1 //===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Lower matrix intrinsics to vector operations. 10 // 11 // TODO: 12 // * Improve fusion: 13 // * Support more cases, e.g. multiply-add, multiply-sub, operands/results 14 // transposed. 15 // * Improve cost-modeling, e.g. choose different number of rows/columns 16 // columns for tiles, consider cost of copies on alias. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/DomTreeUpdater.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/MatrixBuilder.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Alignment.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Transforms/Scalar.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/MatrixUtils.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 #define DEBUG_TYPE "lower-matrix-intrinsics" 53 54 static cl::opt<bool> 55 FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden, 56 cl::desc("Enable/disable fusing matrix instructions.")); 57 // TODO: Allow and use non-square tiles. 58 static cl::opt<unsigned> TileSize( 59 "fuse-matrix-tile-size", cl::init(4), cl::Hidden, 60 cl::desc( 61 "Tile size for matrix instruction fusion using square-shaped tiles.")); 62 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false), 63 cl::Hidden, 64 cl::desc("Generate loop nest for tiling.")); 65 static cl::opt<bool> ForceFusion( 66 "force-fuse-matrix", cl::init(false), cl::Hidden, 67 cl::desc("Force matrix instruction fusion even if not profitable.")); 68 static cl::opt<bool> AllowContractEnabled( 69 "matrix-allow-contract", cl::init(false), cl::Hidden, 70 cl::desc("Allow the use of FMAs if available and profitable. This may " 71 "result in different results, due to less rounding error.")); 72 73 enum class MatrixLayoutTy { ColumnMajor, RowMajor }; 74 75 static cl::opt<MatrixLayoutTy> MatrixLayout( 76 "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor), 77 cl::desc("Sets the default matrix layout"), 78 cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major", 79 "Use column-major layout"), 80 clEnumValN(MatrixLayoutTy::RowMajor, "row-major", 81 "Use row-major layout"))); 82 83 /// Helper function to either return Scope, if it is a subprogram or the 84 /// attached subprogram for a local scope. 85 static DISubprogram *getSubprogram(DIScope *Scope) { 86 if (auto *Subprogram = dyn_cast<DISubprogram>(Scope)) 87 return Subprogram; 88 return cast<DILocalScope>(Scope)->getSubprogram(); 89 } 90 91 namespace { 92 93 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute 94 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements) 95 // assuming \p Stride elements between start two consecutive vectors. 96 // \p Stride must be >= \p NumElements. 97 // For column-major matrixes, the function computes the address of a column 98 // vectors and \p NumElements must be set to the number of elements in a column 99 // (= number of rows of the matrix). For row-major matrixes, the function 100 // computes the address of a row vector and \p NumElements must be set to the 101 // number of elements in a column (= number of columns of the matrix). 102 // 103 // Consider a 4x4 matrix in column-mjaor layout like below 104 // 105 // 0 1 2 3 106 // 0 v_0_0 v_0_1 v_0_2 v_0_3 107 // 1 v_1_0 v_1_1 v_1_2 v_1_3 108 // 2 v_2_0 v_2_1 v_2_2 v_2_3 109 // 3 v_3_0 v_3_1 v_3_2 v_3_3 110 111 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1, 112 // we need a pointer to the first element of the submatrix as base pointer. 113 // Then we can use computeVectorAddr to compute the addresses for the columns 114 // of the sub-matrix. 115 // 116 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) 117 // -> just returns Base 118 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) 119 // -> returns Base + (1 * 4) 120 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) 121 // -> returns Base + (2 * 4) 122 // 123 // The graphic below illustrates the number of elements in a column (marked 124 // with |) and the number of skipped elements (marked with }). 125 // 126 // v_0_0 v_0_1 {v_0_2 {v_0_3 127 // Base Col 1 Col 2 128 // | | | 129 // v_1_0 |v_1_1 |v_1_2 |v_1_3 130 // v_2_0 |v_2_1 |v_2_2 |v_2_3 131 // v_3_0 {v_3_1 {v_3_2 v_3_3 132 // 133 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, 134 unsigned NumElements, Type *EltType, 135 IRBuilder<> &Builder) { 136 137 assert((!isa<ConstantInt>(Stride) || 138 cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && 139 "Stride must be >= the number of elements in the result vector."); 140 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); 141 142 // Compute the start of the vector with index VecIdx as VecIdx * Stride. 143 Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start"); 144 145 // Get pointer to the start of the selected vector. Skip GEP creation, 146 // if we select vector 0. 147 if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero()) 148 VecStart = BasePtr; 149 else 150 VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep"); 151 152 // Cast elementwise vector start pointer to a pointer to a vector 153 // (EltType x NumElements)*. 154 auto *VecType = FixedVectorType::get(EltType, NumElements); 155 Type *VecPtrType = PointerType::get(VecType, AS); 156 return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast"); 157 } 158 159 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics. 160 /// 161 /// Currently, the lowering for each matrix intrinsic is done as follows: 162 /// 1. Propagate the shape information from intrinsics to connected 163 /// instructions. 164 /// 2. Lower instructions with shape information (assuming column-major layout). 165 /// The lowering works similarly using row-major layout. 166 /// 2.1. Get column vectors for each argument. If we already lowered the 167 /// definition of an argument, use the produced column vectors directly. 168 /// If not, split the operand vector containing an embedded matrix into 169 /// a set of column vectors, 170 /// 2.2. Lower the instruction in terms of column major operations, which 171 /// yields a set of column vectors containing result matrix. Note that we 172 /// lower all instructions that have shape information. Besides the 173 /// intrinsics, this includes stores for example. 174 /// 2.3. Update uses of the lowered instruction. If we have shape information 175 /// for a user, there is nothing to do, as we will look up the result 176 /// column matrix when lowering the user. For other uses, we embed the 177 /// result matrix in a flat vector and update the use. 178 /// 2.4. Cache the result column matrix for the instruction we lowered 179 /// 3. After we lowered all instructions in a function, remove the now 180 /// obsolete instructions. 181 /// 182 class LowerMatrixIntrinsics { 183 Function &Func; 184 const DataLayout &DL; 185 const TargetTransformInfo &TTI; 186 AliasAnalysis *AA; 187 DominatorTree *DT; 188 LoopInfo *LI; 189 OptimizationRemarkEmitter *ORE; 190 191 /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation. 192 struct OpInfoTy { 193 /// Number of stores emitted to generate this matrix. 194 unsigned NumStores = 0; 195 /// Number of loads emitted to generate this matrix. 196 unsigned NumLoads = 0; 197 /// Number of compute operations emitted to generate this matrix. 198 unsigned NumComputeOps = 0; 199 /// Most of the time transposes can be fused with matrix multiplies or can 200 /// be folded away via algebraic simplifications. This is the number of 201 /// transposes that we failed to make "free" via such optimizations. 202 unsigned NumExposedTransposes = 0; 203 204 OpInfoTy &operator+=(const OpInfoTy &RHS) { 205 NumStores += RHS.NumStores; 206 NumLoads += RHS.NumLoads; 207 NumComputeOps += RHS.NumComputeOps; 208 NumExposedTransposes += RHS.NumExposedTransposes; 209 return *this; 210 } 211 }; 212 213 /// Wrapper class representing a matrix as a set of vectors, either in row or 214 /// column major layout. All vectors must have the same vector type. 215 class MatrixTy { 216 SmallVector<Value *, 16> Vectors; 217 218 OpInfoTy OpInfo; 219 220 bool IsColumnMajor = true; 221 222 public: 223 MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 224 MatrixTy(ArrayRef<Value *> Vectors) 225 : Vectors(Vectors.begin(), Vectors.end()), 226 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 227 MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy) 228 : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) { 229 230 unsigned D = isColumnMajor() ? NumColumns : NumRows; 231 for (unsigned J = 0; J < D; ++J) 232 addVector(UndefValue::get(FixedVectorType::get( 233 EltTy, isColumnMajor() ? NumRows : NumColumns))); 234 } 235 236 Value *getVector(unsigned i) const { return Vectors[i]; } 237 Value *getColumn(unsigned i) const { 238 assert(isColumnMajor() && "only supported for column-major matrixes"); 239 return Vectors[i]; 240 } 241 Value *getRow(unsigned i) const { 242 assert(!isColumnMajor() && "only supported for row-major matrixes"); 243 return Vectors[i]; 244 } 245 246 void setVector(unsigned i, Value *V) { Vectors[i] = V; } 247 248 Type *getElementType() const { return getVectorTy()->getElementType(); } 249 250 unsigned getNumVectors() const { 251 if (isColumnMajor()) 252 return getNumColumns(); 253 return getNumRows(); 254 } 255 256 unsigned getNumColumns() const { 257 if (isColumnMajor()) 258 return Vectors.size(); 259 else { 260 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); 261 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); 262 } 263 } 264 unsigned getNumRows() const { 265 if (isColumnMajor()) { 266 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); 267 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); 268 } else 269 return Vectors.size(); 270 } 271 272 void addVector(Value *V) { Vectors.push_back(V); } 273 VectorType *getColumnTy() { 274 assert(isColumnMajor() && "only supported for column-major matrixes"); 275 return getVectorTy(); 276 } 277 278 VectorType *getVectorTy() const { 279 return cast<VectorType>(Vectors[0]->getType()); 280 } 281 282 iterator_range<SmallVector<Value *, 8>::iterator> columns() { 283 assert(isColumnMajor() && 284 "columns() only supported for column-major matrixes"); 285 return make_range(Vectors.begin(), Vectors.end()); 286 } 287 288 iterator_range<SmallVector<Value *, 8>::iterator> vectors() { 289 return make_range(Vectors.begin(), Vectors.end()); 290 } 291 292 /// Embed the vectors of the matrix into a flat vector by concatenating 293 /// them. 294 Value *embedInVector(IRBuilder<> &Builder) const { 295 return Vectors.size() == 1 ? Vectors[0] 296 : concatenateVectors(Builder, Vectors); 297 } 298 299 MatrixTy &addNumLoads(unsigned N) { 300 OpInfo.NumLoads += N; 301 return *this; 302 } 303 304 void setNumLoads(unsigned N) { OpInfo.NumLoads = N; } 305 306 MatrixTy &addNumStores(unsigned N) { 307 OpInfo.NumStores += N; 308 return *this; 309 } 310 311 MatrixTy &addNumExposedTransposes(unsigned N) { 312 OpInfo.NumExposedTransposes += N; 313 return *this; 314 } 315 316 MatrixTy &addNumComputeOps(unsigned N) { 317 OpInfo.NumComputeOps += N; 318 return *this; 319 } 320 321 unsigned getNumStores() const { return OpInfo.NumStores; } 322 unsigned getNumLoads() const { return OpInfo.NumLoads; } 323 unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; } 324 325 const OpInfoTy &getOpInfo() const { return OpInfo; } 326 327 bool isColumnMajor() const { return IsColumnMajor; } 328 329 unsigned getStride() const { 330 if (isColumnMajor()) 331 return getNumRows(); 332 return getNumColumns(); 333 } 334 335 /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the 336 /// matrix is column-major, the result vector is extracted from a column 337 /// vector, otherwise from a row vector. 338 Value *extractVector(unsigned I, unsigned J, unsigned NumElts, 339 IRBuilder<> &Builder) const { 340 Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I); 341 return Builder.CreateShuffleVector( 342 Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0), 343 "block"); 344 } 345 }; 346 347 struct ShapeInfo { 348 unsigned NumRows; 349 unsigned NumColumns; 350 351 bool IsColumnMajor; 352 353 ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0) 354 : NumRows(NumRows), NumColumns(NumColumns), 355 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 356 357 ShapeInfo(Value *NumRows, Value *NumColumns) 358 : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(), 359 cast<ConstantInt>(NumColumns)->getZExtValue()) {} 360 361 bool operator==(const ShapeInfo &other) { 362 return NumRows == other.NumRows && NumColumns == other.NumColumns; 363 } 364 bool operator!=(const ShapeInfo &other) { return !(*this == other); } 365 366 /// Returns true if shape-information is defined, meaning both dimensions 367 /// are != 0. 368 operator bool() const { 369 assert(NumRows == 0 || NumColumns != 0); 370 return NumRows != 0; 371 } 372 373 unsigned getStride() const { 374 if (IsColumnMajor) 375 return NumRows; 376 return NumColumns; 377 } 378 379 unsigned getNumVectors() const { 380 if (IsColumnMajor) 381 return NumColumns; 382 return NumRows; 383 } 384 }; 385 386 /// Maps instructions to their shape information. The shape information 387 /// describes the shape to be used while lowering. This matches the shape of 388 /// the result value of the instruction, with the only exceptions being store 389 /// instructions and the matrix_column_major_store intrinsics. For those, the 390 /// shape information indicates that those instructions should be lowered 391 /// using shape information as well. A ValueMap is used so that when 392 /// sub-passes like optimizeTransposes performs RAUW the map stays 393 /// up-to-date. 394 ValueMap<Value *, ShapeInfo> ShapeMap; 395 396 /// List of instructions to remove. While lowering, we are not replacing all 397 /// users of a lowered instruction, if shape information is available and 398 /// those need to be removed after we finished lowering. 399 SmallVector<Instruction *, 16> ToRemove; 400 401 /// Map from instructions to their produced column matrix. 402 MapVector<Value *, MatrixTy> Inst2ColumnMatrix; 403 404 private: 405 static FastMathFlags getFastMathFlags(Instruction *Inst) { 406 FastMathFlags FMF; 407 408 if (isa<FPMathOperator>(*Inst)) 409 FMF = Inst->getFastMathFlags(); 410 411 FMF.setAllowContract(AllowContractEnabled || FMF.allowContract()); 412 413 return FMF; 414 } 415 416 public: 417 LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI, 418 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 419 OptimizationRemarkEmitter *ORE) 420 : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT), 421 LI(LI), ORE(ORE) {} 422 423 unsigned getNumOps(Type *VT) { 424 assert(isa<VectorType>(VT) && "Expected vector type"); 425 return getNumOps(VT->getScalarType(), 426 cast<FixedVectorType>(VT)->getNumElements()); 427 } 428 429 /// Is this the minimal version executed in the backend pipelines. 430 bool isMinimal() const { 431 return !DT; 432 } 433 434 /// Return the estimated number of vector ops required for an operation on 435 /// \p VT * N. 436 unsigned getNumOps(Type *ST, unsigned N) { 437 return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() / 438 double(TTI.getRegisterBitWidth( 439 TargetTransformInfo::RGK_FixedWidthVector) 440 .getFixedSize())); 441 } 442 443 /// Return the set of vectors that a matrix value is lowered to. 444 /// 445 /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise 446 /// split the flat vector \p MatrixVal containing a matrix with shape \p SI 447 /// into vectors. 448 MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, 449 IRBuilder<> &Builder) { 450 VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType()); 451 assert(VType && "MatrixVal must be a vector type"); 452 assert(cast<FixedVectorType>(VType)->getNumElements() == 453 SI.NumRows * SI.NumColumns && 454 "The vector size must match the number of matrix elements"); 455 456 // Check if we lowered MatrixVal using shape information. In that case, 457 // return the existing matrix, if it matches the requested shape 458 // information. If there is a mis-match, embed the result in a flat 459 // vector and split it later. 460 auto Found = Inst2ColumnMatrix.find(MatrixVal); 461 if (Found != Inst2ColumnMatrix.end()) { 462 MatrixTy &M = Found->second; 463 // Return the found matrix, if its shape matches the requested shape 464 // information 465 if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns()) 466 return M; 467 468 MatrixVal = M.embedInVector(Builder); 469 } 470 471 // Otherwise split MatrixVal. 472 SmallVector<Value *, 16> SplitVecs; 473 for (unsigned MaskStart = 0; 474 MaskStart < cast<FixedVectorType>(VType)->getNumElements(); 475 MaskStart += SI.getStride()) { 476 Value *V = Builder.CreateShuffleVector( 477 MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0), 478 "split"); 479 SplitVecs.push_back(V); 480 } 481 482 return {SplitVecs}; 483 } 484 485 /// If \p V already has a known shape return false. Otherwise set the shape 486 /// for instructions that support it. 487 bool setShapeInfo(Value *V, ShapeInfo Shape) { 488 assert(Shape && "Shape not set"); 489 if (isa<UndefValue>(V) || !supportsShapeInfo(V)) 490 return false; 491 492 auto SIter = ShapeMap.find(V); 493 if (SIter != ShapeMap.end()) { 494 LLVM_DEBUG(dbgs() << " not overriding existing shape: " 495 << SIter->second.NumRows << " " 496 << SIter->second.NumColumns << " for " << *V << "\n"); 497 return false; 498 } 499 500 ShapeMap.insert({V, Shape}); 501 LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns 502 << " for " << *V << "\n"); 503 return true; 504 } 505 506 bool isUniformShape(Value *V) { 507 Instruction *I = dyn_cast<Instruction>(V); 508 if (!I) 509 return true; 510 511 switch (I->getOpcode()) { 512 case Instruction::FAdd: 513 case Instruction::FSub: 514 case Instruction::FMul: // Scalar multiply. 515 case Instruction::FNeg: 516 case Instruction::Add: 517 case Instruction::Mul: 518 case Instruction::Sub: 519 return true; 520 default: 521 return false; 522 } 523 } 524 525 /// Returns true if shape information can be used for \p V. The supported 526 /// instructions must match the instructions that can be lowered by this pass. 527 bool supportsShapeInfo(Value *V) { 528 Instruction *Inst = dyn_cast<Instruction>(V); 529 if (!Inst) 530 return false; 531 532 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst); 533 if (II) 534 switch (II->getIntrinsicID()) { 535 case Intrinsic::matrix_multiply: 536 case Intrinsic::matrix_transpose: 537 case Intrinsic::matrix_column_major_load: 538 case Intrinsic::matrix_column_major_store: 539 return true; 540 default: 541 return false; 542 } 543 return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V); 544 } 545 546 /// Propagate the shape information of instructions to their users. 547 /// The work list contains instructions for which we can compute the shape, 548 /// either based on the information provided by matrix intrinsics or known 549 /// shapes of operands. 550 SmallVector<Instruction *, 32> 551 propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) { 552 SmallVector<Instruction *, 32> NewWorkList; 553 // Pop an element for which we guaranteed to have at least one of the 554 // operand shapes. Add the shape for this and then add users to the work 555 // list. 556 LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n"); 557 while (!WorkList.empty()) { 558 Instruction *Inst = WorkList.pop_back_val(); 559 560 // New entry, set the value and insert operands 561 bool Propagate = false; 562 563 Value *MatrixA; 564 Value *MatrixB; 565 Value *M; 566 Value *N; 567 Value *K; 568 if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>( 569 m_Value(MatrixA), m_Value(MatrixB), m_Value(M), 570 m_Value(N), m_Value(K)))) { 571 Propagate = setShapeInfo(Inst, {M, K}); 572 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>( 573 m_Value(MatrixA), m_Value(M), m_Value(N)))) { 574 // Flip dimensions. 575 Propagate = setShapeInfo(Inst, {N, M}); 576 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>( 577 m_Value(MatrixA), m_Value(), m_Value(), 578 m_Value(), m_Value(M), m_Value(N)))) { 579 Propagate = setShapeInfo(Inst, {N, M}); 580 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>( 581 m_Value(), m_Value(), m_Value(), m_Value(M), 582 m_Value(N)))) { 583 Propagate = setShapeInfo(Inst, {M, N}); 584 } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) { 585 auto OpShape = ShapeMap.find(MatrixA); 586 if (OpShape != ShapeMap.end()) 587 setShapeInfo(Inst, OpShape->second); 588 continue; 589 } else if (isUniformShape(Inst)) { 590 // Find the first operand that has a known shape and use that. 591 for (auto &Op : Inst->operands()) { 592 auto OpShape = ShapeMap.find(Op.get()); 593 if (OpShape != ShapeMap.end()) { 594 Propagate |= setShapeInfo(Inst, OpShape->second); 595 break; 596 } 597 } 598 } 599 600 if (Propagate) { 601 NewWorkList.push_back(Inst); 602 for (auto *User : Inst->users()) 603 if (ShapeMap.count(User) == 0) 604 WorkList.push_back(cast<Instruction>(User)); 605 } 606 } 607 608 return NewWorkList; 609 } 610 611 /// Propagate the shape to operands of instructions with shape information. 612 /// \p Worklist contains the instruction for which we already know the shape. 613 SmallVector<Instruction *, 32> 614 propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) { 615 SmallVector<Instruction *, 32> NewWorkList; 616 617 auto pushInstruction = [](Value *V, 618 SmallVectorImpl<Instruction *> &WorkList) { 619 Instruction *I = dyn_cast<Instruction>(V); 620 if (I) 621 WorkList.push_back(I); 622 }; 623 // Pop an element with known shape. Traverse the operands, if their shape 624 // derives from the result shape and is unknown, add it and add them to the 625 // worklist. 626 LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n"); 627 while (!WorkList.empty()) { 628 Value *V = WorkList.pop_back_val(); 629 630 size_t BeforeProcessingV = WorkList.size(); 631 if (!isa<Instruction>(V)) 632 continue; 633 634 Value *MatrixA; 635 Value *MatrixB; 636 Value *M; 637 Value *N; 638 Value *K; 639 if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>( 640 m_Value(MatrixA), m_Value(MatrixB), m_Value(M), 641 m_Value(N), m_Value(K)))) { 642 if (setShapeInfo(MatrixA, {M, N})) 643 pushInstruction(MatrixA, WorkList); 644 645 if (setShapeInfo(MatrixB, {N, K})) 646 pushInstruction(MatrixB, WorkList); 647 648 } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>( 649 m_Value(MatrixA), m_Value(M), m_Value(N)))) { 650 // Flip dimensions. 651 if (setShapeInfo(MatrixA, {M, N})) 652 pushInstruction(MatrixA, WorkList); 653 } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>( 654 m_Value(MatrixA), m_Value(), m_Value(), m_Value(), 655 m_Value(M), m_Value(N)))) { 656 if (setShapeInfo(MatrixA, {M, N})) { 657 pushInstruction(MatrixA, WorkList); 658 } 659 } else if (isa<LoadInst>(V) || 660 match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) { 661 // Nothing to do, no matrix input. 662 } else if (isa<StoreInst>(V)) { 663 // Nothing to do. We forward-propagated to this so we would just 664 // backward propagate to an instruction with an already known shape. 665 } else if (isUniformShape(V)) { 666 // Propagate to all operands. 667 ShapeInfo Shape = ShapeMap[V]; 668 for (Use &U : cast<Instruction>(V)->operands()) { 669 if (setShapeInfo(U.get(), Shape)) 670 pushInstruction(U.get(), WorkList); 671 } 672 } 673 // After we discovered new shape info for new instructions in the 674 // worklist, we use their users as seeds for the next round of forward 675 // propagation. 676 for (size_t I = BeforeProcessingV; I != WorkList.size(); I++) 677 for (User *U : WorkList[I]->users()) 678 if (isa<Instruction>(U) && V != U) 679 NewWorkList.push_back(cast<Instruction>(U)); 680 } 681 return NewWorkList; 682 } 683 684 /// Try moving transposes in order to fold them away or into multiplies. 685 void optimizeTransposes() { 686 auto ReplaceAllUsesWith = [this](Instruction &Old, Value *New) { 687 // We need to remove Old from the ShapeMap otherwise RAUW will replace it 688 // with New. We should only add New it it supportsShapeInfo so we insert 689 // it conditionally instead. 690 auto S = ShapeMap.find(&Old); 691 if (S != ShapeMap.end()) { 692 ShapeMap.erase(S); 693 if (supportsShapeInfo(New)) 694 ShapeMap.insert({New, S->second}); 695 } 696 Old.replaceAllUsesWith(New); 697 }; 698 699 // First sink all transposes inside matmuls, hoping that we end up with NN, 700 // NT or TN variants. 701 for (BasicBlock &BB : reverse(Func)) { 702 for (auto II = BB.rbegin(); II != BB.rend();) { 703 Instruction &I = *II; 704 // We may remove II. By default continue on the next/prev instruction. 705 ++II; 706 // If we were to erase II, move again. 707 auto EraseFromParent = [&II, &BB](Value *V) { 708 auto *Inst = cast<Instruction>(V); 709 if (Inst->use_empty()) { 710 if (II != BB.rend() && Inst == &*II) { 711 ++II; 712 } 713 Inst->eraseFromParent(); 714 } 715 }; 716 717 // If we're creating a new instruction, continue from there. 718 Instruction *NewInst = nullptr; 719 720 IRBuilder<> IB(&I); 721 MatrixBuilder Builder(IB); 722 723 Value *TA, *TAMA, *TAMB; 724 ConstantInt *R, *K, *C; 725 if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) { 726 727 // Transpose of a transpose is a nop 728 Value *TATA; 729 if (match(TA, 730 m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) { 731 ReplaceAllUsesWith(I, TATA); 732 EraseFromParent(&I); 733 EraseFromParent(TA); 734 } 735 736 // (A * B)^t -> B^t * A^t 737 // RxK KxC CxK KxR 738 else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>( 739 m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R), 740 m_ConstantInt(K), m_ConstantInt(C)))) { 741 Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(), 742 C->getZExtValue(), 743 TAMB->getName() + "_t"); 744 // We are being run after shape prop, add shape for newly created 745 // instructions so that we lower them later. 746 setShapeInfo(T0, {C, K}); 747 Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(), 748 K->getZExtValue(), 749 TAMA->getName() + "_t"); 750 setShapeInfo(T1, {K, R}); 751 NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(), 752 K->getZExtValue(), 753 R->getZExtValue(), "mmul"); 754 ReplaceAllUsesWith(I, NewInst); 755 EraseFromParent(&I); 756 EraseFromParent(TA); 757 } 758 } 759 760 // If we replaced I with a new instruction, continue from there. 761 if (NewInst) 762 II = std::next(BasicBlock::reverse_iterator(NewInst)); 763 } 764 } 765 766 // If we have a TT matmul, lift the transpose. We may be able to fold into 767 // consuming multiply. 768 for (BasicBlock &BB : Func) { 769 for (Instruction &I : llvm::make_early_inc_range(BB)) { 770 Value *A, *B, *AT, *BT; 771 ConstantInt *R, *K, *C; 772 // A^t * B ^t -> (B * A)^t 773 if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>( 774 m_Value(A), m_Value(B), m_ConstantInt(R), 775 m_ConstantInt(K), m_ConstantInt(C))) && 776 match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) && 777 match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) { 778 IRBuilder<> IB(&I); 779 MatrixBuilder Builder(IB); 780 Value *M = Builder.CreateMatrixMultiply( 781 BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue()); 782 setShapeInfo(M, {C, R}); 783 Instruction *NewInst = Builder.CreateMatrixTranspose( 784 M, C->getZExtValue(), R->getZExtValue()); 785 ReplaceAllUsesWith(I, NewInst); 786 if (I.use_empty()) 787 I.eraseFromParent(); 788 if (A->use_empty()) 789 cast<Instruction>(A)->eraseFromParent(); 790 if (A != B && B->use_empty()) 791 cast<Instruction>(B)->eraseFromParent(); 792 } 793 } 794 } 795 } 796 797 bool Visit() { 798 SmallVector<Instruction *, 32> WorkList; 799 800 // Initially only the shape of matrix intrinsics is known. 801 // Initialize the work list with ops carrying shape information. 802 for (BasicBlock &BB : Func) 803 for (Instruction &Inst : BB) { 804 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); 805 if (!II) 806 continue; 807 808 switch (II->getIntrinsicID()) { 809 case Intrinsic::matrix_multiply: 810 case Intrinsic::matrix_transpose: 811 case Intrinsic::matrix_column_major_load: 812 case Intrinsic::matrix_column_major_store: 813 WorkList.push_back(&Inst); 814 break; 815 default: 816 break; 817 } 818 } 819 820 // Avoid unnecessary work if there are no matrix intrinsics in the function. 821 if (WorkList.empty()) 822 return false; 823 824 // Propagate shapes until nothing changes any longer. 825 while (!WorkList.empty()) { 826 WorkList = propagateShapeForward(WorkList); 827 WorkList = propagateShapeBackward(WorkList); 828 } 829 830 if (!isMinimal()) { 831 optimizeTransposes(); 832 LLVM_DEBUG({ 833 dbgs() << "Dump after matrix transpose optimization:\n"; 834 Func.dump(); 835 }); 836 } 837 838 bool Changed = false; 839 SmallVector<CallInst *, 16> MaybeFusableInsts; 840 SmallVector<Instruction *, 16> MatrixInsts; 841 842 // First, collect all instructions with shape information and candidates for 843 // fusion (currently only matrix multiplies). 844 ReversePostOrderTraversal<Function *> RPOT(&Func); 845 for (auto *BB : RPOT) 846 for (Instruction &I : *BB) { 847 if (ShapeMap.find(&I) == ShapeMap.end()) 848 continue; 849 if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>())) 850 MaybeFusableInsts.push_back(cast<CallInst>(&I)); 851 MatrixInsts.push_back(&I); 852 } 853 854 // Second, try to fuse candidates. 855 SmallPtrSet<Instruction *, 16> FusedInsts; 856 for (CallInst *CI : MaybeFusableInsts) 857 LowerMatrixMultiplyFused(CI, FusedInsts); 858 Changed = !FusedInsts.empty(); 859 860 // Third, lower remaining instructions with shape information. 861 for (Instruction *Inst : MatrixInsts) { 862 if (FusedInsts.count(Inst)) 863 continue; 864 865 IRBuilder<> Builder(Inst); 866 867 if (CallInst *CInst = dyn_cast<CallInst>(Inst)) 868 Changed |= VisitCallInst(CInst); 869 870 Value *Op1; 871 Value *Op2; 872 if (auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 873 Changed |= VisitBinaryOperator(BinOp); 874 if (auto *UnOp = dyn_cast<UnaryOperator>(Inst)) 875 Changed |= VisitUnaryOperator(UnOp); 876 if (match(Inst, m_Load(m_Value(Op1)))) 877 Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder); 878 else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2)))) 879 Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder); 880 } 881 882 if (ORE) { 883 RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func); 884 RemarkGen.emitRemarks(); 885 } 886 887 // Delete the instructions backwards, as it has a reduced likelihood of 888 // having to update as many def-use and use-def chains. 889 // 890 // Because we add to ToRemove during fusion we can't guarantee that defs 891 // are before uses. Change uses to poison temporarily as these should get 892 // removed as well. 893 // 894 // For verification, we keep track of where we changed uses to poison in 895 // PoisonedInsts and then check that we in fact remove them. 896 SmallSet<Instruction *, 16> PoisonedInsts; 897 for (auto *Inst : reverse(ToRemove)) { 898 for (Use &U : llvm::make_early_inc_range(Inst->uses())) { 899 if (auto *Poisoned = dyn_cast<Instruction>(U.getUser())) 900 PoisonedInsts.insert(Poisoned); 901 U.set(PoisonValue::get(Inst->getType())); 902 } 903 Inst->eraseFromParent(); 904 PoisonedInsts.erase(Inst); 905 } 906 if (!PoisonedInsts.empty()) { 907 // If we didn't remove all poisoned instructions, it's a hard error. 908 dbgs() << "Poisoned but present instructions:\n"; 909 for (auto *I : PoisonedInsts) 910 dbgs() << *I << "\n"; 911 llvm_unreachable("Poisoned but instruction not removed"); 912 } 913 914 return Changed; 915 } 916 917 /// Turns \p BasePtr into an elementwise pointer to \p EltType. 918 Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) { 919 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); 920 Type *EltPtrType = PointerType::get(EltType, AS); 921 return Builder.CreatePointerCast(BasePtr, EltPtrType); 922 } 923 924 /// Replace intrinsic calls 925 bool VisitCallInst(CallInst *Inst) { 926 if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic()) 927 return false; 928 929 switch (Inst->getCalledFunction()->getIntrinsicID()) { 930 case Intrinsic::matrix_multiply: 931 LowerMultiply(Inst); 932 break; 933 case Intrinsic::matrix_transpose: 934 LowerTranspose(Inst); 935 break; 936 case Intrinsic::matrix_column_major_load: 937 LowerColumnMajorLoad(Inst); 938 break; 939 case Intrinsic::matrix_column_major_store: 940 LowerColumnMajorStore(Inst); 941 break; 942 default: 943 return false; 944 } 945 return true; 946 } 947 948 /// Compute the alignment for a column/row \p Idx with \p Stride between them. 949 /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a 950 /// ConstantInt, reduce the initial alignment based on the byte offset. For 951 /// non-ConstantInt strides, return the common alignment of the initial 952 /// alignment and the element size in bytes. 953 Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy, 954 MaybeAlign A) const { 955 Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy); 956 if (Idx == 0) 957 return InitialAlign; 958 959 TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy); 960 if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) { 961 uint64_t StrideInBytes = 962 ConstStride->getZExtValue() * ElementSizeInBits / 8; 963 return commonAlignment(InitialAlign, Idx * StrideInBytes); 964 } 965 return commonAlignment(InitialAlign, ElementSizeInBits / 8); 966 } 967 968 /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between 969 /// vectors. 970 MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride, 971 bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) { 972 auto *VType = cast<VectorType>(Ty); 973 Type *EltTy = VType->getElementType(); 974 Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride()); 975 Value *EltPtr = createElementPtr(Ptr, EltTy, Builder); 976 MatrixTy Result; 977 for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) { 978 Value *GEP = computeVectorAddr( 979 EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I), 980 Stride, Shape.getStride(), EltTy, Builder); 981 Value *Vector = Builder.CreateAlignedLoad( 982 VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign), 983 IsVolatile, "col.load"); 984 985 Result.addVector(Vector); 986 } 987 return Result.addNumLoads(getNumOps(Result.getVectorTy()) * 988 Result.getNumVectors()); 989 } 990 991 /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix, 992 /// starting at \p MatrixPtr[I][J]. 993 MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile, 994 ShapeInfo MatrixShape, Value *I, Value *J, 995 ShapeInfo ResultShape, Type *EltTy, 996 IRBuilder<> &Builder) { 997 998 Value *Offset = Builder.CreateAdd( 999 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); 1000 1001 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); 1002 Value *EltPtr = 1003 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); 1004 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); 1005 auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows * 1006 ResultShape.NumColumns); 1007 Type *TilePtrTy = PointerType::get(TileTy, AS); 1008 Value *TilePtr = 1009 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); 1010 1011 return loadMatrix(TileTy, TilePtr, Align, 1012 Builder.getInt64(MatrixShape.getStride()), IsVolatile, 1013 ResultShape, Builder); 1014 } 1015 1016 /// Lower a load instruction with shape information. 1017 void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride, 1018 bool IsVolatile, ShapeInfo Shape) { 1019 IRBuilder<> Builder(Inst); 1020 finalizeLowering(Inst, 1021 loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile, 1022 Shape, Builder), 1023 Builder); 1024 } 1025 1026 /// Lowers llvm.matrix.column.major.load. 1027 /// 1028 /// The intrinsic loads a matrix from memory using a stride between columns. 1029 void LowerColumnMajorLoad(CallInst *Inst) { 1030 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 1031 "Intrinsic only supports column-major layout!"); 1032 Value *Ptr = Inst->getArgOperand(0); 1033 Value *Stride = Inst->getArgOperand(1); 1034 LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride, 1035 cast<ConstantInt>(Inst->getArgOperand(2))->isOne(), 1036 {Inst->getArgOperand(3), Inst->getArgOperand(4)}); 1037 } 1038 1039 /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p 1040 /// MatrixPtr[I][J]. 1041 void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr, 1042 MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape, 1043 Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) { 1044 Value *Offset = Builder.CreateAdd( 1045 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); 1046 1047 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); 1048 Value *EltPtr = 1049 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); 1050 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); 1051 auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() * 1052 StoreVal.getNumColumns()); 1053 Type *TilePtrTy = PointerType::get(TileTy, AS); 1054 Value *TilePtr = 1055 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); 1056 1057 storeMatrix(TileTy, StoreVal, TilePtr, MAlign, 1058 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder); 1059 } 1060 1061 /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between 1062 /// vectors. 1063 MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, 1064 MaybeAlign MAlign, Value *Stride, bool IsVolatile, 1065 IRBuilder<> &Builder) { 1066 auto VType = cast<VectorType>(Ty); 1067 Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); 1068 for (auto Vec : enumerate(StoreVal.vectors())) { 1069 Value *GEP = computeVectorAddr( 1070 EltPtr, 1071 Builder.getIntN(Stride->getType()->getScalarSizeInBits(), 1072 Vec.index()), 1073 Stride, StoreVal.getStride(), VType->getElementType(), Builder); 1074 Builder.CreateAlignedStore(Vec.value(), GEP, 1075 getAlignForIndex(Vec.index(), Stride, 1076 VType->getElementType(), 1077 MAlign), 1078 IsVolatile); 1079 } 1080 return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) * 1081 StoreVal.getNumVectors()); 1082 } 1083 1084 /// Lower a store instruction with shape information. 1085 void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A, 1086 Value *Stride, bool IsVolatile, ShapeInfo Shape) { 1087 IRBuilder<> Builder(Inst); 1088 auto StoreVal = getMatrix(Matrix, Shape, Builder); 1089 finalizeLowering(Inst, 1090 storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride, 1091 IsVolatile, Builder), 1092 Builder); 1093 } 1094 1095 /// Lowers llvm.matrix.column.major.store. 1096 /// 1097 /// The intrinsic store a matrix back memory using a stride between columns. 1098 void LowerColumnMajorStore(CallInst *Inst) { 1099 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 1100 "Intrinsic only supports column-major layout!"); 1101 Value *Matrix = Inst->getArgOperand(0); 1102 Value *Ptr = Inst->getArgOperand(1); 1103 Value *Stride = Inst->getArgOperand(2); 1104 LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride, 1105 cast<ConstantInt>(Inst->getArgOperand(3))->isOne(), 1106 {Inst->getArgOperand(4), Inst->getArgOperand(5)}); 1107 } 1108 1109 // Set elements I..I+NumElts-1 to Block 1110 Value *insertVector(Value *Col, unsigned I, Value *Block, 1111 IRBuilder<> &Builder) { 1112 1113 // First, bring Block to the same size as Col 1114 unsigned BlockNumElts = 1115 cast<FixedVectorType>(Block->getType())->getNumElements(); 1116 unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements(); 1117 assert(NumElts >= BlockNumElts && "Too few elements for current block"); 1118 1119 Block = Builder.CreateShuffleVector( 1120 Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts)); 1121 1122 // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7, 1123 // 8, 4, 5, 6 1124 SmallVector<int, 16> Mask; 1125 unsigned i; 1126 for (i = 0; i < I; i++) 1127 Mask.push_back(i); 1128 1129 unsigned VecNumElts = 1130 cast<FixedVectorType>(Col->getType())->getNumElements(); 1131 for (; i < I + BlockNumElts; i++) 1132 Mask.push_back(i - I + VecNumElts); 1133 1134 for (; i < VecNumElts; i++) 1135 Mask.push_back(i); 1136 1137 return Builder.CreateShuffleVector(Col, Block, Mask); 1138 } 1139 1140 Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp, 1141 IRBuilder<> &Builder, bool AllowContraction, 1142 unsigned &NumComputeOps) { 1143 NumComputeOps += getNumOps(A->getType()); 1144 if (!Sum) 1145 return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B); 1146 1147 if (UseFPOp) { 1148 if (AllowContraction) { 1149 // Use fmuladd for floating point operations and let the backend decide 1150 // if that's profitable. 1151 Function *FMulAdd = Intrinsic::getDeclaration( 1152 Func.getParent(), Intrinsic::fmuladd, A->getType()); 1153 return Builder.CreateCall(FMulAdd, {A, B, Sum}); 1154 } 1155 NumComputeOps += getNumOps(A->getType()); 1156 Value *Mul = Builder.CreateFMul(A, B); 1157 return Builder.CreateFAdd(Sum, Mul); 1158 } 1159 1160 NumComputeOps += getNumOps(A->getType()); 1161 Value *Mul = Builder.CreateMul(A, B); 1162 return Builder.CreateAdd(Sum, Mul); 1163 } 1164 1165 /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For 1166 /// users with shape information, there's nothing to do: they will use the 1167 /// cached value when they are lowered. For other users, \p Matrix is 1168 /// flattened and the uses are updated to use it. Also marks \p Inst for 1169 /// deletion. 1170 void finalizeLowering(Instruction *Inst, MatrixTy Matrix, 1171 IRBuilder<> &Builder) { 1172 auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix)); 1173 (void)inserted; 1174 assert(inserted.second && "multiple matrix lowering mapping"); 1175 1176 ToRemove.push_back(Inst); 1177 Value *Flattened = nullptr; 1178 for (Use &U : llvm::make_early_inc_range(Inst->uses())) { 1179 if (ShapeMap.find(U.getUser()) == ShapeMap.end()) { 1180 if (!Flattened) 1181 Flattened = Matrix.embedInVector(Builder); 1182 U.set(Flattened); 1183 } 1184 } 1185 } 1186 1187 /// Compute \p Result += \p A * \p B for input matrices with left-associating 1188 /// addition. 1189 /// 1190 /// We can fold a transpose into the operand that is used to extract scalars. 1191 /// This is the first operands with row-major and the second with 1192 /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate 1193 /// operand is transposed. 1194 void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A, 1195 const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled, 1196 bool IsScalarMatrixTransposed, FastMathFlags FMF) { 1197 const unsigned VF = std::max<unsigned>( 1198 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 1199 .getFixedSize() / 1200 Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(), 1201 1U); 1202 unsigned R = Result.getNumRows(); 1203 unsigned C = Result.getNumColumns(); 1204 unsigned M = A.getNumColumns(); 1205 1206 bool IsFP = Result.getElementType()->isFloatingPointTy(); 1207 assert(A.isColumnMajor() == B.isColumnMajor() && 1208 Result.isColumnMajor() == A.isColumnMajor() && 1209 "operands must agree on matrix layout"); 1210 unsigned NumComputeOps = 0; 1211 1212 Builder.setFastMathFlags(FMF); 1213 1214 if (A.isColumnMajor()) { 1215 // Multiply columns from the first operand with scalars from the second 1216 // operand. Then move along the K axes and accumulate the columns. With 1217 // this the adds can be vectorized without reassociation. 1218 for (unsigned J = 0; J < C; ++J) { 1219 unsigned BlockSize = VF; 1220 // If Result is zero, we don't need to accumulate in the K==0 iteration. 1221 bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J)); 1222 1223 for (unsigned I = 0; I < R; I += BlockSize) { 1224 // Gradually lower the vectorization factor to cover the remainder. 1225 while (I + BlockSize > R) 1226 BlockSize /= 2; 1227 1228 Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder) 1229 : nullptr; 1230 for (unsigned K = 0; K < M; ++K) { 1231 Value *L = A.extractVector(I, K, BlockSize, Builder); 1232 Value *RH = Builder.CreateExtractElement( 1233 B.getColumn(IsScalarMatrixTransposed ? K : J), 1234 IsScalarMatrixTransposed ? J : K); 1235 Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat"); 1236 Sum = 1237 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat, 1238 IsFP, Builder, FMF.allowContract(), NumComputeOps); 1239 } 1240 Result.setVector(J, 1241 insertVector(Result.getVector(J), I, Sum, Builder)); 1242 } 1243 } 1244 } else { 1245 // Multiply rows from the second operand with scalars from the first 1246 // operand. Then move along the K axes and accumulate the rows. With this 1247 // the adds can be vectorized without reassociation. 1248 for (unsigned I = 0; I < R; ++I) { 1249 unsigned BlockSize = VF; 1250 bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I)); 1251 for (unsigned J = 0; J < C; J += BlockSize) { 1252 // Gradually lower the vectorization factor to cover the remainder. 1253 while (J + BlockSize > C) 1254 BlockSize /= 2; 1255 1256 Value *Sum = nullptr; 1257 for (unsigned K = 0; K < M; ++K) { 1258 Value *R = B.extractVector(K, J, BlockSize, Builder); 1259 Value *LH = Builder.CreateExtractElement( 1260 A.getVector(IsScalarMatrixTransposed ? K : I), 1261 IsScalarMatrixTransposed ? I : K); 1262 Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat"); 1263 Sum = 1264 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R, 1265 IsFP, Builder, FMF.allowContract(), NumComputeOps); 1266 } 1267 Result.setVector(I, 1268 insertVector(Result.getVector(I), J, Sum, Builder)); 1269 } 1270 } 1271 } 1272 Result.addNumComputeOps(NumComputeOps); 1273 } 1274 1275 /// Ensure that the memory in \p Load does not alias \p Store by potentially 1276 /// copying it to a new location. This new or otherwise the original location 1277 /// is returned. 1278 Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store, 1279 CallInst *MatMul) { 1280 MemoryLocation StoreLoc = MemoryLocation::get(Store); 1281 MemoryLocation LoadLoc = MemoryLocation::get(Load); 1282 1283 // If we can statically determine noalias we're good. 1284 if (AA->isNoAlias(LoadLoc, StoreLoc)) 1285 return Load->getPointerOperand(); 1286 1287 // Create code to check if the memory locations of the Load and Store 1288 // overlap and if they do, copy Load's operand to a new buffer. 1289 1290 // First, create new blocks for 2n part of the check and the copy. 1291 BasicBlock *Check0 = MatMul->getParent(); 1292 // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a 1293 // DT. Manually collect dominator tree updates, to avoid unnecessary work, 1294 // as we adjust Check0 and Check1's branches. 1295 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1296 for (BasicBlock *Succ : successors(Check0)) 1297 DTUpdates.push_back({DT->Delete, Check0, Succ}); 1298 1299 BasicBlock *Check1 = 1300 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1301 nullptr, "alias_cont"); 1302 BasicBlock *Copy = 1303 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1304 nullptr, "copy"); 1305 BasicBlock *Fusion = 1306 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1307 nullptr, "no_alias"); 1308 1309 // Check if the loaded memory location begins before the end of the store 1310 // location. If the condition holds, they might overlap, otherwise they are 1311 // guaranteed to not overlap. 1312 IRBuilder<> Builder(MatMul); 1313 Check0->getTerminator()->eraseFromParent(); 1314 Builder.SetInsertPoint(Check0); 1315 Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout()); 1316 Value *StoreBegin = Builder.CreatePtrToInt( 1317 const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin"); 1318 Value *StoreEnd = Builder.CreateAdd( 1319 StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()), 1320 "store.end", true, true); 1321 Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr), 1322 IntPtrTy, "load.begin"); 1323 Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1, 1324 Fusion); 1325 1326 // Check if the store begins before the end of the load location. If the 1327 // condition holds, they alias, otherwise they are guaranteed to not 1328 // overlap. 1329 Check1->getTerminator()->eraseFromParent(); 1330 Builder.SetInsertPoint(Check1, Check1->begin()); 1331 Value *LoadEnd = Builder.CreateAdd( 1332 LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()), 1333 "load.end", true, true); 1334 Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy, 1335 Fusion); 1336 1337 // Copy load operand to new alloca. 1338 Builder.SetInsertPoint(Copy, Copy->begin()); 1339 auto *VT = cast<FixedVectorType>(Load->getType()); 1340 // Use an array type for the alloca, to avoid potentially huge alignment 1341 // requirements for large vector types. 1342 auto *ArrayTy = ArrayType::get(VT->getElementType(), VT->getNumElements()); 1343 AllocaInst *Alloca = 1344 Builder.CreateAlloca(ArrayTy, Load->getPointerAddressSpace()); 1345 Value *BC = Builder.CreateBitCast(Alloca, VT->getPointerTo()); 1346 1347 Builder.CreateMemCpy(BC, Alloca->getAlign(), Load->getPointerOperand(), 1348 Load->getAlign(), LoadLoc.Size.getValue()); 1349 Builder.SetInsertPoint(Fusion, Fusion->begin()); 1350 PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3); 1351 PHI->addIncoming(Load->getPointerOperand(), Check0); 1352 PHI->addIncoming(Load->getPointerOperand(), Check1); 1353 PHI->addIncoming(BC, Copy); 1354 1355 // Adjust DT. 1356 DTUpdates.push_back({DT->Insert, Check0, Check1}); 1357 DTUpdates.push_back({DT->Insert, Check0, Fusion}); 1358 DTUpdates.push_back({DT->Insert, Check1, Copy}); 1359 DTUpdates.push_back({DT->Insert, Check1, Fusion}); 1360 DT->applyUpdates(DTUpdates); 1361 return PHI; 1362 } 1363 1364 bool isFusionProfitable(CallInst *MatMul) { 1365 if (ForceFusion) 1366 return true; 1367 1368 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1369 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1370 1371 const unsigned R = LShape.NumRows; 1372 const unsigned C = RShape.NumColumns; 1373 const unsigned M = LShape.NumColumns; 1374 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1375 1376 const unsigned VF = std::max<unsigned>( 1377 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 1378 .getFixedSize() / 1379 EltType->getPrimitiveSizeInBits().getFixedSize(), 1380 1U); 1381 1382 // Cost model for tiling 1383 // 1384 // For tiling to be beneficial, we need reuse either along the R or 1385 // the C axis. We vectorize along the R axis so that means at least 1386 // 3 elements. 1387 // TODO: Also consider cost of copying if operands alias. 1388 if (R <= VF && C == 1) 1389 return false; 1390 // Then we need enough elements to exceed the number of vector 1391 // registers we have. Note that this is an oversimplification since 1392 // fusing also takes some extra loads which may exceed the number of 1393 // reloads necessary. 1394 unsigned Op0Regs = (R + VF - 1) / VF * M; 1395 unsigned Op1Regs = (M + VF - 1) / VF * C; 1396 return Op0Regs + Op1Regs > 1397 TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true)); 1398 } 1399 1400 MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) { 1401 MatrixTy Res; 1402 auto *ColumType = FixedVectorType::get(EltType, R); 1403 for (unsigned I = 0; I < C; ++I) 1404 Res.addVector(ConstantAggregateZero::get(ColumType)); 1405 return Res; 1406 } 1407 1408 void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape, 1409 Value *RPtr, ShapeInfo RShape, StoreInst *Store) { 1410 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1411 1412 // Create the main tiling loop nest. 1413 TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize); 1414 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1415 Instruction *InsertI = cast<Instruction>(MatMul); 1416 BasicBlock *Start = InsertI->getParent(); 1417 BasicBlock *End = 1418 SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue"); 1419 IRBuilder<> Builder(MatMul); 1420 BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI); 1421 1422 Type *TileVecTy = 1423 FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize); 1424 MatrixTy TileResult; 1425 // Insert in the inner loop header. 1426 Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator()); 1427 // Create PHI nodes for the result columns to accumulate across iterations. 1428 SmallVector<PHINode *, 4> ColumnPhis; 1429 for (unsigned I = 0; I < TileSize; I++) { 1430 auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I)); 1431 Phi->addIncoming(ConstantAggregateZero::get(TileVecTy), 1432 TI.RowLoopHeader->getSingleSuccessor()); 1433 TileResult.addVector(Phi); 1434 ColumnPhis.push_back(Phi); 1435 } 1436 1437 // Insert in the inner loop body, which computes 1438 // Res += Load(CurrentRow, K) * Load(K, CurrentColumn) 1439 Builder.SetInsertPoint(InnerBody->getTerminator()); 1440 // Load tiles of the operands. 1441 MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK, 1442 {TileSize, TileSize}, EltType, Builder); 1443 MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol, 1444 {TileSize, TileSize}, EltType, Builder); 1445 emitMatrixMultiply(TileResult, A, B, Builder, true, false, 1446 getFastMathFlags(MatMul)); 1447 // Store result after the inner loop is done. 1448 Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator()); 1449 storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(), 1450 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns}, 1451 TI.CurrentRow, TI.CurrentCol, EltType, Builder); 1452 1453 for (unsigned I = 0; I < TileResult.getNumVectors(); I++) 1454 ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch); 1455 1456 // Force unrolling of a few iterations of the inner loop, to make sure there 1457 // is enough work per iteration. 1458 // FIXME: The unroller should make this decision directly instead, but 1459 // currently the cost-model is not up to the task. 1460 unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize); 1461 addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader), 1462 "llvm.loop.unroll.count", InnerLoopUnrollCount); 1463 } 1464 1465 void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1, 1466 StoreInst *Store, 1467 SmallPtrSetImpl<Instruction *> &FusedInsts) { 1468 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 1469 "Tiling only supported for column-major matrixes at the moment!"); 1470 if (!isFusionProfitable(MatMul)) 1471 return; 1472 1473 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1474 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1475 1476 const unsigned R = LShape.NumRows; 1477 const unsigned C = RShape.NumColumns; 1478 const unsigned M = LShape.NumColumns; 1479 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1480 1481 Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul); 1482 Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul); 1483 Value *CPtr = Store->getPointerOperand(); 1484 1485 if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0)) 1486 createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store); 1487 else { 1488 IRBuilder<> Builder(Store); 1489 for (unsigned J = 0; J < C; J += TileSize) 1490 for (unsigned I = 0; I < R; I += TileSize) { 1491 const unsigned TileR = std::min(R - I, unsigned(TileSize)); 1492 const unsigned TileC = std::min(C - J, unsigned(TileSize)); 1493 MatrixTy Res = getZeroMatrix(EltType, TileR, TileC); 1494 1495 for (unsigned K = 0; K < M; K += TileSize) { 1496 const unsigned TileM = std::min(M - K, unsigned(TileSize)); 1497 MatrixTy A = 1498 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(), 1499 LShape, Builder.getInt64(I), Builder.getInt64(K), 1500 {TileR, TileM}, EltType, Builder); 1501 MatrixTy B = 1502 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(), 1503 RShape, Builder.getInt64(K), Builder.getInt64(J), 1504 {TileM, TileC}, EltType, Builder); 1505 emitMatrixMultiply(Res, A, B, Builder, true, false, 1506 getFastMathFlags(MatMul)); 1507 } 1508 storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M}, 1509 Builder.getInt64(I), Builder.getInt64(J), EltType, 1510 Builder); 1511 } 1512 } 1513 1514 // Mark eliminated instructions as fused and remove them. 1515 FusedInsts.insert(Store); 1516 FusedInsts.insert(MatMul); 1517 Store->eraseFromParent(); 1518 MatMul->eraseFromParent(); 1519 if (LoadOp0->hasNUses(0)) { 1520 FusedInsts.insert(LoadOp0); 1521 LoadOp0->eraseFromParent(); 1522 } 1523 if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) { 1524 FusedInsts.insert(LoadOp1); 1525 LoadOp1->eraseFromParent(); 1526 } 1527 } 1528 1529 /// Try to lower matrix multiply chains by fusing operations. 1530 /// 1531 /// Call finalizeLowering on lowered instructions. Instructions that are 1532 /// completely eliminated by fusion are added to \p FusedInsts. 1533 void LowerMatrixMultiplyFused(CallInst *MatMul, 1534 SmallPtrSetImpl<Instruction *> &FusedInsts) { 1535 if (!FuseMatrix || !DT) 1536 return; 1537 1538 assert(AA && LI && "Analyses should be available"); 1539 1540 Value *A = MatMul->getArgOperand(0); 1541 Value *B = MatMul->getArgOperand(1); 1542 1543 // We can fold the transpose into the operand that is used to fetch scalars. 1544 Value *T; 1545 if (MatrixLayout == MatrixLayoutTy::ColumnMajor 1546 ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T))) 1547 : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) { 1548 IRBuilder<> Builder(MatMul); 1549 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1550 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1551 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1552 const unsigned R = LShape.NumRows; 1553 const unsigned M = LShape.NumColumns; 1554 const unsigned C = RShape.NumColumns; 1555 1556 MatrixTy MA; 1557 MatrixTy MB; 1558 1559 Value *Transpose; 1560 if (MatrixLayout == MatrixLayoutTy::ColumnMajor) { 1561 MA = getMatrix(A, ShapeInfo(R, M), Builder); 1562 MB = getMatrix(T, ShapeInfo(C, M), Builder); 1563 Transpose = B; 1564 } else { 1565 MA = getMatrix(T, ShapeInfo(R, M), Builder); 1566 MB = getMatrix(B, ShapeInfo(C, M), Builder); 1567 Transpose = A; 1568 } 1569 1570 // Initialize the output 1571 MatrixTy Result(R, C, EltType); 1572 1573 emitMatrixMultiply(Result, MA, MB, Builder, false, true, 1574 getFastMathFlags(MatMul)); 1575 1576 FusedInsts.insert(MatMul); 1577 if (Transpose->hasOneUse()) { 1578 FusedInsts.insert(cast<Instruction>(Transpose)); 1579 ToRemove.push_back(cast<Instruction>(Transpose)); 1580 // TODO: add a fake entry for the folded instruction so that this is 1581 // included in the expression in the remark. 1582 Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType); 1583 } 1584 finalizeLowering(MatMul, Result, Builder); 1585 return; 1586 } 1587 1588 if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor) 1589 return; 1590 1591 // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering 1592 // since the single store user will be lowered as part of this. 1593 auto *LoadOp0 = dyn_cast<LoadInst>(A); 1594 auto *LoadOp1 = dyn_cast<LoadInst>(B); 1595 auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin()); 1596 if (LoadOp0 && LoadOp1 && Store) { 1597 // The store address must dominate the MatMul instruction, otherwise 1598 // we create invalid IR. 1599 SetVector<Value *> WorkList; 1600 WorkList.insert(Store->getOperand(1)); 1601 SmallVector<Instruction *> ToHoist; 1602 for (unsigned I = 0; I != WorkList.size(); ++I) { 1603 Value *Current = WorkList[I]; 1604 auto *CurrI = dyn_cast<Instruction>(Current); 1605 if (!CurrI) 1606 continue; 1607 if (isa<PHINode>(CurrI)) 1608 return; 1609 if (DT->dominates(CurrI, MatMul)) 1610 continue; 1611 if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory()) 1612 return; 1613 ToHoist.push_back(CurrI); 1614 WorkList.insert(CurrI->op_begin(), CurrI->op_end()); 1615 } 1616 1617 sort(ToHoist, [this](Instruction *A, Instruction *B) { 1618 return DT->dominates(A, B); 1619 }); 1620 for (Instruction *I : ToHoist) 1621 I->moveBefore(MatMul); 1622 1623 emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts); 1624 return; 1625 } 1626 } 1627 1628 /// Lowers llvm.matrix.multiply. 1629 void LowerMultiply(CallInst *MatMul) { 1630 IRBuilder<> Builder(MatMul); 1631 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1632 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1633 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1634 1635 const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder); 1636 const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder); 1637 assert(Lhs.getElementType() == Rhs.getElementType() && 1638 "Matrix multiply argument element types do not match."); 1639 1640 const unsigned R = LShape.NumRows; 1641 const unsigned C = RShape.NumColumns; 1642 assert(LShape.NumColumns == RShape.NumRows); 1643 1644 // Initialize the output 1645 MatrixTy Result(R, C, EltType); 1646 assert(Lhs.getElementType() == Result.getElementType() && 1647 "Matrix multiply result element type does not match arguments."); 1648 1649 emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false, 1650 getFastMathFlags(MatMul)); 1651 finalizeLowering(MatMul, Result, Builder); 1652 } 1653 1654 /// Lowers llvm.matrix.transpose. 1655 void LowerTranspose(CallInst *Inst) { 1656 MatrixTy Result; 1657 IRBuilder<> Builder(Inst); 1658 Value *InputVal = Inst->getArgOperand(0); 1659 VectorType *VectorTy = cast<VectorType>(InputVal->getType()); 1660 ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2)); 1661 MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder); 1662 1663 const unsigned NewNumVecs = 1664 InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns; 1665 const unsigned NewNumElts = 1666 InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows; 1667 1668 for (unsigned I = 0; I < NewNumVecs; ++I) { 1669 // Build a single result vector. First initialize it. 1670 Value *ResultVector = PoisonValue::get( 1671 FixedVectorType::get(VectorTy->getElementType(), NewNumElts)); 1672 // Go through the old elements and insert it into the resulting vector. 1673 for (auto J : enumerate(InputMatrix.vectors())) { 1674 Value *Elt = Builder.CreateExtractElement(J.value(), I); 1675 // Row and column indices are transposed. 1676 ResultVector = 1677 Builder.CreateInsertElement(ResultVector, Elt, J.index()); 1678 } 1679 Result.addVector(ResultVector); 1680 } 1681 1682 // TODO: Improve estimate of operations needed for transposes. Currently we 1683 // just count the insertelement/extractelement instructions, but do not 1684 // account for later simplifications/combines. 1685 finalizeLowering( 1686 Inst, 1687 Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns) 1688 .addNumExposedTransposes(1), 1689 Builder); 1690 } 1691 1692 /// Lower load instructions, if shape information is available. 1693 bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) { 1694 auto I = ShapeMap.find(Inst); 1695 if (I == ShapeMap.end()) 1696 return false; 1697 1698 LowerLoad(Inst, Ptr, Inst->getAlign(), 1699 Builder.getInt64(I->second.getStride()), Inst->isVolatile(), 1700 I->second); 1701 return true; 1702 } 1703 1704 bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr, 1705 IRBuilder<> &Builder) { 1706 auto I = ShapeMap.find(StoredVal); 1707 if (I == ShapeMap.end()) 1708 return false; 1709 1710 LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(), 1711 Builder.getInt64(I->second.getStride()), Inst->isVolatile(), 1712 I->second); 1713 return true; 1714 } 1715 1716 /// Lower binary operators, if shape information is available. 1717 bool VisitBinaryOperator(BinaryOperator *Inst) { 1718 auto I = ShapeMap.find(Inst); 1719 if (I == ShapeMap.end()) 1720 return false; 1721 1722 Value *Lhs = Inst->getOperand(0); 1723 Value *Rhs = Inst->getOperand(1); 1724 1725 IRBuilder<> Builder(Inst); 1726 ShapeInfo &Shape = I->second; 1727 1728 MatrixTy Result; 1729 MatrixTy A = getMatrix(Lhs, Shape, Builder); 1730 MatrixTy B = getMatrix(Rhs, Shape, Builder); 1731 assert(A.isColumnMajor() == B.isColumnMajor() && 1732 Result.isColumnMajor() == A.isColumnMajor() && 1733 "operands must agree on matrix layout"); 1734 1735 Builder.setFastMathFlags(getFastMathFlags(Inst)); 1736 1737 // Helper to perform binary op on vectors. 1738 auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) { 1739 switch (Inst->getOpcode()) { 1740 case Instruction::Add: 1741 return Builder.CreateAdd(LHS, RHS); 1742 case Instruction::Mul: 1743 return Builder.CreateMul(LHS, RHS); 1744 case Instruction::Sub: 1745 return Builder.CreateSub(LHS, RHS); 1746 case Instruction::FAdd: 1747 return Builder.CreateFAdd(LHS, RHS); 1748 case Instruction::FMul: 1749 return Builder.CreateFMul(LHS, RHS); 1750 case Instruction::FSub: 1751 return Builder.CreateFSub(LHS, RHS); 1752 default: 1753 llvm_unreachable("Unsupported binary operator for matrix"); 1754 } 1755 }; 1756 1757 for (unsigned I = 0; I < Shape.getNumVectors(); ++I) 1758 Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I))); 1759 1760 finalizeLowering(Inst, 1761 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * 1762 Result.getNumVectors()), 1763 Builder); 1764 return true; 1765 } 1766 1767 /// Lower unary operators, if shape information is available. 1768 bool VisitUnaryOperator(UnaryOperator *Inst) { 1769 auto I = ShapeMap.find(Inst); 1770 if (I == ShapeMap.end()) 1771 return false; 1772 1773 Value *Op = Inst->getOperand(0); 1774 1775 IRBuilder<> Builder(Inst); 1776 ShapeInfo &Shape = I->second; 1777 1778 MatrixTy Result; 1779 MatrixTy M = getMatrix(Op, Shape, Builder); 1780 1781 Builder.setFastMathFlags(getFastMathFlags(Inst)); 1782 1783 // Helper to perform unary op on vectors. 1784 auto BuildVectorOp = [&Builder, Inst](Value *Op) { 1785 switch (Inst->getOpcode()) { 1786 case Instruction::FNeg: 1787 return Builder.CreateFNeg(Op); 1788 default: 1789 llvm_unreachable("Unsupported unary operator for matrix"); 1790 } 1791 }; 1792 1793 for (unsigned I = 0; I < Shape.getNumVectors(); ++I) 1794 Result.addVector(BuildVectorOp(M.getVector(I))); 1795 1796 finalizeLowering(Inst, 1797 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * 1798 Result.getNumVectors()), 1799 Builder); 1800 return true; 1801 } 1802 1803 /// Helper to linearize a matrix expression tree into a string. Currently 1804 /// matrix expressions are linarized by starting at an expression leaf and 1805 /// linearizing bottom up. 1806 struct ExprLinearizer { 1807 unsigned LengthToBreak = 100; 1808 std::string Str; 1809 raw_string_ostream Stream; 1810 unsigned LineLength = 0; 1811 const DataLayout &DL; 1812 1813 /// Mapping from instructions to matrixes. It is used to identify 1814 /// matrix instructions. 1815 const MapVector<Value *, MatrixTy> &Inst2Matrix; 1816 1817 /// Mapping from values to the leaves of all expressions that the value is 1818 /// part of. 1819 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared; 1820 1821 /// Set of matrix expressions in the scope of a given DISubprogram. 1822 const SmallSetVector<Value *, 32> &ExprsInSubprogram; 1823 1824 /// Leaf node of the expression to linearize. 1825 Value *Leaf; 1826 1827 /// Used to keep track of sub-expressions that get reused while linearizing 1828 /// the expression. Re-used sub-expressions are marked as (reused). 1829 SmallPtrSet<Value *, 8> ReusedExprs; 1830 1831 ExprLinearizer(const DataLayout &DL, 1832 const MapVector<Value *, MatrixTy> &Inst2Matrix, 1833 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, 1834 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 1835 Value *Leaf) 1836 : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared), 1837 ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {} 1838 1839 void indent(unsigned N) { 1840 LineLength += N; 1841 for (unsigned i = 0; i < N; i++) 1842 Stream << " "; 1843 } 1844 1845 void lineBreak() { 1846 Stream << "\n"; 1847 LineLength = 0; 1848 } 1849 1850 void maybeIndent(unsigned Indent) { 1851 if (LineLength >= LengthToBreak) 1852 lineBreak(); 1853 1854 if (LineLength == 0) 1855 indent(Indent); 1856 } 1857 1858 void write(StringRef S) { 1859 LineLength += S.size(); 1860 Stream << S; 1861 } 1862 1863 Value *getUnderlyingObjectThroughLoads(Value *V) { 1864 if (Value *Ptr = getPointerOperand(V)) 1865 return getUnderlyingObjectThroughLoads(Ptr); 1866 else if (V->getType()->isPointerTy()) 1867 return getUnderlyingObject(V); 1868 return V; 1869 } 1870 1871 /// Returns true if \p V is a matrix value in the given subprogram. 1872 bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); } 1873 1874 /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to 1875 /// \p SS. 1876 void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) { 1877 auto M = Inst2Matrix.find(V); 1878 if (M == Inst2Matrix.end()) 1879 SS << "unknown"; 1880 else { 1881 SS << M->second.getNumRows(); 1882 SS << "x"; 1883 SS << M->second.getNumColumns(); 1884 } 1885 } 1886 1887 /// Write the called function name. Handles calls to llvm.matrix.* 1888 /// specially: we write the name, followed by the dimensions of the input 1889 /// matrixes, followed by the scalar type name. 1890 void writeFnName(CallInst *CI) { 1891 if (!CI->getCalledFunction()) 1892 write("<no called fn>"); 1893 else { 1894 StringRef Name = CI->getCalledFunction()->getName(); 1895 if (!Name.startswith("llvm.matrix")) { 1896 write(Name); 1897 return; 1898 } 1899 auto *II = cast<IntrinsicInst>(CI); 1900 write(Intrinsic::getBaseName(II->getIntrinsicID()) 1901 .drop_front(StringRef("llvm.matrix.").size())); 1902 write("."); 1903 std::string Tmp; 1904 raw_string_ostream SS(Tmp); 1905 1906 switch (II->getIntrinsicID()) { 1907 case Intrinsic::matrix_multiply: 1908 prettyPrintMatrixType(II->getOperand(0), SS); 1909 SS << "."; 1910 prettyPrintMatrixType(II->getOperand(1), SS); 1911 SS << "." << *II->getType()->getScalarType(); 1912 break; 1913 case Intrinsic::matrix_transpose: 1914 prettyPrintMatrixType(II->getOperand(0), SS); 1915 SS << "." << *II->getType()->getScalarType(); 1916 break; 1917 case Intrinsic::matrix_column_major_load: 1918 prettyPrintMatrixType(II, SS); 1919 SS << "." << *II->getType()->getScalarType(); 1920 break; 1921 case Intrinsic::matrix_column_major_store: 1922 prettyPrintMatrixType(II->getOperand(0), SS); 1923 SS << "." << *II->getOperand(0)->getType()->getScalarType(); 1924 break; 1925 default: 1926 llvm_unreachable("Unhandled case"); 1927 } 1928 SS.flush(); 1929 write(Tmp); 1930 } 1931 } 1932 1933 unsigned getNumShapeArgs(CallInst *CI) const { 1934 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1935 switch (II->getIntrinsicID()) { 1936 case Intrinsic::matrix_multiply: 1937 return 3; 1938 case Intrinsic::matrix_transpose: 1939 return 2; 1940 case Intrinsic::matrix_column_major_load: 1941 case Intrinsic::matrix_column_major_store: 1942 return 3; 1943 default: 1944 return 0; 1945 } 1946 } 1947 return 0; 1948 } 1949 1950 /// Special printing for values: for pointers, we print if they refer to an 1951 /// (function) external address or a stack address, for other values we 1952 /// either print the constant or "scalar"/"matrix" for other values. 1953 void write(Value *V) { 1954 V = getUnderlyingObjectThroughLoads(V); 1955 if (V->getType()->isPointerTy()) { 1956 if (isa<AllocaInst>(V)) { 1957 Stream << "stack addr"; 1958 LineLength += StringRef("stack addr").size(); 1959 } else { 1960 Stream << "addr"; 1961 LineLength += StringRef("addr").size(); 1962 } 1963 if (!V->getName().empty()) { 1964 Stream << " %" << V->getName() << ""; 1965 LineLength += V->getName().size() + 2; 1966 } 1967 return; 1968 } 1969 1970 std::string Tmp; 1971 raw_string_ostream TmpStream(Tmp); 1972 1973 if (auto *CI = dyn_cast<ConstantInt>(V)) 1974 TmpStream << CI->getValue(); 1975 else if (isa<Constant>(V)) 1976 TmpStream << "constant"; 1977 else { 1978 if (isMatrix(V)) 1979 TmpStream << "matrix"; 1980 else 1981 TmpStream << "scalar"; 1982 } 1983 TmpStream.flush(); 1984 Tmp = std::string(StringRef(Tmp).trim()); 1985 LineLength += Tmp.size(); 1986 Stream << Tmp; 1987 } 1988 1989 /// Linearize expression \p Expr starting at an indentation of \p Indent. 1990 /// Expressions that are re-used multiple times are prefixed with (reused) 1991 /// at the re-used root instruction. 1992 void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused, 1993 bool ParentShared) { 1994 auto *I = cast<Instruction>(Expr); 1995 maybeIndent(Indent); 1996 SmallVector<Value *, 8> Ops; 1997 1998 // Is Expr shared with other expression leaves? 1999 bool ExprShared = false; 2000 2001 // Deal with shared subtrees. Mark them as shared, if required. 2002 if (!ParentShared) { 2003 auto SI = Shared.find(Expr); 2004 assert(SI != Shared.end() && SI->second.count(Leaf)); 2005 2006 for (Value *S : SI->second) { 2007 if (S == Leaf) 2008 continue; 2009 DebugLoc DL = cast<Instruction>(S)->getDebugLoc(); 2010 write("shared with remark at line " + std::to_string(DL.getLine()) + 2011 " column " + std::to_string(DL.getCol()) + " ("); 2012 } 2013 ExprShared = SI->second.size() > 1; 2014 } 2015 2016 bool Reused = !ReusedExprs.insert(Expr).second; 2017 if (Reused && !ParentReused) 2018 write("(reused) "); 2019 2020 if (auto *CI = dyn_cast<CallInst>(I)) { 2021 writeFnName(CI); 2022 2023 Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI)); 2024 } else if (isa<BitCastInst>(Expr)) { 2025 // Special case bitcasts, which are used to materialize matrixes from 2026 // non-matrix ops. 2027 write("matrix"); 2028 return; 2029 } else { 2030 Ops.append(I->value_op_begin(), I->value_op_end()); 2031 write(std::string(I->getOpcodeName())); 2032 } 2033 2034 write(std::string("(")); 2035 2036 unsigned NumOpsToBreak = 1; 2037 if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>())) 2038 NumOpsToBreak = 2; 2039 2040 for (Value *Op : Ops) { 2041 if (Ops.size() > NumOpsToBreak) 2042 lineBreak(); 2043 2044 maybeIndent(Indent + 1); 2045 if (isMatrix(Op)) 2046 linearizeExpr(Op, Indent + 1, Reused, ExprShared); 2047 else 2048 write(Op); 2049 if (Op != Ops.back()) 2050 write(", "); 2051 } 2052 2053 write(")"); 2054 } 2055 2056 const std::string &getResult() { 2057 Stream.flush(); 2058 return Str; 2059 } 2060 }; 2061 2062 /// Generate remarks for matrix operations in a function. To generate remarks 2063 /// for matrix expressions, the following approach is used: 2064 /// 1. Use the inlined-at debug information to group matrix operations to the 2065 /// DISubprograms they are contained in. 2066 /// 2. Collect leaves of matrix expressions (done in 2067 /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression 2068 // mapping. Leaves are lowered matrix instructions without other matrix 2069 // users (like stores) in the current subprogram. 2070 /// 3. For each leaf, create a remark containing a linearizied version of the 2071 /// matrix expression. The expression is linearized by a recursive 2072 /// bottom-up traversal of the matrix operands, starting at a leaf. Note 2073 /// that multiple leaves can share sub-expressions. Shared subexpressions 2074 /// are explicitly marked as shared(). 2075 struct RemarkGenerator { 2076 const MapVector<Value *, MatrixTy> &Inst2Matrix; 2077 OptimizationRemarkEmitter &ORE; 2078 Function &Func; 2079 const DataLayout &DL; 2080 2081 RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix, 2082 OptimizationRemarkEmitter &ORE, Function &Func) 2083 : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func), 2084 DL(Func.getParent()->getDataLayout()) {} 2085 2086 /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are 2087 /// instructions in Inst2Matrix returning void or without any users in 2088 /// \p ExprsInSubprogram. Currently that should only include stores. 2089 SmallVector<Value *, 4> 2090 getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) { 2091 SmallVector<Value *, 4> Leaves; 2092 for (auto *Expr : ExprsInSubprogram) 2093 if (Expr->getType()->isVoidTy() || 2094 !any_of(Expr->users(), [&ExprsInSubprogram](User *U) { 2095 return ExprsInSubprogram.count(U); 2096 })) 2097 Leaves.push_back(Expr); 2098 return Leaves; 2099 } 2100 2101 /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf 2102 /// to all visited expressions in \p Shared. Limit the matrix operations to 2103 /// the ones in \p ExprsInSubprogram. 2104 void collectSharedInfo(Value *Leaf, Value *V, 2105 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2106 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) { 2107 2108 if (!ExprsInSubprogram.count(V)) 2109 return; 2110 2111 auto I = Shared.insert({V, {}}); 2112 I.first->second.insert(Leaf); 2113 2114 for (Value *Op : cast<Instruction>(V)->operand_values()) 2115 collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared); 2116 } 2117 2118 /// Calculate the number of exclusive and shared op counts for expression 2119 /// starting at \p V. Expressions used multiple times are counted once. 2120 /// Limit the matrix operations to the ones in \p ExprsInSubprogram. 2121 std::pair<OpInfoTy, OpInfoTy> 2122 sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs, 2123 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2124 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const { 2125 if (!ExprsInSubprogram.count(Root)) 2126 return {}; 2127 2128 // Already counted this expression. Stop. 2129 if (!ReusedExprs.insert(Root).second) 2130 return {}; 2131 2132 OpInfoTy SharedCount; 2133 OpInfoTy Count; 2134 2135 auto I = Shared.find(Root); 2136 auto CM = Inst2Matrix.find(Root); 2137 if (I->second.size() == 1) 2138 Count = CM->second.getOpInfo(); 2139 else 2140 SharedCount = CM->second.getOpInfo(); 2141 2142 for (Value *Op : cast<Instruction>(Root)->operand_values()) { 2143 auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared); 2144 Count += C.first; 2145 SharedCount += C.second; 2146 } 2147 return {Count, SharedCount}; 2148 } 2149 2150 void emitRemarks() { 2151 if (!ORE.allowExtraAnalysis(DEBUG_TYPE)) 2152 return; 2153 2154 // Map matrix operations to their containting subprograms, by traversing 2155 // the inlinedAt chain. If the function does not have a DISubprogram, we 2156 // only map them to the containing function. 2157 MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs; 2158 for (auto &KV : Inst2Matrix) { 2159 if (Func.getSubprogram()) { 2160 auto *I = cast<Instruction>(KV.first); 2161 DILocation *Context = I->getDebugLoc(); 2162 while (Context) { 2163 auto I = 2164 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}}); 2165 I.first->second.push_back(KV.first); 2166 Context = DebugLoc(Context).getInlinedAt(); 2167 } 2168 } else { 2169 auto I = Subprog2Exprs.insert({nullptr, {}}); 2170 I.first->second.push_back(KV.first); 2171 } 2172 } 2173 for (auto &KV : Subprog2Exprs) { 2174 SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(), 2175 KV.second.end()); 2176 auto Leaves = getExpressionLeaves(ExprsInSubprogram); 2177 2178 DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared; 2179 for (Value *Leaf : Leaves) 2180 collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared); 2181 2182 // Generate remarks for each leaf. 2183 for (auto *L : Leaves) { 2184 2185 DebugLoc Loc = cast<Instruction>(L)->getDebugLoc(); 2186 DILocation *Context = cast<Instruction>(L)->getDebugLoc(); 2187 while (Context) { 2188 if (getSubprogram(Context->getScope()) == KV.first) { 2189 Loc = Context; 2190 break; 2191 } 2192 Context = DebugLoc(Context).getInlinedAt(); 2193 } 2194 2195 SmallPtrSet<Value *, 8> ReusedExprs; 2196 OpInfoTy Counts, SharedCounts; 2197 std::tie(Counts, SharedCounts) = 2198 sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared); 2199 2200 OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc, 2201 cast<Instruction>(L)->getParent()); 2202 2203 Rem << "Lowered with "; 2204 Rem << ore::NV("NumStores", Counts.NumStores) << " stores, " 2205 << ore::NV("NumLoads", Counts.NumLoads) << " loads, " 2206 << ore::NV("NumComputeOps", Counts.NumComputeOps) 2207 << " compute ops, " 2208 << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes) 2209 << " exposed transposes"; 2210 2211 if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 || 2212 SharedCounts.NumComputeOps > 0) { 2213 Rem << ",\nadditionally " 2214 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, " 2215 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, " 2216 << ore::NV("NumFPOps", SharedCounts.NumComputeOps) 2217 << " compute ops" 2218 << " are shared with other expressions"; 2219 } 2220 2221 Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL)); 2222 ORE.emit(Rem); 2223 } 2224 } 2225 } 2226 2227 std::string 2228 linearize(Value *L, 2229 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, 2230 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2231 const DataLayout &DL) { 2232 ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L); 2233 Lin.linearizeExpr(L, 0, false, false); 2234 return Lin.getResult(); 2235 } 2236 }; 2237 }; 2238 } // namespace 2239 2240 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, 2241 FunctionAnalysisManager &AM) { 2242 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 2243 OptimizationRemarkEmitter *ORE = nullptr; 2244 AAResults *AA = nullptr; 2245 DominatorTree *DT = nullptr; 2246 LoopInfo *LI = nullptr; 2247 2248 if (!Minimal) { 2249 ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2250 AA = &AM.getResult<AAManager>(F); 2251 DT = &AM.getResult<DominatorTreeAnalysis>(F); 2252 LI = &AM.getResult<LoopAnalysis>(F); 2253 } 2254 2255 LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE); 2256 if (LMT.Visit()) { 2257 PreservedAnalyses PA; 2258 if (!Minimal) { 2259 PA.preserve<LoopAnalysis>(); 2260 PA.preserve<DominatorTreeAnalysis>(); 2261 } 2262 return PA; 2263 } 2264 return PreservedAnalyses::all(); 2265 } 2266 2267 void LowerMatrixIntrinsicsPass::printPipeline( 2268 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 2269 static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline( 2270 OS, MapClassName2PassName); 2271 OS << "<"; 2272 if (Minimal) 2273 OS << "minimal"; 2274 OS << ">"; 2275 } 2276 2277 namespace { 2278 2279 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass { 2280 public: 2281 static char ID; 2282 2283 LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) { 2284 initializeLowerMatrixIntrinsicsLegacyPassPass( 2285 *PassRegistry::getPassRegistry()); 2286 } 2287 2288 bool runOnFunction(Function &F) override { 2289 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2290 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2291 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2292 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2293 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2294 LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE); 2295 bool C = LMT.Visit(); 2296 return C; 2297 } 2298 2299 void getAnalysisUsage(AnalysisUsage &AU) const override { 2300 AU.addRequired<TargetTransformInfoWrapperPass>(); 2301 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2302 AU.addRequired<AAResultsWrapperPass>(); 2303 AU.addRequired<DominatorTreeWrapperPass>(); 2304 AU.addPreserved<DominatorTreeWrapperPass>(); 2305 AU.addRequired<LoopInfoWrapperPass>(); 2306 AU.addPreserved<LoopInfoWrapperPass>(); 2307 } 2308 }; 2309 } // namespace 2310 2311 static const char pass_name[] = "Lower the matrix intrinsics"; 2312 char LowerMatrixIntrinsicsLegacyPass::ID = 0; 2313 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, 2314 false, false) 2315 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2316 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2317 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2318 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2319 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, 2320 false, false) 2321 2322 Pass *llvm::createLowerMatrixIntrinsicsPass() { 2323 return new LowerMatrixIntrinsicsLegacyPass(); 2324 } 2325 2326 namespace { 2327 2328 /// A lightweight version of the matrix lowering pass that only requires TTI. 2329 /// Advanced features that require DT, AA or ORE like tiling are disabled. This 2330 /// is used to lower matrix intrinsics if the main lowering pass is not run, for 2331 /// example with -O0. 2332 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass { 2333 public: 2334 static char ID; 2335 2336 LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) { 2337 initializeLowerMatrixIntrinsicsMinimalLegacyPassPass( 2338 *PassRegistry::getPassRegistry()); 2339 } 2340 2341 bool runOnFunction(Function &F) override { 2342 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2343 LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr); 2344 bool C = LMT.Visit(); 2345 return C; 2346 } 2347 2348 void getAnalysisUsage(AnalysisUsage &AU) const override { 2349 AU.addRequired<TargetTransformInfoWrapperPass>(); 2350 AU.setPreservesCFG(); 2351 } 2352 }; 2353 } // namespace 2354 2355 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)"; 2356 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0; 2357 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass, 2358 "lower-matrix-intrinsics-minimal", pass_name_minimal, 2359 false, false) 2360 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass, 2361 "lower-matrix-intrinsics-minimal", pass_name_minimal, false, 2362 false) 2363 2364 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() { 2365 return new LowerMatrixIntrinsicsMinimalLegacyPass(); 2366 } 2367