xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "memcpyopt"
68 
69 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
70     "enable-memcpyopt-without-libcalls", cl::init(false), cl::Hidden,
71     cl::ZeroOrMore,
72     cl::desc("Enable memcpyopt even when libcalls are disabled"));
73 
74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
75 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
76 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
77 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
78 STATISTIC(NumCallSlot,    "Number of call slot optimizations performed");
79 
80 namespace {
81 
82 /// Represents a range of memset'd bytes with the ByteVal value.
83 /// This allows us to analyze stores like:
84 ///   store 0 -> P+1
85 ///   store 0 -> P+0
86 ///   store 0 -> P+3
87 ///   store 0 -> P+2
88 /// which sometimes happens with stores to arrays of structs etc.  When we see
89 /// the first store, we make a range [1, 2).  The second store extends the range
90 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
91 /// two ranges into [0, 3) which is memset'able.
92 struct MemsetRange {
93   // Start/End - A semi range that describes the span that this range covers.
94   // The range is closed at the start and open at the end: [Start, End).
95   int64_t Start, End;
96 
97   /// StartPtr - The getelementptr instruction that points to the start of the
98   /// range.
99   Value *StartPtr;
100 
101   /// Alignment - The known alignment of the first store.
102   unsigned Alignment;
103 
104   /// TheStores - The actual stores that make up this range.
105   SmallVector<Instruction*, 16> TheStores;
106 
107   bool isProfitableToUseMemset(const DataLayout &DL) const;
108 };
109 
110 } // end anonymous namespace
111 
112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
113   // If we found more than 4 stores to merge or 16 bytes, use memset.
114   if (TheStores.size() >= 4 || End-Start >= 16) return true;
115 
116   // If there is nothing to merge, don't do anything.
117   if (TheStores.size() < 2) return false;
118 
119   // If any of the stores are a memset, then it is always good to extend the
120   // memset.
121   for (Instruction *SI : TheStores)
122     if (!isa<StoreInst>(SI))
123       return true;
124 
125   // Assume that the code generator is capable of merging pairs of stores
126   // together if it wants to.
127   if (TheStores.size() == 2) return false;
128 
129   // If we have fewer than 8 stores, it can still be worthwhile to do this.
130   // For example, merging 4 i8 stores into an i32 store is useful almost always.
131   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
132   // memset will be split into 2 32-bit stores anyway) and doing so can
133   // pessimize the llvm optimizer.
134   //
135   // Since we don't have perfect knowledge here, make some assumptions: assume
136   // the maximum GPR width is the same size as the largest legal integer
137   // size. If so, check to see whether we will end up actually reducing the
138   // number of stores used.
139   unsigned Bytes = unsigned(End-Start);
140   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
141   if (MaxIntSize == 0)
142     MaxIntSize = 1;
143   unsigned NumPointerStores = Bytes / MaxIntSize;
144 
145   // Assume the remaining bytes if any are done a byte at a time.
146   unsigned NumByteStores = Bytes % MaxIntSize;
147 
148   // If we will reduce the # stores (according to this heuristic), do the
149   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
150   // etc.
151   return TheStores.size() > NumPointerStores+NumByteStores;
152 }
153 
154 namespace {
155 
156 class MemsetRanges {
157   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
158 
159   /// A sorted list of the memset ranges.
160   SmallVector<MemsetRange, 8> Ranges;
161 
162   const DataLayout &DL;
163 
164 public:
165   MemsetRanges(const DataLayout &DL) : DL(DL) {}
166 
167   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
168 
169   const_iterator begin() const { return Ranges.begin(); }
170   const_iterator end() const { return Ranges.end(); }
171   bool empty() const { return Ranges.empty(); }
172 
173   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
174     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
175       addStore(OffsetFromFirst, SI);
176     else
177       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
178   }
179 
180   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
181     TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
182     assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
183     addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(),
184              SI->getAlign().value(), SI);
185   }
186 
187   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
188     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
189     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
190   }
191 
192   void addRange(int64_t Start, int64_t Size, Value *Ptr,
193                 unsigned Alignment, Instruction *Inst);
194 };
195 
196 } // end anonymous namespace
197 
198 /// Add a new store to the MemsetRanges data structure.  This adds a
199 /// new range for the specified store at the specified offset, merging into
200 /// existing ranges as appropriate.
201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
202                             unsigned Alignment, Instruction *Inst) {
203   int64_t End = Start+Size;
204 
205   range_iterator I = partition_point(
206       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
207 
208   // We now know that I == E, in which case we didn't find anything to merge
209   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
210   // to insert a new range.  Handle this now.
211   if (I == Ranges.end() || End < I->Start) {
212     MemsetRange &R = *Ranges.insert(I, MemsetRange());
213     R.Start        = Start;
214     R.End          = End;
215     R.StartPtr     = Ptr;
216     R.Alignment    = Alignment;
217     R.TheStores.push_back(Inst);
218     return;
219   }
220 
221   // This store overlaps with I, add it.
222   I->TheStores.push_back(Inst);
223 
224   // At this point, we may have an interval that completely contains our store.
225   // If so, just add it to the interval and return.
226   if (I->Start <= Start && I->End >= End)
227     return;
228 
229   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
230   // but is not entirely contained within the range.
231 
232   // See if the range extends the start of the range.  In this case, it couldn't
233   // possibly cause it to join the prior range, because otherwise we would have
234   // stopped on *it*.
235   if (Start < I->Start) {
236     I->Start = Start;
237     I->StartPtr = Ptr;
238     I->Alignment = Alignment;
239   }
240 
241   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
242   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
243   // End.
244   if (End > I->End) {
245     I->End = End;
246     range_iterator NextI = I;
247     while (++NextI != Ranges.end() && End >= NextI->Start) {
248       // Merge the range in.
249       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
250       if (NextI->End > I->End)
251         I->End = NextI->End;
252       Ranges.erase(NextI);
253       NextI = I;
254     }
255   }
256 }
257 
258 //===----------------------------------------------------------------------===//
259 //                         MemCpyOptLegacyPass Pass
260 //===----------------------------------------------------------------------===//
261 
262 namespace {
263 
264 class MemCpyOptLegacyPass : public FunctionPass {
265   MemCpyOptPass Impl;
266 
267 public:
268   static char ID; // Pass identification, replacement for typeid
269 
270   MemCpyOptLegacyPass() : FunctionPass(ID) {
271     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
272   }
273 
274   bool runOnFunction(Function &F) override;
275 
276 private:
277   // This transformation requires dominator postdominator info
278   void getAnalysisUsage(AnalysisUsage &AU) const override {
279     AU.setPreservesCFG();
280     AU.addRequired<AssumptionCacheTracker>();
281     AU.addRequired<DominatorTreeWrapperPass>();
282     AU.addPreserved<DominatorTreeWrapperPass>();
283     AU.addPreserved<GlobalsAAWrapperPass>();
284     AU.addRequired<TargetLibraryInfoWrapperPass>();
285     AU.addRequired<AAResultsWrapperPass>();
286     AU.addPreserved<AAResultsWrapperPass>();
287     AU.addRequired<MemorySSAWrapperPass>();
288     AU.addPreserved<MemorySSAWrapperPass>();
289   }
290 };
291 
292 } // end anonymous namespace
293 
294 char MemCpyOptLegacyPass::ID = 0;
295 
296 /// The public interface to this file...
297 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
298 
299 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
300                       false, false)
301 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
302 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
303 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
305 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
306 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
307 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
308                     false, false)
309 
310 // Check that V is either not accessible by the caller, or unwinding cannot
311 // occur between Start and End.
312 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
313                                          Instruction *End) {
314   assert(Start->getParent() == End->getParent() && "Must be in same block");
315   if (!Start->getFunction()->doesNotThrow() &&
316       !isa<AllocaInst>(getUnderlyingObject(V))) {
317     for (const Instruction &I :
318          make_range(Start->getIterator(), End->getIterator())) {
319       if (I.mayThrow())
320         return true;
321     }
322   }
323   return false;
324 }
325 
326 void MemCpyOptPass::eraseInstruction(Instruction *I) {
327   MSSAU->removeMemoryAccess(I);
328   I->eraseFromParent();
329 }
330 
331 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
332 // Start and End must be in the same block
333 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
334                             const MemoryUseOrDef *Start,
335                             const MemoryUseOrDef *End) {
336   assert(Start->getBlock() == End->getBlock() && "Only local supported");
337   for (const MemoryAccess &MA :
338        make_range(++Start->getIterator(), End->getIterator())) {
339     if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
340                                        Loc)))
341       return true;
342   }
343   return false;
344 }
345 
346 // Check for mod of Loc between Start and End, excluding both boundaries.
347 // Start and End can be in different blocks.
348 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc,
349                            const MemoryUseOrDef *Start,
350                            const MemoryUseOrDef *End) {
351   // TODO: Only walk until we hit Start.
352   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
353       End->getDefiningAccess(), Loc);
354   return !MSSA->dominates(Clobber, Start);
355 }
356 
357 /// When scanning forward over instructions, we look for some other patterns to
358 /// fold away. In particular, this looks for stores to neighboring locations of
359 /// memory. If it sees enough consecutive ones, it attempts to merge them
360 /// together into a memcpy/memset.
361 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
362                                                  Value *StartPtr,
363                                                  Value *ByteVal) {
364   const DataLayout &DL = StartInst->getModule()->getDataLayout();
365 
366   // We can't track scalable types
367   if (StoreInst *SI = dyn_cast<StoreInst>(StartInst))
368     if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
369       return nullptr;
370 
371   // Okay, so we now have a single store that can be splatable.  Scan to find
372   // all subsequent stores of the same value to offset from the same pointer.
373   // Join these together into ranges, so we can decide whether contiguous blocks
374   // are stored.
375   MemsetRanges Ranges(DL);
376 
377   BasicBlock::iterator BI(StartInst);
378 
379   // Keeps track of the last memory use or def before the insertion point for
380   // the new memset. The new MemoryDef for the inserted memsets will be inserted
381   // after MemInsertPoint. It points to either LastMemDef or to the last user
382   // before the insertion point of the memset, if there are any such users.
383   MemoryUseOrDef *MemInsertPoint = nullptr;
384   // Keeps track of the last MemoryDef between StartInst and the insertion point
385   // for the new memset. This will become the defining access of the inserted
386   // memsets.
387   MemoryDef *LastMemDef = nullptr;
388   for (++BI; !BI->isTerminator(); ++BI) {
389     auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
390         MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
391     if (CurrentAcc) {
392       MemInsertPoint = CurrentAcc;
393       if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
394         LastMemDef = CurrentDef;
395     }
396 
397     // Calls that only access inaccessible memory do not block merging
398     // accessible stores.
399     if (auto *CB = dyn_cast<CallBase>(BI)) {
400       if (CB->onlyAccessesInaccessibleMemory())
401         continue;
402     }
403 
404     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
405       // If the instruction is readnone, ignore it, otherwise bail out.  We
406       // don't even allow readonly here because we don't want something like:
407       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
408       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
409         break;
410       continue;
411     }
412 
413     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
414       // If this is a store, see if we can merge it in.
415       if (!NextStore->isSimple()) break;
416 
417       Value *StoredVal = NextStore->getValueOperand();
418 
419       // Don't convert stores of non-integral pointer types to memsets (which
420       // stores integers).
421       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
422         break;
423 
424       // We can't track ranges involving scalable types.
425       if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
426         break;
427 
428       // Check to see if this stored value is of the same byte-splattable value.
429       Value *StoredByte = isBytewiseValue(StoredVal, DL);
430       if (isa<UndefValue>(ByteVal) && StoredByte)
431         ByteVal = StoredByte;
432       if (ByteVal != StoredByte)
433         break;
434 
435       // Check to see if this store is to a constant offset from the start ptr.
436       Optional<int64_t> Offset =
437           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
438       if (!Offset)
439         break;
440 
441       Ranges.addStore(*Offset, NextStore);
442     } else {
443       MemSetInst *MSI = cast<MemSetInst>(BI);
444 
445       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
446           !isa<ConstantInt>(MSI->getLength()))
447         break;
448 
449       // Check to see if this store is to a constant offset from the start ptr.
450       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
451       if (!Offset)
452         break;
453 
454       Ranges.addMemSet(*Offset, MSI);
455     }
456   }
457 
458   // If we have no ranges, then we just had a single store with nothing that
459   // could be merged in.  This is a very common case of course.
460   if (Ranges.empty())
461     return nullptr;
462 
463   // If we had at least one store that could be merged in, add the starting
464   // store as well.  We try to avoid this unless there is at least something
465   // interesting as a small compile-time optimization.
466   Ranges.addInst(0, StartInst);
467 
468   // If we create any memsets, we put it right before the first instruction that
469   // isn't part of the memset block.  This ensure that the memset is dominated
470   // by any addressing instruction needed by the start of the block.
471   IRBuilder<> Builder(&*BI);
472 
473   // Now that we have full information about ranges, loop over the ranges and
474   // emit memset's for anything big enough to be worthwhile.
475   Instruction *AMemSet = nullptr;
476   for (const MemsetRange &Range : Ranges) {
477     if (Range.TheStores.size() == 1) continue;
478 
479     // If it is profitable to lower this range to memset, do so now.
480     if (!Range.isProfitableToUseMemset(DL))
481       continue;
482 
483     // Otherwise, we do want to transform this!  Create a new memset.
484     // Get the starting pointer of the block.
485     StartPtr = Range.StartPtr;
486 
487     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
488                                    MaybeAlign(Range.Alignment));
489     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
490                                                    : Range.TheStores) dbgs()
491                                               << *SI << '\n';
492                dbgs() << "With: " << *AMemSet << '\n');
493     if (!Range.TheStores.empty())
494       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
495 
496     assert(LastMemDef && MemInsertPoint &&
497            "Both LastMemDef and MemInsertPoint need to be set");
498     auto *NewDef =
499         cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
500                             ? MSSAU->createMemoryAccessBefore(
501                                   AMemSet, LastMemDef, MemInsertPoint)
502                             : MSSAU->createMemoryAccessAfter(
503                                   AMemSet, LastMemDef, MemInsertPoint));
504     MSSAU->insertDef(NewDef, /*RenameUses=*/true);
505     LastMemDef = NewDef;
506     MemInsertPoint = NewDef;
507 
508     // Zap all the stores.
509     for (Instruction *SI : Range.TheStores)
510       eraseInstruction(SI);
511 
512     ++NumMemSetInfer;
513   }
514 
515   return AMemSet;
516 }
517 
518 // This method try to lift a store instruction before position P.
519 // It will lift the store and its argument + that anything that
520 // may alias with these.
521 // The method returns true if it was successful.
522 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
523   // If the store alias this position, early bail out.
524   MemoryLocation StoreLoc = MemoryLocation::get(SI);
525   if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
526     return false;
527 
528   // Keep track of the arguments of all instruction we plan to lift
529   // so we can make sure to lift them as well if appropriate.
530   DenseSet<Instruction*> Args;
531   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
532     if (Ptr->getParent() == SI->getParent())
533       Args.insert(Ptr);
534 
535   // Instruction to lift before P.
536   SmallVector<Instruction *, 8> ToLift{SI};
537 
538   // Memory locations of lifted instructions.
539   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
540 
541   // Lifted calls.
542   SmallVector<const CallBase *, 8> Calls;
543 
544   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
545 
546   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
547     auto *C = &*I;
548 
549     // Make sure hoisting does not perform a store that was not guaranteed to
550     // happen.
551     if (!isGuaranteedToTransferExecutionToSuccessor(C))
552       return false;
553 
554     bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
555 
556     bool NeedLift = false;
557     if (Args.erase(C))
558       NeedLift = true;
559     else if (MayAlias) {
560       NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
561         return isModOrRefSet(AA->getModRefInfo(C, ML));
562       });
563 
564       if (!NeedLift)
565         NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
566           return isModOrRefSet(AA->getModRefInfo(C, Call));
567         });
568     }
569 
570     if (!NeedLift)
571       continue;
572 
573     if (MayAlias) {
574       // Since LI is implicitly moved downwards past the lifted instructions,
575       // none of them may modify its source.
576       if (isModSet(AA->getModRefInfo(C, LoadLoc)))
577         return false;
578       else if (const auto *Call = dyn_cast<CallBase>(C)) {
579         // If we can't lift this before P, it's game over.
580         if (isModOrRefSet(AA->getModRefInfo(P, Call)))
581           return false;
582 
583         Calls.push_back(Call);
584       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
585         // If we can't lift this before P, it's game over.
586         auto ML = MemoryLocation::get(C);
587         if (isModOrRefSet(AA->getModRefInfo(P, ML)))
588           return false;
589 
590         MemLocs.push_back(ML);
591       } else
592         // We don't know how to lift this instruction.
593         return false;
594     }
595 
596     ToLift.push_back(C);
597     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
598       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
599         if (A->getParent() == SI->getParent()) {
600           // Cannot hoist user of P above P
601           if(A == P) return false;
602           Args.insert(A);
603         }
604       }
605   }
606 
607   // Find MSSA insertion point. Normally P will always have a corresponding
608   // memory access before which we can insert. However, with non-standard AA
609   // pipelines, there may be a mismatch between AA and MSSA, in which case we
610   // will scan for a memory access before P. In either case, we know for sure
611   // that at least the load will have a memory access.
612   // TODO: Simplify this once P will be determined by MSSA, in which case the
613   // discrepancy can no longer occur.
614   MemoryUseOrDef *MemInsertPoint = nullptr;
615   if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
616     MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
617   } else {
618     const Instruction *ConstP = P;
619     for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
620                                            ++LI->getReverseIterator())) {
621       if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
622         MemInsertPoint = MA;
623         break;
624       }
625     }
626   }
627 
628   // We made it, we need to lift.
629   for (auto *I : llvm::reverse(ToLift)) {
630     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
631     I->moveBefore(P);
632     assert(MemInsertPoint && "Must have found insert point");
633     if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
634       MSSAU->moveAfter(MA, MemInsertPoint);
635       MemInsertPoint = MA;
636     }
637   }
638 
639   return true;
640 }
641 
642 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
643   if (!SI->isSimple()) return false;
644 
645   // Avoid merging nontemporal stores since the resulting
646   // memcpy/memset would not be able to preserve the nontemporal hint.
647   // In theory we could teach how to propagate the !nontemporal metadata to
648   // memset calls. However, that change would force the backend to
649   // conservatively expand !nontemporal memset calls back to sequences of
650   // store instructions (effectively undoing the merging).
651   if (SI->getMetadata(LLVMContext::MD_nontemporal))
652     return false;
653 
654   const DataLayout &DL = SI->getModule()->getDataLayout();
655 
656   Value *StoredVal = SI->getValueOperand();
657 
658   // Not all the transforms below are correct for non-integral pointers, bail
659   // until we've audited the individual pieces.
660   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
661     return false;
662 
663   // Load to store forwarding can be interpreted as memcpy.
664   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
665     if (LI->isSimple() && LI->hasOneUse() &&
666         LI->getParent() == SI->getParent()) {
667 
668       auto *T = LI->getType();
669       // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
670       // the corresponding libcalls are not available.
671       // TODO: We should really distinguish between libcall availability and
672       // our ability to introduce intrinsics.
673       if (T->isAggregateType() &&
674           (EnableMemCpyOptWithoutLibcalls ||
675            (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
676         MemoryLocation LoadLoc = MemoryLocation::get(LI);
677 
678         // We use alias analysis to check if an instruction may store to
679         // the memory we load from in between the load and the store. If
680         // such an instruction is found, we try to promote there instead
681         // of at the store position.
682         // TODO: Can use MSSA for this.
683         Instruction *P = SI;
684         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
685           if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
686             P = &I;
687             break;
688           }
689         }
690 
691         // We found an instruction that may write to the loaded memory.
692         // We can try to promote at this position instead of the store
693         // position if nothing aliases the store memory after this and the store
694         // destination is not in the range.
695         if (P && P != SI) {
696           if (!moveUp(SI, P, LI))
697             P = nullptr;
698         }
699 
700         // If a valid insertion position is found, then we can promote
701         // the load/store pair to a memcpy.
702         if (P) {
703           // If we load from memory that may alias the memory we store to,
704           // memmove must be used to preserve semantic. If not, memcpy can
705           // be used. Also, if we load from constant memory, memcpy can be used
706           // as the constant memory won't be modified.
707           bool UseMemMove = false;
708           if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
709             UseMemMove = true;
710 
711           uint64_t Size = DL.getTypeStoreSize(T);
712 
713           IRBuilder<> Builder(P);
714           Instruction *M;
715           if (UseMemMove)
716             M = Builder.CreateMemMove(
717                 SI->getPointerOperand(), SI->getAlign(),
718                 LI->getPointerOperand(), LI->getAlign(), Size);
719           else
720             M = Builder.CreateMemCpy(
721                 SI->getPointerOperand(), SI->getAlign(),
722                 LI->getPointerOperand(), LI->getAlign(), Size);
723 
724           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
725                             << *M << "\n");
726 
727           auto *LastDef =
728               cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
729           auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
730           MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
731 
732           eraseInstruction(SI);
733           eraseInstruction(LI);
734           ++NumMemCpyInstr;
735 
736           // Make sure we do not invalidate the iterator.
737           BBI = M->getIterator();
738           return true;
739         }
740       }
741 
742       // Detect cases where we're performing call slot forwarding, but
743       // happen to be using a load-store pair to implement it, rather than
744       // a memcpy.
745       CallInst *C = nullptr;
746       if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
747               MSSA->getWalker()->getClobberingMemoryAccess(LI))) {
748         // The load most post-dom the call. Limit to the same block for now.
749         // TODO: Support non-local call-slot optimization?
750         if (LoadClobber->getBlock() == SI->getParent())
751           C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
752       }
753 
754       if (C) {
755         // Check that nothing touches the dest of the "copy" between
756         // the call and the store.
757         MemoryLocation StoreLoc = MemoryLocation::get(SI);
758         if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C),
759                             MSSA->getMemoryAccess(SI)))
760           C = nullptr;
761       }
762 
763       if (C) {
764         bool changed = performCallSlotOptzn(
765             LI, SI, SI->getPointerOperand()->stripPointerCasts(),
766             LI->getPointerOperand()->stripPointerCasts(),
767             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
768             commonAlignment(SI->getAlign(), LI->getAlign()), C);
769         if (changed) {
770           eraseInstruction(SI);
771           eraseInstruction(LI);
772           ++NumMemCpyInstr;
773           return true;
774         }
775       }
776     }
777   }
778 
779   // The following code creates memset intrinsics out of thin air. Don't do
780   // this if the corresponding libfunc is not available.
781   // TODO: We should really distinguish between libcall availability and
782   // our ability to introduce intrinsics.
783   if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
784     return false;
785 
786   // There are two cases that are interesting for this code to handle: memcpy
787   // and memset.  Right now we only handle memset.
788 
789   // Ensure that the value being stored is something that can be memset'able a
790   // byte at a time like "0" or "-1" or any width, as well as things like
791   // 0xA0A0A0A0 and 0.0.
792   auto *V = SI->getOperand(0);
793   if (Value *ByteVal = isBytewiseValue(V, DL)) {
794     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
795                                               ByteVal)) {
796       BBI = I->getIterator(); // Don't invalidate iterator.
797       return true;
798     }
799 
800     // If we have an aggregate, we try to promote it to memset regardless
801     // of opportunity for merging as it can expose optimization opportunities
802     // in subsequent passes.
803     auto *T = V->getType();
804     if (T->isAggregateType()) {
805       uint64_t Size = DL.getTypeStoreSize(T);
806       IRBuilder<> Builder(SI);
807       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
808                                      SI->getAlign());
809 
810       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
811 
812       // The newly inserted memset is immediately overwritten by the original
813       // store, so we do not need to rename uses.
814       auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
815       auto *NewAccess = MSSAU->createMemoryAccessBefore(
816           M, StoreDef->getDefiningAccess(), StoreDef);
817       MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
818 
819       eraseInstruction(SI);
820       NumMemSetInfer++;
821 
822       // Make sure we do not invalidate the iterator.
823       BBI = M->getIterator();
824       return true;
825     }
826   }
827 
828   return false;
829 }
830 
831 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
832   // See if there is another memset or store neighboring this memset which
833   // allows us to widen out the memset to do a single larger store.
834   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
835     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
836                                               MSI->getValue())) {
837       BBI = I->getIterator(); // Don't invalidate iterator.
838       return true;
839     }
840   return false;
841 }
842 
843 /// Takes a memcpy and a call that it depends on,
844 /// and checks for the possibility of a call slot optimization by having
845 /// the call write its result directly into the destination of the memcpy.
846 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
847                                          Instruction *cpyStore, Value *cpyDest,
848                                          Value *cpySrc, TypeSize cpySize,
849                                          Align cpyAlign, CallInst *C) {
850   // The general transformation to keep in mind is
851   //
852   //   call @func(..., src, ...)
853   //   memcpy(dest, src, ...)
854   //
855   // ->
856   //
857   //   memcpy(dest, src, ...)
858   //   call @func(..., dest, ...)
859   //
860   // Since moving the memcpy is technically awkward, we additionally check that
861   // src only holds uninitialized values at the moment of the call, meaning that
862   // the memcpy can be discarded rather than moved.
863 
864   // We can't optimize scalable types.
865   if (cpySize.isScalable())
866     return false;
867 
868   // Lifetime marks shouldn't be operated on.
869   if (Function *F = C->getCalledFunction())
870     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
871       return false;
872 
873   // Require that src be an alloca.  This simplifies the reasoning considerably.
874   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
875   if (!srcAlloca)
876     return false;
877 
878   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
879   if (!srcArraySize)
880     return false;
881 
882   const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
883   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
884                      srcArraySize->getZExtValue();
885 
886   if (cpySize < srcSize)
887     return false;
888 
889   // Check that accessing the first srcSize bytes of dest will not cause a
890   // trap.  Otherwise the transform is invalid since it might cause a trap
891   // to occur earlier than it otherwise would.
892   if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
893                                           DL, C, DT))
894     return false;
895 
896   // Make sure that nothing can observe cpyDest being written early. There are
897   // a number of cases to consider:
898   //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
899   //     the transform.
900   //  2. C itself may not access cpyDest (prior to the transform). This is
901   //     checked further below.
902   //  3. If cpyDest is accessible to the caller of this function (potentially
903   //     captured and not based on an alloca), we need to ensure that we cannot
904   //     unwind between C and cpyStore. This is checked here.
905   //  4. If cpyDest is potentially captured, there may be accesses to it from
906   //     another thread. In this case, we need to check that cpyStore is
907   //     guaranteed to be executed if C is. As it is a non-atomic access, it
908   //     renders accesses from other threads undefined.
909   //     TODO: This is currently not checked.
910   if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore))
911     return false;
912 
913   // Check that dest points to memory that is at least as aligned as src.
914   Align srcAlign = srcAlloca->getAlign();
915   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
916   // If dest is not aligned enough and we can't increase its alignment then
917   // bail out.
918   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
919     return false;
920 
921   // Check that src is not accessed except via the call and the memcpy.  This
922   // guarantees that it holds only undefined values when passed in (so the final
923   // memcpy can be dropped), that it is not read or written between the call and
924   // the memcpy, and that writing beyond the end of it is undefined.
925   SmallVector<User *, 8> srcUseList(srcAlloca->users());
926   while (!srcUseList.empty()) {
927     User *U = srcUseList.pop_back_val();
928 
929     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
930       append_range(srcUseList, U->users());
931       continue;
932     }
933     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
934       if (!G->hasAllZeroIndices())
935         return false;
936 
937       append_range(srcUseList, U->users());
938       continue;
939     }
940     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
941       if (IT->isLifetimeStartOrEnd())
942         continue;
943 
944     if (U != C && U != cpyLoad)
945       return false;
946   }
947 
948   // Check that src isn't captured by the called function since the
949   // transformation can cause aliasing issues in that case.
950   for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
951     if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
952       return false;
953 
954   // Since we're changing the parameter to the callsite, we need to make sure
955   // that what would be the new parameter dominates the callsite.
956   if (!DT->dominates(cpyDest, C)) {
957     // Support moving a constant index GEP before the call.
958     auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
959     if (GEP && GEP->hasAllConstantIndices() &&
960         DT->dominates(GEP->getPointerOperand(), C))
961       GEP->moveBefore(C);
962     else
963       return false;
964   }
965 
966   // In addition to knowing that the call does not access src in some
967   // unexpected manner, for example via a global, which we deduce from
968   // the use analysis, we also need to know that it does not sneakily
969   // access dest.  We rely on AA to figure this out for us.
970   ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
971   // If necessary, perform additional analysis.
972   if (isModOrRefSet(MR))
973     MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
974   if (isModOrRefSet(MR))
975     return false;
976 
977   // We can't create address space casts here because we don't know if they're
978   // safe for the target.
979   if (cpySrc->getType()->getPointerAddressSpace() !=
980       cpyDest->getType()->getPointerAddressSpace())
981     return false;
982   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
983     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
984         cpySrc->getType()->getPointerAddressSpace() !=
985             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
986       return false;
987 
988   // All the checks have passed, so do the transformation.
989   bool changedArgument = false;
990   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
991     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
992       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
993         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
994                                       cpyDest->getName(), C);
995       changedArgument = true;
996       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
997         C->setArgOperand(ArgI, Dest);
998       else
999         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
1000                                    Dest, C->getArgOperand(ArgI)->getType(),
1001                                    Dest->getName(), C));
1002     }
1003 
1004   if (!changedArgument)
1005     return false;
1006 
1007   // If the destination wasn't sufficiently aligned then increase its alignment.
1008   if (!isDestSufficientlyAligned) {
1009     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1010     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1011   }
1012 
1013   // Update AA metadata
1014   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
1015   // handled here, but combineMetadata doesn't support them yet
1016   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1017                          LLVMContext::MD_noalias,
1018                          LLVMContext::MD_invariant_group,
1019                          LLVMContext::MD_access_group};
1020   combineMetadata(C, cpyLoad, KnownIDs, true);
1021 
1022   ++NumCallSlot;
1023   return true;
1024 }
1025 
1026 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1027 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1028 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1029                                                   MemCpyInst *MDep) {
1030   // We can only transforms memcpy's where the dest of one is the source of the
1031   // other.
1032   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1033     return false;
1034 
1035   // If dep instruction is reading from our current input, then it is a noop
1036   // transfer and substituting the input won't change this instruction.  Just
1037   // ignore the input and let someone else zap MDep.  This handles cases like:
1038   //    memcpy(a <- a)
1039   //    memcpy(b <- a)
1040   if (M->getSource() == MDep->getSource())
1041     return false;
1042 
1043   // Second, the length of the memcpy's must be the same, or the preceding one
1044   // must be larger than the following one.
1045   if (MDep->getLength() != M->getLength()) {
1046     ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1047     ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1048     if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1049       return false;
1050   }
1051 
1052   // Verify that the copied-from memory doesn't change in between the two
1053   // transfers.  For example, in:
1054   //    memcpy(a <- b)
1055   //    *b = 42;
1056   //    memcpy(c <- a)
1057   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1058   //
1059   // TODO: If the code between M and MDep is transparent to the destination "c",
1060   // then we could still perform the xform by moving M up to the first memcpy.
1061   // TODO: It would be sufficient to check the MDep source up to the memcpy
1062   // size of M, rather than MDep.
1063   if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1064                      MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1065     return false;
1066 
1067   // If the dest of the second might alias the source of the first, then the
1068   // source and dest might overlap. In addition, if the source of the first
1069   // points to constant memory, they won't overlap by definition. Otherwise, we
1070   // still want to eliminate the intermediate value, but we have to generate a
1071   // memmove instead of memcpy.
1072   bool UseMemMove = false;
1073   if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep))))
1074     UseMemMove = true;
1075 
1076   // If all checks passed, then we can transform M.
1077   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1078                     << *MDep << '\n' << *M << '\n');
1079 
1080   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1081   // example we could be moving from movaps -> movq on x86.
1082   IRBuilder<> Builder(M);
1083   Instruction *NewM;
1084   if (UseMemMove)
1085     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1086                                  MDep->getRawSource(), MDep->getSourceAlign(),
1087                                  M->getLength(), M->isVolatile());
1088   else if (isa<MemCpyInlineInst>(M)) {
1089     // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1090     // never allowed since that would allow the latter to be lowered as a call
1091     // to an external function.
1092     NewM = Builder.CreateMemCpyInline(
1093         M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
1094         MDep->getSourceAlign(), M->getLength(), M->isVolatile());
1095   } else
1096     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1097                                 MDep->getRawSource(), MDep->getSourceAlign(),
1098                                 M->getLength(), M->isVolatile());
1099 
1100   assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1101   auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1102   auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1103   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1104 
1105   // Remove the instruction we're replacing.
1106   eraseInstruction(M);
1107   ++NumMemCpyInstr;
1108   return true;
1109 }
1110 
1111 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1112 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1113 /// weren't copied over by \p MemCpy.
1114 ///
1115 /// In other words, transform:
1116 /// \code
1117 ///   memset(dst, c, dst_size);
1118 ///   memcpy(dst, src, src_size);
1119 /// \endcode
1120 /// into:
1121 /// \code
1122 ///   memcpy(dst, src, src_size);
1123 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1124 /// \endcode
1125 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1126                                                   MemSetInst *MemSet) {
1127   // We can only transform memset/memcpy with the same destination.
1128   if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1129     return false;
1130 
1131   // Check that src and dst of the memcpy aren't the same. While memcpy
1132   // operands cannot partially overlap, exact equality is allowed.
1133   if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
1134     return false;
1135 
1136   // We know that dst up to src_size is not written. We now need to make sure
1137   // that dst up to dst_size is not accessed. (If we did not move the memset,
1138   // checking for reads would be sufficient.)
1139   if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
1140                       MSSA->getMemoryAccess(MemSet),
1141                       MSSA->getMemoryAccess(MemCpy)))
1142     return false;
1143 
1144   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1145   Value *Dest = MemCpy->getRawDest();
1146   Value *DestSize = MemSet->getLength();
1147   Value *SrcSize = MemCpy->getLength();
1148 
1149   if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1150     return false;
1151 
1152   // If the sizes are the same, simply drop the memset instead of generating
1153   // a replacement with zero size.
1154   if (DestSize == SrcSize) {
1155     eraseInstruction(MemSet);
1156     return true;
1157   }
1158 
1159   // By default, create an unaligned memset.
1160   unsigned Align = 1;
1161   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1162   // of the sum.
1163   const unsigned DestAlign =
1164       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1165   if (DestAlign > 1)
1166     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1167       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1168 
1169   IRBuilder<> Builder(MemCpy);
1170 
1171   // If the sizes have different types, zext the smaller one.
1172   if (DestSize->getType() != SrcSize->getType()) {
1173     if (DestSize->getType()->getIntegerBitWidth() >
1174         SrcSize->getType()->getIntegerBitWidth())
1175       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1176     else
1177       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1178   }
1179 
1180   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1181   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1182   Value *MemsetLen = Builder.CreateSelect(
1183       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1184   unsigned DestAS = Dest->getType()->getPointerAddressSpace();
1185   Instruction *NewMemSet = Builder.CreateMemSet(
1186       Builder.CreateGEP(Builder.getInt8Ty(),
1187                         Builder.CreatePointerCast(Dest,
1188                                                   Builder.getInt8PtrTy(DestAS)),
1189                         SrcSize),
1190       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1191 
1192   assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1193          "MemCpy must be a MemoryDef");
1194   // The new memset is inserted after the memcpy, but it is known that its
1195   // defining access is the memset about to be removed which immediately
1196   // precedes the memcpy.
1197   auto *LastDef =
1198       cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1199   auto *NewAccess = MSSAU->createMemoryAccessBefore(
1200       NewMemSet, LastDef->getDefiningAccess(), LastDef);
1201   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1202 
1203   eraseInstruction(MemSet);
1204   return true;
1205 }
1206 
1207 /// Determine whether the instruction has undefined content for the given Size,
1208 /// either because it was freshly alloca'd or started its lifetime.
1209 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
1210                              MemoryDef *Def, Value *Size) {
1211   if (MSSA->isLiveOnEntryDef(Def))
1212     return isa<AllocaInst>(getUnderlyingObject(V));
1213 
1214   if (IntrinsicInst *II =
1215           dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1216     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1217       ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1218 
1219       if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) {
1220         if (AA->isMustAlias(V, II->getArgOperand(1)) &&
1221             LTSize->getZExtValue() >= CSize->getZExtValue())
1222           return true;
1223       }
1224 
1225       // If the lifetime.start covers a whole alloca (as it almost always
1226       // does) and we're querying a pointer based on that alloca, then we know
1227       // the memory is definitely undef, regardless of how exactly we alias.
1228       // The size also doesn't matter, as an out-of-bounds access would be UB.
1229       AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V));
1230       if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
1231         const DataLayout &DL = Alloca->getModule()->getDataLayout();
1232         if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL))
1233           if (*AllocaSize == LTSize->getValue() * 8)
1234             return true;
1235       }
1236     }
1237   }
1238 
1239   return false;
1240 }
1241 
1242 /// Transform memcpy to memset when its source was just memset.
1243 /// In other words, turn:
1244 /// \code
1245 ///   memset(dst1, c, dst1_size);
1246 ///   memcpy(dst2, dst1, dst2_size);
1247 /// \endcode
1248 /// into:
1249 /// \code
1250 ///   memset(dst1, c, dst1_size);
1251 ///   memset(dst2, c, dst2_size);
1252 /// \endcode
1253 /// When dst2_size <= dst1_size.
1254 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1255                                                MemSetInst *MemSet) {
1256   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1257   // memcpying from the same address. Otherwise it is hard to reason about.
1258   if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1259     return false;
1260 
1261   Value *MemSetSize = MemSet->getLength();
1262   Value *CopySize = MemCpy->getLength();
1263 
1264   if (MemSetSize != CopySize) {
1265     // Make sure the memcpy doesn't read any more than what the memset wrote.
1266     // Don't worry about sizes larger than i64.
1267 
1268     // A known memset size is required.
1269     ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1270     if (!CMemSetSize)
1271       return false;
1272 
1273     // A known memcpy size is also required.
1274     ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize);
1275     if (!CCopySize)
1276       return false;
1277     if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1278       // If the memcpy is larger than the memset, but the memory was undef prior
1279       // to the memset, we can just ignore the tail. Technically we're only
1280       // interested in the bytes from MemSetSize..CopySize here, but as we can't
1281       // easily represent this location, we use the full 0..CopySize range.
1282       MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1283       bool CanReduceSize = false;
1284       MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1285       MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1286           MemSetAccess->getDefiningAccess(), MemCpyLoc);
1287       if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1288         if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize))
1289           CanReduceSize = true;
1290 
1291       if (!CanReduceSize)
1292         return false;
1293       CopySize = MemSetSize;
1294     }
1295   }
1296 
1297   IRBuilder<> Builder(MemCpy);
1298   Instruction *NewM =
1299       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1300                            CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1301   auto *LastDef =
1302       cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1303   auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1304   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1305 
1306   return true;
1307 }
1308 
1309 /// Perform simplification of memcpy's.  If we have memcpy A
1310 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1311 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1312 /// circumstances). This allows later passes to remove the first memcpy
1313 /// altogether.
1314 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1315   // We can only optimize non-volatile memcpy's.
1316   if (M->isVolatile()) return false;
1317 
1318   // If the source and destination of the memcpy are the same, then zap it.
1319   if (M->getSource() == M->getDest()) {
1320     ++BBI;
1321     eraseInstruction(M);
1322     return true;
1323   }
1324 
1325   // If copying from a constant, try to turn the memcpy into a memset.
1326   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1327     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1328       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1329                                            M->getModule()->getDataLayout())) {
1330         IRBuilder<> Builder(M);
1331         Instruction *NewM =
1332             Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1333                                  MaybeAlign(M->getDestAlignment()), false);
1334         auto *LastDef =
1335             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1336         auto *NewAccess =
1337             MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1338         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1339 
1340         eraseInstruction(M);
1341         ++NumCpyToSet;
1342         return true;
1343       }
1344 
1345   MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1346   MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA);
1347   MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1348   const MemoryAccess *DestClobber =
1349       MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
1350 
1351   // Try to turn a partially redundant memset + memcpy into
1352   // memcpy + smaller memset.  We don't need the memcpy size for this.
1353   // The memcpy most post-dom the memset, so limit this to the same basic
1354   // block. A non-local generalization is likely not worthwhile.
1355   if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1356     if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1357       if (DestClobber->getBlock() == M->getParent())
1358         if (processMemSetMemCpyDependence(M, MDep))
1359           return true;
1360 
1361   MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1362       AnyClobber, MemoryLocation::getForSource(M));
1363 
1364   // There are four possible optimizations we can do for memcpy:
1365   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1366   //   b) call-memcpy xform for return slot optimization.
1367   //   c) memcpy from freshly alloca'd space or space that has just started
1368   //      its lifetime copies undefined data, and we can therefore eliminate
1369   //      the memcpy in favor of the data that was already at the destination.
1370   //   d) memcpy from a just-memset'd source can be turned into memset.
1371   if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1372     if (Instruction *MI = MD->getMemoryInst()) {
1373       if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1374         if (auto *C = dyn_cast<CallInst>(MI)) {
1375           // The memcpy must post-dom the call. Limit to the same block for
1376           // now. Additionally, we need to ensure that there are no accesses
1377           // to dest between the call and the memcpy. Accesses to src will be
1378           // checked by performCallSlotOptzn().
1379           // TODO: Support non-local call-slot optimization?
1380           if (C->getParent() == M->getParent() &&
1381               !accessedBetween(*AA, DestLoc, MD, MA)) {
1382             // FIXME: Can we pass in either of dest/src alignment here instead
1383             // of conservatively taking the minimum?
1384             Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1385                                        M->getSourceAlign().valueOrOne());
1386             if (performCallSlotOptzn(
1387                     M, M, M->getDest(), M->getSource(),
1388                     TypeSize::getFixed(CopySize->getZExtValue()), Alignment,
1389                     C)) {
1390               LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1391                                 << "    call: " << *C << "\n"
1392                                 << "    memcpy: " << *M << "\n");
1393               eraseInstruction(M);
1394               ++NumMemCpyInstr;
1395               return true;
1396             }
1397           }
1398         }
1399       }
1400       if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1401         return processMemCpyMemCpyDependence(M, MDep);
1402       if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1403         if (performMemCpyToMemSetOptzn(M, MDep)) {
1404           LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1405           eraseInstruction(M);
1406           ++NumCpyToSet;
1407           return true;
1408         }
1409       }
1410     }
1411 
1412     if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) {
1413       LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1414       eraseInstruction(M);
1415       ++NumMemCpyInstr;
1416       return true;
1417     }
1418   }
1419 
1420   return false;
1421 }
1422 
1423 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1424 /// not to alias.
1425 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1426   // See if the source could be modified by this memmove potentially.
1427   if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
1428     return false;
1429 
1430   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1431                     << "\n");
1432 
1433   // If not, then we know we can transform this.
1434   Type *ArgTys[3] = { M->getRawDest()->getType(),
1435                       M->getRawSource()->getType(),
1436                       M->getLength()->getType() };
1437   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1438                                                  Intrinsic::memcpy, ArgTys));
1439 
1440   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1441   // aliasing guarantees).
1442 
1443   ++NumMoveToCpy;
1444   return true;
1445 }
1446 
1447 /// This is called on every byval argument in call sites.
1448 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1449   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1450   // Find out what feeds this byval argument.
1451   Value *ByValArg = CB.getArgOperand(ArgNo);
1452   Type *ByValTy = CB.getParamByValType(ArgNo);
1453   TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1454   MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1455   MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1456   if (!CallAccess)
1457     return false;
1458   MemCpyInst *MDep = nullptr;
1459   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1460       CallAccess->getDefiningAccess(), Loc);
1461   if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1462     MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1463 
1464   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1465   // a memcpy, see if we can byval from the source of the memcpy instead of the
1466   // result.
1467   if (!MDep || MDep->isVolatile() ||
1468       ByValArg->stripPointerCasts() != MDep->getDest())
1469     return false;
1470 
1471   // The length of the memcpy must be larger or equal to the size of the byval.
1472   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1473   if (!C1 || !TypeSize::isKnownGE(
1474                  TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1475     return false;
1476 
1477   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1478   // then it is some target specific value that we can't know.
1479   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1480   if (!ByValAlign) return false;
1481 
1482   // If it is greater than the memcpy, then we check to see if we can force the
1483   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1484   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1485   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1486       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1487                                  DT) < *ByValAlign)
1488     return false;
1489 
1490   // The address space of the memcpy source must match the byval argument
1491   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1492       ByValArg->getType()->getPointerAddressSpace())
1493     return false;
1494 
1495   // Verify that the copied-from memory doesn't change in between the memcpy and
1496   // the byval call.
1497   //    memcpy(a <- b)
1498   //    *b = 42;
1499   //    foo(*a)
1500   // It would be invalid to transform the second memcpy into foo(*b).
1501   if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1502                      MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
1503     return false;
1504 
1505   Value *TmpCast = MDep->getSource();
1506   if (MDep->getSource()->getType() != ByValArg->getType()) {
1507     BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1508                                               "tmpcast", &CB);
1509     // Set the tmpcast's DebugLoc to MDep's
1510     TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1511     TmpCast = TmpBitCast;
1512   }
1513 
1514   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1515                     << "  " << *MDep << "\n"
1516                     << "  " << CB << "\n");
1517 
1518   // Otherwise we're good!  Update the byval argument.
1519   CB.setArgOperand(ArgNo, TmpCast);
1520   ++NumMemCpyInstr;
1521   return true;
1522 }
1523 
1524 /// Executes one iteration of MemCpyOptPass.
1525 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1526   bool MadeChange = false;
1527 
1528   // Walk all instruction in the function.
1529   for (BasicBlock &BB : F) {
1530     // Skip unreachable blocks. For example processStore assumes that an
1531     // instruction in a BB can't be dominated by a later instruction in the
1532     // same BB (which is a scenario that can happen for an unreachable BB that
1533     // has itself as a predecessor).
1534     if (!DT->isReachableFromEntry(&BB))
1535       continue;
1536 
1537     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1538         // Avoid invalidating the iterator.
1539       Instruction *I = &*BI++;
1540 
1541       bool RepeatInstruction = false;
1542 
1543       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1544         MadeChange |= processStore(SI, BI);
1545       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1546         RepeatInstruction = processMemSet(M, BI);
1547       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1548         RepeatInstruction = processMemCpy(M, BI);
1549       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1550         RepeatInstruction = processMemMove(M);
1551       else if (auto *CB = dyn_cast<CallBase>(I)) {
1552         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1553           if (CB->isByValArgument(i))
1554             MadeChange |= processByValArgument(*CB, i);
1555       }
1556 
1557       // Reprocess the instruction if desired.
1558       if (RepeatInstruction) {
1559         if (BI != BB.begin())
1560           --BI;
1561         MadeChange = true;
1562       }
1563     }
1564   }
1565 
1566   return MadeChange;
1567 }
1568 
1569 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1570   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1571   auto *AA = &AM.getResult<AAManager>(F);
1572   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1573   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1574   auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
1575 
1576   bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA());
1577   if (!MadeChange)
1578     return PreservedAnalyses::all();
1579 
1580   PreservedAnalyses PA;
1581   PA.preserveSet<CFGAnalyses>();
1582   PA.preserve<MemorySSAAnalysis>();
1583   return PA;
1584 }
1585 
1586 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
1587                             AliasAnalysis *AA_, AssumptionCache *AC_,
1588                             DominatorTree *DT_, MemorySSA *MSSA_) {
1589   bool MadeChange = false;
1590   TLI = TLI_;
1591   AA = AA_;
1592   AC = AC_;
1593   DT = DT_;
1594   MSSA = MSSA_;
1595   MemorySSAUpdater MSSAU_(MSSA_);
1596   MSSAU = &MSSAU_;
1597 
1598   while (true) {
1599     if (!iterateOnFunction(F))
1600       break;
1601     MadeChange = true;
1602   }
1603 
1604   if (VerifyMemorySSA)
1605     MSSA_->verifyMemorySSA();
1606 
1607   return MadeChange;
1608 }
1609 
1610 /// This is the main transformation entry point for a function.
1611 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1612   if (skipFunction(F))
1613     return false;
1614 
1615   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1616   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1617   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1618   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1619   auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
1620 
1621   return Impl.runImpl(F, TLI, AA, AC, DT, MSSA);
1622 }
1623