1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopCacheAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/LoopNestAnalysis.h" 24 #include "llvm/Analysis/LoopPass.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-interchange" 56 57 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 58 59 static cl::opt<int> LoopInterchangeCostThreshold( 60 "loop-interchange-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Interchange if you gain more than this number")); 62 63 namespace { 64 65 using LoopVector = SmallVector<Loop *, 8>; 66 67 // TODO: Check if we can use a sparse matrix here. 68 using CharMatrix = std::vector<std::vector<char>>; 69 70 } // end anonymous namespace 71 72 // Maximum number of dependencies that can be handled in the dependency matrix. 73 static const unsigned MaxMemInstrCount = 100; 74 75 // Maximum loop depth supported. 76 static const unsigned MaxLoopNestDepth = 10; 77 78 #ifdef DUMP_DEP_MATRICIES 79 static void printDepMatrix(CharMatrix &DepMatrix) { 80 for (auto &Row : DepMatrix) { 81 for (auto D : Row) 82 LLVM_DEBUG(dbgs() << D << " "); 83 LLVM_DEBUG(dbgs() << "\n"); 84 } 85 } 86 #endif 87 88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 89 Loop *L, DependenceInfo *DI) { 90 using ValueVector = SmallVector<Value *, 16>; 91 92 ValueVector MemInstr; 93 94 // For each block. 95 for (BasicBlock *BB : L->blocks()) { 96 // Scan the BB and collect legal loads and stores. 97 for (Instruction &I : *BB) { 98 if (!isa<Instruction>(I)) 99 return false; 100 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 101 if (!Ld->isSimple()) 102 return false; 103 MemInstr.push_back(&I); 104 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 105 if (!St->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } 109 } 110 } 111 112 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 113 << " Loads and Stores to analyze\n"); 114 115 ValueVector::iterator I, IE, J, JE; 116 117 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 118 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 119 std::vector<char> Dep; 120 Instruction *Src = cast<Instruction>(*I); 121 Instruction *Dst = cast<Instruction>(*J); 122 // Ignore Input dependencies. 123 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 124 continue; 125 // Track Output, Flow, and Anti dependencies. 126 if (auto D = DI->depends(Src, Dst, true)) { 127 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 128 LLVM_DEBUG(StringRef DepType = 129 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 130 dbgs() << "Found " << DepType 131 << " dependency between Src and Dst\n" 132 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 133 unsigned Levels = D->getLevels(); 134 char Direction; 135 for (unsigned II = 1; II <= Levels; ++II) { 136 const SCEV *Distance = D->getDistance(II); 137 const SCEVConstant *SCEVConst = 138 dyn_cast_or_null<SCEVConstant>(Distance); 139 if (SCEVConst) { 140 const ConstantInt *CI = SCEVConst->getValue(); 141 if (CI->isNegative()) 142 Direction = '<'; 143 else if (CI->isZero()) 144 Direction = '='; 145 else 146 Direction = '>'; 147 Dep.push_back(Direction); 148 } else if (D->isScalar(II)) { 149 Direction = 'S'; 150 Dep.push_back(Direction); 151 } else { 152 unsigned Dir = D->getDirection(II); 153 if (Dir == Dependence::DVEntry::LT || 154 Dir == Dependence::DVEntry::LE) 155 Direction = '<'; 156 else if (Dir == Dependence::DVEntry::GT || 157 Dir == Dependence::DVEntry::GE) 158 Direction = '>'; 159 else if (Dir == Dependence::DVEntry::EQ) 160 Direction = '='; 161 else 162 Direction = '*'; 163 Dep.push_back(Direction); 164 } 165 } 166 while (Dep.size() != Level) { 167 Dep.push_back('I'); 168 } 169 170 DepMatrix.push_back(Dep); 171 if (DepMatrix.size() > MaxMemInstrCount) { 172 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 173 << " dependencies inside loop\n"); 174 return false; 175 } 176 } 177 } 178 } 179 180 return true; 181 } 182 183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 184 // matrix by exchanging the two columns. 185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 186 unsigned ToIndx) { 187 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 188 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 189 } 190 191 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 192 // '>' 193 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 194 unsigned Column) { 195 for (unsigned i = 0; i <= Column; ++i) { 196 if (DepMatrix[Row][i] == '<') 197 return false; 198 if (DepMatrix[Row][i] == '>') 199 return true; 200 } 201 // All dependencies were '=','S' or 'I' 202 return false; 203 } 204 205 // Checks if no dependence exist in the dependency matrix in Row before Column. 206 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 207 unsigned Column) { 208 for (unsigned i = 0; i < Column; ++i) { 209 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 210 DepMatrix[Row][i] != 'I') 211 return false; 212 } 213 return true; 214 } 215 216 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 217 unsigned OuterLoopId, char InnerDep, 218 char OuterDep) { 219 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 220 return false; 221 222 if (InnerDep == OuterDep) 223 return true; 224 225 // It is legal to interchange if and only if after interchange no row has a 226 // '>' direction as the leftmost non-'='. 227 228 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 229 return true; 230 231 if (InnerDep == '<') 232 return true; 233 234 if (InnerDep == '>') { 235 // If OuterLoopId represents outermost loop then interchanging will make the 236 // 1st dependency as '>' 237 if (OuterLoopId == 0) 238 return false; 239 240 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 241 // interchanging will result in this row having an outermost non '=' 242 // dependency of '>' 243 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 244 return true; 245 } 246 247 return false; 248 } 249 250 // Checks if it is legal to interchange 2 loops. 251 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 252 // if the direction matrix, after the same permutation is applied to its 253 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 254 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 255 unsigned InnerLoopId, 256 unsigned OuterLoopId) { 257 unsigned NumRows = DepMatrix.size(); 258 // For each row check if it is valid to interchange. 259 for (unsigned Row = 0; Row < NumRows; ++Row) { 260 char InnerDep = DepMatrix[Row][InnerLoopId]; 261 char OuterDep = DepMatrix[Row][OuterLoopId]; 262 if (InnerDep == '*' || OuterDep == '*') 263 return false; 264 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 265 return false; 266 } 267 return true; 268 } 269 270 static void populateWorklist(Loop &L, LoopVector &LoopList) { 271 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 272 << L.getHeader()->getParent()->getName() << " Loop: %" 273 << L.getHeader()->getName() << '\n'); 274 assert(LoopList.empty() && "LoopList should initially be empty!"); 275 Loop *CurrentLoop = &L; 276 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 277 while (!Vec->empty()) { 278 // The current loop has multiple subloops in it hence it is not tightly 279 // nested. 280 // Discard all loops above it added into Worklist. 281 if (Vec->size() != 1) { 282 LoopList = {}; 283 return; 284 } 285 286 LoopList.push_back(CurrentLoop); 287 CurrentLoop = Vec->front(); 288 Vec = &CurrentLoop->getSubLoops(); 289 } 290 LoopList.push_back(CurrentLoop); 291 return; 292 } 293 294 namespace { 295 296 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 297 class LoopInterchangeLegality { 298 public: 299 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 300 OptimizationRemarkEmitter *ORE) 301 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 302 303 /// Check if the loops can be interchanged. 304 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 305 CharMatrix &DepMatrix); 306 307 /// Discover induction PHIs in the header of \p L. Induction 308 /// PHIs are added to \p Inductions. 309 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 310 311 /// Check if the loop structure is understood. We do not handle triangular 312 /// loops for now. 313 bool isLoopStructureUnderstood(); 314 315 bool currentLimitations(); 316 317 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 318 return OuterInnerReductions; 319 } 320 321 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 322 return InnerLoopInductions; 323 } 324 325 private: 326 bool tightlyNested(Loop *Outer, Loop *Inner); 327 bool containsUnsafeInstructions(BasicBlock *BB); 328 329 /// Discover induction and reduction PHIs in the header of \p L. Induction 330 /// PHIs are added to \p Inductions, reductions are added to 331 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 332 /// to be passed as \p InnerLoop. 333 bool findInductionAndReductions(Loop *L, 334 SmallVector<PHINode *, 8> &Inductions, 335 Loop *InnerLoop); 336 337 Loop *OuterLoop; 338 Loop *InnerLoop; 339 340 ScalarEvolution *SE; 341 342 /// Interface to emit optimization remarks. 343 OptimizationRemarkEmitter *ORE; 344 345 /// Set of reduction PHIs taking part of a reduction across the inner and 346 /// outer loop. 347 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 348 349 /// Set of inner loop induction PHIs 350 SmallVector<PHINode *, 8> InnerLoopInductions; 351 }; 352 353 /// LoopInterchangeProfitability checks if it is profitable to interchange the 354 /// loop. 355 class LoopInterchangeProfitability { 356 public: 357 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 358 OptimizationRemarkEmitter *ORE) 359 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 360 361 /// Check if the loop interchange is profitable. 362 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, 363 unsigned InnerLoopId, unsigned OuterLoopId, 364 CharMatrix &DepMatrix, 365 const DenseMap<const Loop *, unsigned> &CostMap); 366 367 private: 368 int getInstrOrderCost(); 369 370 Loop *OuterLoop; 371 Loop *InnerLoop; 372 373 /// Scev analysis. 374 ScalarEvolution *SE; 375 376 /// Interface to emit optimization remarks. 377 OptimizationRemarkEmitter *ORE; 378 }; 379 380 /// LoopInterchangeTransform interchanges the loop. 381 class LoopInterchangeTransform { 382 public: 383 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 384 LoopInfo *LI, DominatorTree *DT, 385 const LoopInterchangeLegality &LIL) 386 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 387 388 /// Interchange OuterLoop and InnerLoop. 389 bool transform(); 390 void restructureLoops(Loop *NewInner, Loop *NewOuter, 391 BasicBlock *OrigInnerPreHeader, 392 BasicBlock *OrigOuterPreHeader); 393 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 394 395 private: 396 bool adjustLoopLinks(); 397 bool adjustLoopBranches(); 398 399 Loop *OuterLoop; 400 Loop *InnerLoop; 401 402 /// Scev analysis. 403 ScalarEvolution *SE; 404 405 LoopInfo *LI; 406 DominatorTree *DT; 407 408 const LoopInterchangeLegality &LIL; 409 }; 410 411 struct LoopInterchange { 412 ScalarEvolution *SE = nullptr; 413 LoopInfo *LI = nullptr; 414 DependenceInfo *DI = nullptr; 415 DominatorTree *DT = nullptr; 416 std::unique_ptr<CacheCost> CC = nullptr; 417 418 /// Interface to emit optimization remarks. 419 OptimizationRemarkEmitter *ORE; 420 421 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 422 DominatorTree *DT, std::unique_ptr<CacheCost> &CC, 423 OptimizationRemarkEmitter *ORE) 424 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} 425 426 bool run(Loop *L) { 427 if (L->getParentLoop()) 428 return false; 429 SmallVector<Loop *, 8> LoopList; 430 populateWorklist(*L, LoopList); 431 return processLoopList(LoopList); 432 } 433 434 bool run(LoopNest &LN) { 435 SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end()); 436 for (unsigned I = 1; I < LoopList.size(); ++I) 437 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 438 return false; 439 return processLoopList(LoopList); 440 } 441 442 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 443 for (Loop *L : LoopList) { 444 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 445 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 446 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 447 return false; 448 } 449 if (L->getNumBackEdges() != 1) { 450 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 451 return false; 452 } 453 if (!L->getExitingBlock()) { 454 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 455 return false; 456 } 457 } 458 return true; 459 } 460 461 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 462 // TODO: Add a better heuristic to select the loop to be interchanged based 463 // on the dependence matrix. Currently we select the innermost loop. 464 return LoopList.size() - 1; 465 } 466 467 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) { 468 bool Changed = false; 469 unsigned LoopNestDepth = LoopList.size(); 470 if (LoopNestDepth < 2) { 471 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 472 return false; 473 } 474 if (LoopNestDepth > MaxLoopNestDepth) { 475 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 476 << MaxLoopNestDepth << "\n"); 477 return false; 478 } 479 if (!isComputableLoopNest(LoopList)) { 480 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 481 return false; 482 } 483 484 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 485 << "\n"); 486 487 CharMatrix DependencyMatrix; 488 Loop *OuterMostLoop = *(LoopList.begin()); 489 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 490 OuterMostLoop, DI)) { 491 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 492 return false; 493 } 494 #ifdef DUMP_DEP_MATRICIES 495 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 496 printDepMatrix(DependencyMatrix); 497 #endif 498 499 // Get the Outermost loop exit. 500 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 501 if (!LoopNestExit) { 502 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 503 return false; 504 } 505 506 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 507 // Obtain the loop vector returned from loop cache analysis beforehand, 508 // and put each <Loop, index> pair into a map for constant time query 509 // later. Indices in loop vector reprsent the optimal order of the 510 // corresponding loop, e.g., given a loopnest with depth N, index 0 511 // indicates the loop should be placed as the outermost loop and index N 512 // indicates the loop should be placed as the innermost loop. 513 // 514 // For the old pass manager CacheCost would be null. 515 DenseMap<const Loop *, unsigned> CostMap; 516 if (CC != nullptr) { 517 const auto &LoopCosts = CC->getLoopCosts(); 518 for (unsigned i = 0; i < LoopCosts.size(); i++) { 519 CostMap[LoopCosts[i].first] = i; 520 } 521 } 522 // We try to achieve the globally optimal memory access for the loopnest, 523 // and do interchange based on a bubble-sort fasion. We start from 524 // the innermost loop, move it outwards to the best possible position 525 // and repeat this process. 526 for (unsigned j = SelecLoopId; j > 0; j--) { 527 bool ChangedPerIter = false; 528 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { 529 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 530 DependencyMatrix, CostMap); 531 if (!Interchanged) 532 continue; 533 // Loops interchanged, update LoopList accordingly. 534 std::swap(LoopList[i - 1], LoopList[i]); 535 // Update the DependencyMatrix 536 interChangeDependencies(DependencyMatrix, i, i - 1); 537 #ifdef DUMP_DEP_MATRICIES 538 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 539 printDepMatrix(DependencyMatrix); 540 #endif 541 ChangedPerIter |= Interchanged; 542 Changed |= Interchanged; 543 } 544 // Early abort if there was no interchange during an entire round of 545 // moving loops outwards. 546 if (!ChangedPerIter) 547 break; 548 } 549 return Changed; 550 } 551 552 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 553 unsigned OuterLoopId, 554 std::vector<std::vector<char>> &DependencyMatrix, 555 const DenseMap<const Loop *, unsigned> &CostMap) { 556 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 557 << " and OuterLoopId = " << OuterLoopId << "\n"); 558 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 559 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 560 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 561 return false; 562 } 563 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 564 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 565 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, 566 DependencyMatrix, CostMap)) { 567 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 568 return false; 569 } 570 571 ORE->emit([&]() { 572 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 573 InnerLoop->getStartLoc(), 574 InnerLoop->getHeader()) 575 << "Loop interchanged with enclosing loop."; 576 }); 577 578 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 579 LIT.transform(); 580 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 581 LoopsInterchanged++; 582 583 assert(InnerLoop->isLCSSAForm(*DT) && 584 "Inner loop not left in LCSSA form after loop interchange!"); 585 assert(OuterLoop->isLCSSAForm(*DT) && 586 "Outer loop not left in LCSSA form after loop interchange!"); 587 588 return true; 589 } 590 }; 591 592 } // end anonymous namespace 593 594 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 595 return any_of(*BB, [](const Instruction &I) { 596 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 597 }); 598 } 599 600 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 601 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 602 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 603 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 604 605 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 606 607 // A perfectly nested loop will not have any branch in between the outer and 608 // inner block i.e. outer header will branch to either inner preheader and 609 // outerloop latch. 610 BranchInst *OuterLoopHeaderBI = 611 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 612 if (!OuterLoopHeaderBI) 613 return false; 614 615 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 616 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 617 Succ != OuterLoopLatch) 618 return false; 619 620 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 621 // We do not have any basic block in between now make sure the outer header 622 // and outer loop latch doesn't contain any unsafe instructions. 623 if (containsUnsafeInstructions(OuterLoopHeader) || 624 containsUnsafeInstructions(OuterLoopLatch)) 625 return false; 626 627 // Also make sure the inner loop preheader does not contain any unsafe 628 // instructions. Note that all instructions in the preheader will be moved to 629 // the outer loop header when interchanging. 630 if (InnerLoopPreHeader != OuterLoopHeader && 631 containsUnsafeInstructions(InnerLoopPreHeader)) 632 return false; 633 634 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 635 // Ensure the inner loop exit block flows to the outer loop latch possibly 636 // through empty blocks. 637 const BasicBlock &SuccInner = 638 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 639 if (&SuccInner != OuterLoopLatch) { 640 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 641 << " does not lead to the outer loop latch.\n";); 642 return false; 643 } 644 // The inner loop exit block does flow to the outer loop latch and not some 645 // other BBs, now make sure it contains safe instructions, since it will be 646 // moved into the (new) inner loop after interchange. 647 if (containsUnsafeInstructions(InnerLoopExit)) 648 return false; 649 650 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 651 // We have a perfect loop nest. 652 return true; 653 } 654 655 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 656 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 657 for (PHINode *InnerInduction : InnerLoopInductions) { 658 unsigned Num = InnerInduction->getNumOperands(); 659 for (unsigned i = 0; i < Num; ++i) { 660 Value *Val = InnerInduction->getOperand(i); 661 if (isa<Constant>(Val)) 662 continue; 663 Instruction *I = dyn_cast<Instruction>(Val); 664 if (!I) 665 return false; 666 // TODO: Handle triangular loops. 667 // e.g. for(int i=0;i<N;i++) 668 // for(int j=i;j<N;j++) 669 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 670 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 671 InnerLoopPreheader && 672 !OuterLoop->isLoopInvariant(I)) { 673 return false; 674 } 675 } 676 } 677 678 // TODO: Handle triangular loops of another form. 679 // e.g. for(int i=0;i<N;i++) 680 // for(int j=0;j<i;j++) 681 // or, 682 // for(int i=0;i<N;i++) 683 // for(int j=0;j*i<N;j++) 684 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 685 BranchInst *InnerLoopLatchBI = 686 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 687 if (!InnerLoopLatchBI->isConditional()) 688 return false; 689 if (CmpInst *InnerLoopCmp = 690 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 691 Value *Op0 = InnerLoopCmp->getOperand(0); 692 Value *Op1 = InnerLoopCmp->getOperand(1); 693 694 // LHS and RHS of the inner loop exit condition, e.g., 695 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 696 Value *Left = nullptr; 697 Value *Right = nullptr; 698 699 // Check if V only involves inner loop induction variable. 700 // Return true if V is InnerInduction, or a cast from 701 // InnerInduction, or a binary operator that involves 702 // InnerInduction and a constant. 703 std::function<bool(Value *)> IsPathToInnerIndVar; 704 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 705 if (llvm::is_contained(InnerLoopInductions, V)) 706 return true; 707 if (isa<Constant>(V)) 708 return true; 709 const Instruction *I = dyn_cast<Instruction>(V); 710 if (!I) 711 return false; 712 if (isa<CastInst>(I)) 713 return IsPathToInnerIndVar(I->getOperand(0)); 714 if (isa<BinaryOperator>(I)) 715 return IsPathToInnerIndVar(I->getOperand(0)) && 716 IsPathToInnerIndVar(I->getOperand(1)); 717 return false; 718 }; 719 720 // In case of multiple inner loop indvars, it is okay if LHS and RHS 721 // are both inner indvar related variables. 722 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 723 return true; 724 725 // Otherwise we check if the cmp instruction compares an inner indvar 726 // related variable (Left) with a outer loop invariant (Right). 727 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 728 Left = Op0; 729 Right = Op1; 730 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 731 Left = Op1; 732 Right = Op0; 733 } 734 735 if (Left == nullptr) 736 return false; 737 738 const SCEV *S = SE->getSCEV(Right); 739 if (!SE->isLoopInvariant(S, OuterLoop)) 740 return false; 741 } 742 743 return true; 744 } 745 746 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 747 // value. 748 static Value *followLCSSA(Value *SV) { 749 PHINode *PHI = dyn_cast<PHINode>(SV); 750 if (!PHI) 751 return SV; 752 753 if (PHI->getNumIncomingValues() != 1) 754 return SV; 755 return followLCSSA(PHI->getIncomingValue(0)); 756 } 757 758 // Check V's users to see if it is involved in a reduction in L. 759 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 760 // Reduction variables cannot be constants. 761 if (isa<Constant>(V)) 762 return nullptr; 763 764 for (Value *User : V->users()) { 765 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 766 if (PHI->getNumIncomingValues() == 1) 767 continue; 768 RecurrenceDescriptor RD; 769 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 770 // Detect floating point reduction only when it can be reordered. 771 if (RD.getExactFPMathInst() != nullptr) 772 return nullptr; 773 return PHI; 774 } 775 return nullptr; 776 } 777 } 778 779 return nullptr; 780 } 781 782 bool LoopInterchangeLegality::findInductionAndReductions( 783 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 784 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 785 return false; 786 for (PHINode &PHI : L->getHeader()->phis()) { 787 RecurrenceDescriptor RD; 788 InductionDescriptor ID; 789 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 790 Inductions.push_back(&PHI); 791 else { 792 // PHIs in inner loops need to be part of a reduction in the outer loop, 793 // discovered when checking the PHIs of the outer loop earlier. 794 if (!InnerLoop) { 795 if (!OuterInnerReductions.count(&PHI)) { 796 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 797 "across the outer loop.\n"); 798 return false; 799 } 800 } else { 801 assert(PHI.getNumIncomingValues() == 2 && 802 "Phis in loop header should have exactly 2 incoming values"); 803 // Check if we have a PHI node in the outer loop that has a reduction 804 // result from the inner loop as an incoming value. 805 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 806 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 807 if (!InnerRedPhi || 808 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 809 LLVM_DEBUG( 810 dbgs() 811 << "Failed to recognize PHI as an induction or reduction.\n"); 812 return false; 813 } 814 OuterInnerReductions.insert(&PHI); 815 OuterInnerReductions.insert(InnerRedPhi); 816 } 817 } 818 } 819 return true; 820 } 821 822 // This function indicates the current limitations in the transform as a result 823 // of which we do not proceed. 824 bool LoopInterchangeLegality::currentLimitations() { 825 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 826 827 // transform currently expects the loop latches to also be the exiting 828 // blocks. 829 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 830 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 831 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 832 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 833 LLVM_DEBUG( 834 dbgs() << "Loops where the latch is not the exiting block are not" 835 << " supported currently.\n"); 836 ORE->emit([&]() { 837 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 838 OuterLoop->getStartLoc(), 839 OuterLoop->getHeader()) 840 << "Loops where the latch is not the exiting block cannot be" 841 " interchange currently."; 842 }); 843 return true; 844 } 845 846 SmallVector<PHINode *, 8> Inductions; 847 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 848 LLVM_DEBUG( 849 dbgs() << "Only outer loops with induction or reduction PHI nodes " 850 << "are supported currently.\n"); 851 ORE->emit([&]() { 852 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 853 OuterLoop->getStartLoc(), 854 OuterLoop->getHeader()) 855 << "Only outer loops with induction or reduction PHI nodes can be" 856 " interchanged currently."; 857 }); 858 return true; 859 } 860 861 Inductions.clear(); 862 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 863 LLVM_DEBUG( 864 dbgs() << "Only inner loops with induction or reduction PHI nodes " 865 << "are supported currently.\n"); 866 ORE->emit([&]() { 867 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 868 InnerLoop->getStartLoc(), 869 InnerLoop->getHeader()) 870 << "Only inner loops with induction or reduction PHI nodes can be" 871 " interchange currently."; 872 }); 873 return true; 874 } 875 876 // TODO: Triangular loops are not handled for now. 877 if (!isLoopStructureUnderstood()) { 878 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 879 ORE->emit([&]() { 880 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 881 InnerLoop->getStartLoc(), 882 InnerLoop->getHeader()) 883 << "Inner loop structure not understood currently."; 884 }); 885 return true; 886 } 887 888 return false; 889 } 890 891 bool LoopInterchangeLegality::findInductions( 892 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 893 for (PHINode &PHI : L->getHeader()->phis()) { 894 InductionDescriptor ID; 895 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 896 Inductions.push_back(&PHI); 897 } 898 return !Inductions.empty(); 899 } 900 901 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 902 // users are either reduction PHIs or PHIs outside the outer loop (which means 903 // the we are only interested in the final value after the loop). 904 static bool 905 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 906 SmallPtrSetImpl<PHINode *> &Reductions) { 907 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 908 for (PHINode &PHI : InnerExit->phis()) { 909 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 910 if (PHI.getNumIncomingValues() > 1) 911 return false; 912 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 913 PHINode *PN = dyn_cast<PHINode>(U); 914 return !PN || 915 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 916 })) { 917 return false; 918 } 919 } 920 return true; 921 } 922 923 // We currently support LCSSA PHI nodes in the outer loop exit, if their 924 // incoming values do not come from the outer loop latch or if the 925 // outer loop latch has a single predecessor. In that case, the value will 926 // be available if both the inner and outer loop conditions are true, which 927 // will still be true after interchanging. If we have multiple predecessor, 928 // that may not be the case, e.g. because the outer loop latch may be executed 929 // if the inner loop is not executed. 930 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 931 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 932 for (PHINode &PHI : LoopNestExit->phis()) { 933 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 934 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 935 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 936 continue; 937 938 // The incoming value is defined in the outer loop latch. Currently we 939 // only support that in case the outer loop latch has a single predecessor. 940 // This guarantees that the outer loop latch is executed if and only if 941 // the inner loop is executed (because tightlyNested() guarantees that the 942 // outer loop header only branches to the inner loop or the outer loop 943 // latch). 944 // FIXME: We could weaken this logic and allow multiple predecessors, 945 // if the values are produced outside the loop latch. We would need 946 // additional logic to update the PHI nodes in the exit block as 947 // well. 948 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 949 return false; 950 } 951 } 952 return true; 953 } 954 955 // In case of multi-level nested loops, it may occur that lcssa phis exist in 956 // the latch of InnerLoop, i.e., when defs of the incoming values are further 957 // inside the loopnest. Sometimes those incoming values are not available 958 // after interchange, since the original inner latch will become the new outer 959 // latch which may have predecessor paths that do not include those incoming 960 // values. 961 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 962 // multi-level loop nests. 963 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 964 if (InnerLoop->getSubLoops().empty()) 965 return true; 966 // If the original outer latch has only one predecessor, then values defined 967 // further inside the looploop, e.g., in the innermost loop, will be available 968 // at the new outer latch after interchange. 969 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 970 return true; 971 972 // The outer latch has more than one predecessors, i.e., the inner 973 // exit and the inner header. 974 // PHI nodes in the inner latch are lcssa phis where the incoming values 975 // are defined further inside the loopnest. Check if those phis are used 976 // in the original inner latch. If that is the case then bail out since 977 // those incoming values may not be available at the new outer latch. 978 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 979 for (PHINode &PHI : InnerLoopLatch->phis()) { 980 for (auto *U : PHI.users()) { 981 Instruction *UI = cast<Instruction>(U); 982 if (InnerLoopLatch == UI->getParent()) 983 return false; 984 } 985 } 986 return true; 987 } 988 989 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 990 unsigned OuterLoopId, 991 CharMatrix &DepMatrix) { 992 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 993 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 994 << " and OuterLoopId = " << OuterLoopId 995 << " due to dependence\n"); 996 ORE->emit([&]() { 997 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 998 InnerLoop->getStartLoc(), 999 InnerLoop->getHeader()) 1000 << "Cannot interchange loops due to dependences."; 1001 }); 1002 return false; 1003 } 1004 // Check if outer and inner loop contain legal instructions only. 1005 for (auto *BB : OuterLoop->blocks()) 1006 for (Instruction &I : BB->instructionsWithoutDebug()) 1007 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1008 // readnone functions do not prevent interchanging. 1009 if (CI->onlyWritesMemory()) 1010 continue; 1011 LLVM_DEBUG( 1012 dbgs() << "Loops with call instructions cannot be interchanged " 1013 << "safely."); 1014 ORE->emit([&]() { 1015 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 1016 CI->getDebugLoc(), 1017 CI->getParent()) 1018 << "Cannot interchange loops due to call instruction."; 1019 }); 1020 1021 return false; 1022 } 1023 1024 if (!findInductions(InnerLoop, InnerLoopInductions)) { 1025 LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n"); 1026 return false; 1027 } 1028 1029 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 1030 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 1031 ORE->emit([&]() { 1032 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 1033 InnerLoop->getStartLoc(), 1034 InnerLoop->getHeader()) 1035 << "Cannot interchange loops because unsupported PHI nodes found " 1036 "in inner loop latch."; 1037 }); 1038 return false; 1039 } 1040 1041 // TODO: The loops could not be interchanged due to current limitations in the 1042 // transform module. 1043 if (currentLimitations()) { 1044 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1045 return false; 1046 } 1047 1048 // Check if the loops are tightly nested. 1049 if (!tightlyNested(OuterLoop, InnerLoop)) { 1050 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1051 ORE->emit([&]() { 1052 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1053 InnerLoop->getStartLoc(), 1054 InnerLoop->getHeader()) 1055 << "Cannot interchange loops because they are not tightly " 1056 "nested."; 1057 }); 1058 return false; 1059 } 1060 1061 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1062 OuterInnerReductions)) { 1063 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1064 ORE->emit([&]() { 1065 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1066 InnerLoop->getStartLoc(), 1067 InnerLoop->getHeader()) 1068 << "Found unsupported PHI node in loop exit."; 1069 }); 1070 return false; 1071 } 1072 1073 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1074 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1075 ORE->emit([&]() { 1076 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1077 OuterLoop->getStartLoc(), 1078 OuterLoop->getHeader()) 1079 << "Found unsupported PHI node in loop exit."; 1080 }); 1081 return false; 1082 } 1083 1084 return true; 1085 } 1086 1087 int LoopInterchangeProfitability::getInstrOrderCost() { 1088 unsigned GoodOrder, BadOrder; 1089 BadOrder = GoodOrder = 0; 1090 for (BasicBlock *BB : InnerLoop->blocks()) { 1091 for (Instruction &Ins : *BB) { 1092 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1093 unsigned NumOp = GEP->getNumOperands(); 1094 bool FoundInnerInduction = false; 1095 bool FoundOuterInduction = false; 1096 for (unsigned i = 0; i < NumOp; ++i) { 1097 // Skip operands that are not SCEV-able. 1098 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1099 continue; 1100 1101 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1102 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1103 if (!AR) 1104 continue; 1105 1106 // If we find the inner induction after an outer induction e.g. 1107 // for(int i=0;i<N;i++) 1108 // for(int j=0;j<N;j++) 1109 // A[i][j] = A[i-1][j-1]+k; 1110 // then it is a good order. 1111 if (AR->getLoop() == InnerLoop) { 1112 // We found an InnerLoop induction after OuterLoop induction. It is 1113 // a good order. 1114 FoundInnerInduction = true; 1115 if (FoundOuterInduction) { 1116 GoodOrder++; 1117 break; 1118 } 1119 } 1120 // If we find the outer induction after an inner induction e.g. 1121 // for(int i=0;i<N;i++) 1122 // for(int j=0;j<N;j++) 1123 // A[j][i] = A[j-1][i-1]+k; 1124 // then it is a bad order. 1125 if (AR->getLoop() == OuterLoop) { 1126 // We found an OuterLoop induction after InnerLoop induction. It is 1127 // a bad order. 1128 FoundOuterInduction = true; 1129 if (FoundInnerInduction) { 1130 BadOrder++; 1131 break; 1132 } 1133 } 1134 } 1135 } 1136 } 1137 } 1138 return GoodOrder - BadOrder; 1139 } 1140 1141 static bool isProfitableForVectorization(unsigned InnerLoopId, 1142 unsigned OuterLoopId, 1143 CharMatrix &DepMatrix) { 1144 // TODO: Improve this heuristic to catch more cases. 1145 // If the inner loop is loop independent or doesn't carry any dependency it is 1146 // profitable to move this to outer position. 1147 for (auto &Row : DepMatrix) { 1148 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1149 return false; 1150 // TODO: We need to improve this heuristic. 1151 if (Row[OuterLoopId] != '=') 1152 return false; 1153 } 1154 // If outer loop has dependence and inner loop is loop independent then it is 1155 // profitable to interchange to enable parallelism. 1156 // If there are no dependences, interchanging will not improve anything. 1157 return !DepMatrix.empty(); 1158 } 1159 1160 bool LoopInterchangeProfitability::isProfitable( 1161 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, 1162 unsigned OuterLoopId, CharMatrix &DepMatrix, 1163 const DenseMap<const Loop *, unsigned> &CostMap) { 1164 // TODO: Remove the legacy cost model. 1165 1166 // This is the new cost model returned from loop cache analysis. 1167 // A smaller index means the loop should be placed an outer loop, and vice 1168 // versa. 1169 if (CostMap.find(InnerLoop) != CostMap.end() && 1170 CostMap.find(OuterLoop) != CostMap.end()) { 1171 unsigned InnerIndex = 0, OuterIndex = 0; 1172 InnerIndex = CostMap.find(InnerLoop)->second; 1173 OuterIndex = CostMap.find(OuterLoop)->second; 1174 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex 1175 << ", OuterIndex = " << OuterIndex << "\n"); 1176 if (InnerIndex < OuterIndex) 1177 return true; 1178 } else { 1179 // Legacy cost model: this is rough cost estimation algorithm. It counts the 1180 // good and bad order of induction variables in the instruction and allows 1181 // reordering if number of bad orders is more than good. 1182 int Cost = getInstrOrderCost(); 1183 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1184 if (Cost < -LoopInterchangeCostThreshold) 1185 return true; 1186 } 1187 1188 // It is not profitable as per current cache profitability model. But check if 1189 // we can move this loop outside to improve parallelism. 1190 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1191 return true; 1192 1193 ORE->emit([&]() { 1194 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1195 InnerLoop->getStartLoc(), 1196 InnerLoop->getHeader()) 1197 << "Interchanging loops is too costly and it does not improve " 1198 "parallelism."; 1199 }); 1200 return false; 1201 } 1202 1203 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1204 Loop *InnerLoop) { 1205 for (Loop *L : *OuterLoop) 1206 if (L == InnerLoop) { 1207 OuterLoop->removeChildLoop(L); 1208 return; 1209 } 1210 llvm_unreachable("Couldn't find loop"); 1211 } 1212 1213 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1214 /// new inner and outer loop after interchanging: NewInner is the original 1215 /// outer loop and NewOuter is the original inner loop. 1216 /// 1217 /// Before interchanging, we have the following structure 1218 /// Outer preheader 1219 // Outer header 1220 // Inner preheader 1221 // Inner header 1222 // Inner body 1223 // Inner latch 1224 // outer bbs 1225 // Outer latch 1226 // 1227 // After interchanging: 1228 // Inner preheader 1229 // Inner header 1230 // Outer preheader 1231 // Outer header 1232 // Inner body 1233 // outer bbs 1234 // Outer latch 1235 // Inner latch 1236 void LoopInterchangeTransform::restructureLoops( 1237 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1238 BasicBlock *OrigOuterPreHeader) { 1239 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1240 // The original inner loop preheader moves from the new inner loop to 1241 // the parent loop, if there is one. 1242 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1243 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1244 1245 // Switch the loop levels. 1246 if (OuterLoopParent) { 1247 // Remove the loop from its parent loop. 1248 removeChildLoop(OuterLoopParent, NewInner); 1249 removeChildLoop(NewInner, NewOuter); 1250 OuterLoopParent->addChildLoop(NewOuter); 1251 } else { 1252 removeChildLoop(NewInner, NewOuter); 1253 LI->changeTopLevelLoop(NewInner, NewOuter); 1254 } 1255 while (!NewOuter->isInnermost()) 1256 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1257 NewOuter->addChildLoop(NewInner); 1258 1259 // BBs from the original inner loop. 1260 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1261 1262 // Add BBs from the original outer loop to the original inner loop (excluding 1263 // BBs already in inner loop) 1264 for (BasicBlock *BB : NewInner->blocks()) 1265 if (LI->getLoopFor(BB) == NewInner) 1266 NewOuter->addBlockEntry(BB); 1267 1268 // Now remove inner loop header and latch from the new inner loop and move 1269 // other BBs (the loop body) to the new inner loop. 1270 BasicBlock *OuterHeader = NewOuter->getHeader(); 1271 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1272 for (BasicBlock *BB : OrigInnerBBs) { 1273 // Nothing will change for BBs in child loops. 1274 if (LI->getLoopFor(BB) != NewOuter) 1275 continue; 1276 // Remove the new outer loop header and latch from the new inner loop. 1277 if (BB == OuterHeader || BB == OuterLatch) 1278 NewInner->removeBlockFromLoop(BB); 1279 else 1280 LI->changeLoopFor(BB, NewInner); 1281 } 1282 1283 // The preheader of the original outer loop becomes part of the new 1284 // outer loop. 1285 NewOuter->addBlockEntry(OrigOuterPreHeader); 1286 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1287 1288 // Tell SE that we move the loops around. 1289 SE->forgetLoop(NewOuter); 1290 SE->forgetLoop(NewInner); 1291 } 1292 1293 bool LoopInterchangeTransform::transform() { 1294 bool Transformed = false; 1295 1296 if (InnerLoop->getSubLoops().empty()) { 1297 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1298 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1299 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1300 if (InductionPHIs.empty()) { 1301 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1302 return false; 1303 } 1304 1305 SmallVector<Instruction *, 8> InnerIndexVarList; 1306 for (PHINode *CurInductionPHI : InductionPHIs) { 1307 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1308 InnerIndexVarList.push_back( 1309 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1310 else 1311 InnerIndexVarList.push_back( 1312 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1313 } 1314 1315 // Create a new latch block for the inner loop. We split at the 1316 // current latch's terminator and then move the condition and all 1317 // operands that are not either loop-invariant or the induction PHI into the 1318 // new latch block. 1319 BasicBlock *NewLatch = 1320 SplitBlock(InnerLoop->getLoopLatch(), 1321 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1322 1323 SmallSetVector<Instruction *, 4> WorkList; 1324 unsigned i = 0; 1325 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1326 for (; i < WorkList.size(); i++) { 1327 // Duplicate instruction and move it the new latch. Update uses that 1328 // have been moved. 1329 Instruction *NewI = WorkList[i]->clone(); 1330 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1331 assert(!NewI->mayHaveSideEffects() && 1332 "Moving instructions with side-effects may change behavior of " 1333 "the loop nest!"); 1334 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1335 Instruction *UserI = cast<Instruction>(U.getUser()); 1336 if (!InnerLoop->contains(UserI->getParent()) || 1337 UserI->getParent() == NewLatch || 1338 llvm::is_contained(InductionPHIs, UserI)) 1339 U.set(NewI); 1340 } 1341 // Add operands of moved instruction to the worklist, except if they are 1342 // outside the inner loop or are the induction PHI. 1343 for (Value *Op : WorkList[i]->operands()) { 1344 Instruction *OpI = dyn_cast<Instruction>(Op); 1345 if (!OpI || 1346 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1347 llvm::is_contained(InductionPHIs, OpI)) 1348 continue; 1349 WorkList.insert(OpI); 1350 } 1351 } 1352 }; 1353 1354 // FIXME: Should we interchange when we have a constant condition? 1355 Instruction *CondI = dyn_cast<Instruction>( 1356 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1357 ->getCondition()); 1358 if (CondI) 1359 WorkList.insert(CondI); 1360 MoveInstructions(); 1361 for (Instruction *InnerIndexVar : InnerIndexVarList) 1362 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1363 MoveInstructions(); 1364 1365 // Splits the inner loops phi nodes out into a separate basic block. 1366 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1367 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1368 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1369 } 1370 1371 // Instructions in the original inner loop preheader may depend on values 1372 // defined in the outer loop header. Move them there, because the original 1373 // inner loop preheader will become the entry into the interchanged loop nest. 1374 // Currently we move all instructions and rely on LICM to move invariant 1375 // instructions outside the loop nest. 1376 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1377 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1378 if (InnerLoopPreHeader != OuterLoopHeader) { 1379 SmallPtrSet<Instruction *, 4> NeedsMoving; 1380 for (Instruction &I : 1381 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1382 std::prev(InnerLoopPreHeader->end())))) 1383 I.moveBefore(OuterLoopHeader->getTerminator()); 1384 } 1385 1386 Transformed |= adjustLoopLinks(); 1387 if (!Transformed) { 1388 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1389 return false; 1390 } 1391 1392 return true; 1393 } 1394 1395 /// \brief Move all instructions except the terminator from FromBB right before 1396 /// InsertBefore 1397 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1398 auto &ToList = InsertBefore->getParent()->getInstList(); 1399 auto &FromList = FromBB->getInstList(); 1400 1401 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1402 FromBB->getTerminator()->getIterator()); 1403 } 1404 1405 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1406 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1407 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1408 // from BB1 afterwards. 1409 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1410 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1411 for (Instruction *I : TempInstrs) 1412 I->removeFromParent(); 1413 1414 // Move instructions from BB2 to BB1. 1415 moveBBContents(BB2, BB1->getTerminator()); 1416 1417 // Move instructions from TempInstrs to BB2. 1418 for (Instruction *I : TempInstrs) 1419 I->insertBefore(BB2->getTerminator()); 1420 } 1421 1422 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1423 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1424 // \p OldBB is exactly once in BI's successor list. 1425 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1426 BasicBlock *NewBB, 1427 std::vector<DominatorTree::UpdateType> &DTUpdates, 1428 bool MustUpdateOnce = true) { 1429 assert((!MustUpdateOnce || 1430 llvm::count_if(successors(BI), 1431 [OldBB](BasicBlock *BB) { 1432 return BB == OldBB; 1433 }) == 1) && "BI must jump to OldBB exactly once."); 1434 bool Changed = false; 1435 for (Use &Op : BI->operands()) 1436 if (Op == OldBB) { 1437 Op.set(NewBB); 1438 Changed = true; 1439 } 1440 1441 if (Changed) { 1442 DTUpdates.push_back( 1443 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1444 DTUpdates.push_back( 1445 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1446 } 1447 assert(Changed && "Expected a successor to be updated"); 1448 } 1449 1450 // Move Lcssa PHIs to the right place. 1451 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1452 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1453 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1454 Loop *InnerLoop, LoopInfo *LI) { 1455 1456 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1457 // defined either in the header or latch. Those blocks will become header and 1458 // latch of the new outer loop, and the only possible users can PHI nodes 1459 // in the exit block of the loop nest or the outer loop header (reduction 1460 // PHIs, in that case, the incoming value must be defined in the inner loop 1461 // header). We can just substitute the user with the incoming value and remove 1462 // the PHI. 1463 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1464 assert(P.getNumIncomingValues() == 1 && 1465 "Only loops with a single exit are supported!"); 1466 1467 // Incoming values are guaranteed be instructions currently. 1468 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1469 // In case of multi-level nested loops, follow LCSSA to find the incoming 1470 // value defined from the innermost loop. 1471 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI)); 1472 // Skip phis with incoming values from the inner loop body, excluding the 1473 // header and latch. 1474 if (IncIInnerMost->getParent() != InnerLatch && 1475 IncIInnerMost->getParent() != InnerHeader) 1476 continue; 1477 1478 assert(all_of(P.users(), 1479 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1480 return (cast<PHINode>(U)->getParent() == OuterHeader && 1481 IncI->getParent() == InnerHeader) || 1482 cast<PHINode>(U)->getParent() == OuterExit; 1483 }) && 1484 "Can only replace phis iff the uses are in the loop nest exit or " 1485 "the incoming value is defined in the inner header (it will " 1486 "dominate all loop blocks after interchanging)"); 1487 P.replaceAllUsesWith(IncI); 1488 P.eraseFromParent(); 1489 } 1490 1491 SmallVector<PHINode *, 8> LcssaInnerExit; 1492 for (PHINode &P : InnerExit->phis()) 1493 LcssaInnerExit.push_back(&P); 1494 1495 SmallVector<PHINode *, 8> LcssaInnerLatch; 1496 for (PHINode &P : InnerLatch->phis()) 1497 LcssaInnerLatch.push_back(&P); 1498 1499 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1500 // If a PHI node has users outside of InnerExit, it has a use outside the 1501 // interchanged loop and we have to preserve it. We move these to 1502 // InnerLatch, which will become the new exit block for the innermost 1503 // loop after interchanging. 1504 for (PHINode *P : LcssaInnerExit) 1505 P->moveBefore(InnerLatch->getFirstNonPHI()); 1506 1507 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1508 // and we have to move them to the new inner latch. 1509 for (PHINode *P : LcssaInnerLatch) 1510 P->moveBefore(InnerExit->getFirstNonPHI()); 1511 1512 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1513 // incoming values defined in the outer loop, we have to add a new PHI 1514 // in the inner loop latch, which became the exit block of the outer loop, 1515 // after interchanging. 1516 if (OuterExit) { 1517 for (PHINode &P : OuterExit->phis()) { 1518 if (P.getNumIncomingValues() != 1) 1519 continue; 1520 // Skip Phis with incoming values defined in the inner loop. Those should 1521 // already have been updated. 1522 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1523 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1524 continue; 1525 1526 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1527 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1528 NewPhi->setIncomingBlock(0, OuterLatch); 1529 // We might have incoming edges from other BBs, i.e., the original outer 1530 // header. 1531 for (auto *Pred : predecessors(InnerLatch)) { 1532 if (Pred == OuterLatch) 1533 continue; 1534 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1535 } 1536 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1537 P.setIncomingValue(0, NewPhi); 1538 } 1539 } 1540 1541 // Now adjust the incoming blocks for the LCSSA PHIs. 1542 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1543 // with the new latch. 1544 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1545 } 1546 1547 bool LoopInterchangeTransform::adjustLoopBranches() { 1548 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1549 std::vector<DominatorTree::UpdateType> DTUpdates; 1550 1551 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1552 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1553 1554 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1555 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1556 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1557 // Ensure that both preheaders do not contain PHI nodes and have single 1558 // predecessors. This allows us to move them easily. We use 1559 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1560 // preheaders do not satisfy those conditions. 1561 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1562 !OuterLoopPreHeader->getUniquePredecessor()) 1563 OuterLoopPreHeader = 1564 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1565 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1566 InnerLoopPreHeader = 1567 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1568 1569 // Adjust the loop preheader 1570 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1571 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1572 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1573 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1574 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1575 BasicBlock *InnerLoopLatchPredecessor = 1576 InnerLoopLatch->getUniquePredecessor(); 1577 BasicBlock *InnerLoopLatchSuccessor; 1578 BasicBlock *OuterLoopLatchSuccessor; 1579 1580 BranchInst *OuterLoopLatchBI = 1581 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1582 BranchInst *InnerLoopLatchBI = 1583 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1584 BranchInst *OuterLoopHeaderBI = 1585 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1586 BranchInst *InnerLoopHeaderBI = 1587 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1588 1589 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1590 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1591 !InnerLoopHeaderBI) 1592 return false; 1593 1594 BranchInst *InnerLoopLatchPredecessorBI = 1595 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1596 BranchInst *OuterLoopPredecessorBI = 1597 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1598 1599 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1600 return false; 1601 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1602 if (!InnerLoopHeaderSuccessor) 1603 return false; 1604 1605 // Adjust Loop Preheader and headers. 1606 // The branches in the outer loop predecessor and the outer loop header can 1607 // be unconditional branches or conditional branches with duplicates. Consider 1608 // this when updating the successors. 1609 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1610 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1611 // The outer loop header might or might not branch to the outer latch. 1612 // We are guaranteed to branch to the inner loop preheader. 1613 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1614 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1615 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1616 DTUpdates, 1617 /*MustUpdateOnce=*/false); 1618 } 1619 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1620 InnerLoopHeaderSuccessor, DTUpdates, 1621 /*MustUpdateOnce=*/false); 1622 1623 // Adjust reduction PHI's now that the incoming block has changed. 1624 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1625 OuterLoopHeader); 1626 1627 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1628 OuterLoopPreHeader, DTUpdates); 1629 1630 // -------------Adjust loop latches----------- 1631 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1632 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1633 else 1634 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1635 1636 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1637 InnerLoopLatchSuccessor, DTUpdates); 1638 1639 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1640 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1641 else 1642 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1643 1644 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1645 OuterLoopLatchSuccessor, DTUpdates); 1646 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1647 DTUpdates); 1648 1649 DT->applyUpdates(DTUpdates); 1650 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1651 OuterLoopPreHeader); 1652 1653 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1654 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1655 InnerLoop, LI); 1656 // For PHIs in the exit block of the outer loop, outer's latch has been 1657 // replaced by Inners'. 1658 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1659 1660 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1661 // Now update the reduction PHIs in the inner and outer loop headers. 1662 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1663 for (PHINode &PHI : InnerLoopHeader->phis()) 1664 if (OuterInnerReductions.contains(&PHI)) 1665 InnerLoopPHIs.push_back(&PHI); 1666 1667 for (PHINode &PHI : OuterLoopHeader->phis()) 1668 if (OuterInnerReductions.contains(&PHI)) 1669 OuterLoopPHIs.push_back(&PHI); 1670 1671 // Now move the remaining reduction PHIs from outer to inner loop header and 1672 // vice versa. The PHI nodes must be part of a reduction across the inner and 1673 // outer loop and all the remains to do is and updating the incoming blocks. 1674 for (PHINode *PHI : OuterLoopPHIs) { 1675 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1676 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1677 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1678 } 1679 for (PHINode *PHI : InnerLoopPHIs) { 1680 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1681 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1682 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1683 } 1684 1685 // Update the incoming blocks for moved PHI nodes. 1686 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1687 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1688 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1689 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1690 1691 // Values defined in the outer loop header could be used in the inner loop 1692 // latch. In that case, we need to create LCSSA phis for them, because after 1693 // interchanging they will be defined in the new inner loop and used in the 1694 // new outer loop. 1695 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1696 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1697 for (Instruction &I : 1698 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1699 MayNeedLCSSAPhis.push_back(&I); 1700 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1701 1702 return true; 1703 } 1704 1705 bool LoopInterchangeTransform::adjustLoopLinks() { 1706 // Adjust all branches in the inner and outer loop. 1707 bool Changed = adjustLoopBranches(); 1708 if (Changed) { 1709 // We have interchanged the preheaders so we need to interchange the data in 1710 // the preheaders as well. This is because the content of the inner 1711 // preheader was previously executed inside the outer loop. 1712 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1713 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1714 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1715 } 1716 return Changed; 1717 } 1718 1719 namespace { 1720 /// Main LoopInterchange Pass. 1721 struct LoopInterchangeLegacyPass : public LoopPass { 1722 static char ID; 1723 1724 LoopInterchangeLegacyPass() : LoopPass(ID) { 1725 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1726 } 1727 1728 void getAnalysisUsage(AnalysisUsage &AU) const override { 1729 AU.addRequired<DependenceAnalysisWrapperPass>(); 1730 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1731 1732 getLoopAnalysisUsage(AU); 1733 } 1734 1735 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1736 if (skipLoop(L)) 1737 return false; 1738 1739 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1740 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1741 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1742 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1743 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1744 std::unique_ptr<CacheCost> CC = nullptr; 1745 return LoopInterchange(SE, LI, DI, DT, CC, ORE).run(L); 1746 } 1747 }; 1748 } // namespace 1749 1750 char LoopInterchangeLegacyPass::ID = 0; 1751 1752 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1753 "Interchanges loops for cache reuse", false, false) 1754 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1755 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1756 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1757 1758 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1759 "Interchanges loops for cache reuse", false, false) 1760 1761 Pass *llvm::createLoopInterchangePass() { 1762 return new LoopInterchangeLegacyPass(); 1763 } 1764 1765 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1766 LoopAnalysisManager &AM, 1767 LoopStandardAnalysisResults &AR, 1768 LPMUpdater &U) { 1769 Function &F = *LN.getParent(); 1770 1771 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1772 std::unique_ptr<CacheCost> CC = 1773 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); 1774 OptimizationRemarkEmitter ORE(&F); 1775 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) 1776 return PreservedAnalyses::all(); 1777 return getLoopPassPreservedAnalyses(); 1778 } 1779