xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/SCCP.cpp (revision d409305fa3838fb39b38c26fc085fb729b8766d5)
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sparse conditional constant propagation and merging:
10 //
11 // Specifically, this:
12 //   * Assumes values are constant unless proven otherwise
13 //   * Assumes BasicBlocks are dead unless proven otherwise
14 //   * Proves values to be constant, and replaces them with constants
15 //   * Proves conditional branches to be unconditional
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Scalar/SCCP.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/DomTreeUpdater.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/InstructionSimplify.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueLattice.h"
36 #include "llvm/Analysis/ValueLatticeUtils.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InstVisitor.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Scalar.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/PredicateInfo.h"
63 #include <cassert>
64 #include <utility>
65 #include <vector>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "sccp"
70 
71 STATISTIC(NumInstRemoved, "Number of instructions removed");
72 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
73 STATISTIC(NumInstReplaced,
74           "Number of instructions replaced with (simpler) instruction");
75 
76 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
77 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
78 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
79 STATISTIC(
80     IPNumInstReplaced,
81     "Number of instructions replaced with (simpler) instruction by IPSCCP");
82 
83 // The maximum number of range extensions allowed for operations requiring
84 // widening.
85 static const unsigned MaxNumRangeExtensions = 10;
86 
87 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
88 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
89   return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
90       MaxNumRangeExtensions);
91 }
92 namespace {
93 
94 // Helper to check if \p LV is either a constant or a constant
95 // range with a single element. This should cover exactly the same cases as the
96 // old ValueLatticeElement::isConstant() and is intended to be used in the
97 // transition to ValueLatticeElement.
98 bool isConstant(const ValueLatticeElement &LV) {
99   return LV.isConstant() ||
100          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
101 }
102 
103 // Helper to check if \p LV is either overdefined or a constant range with more
104 // than a single element. This should cover exactly the same cases as the old
105 // ValueLatticeElement::isOverdefined() and is intended to be used in the
106 // transition to ValueLatticeElement.
107 bool isOverdefined(const ValueLatticeElement &LV) {
108   return !LV.isUnknownOrUndef() && !isConstant(LV);
109 }
110 
111 //===----------------------------------------------------------------------===//
112 //
113 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
114 /// Constant Propagation.
115 ///
116 class SCCPSolver : public InstVisitor<SCCPSolver> {
117   const DataLayout &DL;
118   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
119   SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
120   DenseMap<Value *, ValueLatticeElement>
121       ValueState; // The state each value is in.
122 
123   /// StructValueState - This maintains ValueState for values that have
124   /// StructType, for example for formal arguments, calls, insertelement, etc.
125   DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
126 
127   /// GlobalValue - If we are tracking any values for the contents of a global
128   /// variable, we keep a mapping from the constant accessor to the element of
129   /// the global, to the currently known value.  If the value becomes
130   /// overdefined, it's entry is simply removed from this map.
131   DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
132 
133   /// TrackedRetVals - If we are tracking arguments into and the return
134   /// value out of a function, it will have an entry in this map, indicating
135   /// what the known return value for the function is.
136   MapVector<Function *, ValueLatticeElement> TrackedRetVals;
137 
138   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
139   /// that return multiple values.
140   MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
141       TrackedMultipleRetVals;
142 
143   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
144   /// represented here for efficient lookup.
145   SmallPtrSet<Function *, 16> MRVFunctionsTracked;
146 
147   /// MustTailFunctions - Each function here is a callee of non-removable
148   /// musttail call site.
149   SmallPtrSet<Function *, 16> MustTailCallees;
150 
151   /// TrackingIncomingArguments - This is the set of functions for whose
152   /// arguments we make optimistic assumptions about and try to prove as
153   /// constants.
154   SmallPtrSet<Function *, 16> TrackingIncomingArguments;
155 
156   /// The reason for two worklists is that overdefined is the lowest state
157   /// on the lattice, and moving things to overdefined as fast as possible
158   /// makes SCCP converge much faster.
159   ///
160   /// By having a separate worklist, we accomplish this because everything
161   /// possibly overdefined will become overdefined at the soonest possible
162   /// point.
163   SmallVector<Value *, 64> OverdefinedInstWorkList;
164   SmallVector<Value *, 64> InstWorkList;
165 
166   // The BasicBlock work list
167   SmallVector<BasicBlock *, 64>  BBWorkList;
168 
169   /// KnownFeasibleEdges - Entries in this set are edges which have already had
170   /// PHI nodes retriggered.
171   using Edge = std::pair<BasicBlock *, BasicBlock *>;
172   DenseSet<Edge> KnownFeasibleEdges;
173 
174   DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
175   DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
176 
177   LLVMContext &Ctx;
178 
179 public:
180   void addAnalysis(Function &F, AnalysisResultsForFn A) {
181     AnalysisResults.insert({&F, std::move(A)});
182   }
183 
184   const PredicateBase *getPredicateInfoFor(Instruction *I) {
185     auto A = AnalysisResults.find(I->getParent()->getParent());
186     if (A == AnalysisResults.end())
187       return nullptr;
188     return A->second.PredInfo->getPredicateInfoFor(I);
189   }
190 
191   DomTreeUpdater getDTU(Function &F) {
192     auto A = AnalysisResults.find(&F);
193     assert(A != AnalysisResults.end() && "Need analysis results for function.");
194     return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
195   }
196 
197   SCCPSolver(const DataLayout &DL,
198              std::function<const TargetLibraryInfo &(Function &)> GetTLI,
199              LLVMContext &Ctx)
200       : DL(DL), GetTLI(std::move(GetTLI)), Ctx(Ctx) {}
201 
202   /// MarkBlockExecutable - This method can be used by clients to mark all of
203   /// the blocks that are known to be intrinsically live in the processed unit.
204   ///
205   /// This returns true if the block was not considered live before.
206   bool MarkBlockExecutable(BasicBlock *BB) {
207     if (!BBExecutable.insert(BB).second)
208       return false;
209     LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
210     BBWorkList.push_back(BB);  // Add the block to the work list!
211     return true;
212   }
213 
214   /// TrackValueOfGlobalVariable - Clients can use this method to
215   /// inform the SCCPSolver that it should track loads and stores to the
216   /// specified global variable if it can.  This is only legal to call if
217   /// performing Interprocedural SCCP.
218   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
219     // We only track the contents of scalar globals.
220     if (GV->getValueType()->isSingleValueType()) {
221       ValueLatticeElement &IV = TrackedGlobals[GV];
222       if (!isa<UndefValue>(GV->getInitializer()))
223         IV.markConstant(GV->getInitializer());
224     }
225   }
226 
227   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
228   /// and out of the specified function (which cannot have its address taken),
229   /// this method must be called.
230   void AddTrackedFunction(Function *F) {
231     // Add an entry, F -> undef.
232     if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
233       MRVFunctionsTracked.insert(F);
234       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
235         TrackedMultipleRetVals.insert(
236             std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
237     } else if (!F->getReturnType()->isVoidTy())
238       TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
239   }
240 
241   /// AddMustTailCallee - If the SCCP solver finds that this function is called
242   /// from non-removable musttail call site.
243   void AddMustTailCallee(Function *F) {
244     MustTailCallees.insert(F);
245   }
246 
247   /// Returns true if the given function is called from non-removable musttail
248   /// call site.
249   bool isMustTailCallee(Function *F) {
250     return MustTailCallees.count(F);
251   }
252 
253   void AddArgumentTrackedFunction(Function *F) {
254     TrackingIncomingArguments.insert(F);
255   }
256 
257   /// Returns true if the given function is in the solver's set of
258   /// argument-tracked functions.
259   bool isArgumentTrackedFunction(Function *F) {
260     return TrackingIncomingArguments.count(F);
261   }
262 
263   /// Solve - Solve for constants and executable blocks.
264   void Solve();
265 
266   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
267   /// that branches on undef values cannot reach any of their successors.
268   /// However, this is not a safe assumption.  After we solve dataflow, this
269   /// method should be use to handle this.  If this returns true, the solver
270   /// should be rerun.
271   bool ResolvedUndefsIn(Function &F);
272 
273   bool isBlockExecutable(BasicBlock *BB) const {
274     return BBExecutable.count(BB);
275   }
276 
277   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
278   // block to the 'To' basic block is currently feasible.
279   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
280 
281   std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
282     std::vector<ValueLatticeElement> StructValues;
283     auto *STy = dyn_cast<StructType>(V->getType());
284     assert(STy && "getStructLatticeValueFor() can be called only on structs");
285     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
286       auto I = StructValueState.find(std::make_pair(V, i));
287       assert(I != StructValueState.end() && "Value not in valuemap!");
288       StructValues.push_back(I->second);
289     }
290     return StructValues;
291   }
292 
293   void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
294 
295   const ValueLatticeElement &getLatticeValueFor(Value *V) const {
296     assert(!V->getType()->isStructTy() &&
297            "Should use getStructLatticeValueFor");
298     DenseMap<Value *, ValueLatticeElement>::const_iterator I =
299         ValueState.find(V);
300     assert(I != ValueState.end() &&
301            "V not found in ValueState nor Paramstate map!");
302     return I->second;
303   }
304 
305   /// getTrackedRetVals - Get the inferred return value map.
306   const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
307     return TrackedRetVals;
308   }
309 
310   /// getTrackedGlobals - Get and return the set of inferred initializers for
311   /// global variables.
312   const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
313     return TrackedGlobals;
314   }
315 
316   /// getMRVFunctionsTracked - Get the set of functions which return multiple
317   /// values tracked by the pass.
318   const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
319     return MRVFunctionsTracked;
320   }
321 
322   /// getMustTailCallees - Get the set of functions which are called
323   /// from non-removable musttail call sites.
324   const SmallPtrSet<Function *, 16> getMustTailCallees() {
325     return MustTailCallees;
326   }
327 
328   /// markOverdefined - Mark the specified value overdefined.  This
329   /// works with both scalars and structs.
330   void markOverdefined(Value *V) {
331     if (auto *STy = dyn_cast<StructType>(V->getType()))
332       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
333         markOverdefined(getStructValueState(V, i), V);
334     else
335       markOverdefined(ValueState[V], V);
336   }
337 
338   // isStructLatticeConstant - Return true if all the lattice values
339   // corresponding to elements of the structure are constants,
340   // false otherwise.
341   bool isStructLatticeConstant(Function *F, StructType *STy) {
342     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
343       const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
344       assert(It != TrackedMultipleRetVals.end());
345       ValueLatticeElement LV = It->second;
346       if (!isConstant(LV))
347         return false;
348     }
349     return true;
350   }
351 
352   /// Helper to return a Constant if \p LV is either a constant or a constant
353   /// range with a single element.
354   Constant *getConstant(const ValueLatticeElement &LV) const {
355     if (LV.isConstant())
356       return LV.getConstant();
357 
358     if (LV.isConstantRange()) {
359       auto &CR = LV.getConstantRange();
360       if (CR.getSingleElement())
361         return ConstantInt::get(Ctx, *CR.getSingleElement());
362     }
363     return nullptr;
364   }
365 
366 private:
367   ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
368     return dyn_cast_or_null<ConstantInt>(getConstant(IV));
369   }
370 
371   // pushToWorkList - Helper for markConstant/markOverdefined
372   void pushToWorkList(ValueLatticeElement &IV, Value *V) {
373     if (IV.isOverdefined())
374       return OverdefinedInstWorkList.push_back(V);
375     InstWorkList.push_back(V);
376   }
377 
378   // Helper to push \p V to the worklist, after updating it to \p IV. Also
379   // prints a debug message with the updated value.
380   void pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
381     LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
382     pushToWorkList(IV, V);
383   }
384 
385   // markConstant - Make a value be marked as "constant".  If the value
386   // is not already a constant, add it to the instruction work list so that
387   // the users of the instruction are updated later.
388   bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
389                     bool MayIncludeUndef = false) {
390     if (!IV.markConstant(C, MayIncludeUndef))
391       return false;
392     LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
393     pushToWorkList(IV, V);
394     return true;
395   }
396 
397   bool markConstant(Value *V, Constant *C) {
398     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
399     return markConstant(ValueState[V], V, C);
400   }
401 
402   // markOverdefined - Make a value be marked as "overdefined". If the
403   // value is not already overdefined, add it to the overdefined instruction
404   // work list so that the users of the instruction are updated later.
405   bool markOverdefined(ValueLatticeElement &IV, Value *V) {
406     if (!IV.markOverdefined()) return false;
407 
408     LLVM_DEBUG(dbgs() << "markOverdefined: ";
409                if (auto *F = dyn_cast<Function>(V)) dbgs()
410                << "Function '" << F->getName() << "'\n";
411                else dbgs() << *V << '\n');
412     // Only instructions go on the work list
413     pushToWorkList(IV, V);
414     return true;
415   }
416 
417   /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
418   /// changes.
419   bool mergeInValue(ValueLatticeElement &IV, Value *V,
420                     ValueLatticeElement MergeWithV,
421                     ValueLatticeElement::MergeOptions Opts = {
422                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
423     if (IV.mergeIn(MergeWithV, Opts)) {
424       pushToWorkList(IV, V);
425       LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
426                         << IV << "\n");
427       return true;
428     }
429     return false;
430   }
431 
432   bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
433                     ValueLatticeElement::MergeOptions Opts = {
434                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
435     assert(!V->getType()->isStructTy() &&
436            "non-structs should use markConstant");
437     return mergeInValue(ValueState[V], V, MergeWithV, Opts);
438   }
439 
440   /// getValueState - Return the ValueLatticeElement object that corresponds to
441   /// the value.  This function handles the case when the value hasn't been seen
442   /// yet by properly seeding constants etc.
443   ValueLatticeElement &getValueState(Value *V) {
444     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
445 
446     auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
447     ValueLatticeElement &LV = I.first->second;
448 
449     if (!I.second)
450       return LV;  // Common case, already in the map.
451 
452     if (auto *C = dyn_cast<Constant>(V))
453       LV.markConstant(C);          // Constants are constant
454 
455     // All others are unknown by default.
456     return LV;
457   }
458 
459   /// getStructValueState - Return the ValueLatticeElement object that
460   /// corresponds to the value/field pair.  This function handles the case when
461   /// the value hasn't been seen yet by properly seeding constants etc.
462   ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
463     assert(V->getType()->isStructTy() && "Should use getValueState");
464     assert(i < cast<StructType>(V->getType())->getNumElements() &&
465            "Invalid element #");
466 
467     auto I = StructValueState.insert(
468         std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
469     ValueLatticeElement &LV = I.first->second;
470 
471     if (!I.second)
472       return LV;  // Common case, already in the map.
473 
474     if (auto *C = dyn_cast<Constant>(V)) {
475       Constant *Elt = C->getAggregateElement(i);
476 
477       if (!Elt)
478         LV.markOverdefined();      // Unknown sort of constant.
479       else if (isa<UndefValue>(Elt))
480         ; // Undef values remain unknown.
481       else
482         LV.markConstant(Elt);      // Constants are constant.
483     }
484 
485     // All others are underdefined by default.
486     return LV;
487   }
488 
489   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
490   /// work list if it is not already executable.
491   bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
492     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
493       return false;  // This edge is already known to be executable!
494 
495     if (!MarkBlockExecutable(Dest)) {
496       // If the destination is already executable, we just made an *edge*
497       // feasible that wasn't before.  Revisit the PHI nodes in the block
498       // because they have potentially new operands.
499       LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
500                         << " -> " << Dest->getName() << '\n');
501 
502       for (PHINode &PN : Dest->phis())
503         visitPHINode(PN);
504     }
505     return true;
506   }
507 
508   // getFeasibleSuccessors - Return a vector of booleans to indicate which
509   // successors are reachable from a given terminator instruction.
510   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
511 
512   // OperandChangedState - This method is invoked on all of the users of an
513   // instruction that was just changed state somehow.  Based on this
514   // information, we need to update the specified user of this instruction.
515   void OperandChangedState(Instruction *I) {
516     if (BBExecutable.count(I->getParent()))   // Inst is executable?
517       visit(*I);
518   }
519 
520   // Add U as additional user of V.
521   void addAdditionalUser(Value *V, User *U) {
522     auto Iter = AdditionalUsers.insert({V, {}});
523     Iter.first->second.insert(U);
524   }
525 
526   // Mark I's users as changed, including AdditionalUsers.
527   void markUsersAsChanged(Value *I) {
528     // Functions include their arguments in the use-list. Changed function
529     // values mean that the result of the function changed. We only need to
530     // update the call sites with the new function result and do not have to
531     // propagate the call arguments.
532     if (isa<Function>(I)) {
533       for (User *U : I->users()) {
534         if (auto *CB = dyn_cast<CallBase>(U))
535           handleCallResult(*CB);
536       }
537     } else {
538       for (User *U : I->users())
539         if (auto *UI = dyn_cast<Instruction>(U))
540           OperandChangedState(UI);
541     }
542 
543     auto Iter = AdditionalUsers.find(I);
544     if (Iter != AdditionalUsers.end()) {
545       for (User *U : Iter->second)
546         if (auto *UI = dyn_cast<Instruction>(U))
547           OperandChangedState(UI);
548     }
549   }
550   void handleCallOverdefined(CallBase &CB);
551   void handleCallResult(CallBase &CB);
552   void handleCallArguments(CallBase &CB);
553 
554 private:
555   friend class InstVisitor<SCCPSolver>;
556 
557   // visit implementations - Something changed in this instruction.  Either an
558   // operand made a transition, or the instruction is newly executable.  Change
559   // the value type of I to reflect these changes if appropriate.
560   void visitPHINode(PHINode &I);
561 
562   // Terminators
563 
564   void visitReturnInst(ReturnInst &I);
565   void visitTerminator(Instruction &TI);
566 
567   void visitCastInst(CastInst &I);
568   void visitSelectInst(SelectInst &I);
569   void visitUnaryOperator(Instruction &I);
570   void visitBinaryOperator(Instruction &I);
571   void visitCmpInst(CmpInst &I);
572   void visitExtractValueInst(ExtractValueInst &EVI);
573   void visitInsertValueInst(InsertValueInst &IVI);
574 
575   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
576     markOverdefined(&CPI);
577     visitTerminator(CPI);
578   }
579 
580   // Instructions that cannot be folded away.
581 
582   void visitStoreInst     (StoreInst &I);
583   void visitLoadInst      (LoadInst &I);
584   void visitGetElementPtrInst(GetElementPtrInst &I);
585 
586   void visitCallInst      (CallInst &I) {
587     visitCallBase(I);
588   }
589 
590   void visitInvokeInst    (InvokeInst &II) {
591     visitCallBase(II);
592     visitTerminator(II);
593   }
594 
595   void visitCallBrInst    (CallBrInst &CBI) {
596     visitCallBase(CBI);
597     visitTerminator(CBI);
598   }
599 
600   void visitCallBase      (CallBase &CB);
601   void visitResumeInst    (ResumeInst &I) { /*returns void*/ }
602   void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
603   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
604 
605   void visitInstruction(Instruction &I) {
606     // All the instructions we don't do any special handling for just
607     // go to overdefined.
608     LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
609     markOverdefined(&I);
610   }
611 };
612 
613 } // end anonymous namespace
614 
615 // getFeasibleSuccessors - Return a vector of booleans to indicate which
616 // successors are reachable from a given terminator instruction.
617 void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
618                                        SmallVectorImpl<bool> &Succs) {
619   Succs.resize(TI.getNumSuccessors());
620   if (auto *BI = dyn_cast<BranchInst>(&TI)) {
621     if (BI->isUnconditional()) {
622       Succs[0] = true;
623       return;
624     }
625 
626     ValueLatticeElement BCValue = getValueState(BI->getCondition());
627     ConstantInt *CI = getConstantInt(BCValue);
628     if (!CI) {
629       // Overdefined condition variables, and branches on unfoldable constant
630       // conditions, mean the branch could go either way.
631       if (!BCValue.isUnknownOrUndef())
632         Succs[0] = Succs[1] = true;
633       return;
634     }
635 
636     // Constant condition variables mean the branch can only go a single way.
637     Succs[CI->isZero()] = true;
638     return;
639   }
640 
641   // Unwinding instructions successors are always executable.
642   if (TI.isExceptionalTerminator()) {
643     Succs.assign(TI.getNumSuccessors(), true);
644     return;
645   }
646 
647   if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
648     if (!SI->getNumCases()) {
649       Succs[0] = true;
650       return;
651     }
652     const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
653     if (ConstantInt *CI = getConstantInt(SCValue)) {
654       Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
655       return;
656     }
657 
658     // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
659     // is ready.
660     if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
661       const ConstantRange &Range = SCValue.getConstantRange();
662       for (const auto &Case : SI->cases()) {
663         const APInt &CaseValue = Case.getCaseValue()->getValue();
664         if (Range.contains(CaseValue))
665           Succs[Case.getSuccessorIndex()] = true;
666       }
667 
668       // TODO: Determine whether default case is reachable.
669       Succs[SI->case_default()->getSuccessorIndex()] = true;
670       return;
671     }
672 
673     // Overdefined or unknown condition? All destinations are executable!
674     if (!SCValue.isUnknownOrUndef())
675       Succs.assign(TI.getNumSuccessors(), true);
676     return;
677   }
678 
679   // In case of indirect branch and its address is a blockaddress, we mark
680   // the target as executable.
681   if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
682     // Casts are folded by visitCastInst.
683     ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
684     BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
685     if (!Addr) {   // Overdefined or unknown condition?
686       // All destinations are executable!
687       if (!IBRValue.isUnknownOrUndef())
688         Succs.assign(TI.getNumSuccessors(), true);
689       return;
690     }
691 
692     BasicBlock* T = Addr->getBasicBlock();
693     assert(Addr->getFunction() == T->getParent() &&
694            "Block address of a different function ?");
695     for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
696       // This is the target.
697       if (IBR->getDestination(i) == T) {
698         Succs[i] = true;
699         return;
700       }
701     }
702 
703     // If we didn't find our destination in the IBR successor list, then we
704     // have undefined behavior. Its ok to assume no successor is executable.
705     return;
706   }
707 
708   // In case of callbr, we pessimistically assume that all successors are
709   // feasible.
710   if (isa<CallBrInst>(&TI)) {
711     Succs.assign(TI.getNumSuccessors(), true);
712     return;
713   }
714 
715   LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
716   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
717 }
718 
719 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
720 // block to the 'To' basic block is currently feasible.
721 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
722   // Check if we've called markEdgeExecutable on the edge yet. (We could
723   // be more aggressive and try to consider edges which haven't been marked
724   // yet, but there isn't any need.)
725   return KnownFeasibleEdges.count(Edge(From, To));
726 }
727 
728 // visit Implementations - Something changed in this instruction, either an
729 // operand made a transition, or the instruction is newly executable.  Change
730 // the value type of I to reflect these changes if appropriate.  This method
731 // makes sure to do the following actions:
732 //
733 // 1. If a phi node merges two constants in, and has conflicting value coming
734 //    from different branches, or if the PHI node merges in an overdefined
735 //    value, then the PHI node becomes overdefined.
736 // 2. If a phi node merges only constants in, and they all agree on value, the
737 //    PHI node becomes a constant value equal to that.
738 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
739 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
740 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
741 // 6. If a conditional branch has a value that is constant, make the selected
742 //    destination executable
743 // 7. If a conditional branch has a value that is overdefined, make all
744 //    successors executable.
745 void SCCPSolver::visitPHINode(PHINode &PN) {
746   // If this PN returns a struct, just mark the result overdefined.
747   // TODO: We could do a lot better than this if code actually uses this.
748   if (PN.getType()->isStructTy())
749     return (void)markOverdefined(&PN);
750 
751   if (getValueState(&PN).isOverdefined())
752     return; // Quick exit
753 
754   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
755   // and slow us down a lot.  Just mark them overdefined.
756   if (PN.getNumIncomingValues() > 64)
757     return (void)markOverdefined(&PN);
758 
759   unsigned NumActiveIncoming = 0;
760 
761   // Look at all of the executable operands of the PHI node.  If any of them
762   // are overdefined, the PHI becomes overdefined as well.  If they are all
763   // constant, and they agree with each other, the PHI becomes the identical
764   // constant.  If they are constant and don't agree, the PHI is a constant
765   // range. If there are no executable operands, the PHI remains unknown.
766   ValueLatticeElement PhiState = getValueState(&PN);
767   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
768     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
769       continue;
770 
771     ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
772     PhiState.mergeIn(IV);
773     NumActiveIncoming++;
774     if (PhiState.isOverdefined())
775       break;
776   }
777 
778   // We allow up to 1 range extension per active incoming value and one
779   // additional extension. Note that we manually adjust the number of range
780   // extensions to match the number of active incoming values. This helps to
781   // limit multiple extensions caused by the same incoming value, if other
782   // incoming values are equal.
783   mergeInValue(&PN, PhiState,
784                ValueLatticeElement::MergeOptions().setMaxWidenSteps(
785                    NumActiveIncoming + 1));
786   ValueLatticeElement &PhiStateRef = getValueState(&PN);
787   PhiStateRef.setNumRangeExtensions(
788       std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
789 }
790 
791 void SCCPSolver::visitReturnInst(ReturnInst &I) {
792   if (I.getNumOperands() == 0) return;  // ret void
793 
794   Function *F = I.getParent()->getParent();
795   Value *ResultOp = I.getOperand(0);
796 
797   // If we are tracking the return value of this function, merge it in.
798   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
799     auto TFRVI = TrackedRetVals.find(F);
800     if (TFRVI != TrackedRetVals.end()) {
801       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
802       return;
803     }
804   }
805 
806   // Handle functions that return multiple values.
807   if (!TrackedMultipleRetVals.empty()) {
808     if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
809       if (MRVFunctionsTracked.count(F))
810         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
811           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
812                        getStructValueState(ResultOp, i));
813   }
814 }
815 
816 void SCCPSolver::visitTerminator(Instruction &TI) {
817   SmallVector<bool, 16> SuccFeasible;
818   getFeasibleSuccessors(TI, SuccFeasible);
819 
820   BasicBlock *BB = TI.getParent();
821 
822   // Mark all feasible successors executable.
823   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
824     if (SuccFeasible[i])
825       markEdgeExecutable(BB, TI.getSuccessor(i));
826 }
827 
828 void SCCPSolver::visitCastInst(CastInst &I) {
829   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
830   // discover a concrete value later.
831   if (ValueState[&I].isOverdefined())
832     return;
833 
834   ValueLatticeElement OpSt = getValueState(I.getOperand(0));
835   if (Constant *OpC = getConstant(OpSt)) {
836     // Fold the constant as we build.
837     Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
838     if (isa<UndefValue>(C))
839       return;
840     // Propagate constant value
841     markConstant(&I, C);
842   } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
843     auto &LV = getValueState(&I);
844     ConstantRange OpRange = OpSt.getConstantRange();
845     Type *DestTy = I.getDestTy();
846     // Vectors where all elements have the same known constant range are treated
847     // as a single constant range in the lattice. When bitcasting such vectors,
848     // there is a mis-match between the width of the lattice value (single
849     // constant range) and the original operands (vector). Go to overdefined in
850     // that case.
851     if (I.getOpcode() == Instruction::BitCast &&
852         I.getOperand(0)->getType()->isVectorTy() &&
853         OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
854       return (void)markOverdefined(&I);
855 
856     ConstantRange Res =
857         OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
858     mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
859   } else if (!OpSt.isUnknownOrUndef())
860     markOverdefined(&I);
861 }
862 
863 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
864   // If this returns a struct, mark all elements over defined, we don't track
865   // structs in structs.
866   if (EVI.getType()->isStructTy())
867     return (void)markOverdefined(&EVI);
868 
869   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
870   // discover a concrete value later.
871   if (ValueState[&EVI].isOverdefined())
872     return (void)markOverdefined(&EVI);
873 
874   // If this is extracting from more than one level of struct, we don't know.
875   if (EVI.getNumIndices() != 1)
876     return (void)markOverdefined(&EVI);
877 
878   Value *AggVal = EVI.getAggregateOperand();
879   if (AggVal->getType()->isStructTy()) {
880     unsigned i = *EVI.idx_begin();
881     ValueLatticeElement EltVal = getStructValueState(AggVal, i);
882     mergeInValue(getValueState(&EVI), &EVI, EltVal);
883   } else {
884     // Otherwise, must be extracting from an array.
885     return (void)markOverdefined(&EVI);
886   }
887 }
888 
889 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
890   auto *STy = dyn_cast<StructType>(IVI.getType());
891   if (!STy)
892     return (void)markOverdefined(&IVI);
893 
894   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
895   // discover a concrete value later.
896   if (isOverdefined(ValueState[&IVI]))
897     return (void)markOverdefined(&IVI);
898 
899   // If this has more than one index, we can't handle it, drive all results to
900   // undef.
901   if (IVI.getNumIndices() != 1)
902     return (void)markOverdefined(&IVI);
903 
904   Value *Aggr = IVI.getAggregateOperand();
905   unsigned Idx = *IVI.idx_begin();
906 
907   // Compute the result based on what we're inserting.
908   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
909     // This passes through all values that aren't the inserted element.
910     if (i != Idx) {
911       ValueLatticeElement EltVal = getStructValueState(Aggr, i);
912       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
913       continue;
914     }
915 
916     Value *Val = IVI.getInsertedValueOperand();
917     if (Val->getType()->isStructTy())
918       // We don't track structs in structs.
919       markOverdefined(getStructValueState(&IVI, i), &IVI);
920     else {
921       ValueLatticeElement InVal = getValueState(Val);
922       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
923     }
924   }
925 }
926 
927 void SCCPSolver::visitSelectInst(SelectInst &I) {
928   // If this select returns a struct, just mark the result overdefined.
929   // TODO: We could do a lot better than this if code actually uses this.
930   if (I.getType()->isStructTy())
931     return (void)markOverdefined(&I);
932 
933   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
934   // discover a concrete value later.
935   if (ValueState[&I].isOverdefined())
936     return (void)markOverdefined(&I);
937 
938   ValueLatticeElement CondValue = getValueState(I.getCondition());
939   if (CondValue.isUnknownOrUndef())
940     return;
941 
942   if (ConstantInt *CondCB = getConstantInt(CondValue)) {
943     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
944     mergeInValue(&I, getValueState(OpVal));
945     return;
946   }
947 
948   // Otherwise, the condition is overdefined or a constant we can't evaluate.
949   // See if we can produce something better than overdefined based on the T/F
950   // value.
951   ValueLatticeElement TVal = getValueState(I.getTrueValue());
952   ValueLatticeElement FVal = getValueState(I.getFalseValue());
953 
954   bool Changed = ValueState[&I].mergeIn(TVal);
955   Changed |= ValueState[&I].mergeIn(FVal);
956   if (Changed)
957     pushToWorkListMsg(ValueState[&I], &I);
958 }
959 
960 // Handle Unary Operators.
961 void SCCPSolver::visitUnaryOperator(Instruction &I) {
962   ValueLatticeElement V0State = getValueState(I.getOperand(0));
963 
964   ValueLatticeElement &IV = ValueState[&I];
965   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
966   // discover a concrete value later.
967   if (isOverdefined(IV))
968     return (void)markOverdefined(&I);
969 
970   if (isConstant(V0State)) {
971     Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
972 
973     // op Y -> undef.
974     if (isa<UndefValue>(C))
975       return;
976     return (void)markConstant(IV, &I, C);
977   }
978 
979   // If something is undef, wait for it to resolve.
980   if (!isOverdefined(V0State))
981     return;
982 
983   markOverdefined(&I);
984 }
985 
986 // Handle Binary Operators.
987 void SCCPSolver::visitBinaryOperator(Instruction &I) {
988   ValueLatticeElement V1State = getValueState(I.getOperand(0));
989   ValueLatticeElement V2State = getValueState(I.getOperand(1));
990 
991   ValueLatticeElement &IV = ValueState[&I];
992   if (IV.isOverdefined())
993     return;
994 
995   // If something is undef, wait for it to resolve.
996   if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
997     return;
998 
999   if (V1State.isOverdefined() && V2State.isOverdefined())
1000     return (void)markOverdefined(&I);
1001 
1002   // If either of the operands is a constant, try to fold it to a constant.
1003   // TODO: Use information from notconstant better.
1004   if ((V1State.isConstant() || V2State.isConstant())) {
1005     Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
1006     Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
1007     Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
1008     auto *C = dyn_cast_or_null<Constant>(R);
1009     if (C) {
1010       // X op Y -> undef.
1011       if (isa<UndefValue>(C))
1012         return;
1013       // Conservatively assume that the result may be based on operands that may
1014       // be undef. Note that we use mergeInValue to combine the constant with
1015       // the existing lattice value for I, as different constants might be found
1016       // after one of the operands go to overdefined, e.g. due to one operand
1017       // being a special floating value.
1018       ValueLatticeElement NewV;
1019       NewV.markConstant(C, /*MayIncludeUndef=*/true);
1020       return (void)mergeInValue(&I, NewV);
1021     }
1022   }
1023 
1024   // Only use ranges for binary operators on integers.
1025   if (!I.getType()->isIntegerTy())
1026     return markOverdefined(&I);
1027 
1028   // Try to simplify to a constant range.
1029   ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
1030   ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
1031   if (V1State.isConstantRange())
1032     A = V1State.getConstantRange();
1033   if (V2State.isConstantRange())
1034     B = V2State.getConstantRange();
1035 
1036   ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
1037   mergeInValue(&I, ValueLatticeElement::getRange(R));
1038 
1039   // TODO: Currently we do not exploit special values that produce something
1040   // better than overdefined with an overdefined operand for vector or floating
1041   // point types, like and <4 x i32> overdefined, zeroinitializer.
1042 }
1043 
1044 // Handle ICmpInst instruction.
1045 void SCCPSolver::visitCmpInst(CmpInst &I) {
1046   // Do not cache this lookup, getValueState calls later in the function might
1047   // invalidate the reference.
1048   if (isOverdefined(ValueState[&I]))
1049     return (void)markOverdefined(&I);
1050 
1051   Value *Op1 = I.getOperand(0);
1052   Value *Op2 = I.getOperand(1);
1053 
1054   // For parameters, use ParamState which includes constant range info if
1055   // available.
1056   auto V1State = getValueState(Op1);
1057   auto V2State = getValueState(Op2);
1058 
1059   Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1060   if (C) {
1061     if (isa<UndefValue>(C))
1062       return;
1063     ValueLatticeElement CV;
1064     CV.markConstant(C);
1065     mergeInValue(&I, CV);
1066     return;
1067   }
1068 
1069   // If operands are still unknown, wait for it to resolve.
1070   if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1071       !isConstant(ValueState[&I]))
1072     return;
1073 
1074   markOverdefined(&I);
1075 }
1076 
1077 // Handle getelementptr instructions.  If all operands are constants then we
1078 // can turn this into a getelementptr ConstantExpr.
1079 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1080   if (isOverdefined(ValueState[&I]))
1081     return (void)markOverdefined(&I);
1082 
1083   SmallVector<Constant*, 8> Operands;
1084   Operands.reserve(I.getNumOperands());
1085 
1086   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1087     ValueLatticeElement State = getValueState(I.getOperand(i));
1088     if (State.isUnknownOrUndef())
1089       return;  // Operands are not resolved yet.
1090 
1091     if (isOverdefined(State))
1092       return (void)markOverdefined(&I);
1093 
1094     if (Constant *C = getConstant(State)) {
1095       Operands.push_back(C);
1096       continue;
1097     }
1098 
1099     return (void)markOverdefined(&I);
1100   }
1101 
1102   Constant *Ptr = Operands[0];
1103   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1104   Constant *C =
1105       ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1106   if (isa<UndefValue>(C))
1107       return;
1108   markConstant(&I, C);
1109 }
1110 
1111 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1112   // If this store is of a struct, ignore it.
1113   if (SI.getOperand(0)->getType()->isStructTy())
1114     return;
1115 
1116   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1117     return;
1118 
1119   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1120   auto I = TrackedGlobals.find(GV);
1121   if (I == TrackedGlobals.end())
1122     return;
1123 
1124   // Get the value we are storing into the global, then merge it.
1125   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1126                ValueLatticeElement::MergeOptions().setCheckWiden(false));
1127   if (I->second.isOverdefined())
1128     TrackedGlobals.erase(I);      // No need to keep tracking this!
1129 }
1130 
1131 static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1132   if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1133     if (I->getType()->isIntegerTy())
1134       return ValueLatticeElement::getRange(
1135           getConstantRangeFromMetadata(*Ranges));
1136   if (I->hasMetadata(LLVMContext::MD_nonnull))
1137     return ValueLatticeElement::getNot(
1138         ConstantPointerNull::get(cast<PointerType>(I->getType())));
1139   return ValueLatticeElement::getOverdefined();
1140 }
1141 
1142 // Handle load instructions.  If the operand is a constant pointer to a constant
1143 // global, we can replace the load with the loaded constant value!
1144 void SCCPSolver::visitLoadInst(LoadInst &I) {
1145   // If this load is of a struct or the load is volatile, just mark the result
1146   // as overdefined.
1147   if (I.getType()->isStructTy() || I.isVolatile())
1148     return (void)markOverdefined(&I);
1149 
1150   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1151   // discover a concrete value later.
1152   if (ValueState[&I].isOverdefined())
1153     return (void)markOverdefined(&I);
1154 
1155   ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1156   if (PtrVal.isUnknownOrUndef())
1157     return; // The pointer is not resolved yet!
1158 
1159   ValueLatticeElement &IV = ValueState[&I];
1160 
1161   if (isConstant(PtrVal)) {
1162     Constant *Ptr = getConstant(PtrVal);
1163 
1164     // load null is undefined.
1165     if (isa<ConstantPointerNull>(Ptr)) {
1166       if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1167         return (void)markOverdefined(IV, &I);
1168       else
1169         return;
1170     }
1171 
1172     // Transform load (constant global) into the value loaded.
1173     if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1174       if (!TrackedGlobals.empty()) {
1175         // If we are tracking this global, merge in the known value for it.
1176         auto It = TrackedGlobals.find(GV);
1177         if (It != TrackedGlobals.end()) {
1178           mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1179           return;
1180         }
1181       }
1182     }
1183 
1184     // Transform load from a constant into a constant if possible.
1185     if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1186       if (isa<UndefValue>(C))
1187         return;
1188       return (void)markConstant(IV, &I, C);
1189     }
1190   }
1191 
1192   // Fall back to metadata.
1193   mergeInValue(&I, getValueFromMetadata(&I));
1194 }
1195 
1196 void SCCPSolver::visitCallBase(CallBase &CB) {
1197   handleCallResult(CB);
1198   handleCallArguments(CB);
1199 }
1200 
1201 void SCCPSolver::handleCallOverdefined(CallBase &CB) {
1202   Function *F = CB.getCalledFunction();
1203 
1204   // Void return and not tracking callee, just bail.
1205   if (CB.getType()->isVoidTy())
1206     return;
1207 
1208   // Always mark struct return as overdefined.
1209   if (CB.getType()->isStructTy())
1210     return (void)markOverdefined(&CB);
1211 
1212   // Otherwise, if we have a single return value case, and if the function is
1213   // a declaration, maybe we can constant fold it.
1214   if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1215     SmallVector<Constant *, 8> Operands;
1216     for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
1217       if (AI->get()->getType()->isStructTy())
1218         return markOverdefined(&CB); // Can't handle struct args.
1219       ValueLatticeElement State = getValueState(*AI);
1220 
1221       if (State.isUnknownOrUndef())
1222         return; // Operands are not resolved yet.
1223       if (isOverdefined(State))
1224         return (void)markOverdefined(&CB);
1225       assert(isConstant(State) && "Unknown state!");
1226       Operands.push_back(getConstant(State));
1227     }
1228 
1229     if (isOverdefined(getValueState(&CB)))
1230       return (void)markOverdefined(&CB);
1231 
1232     // If we can constant fold this, mark the result of the call as a
1233     // constant.
1234     if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
1235       // call -> undef.
1236       if (isa<UndefValue>(C))
1237         return;
1238       return (void)markConstant(&CB, C);
1239     }
1240   }
1241 
1242   // Fall back to metadata.
1243   mergeInValue(&CB, getValueFromMetadata(&CB));
1244 }
1245 
1246 void SCCPSolver::handleCallArguments(CallBase &CB) {
1247   Function *F = CB.getCalledFunction();
1248   // If this is a local function that doesn't have its address taken, mark its
1249   // entry block executable and merge in the actual arguments to the call into
1250   // the formal arguments of the function.
1251   if (!TrackingIncomingArguments.empty() &&
1252       TrackingIncomingArguments.count(F)) {
1253     MarkBlockExecutable(&F->front());
1254 
1255     // Propagate information from this call site into the callee.
1256     auto CAI = CB.arg_begin();
1257     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1258          ++AI, ++CAI) {
1259       // If this argument is byval, and if the function is not readonly, there
1260       // will be an implicit copy formed of the input aggregate.
1261       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1262         markOverdefined(&*AI);
1263         continue;
1264       }
1265 
1266       if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1267         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1268           ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1269           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1270                        getMaxWidenStepsOpts());
1271         }
1272       } else
1273         mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1274     }
1275   }
1276 }
1277 
1278 void SCCPSolver::handleCallResult(CallBase &CB) {
1279   Function *F = CB.getCalledFunction();
1280 
1281   if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1282     if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1283       if (ValueState[&CB].isOverdefined())
1284         return;
1285 
1286       Value *CopyOf = CB.getOperand(0);
1287       ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1288       auto *PI = getPredicateInfoFor(&CB);
1289       assert(PI && "Missing predicate info for ssa.copy");
1290 
1291       const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1292       if (!Constraint) {
1293         mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1294         return;
1295       }
1296 
1297       CmpInst::Predicate Pred = Constraint->Predicate;
1298       Value *OtherOp = Constraint->OtherOp;
1299 
1300       // Wait until OtherOp is resolved.
1301       if (getValueState(OtherOp).isUnknown()) {
1302         addAdditionalUser(OtherOp, &CB);
1303         return;
1304       }
1305 
1306       // TODO: Actually filp MayIncludeUndef for the created range to false,
1307       // once most places in the optimizer respect the branches on
1308       // undef/poison are UB rule. The reason why the new range cannot be
1309       // undef is as follows below:
1310       // The new range is based on a branch condition. That guarantees that
1311       // neither of the compare operands can be undef in the branch targets,
1312       // unless we have conditions that are always true/false (e.g. icmp ule
1313       // i32, %a, i32_max). For the latter overdefined/empty range will be
1314       // inferred, but the branch will get folded accordingly anyways.
1315       bool MayIncludeUndef = !isa<PredicateAssume>(PI);
1316 
1317       ValueLatticeElement CondVal = getValueState(OtherOp);
1318       ValueLatticeElement &IV = ValueState[&CB];
1319       if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1320         auto ImposedCR =
1321             ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1322 
1323         // Get the range imposed by the condition.
1324         if (CondVal.isConstantRange())
1325           ImposedCR = ConstantRange::makeAllowedICmpRegion(
1326               Pred, CondVal.getConstantRange());
1327 
1328         // Combine range info for the original value with the new range from the
1329         // condition.
1330         auto CopyOfCR = CopyOfVal.isConstantRange()
1331                             ? CopyOfVal.getConstantRange()
1332                             : ConstantRange::getFull(
1333                                   DL.getTypeSizeInBits(CopyOf->getType()));
1334         auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1335         // If the existing information is != x, do not use the information from
1336         // a chained predicate, as the != x information is more likely to be
1337         // helpful in practice.
1338         if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1339           NewCR = CopyOfCR;
1340 
1341         addAdditionalUser(OtherOp, &CB);
1342         mergeInValue(
1343             IV, &CB,
1344             ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
1345         return;
1346       } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
1347         // For non-integer values or integer constant expressions, only
1348         // propagate equal constants.
1349         addAdditionalUser(OtherOp, &CB);
1350         mergeInValue(IV, &CB, CondVal);
1351         return;
1352       } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
1353                  !MayIncludeUndef) {
1354         // Propagate inequalities.
1355         addAdditionalUser(OtherOp, &CB);
1356         mergeInValue(IV, &CB,
1357                      ValueLatticeElement::getNot(CondVal.getConstant()));
1358         return;
1359       }
1360 
1361       return (void)mergeInValue(IV, &CB, CopyOfVal);
1362     }
1363 
1364     if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1365       // Compute result range for intrinsics supported by ConstantRange.
1366       // Do this even if we don't know a range for all operands, as we may
1367       // still know something about the result range, e.g. of abs(x).
1368       SmallVector<ConstantRange, 2> OpRanges;
1369       for (Value *Op : II->args()) {
1370         const ValueLatticeElement &State = getValueState(Op);
1371         if (State.isConstantRange())
1372           OpRanges.push_back(State.getConstantRange());
1373         else
1374           OpRanges.push_back(
1375               ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
1376       }
1377 
1378       ConstantRange Result =
1379           ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1380       return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1381     }
1382   }
1383 
1384   // The common case is that we aren't tracking the callee, either because we
1385   // are not doing interprocedural analysis or the callee is indirect, or is
1386   // external.  Handle these cases first.
1387   if (!F || F->isDeclaration())
1388     return handleCallOverdefined(CB);
1389 
1390   // If this is a single/zero retval case, see if we're tracking the function.
1391   if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1392     if (!MRVFunctionsTracked.count(F))
1393       return handleCallOverdefined(CB); // Not tracking this callee.
1394 
1395     // If we are tracking this callee, propagate the result of the function
1396     // into this call site.
1397     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1398       mergeInValue(getStructValueState(&CB, i), &CB,
1399                    TrackedMultipleRetVals[std::make_pair(F, i)],
1400                    getMaxWidenStepsOpts());
1401   } else {
1402     auto TFRVI = TrackedRetVals.find(F);
1403     if (TFRVI == TrackedRetVals.end())
1404       return handleCallOverdefined(CB); // Not tracking this callee.
1405 
1406     // If so, propagate the return value of the callee into this call result.
1407     mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1408   }
1409 }
1410 
1411 void SCCPSolver::Solve() {
1412   // Process the work lists until they are empty!
1413   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1414          !OverdefinedInstWorkList.empty()) {
1415     // Process the overdefined instruction's work list first, which drives other
1416     // things to overdefined more quickly.
1417     while (!OverdefinedInstWorkList.empty()) {
1418       Value *I = OverdefinedInstWorkList.pop_back_val();
1419 
1420       LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1421 
1422       // "I" got into the work list because it either made the transition from
1423       // bottom to constant, or to overdefined.
1424       //
1425       // Anything on this worklist that is overdefined need not be visited
1426       // since all of its users will have already been marked as overdefined
1427       // Update all of the users of this instruction's value.
1428       //
1429       markUsersAsChanged(I);
1430     }
1431 
1432     // Process the instruction work list.
1433     while (!InstWorkList.empty()) {
1434       Value *I = InstWorkList.pop_back_val();
1435 
1436       LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1437 
1438       // "I" got into the work list because it made the transition from undef to
1439       // constant.
1440       //
1441       // Anything on this worklist that is overdefined need not be visited
1442       // since all of its users will have already been marked as overdefined.
1443       // Update all of the users of this instruction's value.
1444       //
1445       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1446         markUsersAsChanged(I);
1447     }
1448 
1449     // Process the basic block work list.
1450     while (!BBWorkList.empty()) {
1451       BasicBlock *BB = BBWorkList.pop_back_val();
1452 
1453       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1454 
1455       // Notify all instructions in this basic block that they are newly
1456       // executable.
1457       visit(BB);
1458     }
1459   }
1460 }
1461 
1462 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1463 /// that branches on undef values cannot reach any of their successors.
1464 /// However, this is not a safe assumption.  After we solve dataflow, this
1465 /// method should be use to handle this.  If this returns true, the solver
1466 /// should be rerun.
1467 ///
1468 /// This method handles this by finding an unresolved branch and marking it one
1469 /// of the edges from the block as being feasible, even though the condition
1470 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1471 /// CFG and only slightly pessimizes the analysis results (by marking one,
1472 /// potentially infeasible, edge feasible).  This cannot usefully modify the
1473 /// constraints on the condition of the branch, as that would impact other users
1474 /// of the value.
1475 ///
1476 /// This scan also checks for values that use undefs. It conservatively marks
1477 /// them as overdefined.
1478 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1479   bool MadeChange = false;
1480   for (BasicBlock &BB : F) {
1481     if (!BBExecutable.count(&BB))
1482       continue;
1483 
1484     for (Instruction &I : BB) {
1485       // Look for instructions which produce undef values.
1486       if (I.getType()->isVoidTy()) continue;
1487 
1488       if (auto *STy = dyn_cast<StructType>(I.getType())) {
1489         // Only a few things that can be structs matter for undef.
1490 
1491         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1492         if (auto *CB = dyn_cast<CallBase>(&I))
1493           if (Function *F = CB->getCalledFunction())
1494             if (MRVFunctionsTracked.count(F))
1495               continue;
1496 
1497         // extractvalue and insertvalue don't need to be marked; they are
1498         // tracked as precisely as their operands.
1499         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1500           continue;
1501         // Send the results of everything else to overdefined.  We could be
1502         // more precise than this but it isn't worth bothering.
1503         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1504           ValueLatticeElement &LV = getStructValueState(&I, i);
1505           if (LV.isUnknownOrUndef()) {
1506             markOverdefined(LV, &I);
1507             MadeChange = true;
1508           }
1509         }
1510         continue;
1511       }
1512 
1513       ValueLatticeElement &LV = getValueState(&I);
1514       if (!LV.isUnknownOrUndef())
1515         continue;
1516 
1517       // There are two reasons a call can have an undef result
1518       // 1. It could be tracked.
1519       // 2. It could be constant-foldable.
1520       // Because of the way we solve return values, tracked calls must
1521       // never be marked overdefined in ResolvedUndefsIn.
1522       if (auto *CB = dyn_cast<CallBase>(&I))
1523         if (Function *F = CB->getCalledFunction())
1524           if (TrackedRetVals.count(F))
1525             continue;
1526 
1527       if (isa<LoadInst>(I)) {
1528         // A load here means one of two things: a load of undef from a global,
1529         // a load from an unknown pointer.  Either way, having it return undef
1530         // is okay.
1531         continue;
1532       }
1533 
1534       markOverdefined(&I);
1535       MadeChange = true;
1536     }
1537 
1538     // Check to see if we have a branch or switch on an undefined value.  If so
1539     // we force the branch to go one way or the other to make the successor
1540     // values live.  It doesn't really matter which way we force it.
1541     Instruction *TI = BB.getTerminator();
1542     if (auto *BI = dyn_cast<BranchInst>(TI)) {
1543       if (!BI->isConditional()) continue;
1544       if (!getValueState(BI->getCondition()).isUnknownOrUndef())
1545         continue;
1546 
1547       // If the input to SCCP is actually branch on undef, fix the undef to
1548       // false.
1549       if (isa<UndefValue>(BI->getCondition())) {
1550         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1551         markEdgeExecutable(&BB, TI->getSuccessor(1));
1552         MadeChange = true;
1553         continue;
1554       }
1555 
1556       // Otherwise, it is a branch on a symbolic value which is currently
1557       // considered to be undef.  Make sure some edge is executable, so a
1558       // branch on "undef" always flows somewhere.
1559       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1560       BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1561       if (markEdgeExecutable(&BB, DefaultSuccessor))
1562         MadeChange = true;
1563 
1564       continue;
1565     }
1566 
1567    if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1568       // Indirect branch with no successor ?. Its ok to assume it branches
1569       // to no target.
1570       if (IBR->getNumSuccessors() < 1)
1571         continue;
1572 
1573       if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
1574         continue;
1575 
1576       // If the input to SCCP is actually branch on undef, fix the undef to
1577       // the first successor of the indirect branch.
1578       if (isa<UndefValue>(IBR->getAddress())) {
1579         IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1580         markEdgeExecutable(&BB, IBR->getSuccessor(0));
1581         MadeChange = true;
1582         continue;
1583       }
1584 
1585       // Otherwise, it is a branch on a symbolic value which is currently
1586       // considered to be undef.  Make sure some edge is executable, so a
1587       // branch on "undef" always flows somewhere.
1588       // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1589       // we can assume the branch has undefined behavior instead.
1590       BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1591       if (markEdgeExecutable(&BB, DefaultSuccessor))
1592         MadeChange = true;
1593 
1594       continue;
1595     }
1596 
1597     if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1598       if (!SI->getNumCases() ||
1599           !getValueState(SI->getCondition()).isUnknownOrUndef())
1600         continue;
1601 
1602       // If the input to SCCP is actually switch on undef, fix the undef to
1603       // the first constant.
1604       if (isa<UndefValue>(SI->getCondition())) {
1605         SI->setCondition(SI->case_begin()->getCaseValue());
1606         markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1607         MadeChange = true;
1608         continue;
1609       }
1610 
1611       // Otherwise, it is a branch on a symbolic value which is currently
1612       // considered to be undef.  Make sure some edge is executable, so a
1613       // branch on "undef" always flows somewhere.
1614       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1615       BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1616       if (markEdgeExecutable(&BB, DefaultSuccessor))
1617         MadeChange = true;
1618 
1619       continue;
1620     }
1621   }
1622 
1623   return MadeChange;
1624 }
1625 
1626 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
1627   Constant *Const = nullptr;
1628   if (V->getType()->isStructTy()) {
1629     std::vector<ValueLatticeElement> IVs = Solver.getStructLatticeValueFor(V);
1630     if (any_of(IVs,
1631                [](const ValueLatticeElement &LV) { return isOverdefined(LV); }))
1632       return false;
1633     std::vector<Constant *> ConstVals;
1634     auto *ST = cast<StructType>(V->getType());
1635     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1636       ValueLatticeElement V = IVs[i];
1637       ConstVals.push_back(isConstant(V)
1638                               ? Solver.getConstant(V)
1639                               : UndefValue::get(ST->getElementType(i)));
1640     }
1641     Const = ConstantStruct::get(ST, ConstVals);
1642   } else {
1643     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
1644     if (isOverdefined(IV))
1645       return false;
1646 
1647     Const =
1648         isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
1649   }
1650   assert(Const && "Constant is nullptr here!");
1651 
1652   // Replacing `musttail` instructions with constant breaks `musttail` invariant
1653   // unless the call itself can be removed
1654   CallInst *CI = dyn_cast<CallInst>(V);
1655   if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
1656     Function *F = CI->getCalledFunction();
1657 
1658     // Don't zap returns of the callee
1659     if (F)
1660       Solver.AddMustTailCallee(F);
1661 
1662     LLVM_DEBUG(dbgs() << "  Can\'t treat the result of musttail call : " << *CI
1663                       << " as a constant\n");
1664     return false;
1665   }
1666 
1667   LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');
1668 
1669   // Replaces all of the uses of a variable with uses of the constant.
1670   V->replaceAllUsesWith(Const);
1671   return true;
1672 }
1673 
1674 static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB,
1675                                  SmallPtrSetImpl<Value *> &InsertedValues,
1676                                  Statistic &InstRemovedStat,
1677                                  Statistic &InstReplacedStat) {
1678   bool MadeChanges = false;
1679   for (Instruction &Inst : make_early_inc_range(BB)) {
1680     if (Inst.getType()->isVoidTy())
1681       continue;
1682     if (tryToReplaceWithConstant(Solver, &Inst)) {
1683       if (Inst.isSafeToRemove())
1684         Inst.eraseFromParent();
1685       // Hey, we just changed something!
1686       MadeChanges = true;
1687       ++InstRemovedStat;
1688     } else if (isa<SExtInst>(&Inst)) {
1689       Value *ExtOp = Inst.getOperand(0);
1690       if (isa<Constant>(ExtOp) || InsertedValues.count(ExtOp))
1691         continue;
1692       const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp);
1693       if (!IV.isConstantRange(/*UndefAllowed=*/false))
1694         continue;
1695       if (IV.getConstantRange().isAllNonNegative()) {
1696         auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst);
1697         InsertedValues.insert(ZExt);
1698         Inst.replaceAllUsesWith(ZExt);
1699         Solver.removeLatticeValueFor(&Inst);
1700         Inst.eraseFromParent();
1701         InstReplacedStat++;
1702         MadeChanges = true;
1703       }
1704     }
1705   }
1706   return MadeChanges;
1707 }
1708 
1709 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
1710 // and return true if the function was modified.
1711 static bool runSCCP(Function &F, const DataLayout &DL,
1712                     const TargetLibraryInfo *TLI) {
1713   LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1714   SCCPSolver Solver(
1715       DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; },
1716       F.getContext());
1717 
1718   // Mark the first block of the function as being executable.
1719   Solver.MarkBlockExecutable(&F.front());
1720 
1721   // Mark all arguments to the function as being overdefined.
1722   for (Argument &AI : F.args())
1723     Solver.markOverdefined(&AI);
1724 
1725   // Solve for constants.
1726   bool ResolvedUndefs = true;
1727   while (ResolvedUndefs) {
1728     Solver.Solve();
1729     LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1730     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1731   }
1732 
1733   bool MadeChanges = false;
1734 
1735   // If we decided that there are basic blocks that are dead in this function,
1736   // delete their contents now.  Note that we cannot actually delete the blocks,
1737   // as we cannot modify the CFG of the function.
1738 
1739   SmallPtrSet<Value *, 32> InsertedValues;
1740   for (BasicBlock &BB : F) {
1741     if (!Solver.isBlockExecutable(&BB)) {
1742       LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
1743 
1744       ++NumDeadBlocks;
1745       NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB).first;
1746 
1747       MadeChanges = true;
1748       continue;
1749     }
1750 
1751     MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
1752                                         NumInstRemoved, NumInstReplaced);
1753   }
1754 
1755   return MadeChanges;
1756 }
1757 
1758 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
1759   const DataLayout &DL = F.getParent()->getDataLayout();
1760   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1761   if (!runSCCP(F, DL, &TLI))
1762     return PreservedAnalyses::all();
1763 
1764   auto PA = PreservedAnalyses();
1765   PA.preserve<GlobalsAA>();
1766   PA.preserveSet<CFGAnalyses>();
1767   return PA;
1768 }
1769 
1770 namespace {
1771 
1772 //===--------------------------------------------------------------------===//
1773 //
1774 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1775 /// Sparse Conditional Constant Propagator.
1776 ///
1777 class SCCPLegacyPass : public FunctionPass {
1778 public:
1779   // Pass identification, replacement for typeid
1780   static char ID;
1781 
1782   SCCPLegacyPass() : FunctionPass(ID) {
1783     initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1784   }
1785 
1786   void getAnalysisUsage(AnalysisUsage &AU) const override {
1787     AU.addRequired<TargetLibraryInfoWrapperPass>();
1788     AU.addPreserved<GlobalsAAWrapperPass>();
1789     AU.setPreservesCFG();
1790   }
1791 
1792   // runOnFunction - Run the Sparse Conditional Constant Propagation
1793   // algorithm, and return true if the function was modified.
1794   bool runOnFunction(Function &F) override {
1795     if (skipFunction(F))
1796       return false;
1797     const DataLayout &DL = F.getParent()->getDataLayout();
1798     const TargetLibraryInfo *TLI =
1799         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1800     return runSCCP(F, DL, TLI);
1801   }
1802 };
1803 
1804 } // end anonymous namespace
1805 
1806 char SCCPLegacyPass::ID = 0;
1807 
1808 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
1809                       "Sparse Conditional Constant Propagation", false, false)
1810 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1811 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
1812                     "Sparse Conditional Constant Propagation", false, false)
1813 
1814 // createSCCPPass - This is the public interface to this file.
1815 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
1816 
1817 static void findReturnsToZap(Function &F,
1818                              SmallVector<ReturnInst *, 8> &ReturnsToZap,
1819                              SCCPSolver &Solver) {
1820   // We can only do this if we know that nothing else can call the function.
1821   if (!Solver.isArgumentTrackedFunction(&F))
1822     return;
1823 
1824   // There is a non-removable musttail call site of this function. Zapping
1825   // returns is not allowed.
1826   if (Solver.isMustTailCallee(&F)) {
1827     LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
1828                       << " due to present musttail call of it\n");
1829     return;
1830   }
1831 
1832   assert(
1833       all_of(F.users(),
1834              [&Solver](User *U) {
1835                if (isa<Instruction>(U) &&
1836                    !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
1837                  return true;
1838                // Non-callsite uses are not impacted by zapping. Also, constant
1839                // uses (like blockaddresses) could stuck around, without being
1840                // used in the underlying IR, meaning we do not have lattice
1841                // values for them.
1842                if (!isa<CallBase>(U))
1843                  return true;
1844                if (U->getType()->isStructTy()) {
1845                  return all_of(Solver.getStructLatticeValueFor(U),
1846                                [](const ValueLatticeElement &LV) {
1847                                  return !isOverdefined(LV);
1848                                });
1849                }
1850                return !isOverdefined(Solver.getLatticeValueFor(U));
1851              }) &&
1852       "We can only zap functions where all live users have a concrete value");
1853 
1854   for (BasicBlock &BB : F) {
1855     if (CallInst *CI = BB.getTerminatingMustTailCall()) {
1856       LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
1857                         << "musttail call : " << *CI << "\n");
1858       (void)CI;
1859       return;
1860     }
1861 
1862     if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1863       if (!isa<UndefValue>(RI->getOperand(0)))
1864         ReturnsToZap.push_back(RI);
1865   }
1866 }
1867 
1868 static bool removeNonFeasibleEdges(const SCCPSolver &Solver, BasicBlock *BB,
1869                                    DomTreeUpdater &DTU) {
1870   SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
1871   bool HasNonFeasibleEdges = false;
1872   for (BasicBlock *Succ : successors(BB)) {
1873     if (Solver.isEdgeFeasible(BB, Succ))
1874       FeasibleSuccessors.insert(Succ);
1875     else
1876       HasNonFeasibleEdges = true;
1877   }
1878 
1879   // All edges feasible, nothing to do.
1880   if (!HasNonFeasibleEdges)
1881     return false;
1882 
1883   // SCCP can only determine non-feasible edges for br, switch and indirectbr.
1884   Instruction *TI = BB->getTerminator();
1885   assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
1886           isa<IndirectBrInst>(TI)) &&
1887          "Terminator must be a br, switch or indirectbr");
1888 
1889   if (FeasibleSuccessors.size() == 1) {
1890     // Replace with an unconditional branch to the only feasible successor.
1891     BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
1892     SmallVector<DominatorTree::UpdateType, 8> Updates;
1893     bool HaveSeenOnlyFeasibleSuccessor = false;
1894     for (BasicBlock *Succ : successors(BB)) {
1895       if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
1896         // Don't remove the edge to the only feasible successor the first time
1897         // we see it. We still do need to remove any multi-edges to it though.
1898         HaveSeenOnlyFeasibleSuccessor = true;
1899         continue;
1900       }
1901 
1902       Succ->removePredecessor(BB);
1903       Updates.push_back({DominatorTree::Delete, BB, Succ});
1904     }
1905 
1906     BranchInst::Create(OnlyFeasibleSuccessor, BB);
1907     TI->eraseFromParent();
1908     DTU.applyUpdatesPermissive(Updates);
1909   } else if (FeasibleSuccessors.size() > 1) {
1910     SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
1911     SmallVector<DominatorTree::UpdateType, 8> Updates;
1912     for (auto CI = SI->case_begin(); CI != SI->case_end();) {
1913       if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
1914         ++CI;
1915         continue;
1916       }
1917 
1918       BasicBlock *Succ = CI->getCaseSuccessor();
1919       Succ->removePredecessor(BB);
1920       Updates.push_back({DominatorTree::Delete, BB, Succ});
1921       SI.removeCase(CI);
1922       // Don't increment CI, as we removed a case.
1923     }
1924 
1925     DTU.applyUpdatesPermissive(Updates);
1926   } else {
1927     llvm_unreachable("Must have at least one feasible successor");
1928   }
1929   return true;
1930 }
1931 
1932 bool llvm::runIPSCCP(
1933     Module &M, const DataLayout &DL,
1934     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1935     function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
1936   SCCPSolver Solver(DL, GetTLI, M.getContext());
1937 
1938   // Loop over all functions, marking arguments to those with their addresses
1939   // taken or that are external as overdefined.
1940   for (Function &F : M) {
1941     if (F.isDeclaration())
1942       continue;
1943 
1944     Solver.addAnalysis(F, getAnalysis(F));
1945 
1946     // Determine if we can track the function's return values. If so, add the
1947     // function to the solver's set of return-tracked functions.
1948     if (canTrackReturnsInterprocedurally(&F))
1949       Solver.AddTrackedFunction(&F);
1950 
1951     // Determine if we can track the function's arguments. If so, add the
1952     // function to the solver's set of argument-tracked functions.
1953     if (canTrackArgumentsInterprocedurally(&F)) {
1954       Solver.AddArgumentTrackedFunction(&F);
1955       continue;
1956     }
1957 
1958     // Assume the function is called.
1959     Solver.MarkBlockExecutable(&F.front());
1960 
1961     // Assume nothing about the incoming arguments.
1962     for (Argument &AI : F.args())
1963       Solver.markOverdefined(&AI);
1964   }
1965 
1966   // Determine if we can track any of the module's global variables. If so, add
1967   // the global variables we can track to the solver's set of tracked global
1968   // variables.
1969   for (GlobalVariable &G : M.globals()) {
1970     G.removeDeadConstantUsers();
1971     if (canTrackGlobalVariableInterprocedurally(&G))
1972       Solver.TrackValueOfGlobalVariable(&G);
1973   }
1974 
1975   // Solve for constants.
1976   bool ResolvedUndefs = true;
1977   Solver.Solve();
1978   while (ResolvedUndefs) {
1979     LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1980     ResolvedUndefs = false;
1981     for (Function &F : M) {
1982       if (Solver.ResolvedUndefsIn(F))
1983         ResolvedUndefs = true;
1984     }
1985     if (ResolvedUndefs)
1986       Solver.Solve();
1987   }
1988 
1989   bool MadeChanges = false;
1990 
1991   // Iterate over all of the instructions in the module, replacing them with
1992   // constants if we have found them to be of constant values.
1993 
1994   for (Function &F : M) {
1995     if (F.isDeclaration())
1996       continue;
1997 
1998     SmallVector<BasicBlock *, 512> BlocksToErase;
1999 
2000     if (Solver.isBlockExecutable(&F.front())) {
2001       bool ReplacedPointerArg = false;
2002       for (Argument &Arg : F.args()) {
2003         if (!Arg.use_empty() && tryToReplaceWithConstant(Solver, &Arg)) {
2004           ReplacedPointerArg |= Arg.getType()->isPointerTy();
2005           ++IPNumArgsElimed;
2006         }
2007       }
2008 
2009       // If we replaced an argument, the argmemonly and
2010       // inaccessiblemem_or_argmemonly attributes do not hold any longer. Remove
2011       // them from both the function and callsites.
2012       if (ReplacedPointerArg) {
2013         AttrBuilder AttributesToRemove;
2014         AttributesToRemove.addAttribute(Attribute::ArgMemOnly);
2015         AttributesToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
2016         F.removeAttributes(AttributeList::FunctionIndex, AttributesToRemove);
2017 
2018         for (User *U : F.users()) {
2019           auto *CB = dyn_cast<CallBase>(U);
2020           if (!CB || CB->getCalledFunction() != &F)
2021             continue;
2022 
2023           CB->removeAttributes(AttributeList::FunctionIndex,
2024                                AttributesToRemove);
2025         }
2026       }
2027     }
2028 
2029     SmallPtrSet<Value *, 32> InsertedValues;
2030     for (BasicBlock &BB : F) {
2031       if (!Solver.isBlockExecutable(&BB)) {
2032         LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
2033         ++NumDeadBlocks;
2034 
2035         MadeChanges = true;
2036 
2037         if (&BB != &F.front())
2038           BlocksToErase.push_back(&BB);
2039         continue;
2040       }
2041 
2042       MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
2043                                           IPNumInstRemoved, IPNumInstReplaced);
2044     }
2045 
2046     DomTreeUpdater DTU = Solver.getDTU(F);
2047     // Change dead blocks to unreachable. We do it after replacing constants
2048     // in all executable blocks, because changeToUnreachable may remove PHI
2049     // nodes in executable blocks we found values for. The function's entry
2050     // block is not part of BlocksToErase, so we have to handle it separately.
2051     for (BasicBlock *BB : BlocksToErase) {
2052       NumInstRemoved +=
2053           changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
2054                               /*PreserveLCSSA=*/false, &DTU);
2055     }
2056     if (!Solver.isBlockExecutable(&F.front()))
2057       NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
2058                                             /*UseLLVMTrap=*/false,
2059                                             /*PreserveLCSSA=*/false, &DTU);
2060 
2061     for (BasicBlock &BB : F)
2062       MadeChanges |= removeNonFeasibleEdges(Solver, &BB, DTU);
2063 
2064     for (BasicBlock *DeadBB : BlocksToErase)
2065       DTU.deleteBB(DeadBB);
2066 
2067     for (BasicBlock &BB : F) {
2068       for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
2069         Instruction *Inst = &*BI++;
2070         if (Solver.getPredicateInfoFor(Inst)) {
2071           if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
2072             if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
2073               Value *Op = II->getOperand(0);
2074               Inst->replaceAllUsesWith(Op);
2075               Inst->eraseFromParent();
2076             }
2077           }
2078         }
2079       }
2080     }
2081   }
2082 
2083   // If we inferred constant or undef return values for a function, we replaced
2084   // all call uses with the inferred value.  This means we don't need to bother
2085   // actually returning anything from the function.  Replace all return
2086   // instructions with return undef.
2087   //
2088   // Do this in two stages: first identify the functions we should process, then
2089   // actually zap their returns.  This is important because we can only do this
2090   // if the address of the function isn't taken.  In cases where a return is the
2091   // last use of a function, the order of processing functions would affect
2092   // whether other functions are optimizable.
2093   SmallVector<ReturnInst*, 8> ReturnsToZap;
2094 
2095   for (const auto &I : Solver.getTrackedRetVals()) {
2096     Function *F = I.first;
2097     const ValueLatticeElement &ReturnValue = I.second;
2098 
2099     // If there is a known constant range for the return value, add !range
2100     // metadata to the function's call sites.
2101     if (ReturnValue.isConstantRange() &&
2102         !ReturnValue.getConstantRange().isSingleElement()) {
2103       // Do not add range metadata if the return value may include undef.
2104       if (ReturnValue.isConstantRangeIncludingUndef())
2105         continue;
2106 
2107       auto &CR = ReturnValue.getConstantRange();
2108       for (User *User : F->users()) {
2109         auto *CB = dyn_cast<CallBase>(User);
2110         if (!CB || CB->getCalledFunction() != F)
2111           continue;
2112 
2113         // Limit to cases where the return value is guaranteed to be neither
2114         // poison nor undef. Poison will be outside any range and currently
2115         // values outside of the specified range cause immediate undefined
2116         // behavior.
2117         if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB))
2118           continue;
2119 
2120         // Do not touch existing metadata for now.
2121         // TODO: We should be able to take the intersection of the existing
2122         // metadata and the inferred range.
2123         if (CB->getMetadata(LLVMContext::MD_range))
2124           continue;
2125 
2126         LLVMContext &Context = CB->getParent()->getContext();
2127         Metadata *RangeMD[] = {
2128             ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
2129             ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
2130         CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
2131       }
2132       continue;
2133     }
2134     if (F->getReturnType()->isVoidTy())
2135       continue;
2136     if (isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
2137       findReturnsToZap(*F, ReturnsToZap, Solver);
2138   }
2139 
2140   for (auto F : Solver.getMRVFunctionsTracked()) {
2141     assert(F->getReturnType()->isStructTy() &&
2142            "The return type should be a struct");
2143     StructType *STy = cast<StructType>(F->getReturnType());
2144     if (Solver.isStructLatticeConstant(F, STy))
2145       findReturnsToZap(*F, ReturnsToZap, Solver);
2146   }
2147 
2148   // Zap all returns which we've identified as zap to change.
2149   SmallSetVector<Function *, 8> FuncZappedReturn;
2150   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
2151     Function *F = ReturnsToZap[i]->getParent()->getParent();
2152     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
2153     // Record all functions that are zapped.
2154     FuncZappedReturn.insert(F);
2155   }
2156 
2157   // Remove the returned attribute for zapped functions and the
2158   // corresponding call sites.
2159   for (Function *F : FuncZappedReturn) {
2160     for (Argument &A : F->args())
2161       F->removeParamAttr(A.getArgNo(), Attribute::Returned);
2162     for (Use &U : F->uses()) {
2163       // Skip over blockaddr users.
2164       if (isa<BlockAddress>(U.getUser()))
2165         continue;
2166       CallBase *CB = cast<CallBase>(U.getUser());
2167       for (Use &Arg : CB->args())
2168         CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
2169     }
2170   }
2171 
2172   // If we inferred constant or undef values for globals variables, we can
2173   // delete the global and any stores that remain to it.
2174   for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
2175     GlobalVariable *GV = I.first;
2176     if (isOverdefined(I.second))
2177       continue;
2178     LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
2179                       << "' is constant!\n");
2180     while (!GV->use_empty()) {
2181       StoreInst *SI = cast<StoreInst>(GV->user_back());
2182       SI->eraseFromParent();
2183       MadeChanges = true;
2184     }
2185     M.getGlobalList().erase(GV);
2186     ++IPNumGlobalConst;
2187   }
2188 
2189   return MadeChanges;
2190 }
2191