1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "memcpyopt" 68 69 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( 70 "enable-memcpyopt-without-libcalls", cl::init(false), cl::Hidden, 71 cl::ZeroOrMore, 72 cl::desc("Enable memcpyopt even when libcalls are disabled")); 73 74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 75 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 76 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 77 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 78 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 79 80 namespace { 81 82 /// Represents a range of memset'd bytes with the ByteVal value. 83 /// This allows us to analyze stores like: 84 /// store 0 -> P+1 85 /// store 0 -> P+0 86 /// store 0 -> P+3 87 /// store 0 -> P+2 88 /// which sometimes happens with stores to arrays of structs etc. When we see 89 /// the first store, we make a range [1, 2). The second store extends the range 90 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 91 /// two ranges into [0, 3) which is memset'able. 92 struct MemsetRange { 93 // Start/End - A semi range that describes the span that this range covers. 94 // The range is closed at the start and open at the end: [Start, End). 95 int64_t Start, End; 96 97 /// StartPtr - The getelementptr instruction that points to the start of the 98 /// range. 99 Value *StartPtr; 100 101 /// Alignment - The known alignment of the first store. 102 unsigned Alignment; 103 104 /// TheStores - The actual stores that make up this range. 105 SmallVector<Instruction*, 16> TheStores; 106 107 bool isProfitableToUseMemset(const DataLayout &DL) const; 108 }; 109 110 } // end anonymous namespace 111 112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 113 // If we found more than 4 stores to merge or 16 bytes, use memset. 114 if (TheStores.size() >= 4 || End-Start >= 16) return true; 115 116 // If there is nothing to merge, don't do anything. 117 if (TheStores.size() < 2) return false; 118 119 // If any of the stores are a memset, then it is always good to extend the 120 // memset. 121 for (Instruction *SI : TheStores) 122 if (!isa<StoreInst>(SI)) 123 return true; 124 125 // Assume that the code generator is capable of merging pairs of stores 126 // together if it wants to. 127 if (TheStores.size() == 2) return false; 128 129 // If we have fewer than 8 stores, it can still be worthwhile to do this. 130 // For example, merging 4 i8 stores into an i32 store is useful almost always. 131 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 132 // memset will be split into 2 32-bit stores anyway) and doing so can 133 // pessimize the llvm optimizer. 134 // 135 // Since we don't have perfect knowledge here, make some assumptions: assume 136 // the maximum GPR width is the same size as the largest legal integer 137 // size. If so, check to see whether we will end up actually reducing the 138 // number of stores used. 139 unsigned Bytes = unsigned(End-Start); 140 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 141 if (MaxIntSize == 0) 142 MaxIntSize = 1; 143 unsigned NumPointerStores = Bytes / MaxIntSize; 144 145 // Assume the remaining bytes if any are done a byte at a time. 146 unsigned NumByteStores = Bytes % MaxIntSize; 147 148 // If we will reduce the # stores (according to this heuristic), do the 149 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 150 // etc. 151 return TheStores.size() > NumPointerStores+NumByteStores; 152 } 153 154 namespace { 155 156 class MemsetRanges { 157 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 158 159 /// A sorted list of the memset ranges. 160 SmallVector<MemsetRange, 8> Ranges; 161 162 const DataLayout &DL; 163 164 public: 165 MemsetRanges(const DataLayout &DL) : DL(DL) {} 166 167 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 168 169 const_iterator begin() const { return Ranges.begin(); } 170 const_iterator end() const { return Ranges.end(); } 171 bool empty() const { return Ranges.empty(); } 172 173 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 174 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 175 addStore(OffsetFromFirst, SI); 176 else 177 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 178 } 179 180 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 181 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 182 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); 183 addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(), 184 SI->getAlign().value(), SI); 185 } 186 187 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 188 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 189 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 190 } 191 192 void addRange(int64_t Start, int64_t Size, Value *Ptr, 193 unsigned Alignment, Instruction *Inst); 194 }; 195 196 } // end anonymous namespace 197 198 /// Add a new store to the MemsetRanges data structure. This adds a 199 /// new range for the specified store at the specified offset, merging into 200 /// existing ranges as appropriate. 201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 202 unsigned Alignment, Instruction *Inst) { 203 int64_t End = Start+Size; 204 205 range_iterator I = partition_point( 206 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 207 208 // We now know that I == E, in which case we didn't find anything to merge 209 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 210 // to insert a new range. Handle this now. 211 if (I == Ranges.end() || End < I->Start) { 212 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 213 R.Start = Start; 214 R.End = End; 215 R.StartPtr = Ptr; 216 R.Alignment = Alignment; 217 R.TheStores.push_back(Inst); 218 return; 219 } 220 221 // This store overlaps with I, add it. 222 I->TheStores.push_back(Inst); 223 224 // At this point, we may have an interval that completely contains our store. 225 // If so, just add it to the interval and return. 226 if (I->Start <= Start && I->End >= End) 227 return; 228 229 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 230 // but is not entirely contained within the range. 231 232 // See if the range extends the start of the range. In this case, it couldn't 233 // possibly cause it to join the prior range, because otherwise we would have 234 // stopped on *it*. 235 if (Start < I->Start) { 236 I->Start = Start; 237 I->StartPtr = Ptr; 238 I->Alignment = Alignment; 239 } 240 241 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 242 // is in or right at the end of I), and that End >= I->Start. Extend I out to 243 // End. 244 if (End > I->End) { 245 I->End = End; 246 range_iterator NextI = I; 247 while (++NextI != Ranges.end() && End >= NextI->Start) { 248 // Merge the range in. 249 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 250 if (NextI->End > I->End) 251 I->End = NextI->End; 252 Ranges.erase(NextI); 253 NextI = I; 254 } 255 } 256 } 257 258 //===----------------------------------------------------------------------===// 259 // MemCpyOptLegacyPass Pass 260 //===----------------------------------------------------------------------===// 261 262 namespace { 263 264 class MemCpyOptLegacyPass : public FunctionPass { 265 MemCpyOptPass Impl; 266 267 public: 268 static char ID; // Pass identification, replacement for typeid 269 270 MemCpyOptLegacyPass() : FunctionPass(ID) { 271 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 272 } 273 274 bool runOnFunction(Function &F) override; 275 276 private: 277 // This transformation requires dominator postdominator info 278 void getAnalysisUsage(AnalysisUsage &AU) const override { 279 AU.setPreservesCFG(); 280 AU.addRequired<AssumptionCacheTracker>(); 281 AU.addRequired<DominatorTreeWrapperPass>(); 282 AU.addPreserved<DominatorTreeWrapperPass>(); 283 AU.addPreserved<GlobalsAAWrapperPass>(); 284 AU.addRequired<TargetLibraryInfoWrapperPass>(); 285 AU.addRequired<AAResultsWrapperPass>(); 286 AU.addPreserved<AAResultsWrapperPass>(); 287 AU.addRequired<MemorySSAWrapperPass>(); 288 AU.addPreserved<MemorySSAWrapperPass>(); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char MemCpyOptLegacyPass::ID = 0; 295 296 /// The public interface to this file... 297 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 298 299 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 300 false, false) 301 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 302 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 303 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 305 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 306 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 307 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 308 false, false) 309 310 // Check that V is either not accessible by the caller, or unwinding cannot 311 // occur between Start and End. 312 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 313 Instruction *End) { 314 assert(Start->getParent() == End->getParent() && "Must be in same block"); 315 if (!Start->getFunction()->doesNotThrow() && 316 !isa<AllocaInst>(getUnderlyingObject(V))) { 317 for (const Instruction &I : 318 make_range(Start->getIterator(), End->getIterator())) { 319 if (I.mayThrow()) 320 return true; 321 } 322 } 323 return false; 324 } 325 326 void MemCpyOptPass::eraseInstruction(Instruction *I) { 327 MSSAU->removeMemoryAccess(I); 328 I->eraseFromParent(); 329 } 330 331 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 332 // Start and End must be in the same block 333 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 334 const MemoryUseOrDef *Start, 335 const MemoryUseOrDef *End) { 336 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 337 for (const MemoryAccess &MA : 338 make_range(++Start->getIterator(), End->getIterator())) { 339 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 340 Loc))) 341 return true; 342 } 343 return false; 344 } 345 346 // Check for mod of Loc between Start and End, excluding both boundaries. 347 // Start and End can be in different blocks. 348 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, 349 const MemoryUseOrDef *Start, 350 const MemoryUseOrDef *End) { 351 // TODO: Only walk until we hit Start. 352 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 353 End->getDefiningAccess(), Loc); 354 return !MSSA->dominates(Clobber, Start); 355 } 356 357 /// When scanning forward over instructions, we look for some other patterns to 358 /// fold away. In particular, this looks for stores to neighboring locations of 359 /// memory. If it sees enough consecutive ones, it attempts to merge them 360 /// together into a memcpy/memset. 361 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 362 Value *StartPtr, 363 Value *ByteVal) { 364 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 365 366 // We can't track scalable types 367 if (StoreInst *SI = dyn_cast<StoreInst>(StartInst)) 368 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) 369 return nullptr; 370 371 // Okay, so we now have a single store that can be splatable. Scan to find 372 // all subsequent stores of the same value to offset from the same pointer. 373 // Join these together into ranges, so we can decide whether contiguous blocks 374 // are stored. 375 MemsetRanges Ranges(DL); 376 377 BasicBlock::iterator BI(StartInst); 378 379 // Keeps track of the last memory use or def before the insertion point for 380 // the new memset. The new MemoryDef for the inserted memsets will be inserted 381 // after MemInsertPoint. It points to either LastMemDef or to the last user 382 // before the insertion point of the memset, if there are any such users. 383 MemoryUseOrDef *MemInsertPoint = nullptr; 384 // Keeps track of the last MemoryDef between StartInst and the insertion point 385 // for the new memset. This will become the defining access of the inserted 386 // memsets. 387 MemoryDef *LastMemDef = nullptr; 388 for (++BI; !BI->isTerminator(); ++BI) { 389 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 390 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 391 if (CurrentAcc) { 392 MemInsertPoint = CurrentAcc; 393 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 394 LastMemDef = CurrentDef; 395 } 396 397 // Calls that only access inaccessible memory do not block merging 398 // accessible stores. 399 if (auto *CB = dyn_cast<CallBase>(BI)) { 400 if (CB->onlyAccessesInaccessibleMemory()) 401 continue; 402 } 403 404 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 405 // If the instruction is readnone, ignore it, otherwise bail out. We 406 // don't even allow readonly here because we don't want something like: 407 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 408 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 409 break; 410 continue; 411 } 412 413 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 414 // If this is a store, see if we can merge it in. 415 if (!NextStore->isSimple()) break; 416 417 Value *StoredVal = NextStore->getValueOperand(); 418 419 // Don't convert stores of non-integral pointer types to memsets (which 420 // stores integers). 421 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 422 break; 423 424 // We can't track ranges involving scalable types. 425 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) 426 break; 427 428 // Check to see if this stored value is of the same byte-splattable value. 429 Value *StoredByte = isBytewiseValue(StoredVal, DL); 430 if (isa<UndefValue>(ByteVal) && StoredByte) 431 ByteVal = StoredByte; 432 if (ByteVal != StoredByte) 433 break; 434 435 // Check to see if this store is to a constant offset from the start ptr. 436 Optional<int64_t> Offset = 437 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 438 if (!Offset) 439 break; 440 441 Ranges.addStore(*Offset, NextStore); 442 } else { 443 MemSetInst *MSI = cast<MemSetInst>(BI); 444 445 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 446 !isa<ConstantInt>(MSI->getLength())) 447 break; 448 449 // Check to see if this store is to a constant offset from the start ptr. 450 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 451 if (!Offset) 452 break; 453 454 Ranges.addMemSet(*Offset, MSI); 455 } 456 } 457 458 // If we have no ranges, then we just had a single store with nothing that 459 // could be merged in. This is a very common case of course. 460 if (Ranges.empty()) 461 return nullptr; 462 463 // If we had at least one store that could be merged in, add the starting 464 // store as well. We try to avoid this unless there is at least something 465 // interesting as a small compile-time optimization. 466 Ranges.addInst(0, StartInst); 467 468 // If we create any memsets, we put it right before the first instruction that 469 // isn't part of the memset block. This ensure that the memset is dominated 470 // by any addressing instruction needed by the start of the block. 471 IRBuilder<> Builder(&*BI); 472 473 // Now that we have full information about ranges, loop over the ranges and 474 // emit memset's for anything big enough to be worthwhile. 475 Instruction *AMemSet = nullptr; 476 for (const MemsetRange &Range : Ranges) { 477 if (Range.TheStores.size() == 1) continue; 478 479 // If it is profitable to lower this range to memset, do so now. 480 if (!Range.isProfitableToUseMemset(DL)) 481 continue; 482 483 // Otherwise, we do want to transform this! Create a new memset. 484 // Get the starting pointer of the block. 485 StartPtr = Range.StartPtr; 486 487 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 488 MaybeAlign(Range.Alignment)); 489 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 490 : Range.TheStores) dbgs() 491 << *SI << '\n'; 492 dbgs() << "With: " << *AMemSet << '\n'); 493 if (!Range.TheStores.empty()) 494 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 495 496 assert(LastMemDef && MemInsertPoint && 497 "Both LastMemDef and MemInsertPoint need to be set"); 498 auto *NewDef = 499 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 500 ? MSSAU->createMemoryAccessBefore( 501 AMemSet, LastMemDef, MemInsertPoint) 502 : MSSAU->createMemoryAccessAfter( 503 AMemSet, LastMemDef, MemInsertPoint)); 504 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 505 LastMemDef = NewDef; 506 MemInsertPoint = NewDef; 507 508 // Zap all the stores. 509 for (Instruction *SI : Range.TheStores) 510 eraseInstruction(SI); 511 512 ++NumMemSetInfer; 513 } 514 515 return AMemSet; 516 } 517 518 // This method try to lift a store instruction before position P. 519 // It will lift the store and its argument + that anything that 520 // may alias with these. 521 // The method returns true if it was successful. 522 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 523 // If the store alias this position, early bail out. 524 MemoryLocation StoreLoc = MemoryLocation::get(SI); 525 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 526 return false; 527 528 // Keep track of the arguments of all instruction we plan to lift 529 // so we can make sure to lift them as well if appropriate. 530 DenseSet<Instruction*> Args; 531 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 532 if (Ptr->getParent() == SI->getParent()) 533 Args.insert(Ptr); 534 535 // Instruction to lift before P. 536 SmallVector<Instruction *, 8> ToLift{SI}; 537 538 // Memory locations of lifted instructions. 539 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 540 541 // Lifted calls. 542 SmallVector<const CallBase *, 8> Calls; 543 544 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 545 546 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 547 auto *C = &*I; 548 549 // Make sure hoisting does not perform a store that was not guaranteed to 550 // happen. 551 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 552 return false; 553 554 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 555 556 bool NeedLift = false; 557 if (Args.erase(C)) 558 NeedLift = true; 559 else if (MayAlias) { 560 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 561 return isModOrRefSet(AA->getModRefInfo(C, ML)); 562 }); 563 564 if (!NeedLift) 565 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 566 return isModOrRefSet(AA->getModRefInfo(C, Call)); 567 }); 568 } 569 570 if (!NeedLift) 571 continue; 572 573 if (MayAlias) { 574 // Since LI is implicitly moved downwards past the lifted instructions, 575 // none of them may modify its source. 576 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 577 return false; 578 else if (const auto *Call = dyn_cast<CallBase>(C)) { 579 // If we can't lift this before P, it's game over. 580 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 581 return false; 582 583 Calls.push_back(Call); 584 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 585 // If we can't lift this before P, it's game over. 586 auto ML = MemoryLocation::get(C); 587 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 588 return false; 589 590 MemLocs.push_back(ML); 591 } else 592 // We don't know how to lift this instruction. 593 return false; 594 } 595 596 ToLift.push_back(C); 597 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 598 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 599 if (A->getParent() == SI->getParent()) { 600 // Cannot hoist user of P above P 601 if(A == P) return false; 602 Args.insert(A); 603 } 604 } 605 } 606 607 // Find MSSA insertion point. Normally P will always have a corresponding 608 // memory access before which we can insert. However, with non-standard AA 609 // pipelines, there may be a mismatch between AA and MSSA, in which case we 610 // will scan for a memory access before P. In either case, we know for sure 611 // that at least the load will have a memory access. 612 // TODO: Simplify this once P will be determined by MSSA, in which case the 613 // discrepancy can no longer occur. 614 MemoryUseOrDef *MemInsertPoint = nullptr; 615 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 616 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 617 } else { 618 const Instruction *ConstP = P; 619 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 620 ++LI->getReverseIterator())) { 621 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 622 MemInsertPoint = MA; 623 break; 624 } 625 } 626 } 627 628 // We made it, we need to lift. 629 for (auto *I : llvm::reverse(ToLift)) { 630 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 631 I->moveBefore(P); 632 assert(MemInsertPoint && "Must have found insert point"); 633 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 634 MSSAU->moveAfter(MA, MemInsertPoint); 635 MemInsertPoint = MA; 636 } 637 } 638 639 return true; 640 } 641 642 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 643 if (!SI->isSimple()) return false; 644 645 // Avoid merging nontemporal stores since the resulting 646 // memcpy/memset would not be able to preserve the nontemporal hint. 647 // In theory we could teach how to propagate the !nontemporal metadata to 648 // memset calls. However, that change would force the backend to 649 // conservatively expand !nontemporal memset calls back to sequences of 650 // store instructions (effectively undoing the merging). 651 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 652 return false; 653 654 const DataLayout &DL = SI->getModule()->getDataLayout(); 655 656 Value *StoredVal = SI->getValueOperand(); 657 658 // Not all the transforms below are correct for non-integral pointers, bail 659 // until we've audited the individual pieces. 660 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 661 return false; 662 663 // Load to store forwarding can be interpreted as memcpy. 664 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 665 if (LI->isSimple() && LI->hasOneUse() && 666 LI->getParent() == SI->getParent()) { 667 668 auto *T = LI->getType(); 669 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if 670 // the corresponding libcalls are not available. 671 // TODO: We should really distinguish between libcall availability and 672 // our ability to introduce intrinsics. 673 if (T->isAggregateType() && 674 (EnableMemCpyOptWithoutLibcalls || 675 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { 676 MemoryLocation LoadLoc = MemoryLocation::get(LI); 677 678 // We use alias analysis to check if an instruction may store to 679 // the memory we load from in between the load and the store. If 680 // such an instruction is found, we try to promote there instead 681 // of at the store position. 682 // TODO: Can use MSSA for this. 683 Instruction *P = SI; 684 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 685 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 686 P = &I; 687 break; 688 } 689 } 690 691 // We found an instruction that may write to the loaded memory. 692 // We can try to promote at this position instead of the store 693 // position if nothing aliases the store memory after this and the store 694 // destination is not in the range. 695 if (P && P != SI) { 696 if (!moveUp(SI, P, LI)) 697 P = nullptr; 698 } 699 700 // If a valid insertion position is found, then we can promote 701 // the load/store pair to a memcpy. 702 if (P) { 703 // If we load from memory that may alias the memory we store to, 704 // memmove must be used to preserve semantic. If not, memcpy can 705 // be used. Also, if we load from constant memory, memcpy can be used 706 // as the constant memory won't be modified. 707 bool UseMemMove = false; 708 if (isModSet(AA->getModRefInfo(SI, LoadLoc))) 709 UseMemMove = true; 710 711 uint64_t Size = DL.getTypeStoreSize(T); 712 713 IRBuilder<> Builder(P); 714 Instruction *M; 715 if (UseMemMove) 716 M = Builder.CreateMemMove( 717 SI->getPointerOperand(), SI->getAlign(), 718 LI->getPointerOperand(), LI->getAlign(), Size); 719 else 720 M = Builder.CreateMemCpy( 721 SI->getPointerOperand(), SI->getAlign(), 722 LI->getPointerOperand(), LI->getAlign(), Size); 723 724 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 725 << *M << "\n"); 726 727 auto *LastDef = 728 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 729 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 730 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 731 732 eraseInstruction(SI); 733 eraseInstruction(LI); 734 ++NumMemCpyInstr; 735 736 // Make sure we do not invalidate the iterator. 737 BBI = M->getIterator(); 738 return true; 739 } 740 } 741 742 // Detect cases where we're performing call slot forwarding, but 743 // happen to be using a load-store pair to implement it, rather than 744 // a memcpy. 745 CallInst *C = nullptr; 746 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 747 MSSA->getWalker()->getClobberingMemoryAccess(LI))) { 748 // The load most post-dom the call. Limit to the same block for now. 749 // TODO: Support non-local call-slot optimization? 750 if (LoadClobber->getBlock() == SI->getParent()) 751 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 752 } 753 754 if (C) { 755 // Check that nothing touches the dest of the "copy" between 756 // the call and the store. 757 MemoryLocation StoreLoc = MemoryLocation::get(SI); 758 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), 759 MSSA->getMemoryAccess(SI))) 760 C = nullptr; 761 } 762 763 if (C) { 764 bool changed = performCallSlotOptzn( 765 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 766 LI->getPointerOperand()->stripPointerCasts(), 767 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 768 commonAlignment(SI->getAlign(), LI->getAlign()), C); 769 if (changed) { 770 eraseInstruction(SI); 771 eraseInstruction(LI); 772 ++NumMemCpyInstr; 773 return true; 774 } 775 } 776 } 777 } 778 779 // The following code creates memset intrinsics out of thin air. Don't do 780 // this if the corresponding libfunc is not available. 781 // TODO: We should really distinguish between libcall availability and 782 // our ability to introduce intrinsics. 783 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) 784 return false; 785 786 // There are two cases that are interesting for this code to handle: memcpy 787 // and memset. Right now we only handle memset. 788 789 // Ensure that the value being stored is something that can be memset'able a 790 // byte at a time like "0" or "-1" or any width, as well as things like 791 // 0xA0A0A0A0 and 0.0. 792 auto *V = SI->getOperand(0); 793 if (Value *ByteVal = isBytewiseValue(V, DL)) { 794 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 795 ByteVal)) { 796 BBI = I->getIterator(); // Don't invalidate iterator. 797 return true; 798 } 799 800 // If we have an aggregate, we try to promote it to memset regardless 801 // of opportunity for merging as it can expose optimization opportunities 802 // in subsequent passes. 803 auto *T = V->getType(); 804 if (T->isAggregateType()) { 805 uint64_t Size = DL.getTypeStoreSize(T); 806 IRBuilder<> Builder(SI); 807 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 808 SI->getAlign()); 809 810 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 811 812 // The newly inserted memset is immediately overwritten by the original 813 // store, so we do not need to rename uses. 814 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI)); 815 auto *NewAccess = MSSAU->createMemoryAccessBefore( 816 M, StoreDef->getDefiningAccess(), StoreDef); 817 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false); 818 819 eraseInstruction(SI); 820 NumMemSetInfer++; 821 822 // Make sure we do not invalidate the iterator. 823 BBI = M->getIterator(); 824 return true; 825 } 826 } 827 828 return false; 829 } 830 831 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 832 // See if there is another memset or store neighboring this memset which 833 // allows us to widen out the memset to do a single larger store. 834 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 835 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 836 MSI->getValue())) { 837 BBI = I->getIterator(); // Don't invalidate iterator. 838 return true; 839 } 840 return false; 841 } 842 843 /// Takes a memcpy and a call that it depends on, 844 /// and checks for the possibility of a call slot optimization by having 845 /// the call write its result directly into the destination of the memcpy. 846 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 847 Instruction *cpyStore, Value *cpyDest, 848 Value *cpySrc, TypeSize cpySize, 849 Align cpyAlign, CallInst *C) { 850 // The general transformation to keep in mind is 851 // 852 // call @func(..., src, ...) 853 // memcpy(dest, src, ...) 854 // 855 // -> 856 // 857 // memcpy(dest, src, ...) 858 // call @func(..., dest, ...) 859 // 860 // Since moving the memcpy is technically awkward, we additionally check that 861 // src only holds uninitialized values at the moment of the call, meaning that 862 // the memcpy can be discarded rather than moved. 863 864 // We can't optimize scalable types. 865 if (cpySize.isScalable()) 866 return false; 867 868 // Lifetime marks shouldn't be operated on. 869 if (Function *F = C->getCalledFunction()) 870 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 871 return false; 872 873 // Require that src be an alloca. This simplifies the reasoning considerably. 874 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 875 if (!srcAlloca) 876 return false; 877 878 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 879 if (!srcArraySize) 880 return false; 881 882 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 883 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 884 srcArraySize->getZExtValue(); 885 886 if (cpySize < srcSize) 887 return false; 888 889 // Check that accessing the first srcSize bytes of dest will not cause a 890 // trap. Otherwise the transform is invalid since it might cause a trap 891 // to occur earlier than it otherwise would. 892 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), 893 DL, C, DT)) 894 return false; 895 896 // Make sure that nothing can observe cpyDest being written early. There are 897 // a number of cases to consider: 898 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 899 // the transform. 900 // 2. C itself may not access cpyDest (prior to the transform). This is 901 // checked further below. 902 // 3. If cpyDest is accessible to the caller of this function (potentially 903 // captured and not based on an alloca), we need to ensure that we cannot 904 // unwind between C and cpyStore. This is checked here. 905 // 4. If cpyDest is potentially captured, there may be accesses to it from 906 // another thread. In this case, we need to check that cpyStore is 907 // guaranteed to be executed if C is. As it is a non-atomic access, it 908 // renders accesses from other threads undefined. 909 // TODO: This is currently not checked. 910 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) 911 return false; 912 913 // Check that dest points to memory that is at least as aligned as src. 914 Align srcAlign = srcAlloca->getAlign(); 915 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 916 // If dest is not aligned enough and we can't increase its alignment then 917 // bail out. 918 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 919 return false; 920 921 // Check that src is not accessed except via the call and the memcpy. This 922 // guarantees that it holds only undefined values when passed in (so the final 923 // memcpy can be dropped), that it is not read or written between the call and 924 // the memcpy, and that writing beyond the end of it is undefined. 925 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 926 while (!srcUseList.empty()) { 927 User *U = srcUseList.pop_back_val(); 928 929 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 930 append_range(srcUseList, U->users()); 931 continue; 932 } 933 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 934 if (!G->hasAllZeroIndices()) 935 return false; 936 937 append_range(srcUseList, U->users()); 938 continue; 939 } 940 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 941 if (IT->isLifetimeStartOrEnd()) 942 continue; 943 944 if (U != C && U != cpyLoad) 945 return false; 946 } 947 948 // Check that src isn't captured by the called function since the 949 // transformation can cause aliasing issues in that case. 950 for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI) 951 if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI)) 952 return false; 953 954 // Since we're changing the parameter to the callsite, we need to make sure 955 // that what would be the new parameter dominates the callsite. 956 if (!DT->dominates(cpyDest, C)) { 957 // Support moving a constant index GEP before the call. 958 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 959 if (GEP && GEP->hasAllConstantIndices() && 960 DT->dominates(GEP->getPointerOperand(), C)) 961 GEP->moveBefore(C); 962 else 963 return false; 964 } 965 966 // In addition to knowing that the call does not access src in some 967 // unexpected manner, for example via a global, which we deduce from 968 // the use analysis, we also need to know that it does not sneakily 969 // access dest. We rely on AA to figure this out for us. 970 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 971 // If necessary, perform additional analysis. 972 if (isModOrRefSet(MR)) 973 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 974 if (isModOrRefSet(MR)) 975 return false; 976 977 // We can't create address space casts here because we don't know if they're 978 // safe for the target. 979 if (cpySrc->getType()->getPointerAddressSpace() != 980 cpyDest->getType()->getPointerAddressSpace()) 981 return false; 982 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 983 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 984 cpySrc->getType()->getPointerAddressSpace() != 985 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 986 return false; 987 988 // All the checks have passed, so do the transformation. 989 bool changedArgument = false; 990 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 991 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 992 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 993 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 994 cpyDest->getName(), C); 995 changedArgument = true; 996 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 997 C->setArgOperand(ArgI, Dest); 998 else 999 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1000 Dest, C->getArgOperand(ArgI)->getType(), 1001 Dest->getName(), C)); 1002 } 1003 1004 if (!changedArgument) 1005 return false; 1006 1007 // If the destination wasn't sufficiently aligned then increase its alignment. 1008 if (!isDestSufficientlyAligned) { 1009 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1010 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1011 } 1012 1013 // Update AA metadata 1014 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1015 // handled here, but combineMetadata doesn't support them yet 1016 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1017 LLVMContext::MD_noalias, 1018 LLVMContext::MD_invariant_group, 1019 LLVMContext::MD_access_group}; 1020 combineMetadata(C, cpyLoad, KnownIDs, true); 1021 1022 ++NumCallSlot; 1023 return true; 1024 } 1025 1026 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1027 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1028 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1029 MemCpyInst *MDep) { 1030 // We can only transforms memcpy's where the dest of one is the source of the 1031 // other. 1032 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1033 return false; 1034 1035 // If dep instruction is reading from our current input, then it is a noop 1036 // transfer and substituting the input won't change this instruction. Just 1037 // ignore the input and let someone else zap MDep. This handles cases like: 1038 // memcpy(a <- a) 1039 // memcpy(b <- a) 1040 if (M->getSource() == MDep->getSource()) 1041 return false; 1042 1043 // Second, the length of the memcpy's must be the same, or the preceding one 1044 // must be larger than the following one. 1045 if (MDep->getLength() != M->getLength()) { 1046 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1047 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 1048 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1049 return false; 1050 } 1051 1052 // Verify that the copied-from memory doesn't change in between the two 1053 // transfers. For example, in: 1054 // memcpy(a <- b) 1055 // *b = 42; 1056 // memcpy(c <- a) 1057 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1058 // 1059 // TODO: If the code between M and MDep is transparent to the destination "c", 1060 // then we could still perform the xform by moving M up to the first memcpy. 1061 // TODO: It would be sufficient to check the MDep source up to the memcpy 1062 // size of M, rather than MDep. 1063 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1064 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1065 return false; 1066 1067 // If the dest of the second might alias the source of the first, then the 1068 // source and dest might overlap. In addition, if the source of the first 1069 // points to constant memory, they won't overlap by definition. Otherwise, we 1070 // still want to eliminate the intermediate value, but we have to generate a 1071 // memmove instead of memcpy. 1072 bool UseMemMove = false; 1073 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep)))) 1074 UseMemMove = true; 1075 1076 // If all checks passed, then we can transform M. 1077 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1078 << *MDep << '\n' << *M << '\n'); 1079 1080 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1081 // example we could be moving from movaps -> movq on x86. 1082 IRBuilder<> Builder(M); 1083 Instruction *NewM; 1084 if (UseMemMove) 1085 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1086 MDep->getRawSource(), MDep->getSourceAlign(), 1087 M->getLength(), M->isVolatile()); 1088 else if (isa<MemCpyInlineInst>(M)) { 1089 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is 1090 // never allowed since that would allow the latter to be lowered as a call 1091 // to an external function. 1092 NewM = Builder.CreateMemCpyInline( 1093 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), 1094 MDep->getSourceAlign(), M->getLength(), M->isVolatile()); 1095 } else 1096 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1097 MDep->getRawSource(), MDep->getSourceAlign(), 1098 M->getLength(), M->isVolatile()); 1099 1100 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1101 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1102 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1103 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1104 1105 // Remove the instruction we're replacing. 1106 eraseInstruction(M); 1107 ++NumMemCpyInstr; 1108 return true; 1109 } 1110 1111 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1112 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1113 /// weren't copied over by \p MemCpy. 1114 /// 1115 /// In other words, transform: 1116 /// \code 1117 /// memset(dst, c, dst_size); 1118 /// memcpy(dst, src, src_size); 1119 /// \endcode 1120 /// into: 1121 /// \code 1122 /// memcpy(dst, src, src_size); 1123 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1124 /// \endcode 1125 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1126 MemSetInst *MemSet) { 1127 // We can only transform memset/memcpy with the same destination. 1128 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1129 return false; 1130 1131 // Check that src and dst of the memcpy aren't the same. While memcpy 1132 // operands cannot partially overlap, exact equality is allowed. 1133 if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) 1134 return false; 1135 1136 // We know that dst up to src_size is not written. We now need to make sure 1137 // that dst up to dst_size is not accessed. (If we did not move the memset, 1138 // checking for reads would be sufficient.) 1139 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1140 MSSA->getMemoryAccess(MemSet), 1141 MSSA->getMemoryAccess(MemCpy))) 1142 return false; 1143 1144 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1145 Value *Dest = MemCpy->getRawDest(); 1146 Value *DestSize = MemSet->getLength(); 1147 Value *SrcSize = MemCpy->getLength(); 1148 1149 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1150 return false; 1151 1152 // If the sizes are the same, simply drop the memset instead of generating 1153 // a replacement with zero size. 1154 if (DestSize == SrcSize) { 1155 eraseInstruction(MemSet); 1156 return true; 1157 } 1158 1159 // By default, create an unaligned memset. 1160 unsigned Align = 1; 1161 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1162 // of the sum. 1163 const unsigned DestAlign = 1164 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1165 if (DestAlign > 1) 1166 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1167 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1168 1169 IRBuilder<> Builder(MemCpy); 1170 1171 // If the sizes have different types, zext the smaller one. 1172 if (DestSize->getType() != SrcSize->getType()) { 1173 if (DestSize->getType()->getIntegerBitWidth() > 1174 SrcSize->getType()->getIntegerBitWidth()) 1175 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1176 else 1177 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1178 } 1179 1180 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1181 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1182 Value *MemsetLen = Builder.CreateSelect( 1183 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1184 unsigned DestAS = Dest->getType()->getPointerAddressSpace(); 1185 Instruction *NewMemSet = Builder.CreateMemSet( 1186 Builder.CreateGEP(Builder.getInt8Ty(), 1187 Builder.CreatePointerCast(Dest, 1188 Builder.getInt8PtrTy(DestAS)), 1189 SrcSize), 1190 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1191 1192 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1193 "MemCpy must be a MemoryDef"); 1194 // The new memset is inserted after the memcpy, but it is known that its 1195 // defining access is the memset about to be removed which immediately 1196 // precedes the memcpy. 1197 auto *LastDef = 1198 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1199 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1200 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1201 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1202 1203 eraseInstruction(MemSet); 1204 return true; 1205 } 1206 1207 /// Determine whether the instruction has undefined content for the given Size, 1208 /// either because it was freshly alloca'd or started its lifetime. 1209 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1210 MemoryDef *Def, Value *Size) { 1211 if (MSSA->isLiveOnEntryDef(Def)) 1212 return isa<AllocaInst>(getUnderlyingObject(V)); 1213 1214 if (IntrinsicInst *II = 1215 dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1216 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1217 ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1218 1219 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { 1220 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1221 LTSize->getZExtValue() >= CSize->getZExtValue()) 1222 return true; 1223 } 1224 1225 // If the lifetime.start covers a whole alloca (as it almost always 1226 // does) and we're querying a pointer based on that alloca, then we know 1227 // the memory is definitely undef, regardless of how exactly we alias. 1228 // The size also doesn't matter, as an out-of-bounds access would be UB. 1229 AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)); 1230 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1231 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1232 if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL)) 1233 if (*AllocaSize == LTSize->getValue() * 8) 1234 return true; 1235 } 1236 } 1237 } 1238 1239 return false; 1240 } 1241 1242 /// Transform memcpy to memset when its source was just memset. 1243 /// In other words, turn: 1244 /// \code 1245 /// memset(dst1, c, dst1_size); 1246 /// memcpy(dst2, dst1, dst2_size); 1247 /// \endcode 1248 /// into: 1249 /// \code 1250 /// memset(dst1, c, dst1_size); 1251 /// memset(dst2, c, dst2_size); 1252 /// \endcode 1253 /// When dst2_size <= dst1_size. 1254 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1255 MemSetInst *MemSet) { 1256 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1257 // memcpying from the same address. Otherwise it is hard to reason about. 1258 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1259 return false; 1260 1261 Value *MemSetSize = MemSet->getLength(); 1262 Value *CopySize = MemCpy->getLength(); 1263 1264 if (MemSetSize != CopySize) { 1265 // Make sure the memcpy doesn't read any more than what the memset wrote. 1266 // Don't worry about sizes larger than i64. 1267 1268 // A known memset size is required. 1269 ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1270 if (!CMemSetSize) 1271 return false; 1272 1273 // A known memcpy size is also required. 1274 ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize); 1275 if (!CCopySize) 1276 return false; 1277 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1278 // If the memcpy is larger than the memset, but the memory was undef prior 1279 // to the memset, we can just ignore the tail. Technically we're only 1280 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1281 // easily represent this location, we use the full 0..CopySize range. 1282 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1283 bool CanReduceSize = false; 1284 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1285 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1286 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1287 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1288 if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1289 CanReduceSize = true; 1290 1291 if (!CanReduceSize) 1292 return false; 1293 CopySize = MemSetSize; 1294 } 1295 } 1296 1297 IRBuilder<> Builder(MemCpy); 1298 Instruction *NewM = 1299 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1300 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1301 auto *LastDef = 1302 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1303 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1304 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1305 1306 return true; 1307 } 1308 1309 /// Perform simplification of memcpy's. If we have memcpy A 1310 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1311 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1312 /// circumstances). This allows later passes to remove the first memcpy 1313 /// altogether. 1314 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1315 // We can only optimize non-volatile memcpy's. 1316 if (M->isVolatile()) return false; 1317 1318 // If the source and destination of the memcpy are the same, then zap it. 1319 if (M->getSource() == M->getDest()) { 1320 ++BBI; 1321 eraseInstruction(M); 1322 return true; 1323 } 1324 1325 // If copying from a constant, try to turn the memcpy into a memset. 1326 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 1327 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1328 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1329 M->getModule()->getDataLayout())) { 1330 IRBuilder<> Builder(M); 1331 Instruction *NewM = 1332 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1333 MaybeAlign(M->getDestAlignment()), false); 1334 auto *LastDef = 1335 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1336 auto *NewAccess = 1337 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1338 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1339 1340 eraseInstruction(M); 1341 ++NumCpyToSet; 1342 return true; 1343 } 1344 1345 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1346 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); 1347 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1348 const MemoryAccess *DestClobber = 1349 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1350 1351 // Try to turn a partially redundant memset + memcpy into 1352 // memcpy + smaller memset. We don't need the memcpy size for this. 1353 // The memcpy most post-dom the memset, so limit this to the same basic 1354 // block. A non-local generalization is likely not worthwhile. 1355 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1356 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1357 if (DestClobber->getBlock() == M->getParent()) 1358 if (processMemSetMemCpyDependence(M, MDep)) 1359 return true; 1360 1361 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1362 AnyClobber, MemoryLocation::getForSource(M)); 1363 1364 // There are four possible optimizations we can do for memcpy: 1365 // a) memcpy-memcpy xform which exposes redundance for DSE. 1366 // b) call-memcpy xform for return slot optimization. 1367 // c) memcpy from freshly alloca'd space or space that has just started 1368 // its lifetime copies undefined data, and we can therefore eliminate 1369 // the memcpy in favor of the data that was already at the destination. 1370 // d) memcpy from a just-memset'd source can be turned into memset. 1371 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1372 if (Instruction *MI = MD->getMemoryInst()) { 1373 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1374 if (auto *C = dyn_cast<CallInst>(MI)) { 1375 // The memcpy must post-dom the call. Limit to the same block for 1376 // now. Additionally, we need to ensure that there are no accesses 1377 // to dest between the call and the memcpy. Accesses to src will be 1378 // checked by performCallSlotOptzn(). 1379 // TODO: Support non-local call-slot optimization? 1380 if (C->getParent() == M->getParent() && 1381 !accessedBetween(*AA, DestLoc, MD, MA)) { 1382 // FIXME: Can we pass in either of dest/src alignment here instead 1383 // of conservatively taking the minimum? 1384 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1385 M->getSourceAlign().valueOrOne()); 1386 if (performCallSlotOptzn( 1387 M, M, M->getDest(), M->getSource(), 1388 TypeSize::getFixed(CopySize->getZExtValue()), Alignment, 1389 C)) { 1390 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1391 << " call: " << *C << "\n" 1392 << " memcpy: " << *M << "\n"); 1393 eraseInstruction(M); 1394 ++NumMemCpyInstr; 1395 return true; 1396 } 1397 } 1398 } 1399 } 1400 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1401 return processMemCpyMemCpyDependence(M, MDep); 1402 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1403 if (performMemCpyToMemSetOptzn(M, MDep)) { 1404 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1405 eraseInstruction(M); 1406 ++NumCpyToSet; 1407 return true; 1408 } 1409 } 1410 } 1411 1412 if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) { 1413 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1414 eraseInstruction(M); 1415 ++NumMemCpyInstr; 1416 return true; 1417 } 1418 } 1419 1420 return false; 1421 } 1422 1423 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1424 /// not to alias. 1425 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1426 // See if the source could be modified by this memmove potentially. 1427 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) 1428 return false; 1429 1430 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1431 << "\n"); 1432 1433 // If not, then we know we can transform this. 1434 Type *ArgTys[3] = { M->getRawDest()->getType(), 1435 M->getRawSource()->getType(), 1436 M->getLength()->getType() }; 1437 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1438 Intrinsic::memcpy, ArgTys)); 1439 1440 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1441 // aliasing guarantees). 1442 1443 ++NumMoveToCpy; 1444 return true; 1445 } 1446 1447 /// This is called on every byval argument in call sites. 1448 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1449 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1450 // Find out what feeds this byval argument. 1451 Value *ByValArg = CB.getArgOperand(ArgNo); 1452 Type *ByValTy = CB.getParamByValType(ArgNo); 1453 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); 1454 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1455 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1456 if (!CallAccess) 1457 return false; 1458 MemCpyInst *MDep = nullptr; 1459 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1460 CallAccess->getDefiningAccess(), Loc); 1461 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1462 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1463 1464 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1465 // a memcpy, see if we can byval from the source of the memcpy instead of the 1466 // result. 1467 if (!MDep || MDep->isVolatile() || 1468 ByValArg->stripPointerCasts() != MDep->getDest()) 1469 return false; 1470 1471 // The length of the memcpy must be larger or equal to the size of the byval. 1472 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1473 if (!C1 || !TypeSize::isKnownGE( 1474 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) 1475 return false; 1476 1477 // Get the alignment of the byval. If the call doesn't specify the alignment, 1478 // then it is some target specific value that we can't know. 1479 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1480 if (!ByValAlign) return false; 1481 1482 // If it is greater than the memcpy, then we check to see if we can force the 1483 // source of the memcpy to the alignment we need. If we fail, we bail out. 1484 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1485 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1486 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1487 DT) < *ByValAlign) 1488 return false; 1489 1490 // The address space of the memcpy source must match the byval argument 1491 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1492 ByValArg->getType()->getPointerAddressSpace()) 1493 return false; 1494 1495 // Verify that the copied-from memory doesn't change in between the memcpy and 1496 // the byval call. 1497 // memcpy(a <- b) 1498 // *b = 42; 1499 // foo(*a) 1500 // It would be invalid to transform the second memcpy into foo(*b). 1501 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1502 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1503 return false; 1504 1505 Value *TmpCast = MDep->getSource(); 1506 if (MDep->getSource()->getType() != ByValArg->getType()) { 1507 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1508 "tmpcast", &CB); 1509 // Set the tmpcast's DebugLoc to MDep's 1510 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1511 TmpCast = TmpBitCast; 1512 } 1513 1514 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1515 << " " << *MDep << "\n" 1516 << " " << CB << "\n"); 1517 1518 // Otherwise we're good! Update the byval argument. 1519 CB.setArgOperand(ArgNo, TmpCast); 1520 ++NumMemCpyInstr; 1521 return true; 1522 } 1523 1524 /// Executes one iteration of MemCpyOptPass. 1525 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1526 bool MadeChange = false; 1527 1528 // Walk all instruction in the function. 1529 for (BasicBlock &BB : F) { 1530 // Skip unreachable blocks. For example processStore assumes that an 1531 // instruction in a BB can't be dominated by a later instruction in the 1532 // same BB (which is a scenario that can happen for an unreachable BB that 1533 // has itself as a predecessor). 1534 if (!DT->isReachableFromEntry(&BB)) 1535 continue; 1536 1537 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1538 // Avoid invalidating the iterator. 1539 Instruction *I = &*BI++; 1540 1541 bool RepeatInstruction = false; 1542 1543 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1544 MadeChange |= processStore(SI, BI); 1545 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1546 RepeatInstruction = processMemSet(M, BI); 1547 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1548 RepeatInstruction = processMemCpy(M, BI); 1549 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1550 RepeatInstruction = processMemMove(M); 1551 else if (auto *CB = dyn_cast<CallBase>(I)) { 1552 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1553 if (CB->isByValArgument(i)) 1554 MadeChange |= processByValArgument(*CB, i); 1555 } 1556 1557 // Reprocess the instruction if desired. 1558 if (RepeatInstruction) { 1559 if (BI != BB.begin()) 1560 --BI; 1561 MadeChange = true; 1562 } 1563 } 1564 } 1565 1566 return MadeChange; 1567 } 1568 1569 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1570 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1571 auto *AA = &AM.getResult<AAManager>(F); 1572 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1573 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1574 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F); 1575 1576 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); 1577 if (!MadeChange) 1578 return PreservedAnalyses::all(); 1579 1580 PreservedAnalyses PA; 1581 PA.preserveSet<CFGAnalyses>(); 1582 PA.preserve<MemorySSAAnalysis>(); 1583 return PA; 1584 } 1585 1586 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 1587 AliasAnalysis *AA_, AssumptionCache *AC_, 1588 DominatorTree *DT_, MemorySSA *MSSA_) { 1589 bool MadeChange = false; 1590 TLI = TLI_; 1591 AA = AA_; 1592 AC = AC_; 1593 DT = DT_; 1594 MSSA = MSSA_; 1595 MemorySSAUpdater MSSAU_(MSSA_); 1596 MSSAU = &MSSAU_; 1597 1598 while (true) { 1599 if (!iterateOnFunction(F)) 1600 break; 1601 MadeChange = true; 1602 } 1603 1604 if (VerifyMemorySSA) 1605 MSSA_->verifyMemorySSA(); 1606 1607 return MadeChange; 1608 } 1609 1610 /// This is the main transformation entry point for a function. 1611 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1612 if (skipFunction(F)) 1613 return false; 1614 1615 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1616 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1617 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1618 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1619 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1620 1621 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA); 1622 } 1623