(ICmpInst &ICI); 204 bool visitFCmpInst(FCmpInst &FCI); 205 bool visitUnaryOperator(UnaryOperator &UO); 206 bool visitBinaryOperator(BinaryOperator &BO); 207 bool visitGetElementPtrInst(GetElementPtrInst &GEPI); 208 bool visitCastInst(CastInst &CI); 209 bool visitBitCastInst(BitCastInst &BCI); 210 bool visitInsertElementInst(InsertElementInst &IEI); 211 bool visitExtractElementInst(ExtractElementInst &EEI); 212 bool visitShuffleVectorInst(ShuffleVectorInst &SVI); 213 bool visitPHINode(PHINode &PHI); 214 bool visitLoadInst(LoadInst &LI); 215 bool visitStoreInst(StoreInst &SI); 216 bool visitCallInst(CallInst &ICI); 217 218 private: 219 Scatterer scatter(Instruction *Point, Value *V); 220 void gather(Instruction *Op, const ValueVector &CV); 221 bool canTransferMetadata(unsigned Kind); 222 void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV); 223 Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment, 224 const DataLayout &DL); 225 bool finish(); 226 227 template<typename T> bool splitUnary(Instruction &, const T &); 228 template<typename T> bool splitBinary(Instruction &, const T &); 229 230 bool splitCall(CallInst &CI); 231 232 ScatterMap Scattered; 233 GatherList Gathered; 234 235 SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs; 236 237 unsigned ParallelLoopAccessMDKind; 238 239 DominatorTree *DT; 240 }; 241 242 class ScalarizerLegacyPass : public FunctionPass { 243 public: 244 static char ID; 245 246 ScalarizerLegacyPass() : FunctionPass(ID) { 247 initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry()); 248 } 249 250 bool runOnFunction(Function &F) override; 251 252 void getAnalysisUsage(AnalysisUsage& AU) const override { 253 AU.addRequired<DominatorTreeWrapperPass>(); 254 AU.addPreserved<DominatorTreeWrapperPass>(); 255 } 256 }; 257 258 } // end anonymous namespace 259 260 char ScalarizerLegacyPass::ID = 0; 261 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer", 262 "Scalarize vector operations", false, false) 263 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 264 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer", 265 "Scalarize vector operations", false, false) 266 267 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, 268 ValueVector *cachePtr) 269 : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) { 270 Type *Ty = V->getType(); 271 PtrTy = dyn_cast<PointerType>(Ty); 272 if (PtrTy) 273 Ty = PtrTy->getElementType(); 274 Size = cast<FixedVectorType>(Ty)->getNumElements(); 275 if (!CachePtr) 276 Tmp.resize(Size, nullptr); 277 else if (CachePtr->empty()) 278 CachePtr->resize(Size, nullptr); 279 else 280 assert(Size == CachePtr->size() && "Inconsistent vector sizes"); 281 } 282 283 // Return component I, creating a new Value for it if necessary. 284 Value *Scatterer::operator[](unsigned I) { 285 ValueVector &CV = (CachePtr ? *CachePtr : Tmp); 286 // Try to reuse a previous value. 287 if (CV[I]) 288 return CV[I]; 289 IRBuilder<> Builder(BB, BBI); 290 if (PtrTy) { 291 Type *ElTy = cast<VectorType>(PtrTy->getElementType())->getElementType(); 292 if (!CV[0]) { 293 Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace()); 294 CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0"); 295 } 296 if (I != 0) 297 CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I, 298 V->getName() + ".i" + Twine(I)); 299 } else { 300 // Search through a chain of InsertElementInsts looking for element I. 301 // Record other elements in the cache. The new V is still suitable 302 // for all uncached indices. 303 while (true) { 304 InsertElementInst *Insert = dyn_cast<InsertElementInst>(V); 305 if (!Insert) 306 break; 307 ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2)); 308 if (!Idx) 309 break; 310 unsigned J = Idx->getZExtValue(); 311 V = Insert->getOperand(0); 312 if (I == J) { 313 CV[J] = Insert->getOperand(1); 314 return CV[J]; 315 } else if (!CV[J]) { 316 // Only cache the first entry we find for each index we're not actively 317 // searching for. This prevents us from going too far up the chain and 318 // caching incorrect entries. 319 CV[J] = Insert->getOperand(1); 320 } 321 } 322 CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I), 323 V->getName() + ".i" + Twine(I)); 324 } 325 return CV[I]; 326 } 327 328 bool ScalarizerLegacyPass::runOnFunction(Function &F) { 329 if (skipFunction(F)) 330 return false; 331 332 Module &M = *F.getParent(); 333 unsigned ParallelLoopAccessMDKind = 334 M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); 335 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 336 ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT); 337 return Impl.visit(F); 338 } 339 340 FunctionPass *llvm::createScalarizerPass() { 341 return new ScalarizerLegacyPass(); 342 } 343 344 bool ScalarizerVisitor::visit(Function &F) { 345 assert(Gathered.empty() && Scattered.empty()); 346 347 // To ensure we replace gathered components correctly we need to do an ordered 348 // traversal of the basic blocks in the function. 349 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock()); 350 for (BasicBlock *BB : RPOT) { 351 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 352 Instruction *I = &*II; 353 bool Done = InstVisitor::visit(I); 354 ++II; 355 if (Done && I->getType()->isVoidTy()) 356 I->eraseFromParent(); 357 } 358 } 359 return finish(); 360 } 361 362 // Return a scattered form of V that can be accessed by Point. V must be a 363 // vector or a pointer to a vector. 364 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) { 365 if (Argument *VArg = dyn_cast<Argument>(V)) { 366 // Put the scattered form of arguments in the entry block, 367 // so that it can be used everywhere. 368 Function *F = VArg->getParent(); 369 BasicBlock *BB = &F->getEntryBlock(); 370 return Scatterer(BB, BB->begin(), V, &Scattered[V]); 371 } 372 if (Instruction *VOp = dyn_cast<Instruction>(V)) { 373 // When scalarizing PHI nodes we might try to examine/rewrite InsertElement 374 // nodes in predecessors. If those predecessors are unreachable from entry, 375 // then the IR in those blocks could have unexpected properties resulting in 376 // infinite loops in Scatterer::operator[]. By simply treating values 377 // originating from instructions in unreachable blocks as undef we do not 378 // need to analyse them further. 379 if (!DT->isReachableFromEntry(VOp->getParent())) 380 return Scatterer(Point->getParent(), Point->getIterator(), 381 UndefValue::get(V->getType())); 382 // Put the scattered form of an instruction directly after the 383 // instruction, skipping over PHI nodes and debug intrinsics. 384 BasicBlock *BB = VOp->getParent(); 385 return Scatterer( 386 BB, skipPastPhiNodesAndDbg(std::next(BasicBlock::iterator(VOp))), V, 387 &Scattered[V]); 388 } 389 // In the fallback case, just put the scattered before Point and 390 // keep the result local to Point. 391 return Scatterer(Point->getParent(), Point->getIterator(), V); 392 } 393 394 // Replace Op with the gathered form of the components in CV. Defer the 395 // deletion of Op and creation of the gathered form to the end of the pass, 396 // so that we can avoid creating the gathered form if all uses of Op are 397 // replaced with uses of CV. 398 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) { 399 transferMetadataAndIRFlags(Op, CV); 400 401 // If we already have a scattered form of Op (created from ExtractElements 402 // of Op itself), replace them with the new form. 403 ValueVector &SV = Scattered[Op]; 404 if (!SV.empty()) { 405 for (unsigned I = 0, E = SV.size(); I != E; ++I) { 406 Value *V = SV[I]; 407 if (V == nullptr || SV[I] == CV[I]) 408 continue; 409 410 Instruction *Old = cast<Instruction>(V); 411 if (isa<Instruction>(CV[I])) 412 CV[I]->takeName(Old); 413 Old->replaceAllUsesWith(CV[I]); 414 PotentiallyDeadInstrs.emplace_back(Old); 415 } 416 } 417 SV = CV; 418 Gathered.push_back(GatherList::value_type(Op, &SV)); 419 } 420 421 // Return true if it is safe to transfer the given metadata tag from 422 // vector to scalar instructions. 423 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) { 424 return (Tag == LLVMContext::MD_tbaa 425 || Tag == LLVMContext::MD_fpmath 426 || Tag == LLVMContext::MD_tbaa_struct 427 || Tag == LLVMContext::MD_invariant_load 428 || Tag == LLVMContext::MD_alias_scope 429 || Tag == LLVMContext::MD_noalias 430 || Tag == ParallelLoopAccessMDKind 431 || Tag == LLVMContext::MD_access_group); 432 } 433 434 // Transfer metadata from Op to the instructions in CV if it is known 435 // to be safe to do so. 436 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op, 437 const ValueVector &CV) { 438 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 439 Op->getAllMetadataOtherThanDebugLoc(MDs); 440 for (unsigned I = 0, E = CV.size(); I != E; ++I) { 441 if (Instruction *New = dyn_cast<Instruction>(CV[I])) { 442 for (const auto &MD : MDs) 443 if (canTransferMetadata(MD.first)) 444 New->setMetadata(MD.first, MD.second); 445 New->copyIRFlags(Op); 446 if (Op->getDebugLoc() && !New->getDebugLoc()) 447 New->setDebugLoc(Op->getDebugLoc()); 448 } 449 } 450 } 451 452 // Try to fill in Layout from Ty, returning true on success. Alignment is 453 // the alignment of the vector, or None if the ABI default should be used. 454 Optional<VectorLayout> 455 ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment, 456 const DataLayout &DL) { 457 VectorLayout Layout; 458 // Make sure we're dealing with a vector. 459 Layout.VecTy = dyn_cast<VectorType>(Ty); 460 if (!Layout.VecTy) 461 return None; 462 // Check that we're dealing with full-byte elements. 463 Layout.ElemTy = Layout.VecTy->getElementType(); 464 if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy)) 465 return None; 466 Layout.VecAlign = Alignment; 467 Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy); 468 return Layout; 469 } 470 471 // Scalarize one-operand instruction I, using Split(Builder, X, Name) 472 // to create an instruction like I with operand X and name Name. 473 template<typename Splitter> 474 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) { 475 VectorType *VT = dyn_cast<VectorType>(I.getType()); 476 if (!VT) 477 return false; 478 479 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 480 IRBuilder<> Builder(&I); 481 Scatterer Op = scatter(&I, I.getOperand(0)); 482 assert(Op.size() == NumElems && "Mismatched unary operation"); 483 ValueVector Res; 484 Res.resize(NumElems); 485 for (unsigned Elem = 0; Elem < NumElems; ++Elem) 486 Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem)); 487 gather(&I, Res); 488 return true; 489 } 490 491 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) 492 // to create an instruction like I with operands X and Y and name Name. 493 template<typename Splitter> 494 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) { 495 VectorType *VT = dyn_cast<VectorType>(I.getType()); 496 if (!VT) 497 return false; 498 499 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 500 IRBuilder<> Builder(&I); 501 Scatterer VOp0 = scatter(&I, I.getOperand(0)); 502 Scatterer VOp1 = scatter(&I, I.getOperand(1)); 503 assert(VOp0.size() == NumElems && "Mismatched binary operation"); 504 assert(VOp1.size() == NumElems && "Mismatched binary operation"); 505 ValueVector Res; 506 Res.resize(NumElems); 507 for (unsigned Elem = 0; Elem < NumElems; ++Elem) { 508 Value *Op0 = VOp0[Elem]; 509 Value *Op1 = VOp1[Elem]; 510 Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem)); 511 } 512 gather(&I, Res); 513 return true; 514 } 515 516 static bool isTriviallyScalariable(Intrinsic::ID ID) { 517 return isTriviallyVectorizable(ID); 518 } 519 520 // All of the current scalarizable intrinsics only have one mangled type. 521 static Function *getScalarIntrinsicDeclaration(Module *M, 522 Intrinsic::ID ID, 523 ArrayRef<Type*> Tys) { 524 return Intrinsic::getDeclaration(M, ID, Tys); 525 } 526 527 /// If a call to a vector typed intrinsic function, split into a scalar call per 528 /// element if possible for the intrinsic. 529 bool ScalarizerVisitor::splitCall(CallInst &CI) { 530 VectorType *VT = dyn_cast<VectorType>(CI.getType()); 531 if (!VT) 532 return false; 533 534 Function *F = CI.getCalledFunction(); 535 if (!F) 536 return false; 537 538 Intrinsic::ID ID = F->getIntrinsicID(); 539 if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID)) 540 return false; 541 542 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 543 unsigned NumArgs = CI.arg_size(); 544 545 ValueVector ScalarOperands(NumArgs); 546 SmallVector<Scatterer, 8> Scattered(NumArgs); 547 548 Scattered.resize(NumArgs); 549 550 SmallVector<llvm::Type *, 3> Tys; 551 Tys.push_back(VT->getScalarType()); 552 553 // Assumes that any vector type has the same number of elements as the return 554 // vector type, which is true for all current intrinsics. 555 for (unsigned I = 0; I != NumArgs; ++I) { 556 Value *OpI = CI.getOperand(I); 557 if (OpI->getType()->isVectorTy()) { 558 Scattered[I] = scatter(&CI, OpI); 559 assert(Scattered[I].size() == NumElems && "mismatched call operands"); 560 } else { 561 ScalarOperands[I] = OpI; 562 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I)) 563 Tys.push_back(OpI->getType()); 564 } 565 } 566 567 ValueVector Res(NumElems); 568 ValueVector ScalarCallOps(NumArgs); 569 570 Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys); 571 IRBuilder<> Builder(&CI); 572 573 // Perform actual scalarization, taking care to preserve any scalar operands. 574 for (unsigned Elem = 0; Elem < NumElems; ++Elem) { 575 ScalarCallOps.clear(); 576 577 for (unsigned J = 0; J != NumArgs; ++J) { 578 if (hasVectorInstrinsicScalarOpd(ID, J)) 579 ScalarCallOps.push_back(ScalarOperands[J]); 580 else 581 ScalarCallOps.push_back(Scattered[J][Elem]); 582 } 583 584 Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps, 585 CI.getName() + ".i" + Twine(Elem)); 586 } 587 588 gather(&CI, Res); 589 return true; 590 } 591 592 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) { 593 VectorType *VT = dyn_cast<VectorType>(SI.getType()); 594 if (!VT) 595 return false; 596 597 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 598 IRBuilder<> Builder(&SI); 599 Scatterer VOp1 = scatter(&SI, SI.getOperand(1)); 600 Scatterer VOp2 = scatter(&SI, SI.getOperand(2)); 601 assert(VOp1.size() == NumElems && "Mismatched select"); 602 assert(VOp2.size() == NumElems && "Mismatched select"); 603 ValueVector Res; 604 Res.resize(NumElems); 605 606 if (SI.getOperand(0)->getType()->isVectorTy()) { 607 Scatterer VOp0 = scatter(&SI, SI.getOperand(0)); 608 assert(VOp0.size() == NumElems && "Mismatched select"); 609 for (unsigned I = 0; I < NumElems; ++I) { 610 Value *Op0 = VOp0[I]; 611 Value *Op1 = VOp1[I]; 612 Value *Op2 = VOp2[I]; 613 Res[I] = Builder.CreateSelect(Op0, Op1, Op2, 614 SI.getName() + ".i" + Twine(I)); 615 } 616 } else { 617 Value *Op0 = SI.getOperand(0); 618 for (unsigned I = 0; I < NumElems; ++I) { 619 Value *Op1 = VOp1[I]; 620 Value *Op2 = VOp2[I]; 621 Res[I] = Builder.CreateSelect(Op0, Op1, Op2, 622 SI.getName() + ".i" + Twine(I)); 623 } 624 } 625 gather(&SI, Res); 626 return true; 627 } 628 629 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) { 630 return splitBinary(ICI, ICmpSplitter(ICI)); 631 } 632 633 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) { 634 return splitBinary(FCI, FCmpSplitter(FCI)); 635 } 636 637 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) { 638 return splitUnary(UO, UnarySplitter(UO)); 639 } 640 641 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) { 642 return splitBinary(BO, BinarySplitter(BO)); 643 } 644 645 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 646 VectorType *VT = dyn_cast<VectorType>(GEPI.getType()); 647 if (!VT) 648 return false; 649 650 IRBuilder<> Builder(&GEPI); 651 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 652 unsigned NumIndices = GEPI.getNumIndices(); 653 654 // The base pointer might be scalar even if it's a vector GEP. In those cases, 655 // splat the pointer into a vector value, and scatter that vector. 656 Value *Op0 = GEPI.getOperand(0); 657 if (!Op0->getType()->isVectorTy()) 658 Op0 = Builder.CreateVectorSplat(NumElems, Op0); 659 Scatterer Base = scatter(&GEPI, Op0); 660 661 SmallVector<Scatterer, 8> Ops; 662 Ops.resize(NumIndices); 663 for (unsigned I = 0; I < NumIndices; ++I) { 664 Value *Op = GEPI.getOperand(I + 1); 665 666 // The indices might be scalars even if it's a vector GEP. In those cases, 667 // splat the scalar into a vector value, and scatter that vector. 668 if (!Op->getType()->isVectorTy()) 669 Op = Builder.CreateVectorSplat(NumElems, Op); 670 671 Ops[I] = scatter(&GEPI, Op); 672 } 673 674 ValueVector Res; 675 Res.resize(NumElems); 676 for (unsigned I = 0; I < NumElems; ++I) { 677 SmallVector<Value *, 8> Indices; 678 Indices.resize(NumIndices); 679 for (unsigned J = 0; J < NumIndices; ++J) 680 Indices[J] = Ops[J][I]; 681 Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices, 682 GEPI.getName() + ".i" + Twine(I)); 683 if (GEPI.isInBounds()) 684 if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I])) 685 NewGEPI->setIsInBounds(); 686 } 687 gather(&GEPI, Res); 688 return true; 689 } 690 691 bool ScalarizerVisitor::visitCastInst(CastInst &CI) { 692 VectorType *VT = dyn_cast<VectorType>(CI.getDestTy()); 693 if (!VT) 694 return false; 695 696 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 697 IRBuilder<> Builder(&CI); 698 Scatterer Op0 = scatter(&CI, CI.getOperand(0)); 699 assert(Op0.size() == NumElems && "Mismatched cast"); 700 ValueVector Res; 701 Res.resize(NumElems); 702 for (unsigned I = 0; I < NumElems; ++I) 703 Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(), 704 CI.getName() + ".i" + Twine(I)); 705 gather(&CI, Res); 706 return true; 707 } 708 709 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) { 710 VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy()); 711 VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy()); 712 if (!DstVT || !SrcVT) 713 return false; 714 715 unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements(); 716 unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements(); 717 IRBuilder<> Builder(&BCI); 718 Scatterer Op0 = scatter(&BCI, BCI.getOperand(0)); 719 ValueVector Res; 720 Res.resize(DstNumElems); 721 722 if (DstNumElems == SrcNumElems) { 723 for (unsigned I = 0; I < DstNumElems; ++I) 724 Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(), 725 BCI.getName() + ".i" + Twine(I)); 726 } else if (DstNumElems > SrcNumElems) { 727 // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the 728 // individual elements to the destination. 729 unsigned FanOut = DstNumElems / SrcNumElems; 730 auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut); 731 unsigned ResI = 0; 732 for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) { 733 Value *V = Op0[Op0I]; 734 Instruction *VI; 735 // Look through any existing bitcasts before converting to <N x t2>. 736 // In the best case, the resulting conversion might be a no-op. 737 while ((VI = dyn_cast<Instruction>(V)) && 738 VI->getOpcode() == Instruction::BitCast) 739 V = VI->getOperand(0); 740 V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast"); 741 Scatterer Mid = scatter(&BCI, V); 742 for (unsigned MidI = 0; MidI < FanOut; ++MidI) 743 Res[ResI++] = Mid[MidI]; 744 } 745 } else { 746 // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2. 747 unsigned FanIn = SrcNumElems / DstNumElems; 748 auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn); 749 unsigned Op0I = 0; 750 for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) { 751 Value *V = PoisonValue::get(MidTy); 752 for (unsigned MidI = 0; MidI < FanIn; ++MidI) 753 V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI), 754 BCI.getName() + ".i" + Twine(ResI) 755 + ".upto" + Twine(MidI)); 756 Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(), 757 BCI.getName() + ".i" + Twine(ResI)); 758 } 759 } 760 gather(&BCI, Res); 761 return true; 762 } 763 764 bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) { 765 VectorType *VT = dyn_cast<VectorType>(IEI.getType()); 766 if (!VT) 767 return false; 768 769 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 770 IRBuilder<> Builder(&IEI); 771 Scatterer Op0 = scatter(&IEI, IEI.getOperand(0)); 772 Value *NewElt = IEI.getOperand(1); 773 Value *InsIdx = IEI.getOperand(2); 774 775 ValueVector Res; 776 Res.resize(NumElems); 777 778 if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) { 779 for (unsigned I = 0; I < NumElems; ++I) 780 Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I]; 781 } else { 782 if (!ScalarizeVariableInsertExtract) 783 return false; 784 785 for (unsigned I = 0; I < NumElems; ++I) { 786 Value *ShouldReplace = 787 Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I), 788 InsIdx->getName() + ".is." + Twine(I)); 789 Value *OldElt = Op0[I]; 790 Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt, 791 IEI.getName() + ".i" + Twine(I)); 792 } 793 } 794 795 gather(&IEI, Res); 796 return true; 797 } 798 799 bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) { 800 VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType()); 801 if (!VT) 802 return false; 803 804 unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements(); 805 IRBuilder<> Builder(&EEI); 806 Scatterer Op0 = scatter(&EEI, EEI.getOperand(0)); 807 Value *ExtIdx = EEI.getOperand(1); 808 809 if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) { 810 Value *Res = Op0[CI->getValue().getZExtValue()]; 811 gather(&EEI, {Res}); 812 return true; 813 } 814 815 if (!ScalarizeVariableInsertExtract) 816 return false; 817 818 Value *Res = UndefValue::get(VT->getElementType()); 819 for (unsigned I = 0; I < NumSrcElems; ++I) { 820 Value *ShouldExtract = 821 Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I), 822 ExtIdx->getName() + ".is." + Twine(I)); 823 Value *Elt = Op0[I]; 824 Res = Builder.CreateSelect(ShouldExtract, Elt, Res, 825 EEI.getName() + ".upto" + Twine(I)); 826 } 827 gather(&EEI, {Res}); 828 return true; 829 } 830 831 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 832 VectorType *VT = dyn_cast<VectorType>(SVI.getType()); 833 if (!VT) 834 return false; 835 836 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 837 Scatterer Op0 = scatter(&SVI, SVI.getOperand(0)); 838 Scatterer Op1 = scatter(&SVI, SVI.getOperand(1)); 839 ValueVector Res; 840 Res.resize(NumElems); 841 842 for (unsigned I = 0; I < NumElems; ++I) { 843 int Selector = SVI.getMaskValue(I); 844 if (Selector < 0) 845 Res[I] = UndefValue::get(VT->getElementType()); 846 else if (unsigned(Selector) < Op0.size()) 847 Res[I] = Op0[Selector]; 848 else 849 Res[I] = Op1[Selector - Op0.size()]; 850 } 851 gather(&SVI, Res); 852 return true; 853 } 854 855 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) { 856 VectorType *VT = dyn_cast<VectorType>(PHI.getType()); 857 if (!VT) 858 return false; 859 860 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 861 IRBuilder<> Builder(&PHI); 862 ValueVector Res; 863 Res.resize(NumElems); 864 865 unsigned NumOps = PHI.getNumOperands(); 866 for (unsigned I = 0; I < NumElems; ++I) 867 Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps, 868 PHI.getName() + ".i" + Twine(I)); 869 870 for (unsigned I = 0; I < NumOps; ++I) { 871 Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I)); 872 BasicBlock *IncomingBlock = PHI.getIncomingBlock(I); 873 for (unsigned J = 0; J < NumElems; ++J) 874 cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock); 875 } 876 gather(&PHI, Res); 877 return true; 878 } 879 880 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) { 881 if (!ScalarizeLoadStore) 882 return false; 883 if (!LI.isSimple()) 884 return false; 885 886 Optional<VectorLayout> Layout = getVectorLayout( 887 LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout()); 888 if (!Layout) 889 return false; 890 891 unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements(); 892 IRBuilder<> Builder(&LI); 893 Scatterer Ptr = scatter(&LI, LI.getPointerOperand()); 894 ValueVector Res; 895 Res.resize(NumElems); 896 897 for (unsigned I = 0; I < NumElems; ++I) 898 Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I], 899 Align(Layout->getElemAlign(I)), 900 LI.getName() + ".i" + Twine(I)); 901 gather(&LI, Res); 902 return true; 903 } 904 905 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) { 906 if (!ScalarizeLoadStore) 907 return false; 908 if (!SI.isSimple()) 909 return false; 910 911 Value *FullValue = SI.getValueOperand(); 912 Optional<VectorLayout> Layout = getVectorLayout( 913 FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout()); 914 if (!Layout) 915 return false; 916 917 unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements(); 918 IRBuilder<> Builder(&SI); 919 Scatterer VPtr = scatter(&SI, SI.getPointerOperand()); 920 Scatterer VVal = scatter(&SI, FullValue); 921 922 ValueVector Stores; 923 Stores.resize(NumElems); 924 for (unsigned I = 0; I < NumElems; ++I) { 925 Value *Val = VVal[I]; 926 Value *Ptr = VPtr[I]; 927 Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I)); 928 } 929 transferMetadataAndIRFlags(&SI, Stores); 930 return true; 931 } 932 933 bool ScalarizerVisitor::visitCallInst(CallInst &CI) { 934 return splitCall(CI); 935 } 936 937 // Delete the instructions that we scalarized. If a full vector result 938 // is still needed, recreate it using InsertElements. 939 bool ScalarizerVisitor::finish() { 940 // The presence of data in Gathered or Scattered indicates changes 941 // made to the Function. 942 if (Gathered.empty() && Scattered.empty()) 943 return false; 944 for (const auto &GMI : Gathered) { 945 Instruction *Op = GMI.first; 946 ValueVector &CV = *GMI.second; 947 if (!Op->use_empty()) { 948 // The value is still needed, so recreate it using a series of 949 // InsertElements. 950 Value *Res = PoisonValue::get(Op->getType()); 951 if (auto *Ty = dyn_cast<VectorType>(Op->getType())) { 952 BasicBlock *BB = Op->getParent(); 953 unsigned Count = cast<FixedVectorType>(Ty)->getNumElements(); 954 IRBuilder<> Builder(Op); 955 if (isa<PHINode>(Op)) 956 Builder.SetInsertPoint(BB, BB->getFirstInsertionPt()); 957 for (unsigned I = 0; I < Count; ++I) 958 Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I), 959 Op->getName() + ".upto" + Twine(I)); 960 Res->takeName(Op); 961 } else { 962 assert(CV.size() == 1 && Op->getType() == CV[0]->getType()); 963 Res = CV[0]; 964 if (Op == Res) 965 continue; 966 } 967 Op->replaceAllUsesWith(Res); 968 } 969 PotentiallyDeadInstrs.emplace_back(Op); 970 } 971 Gathered.clear(); 972 Scattered.clear(); 973 974 RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs); 975 976 return true; 977 } 978 979 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) { 980 Module &M = *F.getParent(); 981 unsigned ParallelLoopAccessMDKind = 982 M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); 983 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 984 ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT); 985 bool Changed = Impl.visit(F); 986 PreservedAnalyses PA; 987 PA.preserve<DominatorTreeAnalysis>(); 988 return Changed ? PA : PreservedAnalyses::all(); 989 } 990