10b57cec5SDimitry Andric //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This pass reassociates commutative expressions in an order that is designed 100b57cec5SDimitry Andric // to promote better constant propagation, GCSE, LICM, PRE, etc. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric // For example: 4 + (x + 5) -> x + (4 + 5) 130b57cec5SDimitry Andric // 140b57cec5SDimitry Andric // In the implementation of this algorithm, constants are assigned rank = 0, 150b57cec5SDimitry Andric // function arguments are rank = 1, and other values are assigned ranks 160b57cec5SDimitry Andric // corresponding to the reverse post order traversal of current function 170b57cec5SDimitry Andric // (starting at 2), which effectively gives values in deep loops higher rank 180b57cec5SDimitry Andric // than values not in loops. 190b57cec5SDimitry Andric // 200b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 210b57cec5SDimitry Andric 220b57cec5SDimitry Andric #include "llvm/Transforms/Scalar/Reassociate.h" 230b57cec5SDimitry Andric #include "llvm/ADT/APFloat.h" 240b57cec5SDimitry Andric #include "llvm/ADT/APInt.h" 250b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 260b57cec5SDimitry Andric #include "llvm/ADT/PostOrderIterator.h" 270b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 280b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h" 290b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 300b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h" 315ffd83dbSDimitry Andric #include "llvm/Analysis/BasicAliasAnalysis.h" 32753f127fSDimitry Andric #include "llvm/Analysis/ConstantFolding.h" 330b57cec5SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h" 340b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 350b57cec5SDimitry Andric #include "llvm/IR/Argument.h" 360b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 370b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 380b57cec5SDimitry Andric #include "llvm/IR/Constant.h" 390b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 400b57cec5SDimitry Andric #include "llvm/IR/Function.h" 410b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 420b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 430b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 440b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 450b57cec5SDimitry Andric #include "llvm/IR/Operator.h" 460b57cec5SDimitry Andric #include "llvm/IR/PassManager.h" 470b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h" 480b57cec5SDimitry Andric #include "llvm/IR/Type.h" 490b57cec5SDimitry Andric #include "llvm/IR/User.h" 500b57cec5SDimitry Andric #include "llvm/IR/Value.h" 510b57cec5SDimitry Andric #include "llvm/IR/ValueHandle.h" 52480093f4SDimitry Andric #include "llvm/InitializePasses.h" 530b57cec5SDimitry Andric #include "llvm/Pass.h" 540b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 5506c3fb27SDimitry Andric #include "llvm/Support/CommandLine.h" 560b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 570b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 580b57cec5SDimitry Andric #include "llvm/Transforms/Scalar.h" 59480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 600b57cec5SDimitry Andric #include <algorithm> 610b57cec5SDimitry Andric #include <cassert> 620b57cec5SDimitry Andric #include <utility> 630b57cec5SDimitry Andric 640b57cec5SDimitry Andric using namespace llvm; 650b57cec5SDimitry Andric using namespace reassociate; 660b57cec5SDimitry Andric using namespace PatternMatch; 670b57cec5SDimitry Andric 680b57cec5SDimitry Andric #define DEBUG_TYPE "reassociate" 690b57cec5SDimitry Andric 700b57cec5SDimitry Andric STATISTIC(NumChanged, "Number of insts reassociated"); 710b57cec5SDimitry Andric STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 720b57cec5SDimitry Andric STATISTIC(NumFactor , "Number of multiplies factored"); 730b57cec5SDimitry Andric 7406c3fb27SDimitry Andric static cl::opt<bool> 7506c3fb27SDimitry Andric UseCSELocalOpt(DEBUG_TYPE "-use-cse-local", 7606c3fb27SDimitry Andric cl::desc("Only reorder expressions within a basic block " 7706c3fb27SDimitry Andric "when exposing CSE opportunities"), 7806c3fb27SDimitry Andric cl::init(true), cl::Hidden); 7906c3fb27SDimitry Andric 800b57cec5SDimitry Andric #ifndef NDEBUG 810b57cec5SDimitry Andric /// Print out the expression identified in the Ops list. 820b57cec5SDimitry Andric static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 830b57cec5SDimitry Andric Module *M = I->getModule(); 840b57cec5SDimitry Andric dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 850b57cec5SDimitry Andric << *Ops[0].Op->getType() << '\t'; 860b57cec5SDimitry Andric for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 870b57cec5SDimitry Andric dbgs() << "[ "; 880b57cec5SDimitry Andric Ops[i].Op->printAsOperand(dbgs(), false, M); 890b57cec5SDimitry Andric dbgs() << ", #" << Ops[i].Rank << "] "; 900b57cec5SDimitry Andric } 910b57cec5SDimitry Andric } 920b57cec5SDimitry Andric #endif 930b57cec5SDimitry Andric 940b57cec5SDimitry Andric /// Utility class representing a non-constant Xor-operand. We classify 950b57cec5SDimitry Andric /// non-constant Xor-Operands into two categories: 960b57cec5SDimitry Andric /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 970b57cec5SDimitry Andric /// C2) 980b57cec5SDimitry Andric /// C2.1) The operand is in the form of "X | C", where C is a non-zero 990b57cec5SDimitry Andric /// constant. 1000b57cec5SDimitry Andric /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 1010b57cec5SDimitry Andric /// operand as "E | 0" 1020b57cec5SDimitry Andric class llvm::reassociate::XorOpnd { 1030b57cec5SDimitry Andric public: 1040b57cec5SDimitry Andric XorOpnd(Value *V); 1050b57cec5SDimitry Andric 1060b57cec5SDimitry Andric bool isInvalid() const { return SymbolicPart == nullptr; } 1070b57cec5SDimitry Andric bool isOrExpr() const { return isOr; } 1080b57cec5SDimitry Andric Value *getValue() const { return OrigVal; } 1090b57cec5SDimitry Andric Value *getSymbolicPart() const { return SymbolicPart; } 1100b57cec5SDimitry Andric unsigned getSymbolicRank() const { return SymbolicRank; } 1110b57cec5SDimitry Andric const APInt &getConstPart() const { return ConstPart; } 1120b57cec5SDimitry Andric 1130b57cec5SDimitry Andric void Invalidate() { SymbolicPart = OrigVal = nullptr; } 1140b57cec5SDimitry Andric void setSymbolicRank(unsigned R) { SymbolicRank = R; } 1150b57cec5SDimitry Andric 1160b57cec5SDimitry Andric private: 1170b57cec5SDimitry Andric Value *OrigVal; 1180b57cec5SDimitry Andric Value *SymbolicPart; 1190b57cec5SDimitry Andric APInt ConstPart; 1200b57cec5SDimitry Andric unsigned SymbolicRank; 1210b57cec5SDimitry Andric bool isOr; 1220b57cec5SDimitry Andric }; 1230b57cec5SDimitry Andric 1240b57cec5SDimitry Andric XorOpnd::XorOpnd(Value *V) { 1250b57cec5SDimitry Andric assert(!isa<ConstantInt>(V) && "No ConstantInt"); 1260b57cec5SDimitry Andric OrigVal = V; 1270b57cec5SDimitry Andric Instruction *I = dyn_cast<Instruction>(V); 1280b57cec5SDimitry Andric SymbolicRank = 0; 1290b57cec5SDimitry Andric 1300b57cec5SDimitry Andric if (I && (I->getOpcode() == Instruction::Or || 1310b57cec5SDimitry Andric I->getOpcode() == Instruction::And)) { 1320b57cec5SDimitry Andric Value *V0 = I->getOperand(0); 1330b57cec5SDimitry Andric Value *V1 = I->getOperand(1); 1340b57cec5SDimitry Andric const APInt *C; 1350b57cec5SDimitry Andric if (match(V0, m_APInt(C))) 1360b57cec5SDimitry Andric std::swap(V0, V1); 1370b57cec5SDimitry Andric 1380b57cec5SDimitry Andric if (match(V1, m_APInt(C))) { 1390b57cec5SDimitry Andric ConstPart = *C; 1400b57cec5SDimitry Andric SymbolicPart = V0; 1410b57cec5SDimitry Andric isOr = (I->getOpcode() == Instruction::Or); 1420b57cec5SDimitry Andric return; 1430b57cec5SDimitry Andric } 1440b57cec5SDimitry Andric } 1450b57cec5SDimitry Andric 1460b57cec5SDimitry Andric // view the operand as "V | 0" 1470b57cec5SDimitry Andric SymbolicPart = V; 148349cc55cSDimitry Andric ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits()); 1490b57cec5SDimitry Andric isOr = true; 1500b57cec5SDimitry Andric } 1510b57cec5SDimitry Andric 152fcaf7f86SDimitry Andric /// Return true if I is an instruction with the FastMathFlags that are needed 153fcaf7f86SDimitry Andric /// for general reassociation set. This is not the same as testing 154fcaf7f86SDimitry Andric /// Instruction::isAssociative() because it includes operations like fsub. 155fcaf7f86SDimitry Andric /// (This routine is only intended to be called for floating-point operations.) 156fcaf7f86SDimitry Andric static bool hasFPAssociativeFlags(Instruction *I) { 157972a253aSDimitry Andric assert(I && isa<FPMathOperator>(I) && "Should only check FP ops"); 158fcaf7f86SDimitry Andric return I->hasAllowReassoc() && I->hasNoSignedZeros(); 159fcaf7f86SDimitry Andric } 160fcaf7f86SDimitry Andric 1610b57cec5SDimitry Andric /// Return true if V is an instruction of the specified opcode and if it 1620b57cec5SDimitry Andric /// only has one use. 1630b57cec5SDimitry Andric static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 164972a253aSDimitry Andric auto *BO = dyn_cast<BinaryOperator>(V); 165972a253aSDimitry Andric if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode) 166972a253aSDimitry Andric if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO)) 167972a253aSDimitry Andric return BO; 1680b57cec5SDimitry Andric return nullptr; 1690b57cec5SDimitry Andric } 1700b57cec5SDimitry Andric 1710b57cec5SDimitry Andric static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 1720b57cec5SDimitry Andric unsigned Opcode2) { 173972a253aSDimitry Andric auto *BO = dyn_cast<BinaryOperator>(V); 174972a253aSDimitry Andric if (BO && BO->hasOneUse() && 175972a253aSDimitry Andric (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2)) 176972a253aSDimitry Andric if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO)) 177972a253aSDimitry Andric return BO; 1780b57cec5SDimitry Andric return nullptr; 1790b57cec5SDimitry Andric } 1800b57cec5SDimitry Andric 1810b57cec5SDimitry Andric void ReassociatePass::BuildRankMap(Function &F, 1820b57cec5SDimitry Andric ReversePostOrderTraversal<Function*> &RPOT) { 1830b57cec5SDimitry Andric unsigned Rank = 2; 1840b57cec5SDimitry Andric 1850b57cec5SDimitry Andric // Assign distinct ranks to function arguments. 1860b57cec5SDimitry Andric for (auto &Arg : F.args()) { 1870b57cec5SDimitry Andric ValueRankMap[&Arg] = ++Rank; 1880b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 1890b57cec5SDimitry Andric << "\n"); 1900b57cec5SDimitry Andric } 1910b57cec5SDimitry Andric 192480093f4SDimitry Andric // Traverse basic blocks in ReversePostOrder. 1930b57cec5SDimitry Andric for (BasicBlock *BB : RPOT) { 1940b57cec5SDimitry Andric unsigned BBRank = RankMap[BB] = ++Rank << 16; 1950b57cec5SDimitry Andric 1960b57cec5SDimitry Andric // Walk the basic block, adding precomputed ranks for any instructions that 1970b57cec5SDimitry Andric // we cannot move. This ensures that the ranks for these instructions are 1980b57cec5SDimitry Andric // all different in the block. 1990b57cec5SDimitry Andric for (Instruction &I : *BB) 20081ad6265SDimitry Andric if (mayHaveNonDefUseDependency(I)) 2010b57cec5SDimitry Andric ValueRankMap[&I] = ++BBRank; 2020b57cec5SDimitry Andric } 2030b57cec5SDimitry Andric } 2040b57cec5SDimitry Andric 2050b57cec5SDimitry Andric unsigned ReassociatePass::getRank(Value *V) { 2060b57cec5SDimitry Andric Instruction *I = dyn_cast<Instruction>(V); 2070b57cec5SDimitry Andric if (!I) { 2080b57cec5SDimitry Andric if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 2090b57cec5SDimitry Andric return 0; // Otherwise it's a global or constant, rank 0. 2100b57cec5SDimitry Andric } 2110b57cec5SDimitry Andric 2120b57cec5SDimitry Andric if (unsigned Rank = ValueRankMap[I]) 2130b57cec5SDimitry Andric return Rank; // Rank already known? 2140b57cec5SDimitry Andric 2150b57cec5SDimitry Andric // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 2160b57cec5SDimitry Andric // we can reassociate expressions for code motion! Since we do not recurse 2170b57cec5SDimitry Andric // for PHI nodes, we cannot have infinite recursion here, because there 2180b57cec5SDimitry Andric // cannot be loops in the value graph that do not go through PHI nodes. 2190b57cec5SDimitry Andric unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 2200b57cec5SDimitry Andric for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 2210b57cec5SDimitry Andric Rank = std::max(Rank, getRank(I->getOperand(i))); 2220b57cec5SDimitry Andric 2230b57cec5SDimitry Andric // If this is a 'not' or 'neg' instruction, do not count it for rank. This 2240b57cec5SDimitry Andric // assures us that X and ~X will have the same rank. 2250b57cec5SDimitry Andric if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 2260b57cec5SDimitry Andric !match(I, m_FNeg(m_Value()))) 2270b57cec5SDimitry Andric ++Rank; 2280b57cec5SDimitry Andric 2290b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 2300b57cec5SDimitry Andric << "\n"); 2310b57cec5SDimitry Andric 2320b57cec5SDimitry Andric return ValueRankMap[I] = Rank; 2330b57cec5SDimitry Andric } 2340b57cec5SDimitry Andric 2350b57cec5SDimitry Andric // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 2360b57cec5SDimitry Andric void ReassociatePass::canonicalizeOperands(Instruction *I) { 2370b57cec5SDimitry Andric assert(isa<BinaryOperator>(I) && "Expected binary operator."); 2380b57cec5SDimitry Andric assert(I->isCommutative() && "Expected commutative operator."); 2390b57cec5SDimitry Andric 2400b57cec5SDimitry Andric Value *LHS = I->getOperand(0); 2410b57cec5SDimitry Andric Value *RHS = I->getOperand(1); 2420b57cec5SDimitry Andric if (LHS == RHS || isa<Constant>(RHS)) 2430b57cec5SDimitry Andric return; 2440b57cec5SDimitry Andric if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 2450b57cec5SDimitry Andric cast<BinaryOperator>(I)->swapOperands(); 2460b57cec5SDimitry Andric } 2470b57cec5SDimitry Andric 2480b57cec5SDimitry Andric static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 249*0fca6ea1SDimitry Andric BasicBlock::iterator InsertBefore, 250*0fca6ea1SDimitry Andric Value *FlagsOp) { 2510b57cec5SDimitry Andric if (S1->getType()->isIntOrIntVectorTy()) 2520b57cec5SDimitry Andric return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 2530b57cec5SDimitry Andric else { 2540b57cec5SDimitry Andric BinaryOperator *Res = 2550b57cec5SDimitry Andric BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 2560b57cec5SDimitry Andric Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 2570b57cec5SDimitry Andric return Res; 2580b57cec5SDimitry Andric } 2590b57cec5SDimitry Andric } 2600b57cec5SDimitry Andric 2610b57cec5SDimitry Andric static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 262*0fca6ea1SDimitry Andric BasicBlock::iterator InsertBefore, 263*0fca6ea1SDimitry Andric Value *FlagsOp) { 2640b57cec5SDimitry Andric if (S1->getType()->isIntOrIntVectorTy()) 2650b57cec5SDimitry Andric return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 2660b57cec5SDimitry Andric else { 2670b57cec5SDimitry Andric BinaryOperator *Res = 2680b57cec5SDimitry Andric BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 2690b57cec5SDimitry Andric Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 2700b57cec5SDimitry Andric return Res; 2710b57cec5SDimitry Andric } 2720b57cec5SDimitry Andric } 2730b57cec5SDimitry Andric 2745ffd83dbSDimitry Andric static Instruction *CreateNeg(Value *S1, const Twine &Name, 275*0fca6ea1SDimitry Andric BasicBlock::iterator InsertBefore, 276*0fca6ea1SDimitry Andric Value *FlagsOp) { 2770b57cec5SDimitry Andric if (S1->getType()->isIntOrIntVectorTy()) 2780b57cec5SDimitry Andric return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 2795ffd83dbSDimitry Andric 2805ffd83dbSDimitry Andric if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp)) 2815ffd83dbSDimitry Andric return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore); 2825ffd83dbSDimitry Andric 2835ffd83dbSDimitry Andric return UnaryOperator::CreateFNeg(S1, Name, InsertBefore); 2840b57cec5SDimitry Andric } 2850b57cec5SDimitry Andric 2860b57cec5SDimitry Andric /// Replace 0-X with X*-1. 2870b57cec5SDimitry Andric static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 2880b57cec5SDimitry Andric assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && 2890b57cec5SDimitry Andric "Expected a Negate!"); 2900b57cec5SDimitry Andric // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0. 2910b57cec5SDimitry Andric unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0; 2920b57cec5SDimitry Andric Type *Ty = Neg->getType(); 2930b57cec5SDimitry Andric Constant *NegOne = Ty->isIntOrIntVectorTy() ? 2940b57cec5SDimitry Andric ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 2950b57cec5SDimitry Andric 296*0fca6ea1SDimitry Andric BinaryOperator *Res = 297*0fca6ea1SDimitry Andric CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg->getIterator(), Neg); 2980b57cec5SDimitry Andric Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op. 2990b57cec5SDimitry Andric Res->takeName(Neg); 3000b57cec5SDimitry Andric Neg->replaceAllUsesWith(Res); 3010b57cec5SDimitry Andric Res->setDebugLoc(Neg->getDebugLoc()); 3020b57cec5SDimitry Andric return Res; 3030b57cec5SDimitry Andric } 3040b57cec5SDimitry Andric 305*0fca6ea1SDimitry Andric using RepeatedValue = std::pair<Value *, uint64_t>; 3060b57cec5SDimitry Andric 3070b57cec5SDimitry Andric /// Given an associative binary expression, return the leaf 3080b57cec5SDimitry Andric /// nodes in Ops along with their weights (how many times the leaf occurs). The 3090b57cec5SDimitry Andric /// original expression is the same as 3100b57cec5SDimitry Andric /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 3110b57cec5SDimitry Andric /// op 3120b57cec5SDimitry Andric /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 3130b57cec5SDimitry Andric /// op 3140b57cec5SDimitry Andric /// ... 3150b57cec5SDimitry Andric /// op 3160b57cec5SDimitry Andric /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 3170b57cec5SDimitry Andric /// 3180b57cec5SDimitry Andric /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 3190b57cec5SDimitry Andric /// 3200b57cec5SDimitry Andric /// This routine may modify the function, in which case it returns 'true'. The 3210b57cec5SDimitry Andric /// changes it makes may well be destructive, changing the value computed by 'I' 3220b57cec5SDimitry Andric /// to something completely different. Thus if the routine returns 'true' then 3230b57cec5SDimitry Andric /// you MUST either replace I with a new expression computed from the Ops array, 3240b57cec5SDimitry Andric /// or use RewriteExprTree to put the values back in. 3250b57cec5SDimitry Andric /// 3260b57cec5SDimitry Andric /// A leaf node is either not a binary operation of the same kind as the root 3270b57cec5SDimitry Andric /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 3280b57cec5SDimitry Andric /// opcode), or is the same kind of binary operator but has a use which either 3290b57cec5SDimitry Andric /// does not belong to the expression, or does belong to the expression but is 3300b57cec5SDimitry Andric /// a leaf node. Every leaf node has at least one use that is a non-leaf node 3310b57cec5SDimitry Andric /// of the expression, while for non-leaf nodes (except for the root 'I') every 3320b57cec5SDimitry Andric /// use is a non-leaf node of the expression. 3330b57cec5SDimitry Andric /// 3340b57cec5SDimitry Andric /// For example: 3350b57cec5SDimitry Andric /// expression graph node names 3360b57cec5SDimitry Andric /// 3370b57cec5SDimitry Andric /// + | I 3380b57cec5SDimitry Andric /// / \ | 3390b57cec5SDimitry Andric /// + + | A, B 3400b57cec5SDimitry Andric /// / \ / \ | 3410b57cec5SDimitry Andric /// * + * | C, D, E 3420b57cec5SDimitry Andric /// / \ / \ / \ | 3430b57cec5SDimitry Andric /// + * | F, G 3440b57cec5SDimitry Andric /// 3450b57cec5SDimitry Andric /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 3460b57cec5SDimitry Andric /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 3470b57cec5SDimitry Andric /// 3480b57cec5SDimitry Andric /// The expression is maximal: if some instruction is a binary operator of the 3490b57cec5SDimitry Andric /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 3500b57cec5SDimitry Andric /// then the instruction also belongs to the expression, is not a leaf node of 3510b57cec5SDimitry Andric /// it, and its operands also belong to the expression (but may be leaf nodes). 3520b57cec5SDimitry Andric /// 3530b57cec5SDimitry Andric /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 3540b57cec5SDimitry Andric /// order to ensure that every non-root node in the expression has *exactly one* 3550b57cec5SDimitry Andric /// use by a non-leaf node of the expression. This destruction means that the 3560b57cec5SDimitry Andric /// caller MUST either replace 'I' with a new expression or use something like 3570b57cec5SDimitry Andric /// RewriteExprTree to put the values back in if the routine indicates that it 3580b57cec5SDimitry Andric /// made a change by returning 'true'. 3590b57cec5SDimitry Andric /// 3600b57cec5SDimitry Andric /// In the above example either the right operand of A or the left operand of B 3610b57cec5SDimitry Andric /// will be replaced by undef. If it is B's operand then this gives: 3620b57cec5SDimitry Andric /// 3630b57cec5SDimitry Andric /// + | I 3640b57cec5SDimitry Andric /// / \ | 3650b57cec5SDimitry Andric /// + + | A, B - operand of B replaced with undef 3660b57cec5SDimitry Andric /// / \ \ | 3670b57cec5SDimitry Andric /// * + * | C, D, E 3680b57cec5SDimitry Andric /// / \ / \ / \ | 3690b57cec5SDimitry Andric /// + * | F, G 3700b57cec5SDimitry Andric /// 3710b57cec5SDimitry Andric /// Note that such undef operands can only be reached by passing through 'I'. 3720b57cec5SDimitry Andric /// For example, if you visit operands recursively starting from a leaf node 3730b57cec5SDimitry Andric /// then you will never see such an undef operand unless you get back to 'I', 3740b57cec5SDimitry Andric /// which requires passing through a phi node. 3750b57cec5SDimitry Andric /// 3760b57cec5SDimitry Andric /// Note that this routine may also mutate binary operators of the wrong type 3770b57cec5SDimitry Andric /// that have all uses inside the expression (i.e. only used by non-leaf nodes 3780b57cec5SDimitry Andric /// of the expression) if it can turn them into binary operators of the right 3790b57cec5SDimitry Andric /// type and thus make the expression bigger. 3800b57cec5SDimitry Andric static bool LinearizeExprTree(Instruction *I, 381fcaf7f86SDimitry Andric SmallVectorImpl<RepeatedValue> &Ops, 3825f757f3fSDimitry Andric ReassociatePass::OrderedSet &ToRedo, 383*0fca6ea1SDimitry Andric reassociate::OverflowTracking &Flags) { 3840b57cec5SDimitry Andric assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && 3850b57cec5SDimitry Andric "Expected a UnaryOperator or BinaryOperator!"); 3860b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 3870b57cec5SDimitry Andric unsigned Opcode = I->getOpcode(); 3880b57cec5SDimitry Andric assert(I->isAssociative() && I->isCommutative() && 3890b57cec5SDimitry Andric "Expected an associative and commutative operation!"); 3900b57cec5SDimitry Andric 3910b57cec5SDimitry Andric // Visit all operands of the expression, keeping track of their weight (the 3920b57cec5SDimitry Andric // number of paths from the expression root to the operand, or if you like 3930b57cec5SDimitry Andric // the number of times that operand occurs in the linearized expression). 3940b57cec5SDimitry Andric // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 3950b57cec5SDimitry Andric // while A has weight two. 3960b57cec5SDimitry Andric 3970b57cec5SDimitry Andric // Worklist of non-leaf nodes (their operands are in the expression too) along 3980b57cec5SDimitry Andric // with their weights, representing a certain number of paths to the operator. 3990b57cec5SDimitry Andric // If an operator occurs in the worklist multiple times then we found multiple 4000b57cec5SDimitry Andric // ways to get to it. 401*0fca6ea1SDimitry Andric SmallVector<std::pair<Instruction *, uint64_t>, 8> Worklist; // (Op, Weight) 402*0fca6ea1SDimitry Andric Worklist.push_back(std::make_pair(I, 1)); 4030b57cec5SDimitry Andric bool Changed = false; 4040b57cec5SDimitry Andric 4050b57cec5SDimitry Andric // Leaves of the expression are values that either aren't the right kind of 4060b57cec5SDimitry Andric // operation (eg: a constant, or a multiply in an add tree), or are, but have 4070b57cec5SDimitry Andric // some uses that are not inside the expression. For example, in I = X + X, 4080b57cec5SDimitry Andric // X = A + B, the value X has two uses (by I) that are in the expression. If 4090b57cec5SDimitry Andric // X has any other uses, for example in a return instruction, then we consider 4100b57cec5SDimitry Andric // X to be a leaf, and won't analyze it further. When we first visit a value, 4110b57cec5SDimitry Andric // if it has more than one use then at first we conservatively consider it to 4120b57cec5SDimitry Andric // be a leaf. Later, as the expression is explored, we may discover some more 4130b57cec5SDimitry Andric // uses of the value from inside the expression. If all uses turn out to be 4140b57cec5SDimitry Andric // from within the expression (and the value is a binary operator of the right 4150b57cec5SDimitry Andric // kind) then the value is no longer considered to be a leaf, and its operands 4160b57cec5SDimitry Andric // are explored. 4170b57cec5SDimitry Andric 4180b57cec5SDimitry Andric // Leaves - Keeps track of the set of putative leaves as well as the number of 4190b57cec5SDimitry Andric // paths to each leaf seen so far. 420*0fca6ea1SDimitry Andric using LeafMap = DenseMap<Value *, uint64_t>; 4210b57cec5SDimitry Andric LeafMap Leaves; // Leaf -> Total weight so far. 4220b57cec5SDimitry Andric SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 423*0fca6ea1SDimitry Andric const DataLayout DL = I->getDataLayout(); 4240b57cec5SDimitry Andric 4250b57cec5SDimitry Andric #ifndef NDEBUG 4264824e7fdSDimitry Andric SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme. 4270b57cec5SDimitry Andric #endif 4280b57cec5SDimitry Andric while (!Worklist.empty()) { 429*0fca6ea1SDimitry Andric // We examine the operands of this binary operator. 430*0fca6ea1SDimitry Andric auto [I, Weight] = Worklist.pop_back_val(); 4310b57cec5SDimitry Andric 432*0fca6ea1SDimitry Andric if (isa<OverflowingBinaryOperator>(I)) { 433*0fca6ea1SDimitry Andric Flags.HasNUW &= I->hasNoUnsignedWrap(); 434*0fca6ea1SDimitry Andric Flags.HasNSW &= I->hasNoSignedWrap(); 435*0fca6ea1SDimitry Andric } 4365f757f3fSDimitry Andric 4370b57cec5SDimitry Andric for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands. 4380b57cec5SDimitry Andric Value *Op = I->getOperand(OpIdx); 4390b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 4400b57cec5SDimitry Andric assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 4410b57cec5SDimitry Andric 4420b57cec5SDimitry Andric // If this is a binary operation of the right kind with only one use then 4430b57cec5SDimitry Andric // add its operands to the expression. 4440b57cec5SDimitry Andric if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 4450b57cec5SDimitry Andric assert(Visited.insert(Op).second && "Not first visit!"); 4460b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 4470b57cec5SDimitry Andric Worklist.push_back(std::make_pair(BO, Weight)); 4480b57cec5SDimitry Andric continue; 4490b57cec5SDimitry Andric } 4500b57cec5SDimitry Andric 4510b57cec5SDimitry Andric // Appears to be a leaf. Is the operand already in the set of leaves? 4520b57cec5SDimitry Andric LeafMap::iterator It = Leaves.find(Op); 4530b57cec5SDimitry Andric if (It == Leaves.end()) { 4540b57cec5SDimitry Andric // Not in the leaf map. Must be the first time we saw this operand. 4550b57cec5SDimitry Andric assert(Visited.insert(Op).second && "Not first visit!"); 4560b57cec5SDimitry Andric if (!Op->hasOneUse()) { 4570b57cec5SDimitry Andric // This value has uses not accounted for by the expression, so it is 4580b57cec5SDimitry Andric // not safe to modify. Mark it as being a leaf. 4590b57cec5SDimitry Andric LLVM_DEBUG(dbgs() 4600b57cec5SDimitry Andric << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 4610b57cec5SDimitry Andric LeafOrder.push_back(Op); 4620b57cec5SDimitry Andric Leaves[Op] = Weight; 4630b57cec5SDimitry Andric continue; 4640b57cec5SDimitry Andric } 4650b57cec5SDimitry Andric // No uses outside the expression, try morphing it. 4660b57cec5SDimitry Andric } else { 4670b57cec5SDimitry Andric // Already in the leaf map. 4680b57cec5SDimitry Andric assert(It != Leaves.end() && Visited.count(Op) && 4690b57cec5SDimitry Andric "In leaf map but not visited!"); 4700b57cec5SDimitry Andric 4710b57cec5SDimitry Andric // Update the number of paths to the leaf. 472*0fca6ea1SDimitry Andric It->second += Weight; 473*0fca6ea1SDimitry Andric assert(It->second >= Weight && "Weight overflows"); 4740b57cec5SDimitry Andric 4750b57cec5SDimitry Andric // If we still have uses that are not accounted for by the expression 4760b57cec5SDimitry Andric // then it is not safe to modify the value. 4770b57cec5SDimitry Andric if (!Op->hasOneUse()) 4780b57cec5SDimitry Andric continue; 4790b57cec5SDimitry Andric 4800b57cec5SDimitry Andric // No uses outside the expression, try morphing it. 4810b57cec5SDimitry Andric Weight = It->second; 4820b57cec5SDimitry Andric Leaves.erase(It); // Since the value may be morphed below. 4830b57cec5SDimitry Andric } 4840b57cec5SDimitry Andric 4850b57cec5SDimitry Andric // At this point we have a value which, first of all, is not a binary 4860b57cec5SDimitry Andric // expression of the right kind, and secondly, is only used inside the 4870b57cec5SDimitry Andric // expression. This means that it can safely be modified. See if we 4880b57cec5SDimitry Andric // can usefully morph it into an expression of the right kind. 4890b57cec5SDimitry Andric assert((!isa<Instruction>(Op) || 4900b57cec5SDimitry Andric cast<Instruction>(Op)->getOpcode() != Opcode 4910b57cec5SDimitry Andric || (isa<FPMathOperator>(Op) && 492fcaf7f86SDimitry Andric !hasFPAssociativeFlags(cast<Instruction>(Op)))) && 4930b57cec5SDimitry Andric "Should have been handled above!"); 4940b57cec5SDimitry Andric assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 4950b57cec5SDimitry Andric 4960b57cec5SDimitry Andric // If this is a multiply expression, turn any internal negations into 497fcaf7f86SDimitry Andric // multiplies by -1 so they can be reassociated. Add any users of the 498fcaf7f86SDimitry Andric // newly created multiplication by -1 to the redo list, so any 499fcaf7f86SDimitry Andric // reassociation opportunities that are exposed will be reassociated 500fcaf7f86SDimitry Andric // further. 501fcaf7f86SDimitry Andric Instruction *Neg; 502fcaf7f86SDimitry Andric if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) || 503fcaf7f86SDimitry Andric (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) && 504fcaf7f86SDimitry Andric match(Op, m_Instruction(Neg))) { 5050b57cec5SDimitry Andric LLVM_DEBUG(dbgs() 5060b57cec5SDimitry Andric << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 507fcaf7f86SDimitry Andric Instruction *Mul = LowerNegateToMultiply(Neg); 508fcaf7f86SDimitry Andric LLVM_DEBUG(dbgs() << *Mul << '\n'); 509fcaf7f86SDimitry Andric Worklist.push_back(std::make_pair(Mul, Weight)); 510fcaf7f86SDimitry Andric for (User *U : Mul->users()) { 511fcaf7f86SDimitry Andric if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U)) 512fcaf7f86SDimitry Andric ToRedo.insert(UserBO); 513fcaf7f86SDimitry Andric } 514fcaf7f86SDimitry Andric ToRedo.insert(Neg); 5150b57cec5SDimitry Andric Changed = true; 5160b57cec5SDimitry Andric continue; 5170b57cec5SDimitry Andric } 5180b57cec5SDimitry Andric 5190b57cec5SDimitry Andric // Failed to morph into an expression of the right type. This really is 5200b57cec5SDimitry Andric // a leaf. 5210b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 5220b57cec5SDimitry Andric assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 5230b57cec5SDimitry Andric LeafOrder.push_back(Op); 5240b57cec5SDimitry Andric Leaves[Op] = Weight; 5250b57cec5SDimitry Andric } 5260b57cec5SDimitry Andric } 5270b57cec5SDimitry Andric 5280b57cec5SDimitry Andric // The leaves, repeated according to their weights, represent the linearized 5290b57cec5SDimitry Andric // form of the expression. 53006c3fb27SDimitry Andric for (Value *V : LeafOrder) { 5310b57cec5SDimitry Andric LeafMap::iterator It = Leaves.find(V); 5320b57cec5SDimitry Andric if (It == Leaves.end()) 5330b57cec5SDimitry Andric // Node initially thought to be a leaf wasn't. 5340b57cec5SDimitry Andric continue; 5350b57cec5SDimitry Andric assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 536*0fca6ea1SDimitry Andric uint64_t Weight = It->second; 5370b57cec5SDimitry Andric // Ensure the leaf is only output once. 5380b57cec5SDimitry Andric It->second = 0; 5390b57cec5SDimitry Andric Ops.push_back(std::make_pair(V, Weight)); 540*0fca6ea1SDimitry Andric if (Opcode == Instruction::Add && Flags.AllKnownNonNegative && Flags.HasNSW) 541*0fca6ea1SDimitry Andric Flags.AllKnownNonNegative &= isKnownNonNegative(V, SimplifyQuery(DL)); 542*0fca6ea1SDimitry Andric else if (Opcode == Instruction::Mul) { 543*0fca6ea1SDimitry Andric // To preserve NUW we need all inputs non-zero. 544*0fca6ea1SDimitry Andric // To preserve NSW we need all inputs strictly positive. 545*0fca6ea1SDimitry Andric if (Flags.AllKnownNonZero && 546*0fca6ea1SDimitry Andric (Flags.HasNUW || (Flags.HasNSW && Flags.AllKnownNonNegative))) { 547*0fca6ea1SDimitry Andric Flags.AllKnownNonZero &= isKnownNonZero(V, SimplifyQuery(DL)); 548*0fca6ea1SDimitry Andric if (Flags.HasNSW && Flags.AllKnownNonNegative) 549*0fca6ea1SDimitry Andric Flags.AllKnownNonNegative &= isKnownNonNegative(V, SimplifyQuery(DL)); 550*0fca6ea1SDimitry Andric } 551*0fca6ea1SDimitry Andric } 5520b57cec5SDimitry Andric } 5530b57cec5SDimitry Andric 5540b57cec5SDimitry Andric // For nilpotent operations or addition there may be no operands, for example 5550b57cec5SDimitry Andric // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 5560b57cec5SDimitry Andric // in both cases the weight reduces to 0 causing the value to be skipped. 5570b57cec5SDimitry Andric if (Ops.empty()) { 5580b57cec5SDimitry Andric Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 5590b57cec5SDimitry Andric assert(Identity && "Associative operation without identity!"); 560*0fca6ea1SDimitry Andric Ops.emplace_back(Identity, 1); 5610b57cec5SDimitry Andric } 5620b57cec5SDimitry Andric 5630b57cec5SDimitry Andric return Changed; 5640b57cec5SDimitry Andric } 5650b57cec5SDimitry Andric 5660b57cec5SDimitry Andric /// Now that the operands for this expression tree are 5670b57cec5SDimitry Andric /// linearized and optimized, emit them in-order. 5680b57cec5SDimitry Andric void ReassociatePass::RewriteExprTree(BinaryOperator *I, 5695f757f3fSDimitry Andric SmallVectorImpl<ValueEntry> &Ops, 570*0fca6ea1SDimitry Andric OverflowTracking Flags) { 5710b57cec5SDimitry Andric assert(Ops.size() > 1 && "Single values should be used directly!"); 5720b57cec5SDimitry Andric 5730b57cec5SDimitry Andric // Since our optimizations should never increase the number of operations, the 5740b57cec5SDimitry Andric // new expression can usually be written reusing the existing binary operators 5750b57cec5SDimitry Andric // from the original expression tree, without creating any new instructions, 5760b57cec5SDimitry Andric // though the rewritten expression may have a completely different topology. 5770b57cec5SDimitry Andric // We take care to not change anything if the new expression will be the same 5780b57cec5SDimitry Andric // as the original. If more than trivial changes (like commuting operands) 5790b57cec5SDimitry Andric // were made then we are obliged to clear out any optional subclass data like 5800b57cec5SDimitry Andric // nsw flags. 5810b57cec5SDimitry Andric 5820b57cec5SDimitry Andric /// NodesToRewrite - Nodes from the original expression available for writing 5830b57cec5SDimitry Andric /// the new expression into. 5840b57cec5SDimitry Andric SmallVector<BinaryOperator*, 8> NodesToRewrite; 5850b57cec5SDimitry Andric unsigned Opcode = I->getOpcode(); 5860b57cec5SDimitry Andric BinaryOperator *Op = I; 5870b57cec5SDimitry Andric 5880b57cec5SDimitry Andric /// NotRewritable - The operands being written will be the leaves of the new 5890b57cec5SDimitry Andric /// expression and must not be used as inner nodes (via NodesToRewrite) by 5900b57cec5SDimitry Andric /// mistake. Inner nodes are always reassociable, and usually leaves are not 5910b57cec5SDimitry Andric /// (if they were they would have been incorporated into the expression and so 5920b57cec5SDimitry Andric /// would not be leaves), so most of the time there is no danger of this. But 5930b57cec5SDimitry Andric /// in rare cases a leaf may become reassociable if an optimization kills uses 5940b57cec5SDimitry Andric /// of it, or it may momentarily become reassociable during rewriting (below) 5950b57cec5SDimitry Andric /// due it being removed as an operand of one of its uses. Ensure that misuse 5960b57cec5SDimitry Andric /// of leaf nodes as inner nodes cannot occur by remembering all of the future 5970b57cec5SDimitry Andric /// leaves and refusing to reuse any of them as inner nodes. 5980b57cec5SDimitry Andric SmallPtrSet<Value*, 8> NotRewritable; 599*0fca6ea1SDimitry Andric for (const ValueEntry &Op : Ops) 600*0fca6ea1SDimitry Andric NotRewritable.insert(Op.Op); 6010b57cec5SDimitry Andric 60206c3fb27SDimitry Andric // ExpressionChangedStart - Non-null if the rewritten expression differs from 60306c3fb27SDimitry Andric // the original in some non-trivial way, requiring the clearing of optional 60406c3fb27SDimitry Andric // flags. Flags are cleared from the operator in ExpressionChangedStart up to 60506c3fb27SDimitry Andric // ExpressionChangedEnd inclusive. 60606c3fb27SDimitry Andric BinaryOperator *ExpressionChangedStart = nullptr, 60706c3fb27SDimitry Andric *ExpressionChangedEnd = nullptr; 6080b57cec5SDimitry Andric for (unsigned i = 0; ; ++i) { 6090b57cec5SDimitry Andric // The last operation (which comes earliest in the IR) is special as both 6100b57cec5SDimitry Andric // operands will come from Ops, rather than just one with the other being 6110b57cec5SDimitry Andric // a subexpression. 6120b57cec5SDimitry Andric if (i+2 == Ops.size()) { 6130b57cec5SDimitry Andric Value *NewLHS = Ops[i].Op; 6140b57cec5SDimitry Andric Value *NewRHS = Ops[i+1].Op; 6150b57cec5SDimitry Andric Value *OldLHS = Op->getOperand(0); 6160b57cec5SDimitry Andric Value *OldRHS = Op->getOperand(1); 6170b57cec5SDimitry Andric 6180b57cec5SDimitry Andric if (NewLHS == OldLHS && NewRHS == OldRHS) 6190b57cec5SDimitry Andric // Nothing changed, leave it alone. 6200b57cec5SDimitry Andric break; 6210b57cec5SDimitry Andric 6220b57cec5SDimitry Andric if (NewLHS == OldRHS && NewRHS == OldLHS) { 6230b57cec5SDimitry Andric // The order of the operands was reversed. Swap them. 6240b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 6250b57cec5SDimitry Andric Op->swapOperands(); 6260b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 6270b57cec5SDimitry Andric MadeChange = true; 6280b57cec5SDimitry Andric ++NumChanged; 6290b57cec5SDimitry Andric break; 6300b57cec5SDimitry Andric } 6310b57cec5SDimitry Andric 6320b57cec5SDimitry Andric // The new operation differs non-trivially from the original. Overwrite 6330b57cec5SDimitry Andric // the old operands with the new ones. 6340b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 6350b57cec5SDimitry Andric if (NewLHS != OldLHS) { 6360b57cec5SDimitry Andric BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 6370b57cec5SDimitry Andric if (BO && !NotRewritable.count(BO)) 6380b57cec5SDimitry Andric NodesToRewrite.push_back(BO); 6390b57cec5SDimitry Andric Op->setOperand(0, NewLHS); 6400b57cec5SDimitry Andric } 6410b57cec5SDimitry Andric if (NewRHS != OldRHS) { 6420b57cec5SDimitry Andric BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 6430b57cec5SDimitry Andric if (BO && !NotRewritable.count(BO)) 6440b57cec5SDimitry Andric NodesToRewrite.push_back(BO); 6450b57cec5SDimitry Andric Op->setOperand(1, NewRHS); 6460b57cec5SDimitry Andric } 6470b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 6480b57cec5SDimitry Andric 64906c3fb27SDimitry Andric ExpressionChangedStart = Op; 65006c3fb27SDimitry Andric if (!ExpressionChangedEnd) 65106c3fb27SDimitry Andric ExpressionChangedEnd = Op; 6520b57cec5SDimitry Andric MadeChange = true; 6530b57cec5SDimitry Andric ++NumChanged; 6540b57cec5SDimitry Andric 6550b57cec5SDimitry Andric break; 6560b57cec5SDimitry Andric } 6570b57cec5SDimitry Andric 6580b57cec5SDimitry Andric // Not the last operation. The left-hand side will be a sub-expression 6590b57cec5SDimitry Andric // while the right-hand side will be the current element of Ops. 6600b57cec5SDimitry Andric Value *NewRHS = Ops[i].Op; 6610b57cec5SDimitry Andric if (NewRHS != Op->getOperand(1)) { 6620b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 6630b57cec5SDimitry Andric if (NewRHS == Op->getOperand(0)) { 6640b57cec5SDimitry Andric // The new right-hand side was already present as the left operand. If 6650b57cec5SDimitry Andric // we are lucky then swapping the operands will sort out both of them. 6660b57cec5SDimitry Andric Op->swapOperands(); 6670b57cec5SDimitry Andric } else { 6680b57cec5SDimitry Andric // Overwrite with the new right-hand side. 6690b57cec5SDimitry Andric BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 6700b57cec5SDimitry Andric if (BO && !NotRewritable.count(BO)) 6710b57cec5SDimitry Andric NodesToRewrite.push_back(BO); 6720b57cec5SDimitry Andric Op->setOperand(1, NewRHS); 67306c3fb27SDimitry Andric ExpressionChangedStart = Op; 67406c3fb27SDimitry Andric if (!ExpressionChangedEnd) 67506c3fb27SDimitry Andric ExpressionChangedEnd = Op; 6760b57cec5SDimitry Andric } 6770b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 6780b57cec5SDimitry Andric MadeChange = true; 6790b57cec5SDimitry Andric ++NumChanged; 6800b57cec5SDimitry Andric } 6810b57cec5SDimitry Andric 6820b57cec5SDimitry Andric // Now deal with the left-hand side. If this is already an operation node 6830b57cec5SDimitry Andric // from the original expression then just rewrite the rest of the expression 6840b57cec5SDimitry Andric // into it. 6850b57cec5SDimitry Andric BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 6860b57cec5SDimitry Andric if (BO && !NotRewritable.count(BO)) { 6870b57cec5SDimitry Andric Op = BO; 6880b57cec5SDimitry Andric continue; 6890b57cec5SDimitry Andric } 6900b57cec5SDimitry Andric 6910b57cec5SDimitry Andric // Otherwise, grab a spare node from the original expression and use that as 6920b57cec5SDimitry Andric // the left-hand side. If there are no nodes left then the optimizers made 6930b57cec5SDimitry Andric // an expression with more nodes than the original! This usually means that 6940b57cec5SDimitry Andric // they did something stupid but it might mean that the problem was just too 6950b57cec5SDimitry Andric // hard (finding the mimimal number of multiplications needed to realize a 6960b57cec5SDimitry Andric // multiplication expression is NP-complete). Whatever the reason, smart or 6970b57cec5SDimitry Andric // stupid, create a new node if there are none left. 6980b57cec5SDimitry Andric BinaryOperator *NewOp; 6990b57cec5SDimitry Andric if (NodesToRewrite.empty()) { 700*0fca6ea1SDimitry Andric Constant *Poison = PoisonValue::get(I->getType()); 701*0fca6ea1SDimitry Andric NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), Poison, 702*0fca6ea1SDimitry Andric Poison, "", I->getIterator()); 703972a253aSDimitry Andric if (isa<FPMathOperator>(NewOp)) 7040b57cec5SDimitry Andric NewOp->setFastMathFlags(I->getFastMathFlags()); 7050b57cec5SDimitry Andric } else { 7060b57cec5SDimitry Andric NewOp = NodesToRewrite.pop_back_val(); 7070b57cec5SDimitry Andric } 7080b57cec5SDimitry Andric 7090b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 7100b57cec5SDimitry Andric Op->setOperand(0, NewOp); 7110b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 71206c3fb27SDimitry Andric ExpressionChangedStart = Op; 71306c3fb27SDimitry Andric if (!ExpressionChangedEnd) 71406c3fb27SDimitry Andric ExpressionChangedEnd = Op; 7150b57cec5SDimitry Andric MadeChange = true; 7160b57cec5SDimitry Andric ++NumChanged; 7170b57cec5SDimitry Andric Op = NewOp; 7180b57cec5SDimitry Andric } 7190b57cec5SDimitry Andric 7200b57cec5SDimitry Andric // If the expression changed non-trivially then clear out all subclass data 7210b57cec5SDimitry Andric // starting from the operator specified in ExpressionChanged, and compactify 7220b57cec5SDimitry Andric // the operators to just before the expression root to guarantee that the 7230b57cec5SDimitry Andric // expression tree is dominated by all of Ops. 72406c3fb27SDimitry Andric if (ExpressionChangedStart) { 72506c3fb27SDimitry Andric bool ClearFlags = true; 7260b57cec5SDimitry Andric do { 7275f757f3fSDimitry Andric // Preserve flags. 72806c3fb27SDimitry Andric if (ClearFlags) { 7290b57cec5SDimitry Andric if (isa<FPMathOperator>(I)) { 7300b57cec5SDimitry Andric FastMathFlags Flags = I->getFastMathFlags(); 73106c3fb27SDimitry Andric ExpressionChangedStart->clearSubclassOptionalData(); 73206c3fb27SDimitry Andric ExpressionChangedStart->setFastMathFlags(Flags); 7335f757f3fSDimitry Andric } else { 73406c3fb27SDimitry Andric ExpressionChangedStart->clearSubclassOptionalData(); 735*0fca6ea1SDimitry Andric if (ExpressionChangedStart->getOpcode() == Instruction::Add || 736*0fca6ea1SDimitry Andric (ExpressionChangedStart->getOpcode() == Instruction::Mul && 737*0fca6ea1SDimitry Andric Flags.AllKnownNonZero)) { 738*0fca6ea1SDimitry Andric if (Flags.HasNUW) 7395f757f3fSDimitry Andric ExpressionChangedStart->setHasNoUnsignedWrap(); 740*0fca6ea1SDimitry Andric if (Flags.HasNSW && (Flags.AllKnownNonNegative || Flags.HasNUW)) 741*0fca6ea1SDimitry Andric ExpressionChangedStart->setHasNoSignedWrap(); 742*0fca6ea1SDimitry Andric } 7435f757f3fSDimitry Andric } 74406c3fb27SDimitry Andric } 7450b57cec5SDimitry Andric 74606c3fb27SDimitry Andric if (ExpressionChangedStart == ExpressionChangedEnd) 74706c3fb27SDimitry Andric ClearFlags = false; 74806c3fb27SDimitry Andric if (ExpressionChangedStart == I) 7490b57cec5SDimitry Andric break; 7500b57cec5SDimitry Andric 7510b57cec5SDimitry Andric // Discard any debug info related to the expressions that has changed (we 75206c3fb27SDimitry Andric // can leave debug info related to the root and any operation that didn't 75306c3fb27SDimitry Andric // change, since the result of the expression tree should be the same 75406c3fb27SDimitry Andric // even after reassociation). 75506c3fb27SDimitry Andric if (ClearFlags) 75606c3fb27SDimitry Andric replaceDbgUsesWithUndef(ExpressionChangedStart); 7570b57cec5SDimitry Andric 75806c3fb27SDimitry Andric ExpressionChangedStart->moveBefore(I); 75906c3fb27SDimitry Andric ExpressionChangedStart = 76006c3fb27SDimitry Andric cast<BinaryOperator>(*ExpressionChangedStart->user_begin()); 7610b57cec5SDimitry Andric } while (true); 76206c3fb27SDimitry Andric } 7630b57cec5SDimitry Andric 7640b57cec5SDimitry Andric // Throw away any left over nodes from the original expression. 765*0fca6ea1SDimitry Andric for (BinaryOperator *BO : NodesToRewrite) 766*0fca6ea1SDimitry Andric RedoInsts.insert(BO); 7670b57cec5SDimitry Andric } 7680b57cec5SDimitry Andric 7690b57cec5SDimitry Andric /// Insert instructions before the instruction pointed to by BI, 7700b57cec5SDimitry Andric /// that computes the negative version of the value specified. The negative 7710b57cec5SDimitry Andric /// version of the value is returned, and BI is left pointing at the instruction 7720b57cec5SDimitry Andric /// that should be processed next by the reassociation pass. 7730b57cec5SDimitry Andric /// Also add intermediate instructions to the redo list that are modified while 7740b57cec5SDimitry Andric /// pushing the negates through adds. These will be revisited to see if 7750b57cec5SDimitry Andric /// additional opportunities have been exposed. 7760b57cec5SDimitry Andric static Value *NegateValue(Value *V, Instruction *BI, 7770b57cec5SDimitry Andric ReassociatePass::OrderedSet &ToRedo) { 778bdd1243dSDimitry Andric if (auto *C = dyn_cast<Constant>(V)) { 779*0fca6ea1SDimitry Andric const DataLayout &DL = BI->getDataLayout(); 780bdd1243dSDimitry Andric Constant *Res = C->getType()->isFPOrFPVectorTy() 781bdd1243dSDimitry Andric ? ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL) 782bdd1243dSDimitry Andric : ConstantExpr::getNeg(C); 783bdd1243dSDimitry Andric if (Res) 784bdd1243dSDimitry Andric return Res; 785bdd1243dSDimitry Andric } 7860b57cec5SDimitry Andric 7870b57cec5SDimitry Andric // We are trying to expose opportunity for reassociation. One of the things 7880b57cec5SDimitry Andric // that we want to do to achieve this is to push a negation as deep into an 7890b57cec5SDimitry Andric // expression chain as possible, to expose the add instructions. In practice, 7900b57cec5SDimitry Andric // this means that we turn this: 7910b57cec5SDimitry Andric // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 7920b57cec5SDimitry Andric // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 7930b57cec5SDimitry Andric // the constants. We assume that instcombine will clean up the mess later if 7940b57cec5SDimitry Andric // we introduce tons of unnecessary negation instructions. 7950b57cec5SDimitry Andric // 7960b57cec5SDimitry Andric if (BinaryOperator *I = 7970b57cec5SDimitry Andric isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 7980b57cec5SDimitry Andric // Push the negates through the add. 7990b57cec5SDimitry Andric I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 8000b57cec5SDimitry Andric I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 8010b57cec5SDimitry Andric if (I->getOpcode() == Instruction::Add) { 8020b57cec5SDimitry Andric I->setHasNoUnsignedWrap(false); 8030b57cec5SDimitry Andric I->setHasNoSignedWrap(false); 8040b57cec5SDimitry Andric } 8050b57cec5SDimitry Andric 8060b57cec5SDimitry Andric // We must move the add instruction here, because the neg instructions do 8070b57cec5SDimitry Andric // not dominate the old add instruction in general. By moving it, we are 8080b57cec5SDimitry Andric // assured that the neg instructions we just inserted dominate the 8090b57cec5SDimitry Andric // instruction we are about to insert after them. 8100b57cec5SDimitry Andric // 8110b57cec5SDimitry Andric I->moveBefore(BI); 8120b57cec5SDimitry Andric I->setName(I->getName()+".neg"); 8130b57cec5SDimitry Andric 8140b57cec5SDimitry Andric // Add the intermediate negates to the redo list as processing them later 8150b57cec5SDimitry Andric // could expose more reassociating opportunities. 8160b57cec5SDimitry Andric ToRedo.insert(I); 8170b57cec5SDimitry Andric return I; 8180b57cec5SDimitry Andric } 8190b57cec5SDimitry Andric 8200b57cec5SDimitry Andric // Okay, we need to materialize a negated version of V with an instruction. 8210b57cec5SDimitry Andric // Scan the use lists of V to see if we have one already. 8220b57cec5SDimitry Andric for (User *U : V->users()) { 8230b57cec5SDimitry Andric if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 8240b57cec5SDimitry Andric continue; 8250b57cec5SDimitry Andric 8260b57cec5SDimitry Andric // We found one! Now we have to make sure that the definition dominates 8270b57cec5SDimitry Andric // this use. We do this by moving it to the entry block (if it is a 8280b57cec5SDimitry Andric // non-instruction value) or right after the definition. These negates will 8290b57cec5SDimitry Andric // be zapped by reassociate later, so we don't need much finesse here. 830bdd1243dSDimitry Andric Instruction *TheNeg = dyn_cast<Instruction>(U); 8310b57cec5SDimitry Andric 832bdd1243dSDimitry Andric // We can't safely propagate a vector zero constant with poison/undef lanes. 833bdd1243dSDimitry Andric Constant *C; 834bdd1243dSDimitry Andric if (match(TheNeg, m_BinOp(m_Constant(C), m_Value())) && 835bdd1243dSDimitry Andric C->containsUndefOrPoisonElement()) 8360b57cec5SDimitry Andric continue; 8370b57cec5SDimitry Andric 838bdd1243dSDimitry Andric // Verify that the negate is in this function, V might be a constant expr. 839bdd1243dSDimitry Andric if (!TheNeg || 840bdd1243dSDimitry Andric TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 841bdd1243dSDimitry Andric continue; 8420b57cec5SDimitry Andric 8435f757f3fSDimitry Andric BasicBlock::iterator InsertPt; 8440b57cec5SDimitry Andric if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 8455f757f3fSDimitry Andric auto InsertPtOpt = InstInput->getInsertionPointAfterDef(); 8465f757f3fSDimitry Andric if (!InsertPtOpt) 847bdd1243dSDimitry Andric continue; 8485f757f3fSDimitry Andric InsertPt = *InsertPtOpt; 8490b57cec5SDimitry Andric } else { 8505f757f3fSDimitry Andric InsertPt = TheNeg->getFunction() 8515f757f3fSDimitry Andric ->getEntryBlock() 8525f757f3fSDimitry Andric .getFirstNonPHIOrDbg() 8535f757f3fSDimitry Andric ->getIterator(); 8540b57cec5SDimitry Andric } 8550b57cec5SDimitry Andric 856*0fca6ea1SDimitry Andric // Check that if TheNeg is moved out of its parent block, we drop its 857*0fca6ea1SDimitry Andric // debug location to avoid extra coverage. 858*0fca6ea1SDimitry Andric // See test dropping_debugloc_the_neg.ll for a detailed example. 859*0fca6ea1SDimitry Andric if (TheNeg->getParent() != InsertPt->getParent()) 860*0fca6ea1SDimitry Andric TheNeg->dropLocation(); 8615f757f3fSDimitry Andric TheNeg->moveBefore(*InsertPt->getParent(), InsertPt); 862*0fca6ea1SDimitry Andric 8630b57cec5SDimitry Andric if (TheNeg->getOpcode() == Instruction::Sub) { 8640b57cec5SDimitry Andric TheNeg->setHasNoUnsignedWrap(false); 8650b57cec5SDimitry Andric TheNeg->setHasNoSignedWrap(false); 8660b57cec5SDimitry Andric } else { 8670b57cec5SDimitry Andric TheNeg->andIRFlags(BI); 8680b57cec5SDimitry Andric } 8690b57cec5SDimitry Andric ToRedo.insert(TheNeg); 8700b57cec5SDimitry Andric return TheNeg; 8710b57cec5SDimitry Andric } 8720b57cec5SDimitry Andric 8730b57cec5SDimitry Andric // Insert a 'neg' instruction that subtracts the value from zero to get the 8740b57cec5SDimitry Andric // negation. 875*0fca6ea1SDimitry Andric Instruction *NewNeg = 876*0fca6ea1SDimitry Andric CreateNeg(V, V->getName() + ".neg", BI->getIterator(), BI); 8770b57cec5SDimitry Andric ToRedo.insert(NewNeg); 8780b57cec5SDimitry Andric return NewNeg; 8790b57cec5SDimitry Andric } 8800b57cec5SDimitry Andric 881e8d8bef9SDimitry Andric // See if this `or` looks like an load widening reduction, i.e. that it 882e8d8bef9SDimitry Andric // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't 883e8d8bef9SDimitry Andric // ensure that the pattern is *really* a load widening reduction, 884e8d8bef9SDimitry Andric // we do not ensure that it can really be replaced with a widened load, 885e8d8bef9SDimitry Andric // only that it mostly looks like one. 886e8d8bef9SDimitry Andric static bool isLoadCombineCandidate(Instruction *Or) { 887e8d8bef9SDimitry Andric SmallVector<Instruction *, 8> Worklist; 888e8d8bef9SDimitry Andric SmallSet<Instruction *, 8> Visited; 889e8d8bef9SDimitry Andric 890e8d8bef9SDimitry Andric auto Enqueue = [&](Value *V) { 891e8d8bef9SDimitry Andric auto *I = dyn_cast<Instruction>(V); 892e8d8bef9SDimitry Andric // Each node of an `or` reduction must be an instruction, 893e8d8bef9SDimitry Andric if (!I) 894e8d8bef9SDimitry Andric return false; // Node is certainly not part of an `or` load reduction. 895e8d8bef9SDimitry Andric // Only process instructions we have never processed before. 896e8d8bef9SDimitry Andric if (Visited.insert(I).second) 897e8d8bef9SDimitry Andric Worklist.emplace_back(I); 898e8d8bef9SDimitry Andric return true; // Will need to look at parent nodes. 899e8d8bef9SDimitry Andric }; 900e8d8bef9SDimitry Andric 901e8d8bef9SDimitry Andric if (!Enqueue(Or)) 902e8d8bef9SDimitry Andric return false; // Not an `or` reduction pattern. 903e8d8bef9SDimitry Andric 904e8d8bef9SDimitry Andric while (!Worklist.empty()) { 905e8d8bef9SDimitry Andric auto *I = Worklist.pop_back_val(); 906e8d8bef9SDimitry Andric 907e8d8bef9SDimitry Andric // Okay, which instruction is this node? 908e8d8bef9SDimitry Andric switch (I->getOpcode()) { 909e8d8bef9SDimitry Andric case Instruction::Or: 910e8d8bef9SDimitry Andric // Got an `or` node. That's fine, just recurse into it's operands. 911e8d8bef9SDimitry Andric for (Value *Op : I->operands()) 912e8d8bef9SDimitry Andric if (!Enqueue(Op)) 913e8d8bef9SDimitry Andric return false; // Not an `or` reduction pattern. 914e8d8bef9SDimitry Andric continue; 915e8d8bef9SDimitry Andric 916e8d8bef9SDimitry Andric case Instruction::Shl: 917e8d8bef9SDimitry Andric case Instruction::ZExt: 918e8d8bef9SDimitry Andric // `shl`/`zext` nodes are fine, just recurse into their base operand. 919e8d8bef9SDimitry Andric if (!Enqueue(I->getOperand(0))) 920e8d8bef9SDimitry Andric return false; // Not an `or` reduction pattern. 921e8d8bef9SDimitry Andric continue; 922e8d8bef9SDimitry Andric 923e8d8bef9SDimitry Andric case Instruction::Load: 924e8d8bef9SDimitry Andric // Perfect, `load` node means we've reached an edge of the graph. 925e8d8bef9SDimitry Andric continue; 926e8d8bef9SDimitry Andric 927e8d8bef9SDimitry Andric default: // Unknown node. 928e8d8bef9SDimitry Andric return false; // Not an `or` reduction pattern. 929e8d8bef9SDimitry Andric } 930e8d8bef9SDimitry Andric } 931e8d8bef9SDimitry Andric 932e8d8bef9SDimitry Andric return true; 933e8d8bef9SDimitry Andric } 934e8d8bef9SDimitry Andric 935e8d8bef9SDimitry Andric /// Return true if it may be profitable to convert this (X|Y) into (X+Y). 936fe6060f1SDimitry Andric static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) { 937e8d8bef9SDimitry Andric // Don't bother to convert this up unless either the LHS is an associable add 938e8d8bef9SDimitry Andric // or subtract or mul or if this is only used by one of the above. 939e8d8bef9SDimitry Andric // This is only a compile-time improvement, it is not needed for correctness! 940e8d8bef9SDimitry Andric auto isInteresting = [](Value *V) { 941fe6060f1SDimitry Andric for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul, 942fe6060f1SDimitry Andric Instruction::Shl}) 943e8d8bef9SDimitry Andric if (isReassociableOp(V, Op)) 944e8d8bef9SDimitry Andric return true; 945e8d8bef9SDimitry Andric return false; 946e8d8bef9SDimitry Andric }; 947e8d8bef9SDimitry Andric 948e8d8bef9SDimitry Andric if (any_of(Or->operands(), isInteresting)) 949e8d8bef9SDimitry Andric return true; 950e8d8bef9SDimitry Andric 951e8d8bef9SDimitry Andric Value *VB = Or->user_back(); 952e8d8bef9SDimitry Andric if (Or->hasOneUse() && isInteresting(VB)) 953e8d8bef9SDimitry Andric return true; 954e8d8bef9SDimitry Andric 955e8d8bef9SDimitry Andric return false; 956e8d8bef9SDimitry Andric } 957e8d8bef9SDimitry Andric 958e8d8bef9SDimitry Andric /// If we have (X|Y), and iff X and Y have no common bits set, 959e8d8bef9SDimitry Andric /// transform this into (X+Y) to allow arithmetics reassociation. 960fe6060f1SDimitry Andric static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) { 961e8d8bef9SDimitry Andric // Convert an or into an add. 962*0fca6ea1SDimitry Andric BinaryOperator *New = CreateAdd(Or->getOperand(0), Or->getOperand(1), "", 963*0fca6ea1SDimitry Andric Or->getIterator(), Or); 964e8d8bef9SDimitry Andric New->setHasNoSignedWrap(); 965e8d8bef9SDimitry Andric New->setHasNoUnsignedWrap(); 966e8d8bef9SDimitry Andric New->takeName(Or); 967e8d8bef9SDimitry Andric 968e8d8bef9SDimitry Andric // Everyone now refers to the add instruction. 969e8d8bef9SDimitry Andric Or->replaceAllUsesWith(New); 970e8d8bef9SDimitry Andric New->setDebugLoc(Or->getDebugLoc()); 971e8d8bef9SDimitry Andric 972e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n'); 973e8d8bef9SDimitry Andric return New; 974e8d8bef9SDimitry Andric } 975e8d8bef9SDimitry Andric 9760b57cec5SDimitry Andric /// Return true if we should break up this subtract of X-Y into (X + -Y). 9770b57cec5SDimitry Andric static bool ShouldBreakUpSubtract(Instruction *Sub) { 9780b57cec5SDimitry Andric // If this is a negation, we can't split it up! 9790b57cec5SDimitry Andric if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 9800b57cec5SDimitry Andric return false; 9810b57cec5SDimitry Andric 9820b57cec5SDimitry Andric // Don't breakup X - undef. 9830b57cec5SDimitry Andric if (isa<UndefValue>(Sub->getOperand(1))) 9840b57cec5SDimitry Andric return false; 9850b57cec5SDimitry Andric 9860b57cec5SDimitry Andric // Don't bother to break this up unless either the LHS is an associable add or 9870b57cec5SDimitry Andric // subtract or if this is only used by one. 9880b57cec5SDimitry Andric Value *V0 = Sub->getOperand(0); 9890b57cec5SDimitry Andric if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 9900b57cec5SDimitry Andric isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 9910b57cec5SDimitry Andric return true; 9920b57cec5SDimitry Andric Value *V1 = Sub->getOperand(1); 9930b57cec5SDimitry Andric if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 9940b57cec5SDimitry Andric isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 9950b57cec5SDimitry Andric return true; 9960b57cec5SDimitry Andric Value *VB = Sub->user_back(); 9970b57cec5SDimitry Andric if (Sub->hasOneUse() && 9980b57cec5SDimitry Andric (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 9990b57cec5SDimitry Andric isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 10000b57cec5SDimitry Andric return true; 10010b57cec5SDimitry Andric 10020b57cec5SDimitry Andric return false; 10030b57cec5SDimitry Andric } 10040b57cec5SDimitry Andric 10050b57cec5SDimitry Andric /// If we have (X-Y), and if either X is an add, or if this is only used by an 10060b57cec5SDimitry Andric /// add, transform this into (X+(0-Y)) to promote better reassociation. 10070b57cec5SDimitry Andric static BinaryOperator *BreakUpSubtract(Instruction *Sub, 10080b57cec5SDimitry Andric ReassociatePass::OrderedSet &ToRedo) { 10090b57cec5SDimitry Andric // Convert a subtract into an add and a neg instruction. This allows sub 10100b57cec5SDimitry Andric // instructions to be commuted with other add instructions. 10110b57cec5SDimitry Andric // 10120b57cec5SDimitry Andric // Calculate the negative value of Operand 1 of the sub instruction, 10130b57cec5SDimitry Andric // and set it as the RHS of the add instruction we just made. 10140b57cec5SDimitry Andric Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 1015*0fca6ea1SDimitry Andric BinaryOperator *New = 1016*0fca6ea1SDimitry Andric CreateAdd(Sub->getOperand(0), NegVal, "", Sub->getIterator(), Sub); 10170b57cec5SDimitry Andric Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 10180b57cec5SDimitry Andric Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 10190b57cec5SDimitry Andric New->takeName(Sub); 10200b57cec5SDimitry Andric 10210b57cec5SDimitry Andric // Everyone now refers to the add instruction. 10220b57cec5SDimitry Andric Sub->replaceAllUsesWith(New); 10230b57cec5SDimitry Andric New->setDebugLoc(Sub->getDebugLoc()); 10240b57cec5SDimitry Andric 10250b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 10260b57cec5SDimitry Andric return New; 10270b57cec5SDimitry Andric } 10280b57cec5SDimitry Andric 10290b57cec5SDimitry Andric /// If this is a shift of a reassociable multiply or is used by one, change 10300b57cec5SDimitry Andric /// this into a multiply by a constant to assist with further reassociation. 10310b57cec5SDimitry Andric static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 10320b57cec5SDimitry Andric Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 10335ffd83dbSDimitry Andric auto *SA = cast<ConstantInt>(Shl->getOperand(1)); 1034*0fca6ea1SDimitry Andric MulCst = ConstantFoldBinaryInstruction(Instruction::Shl, MulCst, SA); 1035*0fca6ea1SDimitry Andric assert(MulCst && "Constant folding of immediate constants failed"); 10360b57cec5SDimitry Andric 1037*0fca6ea1SDimitry Andric BinaryOperator *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, 1038*0fca6ea1SDimitry Andric "", Shl->getIterator()); 103981ad6265SDimitry Andric Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op. 10400b57cec5SDimitry Andric Mul->takeName(Shl); 10410b57cec5SDimitry Andric 10420b57cec5SDimitry Andric // Everyone now refers to the mul instruction. 10430b57cec5SDimitry Andric Shl->replaceAllUsesWith(Mul); 10440b57cec5SDimitry Andric Mul->setDebugLoc(Shl->getDebugLoc()); 10450b57cec5SDimitry Andric 10460b57cec5SDimitry Andric // We can safely preserve the nuw flag in all cases. It's also safe to turn a 10470b57cec5SDimitry Andric // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 10485ffd83dbSDimitry Andric // handling. It can be preserved as long as we're not left shifting by 10495ffd83dbSDimitry Andric // bitwidth - 1. 10500b57cec5SDimitry Andric bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 10510b57cec5SDimitry Andric bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 10525ffd83dbSDimitry Andric unsigned BitWidth = Shl->getType()->getIntegerBitWidth(); 10535ffd83dbSDimitry Andric if (NSW && (NUW || SA->getValue().ult(BitWidth - 1))) 10540b57cec5SDimitry Andric Mul->setHasNoSignedWrap(true); 10550b57cec5SDimitry Andric Mul->setHasNoUnsignedWrap(NUW); 10560b57cec5SDimitry Andric return Mul; 10570b57cec5SDimitry Andric } 10580b57cec5SDimitry Andric 10590b57cec5SDimitry Andric /// Scan backwards and forwards among values with the same rank as element i 10600b57cec5SDimitry Andric /// to see if X exists. If X does not exist, return i. This is useful when 10610b57cec5SDimitry Andric /// scanning for 'x' when we see '-x' because they both get the same rank. 10620b57cec5SDimitry Andric static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 10630b57cec5SDimitry Andric unsigned i, Value *X) { 10640b57cec5SDimitry Andric unsigned XRank = Ops[i].Rank; 10650b57cec5SDimitry Andric unsigned e = Ops.size(); 10660b57cec5SDimitry Andric for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 10670b57cec5SDimitry Andric if (Ops[j].Op == X) 10680b57cec5SDimitry Andric return j; 10690b57cec5SDimitry Andric if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 10700b57cec5SDimitry Andric if (Instruction *I2 = dyn_cast<Instruction>(X)) 10710b57cec5SDimitry Andric if (I1->isIdenticalTo(I2)) 10720b57cec5SDimitry Andric return j; 10730b57cec5SDimitry Andric } 10740b57cec5SDimitry Andric // Scan backwards. 10750b57cec5SDimitry Andric for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 10760b57cec5SDimitry Andric if (Ops[j].Op == X) 10770b57cec5SDimitry Andric return j; 10780b57cec5SDimitry Andric if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 10790b57cec5SDimitry Andric if (Instruction *I2 = dyn_cast<Instruction>(X)) 10800b57cec5SDimitry Andric if (I1->isIdenticalTo(I2)) 10810b57cec5SDimitry Andric return j; 10820b57cec5SDimitry Andric } 10830b57cec5SDimitry Andric return i; 10840b57cec5SDimitry Andric } 10850b57cec5SDimitry Andric 10860b57cec5SDimitry Andric /// Emit a tree of add instructions, summing Ops together 10870b57cec5SDimitry Andric /// and returning the result. Insert the tree before I. 1088*0fca6ea1SDimitry Andric static Value *EmitAddTreeOfValues(BasicBlock::iterator It, 10890b57cec5SDimitry Andric SmallVectorImpl<WeakTrackingVH> &Ops) { 10900b57cec5SDimitry Andric if (Ops.size() == 1) return Ops.back(); 10910b57cec5SDimitry Andric 1092e8d8bef9SDimitry Andric Value *V1 = Ops.pop_back_val(); 1093*0fca6ea1SDimitry Andric Value *V2 = EmitAddTreeOfValues(It, Ops); 1094*0fca6ea1SDimitry Andric return CreateAdd(V2, V1, "reass.add", It, &*It); 10950b57cec5SDimitry Andric } 10960b57cec5SDimitry Andric 10970b57cec5SDimitry Andric /// If V is an expression tree that is a multiplication sequence, 10980b57cec5SDimitry Andric /// and if this sequence contains a multiply by Factor, 10990b57cec5SDimitry Andric /// remove Factor from the tree and return the new tree. 11000b57cec5SDimitry Andric Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 11010b57cec5SDimitry Andric BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 11020b57cec5SDimitry Andric if (!BO) 11030b57cec5SDimitry Andric return nullptr; 11040b57cec5SDimitry Andric 11050b57cec5SDimitry Andric SmallVector<RepeatedValue, 8> Tree; 1106*0fca6ea1SDimitry Andric OverflowTracking Flags; 1107*0fca6ea1SDimitry Andric MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts, Flags); 11080b57cec5SDimitry Andric SmallVector<ValueEntry, 8> Factors; 11090b57cec5SDimitry Andric Factors.reserve(Tree.size()); 11100b57cec5SDimitry Andric for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 11110b57cec5SDimitry Andric RepeatedValue E = Tree[i]; 1112*0fca6ea1SDimitry Andric Factors.append(E.second, ValueEntry(getRank(E.first), E.first)); 11130b57cec5SDimitry Andric } 11140b57cec5SDimitry Andric 11150b57cec5SDimitry Andric bool FoundFactor = false; 11160b57cec5SDimitry Andric bool NeedsNegate = false; 11170b57cec5SDimitry Andric for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 11180b57cec5SDimitry Andric if (Factors[i].Op == Factor) { 11190b57cec5SDimitry Andric FoundFactor = true; 11200b57cec5SDimitry Andric Factors.erase(Factors.begin()+i); 11210b57cec5SDimitry Andric break; 11220b57cec5SDimitry Andric } 11230b57cec5SDimitry Andric 11240b57cec5SDimitry Andric // If this is a negative version of this factor, remove it. 11250b57cec5SDimitry Andric if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 11260b57cec5SDimitry Andric if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 11270b57cec5SDimitry Andric if (FC1->getValue() == -FC2->getValue()) { 11280b57cec5SDimitry Andric FoundFactor = NeedsNegate = true; 11290b57cec5SDimitry Andric Factors.erase(Factors.begin()+i); 11300b57cec5SDimitry Andric break; 11310b57cec5SDimitry Andric } 11320b57cec5SDimitry Andric } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 11330b57cec5SDimitry Andric if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 11340b57cec5SDimitry Andric const APFloat &F1 = FC1->getValueAPF(); 11350b57cec5SDimitry Andric APFloat F2(FC2->getValueAPF()); 11360b57cec5SDimitry Andric F2.changeSign(); 11375ffd83dbSDimitry Andric if (F1 == F2) { 11380b57cec5SDimitry Andric FoundFactor = NeedsNegate = true; 11390b57cec5SDimitry Andric Factors.erase(Factors.begin() + i); 11400b57cec5SDimitry Andric break; 11410b57cec5SDimitry Andric } 11420b57cec5SDimitry Andric } 11430b57cec5SDimitry Andric } 11440b57cec5SDimitry Andric } 11450b57cec5SDimitry Andric 11460b57cec5SDimitry Andric if (!FoundFactor) { 11470b57cec5SDimitry Andric // Make sure to restore the operands to the expression tree. 1148*0fca6ea1SDimitry Andric RewriteExprTree(BO, Factors, Flags); 11490b57cec5SDimitry Andric return nullptr; 11500b57cec5SDimitry Andric } 11510b57cec5SDimitry Andric 11520b57cec5SDimitry Andric BasicBlock::iterator InsertPt = ++BO->getIterator(); 11530b57cec5SDimitry Andric 11540b57cec5SDimitry Andric // If this was just a single multiply, remove the multiply and return the only 11550b57cec5SDimitry Andric // remaining operand. 11560b57cec5SDimitry Andric if (Factors.size() == 1) { 11570b57cec5SDimitry Andric RedoInsts.insert(BO); 11580b57cec5SDimitry Andric V = Factors[0].Op; 11590b57cec5SDimitry Andric } else { 1160*0fca6ea1SDimitry Andric RewriteExprTree(BO, Factors, Flags); 11610b57cec5SDimitry Andric V = BO; 11620b57cec5SDimitry Andric } 11630b57cec5SDimitry Andric 11640b57cec5SDimitry Andric if (NeedsNegate) 1165*0fca6ea1SDimitry Andric V = CreateNeg(V, "neg", InsertPt, BO); 11660b57cec5SDimitry Andric 11670b57cec5SDimitry Andric return V; 11680b57cec5SDimitry Andric } 11690b57cec5SDimitry Andric 11700b57cec5SDimitry Andric /// If V is a single-use multiply, recursively add its operands as factors, 11710b57cec5SDimitry Andric /// otherwise add V to the list of factors. 11720b57cec5SDimitry Andric /// 11730b57cec5SDimitry Andric /// Ops is the top-level list of add operands we're trying to factor. 11740b57cec5SDimitry Andric static void FindSingleUseMultiplyFactors(Value *V, 11750b57cec5SDimitry Andric SmallVectorImpl<Value*> &Factors) { 11760b57cec5SDimitry Andric BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 11770b57cec5SDimitry Andric if (!BO) { 11780b57cec5SDimitry Andric Factors.push_back(V); 11790b57cec5SDimitry Andric return; 11800b57cec5SDimitry Andric } 11810b57cec5SDimitry Andric 11820b57cec5SDimitry Andric // Otherwise, add the LHS and RHS to the list of factors. 11830b57cec5SDimitry Andric FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 11840b57cec5SDimitry Andric FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 11850b57cec5SDimitry Andric } 11860b57cec5SDimitry Andric 11870b57cec5SDimitry Andric /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 11880b57cec5SDimitry Andric /// This optimizes based on identities. If it can be reduced to a single Value, 11890b57cec5SDimitry Andric /// it is returned, otherwise the Ops list is mutated as necessary. 11900b57cec5SDimitry Andric static Value *OptimizeAndOrXor(unsigned Opcode, 11910b57cec5SDimitry Andric SmallVectorImpl<ValueEntry> &Ops) { 11920b57cec5SDimitry Andric // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 11930b57cec5SDimitry Andric // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 11940b57cec5SDimitry Andric for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 11950b57cec5SDimitry Andric // First, check for X and ~X in the operand list. 11960b57cec5SDimitry Andric assert(i < Ops.size()); 11970b57cec5SDimitry Andric Value *X; 11980b57cec5SDimitry Andric if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 11990b57cec5SDimitry Andric unsigned FoundX = FindInOperandList(Ops, i, X); 12000b57cec5SDimitry Andric if (FoundX != i) { 12010b57cec5SDimitry Andric if (Opcode == Instruction::And) // ...&X&~X = 0 12020b57cec5SDimitry Andric return Constant::getNullValue(X->getType()); 12030b57cec5SDimitry Andric 12040b57cec5SDimitry Andric if (Opcode == Instruction::Or) // ...|X|~X = -1 12050b57cec5SDimitry Andric return Constant::getAllOnesValue(X->getType()); 12060b57cec5SDimitry Andric } 12070b57cec5SDimitry Andric } 12080b57cec5SDimitry Andric 12090b57cec5SDimitry Andric // Next, check for duplicate pairs of values, which we assume are next to 12100b57cec5SDimitry Andric // each other, due to our sorting criteria. 12110b57cec5SDimitry Andric assert(i < Ops.size()); 12120b57cec5SDimitry Andric if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 12130b57cec5SDimitry Andric if (Opcode == Instruction::And || Opcode == Instruction::Or) { 12140b57cec5SDimitry Andric // Drop duplicate values for And and Or. 12150b57cec5SDimitry Andric Ops.erase(Ops.begin()+i); 12160b57cec5SDimitry Andric --i; --e; 12170b57cec5SDimitry Andric ++NumAnnihil; 12180b57cec5SDimitry Andric continue; 12190b57cec5SDimitry Andric } 12200b57cec5SDimitry Andric 12210b57cec5SDimitry Andric // Drop pairs of values for Xor. 12220b57cec5SDimitry Andric assert(Opcode == Instruction::Xor); 12230b57cec5SDimitry Andric if (e == 2) 12240b57cec5SDimitry Andric return Constant::getNullValue(Ops[0].Op->getType()); 12250b57cec5SDimitry Andric 12260b57cec5SDimitry Andric // Y ^ X^X -> Y 12270b57cec5SDimitry Andric Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 12280b57cec5SDimitry Andric i -= 1; e -= 2; 12290b57cec5SDimitry Andric ++NumAnnihil; 12300b57cec5SDimitry Andric } 12310b57cec5SDimitry Andric } 12320b57cec5SDimitry Andric return nullptr; 12330b57cec5SDimitry Andric } 12340b57cec5SDimitry Andric 12350b57cec5SDimitry Andric /// Helper function of CombineXorOpnd(). It creates a bitwise-and 12360b57cec5SDimitry Andric /// instruction with the given two operands, and return the resulting 12370b57cec5SDimitry Andric /// instruction. There are two special cases: 1) if the constant operand is 0, 12380b57cec5SDimitry Andric /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 12390b57cec5SDimitry Andric /// be returned. 1240*0fca6ea1SDimitry Andric static Value *createAndInstr(BasicBlock::iterator InsertBefore, Value *Opnd, 12410b57cec5SDimitry Andric const APInt &ConstOpnd) { 1242349cc55cSDimitry Andric if (ConstOpnd.isZero()) 12430b57cec5SDimitry Andric return nullptr; 12440b57cec5SDimitry Andric 1245349cc55cSDimitry Andric if (ConstOpnd.isAllOnes()) 12460b57cec5SDimitry Andric return Opnd; 12470b57cec5SDimitry Andric 12480b57cec5SDimitry Andric Instruction *I = BinaryOperator::CreateAnd( 12490b57cec5SDimitry Andric Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 12500b57cec5SDimitry Andric InsertBefore); 12510b57cec5SDimitry Andric I->setDebugLoc(InsertBefore->getDebugLoc()); 12520b57cec5SDimitry Andric return I; 12530b57cec5SDimitry Andric } 12540b57cec5SDimitry Andric 12550b57cec5SDimitry Andric // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 12560b57cec5SDimitry Andric // into "R ^ C", where C would be 0, and R is a symbolic value. 12570b57cec5SDimitry Andric // 12580b57cec5SDimitry Andric // If it was successful, true is returned, and the "R" and "C" is returned 12590b57cec5SDimitry Andric // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 12600b57cec5SDimitry Andric // and both "Res" and "ConstOpnd" remain unchanged. 1261*0fca6ea1SDimitry Andric bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1, 12620b57cec5SDimitry Andric APInt &ConstOpnd, Value *&Res) { 12630b57cec5SDimitry Andric // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 12640b57cec5SDimitry Andric // = ((x | c1) ^ c1) ^ (c1 ^ c2) 12650b57cec5SDimitry Andric // = (x & ~c1) ^ (c1 ^ c2) 12660b57cec5SDimitry Andric // It is useful only when c1 == c2. 1267349cc55cSDimitry Andric if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero()) 12680b57cec5SDimitry Andric return false; 12690b57cec5SDimitry Andric 12700b57cec5SDimitry Andric if (!Opnd1->getValue()->hasOneUse()) 12710b57cec5SDimitry Andric return false; 12720b57cec5SDimitry Andric 12730b57cec5SDimitry Andric const APInt &C1 = Opnd1->getConstPart(); 12740b57cec5SDimitry Andric if (C1 != ConstOpnd) 12750b57cec5SDimitry Andric return false; 12760b57cec5SDimitry Andric 12770b57cec5SDimitry Andric Value *X = Opnd1->getSymbolicPart(); 1278*0fca6ea1SDimitry Andric Res = createAndInstr(It, X, ~C1); 12790b57cec5SDimitry Andric // ConstOpnd was C2, now C1 ^ C2. 12800b57cec5SDimitry Andric ConstOpnd ^= C1; 12810b57cec5SDimitry Andric 12820b57cec5SDimitry Andric if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 12830b57cec5SDimitry Andric RedoInsts.insert(T); 12840b57cec5SDimitry Andric return true; 12850b57cec5SDimitry Andric } 12860b57cec5SDimitry Andric 12870b57cec5SDimitry Andric // Helper function of OptimizeXor(). It tries to simplify 12880b57cec5SDimitry Andric // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 12890b57cec5SDimitry Andric // symbolic value. 12900b57cec5SDimitry Andric // 12910b57cec5SDimitry Andric // If it was successful, true is returned, and the "R" and "C" is returned 12920b57cec5SDimitry Andric // via "Res" and "ConstOpnd", respectively (If the entire expression is 12930b57cec5SDimitry Andric // evaluated to a constant, the Res is set to NULL); otherwise, false is 12940b57cec5SDimitry Andric // returned, and both "Res" and "ConstOpnd" remain unchanged. 1295*0fca6ea1SDimitry Andric bool ReassociatePass::CombineXorOpnd(BasicBlock::iterator It, XorOpnd *Opnd1, 12960b57cec5SDimitry Andric XorOpnd *Opnd2, APInt &ConstOpnd, 12970b57cec5SDimitry Andric Value *&Res) { 12980b57cec5SDimitry Andric Value *X = Opnd1->getSymbolicPart(); 12990b57cec5SDimitry Andric if (X != Opnd2->getSymbolicPart()) 13000b57cec5SDimitry Andric return false; 13010b57cec5SDimitry Andric 13020b57cec5SDimitry Andric // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 13030b57cec5SDimitry Andric int DeadInstNum = 1; 13040b57cec5SDimitry Andric if (Opnd1->getValue()->hasOneUse()) 13050b57cec5SDimitry Andric DeadInstNum++; 13060b57cec5SDimitry Andric if (Opnd2->getValue()->hasOneUse()) 13070b57cec5SDimitry Andric DeadInstNum++; 13080b57cec5SDimitry Andric 13090b57cec5SDimitry Andric // Xor-Rule 2: 13100b57cec5SDimitry Andric // (x | c1) ^ (x & c2) 13110b57cec5SDimitry Andric // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 13120b57cec5SDimitry Andric // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 13130b57cec5SDimitry Andric // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 13140b57cec5SDimitry Andric // 13150b57cec5SDimitry Andric if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 13160b57cec5SDimitry Andric if (Opnd2->isOrExpr()) 13170b57cec5SDimitry Andric std::swap(Opnd1, Opnd2); 13180b57cec5SDimitry Andric 13190b57cec5SDimitry Andric const APInt &C1 = Opnd1->getConstPart(); 13200b57cec5SDimitry Andric const APInt &C2 = Opnd2->getConstPart(); 13210b57cec5SDimitry Andric APInt C3((~C1) ^ C2); 13220b57cec5SDimitry Andric 13230b57cec5SDimitry Andric // Do not increase code size! 1324349cc55cSDimitry Andric if (!C3.isZero() && !C3.isAllOnes()) { 13250b57cec5SDimitry Andric int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 13260b57cec5SDimitry Andric if (NewInstNum > DeadInstNum) 13270b57cec5SDimitry Andric return false; 13280b57cec5SDimitry Andric } 13290b57cec5SDimitry Andric 1330*0fca6ea1SDimitry Andric Res = createAndInstr(It, X, C3); 13310b57cec5SDimitry Andric ConstOpnd ^= C1; 13320b57cec5SDimitry Andric } else if (Opnd1->isOrExpr()) { 13330b57cec5SDimitry Andric // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 13340b57cec5SDimitry Andric // 13350b57cec5SDimitry Andric const APInt &C1 = Opnd1->getConstPart(); 13360b57cec5SDimitry Andric const APInt &C2 = Opnd2->getConstPart(); 13370b57cec5SDimitry Andric APInt C3 = C1 ^ C2; 13380b57cec5SDimitry Andric 13390b57cec5SDimitry Andric // Do not increase code size 1340349cc55cSDimitry Andric if (!C3.isZero() && !C3.isAllOnes()) { 13410b57cec5SDimitry Andric int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 13420b57cec5SDimitry Andric if (NewInstNum > DeadInstNum) 13430b57cec5SDimitry Andric return false; 13440b57cec5SDimitry Andric } 13450b57cec5SDimitry Andric 1346*0fca6ea1SDimitry Andric Res = createAndInstr(It, X, C3); 13470b57cec5SDimitry Andric ConstOpnd ^= C3; 13480b57cec5SDimitry Andric } else { 13490b57cec5SDimitry Andric // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 13500b57cec5SDimitry Andric // 13510b57cec5SDimitry Andric const APInt &C1 = Opnd1->getConstPart(); 13520b57cec5SDimitry Andric const APInt &C2 = Opnd2->getConstPart(); 13530b57cec5SDimitry Andric APInt C3 = C1 ^ C2; 1354*0fca6ea1SDimitry Andric Res = createAndInstr(It, X, C3); 13550b57cec5SDimitry Andric } 13560b57cec5SDimitry Andric 13570b57cec5SDimitry Andric // Put the original operands in the Redo list; hope they will be deleted 13580b57cec5SDimitry Andric // as dead code. 13590b57cec5SDimitry Andric if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 13600b57cec5SDimitry Andric RedoInsts.insert(T); 13610b57cec5SDimitry Andric if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 13620b57cec5SDimitry Andric RedoInsts.insert(T); 13630b57cec5SDimitry Andric 13640b57cec5SDimitry Andric return true; 13650b57cec5SDimitry Andric } 13660b57cec5SDimitry Andric 13670b57cec5SDimitry Andric /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 13680b57cec5SDimitry Andric /// to a single Value, it is returned, otherwise the Ops list is mutated as 13690b57cec5SDimitry Andric /// necessary. 13700b57cec5SDimitry Andric Value *ReassociatePass::OptimizeXor(Instruction *I, 13710b57cec5SDimitry Andric SmallVectorImpl<ValueEntry> &Ops) { 13720b57cec5SDimitry Andric if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 13730b57cec5SDimitry Andric return V; 13740b57cec5SDimitry Andric 13750b57cec5SDimitry Andric if (Ops.size() == 1) 13760b57cec5SDimitry Andric return nullptr; 13770b57cec5SDimitry Andric 13780b57cec5SDimitry Andric SmallVector<XorOpnd, 8> Opnds; 13790b57cec5SDimitry Andric SmallVector<XorOpnd*, 8> OpndPtrs; 13800b57cec5SDimitry Andric Type *Ty = Ops[0].Op->getType(); 13810b57cec5SDimitry Andric APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 13820b57cec5SDimitry Andric 13830b57cec5SDimitry Andric // Step 1: Convert ValueEntry to XorOpnd 13840b57cec5SDimitry Andric for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 13850b57cec5SDimitry Andric Value *V = Ops[i].Op; 13860b57cec5SDimitry Andric const APInt *C; 13870b57cec5SDimitry Andric // TODO: Support non-splat vectors. 13880b57cec5SDimitry Andric if (match(V, m_APInt(C))) { 13890b57cec5SDimitry Andric ConstOpnd ^= *C; 13900b57cec5SDimitry Andric } else { 13910b57cec5SDimitry Andric XorOpnd O(V); 13920b57cec5SDimitry Andric O.setSymbolicRank(getRank(O.getSymbolicPart())); 13930b57cec5SDimitry Andric Opnds.push_back(O); 13940b57cec5SDimitry Andric } 13950b57cec5SDimitry Andric } 13960b57cec5SDimitry Andric 13970b57cec5SDimitry Andric // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 13980b57cec5SDimitry Andric // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 13990b57cec5SDimitry Andric // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 14000b57cec5SDimitry Andric // with the previous loop --- the iterator of the "Opnds" may be invalidated 14010b57cec5SDimitry Andric // when new elements are added to the vector. 1402*0fca6ea1SDimitry Andric for (XorOpnd &Op : Opnds) 1403*0fca6ea1SDimitry Andric OpndPtrs.push_back(&Op); 14040b57cec5SDimitry Andric 14050b57cec5SDimitry Andric // Step 2: Sort the Xor-Operands in a way such that the operands containing 14060b57cec5SDimitry Andric // the same symbolic value cluster together. For instance, the input operand 14070b57cec5SDimitry Andric // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 14080b57cec5SDimitry Andric // ("x | 123", "x & 789", "y & 456"). 14090b57cec5SDimitry Andric // 14100b57cec5SDimitry Andric // The purpose is twofold: 14110b57cec5SDimitry Andric // 1) Cluster together the operands sharing the same symbolic-value. 14120b57cec5SDimitry Andric // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 14130b57cec5SDimitry Andric // could potentially shorten crital path, and expose more loop-invariants. 14140b57cec5SDimitry Andric // Note that values' rank are basically defined in RPO order (FIXME). 14150b57cec5SDimitry Andric // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 14160b57cec5SDimitry Andric // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 14170b57cec5SDimitry Andric // "z" in the order of X-Y-Z is better than any other orders. 14180b57cec5SDimitry Andric llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 14190b57cec5SDimitry Andric return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 14200b57cec5SDimitry Andric }); 14210b57cec5SDimitry Andric 14220b57cec5SDimitry Andric // Step 3: Combine adjacent operands 14230b57cec5SDimitry Andric XorOpnd *PrevOpnd = nullptr; 14240b57cec5SDimitry Andric bool Changed = false; 14250b57cec5SDimitry Andric for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 14260b57cec5SDimitry Andric XorOpnd *CurrOpnd = OpndPtrs[i]; 14270b57cec5SDimitry Andric // The combined value 14280b57cec5SDimitry Andric Value *CV; 14290b57cec5SDimitry Andric 14300b57cec5SDimitry Andric // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1431*0fca6ea1SDimitry Andric if (!ConstOpnd.isZero() && 1432*0fca6ea1SDimitry Andric CombineXorOpnd(I->getIterator(), CurrOpnd, ConstOpnd, CV)) { 14330b57cec5SDimitry Andric Changed = true; 14340b57cec5SDimitry Andric if (CV) 14350b57cec5SDimitry Andric *CurrOpnd = XorOpnd(CV); 14360b57cec5SDimitry Andric else { 14370b57cec5SDimitry Andric CurrOpnd->Invalidate(); 14380b57cec5SDimitry Andric continue; 14390b57cec5SDimitry Andric } 14400b57cec5SDimitry Andric } 14410b57cec5SDimitry Andric 14420b57cec5SDimitry Andric if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 14430b57cec5SDimitry Andric PrevOpnd = CurrOpnd; 14440b57cec5SDimitry Andric continue; 14450b57cec5SDimitry Andric } 14460b57cec5SDimitry Andric 14470b57cec5SDimitry Andric // step 3.2: When previous and current operands share the same symbolic 14480b57cec5SDimitry Andric // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1449*0fca6ea1SDimitry Andric if (CombineXorOpnd(I->getIterator(), CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 14500b57cec5SDimitry Andric // Remove previous operand 14510b57cec5SDimitry Andric PrevOpnd->Invalidate(); 14520b57cec5SDimitry Andric if (CV) { 14530b57cec5SDimitry Andric *CurrOpnd = XorOpnd(CV); 14540b57cec5SDimitry Andric PrevOpnd = CurrOpnd; 14550b57cec5SDimitry Andric } else { 14560b57cec5SDimitry Andric CurrOpnd->Invalidate(); 14570b57cec5SDimitry Andric PrevOpnd = nullptr; 14580b57cec5SDimitry Andric } 14590b57cec5SDimitry Andric Changed = true; 14600b57cec5SDimitry Andric } 14610b57cec5SDimitry Andric } 14620b57cec5SDimitry Andric 14630b57cec5SDimitry Andric // Step 4: Reassemble the Ops 14640b57cec5SDimitry Andric if (Changed) { 14650b57cec5SDimitry Andric Ops.clear(); 146606c3fb27SDimitry Andric for (const XorOpnd &O : Opnds) { 14670b57cec5SDimitry Andric if (O.isInvalid()) 14680b57cec5SDimitry Andric continue; 14690b57cec5SDimitry Andric ValueEntry VE(getRank(O.getValue()), O.getValue()); 14700b57cec5SDimitry Andric Ops.push_back(VE); 14710b57cec5SDimitry Andric } 1472349cc55cSDimitry Andric if (!ConstOpnd.isZero()) { 14730b57cec5SDimitry Andric Value *C = ConstantInt::get(Ty, ConstOpnd); 14740b57cec5SDimitry Andric ValueEntry VE(getRank(C), C); 14750b57cec5SDimitry Andric Ops.push_back(VE); 14760b57cec5SDimitry Andric } 14770b57cec5SDimitry Andric unsigned Sz = Ops.size(); 14780b57cec5SDimitry Andric if (Sz == 1) 14790b57cec5SDimitry Andric return Ops.back().Op; 14800b57cec5SDimitry Andric if (Sz == 0) { 1481349cc55cSDimitry Andric assert(ConstOpnd.isZero()); 14820b57cec5SDimitry Andric return ConstantInt::get(Ty, ConstOpnd); 14830b57cec5SDimitry Andric } 14840b57cec5SDimitry Andric } 14850b57cec5SDimitry Andric 14860b57cec5SDimitry Andric return nullptr; 14870b57cec5SDimitry Andric } 14880b57cec5SDimitry Andric 14890b57cec5SDimitry Andric /// Optimize a series of operands to an 'add' instruction. This 14900b57cec5SDimitry Andric /// optimizes based on identities. If it can be reduced to a single Value, it 14910b57cec5SDimitry Andric /// is returned, otherwise the Ops list is mutated as necessary. 14920b57cec5SDimitry Andric Value *ReassociatePass::OptimizeAdd(Instruction *I, 14930b57cec5SDimitry Andric SmallVectorImpl<ValueEntry> &Ops) { 14940b57cec5SDimitry Andric // Scan the operand lists looking for X and -X pairs. If we find any, we 14950b57cec5SDimitry Andric // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 14960b57cec5SDimitry Andric // scan for any 14970b57cec5SDimitry Andric // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 14980b57cec5SDimitry Andric 14990b57cec5SDimitry Andric for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 15000b57cec5SDimitry Andric Value *TheOp = Ops[i].Op; 15010b57cec5SDimitry Andric // Check to see if we've seen this operand before. If so, we factor all 15020b57cec5SDimitry Andric // instances of the operand together. Due to our sorting criteria, we know 15030b57cec5SDimitry Andric // that these need to be next to each other in the vector. 15040b57cec5SDimitry Andric if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 15050b57cec5SDimitry Andric // Rescan the list, remove all instances of this operand from the expr. 15060b57cec5SDimitry Andric unsigned NumFound = 0; 15070b57cec5SDimitry Andric do { 15080b57cec5SDimitry Andric Ops.erase(Ops.begin()+i); 15090b57cec5SDimitry Andric ++NumFound; 15100b57cec5SDimitry Andric } while (i != Ops.size() && Ops[i].Op == TheOp); 15110b57cec5SDimitry Andric 15120b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 15130b57cec5SDimitry Andric << '\n'); 15140b57cec5SDimitry Andric ++NumFactor; 15150b57cec5SDimitry Andric 15160b57cec5SDimitry Andric // Insert a new multiply. 15170b57cec5SDimitry Andric Type *Ty = TheOp->getType(); 15180b57cec5SDimitry Andric Constant *C = Ty->isIntOrIntVectorTy() ? 15190b57cec5SDimitry Andric ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1520*0fca6ea1SDimitry Andric Instruction *Mul = CreateMul(TheOp, C, "factor", I->getIterator(), I); 15210b57cec5SDimitry Andric 15220b57cec5SDimitry Andric // Now that we have inserted a multiply, optimize it. This allows us to 15230b57cec5SDimitry Andric // handle cases that require multiple factoring steps, such as this: 15240b57cec5SDimitry Andric // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 15250b57cec5SDimitry Andric RedoInsts.insert(Mul); 15260b57cec5SDimitry Andric 15270b57cec5SDimitry Andric // If every add operand was a duplicate, return the multiply. 15280b57cec5SDimitry Andric if (Ops.empty()) 15290b57cec5SDimitry Andric return Mul; 15300b57cec5SDimitry Andric 15310b57cec5SDimitry Andric // Otherwise, we had some input that didn't have the dupe, such as 15320b57cec5SDimitry Andric // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 15330b57cec5SDimitry Andric // things being added by this operation. 15340b57cec5SDimitry Andric Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 15350b57cec5SDimitry Andric 15360b57cec5SDimitry Andric --i; 15370b57cec5SDimitry Andric e = Ops.size(); 15380b57cec5SDimitry Andric continue; 15390b57cec5SDimitry Andric } 15400b57cec5SDimitry Andric 15410b57cec5SDimitry Andric // Check for X and -X or X and ~X in the operand list. 15420b57cec5SDimitry Andric Value *X; 15430b57cec5SDimitry Andric if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 15440b57cec5SDimitry Andric !match(TheOp, m_FNeg(m_Value(X)))) 15450b57cec5SDimitry Andric continue; 15460b57cec5SDimitry Andric 15470b57cec5SDimitry Andric unsigned FoundX = FindInOperandList(Ops, i, X); 15480b57cec5SDimitry Andric if (FoundX == i) 15490b57cec5SDimitry Andric continue; 15500b57cec5SDimitry Andric 15510b57cec5SDimitry Andric // Remove X and -X from the operand list. 15520b57cec5SDimitry Andric if (Ops.size() == 2 && 15530b57cec5SDimitry Andric (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 15540b57cec5SDimitry Andric return Constant::getNullValue(X->getType()); 15550b57cec5SDimitry Andric 15560b57cec5SDimitry Andric // Remove X and ~X from the operand list. 15570b57cec5SDimitry Andric if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 15580b57cec5SDimitry Andric return Constant::getAllOnesValue(X->getType()); 15590b57cec5SDimitry Andric 15600b57cec5SDimitry Andric Ops.erase(Ops.begin()+i); 15610b57cec5SDimitry Andric if (i < FoundX) 15620b57cec5SDimitry Andric --FoundX; 15630b57cec5SDimitry Andric else 15640b57cec5SDimitry Andric --i; // Need to back up an extra one. 15650b57cec5SDimitry Andric Ops.erase(Ops.begin()+FoundX); 15660b57cec5SDimitry Andric ++NumAnnihil; 15670b57cec5SDimitry Andric --i; // Revisit element. 15680b57cec5SDimitry Andric e -= 2; // Removed two elements. 15690b57cec5SDimitry Andric 15700b57cec5SDimitry Andric // if X and ~X we append -1 to the operand list. 15710b57cec5SDimitry Andric if (match(TheOp, m_Not(m_Value()))) { 15720b57cec5SDimitry Andric Value *V = Constant::getAllOnesValue(X->getType()); 15730b57cec5SDimitry Andric Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 15740b57cec5SDimitry Andric e += 1; 15750b57cec5SDimitry Andric } 15760b57cec5SDimitry Andric } 15770b57cec5SDimitry Andric 15780b57cec5SDimitry Andric // Scan the operand list, checking to see if there are any common factors 15790b57cec5SDimitry Andric // between operands. Consider something like A*A+A*B*C+D. We would like to 15800b57cec5SDimitry Andric // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 15810b57cec5SDimitry Andric // To efficiently find this, we count the number of times a factor occurs 15820b57cec5SDimitry Andric // for any ADD operands that are MULs. 15830b57cec5SDimitry Andric DenseMap<Value*, unsigned> FactorOccurrences; 15840b57cec5SDimitry Andric 15850b57cec5SDimitry Andric // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 15860b57cec5SDimitry Andric // where they are actually the same multiply. 15870b57cec5SDimitry Andric unsigned MaxOcc = 0; 15880b57cec5SDimitry Andric Value *MaxOccVal = nullptr; 15890b57cec5SDimitry Andric for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 15900b57cec5SDimitry Andric BinaryOperator *BOp = 15910b57cec5SDimitry Andric isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 15920b57cec5SDimitry Andric if (!BOp) 15930b57cec5SDimitry Andric continue; 15940b57cec5SDimitry Andric 15950b57cec5SDimitry Andric // Compute all of the factors of this added value. 15960b57cec5SDimitry Andric SmallVector<Value*, 8> Factors; 15970b57cec5SDimitry Andric FindSingleUseMultiplyFactors(BOp, Factors); 15980b57cec5SDimitry Andric assert(Factors.size() > 1 && "Bad linearize!"); 15990b57cec5SDimitry Andric 16000b57cec5SDimitry Andric // Add one to FactorOccurrences for each unique factor in this op. 16010b57cec5SDimitry Andric SmallPtrSet<Value*, 8> Duplicates; 160206c3fb27SDimitry Andric for (Value *Factor : Factors) { 16030b57cec5SDimitry Andric if (!Duplicates.insert(Factor).second) 16040b57cec5SDimitry Andric continue; 16050b57cec5SDimitry Andric 16060b57cec5SDimitry Andric unsigned Occ = ++FactorOccurrences[Factor]; 16070b57cec5SDimitry Andric if (Occ > MaxOcc) { 16080b57cec5SDimitry Andric MaxOcc = Occ; 16090b57cec5SDimitry Andric MaxOccVal = Factor; 16100b57cec5SDimitry Andric } 16110b57cec5SDimitry Andric 16120b57cec5SDimitry Andric // If Factor is a negative constant, add the negated value as a factor 16130b57cec5SDimitry Andric // because we can percolate the negate out. Watch for minint, which 16140b57cec5SDimitry Andric // cannot be positivified. 16150b57cec5SDimitry Andric if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 16160b57cec5SDimitry Andric if (CI->isNegative() && !CI->isMinValue(true)) { 16170b57cec5SDimitry Andric Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 16180b57cec5SDimitry Andric if (!Duplicates.insert(Factor).second) 16190b57cec5SDimitry Andric continue; 16200b57cec5SDimitry Andric unsigned Occ = ++FactorOccurrences[Factor]; 16210b57cec5SDimitry Andric if (Occ > MaxOcc) { 16220b57cec5SDimitry Andric MaxOcc = Occ; 16230b57cec5SDimitry Andric MaxOccVal = Factor; 16240b57cec5SDimitry Andric } 16250b57cec5SDimitry Andric } 16260b57cec5SDimitry Andric } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 16270b57cec5SDimitry Andric if (CF->isNegative()) { 16280b57cec5SDimitry Andric APFloat F(CF->getValueAPF()); 16290b57cec5SDimitry Andric F.changeSign(); 16300b57cec5SDimitry Andric Factor = ConstantFP::get(CF->getContext(), F); 16310b57cec5SDimitry Andric if (!Duplicates.insert(Factor).second) 16320b57cec5SDimitry Andric continue; 16330b57cec5SDimitry Andric unsigned Occ = ++FactorOccurrences[Factor]; 16340b57cec5SDimitry Andric if (Occ > MaxOcc) { 16350b57cec5SDimitry Andric MaxOcc = Occ; 16360b57cec5SDimitry Andric MaxOccVal = Factor; 16370b57cec5SDimitry Andric } 16380b57cec5SDimitry Andric } 16390b57cec5SDimitry Andric } 16400b57cec5SDimitry Andric } 16410b57cec5SDimitry Andric } 16420b57cec5SDimitry Andric 16430b57cec5SDimitry Andric // If any factor occurred more than one time, we can pull it out. 16440b57cec5SDimitry Andric if (MaxOcc > 1) { 16450b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 16460b57cec5SDimitry Andric << '\n'); 16470b57cec5SDimitry Andric ++NumFactor; 16480b57cec5SDimitry Andric 16490b57cec5SDimitry Andric // Create a new instruction that uses the MaxOccVal twice. If we don't do 16500b57cec5SDimitry Andric // this, we could otherwise run into situations where removing a factor 16510b57cec5SDimitry Andric // from an expression will drop a use of maxocc, and this can cause 16520b57cec5SDimitry Andric // RemoveFactorFromExpression on successive values to behave differently. 16530b57cec5SDimitry Andric Instruction *DummyInst = 16540b57cec5SDimitry Andric I->getType()->isIntOrIntVectorTy() 16550b57cec5SDimitry Andric ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 16560b57cec5SDimitry Andric : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 16570b57cec5SDimitry Andric 16580b57cec5SDimitry Andric SmallVector<WeakTrackingVH, 4> NewMulOps; 16590b57cec5SDimitry Andric for (unsigned i = 0; i != Ops.size(); ++i) { 16600b57cec5SDimitry Andric // Only try to remove factors from expressions we're allowed to. 16610b57cec5SDimitry Andric BinaryOperator *BOp = 16620b57cec5SDimitry Andric isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 16630b57cec5SDimitry Andric if (!BOp) 16640b57cec5SDimitry Andric continue; 16650b57cec5SDimitry Andric 16660b57cec5SDimitry Andric if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 16670b57cec5SDimitry Andric // The factorized operand may occur several times. Convert them all in 16680b57cec5SDimitry Andric // one fell swoop. 16690b57cec5SDimitry Andric for (unsigned j = Ops.size(); j != i;) { 16700b57cec5SDimitry Andric --j; 16710b57cec5SDimitry Andric if (Ops[j].Op == Ops[i].Op) { 16720b57cec5SDimitry Andric NewMulOps.push_back(V); 16730b57cec5SDimitry Andric Ops.erase(Ops.begin()+j); 16740b57cec5SDimitry Andric } 16750b57cec5SDimitry Andric } 16760b57cec5SDimitry Andric --i; 16770b57cec5SDimitry Andric } 16780b57cec5SDimitry Andric } 16790b57cec5SDimitry Andric 16800b57cec5SDimitry Andric // No need for extra uses anymore. 16810b57cec5SDimitry Andric DummyInst->deleteValue(); 16820b57cec5SDimitry Andric 16830b57cec5SDimitry Andric unsigned NumAddedValues = NewMulOps.size(); 1684*0fca6ea1SDimitry Andric Value *V = EmitAddTreeOfValues(I->getIterator(), NewMulOps); 16850b57cec5SDimitry Andric 16860b57cec5SDimitry Andric // Now that we have inserted the add tree, optimize it. This allows us to 16870b57cec5SDimitry Andric // handle cases that require multiple factoring steps, such as this: 16880b57cec5SDimitry Andric // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 16890b57cec5SDimitry Andric assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 16900b57cec5SDimitry Andric (void)NumAddedValues; 16910b57cec5SDimitry Andric if (Instruction *VI = dyn_cast<Instruction>(V)) 16920b57cec5SDimitry Andric RedoInsts.insert(VI); 16930b57cec5SDimitry Andric 16940b57cec5SDimitry Andric // Create the multiply. 1695*0fca6ea1SDimitry Andric Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I->getIterator(), I); 16960b57cec5SDimitry Andric 16970b57cec5SDimitry Andric // Rerun associate on the multiply in case the inner expression turned into 16980b57cec5SDimitry Andric // a multiply. We want to make sure that we keep things in canonical form. 16990b57cec5SDimitry Andric RedoInsts.insert(V2); 17000b57cec5SDimitry Andric 17010b57cec5SDimitry Andric // If every add operand included the factor (e.g. "A*B + A*C"), then the 17020b57cec5SDimitry Andric // entire result expression is just the multiply "A*(B+C)". 17030b57cec5SDimitry Andric if (Ops.empty()) 17040b57cec5SDimitry Andric return V2; 17050b57cec5SDimitry Andric 17060b57cec5SDimitry Andric // Otherwise, we had some input that didn't have the factor, such as 17070b57cec5SDimitry Andric // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 17080b57cec5SDimitry Andric // things being added by this operation. 17090b57cec5SDimitry Andric Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 17100b57cec5SDimitry Andric } 17110b57cec5SDimitry Andric 17120b57cec5SDimitry Andric return nullptr; 17130b57cec5SDimitry Andric } 17140b57cec5SDimitry Andric 17150b57cec5SDimitry Andric /// Build up a vector of value/power pairs factoring a product. 17160b57cec5SDimitry Andric /// 17170b57cec5SDimitry Andric /// Given a series of multiplication operands, build a vector of factors and 17180b57cec5SDimitry Andric /// the powers each is raised to when forming the final product. Sort them in 17190b57cec5SDimitry Andric /// the order of descending power. 17200b57cec5SDimitry Andric /// 17210b57cec5SDimitry Andric /// (x*x) -> [(x, 2)] 17220b57cec5SDimitry Andric /// ((x*x)*x) -> [(x, 3)] 17230b57cec5SDimitry Andric /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 17240b57cec5SDimitry Andric /// 17250b57cec5SDimitry Andric /// \returns Whether any factors have a power greater than one. 17260b57cec5SDimitry Andric static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 17270b57cec5SDimitry Andric SmallVectorImpl<Factor> &Factors) { 17280b57cec5SDimitry Andric // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 17290b57cec5SDimitry Andric // Compute the sum of powers of simplifiable factors. 17300b57cec5SDimitry Andric unsigned FactorPowerSum = 0; 17310b57cec5SDimitry Andric for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 17320b57cec5SDimitry Andric Value *Op = Ops[Idx-1].Op; 17330b57cec5SDimitry Andric 17340b57cec5SDimitry Andric // Count the number of occurrences of this value. 17350b57cec5SDimitry Andric unsigned Count = 1; 17360b57cec5SDimitry Andric for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 17370b57cec5SDimitry Andric ++Count; 17380b57cec5SDimitry Andric // Track for simplification all factors which occur 2 or more times. 17390b57cec5SDimitry Andric if (Count > 1) 17400b57cec5SDimitry Andric FactorPowerSum += Count; 17410b57cec5SDimitry Andric } 17420b57cec5SDimitry Andric 17430b57cec5SDimitry Andric // We can only simplify factors if the sum of the powers of our simplifiable 17440b57cec5SDimitry Andric // factors is 4 or higher. When that is the case, we will *always* have 17450b57cec5SDimitry Andric // a simplification. This is an important invariant to prevent cyclicly 17460b57cec5SDimitry Andric // trying to simplify already minimal formations. 17470b57cec5SDimitry Andric if (FactorPowerSum < 4) 17480b57cec5SDimitry Andric return false; 17490b57cec5SDimitry Andric 17500b57cec5SDimitry Andric // Now gather the simplifiable factors, removing them from Ops. 17510b57cec5SDimitry Andric FactorPowerSum = 0; 17520b57cec5SDimitry Andric for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 17530b57cec5SDimitry Andric Value *Op = Ops[Idx-1].Op; 17540b57cec5SDimitry Andric 17550b57cec5SDimitry Andric // Count the number of occurrences of this value. 17560b57cec5SDimitry Andric unsigned Count = 1; 17570b57cec5SDimitry Andric for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 17580b57cec5SDimitry Andric ++Count; 17590b57cec5SDimitry Andric if (Count == 1) 17600b57cec5SDimitry Andric continue; 17610b57cec5SDimitry Andric // Move an even number of occurrences to Factors. 17620b57cec5SDimitry Andric Count &= ~1U; 17630b57cec5SDimitry Andric Idx -= Count; 17640b57cec5SDimitry Andric FactorPowerSum += Count; 17650b57cec5SDimitry Andric Factors.push_back(Factor(Op, Count)); 17660b57cec5SDimitry Andric Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 17670b57cec5SDimitry Andric } 17680b57cec5SDimitry Andric 17690b57cec5SDimitry Andric // None of the adjustments above should have reduced the sum of factor powers 17700b57cec5SDimitry Andric // below our mininum of '4'. 17710b57cec5SDimitry Andric assert(FactorPowerSum >= 4); 17720b57cec5SDimitry Andric 17730b57cec5SDimitry Andric llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 17740b57cec5SDimitry Andric return LHS.Power > RHS.Power; 17750b57cec5SDimitry Andric }); 17760b57cec5SDimitry Andric return true; 17770b57cec5SDimitry Andric } 17780b57cec5SDimitry Andric 17790b57cec5SDimitry Andric /// Build a tree of multiplies, computing the product of Ops. 17805ffd83dbSDimitry Andric static Value *buildMultiplyTree(IRBuilderBase &Builder, 17810b57cec5SDimitry Andric SmallVectorImpl<Value*> &Ops) { 17820b57cec5SDimitry Andric if (Ops.size() == 1) 17830b57cec5SDimitry Andric return Ops.back(); 17840b57cec5SDimitry Andric 17850b57cec5SDimitry Andric Value *LHS = Ops.pop_back_val(); 17860b57cec5SDimitry Andric do { 17870b57cec5SDimitry Andric if (LHS->getType()->isIntOrIntVectorTy()) 17880b57cec5SDimitry Andric LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 17890b57cec5SDimitry Andric else 17900b57cec5SDimitry Andric LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 17910b57cec5SDimitry Andric } while (!Ops.empty()); 17920b57cec5SDimitry Andric 17930b57cec5SDimitry Andric return LHS; 17940b57cec5SDimitry Andric } 17950b57cec5SDimitry Andric 17960b57cec5SDimitry Andric /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 17970b57cec5SDimitry Andric /// 17980b57cec5SDimitry Andric /// Given a vector of values raised to various powers, where no two values are 17990b57cec5SDimitry Andric /// equal and the powers are sorted in decreasing order, compute the minimal 18000b57cec5SDimitry Andric /// DAG of multiplies to compute the final product, and return that product 18010b57cec5SDimitry Andric /// value. 18020b57cec5SDimitry Andric Value * 18035ffd83dbSDimitry Andric ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder, 18040b57cec5SDimitry Andric SmallVectorImpl<Factor> &Factors) { 18050b57cec5SDimitry Andric assert(Factors[0].Power); 18060b57cec5SDimitry Andric SmallVector<Value *, 4> OuterProduct; 18070b57cec5SDimitry Andric for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 18080b57cec5SDimitry Andric Idx < Size && Factors[Idx].Power > 0; ++Idx) { 18090b57cec5SDimitry Andric if (Factors[Idx].Power != Factors[LastIdx].Power) { 18100b57cec5SDimitry Andric LastIdx = Idx; 18110b57cec5SDimitry Andric continue; 18120b57cec5SDimitry Andric } 18130b57cec5SDimitry Andric 18140b57cec5SDimitry Andric // We want to multiply across all the factors with the same power so that 18150b57cec5SDimitry Andric // we can raise them to that power as a single entity. Build a mini tree 18160b57cec5SDimitry Andric // for that. 18170b57cec5SDimitry Andric SmallVector<Value *, 4> InnerProduct; 18180b57cec5SDimitry Andric InnerProduct.push_back(Factors[LastIdx].Base); 18190b57cec5SDimitry Andric do { 18200b57cec5SDimitry Andric InnerProduct.push_back(Factors[Idx].Base); 18210b57cec5SDimitry Andric ++Idx; 18220b57cec5SDimitry Andric } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 18230b57cec5SDimitry Andric 18240b57cec5SDimitry Andric // Reset the base value of the first factor to the new expression tree. 18250b57cec5SDimitry Andric // We'll remove all the factors with the same power in a second pass. 18260b57cec5SDimitry Andric Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 18270b57cec5SDimitry Andric if (Instruction *MI = dyn_cast<Instruction>(M)) 18280b57cec5SDimitry Andric RedoInsts.insert(MI); 18290b57cec5SDimitry Andric 18300b57cec5SDimitry Andric LastIdx = Idx; 18310b57cec5SDimitry Andric } 18320b57cec5SDimitry Andric // Unique factors with equal powers -- we've folded them into the first one's 18330b57cec5SDimitry Andric // base. 1834*0fca6ea1SDimitry Andric Factors.erase(llvm::unique(Factors, 18350b57cec5SDimitry Andric [](const Factor &LHS, const Factor &RHS) { 18360b57cec5SDimitry Andric return LHS.Power == RHS.Power; 18370b57cec5SDimitry Andric }), 18380b57cec5SDimitry Andric Factors.end()); 18390b57cec5SDimitry Andric 18400b57cec5SDimitry Andric // Iteratively collect the base of each factor with an add power into the 18410b57cec5SDimitry Andric // outer product, and halve each power in preparation for squaring the 18420b57cec5SDimitry Andric // expression. 1843bdd1243dSDimitry Andric for (Factor &F : Factors) { 1844bdd1243dSDimitry Andric if (F.Power & 1) 1845bdd1243dSDimitry Andric OuterProduct.push_back(F.Base); 1846bdd1243dSDimitry Andric F.Power >>= 1; 18470b57cec5SDimitry Andric } 18480b57cec5SDimitry Andric if (Factors[0].Power) { 18490b57cec5SDimitry Andric Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 18500b57cec5SDimitry Andric OuterProduct.push_back(SquareRoot); 18510b57cec5SDimitry Andric OuterProduct.push_back(SquareRoot); 18520b57cec5SDimitry Andric } 18530b57cec5SDimitry Andric if (OuterProduct.size() == 1) 18540b57cec5SDimitry Andric return OuterProduct.front(); 18550b57cec5SDimitry Andric 18560b57cec5SDimitry Andric Value *V = buildMultiplyTree(Builder, OuterProduct); 18570b57cec5SDimitry Andric return V; 18580b57cec5SDimitry Andric } 18590b57cec5SDimitry Andric 18600b57cec5SDimitry Andric Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 18610b57cec5SDimitry Andric SmallVectorImpl<ValueEntry> &Ops) { 18620b57cec5SDimitry Andric // We can only optimize the multiplies when there is a chain of more than 18630b57cec5SDimitry Andric // three, such that a balanced tree might require fewer total multiplies. 18640b57cec5SDimitry Andric if (Ops.size() < 4) 18650b57cec5SDimitry Andric return nullptr; 18660b57cec5SDimitry Andric 18670b57cec5SDimitry Andric // Try to turn linear trees of multiplies without other uses of the 18680b57cec5SDimitry Andric // intermediate stages into minimal multiply DAGs with perfect sub-expression 18690b57cec5SDimitry Andric // re-use. 18700b57cec5SDimitry Andric SmallVector<Factor, 4> Factors; 18710b57cec5SDimitry Andric if (!collectMultiplyFactors(Ops, Factors)) 18720b57cec5SDimitry Andric return nullptr; // All distinct factors, so nothing left for us to do. 18730b57cec5SDimitry Andric 18740b57cec5SDimitry Andric IRBuilder<> Builder(I); 18750b57cec5SDimitry Andric // The reassociate transformation for FP operations is performed only 18760b57cec5SDimitry Andric // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 18770b57cec5SDimitry Andric // to the newly generated operations. 18780b57cec5SDimitry Andric if (auto FPI = dyn_cast<FPMathOperator>(I)) 18790b57cec5SDimitry Andric Builder.setFastMathFlags(FPI->getFastMathFlags()); 18800b57cec5SDimitry Andric 18810b57cec5SDimitry Andric Value *V = buildMinimalMultiplyDAG(Builder, Factors); 18820b57cec5SDimitry Andric if (Ops.empty()) 18830b57cec5SDimitry Andric return V; 18840b57cec5SDimitry Andric 18850b57cec5SDimitry Andric ValueEntry NewEntry = ValueEntry(getRank(V), V); 18860b57cec5SDimitry Andric Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry); 18870b57cec5SDimitry Andric return nullptr; 18880b57cec5SDimitry Andric } 18890b57cec5SDimitry Andric 18900b57cec5SDimitry Andric Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 18910b57cec5SDimitry Andric SmallVectorImpl<ValueEntry> &Ops) { 18920b57cec5SDimitry Andric // Now that we have the linearized expression tree, try to optimize it. 18930b57cec5SDimitry Andric // Start by folding any constants that we found. 1894*0fca6ea1SDimitry Andric const DataLayout &DL = I->getDataLayout(); 18950b57cec5SDimitry Andric Constant *Cst = nullptr; 18960b57cec5SDimitry Andric unsigned Opcode = I->getOpcode(); 1897753f127fSDimitry Andric while (!Ops.empty()) { 1898753f127fSDimitry Andric if (auto *C = dyn_cast<Constant>(Ops.back().Op)) { 1899753f127fSDimitry Andric if (!Cst) { 1900753f127fSDimitry Andric Ops.pop_back(); 1901753f127fSDimitry Andric Cst = C; 1902753f127fSDimitry Andric continue; 1903753f127fSDimitry Andric } 1904753f127fSDimitry Andric if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) { 1905753f127fSDimitry Andric Ops.pop_back(); 1906753f127fSDimitry Andric Cst = Res; 1907753f127fSDimitry Andric continue; 1908753f127fSDimitry Andric } 1909753f127fSDimitry Andric } 1910753f127fSDimitry Andric break; 19110b57cec5SDimitry Andric } 19120b57cec5SDimitry Andric // If there was nothing but constants then we are done. 19130b57cec5SDimitry Andric if (Ops.empty()) 19140b57cec5SDimitry Andric return Cst; 19150b57cec5SDimitry Andric 19160b57cec5SDimitry Andric // Put the combined constant back at the end of the operand list, except if 19170b57cec5SDimitry Andric // there is no point. For example, an add of 0 gets dropped here, while a 19180b57cec5SDimitry Andric // multiplication by zero turns the whole expression into zero. 19190b57cec5SDimitry Andric if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 19200b57cec5SDimitry Andric if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 19210b57cec5SDimitry Andric return Cst; 19220b57cec5SDimitry Andric Ops.push_back(ValueEntry(0, Cst)); 19230b57cec5SDimitry Andric } 19240b57cec5SDimitry Andric 19250b57cec5SDimitry Andric if (Ops.size() == 1) return Ops[0].Op; 19260b57cec5SDimitry Andric 19270b57cec5SDimitry Andric // Handle destructive annihilation due to identities between elements in the 19280b57cec5SDimitry Andric // argument list here. 19290b57cec5SDimitry Andric unsigned NumOps = Ops.size(); 19300b57cec5SDimitry Andric switch (Opcode) { 19310b57cec5SDimitry Andric default: break; 19320b57cec5SDimitry Andric case Instruction::And: 19330b57cec5SDimitry Andric case Instruction::Or: 19340b57cec5SDimitry Andric if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 19350b57cec5SDimitry Andric return Result; 19360b57cec5SDimitry Andric break; 19370b57cec5SDimitry Andric 19380b57cec5SDimitry Andric case Instruction::Xor: 19390b57cec5SDimitry Andric if (Value *Result = OptimizeXor(I, Ops)) 19400b57cec5SDimitry Andric return Result; 19410b57cec5SDimitry Andric break; 19420b57cec5SDimitry Andric 19430b57cec5SDimitry Andric case Instruction::Add: 19440b57cec5SDimitry Andric case Instruction::FAdd: 19450b57cec5SDimitry Andric if (Value *Result = OptimizeAdd(I, Ops)) 19460b57cec5SDimitry Andric return Result; 19470b57cec5SDimitry Andric break; 19480b57cec5SDimitry Andric 19490b57cec5SDimitry Andric case Instruction::Mul: 19500b57cec5SDimitry Andric case Instruction::FMul: 19510b57cec5SDimitry Andric if (Value *Result = OptimizeMul(I, Ops)) 19520b57cec5SDimitry Andric return Result; 19530b57cec5SDimitry Andric break; 19540b57cec5SDimitry Andric } 19550b57cec5SDimitry Andric 19560b57cec5SDimitry Andric if (Ops.size() != NumOps) 19570b57cec5SDimitry Andric return OptimizeExpression(I, Ops); 19580b57cec5SDimitry Andric return nullptr; 19590b57cec5SDimitry Andric } 19600b57cec5SDimitry Andric 19610b57cec5SDimitry Andric // Remove dead instructions and if any operands are trivially dead add them to 19620b57cec5SDimitry Andric // Insts so they will be removed as well. 19630b57cec5SDimitry Andric void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 19640b57cec5SDimitry Andric OrderedSet &Insts) { 19650b57cec5SDimitry Andric assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1966e8d8bef9SDimitry Andric SmallVector<Value *, 4> Ops(I->operands()); 19670b57cec5SDimitry Andric ValueRankMap.erase(I); 19680b57cec5SDimitry Andric Insts.remove(I); 19690b57cec5SDimitry Andric RedoInsts.remove(I); 19705ffd83dbSDimitry Andric llvm::salvageDebugInfo(*I); 19710b57cec5SDimitry Andric I->eraseFromParent(); 1972bdd1243dSDimitry Andric for (auto *Op : Ops) 19730b57cec5SDimitry Andric if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 19740b57cec5SDimitry Andric if (OpInst->use_empty()) 19750b57cec5SDimitry Andric Insts.insert(OpInst); 19760b57cec5SDimitry Andric } 19770b57cec5SDimitry Andric 19780b57cec5SDimitry Andric /// Zap the given instruction, adding interesting operands to the work list. 19790b57cec5SDimitry Andric void ReassociatePass::EraseInst(Instruction *I) { 19800b57cec5SDimitry Andric assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 19810b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 19820b57cec5SDimitry Andric 1983e8d8bef9SDimitry Andric SmallVector<Value *, 8> Ops(I->operands()); 19840b57cec5SDimitry Andric // Erase the dead instruction. 19850b57cec5SDimitry Andric ValueRankMap.erase(I); 19860b57cec5SDimitry Andric RedoInsts.remove(I); 19875ffd83dbSDimitry Andric llvm::salvageDebugInfo(*I); 19880b57cec5SDimitry Andric I->eraseFromParent(); 19890b57cec5SDimitry Andric // Optimize its operands. 19900b57cec5SDimitry Andric SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1991*0fca6ea1SDimitry Andric for (Value *V : Ops) 1992*0fca6ea1SDimitry Andric if (Instruction *Op = dyn_cast<Instruction>(V)) { 19930b57cec5SDimitry Andric // If this is a node in an expression tree, climb to the expression root 19940b57cec5SDimitry Andric // and add that since that's where optimization actually happens. 19950b57cec5SDimitry Andric unsigned Opcode = Op->getOpcode(); 19960b57cec5SDimitry Andric while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 19970b57cec5SDimitry Andric Visited.insert(Op).second) 19980b57cec5SDimitry Andric Op = Op->user_back(); 19990b57cec5SDimitry Andric 20000b57cec5SDimitry Andric // The instruction we're going to push may be coming from a 20010b57cec5SDimitry Andric // dead block, and Reassociate skips the processing of unreachable 20020b57cec5SDimitry Andric // blocks because it's a waste of time and also because it can 20030b57cec5SDimitry Andric // lead to infinite loop due to LLVM's non-standard definition 20040b57cec5SDimitry Andric // of dominance. 200506c3fb27SDimitry Andric if (ValueRankMap.contains(Op)) 20060b57cec5SDimitry Andric RedoInsts.insert(Op); 20070b57cec5SDimitry Andric } 20080b57cec5SDimitry Andric 20090b57cec5SDimitry Andric MadeChange = true; 20100b57cec5SDimitry Andric } 20110b57cec5SDimitry Andric 20128bcb0991SDimitry Andric /// Recursively analyze an expression to build a list of instructions that have 20138bcb0991SDimitry Andric /// negative floating-point constant operands. The caller can then transform 20148bcb0991SDimitry Andric /// the list to create positive constants for better reassociation and CSE. 20158bcb0991SDimitry Andric static void getNegatibleInsts(Value *V, 20168bcb0991SDimitry Andric SmallVectorImpl<Instruction *> &Candidates) { 20178bcb0991SDimitry Andric // Handle only one-use instructions. Combining negations does not justify 20188bcb0991SDimitry Andric // replicating instructions. 20198bcb0991SDimitry Andric Instruction *I; 20208bcb0991SDimitry Andric if (!match(V, m_OneUse(m_Instruction(I)))) 20218bcb0991SDimitry Andric return; 20220b57cec5SDimitry Andric 20238bcb0991SDimitry Andric // Handle expressions of multiplications and divisions. 20248bcb0991SDimitry Andric // TODO: This could look through floating-point casts. 20258bcb0991SDimitry Andric const APFloat *C; 20268bcb0991SDimitry Andric switch (I->getOpcode()) { 20278bcb0991SDimitry Andric case Instruction::FMul: 20288bcb0991SDimitry Andric // Not expecting non-canonical code here. Bail out and wait. 20298bcb0991SDimitry Andric if (match(I->getOperand(0), m_Constant())) 20308bcb0991SDimitry Andric break; 20310b57cec5SDimitry Andric 20328bcb0991SDimitry Andric if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) { 20338bcb0991SDimitry Andric Candidates.push_back(I); 20348bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n'); 20358bcb0991SDimitry Andric } 20368bcb0991SDimitry Andric getNegatibleInsts(I->getOperand(0), Candidates); 20378bcb0991SDimitry Andric getNegatibleInsts(I->getOperand(1), Candidates); 20388bcb0991SDimitry Andric break; 20398bcb0991SDimitry Andric case Instruction::FDiv: 20408bcb0991SDimitry Andric // Not expecting non-canonical code here. Bail out and wait. 20418bcb0991SDimitry Andric if (match(I->getOperand(0), m_Constant()) && 20428bcb0991SDimitry Andric match(I->getOperand(1), m_Constant())) 20438bcb0991SDimitry Andric break; 20440b57cec5SDimitry Andric 20458bcb0991SDimitry Andric if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) || 20468bcb0991SDimitry Andric (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) { 20478bcb0991SDimitry Andric Candidates.push_back(I); 20488bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n'); 20498bcb0991SDimitry Andric } 20508bcb0991SDimitry Andric getNegatibleInsts(I->getOperand(0), Candidates); 20518bcb0991SDimitry Andric getNegatibleInsts(I->getOperand(1), Candidates); 20528bcb0991SDimitry Andric break; 20538bcb0991SDimitry Andric default: 20548bcb0991SDimitry Andric break; 20558bcb0991SDimitry Andric } 20568bcb0991SDimitry Andric } 20570b57cec5SDimitry Andric 20588bcb0991SDimitry Andric /// Given an fadd/fsub with an operand that is a one-use instruction 20598bcb0991SDimitry Andric /// (the fadd/fsub), try to change negative floating-point constants into 20608bcb0991SDimitry Andric /// positive constants to increase potential for reassociation and CSE. 20618bcb0991SDimitry Andric Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I, 20628bcb0991SDimitry Andric Instruction *Op, 20638bcb0991SDimitry Andric Value *OtherOp) { 20648bcb0991SDimitry Andric assert((I->getOpcode() == Instruction::FAdd || 20658bcb0991SDimitry Andric I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"); 20660b57cec5SDimitry Andric 20678bcb0991SDimitry Andric // Collect instructions with negative FP constants from the subtree that ends 20688bcb0991SDimitry Andric // in Op. 20698bcb0991SDimitry Andric SmallVector<Instruction *, 4> Candidates; 20708bcb0991SDimitry Andric getNegatibleInsts(Op, Candidates); 20718bcb0991SDimitry Andric if (Candidates.empty()) 20720b57cec5SDimitry Andric return nullptr; 20730b57cec5SDimitry Andric 20740b57cec5SDimitry Andric // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 20750b57cec5SDimitry Andric // resulting subtract will be broken up later. This can get us into an 20760b57cec5SDimitry Andric // infinite loop during reassociation. 20778bcb0991SDimitry Andric bool IsFSub = I->getOpcode() == Instruction::FSub; 20788bcb0991SDimitry Andric bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1; 20798bcb0991SDimitry Andric if (NeedsSubtract && ShouldBreakUpSubtract(I)) 20800b57cec5SDimitry Andric return nullptr; 20810b57cec5SDimitry Andric 20828bcb0991SDimitry Andric for (Instruction *Negatible : Candidates) { 20838bcb0991SDimitry Andric const APFloat *C; 20848bcb0991SDimitry Andric if (match(Negatible->getOperand(0), m_APFloat(C))) { 20858bcb0991SDimitry Andric assert(!match(Negatible->getOperand(1), m_Constant()) && 20868bcb0991SDimitry Andric "Expecting only 1 constant operand"); 20878bcb0991SDimitry Andric assert(C->isNegative() && "Expected negative FP constant"); 20888bcb0991SDimitry Andric Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C))); 20898bcb0991SDimitry Andric MadeChange = true; 20908bcb0991SDimitry Andric } 20918bcb0991SDimitry Andric if (match(Negatible->getOperand(1), m_APFloat(C))) { 20928bcb0991SDimitry Andric assert(!match(Negatible->getOperand(0), m_Constant()) && 20938bcb0991SDimitry Andric "Expecting only 1 constant operand"); 20948bcb0991SDimitry Andric assert(C->isNegative() && "Expected negative FP constant"); 20958bcb0991SDimitry Andric Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C))); 20968bcb0991SDimitry Andric MadeChange = true; 20978bcb0991SDimitry Andric } 20988bcb0991SDimitry Andric } 20998bcb0991SDimitry Andric assert(MadeChange == true && "Negative constant candidate was not changed"); 21000b57cec5SDimitry Andric 21018bcb0991SDimitry Andric // Negations cancelled out. 21028bcb0991SDimitry Andric if (Candidates.size() % 2 == 0) 21038bcb0991SDimitry Andric return I; 21040b57cec5SDimitry Andric 21058bcb0991SDimitry Andric // Negate the final operand in the expression by flipping the opcode of this 21068bcb0991SDimitry Andric // fadd/fsub. 21078bcb0991SDimitry Andric assert(Candidates.size() % 2 == 1 && "Expected odd number"); 21088bcb0991SDimitry Andric IRBuilder<> Builder(I); 21098bcb0991SDimitry Andric Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I) 21108bcb0991SDimitry Andric : Builder.CreateFSubFMF(OtherOp, Op, I); 21118bcb0991SDimitry Andric I->replaceAllUsesWith(NewInst); 21128bcb0991SDimitry Andric RedoInsts.insert(I); 21138bcb0991SDimitry Andric return dyn_cast<Instruction>(NewInst); 21140b57cec5SDimitry Andric } 21150b57cec5SDimitry Andric 21168bcb0991SDimitry Andric /// Canonicalize expressions that contain a negative floating-point constant 21178bcb0991SDimitry Andric /// of the following form: 21188bcb0991SDimitry Andric /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree) 21198bcb0991SDimitry Andric /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree) 21208bcb0991SDimitry Andric /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree) 21218bcb0991SDimitry Andric /// 21228bcb0991SDimitry Andric /// The fadd/fsub opcode may be switched to allow folding a negation into the 21238bcb0991SDimitry Andric /// input instruction. 21248bcb0991SDimitry Andric Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) { 21258bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n'); 21268bcb0991SDimitry Andric Value *X; 21278bcb0991SDimitry Andric Instruction *Op; 21288bcb0991SDimitry Andric if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op))))) 21298bcb0991SDimitry Andric if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 21308bcb0991SDimitry Andric I = R; 21318bcb0991SDimitry Andric if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X)))) 21328bcb0991SDimitry Andric if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 21338bcb0991SDimitry Andric I = R; 21348bcb0991SDimitry Andric if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op))))) 21358bcb0991SDimitry Andric if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 21368bcb0991SDimitry Andric I = R; 21378bcb0991SDimitry Andric return I; 21380b57cec5SDimitry Andric } 21390b57cec5SDimitry Andric 21400b57cec5SDimitry Andric /// Inspect and optimize the given instruction. Note that erasing 21410b57cec5SDimitry Andric /// instructions is not allowed. 21420b57cec5SDimitry Andric void ReassociatePass::OptimizeInst(Instruction *I) { 21430b57cec5SDimitry Andric // Only consider operations that we understand. 21440b57cec5SDimitry Andric if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I)) 21450b57cec5SDimitry Andric return; 21460b57cec5SDimitry Andric 21470b57cec5SDimitry Andric if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 21480b57cec5SDimitry Andric // If an operand of this shift is a reassociable multiply, or if the shift 21490b57cec5SDimitry Andric // is used by a reassociable multiply or add, turn into a multiply. 21500b57cec5SDimitry Andric if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 21510b57cec5SDimitry Andric (I->hasOneUse() && 21520b57cec5SDimitry Andric (isReassociableOp(I->user_back(), Instruction::Mul) || 21530b57cec5SDimitry Andric isReassociableOp(I->user_back(), Instruction::Add)))) { 21540b57cec5SDimitry Andric Instruction *NI = ConvertShiftToMul(I); 21550b57cec5SDimitry Andric RedoInsts.insert(I); 21560b57cec5SDimitry Andric MadeChange = true; 21570b57cec5SDimitry Andric I = NI; 21580b57cec5SDimitry Andric } 21590b57cec5SDimitry Andric 21600b57cec5SDimitry Andric // Commute binary operators, to canonicalize the order of their operands. 21610b57cec5SDimitry Andric // This can potentially expose more CSE opportunities, and makes writing other 21620b57cec5SDimitry Andric // transformations simpler. 21630b57cec5SDimitry Andric if (I->isCommutative()) 21640b57cec5SDimitry Andric canonicalizeOperands(I); 21650b57cec5SDimitry Andric 21668bcb0991SDimitry Andric // Canonicalize negative constants out of expressions. 21678bcb0991SDimitry Andric if (Instruction *Res = canonicalizeNegFPConstants(I)) 21688bcb0991SDimitry Andric I = Res; 21698bcb0991SDimitry Andric 2170fcaf7f86SDimitry Andric // Don't optimize floating-point instructions unless they have the 2171fcaf7f86SDimitry Andric // appropriate FastMathFlags for reassociation enabled. 2172972a253aSDimitry Andric if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I)) 21730b57cec5SDimitry Andric return; 21740b57cec5SDimitry Andric 21750b57cec5SDimitry Andric // Do not reassociate boolean (i1) expressions. We want to preserve the 21760b57cec5SDimitry Andric // original order of evaluation for short-circuited comparisons that 21770b57cec5SDimitry Andric // SimplifyCFG has folded to AND/OR expressions. If the expression 21780b57cec5SDimitry Andric // is not further optimized, it is likely to be transformed back to a 21790b57cec5SDimitry Andric // short-circuited form for code gen, and the source order may have been 21800b57cec5SDimitry Andric // optimized for the most likely conditions. 21810b57cec5SDimitry Andric if (I->getType()->isIntegerTy(1)) 21820b57cec5SDimitry Andric return; 21830b57cec5SDimitry Andric 2184e8d8bef9SDimitry Andric // If this is a bitwise or instruction of operands 2185e8d8bef9SDimitry Andric // with no common bits set, convert it to X+Y. 2186e8d8bef9SDimitry Andric if (I->getOpcode() == Instruction::Or && 2187fe6060f1SDimitry Andric shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) && 21885f757f3fSDimitry Andric (cast<PossiblyDisjointInst>(I)->isDisjoint() || 2189e8d8bef9SDimitry Andric haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), 2190*0fca6ea1SDimitry Andric SimplifyQuery(I->getDataLayout(), 21915f757f3fSDimitry Andric /*DT=*/nullptr, /*AC=*/nullptr, I)))) { 2192fe6060f1SDimitry Andric Instruction *NI = convertOrWithNoCommonBitsToAdd(I); 2193e8d8bef9SDimitry Andric RedoInsts.insert(I); 2194e8d8bef9SDimitry Andric MadeChange = true; 2195e8d8bef9SDimitry Andric I = NI; 2196e8d8bef9SDimitry Andric } 2197e8d8bef9SDimitry Andric 21980b57cec5SDimitry Andric // If this is a subtract instruction which is not already in negate form, 21990b57cec5SDimitry Andric // see if we can convert it to X+-Y. 22000b57cec5SDimitry Andric if (I->getOpcode() == Instruction::Sub) { 22010b57cec5SDimitry Andric if (ShouldBreakUpSubtract(I)) { 22020b57cec5SDimitry Andric Instruction *NI = BreakUpSubtract(I, RedoInsts); 22030b57cec5SDimitry Andric RedoInsts.insert(I); 22040b57cec5SDimitry Andric MadeChange = true; 22050b57cec5SDimitry Andric I = NI; 22060b57cec5SDimitry Andric } else if (match(I, m_Neg(m_Value()))) { 22070b57cec5SDimitry Andric // Otherwise, this is a negation. See if the operand is a multiply tree 22080b57cec5SDimitry Andric // and if this is not an inner node of a multiply tree. 22090b57cec5SDimitry Andric if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 22100b57cec5SDimitry Andric (!I->hasOneUse() || 22110b57cec5SDimitry Andric !isReassociableOp(I->user_back(), Instruction::Mul))) { 22120b57cec5SDimitry Andric Instruction *NI = LowerNegateToMultiply(I); 22130b57cec5SDimitry Andric // If the negate was simplified, revisit the users to see if we can 22140b57cec5SDimitry Andric // reassociate further. 22150b57cec5SDimitry Andric for (User *U : NI->users()) { 22160b57cec5SDimitry Andric if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 22170b57cec5SDimitry Andric RedoInsts.insert(Tmp); 22180b57cec5SDimitry Andric } 22190b57cec5SDimitry Andric RedoInsts.insert(I); 22200b57cec5SDimitry Andric MadeChange = true; 22210b57cec5SDimitry Andric I = NI; 22220b57cec5SDimitry Andric } 22230b57cec5SDimitry Andric } 22240b57cec5SDimitry Andric } else if (I->getOpcode() == Instruction::FNeg || 22250b57cec5SDimitry Andric I->getOpcode() == Instruction::FSub) { 22260b57cec5SDimitry Andric if (ShouldBreakUpSubtract(I)) { 22270b57cec5SDimitry Andric Instruction *NI = BreakUpSubtract(I, RedoInsts); 22280b57cec5SDimitry Andric RedoInsts.insert(I); 22290b57cec5SDimitry Andric MadeChange = true; 22300b57cec5SDimitry Andric I = NI; 22310b57cec5SDimitry Andric } else if (match(I, m_FNeg(m_Value()))) { 22320b57cec5SDimitry Andric // Otherwise, this is a negation. See if the operand is a multiply tree 22330b57cec5SDimitry Andric // and if this is not an inner node of a multiply tree. 22340b57cec5SDimitry Andric Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) : 22350b57cec5SDimitry Andric I->getOperand(0); 22360b57cec5SDimitry Andric if (isReassociableOp(Op, Instruction::FMul) && 22370b57cec5SDimitry Andric (!I->hasOneUse() || 22380b57cec5SDimitry Andric !isReassociableOp(I->user_back(), Instruction::FMul))) { 22390b57cec5SDimitry Andric // If the negate was simplified, revisit the users to see if we can 22400b57cec5SDimitry Andric // reassociate further. 22410b57cec5SDimitry Andric Instruction *NI = LowerNegateToMultiply(I); 22420b57cec5SDimitry Andric for (User *U : NI->users()) { 22430b57cec5SDimitry Andric if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 22440b57cec5SDimitry Andric RedoInsts.insert(Tmp); 22450b57cec5SDimitry Andric } 22460b57cec5SDimitry Andric RedoInsts.insert(I); 22470b57cec5SDimitry Andric MadeChange = true; 22480b57cec5SDimitry Andric I = NI; 22490b57cec5SDimitry Andric } 22500b57cec5SDimitry Andric } 22510b57cec5SDimitry Andric } 22520b57cec5SDimitry Andric 22530b57cec5SDimitry Andric // If this instruction is an associative binary operator, process it. 22540b57cec5SDimitry Andric if (!I->isAssociative()) return; 22550b57cec5SDimitry Andric BinaryOperator *BO = cast<BinaryOperator>(I); 22560b57cec5SDimitry Andric 22570b57cec5SDimitry Andric // If this is an interior node of a reassociable tree, ignore it until we 22580b57cec5SDimitry Andric // get to the root of the tree, to avoid N^2 analysis. 22590b57cec5SDimitry Andric unsigned Opcode = BO->getOpcode(); 22600b57cec5SDimitry Andric if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 22610b57cec5SDimitry Andric // During the initial run we will get to the root of the tree. 22620b57cec5SDimitry Andric // But if we get here while we are redoing instructions, there is no 22630b57cec5SDimitry Andric // guarantee that the root will be visited. So Redo later 22640b57cec5SDimitry Andric if (BO->user_back() != BO && 22650b57cec5SDimitry Andric BO->getParent() == BO->user_back()->getParent()) 22660b57cec5SDimitry Andric RedoInsts.insert(BO->user_back()); 22670b57cec5SDimitry Andric return; 22680b57cec5SDimitry Andric } 22690b57cec5SDimitry Andric 22700b57cec5SDimitry Andric // If this is an add tree that is used by a sub instruction, ignore it 22710b57cec5SDimitry Andric // until we process the subtract. 22720b57cec5SDimitry Andric if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 22730b57cec5SDimitry Andric cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 22740b57cec5SDimitry Andric return; 22750b57cec5SDimitry Andric if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 22760b57cec5SDimitry Andric cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 22770b57cec5SDimitry Andric return; 22780b57cec5SDimitry Andric 22790b57cec5SDimitry Andric ReassociateExpression(BO); 22800b57cec5SDimitry Andric } 22810b57cec5SDimitry Andric 22820b57cec5SDimitry Andric void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 22830b57cec5SDimitry Andric // First, walk the expression tree, linearizing the tree, collecting the 22840b57cec5SDimitry Andric // operand information. 22850b57cec5SDimitry Andric SmallVector<RepeatedValue, 8> Tree; 2286*0fca6ea1SDimitry Andric OverflowTracking Flags; 2287*0fca6ea1SDimitry Andric MadeChange |= LinearizeExprTree(I, Tree, RedoInsts, Flags); 22880b57cec5SDimitry Andric SmallVector<ValueEntry, 8> Ops; 22890b57cec5SDimitry Andric Ops.reserve(Tree.size()); 22904824e7fdSDimitry Andric for (const RepeatedValue &E : Tree) 2291*0fca6ea1SDimitry Andric Ops.append(E.second, ValueEntry(getRank(E.first), E.first)); 22920b57cec5SDimitry Andric 22930b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 22940b57cec5SDimitry Andric 22950b57cec5SDimitry Andric // Now that we have linearized the tree to a list and have gathered all of 22960b57cec5SDimitry Andric // the operands and their ranks, sort the operands by their rank. Use a 22970b57cec5SDimitry Andric // stable_sort so that values with equal ranks will have their relative 22980b57cec5SDimitry Andric // positions maintained (and so the compiler is deterministic). Note that 22990b57cec5SDimitry Andric // this sorts so that the highest ranking values end up at the beginning of 23000b57cec5SDimitry Andric // the vector. 23010b57cec5SDimitry Andric llvm::stable_sort(Ops); 23020b57cec5SDimitry Andric 23030b57cec5SDimitry Andric // Now that we have the expression tree in a convenient 23040b57cec5SDimitry Andric // sorted form, optimize it globally if possible. 23050b57cec5SDimitry Andric if (Value *V = OptimizeExpression(I, Ops)) { 23060b57cec5SDimitry Andric if (V == I) 23070b57cec5SDimitry Andric // Self-referential expression in unreachable code. 23080b57cec5SDimitry Andric return; 23090b57cec5SDimitry Andric // This expression tree simplified to something that isn't a tree, 23100b57cec5SDimitry Andric // eliminate it. 23110b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 23120b57cec5SDimitry Andric I->replaceAllUsesWith(V); 23130b57cec5SDimitry Andric if (Instruction *VI = dyn_cast<Instruction>(V)) 23140b57cec5SDimitry Andric if (I->getDebugLoc()) 23150b57cec5SDimitry Andric VI->setDebugLoc(I->getDebugLoc()); 23160b57cec5SDimitry Andric RedoInsts.insert(I); 23170b57cec5SDimitry Andric ++NumAnnihil; 23180b57cec5SDimitry Andric return; 23190b57cec5SDimitry Andric } 23200b57cec5SDimitry Andric 23210b57cec5SDimitry Andric // We want to sink immediates as deeply as possible except in the case where 23220b57cec5SDimitry Andric // this is a multiply tree used only by an add, and the immediate is a -1. 23230b57cec5SDimitry Andric // In this case we reassociate to put the negation on the outside so that we 23240b57cec5SDimitry Andric // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 23250b57cec5SDimitry Andric if (I->hasOneUse()) { 23260b57cec5SDimitry Andric if (I->getOpcode() == Instruction::Mul && 23270b57cec5SDimitry Andric cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 23280b57cec5SDimitry Andric isa<ConstantInt>(Ops.back().Op) && 23290b57cec5SDimitry Andric cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 23300b57cec5SDimitry Andric ValueEntry Tmp = Ops.pop_back_val(); 23310b57cec5SDimitry Andric Ops.insert(Ops.begin(), Tmp); 23320b57cec5SDimitry Andric } else if (I->getOpcode() == Instruction::FMul && 23330b57cec5SDimitry Andric cast<Instruction>(I->user_back())->getOpcode() == 23340b57cec5SDimitry Andric Instruction::FAdd && 23350b57cec5SDimitry Andric isa<ConstantFP>(Ops.back().Op) && 23360b57cec5SDimitry Andric cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 23370b57cec5SDimitry Andric ValueEntry Tmp = Ops.pop_back_val(); 23380b57cec5SDimitry Andric Ops.insert(Ops.begin(), Tmp); 23390b57cec5SDimitry Andric } 23400b57cec5SDimitry Andric } 23410b57cec5SDimitry Andric 23420b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 23430b57cec5SDimitry Andric 23440b57cec5SDimitry Andric if (Ops.size() == 1) { 23450b57cec5SDimitry Andric if (Ops[0].Op == I) 23460b57cec5SDimitry Andric // Self-referential expression in unreachable code. 23470b57cec5SDimitry Andric return; 23480b57cec5SDimitry Andric 23490b57cec5SDimitry Andric // This expression tree simplified to something that isn't a tree, 23500b57cec5SDimitry Andric // eliminate it. 23510b57cec5SDimitry Andric I->replaceAllUsesWith(Ops[0].Op); 23520b57cec5SDimitry Andric if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 23530b57cec5SDimitry Andric OI->setDebugLoc(I->getDebugLoc()); 23540b57cec5SDimitry Andric RedoInsts.insert(I); 23550b57cec5SDimitry Andric return; 23560b57cec5SDimitry Andric } 23570b57cec5SDimitry Andric 23580b57cec5SDimitry Andric if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 23590b57cec5SDimitry Andric // Find the pair with the highest count in the pairmap and move it to the 23600b57cec5SDimitry Andric // back of the list so that it can later be CSE'd. 23610b57cec5SDimitry Andric // example: 23620b57cec5SDimitry Andric // a*b*c*d*e 23630b57cec5SDimitry Andric // if c*e is the most "popular" pair, we can express this as 23640b57cec5SDimitry Andric // (((c*e)*d)*b)*a 23650b57cec5SDimitry Andric unsigned Max = 1; 23660b57cec5SDimitry Andric unsigned BestRank = 0; 23670b57cec5SDimitry Andric std::pair<unsigned, unsigned> BestPair; 23680b57cec5SDimitry Andric unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 236906c3fb27SDimitry Andric unsigned LimitIdx = 0; 237006c3fb27SDimitry Andric // With the CSE-driven heuristic, we are about to slap two values at the 237106c3fb27SDimitry Andric // beginning of the expression whereas they could live very late in the CFG. 237206c3fb27SDimitry Andric // When using the CSE-local heuristic we avoid creating dependences from 237306c3fb27SDimitry Andric // completely unrelated part of the CFG by limiting the expression 237406c3fb27SDimitry Andric // reordering on the values that live in the first seen basic block. 237506c3fb27SDimitry Andric // The main idea is that we want to avoid forming expressions that would 237606c3fb27SDimitry Andric // become loop dependent. 237706c3fb27SDimitry Andric if (UseCSELocalOpt) { 237806c3fb27SDimitry Andric const BasicBlock *FirstSeenBB = nullptr; 237906c3fb27SDimitry Andric int StartIdx = Ops.size() - 1; 238006c3fb27SDimitry Andric // Skip the first value of the expression since we need at least two 238106c3fb27SDimitry Andric // values to materialize an expression. I.e., even if this value is 238206c3fb27SDimitry Andric // anchored in a different basic block, the actual first sub expression 238306c3fb27SDimitry Andric // will be anchored on the second value. 238406c3fb27SDimitry Andric for (int i = StartIdx - 1; i != -1; --i) { 238506c3fb27SDimitry Andric const Value *Val = Ops[i].Op; 238606c3fb27SDimitry Andric const auto *CurrLeafInstr = dyn_cast<Instruction>(Val); 238706c3fb27SDimitry Andric const BasicBlock *SeenBB = nullptr; 238806c3fb27SDimitry Andric if (!CurrLeafInstr) { 238906c3fb27SDimitry Andric // The value is free of any CFG dependencies. 239006c3fb27SDimitry Andric // Do as if it lives in the entry block. 239106c3fb27SDimitry Andric // 239206c3fb27SDimitry Andric // We do this to make sure all the values falling on this path are 239306c3fb27SDimitry Andric // seen through the same anchor point. The rationale is these values 239406c3fb27SDimitry Andric // can be combined together to from a sub expression free of any CFG 239506c3fb27SDimitry Andric // dependencies so we want them to stay together. 239606c3fb27SDimitry Andric // We could be cleverer and postpone the anchor down to the first 239706c3fb27SDimitry Andric // anchored value, but that's likely complicated to get right. 239806c3fb27SDimitry Andric // E.g., we wouldn't want to do that if that means being stuck in a 239906c3fb27SDimitry Andric // loop. 240006c3fb27SDimitry Andric // 240106c3fb27SDimitry Andric // For instance, we wouldn't want to change: 240206c3fb27SDimitry Andric // res = arg1 op arg2 op arg3 op ... op loop_val1 op loop_val2 ... 240306c3fb27SDimitry Andric // into 240406c3fb27SDimitry Andric // res = loop_val1 op arg1 op arg2 op arg3 op ... op loop_val2 ... 240506c3fb27SDimitry Andric // Because all the sub expressions with arg2..N would be stuck between 240606c3fb27SDimitry Andric // two loop dependent values. 240706c3fb27SDimitry Andric SeenBB = &I->getParent()->getParent()->getEntryBlock(); 240806c3fb27SDimitry Andric } else { 240906c3fb27SDimitry Andric SeenBB = CurrLeafInstr->getParent(); 241006c3fb27SDimitry Andric } 241106c3fb27SDimitry Andric 241206c3fb27SDimitry Andric if (!FirstSeenBB) { 241306c3fb27SDimitry Andric FirstSeenBB = SeenBB; 241406c3fb27SDimitry Andric continue; 241506c3fb27SDimitry Andric } 241606c3fb27SDimitry Andric if (FirstSeenBB != SeenBB) { 241706c3fb27SDimitry Andric // ith value is in a different basic block. 241806c3fb27SDimitry Andric // Rewind the index once to point to the last value on the same basic 241906c3fb27SDimitry Andric // block. 242006c3fb27SDimitry Andric LimitIdx = i + 1; 242106c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "CSE reordering: Consider values between [" 242206c3fb27SDimitry Andric << LimitIdx << ", " << StartIdx << "]\n"); 242306c3fb27SDimitry Andric break; 242406c3fb27SDimitry Andric } 242506c3fb27SDimitry Andric } 242606c3fb27SDimitry Andric } 242706c3fb27SDimitry Andric for (unsigned i = Ops.size() - 1; i > LimitIdx; --i) { 242806c3fb27SDimitry Andric // We must use int type to go below zero when LimitIdx is 0. 242906c3fb27SDimitry Andric for (int j = i - 1; j >= (int)LimitIdx; --j) { 24300b57cec5SDimitry Andric unsigned Score = 0; 24310b57cec5SDimitry Andric Value *Op0 = Ops[i].Op; 24320b57cec5SDimitry Andric Value *Op1 = Ops[j].Op; 24330b57cec5SDimitry Andric if (std::less<Value *>()(Op1, Op0)) 24340b57cec5SDimitry Andric std::swap(Op0, Op1); 24350b57cec5SDimitry Andric auto it = PairMap[Idx].find({Op0, Op1}); 24360b57cec5SDimitry Andric if (it != PairMap[Idx].end()) { 24370b57cec5SDimitry Andric // Functions like BreakUpSubtract() can erase the Values we're using 24380b57cec5SDimitry Andric // as keys and create new Values after we built the PairMap. There's a 24390b57cec5SDimitry Andric // small chance that the new nodes can have the same address as 24400b57cec5SDimitry Andric // something already in the table. We shouldn't accumulate the stored 24410b57cec5SDimitry Andric // score in that case as it refers to the wrong Value. 24420b57cec5SDimitry Andric if (it->second.isValid()) 24430b57cec5SDimitry Andric Score += it->second.Score; 24440b57cec5SDimitry Andric } 24450b57cec5SDimitry Andric 24460b57cec5SDimitry Andric unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 244706c3fb27SDimitry Andric 244806c3fb27SDimitry Andric // By construction, the operands are sorted in reverse order of their 244906c3fb27SDimitry Andric // topological order. 245006c3fb27SDimitry Andric // So we tend to form (sub) expressions with values that are close to 245106c3fb27SDimitry Andric // each other. 245206c3fb27SDimitry Andric // 245306c3fb27SDimitry Andric // Now to expose more CSE opportunities we want to expose the pair of 245406c3fb27SDimitry Andric // operands that occur the most (as statically computed in 245506c3fb27SDimitry Andric // BuildPairMap.) as the first sub-expression. 245606c3fb27SDimitry Andric // 245706c3fb27SDimitry Andric // If two pairs occur as many times, we pick the one with the 245806c3fb27SDimitry Andric // lowest rank, meaning the one with both operands appearing first in 245906c3fb27SDimitry Andric // the topological order. 24600b57cec5SDimitry Andric if (Score > Max || (Score == Max && MaxRank < BestRank)) { 246106c3fb27SDimitry Andric BestPair = {j, i}; 24620b57cec5SDimitry Andric Max = Score; 24630b57cec5SDimitry Andric BestRank = MaxRank; 24640b57cec5SDimitry Andric } 24650b57cec5SDimitry Andric } 246606c3fb27SDimitry Andric } 24670b57cec5SDimitry Andric if (Max > 1) { 24680b57cec5SDimitry Andric auto Op0 = Ops[BestPair.first]; 24690b57cec5SDimitry Andric auto Op1 = Ops[BestPair.second]; 24700b57cec5SDimitry Andric Ops.erase(&Ops[BestPair.second]); 24710b57cec5SDimitry Andric Ops.erase(&Ops[BestPair.first]); 24720b57cec5SDimitry Andric Ops.push_back(Op0); 24730b57cec5SDimitry Andric Ops.push_back(Op1); 24740b57cec5SDimitry Andric } 24750b57cec5SDimitry Andric } 247606c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "RAOut after CSE reorder:\t"; PrintOps(I, Ops); 247706c3fb27SDimitry Andric dbgs() << '\n'); 24780b57cec5SDimitry Andric // Now that we ordered and optimized the expressions, splat them back into 24790b57cec5SDimitry Andric // the expression tree, removing any unneeded nodes. 2480*0fca6ea1SDimitry Andric RewriteExprTree(I, Ops, Flags); 24810b57cec5SDimitry Andric } 24820b57cec5SDimitry Andric 24830b57cec5SDimitry Andric void 24840b57cec5SDimitry Andric ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 24850b57cec5SDimitry Andric // Make a "pairmap" of how often each operand pair occurs. 24860b57cec5SDimitry Andric for (BasicBlock *BI : RPOT) { 24870b57cec5SDimitry Andric for (Instruction &I : *BI) { 24885f757f3fSDimitry Andric if (!I.isAssociative() || !I.isBinaryOp()) 24890b57cec5SDimitry Andric continue; 24900b57cec5SDimitry Andric 24910b57cec5SDimitry Andric // Ignore nodes that aren't at the root of trees. 24920b57cec5SDimitry Andric if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 24930b57cec5SDimitry Andric continue; 24940b57cec5SDimitry Andric 24950b57cec5SDimitry Andric // Collect all operands in a single reassociable expression. 24960b57cec5SDimitry Andric // Since Reassociate has already been run once, we can assume things 24970b57cec5SDimitry Andric // are already canonical according to Reassociation's regime. 24980b57cec5SDimitry Andric SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 24990b57cec5SDimitry Andric SmallVector<Value *, 8> Ops; 25000b57cec5SDimitry Andric while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 25010b57cec5SDimitry Andric Value *Op = Worklist.pop_back_val(); 25020b57cec5SDimitry Andric Instruction *OpI = dyn_cast<Instruction>(Op); 25030b57cec5SDimitry Andric if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 25040b57cec5SDimitry Andric Ops.push_back(Op); 25050b57cec5SDimitry Andric continue; 25060b57cec5SDimitry Andric } 25070b57cec5SDimitry Andric // Be paranoid about self-referencing expressions in unreachable code. 25080b57cec5SDimitry Andric if (OpI->getOperand(0) != OpI) 25090b57cec5SDimitry Andric Worklist.push_back(OpI->getOperand(0)); 25100b57cec5SDimitry Andric if (OpI->getOperand(1) != OpI) 25110b57cec5SDimitry Andric Worklist.push_back(OpI->getOperand(1)); 25120b57cec5SDimitry Andric } 25130b57cec5SDimitry Andric // Skip extremely long expressions. 25140b57cec5SDimitry Andric if (Ops.size() > GlobalReassociateLimit) 25150b57cec5SDimitry Andric continue; 25160b57cec5SDimitry Andric 25170b57cec5SDimitry Andric // Add all pairwise combinations of operands to the pair map. 25180b57cec5SDimitry Andric unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 25190b57cec5SDimitry Andric SmallSet<std::pair<Value *, Value*>, 32> Visited; 25200b57cec5SDimitry Andric for (unsigned i = 0; i < Ops.size() - 1; ++i) { 25210b57cec5SDimitry Andric for (unsigned j = i + 1; j < Ops.size(); ++j) { 25220b57cec5SDimitry Andric // Canonicalize operand orderings. 25230b57cec5SDimitry Andric Value *Op0 = Ops[i]; 25240b57cec5SDimitry Andric Value *Op1 = Ops[j]; 25250b57cec5SDimitry Andric if (std::less<Value *>()(Op1, Op0)) 25260b57cec5SDimitry Andric std::swap(Op0, Op1); 25270b57cec5SDimitry Andric if (!Visited.insert({Op0, Op1}).second) 25280b57cec5SDimitry Andric continue; 25290b57cec5SDimitry Andric auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 25300b57cec5SDimitry Andric if (!res.second) { 25310b57cec5SDimitry Andric // If either key value has been erased then we've got the same 25320b57cec5SDimitry Andric // address by coincidence. That can't happen here because nothing is 25330b57cec5SDimitry Andric // erasing values but it can happen by the time we're querying the 25340b57cec5SDimitry Andric // map. 25350b57cec5SDimitry Andric assert(res.first->second.isValid() && "WeakVH invalidated"); 25360b57cec5SDimitry Andric ++res.first->second.Score; 25370b57cec5SDimitry Andric } 25380b57cec5SDimitry Andric } 25390b57cec5SDimitry Andric } 25400b57cec5SDimitry Andric } 25410b57cec5SDimitry Andric } 25420b57cec5SDimitry Andric } 25430b57cec5SDimitry Andric 25440b57cec5SDimitry Andric PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 25450b57cec5SDimitry Andric // Get the functions basic blocks in Reverse Post Order. This order is used by 25460b57cec5SDimitry Andric // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 25470b57cec5SDimitry Andric // blocks (it has been seen that the analysis in this pass could hang when 25480b57cec5SDimitry Andric // analysing dead basic blocks). 25490b57cec5SDimitry Andric ReversePostOrderTraversal<Function *> RPOT(&F); 25500b57cec5SDimitry Andric 25510b57cec5SDimitry Andric // Calculate the rank map for F. 25520b57cec5SDimitry Andric BuildRankMap(F, RPOT); 25530b57cec5SDimitry Andric 25540b57cec5SDimitry Andric // Build the pair map before running reassociate. 25550b57cec5SDimitry Andric // Technically this would be more accurate if we did it after one round 25560b57cec5SDimitry Andric // of reassociation, but in practice it doesn't seem to help much on 25570b57cec5SDimitry Andric // real-world code, so don't waste the compile time running reassociate 25580b57cec5SDimitry Andric // twice. 25590b57cec5SDimitry Andric // If a user wants, they could expicitly run reassociate twice in their 25600b57cec5SDimitry Andric // pass pipeline for further potential gains. 25610b57cec5SDimitry Andric // It might also be possible to update the pair map during runtime, but the 25620b57cec5SDimitry Andric // overhead of that may be large if there's many reassociable chains. 25630b57cec5SDimitry Andric BuildPairMap(RPOT); 25640b57cec5SDimitry Andric 25650b57cec5SDimitry Andric MadeChange = false; 25660b57cec5SDimitry Andric 25670b57cec5SDimitry Andric // Traverse the same blocks that were analysed by BuildRankMap. 25680b57cec5SDimitry Andric for (BasicBlock *BI : RPOT) { 25690b57cec5SDimitry Andric assert(RankMap.count(&*BI) && "BB should be ranked."); 25700b57cec5SDimitry Andric // Optimize every instruction in the basic block. 25710b57cec5SDimitry Andric for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 25720b57cec5SDimitry Andric if (isInstructionTriviallyDead(&*II)) { 25730b57cec5SDimitry Andric EraseInst(&*II++); 25740b57cec5SDimitry Andric } else { 25750b57cec5SDimitry Andric OptimizeInst(&*II); 25760b57cec5SDimitry Andric assert(II->getParent() == &*BI && "Moved to a different block!"); 25770b57cec5SDimitry Andric ++II; 25780b57cec5SDimitry Andric } 25790b57cec5SDimitry Andric 25800b57cec5SDimitry Andric // Make a copy of all the instructions to be redone so we can remove dead 25810b57cec5SDimitry Andric // instructions. 25820b57cec5SDimitry Andric OrderedSet ToRedo(RedoInsts); 25830b57cec5SDimitry Andric // Iterate over all instructions to be reevaluated and remove trivially dead 25840b57cec5SDimitry Andric // instructions. If any operand of the trivially dead instruction becomes 25850b57cec5SDimitry Andric // dead mark it for deletion as well. Continue this process until all 25860b57cec5SDimitry Andric // trivially dead instructions have been removed. 25870b57cec5SDimitry Andric while (!ToRedo.empty()) { 25880b57cec5SDimitry Andric Instruction *I = ToRedo.pop_back_val(); 25890b57cec5SDimitry Andric if (isInstructionTriviallyDead(I)) { 25900b57cec5SDimitry Andric RecursivelyEraseDeadInsts(I, ToRedo); 25910b57cec5SDimitry Andric MadeChange = true; 25920b57cec5SDimitry Andric } 25930b57cec5SDimitry Andric } 25940b57cec5SDimitry Andric 25950b57cec5SDimitry Andric // Now that we have removed dead instructions, we can reoptimize the 25960b57cec5SDimitry Andric // remaining instructions. 25970b57cec5SDimitry Andric while (!RedoInsts.empty()) { 25980b57cec5SDimitry Andric Instruction *I = RedoInsts.front(); 25990b57cec5SDimitry Andric RedoInsts.erase(RedoInsts.begin()); 26000b57cec5SDimitry Andric if (isInstructionTriviallyDead(I)) 26010b57cec5SDimitry Andric EraseInst(I); 26020b57cec5SDimitry Andric else 26030b57cec5SDimitry Andric OptimizeInst(I); 26040b57cec5SDimitry Andric } 26050b57cec5SDimitry Andric } 26060b57cec5SDimitry Andric 26070b57cec5SDimitry Andric // We are done with the rank map and pair map. 26080b57cec5SDimitry Andric RankMap.clear(); 26090b57cec5SDimitry Andric ValueRankMap.clear(); 26100b57cec5SDimitry Andric for (auto &Entry : PairMap) 26110b57cec5SDimitry Andric Entry.clear(); 26120b57cec5SDimitry Andric 26130b57cec5SDimitry Andric if (MadeChange) { 26140b57cec5SDimitry Andric PreservedAnalyses PA; 26150b57cec5SDimitry Andric PA.preserveSet<CFGAnalyses>(); 26160b57cec5SDimitry Andric return PA; 26170b57cec5SDimitry Andric } 26180b57cec5SDimitry Andric 26190b57cec5SDimitry Andric return PreservedAnalyses::all(); 26200b57cec5SDimitry Andric } 26210b57cec5SDimitry Andric 26220b57cec5SDimitry Andric namespace { 26230b57cec5SDimitry Andric 26240b57cec5SDimitry Andric class ReassociateLegacyPass : public FunctionPass { 26250b57cec5SDimitry Andric ReassociatePass Impl; 26260b57cec5SDimitry Andric 26270b57cec5SDimitry Andric public: 26280b57cec5SDimitry Andric static char ID; // Pass identification, replacement for typeid 26290b57cec5SDimitry Andric 26300b57cec5SDimitry Andric ReassociateLegacyPass() : FunctionPass(ID) { 26310b57cec5SDimitry Andric initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 26320b57cec5SDimitry Andric } 26330b57cec5SDimitry Andric 26340b57cec5SDimitry Andric bool runOnFunction(Function &F) override { 26350b57cec5SDimitry Andric if (skipFunction(F)) 26360b57cec5SDimitry Andric return false; 26370b57cec5SDimitry Andric 26380b57cec5SDimitry Andric FunctionAnalysisManager DummyFAM; 26390b57cec5SDimitry Andric auto PA = Impl.run(F, DummyFAM); 26400b57cec5SDimitry Andric return !PA.areAllPreserved(); 26410b57cec5SDimitry Andric } 26420b57cec5SDimitry Andric 26430b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 26440b57cec5SDimitry Andric AU.setPreservesCFG(); 26455ffd83dbSDimitry Andric AU.addPreserved<AAResultsWrapperPass>(); 26465ffd83dbSDimitry Andric AU.addPreserved<BasicAAWrapperPass>(); 26470b57cec5SDimitry Andric AU.addPreserved<GlobalsAAWrapperPass>(); 26480b57cec5SDimitry Andric } 26490b57cec5SDimitry Andric }; 26500b57cec5SDimitry Andric 26510b57cec5SDimitry Andric } // end anonymous namespace 26520b57cec5SDimitry Andric 26530b57cec5SDimitry Andric char ReassociateLegacyPass::ID = 0; 26540b57cec5SDimitry Andric 26550b57cec5SDimitry Andric INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 26560b57cec5SDimitry Andric "Reassociate expressions", false, false) 26570b57cec5SDimitry Andric 26580b57cec5SDimitry Andric // Public interface to the Reassociate pass 26590b57cec5SDimitry Andric FunctionPass *llvm::createReassociatePass() { 26600b57cec5SDimitry Andric return new ReassociateLegacyPass(); 26610b57cec5SDimitry Andric } 2662