1 //===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Lower matrix intrinsics to vector operations. 10 // 11 // TODO: 12 // * Improve fusion: 13 // * Support more cases, e.g. multiply-add, multiply-sub, operands/results 14 // transposed. 15 // * Improve cost-modeling, e.g. choose different number of rows/columns 16 // columns for tiles, consider cost of copies on alias. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 21 #include "llvm/ADT/GraphTraits.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/DomTreeUpdater.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/MatrixBuilder.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Alignment.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Transforms/Scalar.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/MatrixUtils.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 #define DEBUG_TYPE "lower-matrix-intrinsics" 53 54 static cl::opt<bool> 55 FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden, 56 cl::desc("Enable/disable fusing matrix instructions.")); 57 // TODO: Allow and use non-square tiles. 58 static cl::opt<unsigned> TileSize( 59 "fuse-matrix-tile-size", cl::init(4), cl::Hidden, 60 cl::desc( 61 "Tile size for matrix instruction fusion using square-shaped tiles.")); 62 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false), 63 cl::Hidden, 64 cl::desc("Generate loop nest for tiling.")); 65 static cl::opt<bool> ForceFusion( 66 "force-fuse-matrix", cl::init(false), cl::Hidden, 67 cl::desc("Force matrix instruction fusion even if not profitable.")); 68 static cl::opt<bool> AllowContractEnabled( 69 "matrix-allow-contract", cl::init(false), cl::Hidden, 70 cl::desc("Allow the use of FMAs if available and profitable. This may " 71 "result in different results, due to less rounding error.")); 72 73 enum class MatrixLayoutTy { ColumnMajor, RowMajor }; 74 75 static cl::opt<MatrixLayoutTy> MatrixLayout( 76 "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor), 77 cl::desc("Sets the default matrix layout"), 78 cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major", 79 "Use column-major layout"), 80 clEnumValN(MatrixLayoutTy::RowMajor, "row-major", 81 "Use row-major layout"))); 82 83 /// Helper function to either return Scope, if it is a subprogram or the 84 /// attached subprogram for a local scope. 85 static DISubprogram *getSubprogram(DIScope *Scope) { 86 if (auto *Subprogram = dyn_cast<DISubprogram>(Scope)) 87 return Subprogram; 88 return cast<DILocalScope>(Scope)->getSubprogram(); 89 } 90 91 namespace { 92 93 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute 94 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements) 95 // assuming \p Stride elements between start two consecutive vectors. 96 // \p Stride must be >= \p NumElements. 97 // For column-major matrixes, the function computes the address of a column 98 // vectors and \p NumElements must be set to the number of elements in a column 99 // (= number of rows of the matrix). For row-major matrixes, the function 100 // computes the address of a row vector and \p NumElements must be set to the 101 // number of elements in a column (= number of columns of the matrix). 102 // 103 // Consider a 4x4 matrix in column-mjaor layout like below 104 // 105 // 0 1 2 3 106 // 0 v_0_0 v_0_1 v_0_2 v_0_3 107 // 1 v_1_0 v_1_1 v_1_2 v_1_3 108 // 2 v_2_0 v_2_1 v_2_2 v_2_3 109 // 3 v_3_0 v_3_1 v_3_2 v_3_3 110 111 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1, 112 // we need a pointer to the first element of the submatrix as base pointer. 113 // Then we can use computeVectorAddr to compute the addresses for the columns 114 // of the sub-matrix. 115 // 116 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) 117 // -> just returns Base 118 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) 119 // -> returns Base + (1 * 4) 120 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) 121 // -> returns Base + (2 * 4) 122 // 123 // The graphic below illustrates the number of elements in a column (marked 124 // with |) and the number of skipped elements (marked with }). 125 // 126 // v_0_0 v_0_1 {v_0_2 {v_0_3 127 // Base Col 1 Col 2 128 // | | | 129 // v_1_0 |v_1_1 |v_1_2 |v_1_3 130 // v_2_0 |v_2_1 |v_2_2 |v_2_3 131 // v_3_0 {v_3_1 {v_3_2 v_3_3 132 // 133 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, 134 unsigned NumElements, Type *EltType, 135 IRBuilder<> &Builder) { 136 137 assert((!isa<ConstantInt>(Stride) || 138 cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && 139 "Stride must be >= the number of elements in the result vector."); 140 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); 141 142 // Compute the start of the vector with index VecIdx as VecIdx * Stride. 143 Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start"); 144 145 // Get pointer to the start of the selected vector. Skip GEP creation, 146 // if we select vector 0. 147 if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero()) 148 VecStart = BasePtr; 149 else 150 VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep"); 151 152 // Cast elementwise vector start pointer to a pointer to a vector 153 // (EltType x NumElements)*. 154 auto *VecType = FixedVectorType::get(EltType, NumElements); 155 Type *VecPtrType = PointerType::get(VecType, AS); 156 return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast"); 157 } 158 159 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics. 160 /// 161 /// Currently, the lowering for each matrix intrinsic is done as follows: 162 /// 1. Propagate the shape information from intrinsics to connected 163 /// instructions. 164 /// 2. Lower instructions with shape information (assuming column-major layout). 165 /// The lowering works similarly using row-major layout. 166 /// 2.1. Get column vectors for each argument. If we already lowered the 167 /// definition of an argument, use the produced column vectors directly. 168 /// If not, split the operand vector containing an embedded matrix into 169 /// a set of column vectors, 170 /// 2.2. Lower the instruction in terms of column major operations, which 171 /// yields a set of column vectors containing result matrix. Note that we 172 /// lower all instructions that have shape information. Besides the 173 /// intrinsics, this includes stores for example. 174 /// 2.3. Update uses of the lowered instruction. If we have shape information 175 /// for a user, there is nothing to do, as we will look up the result 176 /// column matrix when lowering the user. For other uses, we embed the 177 /// result matrix in a flat vector and update the use. 178 /// 2.4. Cache the result column matrix for the instruction we lowered 179 /// 3. After we lowered all instructions in a function, remove the now 180 /// obsolete instructions. 181 /// 182 class LowerMatrixIntrinsics { 183 Function &Func; 184 const DataLayout &DL; 185 const TargetTransformInfo &TTI; 186 AliasAnalysis *AA; 187 DominatorTree *DT; 188 LoopInfo *LI; 189 OptimizationRemarkEmitter *ORE; 190 191 /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation. 192 struct OpInfoTy { 193 /// Number of stores emitted to generate this matrix. 194 unsigned NumStores = 0; 195 /// Number of loads emitted to generate this matrix. 196 unsigned NumLoads = 0; 197 /// Number of compute operations emitted to generate this matrix. 198 unsigned NumComputeOps = 0; 199 /// Most of the time transposes can be fused with matrix multiplies or can 200 /// be folded away via algebraic simplifications. This is the number of 201 /// transposes that we failed to make "free" via such optimizations. 202 unsigned NumExposedTransposes = 0; 203 204 OpInfoTy &operator+=(const OpInfoTy &RHS) { 205 NumStores += RHS.NumStores; 206 NumLoads += RHS.NumLoads; 207 NumComputeOps += RHS.NumComputeOps; 208 NumExposedTransposes += RHS.NumExposedTransposes; 209 return *this; 210 } 211 }; 212 213 /// Wrapper class representing a matrix as a set of vectors, either in row or 214 /// column major layout. All vectors must have the same vector type. 215 class MatrixTy { 216 SmallVector<Value *, 16> Vectors; 217 218 OpInfoTy OpInfo; 219 220 bool IsColumnMajor = true; 221 222 public: 223 MatrixTy() 224 : Vectors(), 225 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 226 MatrixTy(ArrayRef<Value *> Vectors) 227 : Vectors(Vectors.begin(), Vectors.end()), 228 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 229 MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy) 230 : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) { 231 232 unsigned D = isColumnMajor() ? NumColumns : NumRows; 233 for (unsigned J = 0; J < D; ++J) 234 addVector(UndefValue::get(FixedVectorType::get( 235 EltTy, isColumnMajor() ? NumRows : NumColumns))); 236 } 237 238 Value *getVector(unsigned i) const { return Vectors[i]; } 239 Value *getColumn(unsigned i) const { 240 assert(isColumnMajor() && "only supported for column-major matrixes"); 241 return Vectors[i]; 242 } 243 Value *getRow(unsigned i) const { 244 assert(!isColumnMajor() && "only supported for row-major matrixes"); 245 return Vectors[i]; 246 } 247 248 void setVector(unsigned i, Value *V) { Vectors[i] = V; } 249 250 Type *getElementType() const { return getVectorTy()->getElementType(); } 251 252 unsigned getNumVectors() const { 253 if (isColumnMajor()) 254 return getNumColumns(); 255 return getNumRows(); 256 } 257 258 unsigned getNumColumns() const { 259 if (isColumnMajor()) 260 return Vectors.size(); 261 else { 262 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); 263 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); 264 } 265 } 266 unsigned getNumRows() const { 267 if (isColumnMajor()) { 268 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); 269 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); 270 } else 271 return Vectors.size(); 272 } 273 274 void addVector(Value *V) { Vectors.push_back(V); } 275 VectorType *getColumnTy() { 276 assert(isColumnMajor() && "only supported for column-major matrixes"); 277 return getVectorTy(); 278 } 279 280 VectorType *getVectorTy() const { 281 return cast<VectorType>(Vectors[0]->getType()); 282 } 283 284 iterator_range<SmallVector<Value *, 8>::iterator> columns() { 285 assert(isColumnMajor() && 286 "columns() only supported for column-major matrixes"); 287 return make_range(Vectors.begin(), Vectors.end()); 288 } 289 290 iterator_range<SmallVector<Value *, 8>::iterator> vectors() { 291 return make_range(Vectors.begin(), Vectors.end()); 292 } 293 294 /// Embed the vectors of the matrix into a flat vector by concatenating 295 /// them. 296 Value *embedInVector(IRBuilder<> &Builder) const { 297 return Vectors.size() == 1 ? Vectors[0] 298 : concatenateVectors(Builder, Vectors); 299 } 300 301 MatrixTy &addNumLoads(unsigned N) { 302 OpInfo.NumLoads += N; 303 return *this; 304 } 305 306 void setNumLoads(unsigned N) { OpInfo.NumLoads = N; } 307 308 MatrixTy &addNumStores(unsigned N) { 309 OpInfo.NumStores += N; 310 return *this; 311 } 312 313 MatrixTy &addNumExposedTransposes(unsigned N) { 314 OpInfo.NumExposedTransposes += N; 315 return *this; 316 } 317 318 MatrixTy &addNumComputeOps(unsigned N) { 319 OpInfo.NumComputeOps += N; 320 return *this; 321 } 322 323 unsigned getNumStores() const { return OpInfo.NumStores; } 324 unsigned getNumLoads() const { return OpInfo.NumLoads; } 325 unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; } 326 327 const OpInfoTy &getOpInfo() const { return OpInfo; } 328 329 bool isColumnMajor() const { return IsColumnMajor; } 330 331 unsigned getStride() const { 332 if (isColumnMajor()) 333 return getNumRows(); 334 return getNumColumns(); 335 } 336 337 /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the 338 /// matrix is column-major, the result vector is extracted from a column 339 /// vector, otherwise from a row vector. 340 Value *extractVector(unsigned I, unsigned J, unsigned NumElts, 341 IRBuilder<> &Builder) const { 342 Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I); 343 return Builder.CreateShuffleVector( 344 Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0), 345 "block"); 346 } 347 }; 348 349 struct ShapeInfo { 350 unsigned NumRows; 351 unsigned NumColumns; 352 353 bool IsColumnMajor; 354 355 ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0) 356 : NumRows(NumRows), NumColumns(NumColumns), 357 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 358 359 ShapeInfo(Value *NumRows, Value *NumColumns) 360 : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(), 361 cast<ConstantInt>(NumColumns)->getZExtValue()) {} 362 363 bool operator==(const ShapeInfo &other) { 364 return NumRows == other.NumRows && NumColumns == other.NumColumns; 365 } 366 bool operator!=(const ShapeInfo &other) { return !(*this == other); } 367 368 /// Returns true if shape-information is defined, meaning both dimensions 369 /// are != 0. 370 operator bool() const { 371 assert(NumRows == 0 || NumColumns != 0); 372 return NumRows != 0; 373 } 374 375 unsigned getStride() const { 376 if (IsColumnMajor) 377 return NumRows; 378 return NumColumns; 379 } 380 381 unsigned getNumVectors() const { 382 if (IsColumnMajor) 383 return NumColumns; 384 return NumRows; 385 } 386 }; 387 388 /// Maps instructions to their shape information. The shape information 389 /// describes the shape to be used while lowering. This matches the shape of 390 /// the result value of the instruction, with the only exceptions being store 391 /// instructions and the matrix_column_major_store intrinsics. For those, the 392 /// shape information indicates that those instructions should be lowered 393 /// using shape information as well. A ValueMap is used so that when 394 /// sub-passes like optimizeTransposes performs RAUW the map stays 395 /// up-to-date. 396 ValueMap<Value *, ShapeInfo> ShapeMap; 397 398 /// List of instructions to remove. While lowering, we are not replacing all 399 /// users of a lowered instruction, if shape information is available and 400 /// those need to be removed after we finished lowering. 401 SmallVector<Instruction *, 16> ToRemove; 402 403 /// Map from instructions to their produced column matrix. 404 MapVector<Value *, MatrixTy> Inst2ColumnMatrix; 405 406 private: 407 static FastMathFlags getFastMathFlags(Instruction *Inst) { 408 FastMathFlags FMF; 409 410 if (isa<FPMathOperator>(*Inst)) 411 FMF = Inst->getFastMathFlags(); 412 413 FMF.setAllowContract(AllowContractEnabled || FMF.allowContract()); 414 415 return FMF; 416 } 417 418 public: 419 LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI, 420 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 421 OptimizationRemarkEmitter *ORE) 422 : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT), 423 LI(LI), ORE(ORE) {} 424 425 unsigned getNumOps(Type *VT) { 426 assert(isa<VectorType>(VT) && "Expected vector type"); 427 return getNumOps(VT->getScalarType(), 428 cast<FixedVectorType>(VT)->getNumElements()); 429 } 430 431 /// Is this the minimal version executed in the backend pipelines. 432 bool isMinimal() const { 433 return !DT; 434 } 435 436 /// Return the estimated number of vector ops required for an operation on 437 /// \p VT * N. 438 unsigned getNumOps(Type *ST, unsigned N) { 439 return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() / 440 double(TTI.getRegisterBitWidth( 441 TargetTransformInfo::RGK_FixedWidthVector) 442 .getFixedSize())); 443 } 444 445 /// Return the set of vectors that a matrix value is lowered to. 446 /// 447 /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise 448 /// split the flat vector \p MatrixVal containing a matrix with shape \p SI 449 /// into vectors. 450 MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, 451 IRBuilder<> &Builder) { 452 VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType()); 453 assert(VType && "MatrixVal must be a vector type"); 454 assert(cast<FixedVectorType>(VType)->getNumElements() == 455 SI.NumRows * SI.NumColumns && 456 "The vector size must match the number of matrix elements"); 457 458 // Check if we lowered MatrixVal using shape information. In that case, 459 // return the existing matrix, if it matches the requested shape 460 // information. If there is a mis-match, embed the result in a flat 461 // vector and split it later. 462 auto Found = Inst2ColumnMatrix.find(MatrixVal); 463 if (Found != Inst2ColumnMatrix.end()) { 464 MatrixTy &M = Found->second; 465 // Return the found matrix, if its shape matches the requested shape 466 // information 467 if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns()) 468 return M; 469 470 MatrixVal = M.embedInVector(Builder); 471 } 472 473 // Otherwise split MatrixVal. 474 SmallVector<Value *, 16> SplitVecs; 475 for (unsigned MaskStart = 0; 476 MaskStart < cast<FixedVectorType>(VType)->getNumElements(); 477 MaskStart += SI.getStride()) { 478 Value *V = Builder.CreateShuffleVector( 479 MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0), 480 "split"); 481 SplitVecs.push_back(V); 482 } 483 484 return {SplitVecs}; 485 } 486 487 /// If \p V already has a known shape return false. Otherwise set the shape 488 /// for instructions that support it. 489 bool setShapeInfo(Value *V, ShapeInfo Shape) { 490 assert(Shape && "Shape not set"); 491 if (isa<UndefValue>(V) || !supportsShapeInfo(V)) 492 return false; 493 494 auto SIter = ShapeMap.find(V); 495 if (SIter != ShapeMap.end()) { 496 LLVM_DEBUG(dbgs() << " not overriding existing shape: " 497 << SIter->second.NumRows << " " 498 << SIter->second.NumColumns << " for " << *V << "\n"); 499 return false; 500 } 501 502 ShapeMap.insert({V, Shape}); 503 LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns 504 << " for " << *V << "\n"); 505 return true; 506 } 507 508 bool isUniformShape(Value *V) { 509 Instruction *I = dyn_cast<Instruction>(V); 510 if (!I) 511 return true; 512 513 switch (I->getOpcode()) { 514 case Instruction::FAdd: 515 case Instruction::FSub: 516 case Instruction::FMul: // Scalar multiply. 517 case Instruction::FNeg: 518 case Instruction::Add: 519 case Instruction::Mul: 520 case Instruction::Sub: 521 return true; 522 default: 523 return false; 524 } 525 } 526 527 /// Returns true if shape information can be used for \p V. The supported 528 /// instructions must match the instructions that can be lowered by this pass. 529 bool supportsShapeInfo(Value *V) { 530 Instruction *Inst = dyn_cast<Instruction>(V); 531 if (!Inst) 532 return false; 533 534 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst); 535 if (II) 536 switch (II->getIntrinsicID()) { 537 case Intrinsic::matrix_multiply: 538 case Intrinsic::matrix_transpose: 539 case Intrinsic::matrix_column_major_load: 540 case Intrinsic::matrix_column_major_store: 541 return true; 542 default: 543 return false; 544 } 545 return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V); 546 } 547 548 /// Propagate the shape information of instructions to their users. 549 /// The work list contains instructions for which we can compute the shape, 550 /// either based on the information provided by matrix intrinsics or known 551 /// shapes of operands. 552 SmallVector<Instruction *, 32> 553 propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) { 554 SmallVector<Instruction *, 32> NewWorkList; 555 // Pop an element for which we guaranteed to have at least one of the 556 // operand shapes. Add the shape for this and then add users to the work 557 // list. 558 LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n"); 559 while (!WorkList.empty()) { 560 Instruction *Inst = WorkList.pop_back_val(); 561 562 // New entry, set the value and insert operands 563 bool Propagate = false; 564 565 Value *MatrixA; 566 Value *MatrixB; 567 Value *M; 568 Value *N; 569 Value *K; 570 if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>( 571 m_Value(MatrixA), m_Value(MatrixB), m_Value(M), 572 m_Value(N), m_Value(K)))) { 573 Propagate = setShapeInfo(Inst, {M, K}); 574 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>( 575 m_Value(MatrixA), m_Value(M), m_Value(N)))) { 576 // Flip dimensions. 577 Propagate = setShapeInfo(Inst, {N, M}); 578 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>( 579 m_Value(MatrixA), m_Value(), m_Value(), 580 m_Value(), m_Value(M), m_Value(N)))) { 581 Propagate = setShapeInfo(Inst, {N, M}); 582 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>( 583 m_Value(), m_Value(), m_Value(), m_Value(M), 584 m_Value(N)))) { 585 Propagate = setShapeInfo(Inst, {M, N}); 586 } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) { 587 auto OpShape = ShapeMap.find(MatrixA); 588 if (OpShape != ShapeMap.end()) 589 setShapeInfo(Inst, OpShape->second); 590 continue; 591 } else if (isUniformShape(Inst)) { 592 // Find the first operand that has a known shape and use that. 593 for (auto &Op : Inst->operands()) { 594 auto OpShape = ShapeMap.find(Op.get()); 595 if (OpShape != ShapeMap.end()) { 596 Propagate |= setShapeInfo(Inst, OpShape->second); 597 break; 598 } 599 } 600 } 601 602 if (Propagate) { 603 NewWorkList.push_back(Inst); 604 for (auto *User : Inst->users()) 605 if (ShapeMap.count(User) == 0) 606 WorkList.push_back(cast<Instruction>(User)); 607 } 608 } 609 610 return NewWorkList; 611 } 612 613 /// Propagate the shape to operands of instructions with shape information. 614 /// \p Worklist contains the instruction for which we already know the shape. 615 SmallVector<Instruction *, 32> 616 propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) { 617 SmallVector<Instruction *, 32> NewWorkList; 618 619 auto pushInstruction = [](Value *V, 620 SmallVectorImpl<Instruction *> &WorkList) { 621 Instruction *I = dyn_cast<Instruction>(V); 622 if (I) 623 WorkList.push_back(I); 624 }; 625 // Pop an element with known shape. Traverse the operands, if their shape 626 // derives from the result shape and is unknown, add it and add them to the 627 // worklist. 628 LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n"); 629 while (!WorkList.empty()) { 630 Value *V = WorkList.pop_back_val(); 631 632 size_t BeforeProcessingV = WorkList.size(); 633 if (!isa<Instruction>(V)) 634 continue; 635 636 Value *MatrixA; 637 Value *MatrixB; 638 Value *M; 639 Value *N; 640 Value *K; 641 if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>( 642 m_Value(MatrixA), m_Value(MatrixB), m_Value(M), 643 m_Value(N), m_Value(K)))) { 644 if (setShapeInfo(MatrixA, {M, N})) 645 pushInstruction(MatrixA, WorkList); 646 647 if (setShapeInfo(MatrixB, {N, K})) 648 pushInstruction(MatrixB, WorkList); 649 650 } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>( 651 m_Value(MatrixA), m_Value(M), m_Value(N)))) { 652 // Flip dimensions. 653 if (setShapeInfo(MatrixA, {M, N})) 654 pushInstruction(MatrixA, WorkList); 655 } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>( 656 m_Value(MatrixA), m_Value(), m_Value(), m_Value(), 657 m_Value(M), m_Value(N)))) { 658 if (setShapeInfo(MatrixA, {M, N})) { 659 pushInstruction(MatrixA, WorkList); 660 } 661 } else if (isa<LoadInst>(V) || 662 match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) { 663 // Nothing to do, no matrix input. 664 } else if (isa<StoreInst>(V)) { 665 // Nothing to do. We forward-propagated to this so we would just 666 // backward propagate to an instruction with an already known shape. 667 } else if (isUniformShape(V)) { 668 // Propagate to all operands. 669 ShapeInfo Shape = ShapeMap[V]; 670 for (Use &U : cast<Instruction>(V)->operands()) { 671 if (setShapeInfo(U.get(), Shape)) 672 pushInstruction(U.get(), WorkList); 673 } 674 } 675 // After we discovered new shape info for new instructions in the 676 // worklist, we use their users as seeds for the next round of forward 677 // propagation. 678 for (size_t I = BeforeProcessingV; I != WorkList.size(); I++) 679 for (User *U : WorkList[I]->users()) 680 if (isa<Instruction>(U) && V != U) 681 NewWorkList.push_back(cast<Instruction>(U)); 682 } 683 return NewWorkList; 684 } 685 686 /// Try moving transposes in order to fold them away or into multiplies. 687 void optimizeTransposes() { 688 auto ReplaceAllUsesWith = [this](Instruction &Old, Value *New) { 689 // We need to remove Old from the ShapeMap otherwise RAUW will replace it 690 // with New. We should only add New it it supportsShapeInfo so we insert 691 // it conditionally instead. 692 auto S = ShapeMap.find(&Old); 693 if (S != ShapeMap.end()) { 694 ShapeMap.erase(S); 695 if (supportsShapeInfo(New)) 696 ShapeMap.insert({New, S->second}); 697 } 698 Old.replaceAllUsesWith(New); 699 }; 700 701 // First sink all transposes inside matmuls, hoping that we end up with NN, 702 // NT or TN variants. 703 for (BasicBlock &BB : reverse(Func)) { 704 for (auto II = BB.rbegin(); II != BB.rend();) { 705 Instruction &I = *II; 706 // We may remove II. By default continue on the next/prev instruction. 707 ++II; 708 // If we were to erase II, move again. 709 auto EraseFromParent = [&II](Value *V) { 710 auto *Inst = cast<Instruction>(V); 711 if (Inst->use_empty()) { 712 if (Inst == &*II) { 713 ++II; 714 } 715 Inst->eraseFromParent(); 716 } 717 }; 718 719 // If we're creating a new instruction, continue from there. 720 Instruction *NewInst = nullptr; 721 722 IRBuilder<> IB(&I); 723 MatrixBuilder<IRBuilder<>> Builder(IB); 724 725 Value *TA, *TAMA, *TAMB; 726 ConstantInt *R, *K, *C; 727 if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) { 728 729 // Transpose of a transpose is a nop 730 Value *TATA; 731 if (match(TA, 732 m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) { 733 ReplaceAllUsesWith(I, TATA); 734 EraseFromParent(&I); 735 EraseFromParent(TA); 736 } 737 738 // (A * B)^t -> B^t * A^t 739 // RxK KxC CxK KxR 740 else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>( 741 m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R), 742 m_ConstantInt(K), m_ConstantInt(C)))) { 743 Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(), 744 C->getZExtValue(), 745 TAMB->getName() + "_t"); 746 // We are being run after shape prop, add shape for newly created 747 // instructions so that we lower them later. 748 setShapeInfo(T0, {C, K}); 749 Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(), 750 K->getZExtValue(), 751 TAMA->getName() + "_t"); 752 setShapeInfo(T1, {K, R}); 753 NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(), 754 K->getZExtValue(), 755 R->getZExtValue(), "mmul"); 756 ReplaceAllUsesWith(I, NewInst); 757 EraseFromParent(&I); 758 EraseFromParent(TA); 759 } 760 } 761 762 // If we replaced I with a new instruction, continue from there. 763 if (NewInst) 764 II = std::next(BasicBlock::reverse_iterator(NewInst)); 765 } 766 } 767 768 // If we have a TT matmul, lift the transpose. We may be able to fold into 769 // consuming multiply. 770 for (BasicBlock &BB : Func) { 771 for (BasicBlock::iterator II = BB.begin(); II != BB.end();) { 772 Instruction *I = &*II; 773 // We may remove I. 774 ++II; 775 Value *A, *B, *AT, *BT; 776 ConstantInt *R, *K, *C; 777 // A^t * B ^t -> (B * A)^t 778 if (match(&*I, m_Intrinsic<Intrinsic::matrix_multiply>( 779 m_Value(A), m_Value(B), m_ConstantInt(R), 780 m_ConstantInt(K), m_ConstantInt(C))) && 781 match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) && 782 match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) { 783 IRBuilder<> IB(&*I); 784 MatrixBuilder<IRBuilder<>> Builder(IB); 785 Value *M = Builder.CreateMatrixMultiply( 786 BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue()); 787 setShapeInfo(M, {C, R}); 788 Instruction *NewInst = Builder.CreateMatrixTranspose( 789 M, C->getZExtValue(), R->getZExtValue()); 790 ReplaceAllUsesWith(*I, NewInst); 791 if (I->use_empty()) 792 I->eraseFromParent(); 793 if (A->use_empty()) 794 cast<Instruction>(A)->eraseFromParent(); 795 if (A != B && B->use_empty()) 796 cast<Instruction>(B)->eraseFromParent(); 797 } 798 } 799 } 800 } 801 802 bool Visit() { 803 SmallVector<Instruction *, 32> WorkList; 804 805 // Initially only the shape of matrix intrinsics is known. 806 // Initialize the work list with ops carrying shape information. 807 for (BasicBlock &BB : Func) 808 for (Instruction &Inst : BB) { 809 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); 810 if (!II) 811 continue; 812 813 switch (II->getIntrinsicID()) { 814 case Intrinsic::matrix_multiply: 815 case Intrinsic::matrix_transpose: 816 case Intrinsic::matrix_column_major_load: 817 case Intrinsic::matrix_column_major_store: 818 WorkList.push_back(&Inst); 819 break; 820 default: 821 break; 822 } 823 } 824 825 // Avoid unnecessary work if there are no matrix intrinsics in the function. 826 if (WorkList.empty()) 827 return false; 828 829 // Propagate shapes until nothing changes any longer. 830 while (!WorkList.empty()) { 831 WorkList = propagateShapeForward(WorkList); 832 WorkList = propagateShapeBackward(WorkList); 833 } 834 835 if (!isMinimal()) { 836 optimizeTransposes(); 837 LLVM_DEBUG({ 838 dbgs() << "Dump after matrix transpose optimization:\n"; 839 Func.dump(); 840 }); 841 } 842 843 bool Changed = false; 844 SmallVector<CallInst *, 16> MaybeFusableInsts; 845 SmallVector<Instruction *, 16> MatrixInsts; 846 847 // First, collect all instructions with shape information and candidates for 848 // fusion (currently only matrix multiplies). 849 ReversePostOrderTraversal<Function *> RPOT(&Func); 850 for (auto *BB : RPOT) 851 for (Instruction &I : *BB) { 852 if (ShapeMap.find(&I) == ShapeMap.end()) 853 continue; 854 if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>())) 855 MaybeFusableInsts.push_back(cast<CallInst>(&I)); 856 MatrixInsts.push_back(&I); 857 } 858 859 // Second, try to fuse candidates. 860 SmallPtrSet<Instruction *, 16> FusedInsts; 861 for (CallInst *CI : MaybeFusableInsts) 862 LowerMatrixMultiplyFused(CI, FusedInsts); 863 Changed = !FusedInsts.empty(); 864 865 // Third, lower remaining instructions with shape information. 866 for (Instruction *Inst : MatrixInsts) { 867 if (FusedInsts.count(Inst)) 868 continue; 869 870 IRBuilder<> Builder(Inst); 871 872 if (CallInst *CInst = dyn_cast<CallInst>(Inst)) 873 Changed |= VisitCallInst(CInst); 874 875 Value *Op1; 876 Value *Op2; 877 if (auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 878 Changed |= VisitBinaryOperator(BinOp); 879 if (auto *UnOp = dyn_cast<UnaryOperator>(Inst)) 880 Changed |= VisitUnaryOperator(UnOp); 881 if (match(Inst, m_Load(m_Value(Op1)))) 882 Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder); 883 else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2)))) 884 Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder); 885 } 886 887 if (ORE) { 888 RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func); 889 RemarkGen.emitRemarks(); 890 } 891 892 // Delete the instructions backwards, as it has a reduced likelihood of 893 // having to update as many def-use and use-def chains. 894 // 895 // Because we add to ToRemove during fusion we can't guarantee that defs 896 // are before uses. Change uses to undef temporarily as these should get 897 // removed as well. 898 // 899 // For verification, we keep track of where we changed uses to undefs in 900 // UndefedInsts and then check that we in fact remove them. 901 SmallSet<Instruction *, 16> UndefedInsts; 902 for (auto *Inst : reverse(ToRemove)) { 903 for (Use &U : llvm::make_early_inc_range(Inst->uses())) { 904 if (auto *Undefed = dyn_cast<Instruction>(U.getUser())) 905 UndefedInsts.insert(Undefed); 906 U.set(UndefValue::get(Inst->getType())); 907 } 908 Inst->eraseFromParent(); 909 UndefedInsts.erase(Inst); 910 } 911 if (!UndefedInsts.empty()) { 912 // If we didn't remove all undefed instructions, it's a hard error. 913 dbgs() << "Undefed but present instructions:\n"; 914 for (auto *I : UndefedInsts) 915 dbgs() << *I << "\n"; 916 llvm_unreachable("Undefed but instruction not removed"); 917 } 918 919 return Changed; 920 } 921 922 /// Turns \p BasePtr into an elementwise pointer to \p EltType. 923 Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) { 924 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); 925 Type *EltPtrType = PointerType::get(EltType, AS); 926 return Builder.CreatePointerCast(BasePtr, EltPtrType); 927 } 928 929 /// Replace intrinsic calls 930 bool VisitCallInst(CallInst *Inst) { 931 if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic()) 932 return false; 933 934 switch (Inst->getCalledFunction()->getIntrinsicID()) { 935 case Intrinsic::matrix_multiply: 936 LowerMultiply(Inst); 937 break; 938 case Intrinsic::matrix_transpose: 939 LowerTranspose(Inst); 940 break; 941 case Intrinsic::matrix_column_major_load: 942 LowerColumnMajorLoad(Inst); 943 break; 944 case Intrinsic::matrix_column_major_store: 945 LowerColumnMajorStore(Inst); 946 break; 947 default: 948 return false; 949 } 950 return true; 951 } 952 953 /// Compute the alignment for a column/row \p Idx with \p Stride between them. 954 /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a 955 /// ConstantInt, reduce the initial alignment based on the byte offset. For 956 /// non-ConstantInt strides, return the common alignment of the initial 957 /// alignment and the element size in bytes. 958 Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy, 959 MaybeAlign A) const { 960 Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy); 961 if (Idx == 0) 962 return InitialAlign; 963 964 TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy); 965 if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) { 966 uint64_t StrideInBytes = 967 ConstStride->getZExtValue() * ElementSizeInBits / 8; 968 return commonAlignment(InitialAlign, Idx * StrideInBytes); 969 } 970 return commonAlignment(InitialAlign, ElementSizeInBits / 8); 971 } 972 973 /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between 974 /// vectors. 975 MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride, 976 bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) { 977 auto *VType = cast<VectorType>(Ty); 978 Type *EltTy = VType->getElementType(); 979 Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride()); 980 Value *EltPtr = createElementPtr(Ptr, EltTy, Builder); 981 MatrixTy Result; 982 for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) { 983 Value *GEP = computeVectorAddr( 984 EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I), 985 Stride, Shape.getStride(), EltTy, Builder); 986 Value *Vector = Builder.CreateAlignedLoad( 987 VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign), 988 IsVolatile, "col.load"); 989 990 Result.addVector(Vector); 991 } 992 return Result.addNumLoads(getNumOps(Result.getVectorTy()) * 993 Result.getNumVectors()); 994 } 995 996 /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix, 997 /// starting at \p MatrixPtr[I][J]. 998 MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile, 999 ShapeInfo MatrixShape, Value *I, Value *J, 1000 ShapeInfo ResultShape, Type *EltTy, 1001 IRBuilder<> &Builder) { 1002 1003 Value *Offset = Builder.CreateAdd( 1004 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); 1005 1006 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); 1007 Value *EltPtr = 1008 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); 1009 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); 1010 auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows * 1011 ResultShape.NumColumns); 1012 Type *TilePtrTy = PointerType::get(TileTy, AS); 1013 Value *TilePtr = 1014 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); 1015 1016 return loadMatrix(TileTy, TilePtr, Align, 1017 Builder.getInt64(MatrixShape.getStride()), IsVolatile, 1018 ResultShape, Builder); 1019 } 1020 1021 /// Lower a load instruction with shape information. 1022 void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride, 1023 bool IsVolatile, ShapeInfo Shape) { 1024 IRBuilder<> Builder(Inst); 1025 finalizeLowering(Inst, 1026 loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile, 1027 Shape, Builder), 1028 Builder); 1029 } 1030 1031 /// Lowers llvm.matrix.column.major.load. 1032 /// 1033 /// The intrinsic loads a matrix from memory using a stride between columns. 1034 void LowerColumnMajorLoad(CallInst *Inst) { 1035 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 1036 "Intrinsic only supports column-major layout!"); 1037 Value *Ptr = Inst->getArgOperand(0); 1038 Value *Stride = Inst->getArgOperand(1); 1039 LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride, 1040 cast<ConstantInt>(Inst->getArgOperand(2))->isOne(), 1041 {Inst->getArgOperand(3), Inst->getArgOperand(4)}); 1042 } 1043 1044 /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p 1045 /// MatrixPtr[I][J]. 1046 void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr, 1047 MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape, 1048 Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) { 1049 Value *Offset = Builder.CreateAdd( 1050 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); 1051 1052 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); 1053 Value *EltPtr = 1054 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); 1055 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); 1056 auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() * 1057 StoreVal.getNumColumns()); 1058 Type *TilePtrTy = PointerType::get(TileTy, AS); 1059 Value *TilePtr = 1060 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); 1061 1062 storeMatrix(TileTy, StoreVal, TilePtr, MAlign, 1063 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder); 1064 } 1065 1066 /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between 1067 /// vectors. 1068 MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, 1069 MaybeAlign MAlign, Value *Stride, bool IsVolatile, 1070 IRBuilder<> &Builder) { 1071 auto VType = cast<VectorType>(Ty); 1072 Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); 1073 for (auto Vec : enumerate(StoreVal.vectors())) { 1074 Value *GEP = computeVectorAddr( 1075 EltPtr, 1076 Builder.getIntN(Stride->getType()->getScalarSizeInBits(), 1077 Vec.index()), 1078 Stride, StoreVal.getStride(), VType->getElementType(), Builder); 1079 Builder.CreateAlignedStore(Vec.value(), GEP, 1080 getAlignForIndex(Vec.index(), Stride, 1081 VType->getElementType(), 1082 MAlign), 1083 IsVolatile); 1084 } 1085 return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) * 1086 StoreVal.getNumVectors()); 1087 } 1088 1089 /// Lower a store instruction with shape information. 1090 void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A, 1091 Value *Stride, bool IsVolatile, ShapeInfo Shape) { 1092 IRBuilder<> Builder(Inst); 1093 auto StoreVal = getMatrix(Matrix, Shape, Builder); 1094 finalizeLowering(Inst, 1095 storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride, 1096 IsVolatile, Builder), 1097 Builder); 1098 } 1099 1100 /// Lowers llvm.matrix.column.major.store. 1101 /// 1102 /// The intrinsic store a matrix back memory using a stride between columns. 1103 void LowerColumnMajorStore(CallInst *Inst) { 1104 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 1105 "Intrinsic only supports column-major layout!"); 1106 Value *Matrix = Inst->getArgOperand(0); 1107 Value *Ptr = Inst->getArgOperand(1); 1108 Value *Stride = Inst->getArgOperand(2); 1109 LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride, 1110 cast<ConstantInt>(Inst->getArgOperand(3))->isOne(), 1111 {Inst->getArgOperand(4), Inst->getArgOperand(5)}); 1112 } 1113 1114 // Set elements I..I+NumElts-1 to Block 1115 Value *insertVector(Value *Col, unsigned I, Value *Block, 1116 IRBuilder<> &Builder) { 1117 1118 // First, bring Block to the same size as Col 1119 unsigned BlockNumElts = 1120 cast<FixedVectorType>(Block->getType())->getNumElements(); 1121 unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements(); 1122 assert(NumElts >= BlockNumElts && "Too few elements for current block"); 1123 1124 Block = Builder.CreateShuffleVector( 1125 Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts)); 1126 1127 // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7, 1128 // 8, 4, 5, 6 1129 SmallVector<int, 16> Mask; 1130 unsigned i; 1131 for (i = 0; i < I; i++) 1132 Mask.push_back(i); 1133 1134 unsigned VecNumElts = 1135 cast<FixedVectorType>(Col->getType())->getNumElements(); 1136 for (; i < I + BlockNumElts; i++) 1137 Mask.push_back(i - I + VecNumElts); 1138 1139 for (; i < VecNumElts; i++) 1140 Mask.push_back(i); 1141 1142 return Builder.CreateShuffleVector(Col, Block, Mask); 1143 } 1144 1145 Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp, 1146 IRBuilder<> &Builder, bool AllowContraction, 1147 unsigned &NumComputeOps) { 1148 NumComputeOps += getNumOps(A->getType()); 1149 if (!Sum) 1150 return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B); 1151 1152 if (UseFPOp) { 1153 if (AllowContraction) { 1154 // Use fmuladd for floating point operations and let the backend decide 1155 // if that's profitable. 1156 Function *FMulAdd = Intrinsic::getDeclaration( 1157 Func.getParent(), Intrinsic::fmuladd, A->getType()); 1158 return Builder.CreateCall(FMulAdd, {A, B, Sum}); 1159 } 1160 NumComputeOps += getNumOps(A->getType()); 1161 Value *Mul = Builder.CreateFMul(A, B); 1162 return Builder.CreateFAdd(Sum, Mul); 1163 } 1164 1165 NumComputeOps += getNumOps(A->getType()); 1166 Value *Mul = Builder.CreateMul(A, B); 1167 return Builder.CreateAdd(Sum, Mul); 1168 } 1169 1170 /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For 1171 /// users with shape information, there's nothing to do: they will use the 1172 /// cached value when they are lowered. For other users, \p Matrix is 1173 /// flattened and the uses are updated to use it. Also marks \p Inst for 1174 /// deletion. 1175 void finalizeLowering(Instruction *Inst, MatrixTy Matrix, 1176 IRBuilder<> &Builder) { 1177 auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix)); 1178 (void)inserted; 1179 assert(inserted.second && "multiple matrix lowering mapping"); 1180 1181 ToRemove.push_back(Inst); 1182 Value *Flattened = nullptr; 1183 for (Use &U : llvm::make_early_inc_range(Inst->uses())) { 1184 if (ShapeMap.find(U.getUser()) == ShapeMap.end()) { 1185 if (!Flattened) 1186 Flattened = Matrix.embedInVector(Builder); 1187 U.set(Flattened); 1188 } 1189 } 1190 } 1191 1192 /// Compute \p Result += \p A * \p B for input matrices with left-associating 1193 /// addition. 1194 /// 1195 /// We can fold a transpose into the operand that is used to extract scalars. 1196 /// This is the first operands with row-major and the second with 1197 /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate 1198 /// operand is transposed. 1199 void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A, 1200 const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled, 1201 bool IsScalarMatrixTransposed, FastMathFlags FMF) { 1202 const unsigned VF = std::max<unsigned>( 1203 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 1204 .getFixedSize() / 1205 Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(), 1206 1U); 1207 unsigned R = Result.getNumRows(); 1208 unsigned C = Result.getNumColumns(); 1209 unsigned M = A.getNumColumns(); 1210 1211 bool IsFP = Result.getElementType()->isFloatingPointTy(); 1212 assert(A.isColumnMajor() == B.isColumnMajor() && 1213 Result.isColumnMajor() == A.isColumnMajor() && 1214 "operands must agree on matrix layout"); 1215 unsigned NumComputeOps = 0; 1216 1217 Builder.setFastMathFlags(FMF); 1218 1219 if (A.isColumnMajor()) { 1220 // Multiply columns from the first operand with scalars from the second 1221 // operand. Then move along the K axes and accumulate the columns. With 1222 // this the adds can be vectorized without reassociation. 1223 for (unsigned J = 0; J < C; ++J) { 1224 unsigned BlockSize = VF; 1225 // If Result is zero, we don't need to accumulate in the K==0 iteration. 1226 bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J)); 1227 1228 for (unsigned I = 0; I < R; I += BlockSize) { 1229 // Gradually lower the vectorization factor to cover the remainder. 1230 while (I + BlockSize > R) 1231 BlockSize /= 2; 1232 1233 Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder) 1234 : nullptr; 1235 for (unsigned K = 0; K < M; ++K) { 1236 Value *L = A.extractVector(I, K, BlockSize, Builder); 1237 Value *RH = Builder.CreateExtractElement( 1238 B.getColumn(IsScalarMatrixTransposed ? K : J), 1239 IsScalarMatrixTransposed ? J : K); 1240 Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat"); 1241 Sum = 1242 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat, 1243 IsFP, Builder, FMF.allowContract(), NumComputeOps); 1244 } 1245 Result.setVector(J, 1246 insertVector(Result.getVector(J), I, Sum, Builder)); 1247 } 1248 } 1249 } else { 1250 // Multiply rows from the second operand with scalars from the first 1251 // operand. Then move along the K axes and accumulate the rows. With this 1252 // the adds can be vectorized without reassociation. 1253 for (unsigned I = 0; I < R; ++I) { 1254 unsigned BlockSize = VF; 1255 bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I)); 1256 for (unsigned J = 0; J < C; J += BlockSize) { 1257 // Gradually lower the vectorization factor to cover the remainder. 1258 while (J + BlockSize > C) 1259 BlockSize /= 2; 1260 1261 Value *Sum = nullptr; 1262 for (unsigned K = 0; K < M; ++K) { 1263 Value *R = B.extractVector(K, J, BlockSize, Builder); 1264 Value *LH = Builder.CreateExtractElement( 1265 A.getVector(IsScalarMatrixTransposed ? K : I), 1266 IsScalarMatrixTransposed ? I : K); 1267 Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat"); 1268 Sum = 1269 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R, 1270 IsFP, Builder, FMF.allowContract(), NumComputeOps); 1271 } 1272 Result.setVector(I, 1273 insertVector(Result.getVector(I), J, Sum, Builder)); 1274 } 1275 } 1276 } 1277 Result.addNumComputeOps(NumComputeOps); 1278 } 1279 1280 /// Ensure that the memory in \p Load does not alias \p Store by potentially 1281 /// copying it to a new location. This new or otherwise the original location 1282 /// is returned. 1283 Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store, 1284 CallInst *MatMul) { 1285 MemoryLocation StoreLoc = MemoryLocation::get(Store); 1286 MemoryLocation LoadLoc = MemoryLocation::get(Load); 1287 1288 // If we can statically determine noalias we're good. 1289 if (AA->isNoAlias(LoadLoc, StoreLoc)) 1290 return Load->getPointerOperand(); 1291 1292 // Create code to check if the memory locations of the Load and Store 1293 // overlap and if they do, copy Load's operand to a new buffer. 1294 1295 // First, create new blocks for 2n part of the check and the copy. 1296 BasicBlock *Check0 = MatMul->getParent(); 1297 // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a 1298 // DT. Manually collect dominator tree updates, to avoid unnecessary work, 1299 // as we adjust Check0 and Check1's branches. 1300 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1301 for (BasicBlock *Succ : successors(Check0)) 1302 DTUpdates.push_back({DT->Delete, Check0, Succ}); 1303 1304 BasicBlock *Check1 = 1305 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1306 nullptr, "alias_cont"); 1307 BasicBlock *Copy = 1308 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1309 nullptr, "copy"); 1310 BasicBlock *Fusion = 1311 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1312 nullptr, "no_alias"); 1313 1314 // Check if the loaded memory location begins before the end of the store 1315 // location. If the condition holds, they might overlap, otherwise they are 1316 // guaranteed to not overlap. 1317 IRBuilder<> Builder(MatMul); 1318 Check0->getTerminator()->eraseFromParent(); 1319 Builder.SetInsertPoint(Check0); 1320 Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout()); 1321 Value *StoreBegin = Builder.CreatePtrToInt( 1322 const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin"); 1323 Value *StoreEnd = Builder.CreateAdd( 1324 StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()), 1325 "store.end", true, true); 1326 Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr), 1327 IntPtrTy, "load.begin"); 1328 Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1, 1329 Fusion); 1330 1331 // Check if the store begins before the end of the load location. If the 1332 // condition holds, they alias, otherwise they are guaranteed to not 1333 // overlap. 1334 Check1->getTerminator()->eraseFromParent(); 1335 Builder.SetInsertPoint(Check1, Check1->begin()); 1336 Value *LoadEnd = Builder.CreateAdd( 1337 LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()), 1338 "load.end", true, true); 1339 Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy, 1340 Fusion); 1341 1342 // Copy load operand to new alloca. 1343 Builder.SetInsertPoint(Copy, Copy->begin()); 1344 AllocaInst *NewLd = 1345 Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace()); 1346 Builder.CreateMemCpy(NewLd, NewLd->getAlign(), 1347 Load->getPointerOperand(), Load->getAlign(), 1348 LoadLoc.Size.getValue()); 1349 Builder.SetInsertPoint(Fusion, Fusion->begin()); 1350 PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3); 1351 PHI->addIncoming(Load->getPointerOperand(), Check0); 1352 PHI->addIncoming(Load->getPointerOperand(), Check1); 1353 PHI->addIncoming(NewLd, Copy); 1354 1355 // Adjust DT. 1356 DTUpdates.push_back({DT->Insert, Check0, Check1}); 1357 DTUpdates.push_back({DT->Insert, Check0, Fusion}); 1358 DTUpdates.push_back({DT->Insert, Check1, Copy}); 1359 DTUpdates.push_back({DT->Insert, Check1, Fusion}); 1360 DT->applyUpdates(DTUpdates); 1361 return PHI; 1362 } 1363 1364 bool isFusionProfitable(CallInst *MatMul) { 1365 if (ForceFusion) 1366 return true; 1367 1368 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1369 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1370 1371 const unsigned R = LShape.NumRows; 1372 const unsigned C = RShape.NumColumns; 1373 const unsigned M = LShape.NumColumns; 1374 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1375 1376 const unsigned VF = std::max<unsigned>( 1377 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 1378 .getFixedSize() / 1379 EltType->getPrimitiveSizeInBits().getFixedSize(), 1380 1U); 1381 1382 // Cost model for tiling 1383 // 1384 // For tiling to be beneficial, we need reuse either along the R or 1385 // the C axis. We vectorize along the R axis so that means at least 1386 // 3 elements. 1387 // TODO: Also consider cost of copying if operands alias. 1388 if (R <= VF && C == 1) 1389 return false; 1390 // Then we need enough elements to exceed the number of vector 1391 // registers we have. Note that this is an oversimplification since 1392 // fusing also takes some extra loads which may exceed the number of 1393 // reloads necessary. 1394 unsigned Op0Regs = (R + VF - 1) / VF * M; 1395 unsigned Op1Regs = (M + VF - 1) / VF * C; 1396 return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true); 1397 } 1398 1399 MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) { 1400 MatrixTy Res; 1401 auto *ColumType = FixedVectorType::get(EltType, R); 1402 for (unsigned I = 0; I < C; ++I) 1403 Res.addVector(ConstantAggregateZero::get(ColumType)); 1404 return Res; 1405 } 1406 1407 void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape, 1408 Value *RPtr, ShapeInfo RShape, StoreInst *Store) { 1409 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1410 1411 // Create the main tiling loop nest. 1412 TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize); 1413 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1414 Instruction *InsertI = cast<Instruction>(MatMul); 1415 BasicBlock *Start = InsertI->getParent(); 1416 BasicBlock *End = 1417 SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue"); 1418 IRBuilder<> Builder(MatMul); 1419 BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI); 1420 1421 Type *TileVecTy = 1422 FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize); 1423 MatrixTy TileResult; 1424 // Insert in the inner loop header. 1425 Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator()); 1426 // Create PHI nodes for the result columns to accumulate across iterations. 1427 SmallVector<PHINode *, 4> ColumnPhis; 1428 for (unsigned I = 0; I < TileSize; I++) { 1429 auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I)); 1430 Phi->addIncoming(ConstantAggregateZero::get(TileVecTy), 1431 TI.RowLoopHeader->getSingleSuccessor()); 1432 TileResult.addVector(Phi); 1433 ColumnPhis.push_back(Phi); 1434 } 1435 1436 // Insert in the inner loop body, which computes 1437 // Res += Load(CurrentRow, K) * Load(K, CurrentColumn) 1438 Builder.SetInsertPoint(InnerBody->getTerminator()); 1439 // Load tiles of the operands. 1440 MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK, 1441 {TileSize, TileSize}, EltType, Builder); 1442 MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol, 1443 {TileSize, TileSize}, EltType, Builder); 1444 emitMatrixMultiply(TileResult, A, B, Builder, true, false, 1445 getFastMathFlags(MatMul)); 1446 // Store result after the inner loop is done. 1447 Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator()); 1448 storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(), 1449 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns}, 1450 TI.CurrentRow, TI.CurrentCol, EltType, Builder); 1451 1452 for (unsigned I = 0; I < TileResult.getNumVectors(); I++) 1453 ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch); 1454 1455 // Force unrolling of a few iterations of the inner loop, to make sure there 1456 // is enough work per iteration. 1457 // FIXME: The unroller should make this decision directly instead, but 1458 // currently the cost-model is not up to the task. 1459 unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize); 1460 addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader), 1461 "llvm.loop.unroll.count", InnerLoopUnrollCount); 1462 } 1463 1464 void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1, 1465 StoreInst *Store, 1466 SmallPtrSetImpl<Instruction *> &FusedInsts) { 1467 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 1468 "Tiling only supported for column-major matrixes at the moment!"); 1469 if (!isFusionProfitable(MatMul)) 1470 return; 1471 1472 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1473 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1474 1475 const unsigned R = LShape.NumRows; 1476 const unsigned C = RShape.NumColumns; 1477 const unsigned M = LShape.NumColumns; 1478 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1479 1480 Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul); 1481 Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul); 1482 Value *CPtr = Store->getPointerOperand(); 1483 1484 if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0)) 1485 createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store); 1486 else { 1487 IRBuilder<> Builder(Store); 1488 for (unsigned J = 0; J < C; J += TileSize) 1489 for (unsigned I = 0; I < R; I += TileSize) { 1490 const unsigned TileR = std::min(R - I, unsigned(TileSize)); 1491 const unsigned TileC = std::min(C - J, unsigned(TileSize)); 1492 MatrixTy Res = getZeroMatrix(EltType, TileR, TileC); 1493 1494 for (unsigned K = 0; K < M; K += TileSize) { 1495 const unsigned TileM = std::min(M - K, unsigned(TileSize)); 1496 MatrixTy A = 1497 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(), 1498 LShape, Builder.getInt64(I), Builder.getInt64(K), 1499 {TileR, TileM}, EltType, Builder); 1500 MatrixTy B = 1501 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(), 1502 RShape, Builder.getInt64(K), Builder.getInt64(J), 1503 {TileM, TileC}, EltType, Builder); 1504 emitMatrixMultiply(Res, A, B, Builder, true, false, 1505 getFastMathFlags(MatMul)); 1506 } 1507 storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M}, 1508 Builder.getInt64(I), Builder.getInt64(J), EltType, 1509 Builder); 1510 } 1511 } 1512 1513 // Mark eliminated instructions as fused and remove them. 1514 FusedInsts.insert(Store); 1515 FusedInsts.insert(MatMul); 1516 Store->eraseFromParent(); 1517 MatMul->eraseFromParent(); 1518 if (LoadOp0->hasNUses(0)) { 1519 FusedInsts.insert(LoadOp0); 1520 LoadOp0->eraseFromParent(); 1521 } 1522 if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) { 1523 FusedInsts.insert(LoadOp1); 1524 LoadOp1->eraseFromParent(); 1525 } 1526 } 1527 1528 /// Try to lower matrix multiply chains by fusing operations. 1529 /// 1530 /// Call finalizeLowering on lowered instructions. Instructions that are 1531 /// completely eliminated by fusion are added to \p FusedInsts. 1532 void LowerMatrixMultiplyFused(CallInst *MatMul, 1533 SmallPtrSetImpl<Instruction *> &FusedInsts) { 1534 if (!FuseMatrix || !DT) 1535 return; 1536 1537 assert(AA && LI && "Analyses should be available"); 1538 1539 Value *A = MatMul->getArgOperand(0); 1540 Value *B = MatMul->getArgOperand(1); 1541 1542 // We can fold the transpose into the operand that is used to fetch scalars. 1543 Value *T; 1544 if (MatrixLayout == MatrixLayoutTy::ColumnMajor 1545 ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T))) 1546 : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) { 1547 IRBuilder<> Builder(MatMul); 1548 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1549 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1550 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1551 const unsigned R = LShape.NumRows; 1552 const unsigned M = LShape.NumColumns; 1553 const unsigned C = RShape.NumColumns; 1554 1555 MatrixTy MA; 1556 MatrixTy MB; 1557 1558 Value *Transpose; 1559 if (MatrixLayout == MatrixLayoutTy::ColumnMajor) { 1560 MA = getMatrix(A, ShapeInfo(R, M), Builder); 1561 MB = getMatrix(T, ShapeInfo(C, M), Builder); 1562 Transpose = B; 1563 } else { 1564 MA = getMatrix(T, ShapeInfo(R, M), Builder); 1565 MB = getMatrix(B, ShapeInfo(C, M), Builder); 1566 Transpose = A; 1567 } 1568 1569 // Initialize the output 1570 MatrixTy Result(R, C, EltType); 1571 1572 emitMatrixMultiply(Result, MA, MB, Builder, false, true, 1573 getFastMathFlags(MatMul)); 1574 1575 FusedInsts.insert(MatMul); 1576 if (Transpose->hasOneUse()) { 1577 FusedInsts.insert(cast<Instruction>(Transpose)); 1578 ToRemove.push_back(cast<Instruction>(Transpose)); 1579 // TODO: add a fake entry for the folded instruction so that this is 1580 // included in the expression in the remark. 1581 Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType); 1582 } 1583 finalizeLowering(MatMul, Result, Builder); 1584 return; 1585 } 1586 1587 if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor) 1588 return; 1589 1590 // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering 1591 // since the single store user will be lowered as part of this. 1592 auto *LoadOp0 = dyn_cast<LoadInst>(A); 1593 auto *LoadOp1 = dyn_cast<LoadInst>(B); 1594 auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin()); 1595 if (LoadOp0 && LoadOp1 && Store) { 1596 // The store address must dominate the MatMul instruction, otherwise 1597 // we create invalid IR. 1598 SetVector<Value *> WorkList; 1599 WorkList.insert(Store->getOperand(1)); 1600 SmallVector<Instruction *> ToHoist; 1601 for (unsigned I = 0; I != WorkList.size(); ++I) { 1602 Value *Current = WorkList[I]; 1603 auto *CurrI = dyn_cast<Instruction>(Current); 1604 if (!CurrI) 1605 continue; 1606 if (isa<PHINode>(CurrI)) 1607 return; 1608 if (DT->dominates(CurrI, MatMul)) 1609 continue; 1610 if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory()) 1611 return; 1612 ToHoist.push_back(CurrI); 1613 WorkList.insert(CurrI->op_begin(), CurrI->op_end()); 1614 } 1615 1616 sort(ToHoist, [this](Instruction *A, Instruction *B) { 1617 return DT->dominates(A, B); 1618 }); 1619 for (Instruction *I : ToHoist) 1620 I->moveBefore(MatMul); 1621 1622 emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts); 1623 return; 1624 } 1625 } 1626 1627 /// Lowers llvm.matrix.multiply. 1628 void LowerMultiply(CallInst *MatMul) { 1629 IRBuilder<> Builder(MatMul); 1630 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1631 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1632 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1633 1634 const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder); 1635 const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder); 1636 assert(Lhs.getElementType() == Rhs.getElementType() && 1637 "Matrix multiply argument element types do not match."); 1638 1639 const unsigned R = LShape.NumRows; 1640 const unsigned C = RShape.NumColumns; 1641 assert(LShape.NumColumns == RShape.NumRows); 1642 1643 // Initialize the output 1644 MatrixTy Result(R, C, EltType); 1645 assert(Lhs.getElementType() == Result.getElementType() && 1646 "Matrix multiply result element type does not match arguments."); 1647 1648 emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false, 1649 getFastMathFlags(MatMul)); 1650 finalizeLowering(MatMul, Result, Builder); 1651 } 1652 1653 /// Lowers llvm.matrix.transpose. 1654 void LowerTranspose(CallInst *Inst) { 1655 MatrixTy Result; 1656 IRBuilder<> Builder(Inst); 1657 Value *InputVal = Inst->getArgOperand(0); 1658 VectorType *VectorTy = cast<VectorType>(InputVal->getType()); 1659 ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2)); 1660 MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder); 1661 1662 const unsigned NewNumVecs = 1663 InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns; 1664 const unsigned NewNumElts = 1665 InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows; 1666 1667 for (unsigned I = 0; I < NewNumVecs; ++I) { 1668 // Build a single result vector. First initialize it. 1669 Value *ResultVector = UndefValue::get( 1670 FixedVectorType::get(VectorTy->getElementType(), NewNumElts)); 1671 // Go through the old elements and insert it into the resulting vector. 1672 for (auto J : enumerate(InputMatrix.vectors())) { 1673 Value *Elt = Builder.CreateExtractElement(J.value(), I); 1674 // Row and column indices are transposed. 1675 ResultVector = 1676 Builder.CreateInsertElement(ResultVector, Elt, J.index()); 1677 } 1678 Result.addVector(ResultVector); 1679 } 1680 1681 // TODO: Improve estimate of operations needed for transposes. Currently we 1682 // just count the insertelement/extractelement instructions, but do not 1683 // account for later simplifications/combines. 1684 finalizeLowering( 1685 Inst, 1686 Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns) 1687 .addNumExposedTransposes(1), 1688 Builder); 1689 } 1690 1691 /// Lower load instructions, if shape information is available. 1692 bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) { 1693 auto I = ShapeMap.find(Inst); 1694 if (I == ShapeMap.end()) 1695 return false; 1696 1697 LowerLoad(Inst, Ptr, Inst->getAlign(), 1698 Builder.getInt64(I->second.getStride()), Inst->isVolatile(), 1699 I->second); 1700 return true; 1701 } 1702 1703 bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr, 1704 IRBuilder<> &Builder) { 1705 auto I = ShapeMap.find(StoredVal); 1706 if (I == ShapeMap.end()) 1707 return false; 1708 1709 LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(), 1710 Builder.getInt64(I->second.getStride()), Inst->isVolatile(), 1711 I->second); 1712 return true; 1713 } 1714 1715 /// Lower binary operators, if shape information is available. 1716 bool VisitBinaryOperator(BinaryOperator *Inst) { 1717 auto I = ShapeMap.find(Inst); 1718 if (I == ShapeMap.end()) 1719 return false; 1720 1721 Value *Lhs = Inst->getOperand(0); 1722 Value *Rhs = Inst->getOperand(1); 1723 1724 IRBuilder<> Builder(Inst); 1725 ShapeInfo &Shape = I->second; 1726 1727 MatrixTy Result; 1728 MatrixTy A = getMatrix(Lhs, Shape, Builder); 1729 MatrixTy B = getMatrix(Rhs, Shape, Builder); 1730 assert(A.isColumnMajor() == B.isColumnMajor() && 1731 Result.isColumnMajor() == A.isColumnMajor() && 1732 "operands must agree on matrix layout"); 1733 1734 Builder.setFastMathFlags(getFastMathFlags(Inst)); 1735 1736 // Helper to perform binary op on vectors. 1737 auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) { 1738 switch (Inst->getOpcode()) { 1739 case Instruction::Add: 1740 return Builder.CreateAdd(LHS, RHS); 1741 case Instruction::Mul: 1742 return Builder.CreateMul(LHS, RHS); 1743 case Instruction::Sub: 1744 return Builder.CreateSub(LHS, RHS); 1745 case Instruction::FAdd: 1746 return Builder.CreateFAdd(LHS, RHS); 1747 case Instruction::FMul: 1748 return Builder.CreateFMul(LHS, RHS); 1749 case Instruction::FSub: 1750 return Builder.CreateFSub(LHS, RHS); 1751 default: 1752 llvm_unreachable("Unsupported binary operator for matrix"); 1753 } 1754 }; 1755 1756 for (unsigned I = 0; I < Shape.getNumVectors(); ++I) 1757 Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I))); 1758 1759 finalizeLowering(Inst, 1760 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * 1761 Result.getNumVectors()), 1762 Builder); 1763 return true; 1764 } 1765 1766 /// Lower unary operators, if shape information is available. 1767 bool VisitUnaryOperator(UnaryOperator *Inst) { 1768 auto I = ShapeMap.find(Inst); 1769 if (I == ShapeMap.end()) 1770 return false; 1771 1772 Value *Op = Inst->getOperand(0); 1773 1774 IRBuilder<> Builder(Inst); 1775 ShapeInfo &Shape = I->second; 1776 1777 MatrixTy Result; 1778 MatrixTy M = getMatrix(Op, Shape, Builder); 1779 1780 Builder.setFastMathFlags(getFastMathFlags(Inst)); 1781 1782 // Helper to perform unary op on vectors. 1783 auto BuildVectorOp = [&Builder, Inst](Value *Op) { 1784 switch (Inst->getOpcode()) { 1785 case Instruction::FNeg: 1786 return Builder.CreateFNeg(Op); 1787 default: 1788 llvm_unreachable("Unsupported unary operator for matrix"); 1789 } 1790 }; 1791 1792 for (unsigned I = 0; I < Shape.getNumVectors(); ++I) 1793 Result.addVector(BuildVectorOp(M.getVector(I))); 1794 1795 finalizeLowering(Inst, 1796 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * 1797 Result.getNumVectors()), 1798 Builder); 1799 return true; 1800 } 1801 1802 /// Helper to linearize a matrix expression tree into a string. Currently 1803 /// matrix expressions are linarized by starting at an expression leaf and 1804 /// linearizing bottom up. 1805 struct ExprLinearizer { 1806 unsigned LengthToBreak = 100; 1807 std::string Str; 1808 raw_string_ostream Stream; 1809 unsigned LineLength = 0; 1810 const DataLayout &DL; 1811 1812 /// Mapping from instructions to matrixes. It is used to identify 1813 /// matrix instructions. 1814 const MapVector<Value *, MatrixTy> &Inst2Matrix; 1815 1816 /// Mapping from values to the leaves of all expressions that the value is 1817 /// part of. 1818 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared; 1819 1820 /// Set of matrix expressions in the scope of a given DISubprogram. 1821 const SmallSetVector<Value *, 32> &ExprsInSubprogram; 1822 1823 /// Leaf node of the expression to linearize. 1824 Value *Leaf; 1825 1826 /// Used to keep track of sub-expressions that get reused while linearizing 1827 /// the expression. Re-used sub-expressions are marked as (reused). 1828 SmallPtrSet<Value *, 8> ReusedExprs; 1829 1830 ExprLinearizer(const DataLayout &DL, 1831 const MapVector<Value *, MatrixTy> &Inst2Matrix, 1832 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, 1833 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 1834 Value *Leaf) 1835 : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared), 1836 ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {} 1837 1838 void indent(unsigned N) { 1839 LineLength += N; 1840 for (unsigned i = 0; i < N; i++) 1841 Stream << " "; 1842 } 1843 1844 void lineBreak() { 1845 Stream << "\n"; 1846 LineLength = 0; 1847 } 1848 1849 void maybeIndent(unsigned Indent) { 1850 if (LineLength >= LengthToBreak) 1851 lineBreak(); 1852 1853 if (LineLength == 0) 1854 indent(Indent); 1855 } 1856 1857 void write(StringRef S) { 1858 LineLength += S.size(); 1859 Stream << S; 1860 } 1861 1862 Value *getUnderlyingObjectThroughLoads(Value *V) { 1863 if (Value *Ptr = getPointerOperand(V)) 1864 return getUnderlyingObjectThroughLoads(Ptr); 1865 else if (V->getType()->isPointerTy()) 1866 return getUnderlyingObject(V); 1867 return V; 1868 } 1869 1870 /// Returns true if \p V is a matrix value in the given subprogram. 1871 bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); } 1872 1873 /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to 1874 /// \p SS. 1875 void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) { 1876 auto M = Inst2Matrix.find(V); 1877 if (M == Inst2Matrix.end()) 1878 SS << "unknown"; 1879 else { 1880 SS << M->second.getNumRows(); 1881 SS << "x"; 1882 SS << M->second.getNumColumns(); 1883 } 1884 } 1885 1886 /// Write the called function name. Handles calls to llvm.matrix.* 1887 /// specially: we write the name, followed by the dimensions of the input 1888 /// matrixes, followed by the scalar type name. 1889 void writeFnName(CallInst *CI) { 1890 if (!CI->getCalledFunction()) 1891 write("<no called fn>"); 1892 else { 1893 StringRef Name = CI->getCalledFunction()->getName(); 1894 if (!Name.startswith("llvm.matrix")) { 1895 write(Name); 1896 return; 1897 } 1898 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1899 write(Intrinsic::getBaseName(II->getIntrinsicID()) 1900 .drop_front(StringRef("llvm.matrix.").size())); 1901 write("."); 1902 std::string Tmp; 1903 raw_string_ostream SS(Tmp); 1904 1905 switch (II->getIntrinsicID()) { 1906 case Intrinsic::matrix_multiply: 1907 prettyPrintMatrixType(II->getOperand(0), SS); 1908 SS << "."; 1909 prettyPrintMatrixType(II->getOperand(1), SS); 1910 SS << "." << *II->getType()->getScalarType(); 1911 break; 1912 case Intrinsic::matrix_transpose: 1913 prettyPrintMatrixType(II->getOperand(0), SS); 1914 SS << "." << *II->getType()->getScalarType(); 1915 break; 1916 case Intrinsic::matrix_column_major_load: 1917 prettyPrintMatrixType(II, SS); 1918 SS << "." << *II->getType()->getScalarType(); 1919 break; 1920 case Intrinsic::matrix_column_major_store: 1921 prettyPrintMatrixType(II->getOperand(0), SS); 1922 SS << "." << *II->getOperand(0)->getType()->getScalarType(); 1923 break; 1924 default: 1925 llvm_unreachable("Unhandled case"); 1926 } 1927 SS.flush(); 1928 write(Tmp); 1929 } 1930 } 1931 1932 unsigned getNumShapeArgs(CallInst *CI) const { 1933 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1934 switch (II->getIntrinsicID()) { 1935 case Intrinsic::matrix_multiply: 1936 return 3; 1937 case Intrinsic::matrix_transpose: 1938 return 2; 1939 case Intrinsic::matrix_column_major_load: 1940 case Intrinsic::matrix_column_major_store: 1941 return 3; 1942 default: 1943 return 0; 1944 } 1945 } 1946 return 0; 1947 } 1948 1949 /// Special printing for values: for pointers, we print if they refer to an 1950 /// (function) external address or a stack address, for other values we 1951 /// either print the constant or "scalar"/"matrix" for other values. 1952 void write(Value *V) { 1953 V = getUnderlyingObjectThroughLoads(V); 1954 if (V->getType()->isPointerTy()) { 1955 if (isa<AllocaInst>(V)) { 1956 Stream << "stack addr"; 1957 LineLength += StringRef("stack addr").size(); 1958 } else { 1959 Stream << "addr"; 1960 LineLength += StringRef("addr").size(); 1961 } 1962 if (!V->getName().empty()) { 1963 Stream << " %" << V->getName() << ""; 1964 LineLength += V->getName().size() + 2; 1965 } 1966 return; 1967 } 1968 1969 std::string Tmp; 1970 raw_string_ostream TmpStream(Tmp); 1971 1972 if (auto *CI = dyn_cast<ConstantInt>(V)) 1973 TmpStream << CI->getValue(); 1974 else if (isa<Constant>(V)) 1975 TmpStream << "constant"; 1976 else { 1977 if (isMatrix(V)) 1978 TmpStream << "matrix"; 1979 else 1980 TmpStream << "scalar"; 1981 } 1982 TmpStream.flush(); 1983 Tmp = std::string(StringRef(Tmp).trim()); 1984 LineLength += Tmp.size(); 1985 Stream << Tmp; 1986 } 1987 1988 /// Linearize expression \p Expr starting at an indentation of \p Indent. 1989 /// Expressions that are re-used multiple times are prefixed with (reused) 1990 /// at the re-used root instruction. 1991 void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused, 1992 bool ParentShared) { 1993 auto *I = cast<Instruction>(Expr); 1994 maybeIndent(Indent); 1995 SmallVector<Value *, 8> Ops; 1996 1997 // Is Expr shared with other expression leaves? 1998 bool ExprShared = false; 1999 2000 // Deal with shared subtrees. Mark them as shared, if required. 2001 if (!ParentShared) { 2002 auto SI = Shared.find(Expr); 2003 assert(SI != Shared.end() && SI->second.count(Leaf)); 2004 2005 for (Value *S : SI->second) { 2006 if (S == Leaf) 2007 continue; 2008 DebugLoc DL = cast<Instruction>(S)->getDebugLoc(); 2009 write("shared with remark at line " + std::to_string(DL.getLine()) + 2010 " column " + std::to_string(DL.getCol()) + " ("); 2011 } 2012 ExprShared = SI->second.size() > 1; 2013 } 2014 2015 bool Reused = !ReusedExprs.insert(Expr).second; 2016 if (Reused && !ParentReused) 2017 write("(reused) "); 2018 2019 if (auto *CI = dyn_cast<CallInst>(I)) { 2020 writeFnName(CI); 2021 2022 Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI)); 2023 } else if (isa<BitCastInst>(Expr)) { 2024 // Special case bitcasts, which are used to materialize matrixes from 2025 // non-matrix ops. 2026 write("matrix"); 2027 return; 2028 } else { 2029 Ops.append(I->value_op_begin(), I->value_op_end()); 2030 write(std::string(I->getOpcodeName())); 2031 } 2032 2033 write(std::string("(")); 2034 2035 unsigned NumOpsToBreak = 1; 2036 if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>())) 2037 NumOpsToBreak = 2; 2038 2039 for (Value *Op : Ops) { 2040 if (Ops.size() > NumOpsToBreak) 2041 lineBreak(); 2042 2043 maybeIndent(Indent + 1); 2044 if (isMatrix(Op)) 2045 linearizeExpr(Op, Indent + 1, Reused, ExprShared); 2046 else 2047 write(Op); 2048 if (Op != Ops.back()) 2049 write(", "); 2050 } 2051 2052 write(")"); 2053 } 2054 2055 const std::string &getResult() { 2056 Stream.flush(); 2057 return Str; 2058 } 2059 }; 2060 2061 /// Generate remarks for matrix operations in a function. To generate remarks 2062 /// for matrix expressions, the following approach is used: 2063 /// 1. Use the inlined-at debug information to group matrix operations to the 2064 /// DISubprograms they are contained in. 2065 /// 2. Collect leaves of matrix expressions (done in 2066 /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression 2067 // mapping. Leaves are lowered matrix instructions without other matrix 2068 // users (like stores) in the current subprogram. 2069 /// 3. For each leaf, create a remark containing a linearizied version of the 2070 /// matrix expression. The expression is linearized by a recursive 2071 /// bottom-up traversal of the matrix operands, starting at a leaf. Note 2072 /// that multiple leaves can share sub-expressions. Shared subexpressions 2073 /// are explicitly marked as shared(). 2074 struct RemarkGenerator { 2075 const MapVector<Value *, MatrixTy> &Inst2Matrix; 2076 OptimizationRemarkEmitter &ORE; 2077 Function &Func; 2078 const DataLayout &DL; 2079 2080 RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix, 2081 OptimizationRemarkEmitter &ORE, Function &Func) 2082 : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func), 2083 DL(Func.getParent()->getDataLayout()) {} 2084 2085 /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are 2086 /// instructions in Inst2Matrix returning void or without any users in 2087 /// \p ExprsInSubprogram. Currently that should only include stores. 2088 SmallVector<Value *, 4> 2089 getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) { 2090 SmallVector<Value *, 4> Leaves; 2091 for (auto *Expr : ExprsInSubprogram) 2092 if (Expr->getType()->isVoidTy() || 2093 !any_of(Expr->users(), [&ExprsInSubprogram](User *U) { 2094 return ExprsInSubprogram.count(U); 2095 })) 2096 Leaves.push_back(Expr); 2097 return Leaves; 2098 } 2099 2100 /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf 2101 /// to all visited expressions in \p Shared. Limit the matrix operations to 2102 /// the ones in \p ExprsInSubprogram. 2103 void collectSharedInfo(Value *Leaf, Value *V, 2104 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2105 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) { 2106 2107 if (!ExprsInSubprogram.count(V)) 2108 return; 2109 2110 auto I = Shared.insert({V, {}}); 2111 I.first->second.insert(Leaf); 2112 2113 for (Value *Op : cast<Instruction>(V)->operand_values()) 2114 collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared); 2115 } 2116 2117 /// Calculate the number of exclusive and shared op counts for expression 2118 /// starting at \p V. Expressions used multiple times are counted once. 2119 /// Limit the matrix operations to the ones in \p ExprsInSubprogram. 2120 std::pair<OpInfoTy, OpInfoTy> 2121 sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs, 2122 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2123 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const { 2124 if (!ExprsInSubprogram.count(Root)) 2125 return {}; 2126 2127 // Already counted this expression. Stop. 2128 if (!ReusedExprs.insert(Root).second) 2129 return {}; 2130 2131 OpInfoTy SharedCount; 2132 OpInfoTy Count; 2133 2134 auto I = Shared.find(Root); 2135 auto CM = Inst2Matrix.find(Root); 2136 if (I->second.size() == 1) 2137 Count = CM->second.getOpInfo(); 2138 else 2139 SharedCount = CM->second.getOpInfo(); 2140 2141 for (Value *Op : cast<Instruction>(Root)->operand_values()) { 2142 auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared); 2143 Count += C.first; 2144 SharedCount += C.second; 2145 } 2146 return {Count, SharedCount}; 2147 } 2148 2149 void emitRemarks() { 2150 if (!ORE.allowExtraAnalysis(DEBUG_TYPE)) 2151 return; 2152 2153 // Map matrix operations to their containting subprograms, by traversing 2154 // the inlinedAt chain. If the function does not have a DISubprogram, we 2155 // only map them to the containing function. 2156 MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs; 2157 for (auto &KV : Inst2Matrix) { 2158 if (Func.getSubprogram()) { 2159 auto *I = cast<Instruction>(KV.first); 2160 DILocation *Context = I->getDebugLoc(); 2161 while (Context) { 2162 auto I = 2163 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}}); 2164 I.first->second.push_back(KV.first); 2165 Context = DebugLoc(Context).getInlinedAt(); 2166 } 2167 } else { 2168 auto I = Subprog2Exprs.insert({nullptr, {}}); 2169 I.first->second.push_back(KV.first); 2170 } 2171 } 2172 for (auto &KV : Subprog2Exprs) { 2173 SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(), 2174 KV.second.end()); 2175 auto Leaves = getExpressionLeaves(ExprsInSubprogram); 2176 2177 DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared; 2178 for (Value *Leaf : Leaves) 2179 collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared); 2180 2181 // Generate remarks for each leaf. 2182 for (auto *L : Leaves) { 2183 2184 DebugLoc Loc = cast<Instruction>(L)->getDebugLoc(); 2185 DILocation *Context = cast<Instruction>(L)->getDebugLoc(); 2186 while (Context) { 2187 if (getSubprogram(Context->getScope()) == KV.first) { 2188 Loc = Context; 2189 break; 2190 } 2191 Context = DebugLoc(Context).getInlinedAt(); 2192 } 2193 2194 SmallPtrSet<Value *, 8> ReusedExprs; 2195 OpInfoTy Counts, SharedCounts; 2196 std::tie(Counts, SharedCounts) = 2197 sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared); 2198 2199 OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc, 2200 cast<Instruction>(L)->getParent()); 2201 2202 Rem << "Lowered with "; 2203 Rem << ore::NV("NumStores", Counts.NumStores) << " stores, " 2204 << ore::NV("NumLoads", Counts.NumLoads) << " loads, " 2205 << ore::NV("NumComputeOps", Counts.NumComputeOps) 2206 << " compute ops, " 2207 << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes) 2208 << " exposed transposes"; 2209 2210 if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 || 2211 SharedCounts.NumComputeOps > 0) { 2212 Rem << ",\nadditionally " 2213 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, " 2214 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, " 2215 << ore::NV("NumFPOps", SharedCounts.NumComputeOps) 2216 << " compute ops" 2217 << " are shared with other expressions"; 2218 } 2219 2220 Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL)); 2221 ORE.emit(Rem); 2222 } 2223 } 2224 } 2225 2226 std::string 2227 linearize(Value *L, 2228 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, 2229 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2230 const DataLayout &DL) { 2231 ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L); 2232 Lin.linearizeExpr(L, 0, false, false); 2233 return Lin.getResult(); 2234 } 2235 }; 2236 }; 2237 } // namespace 2238 2239 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, 2240 FunctionAnalysisManager &AM) { 2241 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 2242 OptimizationRemarkEmitter *ORE = nullptr; 2243 AAResults *AA = nullptr; 2244 DominatorTree *DT = nullptr; 2245 LoopInfo *LI = nullptr; 2246 2247 if (!Minimal) { 2248 ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2249 AA = &AM.getResult<AAManager>(F); 2250 DT = &AM.getResult<DominatorTreeAnalysis>(F); 2251 LI = &AM.getResult<LoopAnalysis>(F); 2252 } 2253 2254 LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE); 2255 if (LMT.Visit()) { 2256 PreservedAnalyses PA; 2257 if (!Minimal) { 2258 PA.preserve<LoopAnalysis>(); 2259 PA.preserve<DominatorTreeAnalysis>(); 2260 } 2261 return PA; 2262 } 2263 return PreservedAnalyses::all(); 2264 } 2265 2266 void LowerMatrixIntrinsicsPass::printPipeline( 2267 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 2268 static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline( 2269 OS, MapClassName2PassName); 2270 OS << "<"; 2271 if (Minimal) 2272 OS << "minimal"; 2273 OS << ">"; 2274 } 2275 2276 namespace { 2277 2278 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass { 2279 public: 2280 static char ID; 2281 2282 LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) { 2283 initializeLowerMatrixIntrinsicsLegacyPassPass( 2284 *PassRegistry::getPassRegistry()); 2285 } 2286 2287 bool runOnFunction(Function &F) override { 2288 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2289 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2290 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2291 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2292 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2293 LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE); 2294 bool C = LMT.Visit(); 2295 return C; 2296 } 2297 2298 void getAnalysisUsage(AnalysisUsage &AU) const override { 2299 AU.addRequired<TargetTransformInfoWrapperPass>(); 2300 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2301 AU.addRequired<AAResultsWrapperPass>(); 2302 AU.addRequired<DominatorTreeWrapperPass>(); 2303 AU.addPreserved<DominatorTreeWrapperPass>(); 2304 AU.addRequired<LoopInfoWrapperPass>(); 2305 AU.addPreserved<LoopInfoWrapperPass>(); 2306 } 2307 }; 2308 } // namespace 2309 2310 static const char pass_name[] = "Lower the matrix intrinsics"; 2311 char LowerMatrixIntrinsicsLegacyPass::ID = 0; 2312 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, 2313 false, false) 2314 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2315 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2316 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2317 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2318 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, 2319 false, false) 2320 2321 Pass *llvm::createLowerMatrixIntrinsicsPass() { 2322 return new LowerMatrixIntrinsicsLegacyPass(); 2323 } 2324 2325 namespace { 2326 2327 /// A lightweight version of the matrix lowering pass that only requires TTI. 2328 /// Advanced features that require DT, AA or ORE like tiling are disabled. This 2329 /// is used to lower matrix intrinsics if the main lowering pass is not run, for 2330 /// example with -O0. 2331 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass { 2332 public: 2333 static char ID; 2334 2335 LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) { 2336 initializeLowerMatrixIntrinsicsMinimalLegacyPassPass( 2337 *PassRegistry::getPassRegistry()); 2338 } 2339 2340 bool runOnFunction(Function &F) override { 2341 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2342 LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr); 2343 bool C = LMT.Visit(); 2344 return C; 2345 } 2346 2347 void getAnalysisUsage(AnalysisUsage &AU) const override { 2348 AU.addRequired<TargetTransformInfoWrapperPass>(); 2349 AU.setPreservesCFG(); 2350 } 2351 }; 2352 } // namespace 2353 2354 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)"; 2355 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0; 2356 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass, 2357 "lower-matrix-intrinsics-minimal", pass_name_minimal, 2358 false, false) 2359 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass, 2360 "lower-matrix-intrinsics-minimal", pass_name_minimal, false, 2361 false) 2362 2363 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() { 2364 return new LowerMatrixIntrinsicsMinimalLegacyPass(); 2365 } 2366