1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/CmpInstAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/GlobalValue.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/InstructionCost.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Transforms/Scalar.h" 96 #include "llvm/Transforms/Utils/BuildLibCalls.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include "llvm/Transforms/Utils/LoopUtils.h" 99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 108 #define DEBUG_TYPE "loop-idiom" 109 110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 112 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); 113 STATISTIC( 114 NumShiftUntilBitTest, 115 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 116 STATISTIC(NumShiftUntilZero, 117 "Number of uncountable loops recognized as 'shift until zero' idiom"); 118 119 bool DisableLIRP::All; 120 static cl::opt<bool, true> 121 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 122 cl::desc("Options to disable Loop Idiom Recognize Pass."), 123 cl::location(DisableLIRP::All), cl::init(false), 124 cl::ReallyHidden); 125 126 bool DisableLIRP::Memset; 127 static cl::opt<bool, true> 128 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 129 cl::desc("Proceed with loop idiom recognize pass, but do " 130 "not convert loop(s) to memset."), 131 cl::location(DisableLIRP::Memset), cl::init(false), 132 cl::ReallyHidden); 133 134 bool DisableLIRP::Memcpy; 135 static cl::opt<bool, true> 136 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 137 cl::desc("Proceed with loop idiom recognize pass, but do " 138 "not convert loop(s) to memcpy."), 139 cl::location(DisableLIRP::Memcpy), cl::init(false), 140 cl::ReallyHidden); 141 142 static cl::opt<bool> UseLIRCodeSizeHeurs( 143 "use-lir-code-size-heurs", 144 cl::desc("Use loop idiom recognition code size heuristics when compiling" 145 "with -Os/-Oz"), 146 cl::init(true), cl::Hidden); 147 148 namespace { 149 150 class LoopIdiomRecognize { 151 Loop *CurLoop = nullptr; 152 AliasAnalysis *AA; 153 DominatorTree *DT; 154 LoopInfo *LI; 155 ScalarEvolution *SE; 156 TargetLibraryInfo *TLI; 157 const TargetTransformInfo *TTI; 158 const DataLayout *DL; 159 OptimizationRemarkEmitter &ORE; 160 bool ApplyCodeSizeHeuristics; 161 std::unique_ptr<MemorySSAUpdater> MSSAU; 162 163 public: 164 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 165 LoopInfo *LI, ScalarEvolution *SE, 166 TargetLibraryInfo *TLI, 167 const TargetTransformInfo *TTI, MemorySSA *MSSA, 168 const DataLayout *DL, 169 OptimizationRemarkEmitter &ORE) 170 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 171 if (MSSA) 172 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 173 } 174 175 bool runOnLoop(Loop *L); 176 177 private: 178 using StoreList = SmallVector<StoreInst *, 8>; 179 using StoreListMap = MapVector<Value *, StoreList>; 180 181 StoreListMap StoreRefsForMemset; 182 StoreListMap StoreRefsForMemsetPattern; 183 StoreList StoreRefsForMemcpy; 184 bool HasMemset; 185 bool HasMemsetPattern; 186 bool HasMemcpy; 187 188 /// Return code for isLegalStore() 189 enum LegalStoreKind { 190 None = 0, 191 Memset, 192 MemsetPattern, 193 Memcpy, 194 UnorderedAtomicMemcpy, 195 DontUse // Dummy retval never to be used. Allows catching errors in retval 196 // handling. 197 }; 198 199 /// \name Countable Loop Idiom Handling 200 /// @{ 201 202 bool runOnCountableLoop(); 203 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 204 SmallVectorImpl<BasicBlock *> &ExitBlocks); 205 206 void collectStores(BasicBlock *BB); 207 LegalStoreKind isLegalStore(StoreInst *SI); 208 enum class ForMemset { No, Yes }; 209 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 210 ForMemset For); 211 212 template <typename MemInst> 213 bool processLoopMemIntrinsic( 214 BasicBlock *BB, 215 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 216 const SCEV *BECount); 217 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 218 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 219 220 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, 221 MaybeAlign StoreAlignment, Value *StoredVal, 222 Instruction *TheStore, 223 SmallPtrSetImpl<Instruction *> &Stores, 224 const SCEVAddRecExpr *Ev, const SCEV *BECount, 225 bool IsNegStride, bool IsLoopMemset = false); 226 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 227 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 228 const SCEV *StoreSize, MaybeAlign StoreAlign, 229 MaybeAlign LoadAlign, Instruction *TheStore, 230 Instruction *TheLoad, 231 const SCEVAddRecExpr *StoreEv, 232 const SCEVAddRecExpr *LoadEv, 233 const SCEV *BECount); 234 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 235 bool IsLoopMemset = false); 236 237 /// @} 238 /// \name Noncountable Loop Idiom Handling 239 /// @{ 240 241 bool runOnNoncountableLoop(); 242 243 bool recognizePopcount(); 244 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 245 PHINode *CntPhi, Value *Var); 246 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 247 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 248 Instruction *CntInst, PHINode *CntPhi, 249 Value *Var, Instruction *DefX, 250 const DebugLoc &DL, bool ZeroCheck, 251 bool IsCntPhiUsedOutsideLoop); 252 253 bool recognizeShiftUntilBitTest(); 254 bool recognizeShiftUntilZero(); 255 256 /// @} 257 }; 258 259 class LoopIdiomRecognizeLegacyPass : public LoopPass { 260 public: 261 static char ID; 262 263 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 264 initializeLoopIdiomRecognizeLegacyPassPass( 265 *PassRegistry::getPassRegistry()); 266 } 267 268 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 269 if (DisableLIRP::All) 270 return false; 271 272 if (skipLoop(L)) 273 return false; 274 275 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 276 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 277 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 278 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 279 TargetLibraryInfo *TLI = 280 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 281 *L->getHeader()->getParent()); 282 const TargetTransformInfo *TTI = 283 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 284 *L->getHeader()->getParent()); 285 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 286 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 287 MemorySSA *MSSA = nullptr; 288 if (MSSAAnalysis) 289 MSSA = &MSSAAnalysis->getMSSA(); 290 291 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 292 // pass. Function analyses need to be preserved across loop transformations 293 // but ORE cannot be preserved (see comment before the pass definition). 294 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 295 296 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 297 return LIR.runOnLoop(L); 298 } 299 300 /// This transformation requires natural loop information & requires that 301 /// loop preheaders be inserted into the CFG. 302 void getAnalysisUsage(AnalysisUsage &AU) const override { 303 AU.addRequired<TargetLibraryInfoWrapperPass>(); 304 AU.addRequired<TargetTransformInfoWrapperPass>(); 305 AU.addPreserved<MemorySSAWrapperPass>(); 306 getLoopAnalysisUsage(AU); 307 } 308 }; 309 310 } // end anonymous namespace 311 312 char LoopIdiomRecognizeLegacyPass::ID = 0; 313 314 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 315 LoopStandardAnalysisResults &AR, 316 LPMUpdater &) { 317 if (DisableLIRP::All) 318 return PreservedAnalyses::all(); 319 320 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 321 322 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 323 // pass. Function analyses need to be preserved across loop transformations 324 // but ORE cannot be preserved (see comment before the pass definition). 325 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 326 327 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 328 AR.MSSA, DL, ORE); 329 if (!LIR.runOnLoop(&L)) 330 return PreservedAnalyses::all(); 331 332 auto PA = getLoopPassPreservedAnalyses(); 333 if (AR.MSSA) 334 PA.preserve<MemorySSAAnalysis>(); 335 return PA; 336 } 337 338 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 339 "Recognize loop idioms", false, false) 340 INITIALIZE_PASS_DEPENDENCY(LoopPass) 341 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 342 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 343 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 344 "Recognize loop idioms", false, false) 345 346 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 347 348 static void deleteDeadInstruction(Instruction *I) { 349 I->replaceAllUsesWith(UndefValue::get(I->getType())); 350 I->eraseFromParent(); 351 } 352 353 //===----------------------------------------------------------------------===// 354 // 355 // Implementation of LoopIdiomRecognize 356 // 357 //===----------------------------------------------------------------------===// 358 359 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 360 CurLoop = L; 361 // If the loop could not be converted to canonical form, it must have an 362 // indirectbr in it, just give up. 363 if (!L->getLoopPreheader()) 364 return false; 365 366 // Disable loop idiom recognition if the function's name is a common idiom. 367 StringRef Name = L->getHeader()->getParent()->getName(); 368 if (Name == "memset" || Name == "memcpy") 369 return false; 370 371 // Determine if code size heuristics need to be applied. 372 ApplyCodeSizeHeuristics = 373 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 374 375 HasMemset = TLI->has(LibFunc_memset); 376 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 377 HasMemcpy = TLI->has(LibFunc_memcpy); 378 379 if (HasMemset || HasMemsetPattern || HasMemcpy) 380 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 381 return runOnCountableLoop(); 382 383 return runOnNoncountableLoop(); 384 } 385 386 bool LoopIdiomRecognize::runOnCountableLoop() { 387 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 388 assert(!isa<SCEVCouldNotCompute>(BECount) && 389 "runOnCountableLoop() called on a loop without a predictable" 390 "backedge-taken count"); 391 392 // If this loop executes exactly one time, then it should be peeled, not 393 // optimized by this pass. 394 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 395 if (BECst->getAPInt() == 0) 396 return false; 397 398 SmallVector<BasicBlock *, 8> ExitBlocks; 399 CurLoop->getUniqueExitBlocks(ExitBlocks); 400 401 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 402 << CurLoop->getHeader()->getParent()->getName() 403 << "] Countable Loop %" << CurLoop->getHeader()->getName() 404 << "\n"); 405 406 // The following transforms hoist stores/memsets into the loop pre-header. 407 // Give up if the loop has instructions that may throw. 408 SimpleLoopSafetyInfo SafetyInfo; 409 SafetyInfo.computeLoopSafetyInfo(CurLoop); 410 if (SafetyInfo.anyBlockMayThrow()) 411 return false; 412 413 bool MadeChange = false; 414 415 // Scan all the blocks in the loop that are not in subloops. 416 for (auto *BB : CurLoop->getBlocks()) { 417 // Ignore blocks in subloops. 418 if (LI->getLoopFor(BB) != CurLoop) 419 continue; 420 421 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 422 } 423 return MadeChange; 424 } 425 426 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 427 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 428 return ConstStride->getAPInt(); 429 } 430 431 /// getMemSetPatternValue - If a strided store of the specified value is safe to 432 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 433 /// be passed in. Otherwise, return null. 434 /// 435 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 436 /// just replicate their input array and then pass on to memset_pattern16. 437 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 438 // FIXME: This could check for UndefValue because it can be merged into any 439 // other valid pattern. 440 441 // If the value isn't a constant, we can't promote it to being in a constant 442 // array. We could theoretically do a store to an alloca or something, but 443 // that doesn't seem worthwhile. 444 Constant *C = dyn_cast<Constant>(V); 445 if (!C) 446 return nullptr; 447 448 // Only handle simple values that are a power of two bytes in size. 449 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 450 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 451 return nullptr; 452 453 // Don't care enough about darwin/ppc to implement this. 454 if (DL->isBigEndian()) 455 return nullptr; 456 457 // Convert to size in bytes. 458 Size /= 8; 459 460 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 461 // if the top and bottom are the same (e.g. for vectors and large integers). 462 if (Size > 16) 463 return nullptr; 464 465 // If the constant is exactly 16 bytes, just use it. 466 if (Size == 16) 467 return C; 468 469 // Otherwise, we'll use an array of the constants. 470 unsigned ArraySize = 16 / Size; 471 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 472 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 473 } 474 475 LoopIdiomRecognize::LegalStoreKind 476 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 477 // Don't touch volatile stores. 478 if (SI->isVolatile()) 479 return LegalStoreKind::None; 480 // We only want simple or unordered-atomic stores. 481 if (!SI->isUnordered()) 482 return LegalStoreKind::None; 483 484 // Avoid merging nontemporal stores. 485 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 486 return LegalStoreKind::None; 487 488 Value *StoredVal = SI->getValueOperand(); 489 Value *StorePtr = SI->getPointerOperand(); 490 491 // Don't convert stores of non-integral pointer types to memsets (which stores 492 // integers). 493 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 494 return LegalStoreKind::None; 495 496 // Reject stores that are so large that they overflow an unsigned. 497 // When storing out scalable vectors we bail out for now, since the code 498 // below currently only works for constant strides. 499 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 500 if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || 501 (SizeInBits.getFixedSize() >> 32) != 0) 502 return LegalStoreKind::None; 503 504 // See if the pointer expression is an AddRec like {base,+,1} on the current 505 // loop, which indicates a strided store. If we have something else, it's a 506 // random store we can't handle. 507 const SCEVAddRecExpr *StoreEv = 508 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 509 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 510 return LegalStoreKind::None; 511 512 // Check to see if we have a constant stride. 513 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 514 return LegalStoreKind::None; 515 516 // See if the store can be turned into a memset. 517 518 // If the stored value is a byte-wise value (like i32 -1), then it may be 519 // turned into a memset of i8 -1, assuming that all the consecutive bytes 520 // are stored. A store of i32 0x01020304 can never be turned into a memset, 521 // but it can be turned into memset_pattern if the target supports it. 522 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 523 524 // Note: memset and memset_pattern on unordered-atomic is yet not supported 525 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 526 527 // If we're allowed to form a memset, and the stored value would be 528 // acceptable for memset, use it. 529 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 530 // Verify that the stored value is loop invariant. If not, we can't 531 // promote the memset. 532 CurLoop->isLoopInvariant(SplatValue)) { 533 // It looks like we can use SplatValue. 534 return LegalStoreKind::Memset; 535 } 536 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 537 // Don't create memset_pattern16s with address spaces. 538 StorePtr->getType()->getPointerAddressSpace() == 0 && 539 getMemSetPatternValue(StoredVal, DL)) { 540 // It looks like we can use PatternValue! 541 return LegalStoreKind::MemsetPattern; 542 } 543 544 // Otherwise, see if the store can be turned into a memcpy. 545 if (HasMemcpy && !DisableLIRP::Memcpy) { 546 // Check to see if the stride matches the size of the store. If so, then we 547 // know that every byte is touched in the loop. 548 APInt Stride = getStoreStride(StoreEv); 549 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 550 if (StoreSize != Stride && StoreSize != -Stride) 551 return LegalStoreKind::None; 552 553 // The store must be feeding a non-volatile load. 554 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 555 556 // Only allow non-volatile loads 557 if (!LI || LI->isVolatile()) 558 return LegalStoreKind::None; 559 // Only allow simple or unordered-atomic loads 560 if (!LI->isUnordered()) 561 return LegalStoreKind::None; 562 563 // See if the pointer expression is an AddRec like {base,+,1} on the current 564 // loop, which indicates a strided load. If we have something else, it's a 565 // random load we can't handle. 566 const SCEVAddRecExpr *LoadEv = 567 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 568 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 569 return LegalStoreKind::None; 570 571 // The store and load must share the same stride. 572 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 573 return LegalStoreKind::None; 574 575 // Success. This store can be converted into a memcpy. 576 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 577 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 578 : LegalStoreKind::Memcpy; 579 } 580 // This store can't be transformed into a memset/memcpy. 581 return LegalStoreKind::None; 582 } 583 584 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 585 StoreRefsForMemset.clear(); 586 StoreRefsForMemsetPattern.clear(); 587 StoreRefsForMemcpy.clear(); 588 for (Instruction &I : *BB) { 589 StoreInst *SI = dyn_cast<StoreInst>(&I); 590 if (!SI) 591 continue; 592 593 // Make sure this is a strided store with a constant stride. 594 switch (isLegalStore(SI)) { 595 case LegalStoreKind::None: 596 // Nothing to do 597 break; 598 case LegalStoreKind::Memset: { 599 // Find the base pointer. 600 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 601 StoreRefsForMemset[Ptr].push_back(SI); 602 } break; 603 case LegalStoreKind::MemsetPattern: { 604 // Find the base pointer. 605 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 606 StoreRefsForMemsetPattern[Ptr].push_back(SI); 607 } break; 608 case LegalStoreKind::Memcpy: 609 case LegalStoreKind::UnorderedAtomicMemcpy: 610 StoreRefsForMemcpy.push_back(SI); 611 break; 612 default: 613 assert(false && "unhandled return value"); 614 break; 615 } 616 } 617 } 618 619 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 620 /// with the specified backedge count. This block is known to be in the current 621 /// loop and not in any subloops. 622 bool LoopIdiomRecognize::runOnLoopBlock( 623 BasicBlock *BB, const SCEV *BECount, 624 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 625 // We can only promote stores in this block if they are unconditionally 626 // executed in the loop. For a block to be unconditionally executed, it has 627 // to dominate all the exit blocks of the loop. Verify this now. 628 for (BasicBlock *ExitBlock : ExitBlocks) 629 if (!DT->dominates(BB, ExitBlock)) 630 return false; 631 632 bool MadeChange = false; 633 // Look for store instructions, which may be optimized to memset/memcpy. 634 collectStores(BB); 635 636 // Look for a single store or sets of stores with a common base, which can be 637 // optimized into a memset (memset_pattern). The latter most commonly happens 638 // with structs and handunrolled loops. 639 for (auto &SL : StoreRefsForMemset) 640 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 641 642 for (auto &SL : StoreRefsForMemsetPattern) 643 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 644 645 // Optimize the store into a memcpy, if it feeds an similarly strided load. 646 for (auto &SI : StoreRefsForMemcpy) 647 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 648 649 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 650 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 651 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 652 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 653 654 return MadeChange; 655 } 656 657 /// See if this store(s) can be promoted to a memset. 658 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 659 const SCEV *BECount, ForMemset For) { 660 // Try to find consecutive stores that can be transformed into memsets. 661 SetVector<StoreInst *> Heads, Tails; 662 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 663 664 // Do a quadratic search on all of the given stores and find 665 // all of the pairs of stores that follow each other. 666 SmallVector<unsigned, 16> IndexQueue; 667 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 668 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 669 670 Value *FirstStoredVal = SL[i]->getValueOperand(); 671 Value *FirstStorePtr = SL[i]->getPointerOperand(); 672 const SCEVAddRecExpr *FirstStoreEv = 673 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 674 APInt FirstStride = getStoreStride(FirstStoreEv); 675 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 676 677 // See if we can optimize just this store in isolation. 678 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 679 Heads.insert(SL[i]); 680 continue; 681 } 682 683 Value *FirstSplatValue = nullptr; 684 Constant *FirstPatternValue = nullptr; 685 686 if (For == ForMemset::Yes) 687 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 688 else 689 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 690 691 assert((FirstSplatValue || FirstPatternValue) && 692 "Expected either splat value or pattern value."); 693 694 IndexQueue.clear(); 695 // If a store has multiple consecutive store candidates, search Stores 696 // array according to the sequence: from i+1 to e, then from i-1 to 0. 697 // This is because usually pairing with immediate succeeding or preceding 698 // candidate create the best chance to find memset opportunity. 699 unsigned j = 0; 700 for (j = i + 1; j < e; ++j) 701 IndexQueue.push_back(j); 702 for (j = i; j > 0; --j) 703 IndexQueue.push_back(j - 1); 704 705 for (auto &k : IndexQueue) { 706 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 707 Value *SecondStorePtr = SL[k]->getPointerOperand(); 708 const SCEVAddRecExpr *SecondStoreEv = 709 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 710 APInt SecondStride = getStoreStride(SecondStoreEv); 711 712 if (FirstStride != SecondStride) 713 continue; 714 715 Value *SecondStoredVal = SL[k]->getValueOperand(); 716 Value *SecondSplatValue = nullptr; 717 Constant *SecondPatternValue = nullptr; 718 719 if (For == ForMemset::Yes) 720 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 721 else 722 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 723 724 assert((SecondSplatValue || SecondPatternValue) && 725 "Expected either splat value or pattern value."); 726 727 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 728 if (For == ForMemset::Yes) { 729 if (isa<UndefValue>(FirstSplatValue)) 730 FirstSplatValue = SecondSplatValue; 731 if (FirstSplatValue != SecondSplatValue) 732 continue; 733 } else { 734 if (isa<UndefValue>(FirstPatternValue)) 735 FirstPatternValue = SecondPatternValue; 736 if (FirstPatternValue != SecondPatternValue) 737 continue; 738 } 739 Tails.insert(SL[k]); 740 Heads.insert(SL[i]); 741 ConsecutiveChain[SL[i]] = SL[k]; 742 break; 743 } 744 } 745 } 746 747 // We may run into multiple chains that merge into a single chain. We mark the 748 // stores that we transformed so that we don't visit the same store twice. 749 SmallPtrSet<Value *, 16> TransformedStores; 750 bool Changed = false; 751 752 // For stores that start but don't end a link in the chain: 753 for (StoreInst *I : Heads) { 754 if (Tails.count(I)) 755 continue; 756 757 // We found a store instr that starts a chain. Now follow the chain and try 758 // to transform it. 759 SmallPtrSet<Instruction *, 8> AdjacentStores; 760 StoreInst *HeadStore = I; 761 unsigned StoreSize = 0; 762 763 // Collect the chain into a list. 764 while (Tails.count(I) || Heads.count(I)) { 765 if (TransformedStores.count(I)) 766 break; 767 AdjacentStores.insert(I); 768 769 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 770 // Move to the next value in the chain. 771 I = ConsecutiveChain[I]; 772 } 773 774 Value *StoredVal = HeadStore->getValueOperand(); 775 Value *StorePtr = HeadStore->getPointerOperand(); 776 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 777 APInt Stride = getStoreStride(StoreEv); 778 779 // Check to see if the stride matches the size of the stores. If so, then 780 // we know that every byte is touched in the loop. 781 if (StoreSize != Stride && StoreSize != -Stride) 782 continue; 783 784 bool IsNegStride = StoreSize == -Stride; 785 786 Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); 787 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); 788 if (processLoopStridedStore(StorePtr, StoreSizeSCEV, 789 MaybeAlign(HeadStore->getAlign()), StoredVal, 790 HeadStore, AdjacentStores, StoreEv, BECount, 791 IsNegStride)) { 792 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 793 Changed = true; 794 } 795 } 796 797 return Changed; 798 } 799 800 /// processLoopMemIntrinsic - Template function for calling different processor 801 /// functions based on mem instrinsic type. 802 template <typename MemInst> 803 bool LoopIdiomRecognize::processLoopMemIntrinsic( 804 BasicBlock *BB, 805 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 806 const SCEV *BECount) { 807 bool MadeChange = false; 808 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 809 Instruction *Inst = &*I++; 810 // Look for memory instructions, which may be optimized to a larger one. 811 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 812 WeakTrackingVH InstPtr(&*I); 813 if (!(this->*Processor)(MI, BECount)) 814 continue; 815 MadeChange = true; 816 817 // If processing the instruction invalidated our iterator, start over from 818 // the top of the block. 819 if (!InstPtr) 820 I = BB->begin(); 821 } 822 } 823 return MadeChange; 824 } 825 826 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 827 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 828 const SCEV *BECount) { 829 // We can only handle non-volatile memcpys with a constant size. 830 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 831 return false; 832 833 // If we're not allowed to hack on memcpy, we fail. 834 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 835 return false; 836 837 Value *Dest = MCI->getDest(); 838 Value *Source = MCI->getSource(); 839 if (!Dest || !Source) 840 return false; 841 842 // See if the load and store pointer expressions are AddRec like {base,+,1} on 843 // the current loop, which indicates a strided load and store. If we have 844 // something else, it's a random load or store we can't handle. 845 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 846 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 847 return false; 848 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 849 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 850 return false; 851 852 // Reject memcpys that are so large that they overflow an unsigned. 853 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 854 if ((SizeInBytes >> 32) != 0) 855 return false; 856 857 // Check if the stride matches the size of the memcpy. If so, then we know 858 // that every byte is touched in the loop. 859 const SCEVConstant *ConstStoreStride = 860 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 861 const SCEVConstant *ConstLoadStride = 862 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 863 if (!ConstStoreStride || !ConstLoadStride) 864 return false; 865 866 APInt StoreStrideValue = ConstStoreStride->getAPInt(); 867 APInt LoadStrideValue = ConstLoadStride->getAPInt(); 868 // Huge stride value - give up 869 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 870 return false; 871 872 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 873 ORE.emit([&]() { 874 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 875 << ore::NV("Inst", "memcpy") << " in " 876 << ore::NV("Function", MCI->getFunction()) 877 << " function will not be hoisted: " 878 << ore::NV("Reason", "memcpy size is not equal to stride"); 879 }); 880 return false; 881 } 882 883 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 884 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 885 // Check if the load stride matches the store stride. 886 if (StoreStrideInt != LoadStrideInt) 887 return false; 888 889 return processLoopStoreOfLoopLoad( 890 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), 891 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, 892 BECount); 893 } 894 895 /// processLoopMemSet - See if this memset can be promoted to a large memset. 896 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 897 const SCEV *BECount) { 898 // We can only handle non-volatile memsets. 899 if (MSI->isVolatile()) 900 return false; 901 902 // If we're not allowed to hack on memset, we fail. 903 if (!HasMemset || DisableLIRP::Memset) 904 return false; 905 906 Value *Pointer = MSI->getDest(); 907 908 // See if the pointer expression is an AddRec like {base,+,1} on the current 909 // loop, which indicates a strided store. If we have something else, it's a 910 // random store we can't handle. 911 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 912 if (!Ev || Ev->getLoop() != CurLoop) 913 return false; 914 if (!Ev->isAffine()) { 915 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); 916 return false; 917 } 918 919 const SCEV *PointerStrideSCEV = Ev->getOperand(1); 920 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); 921 if (!PointerStrideSCEV || !MemsetSizeSCEV) 922 return false; 923 924 bool IsNegStride = false; 925 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); 926 927 if (IsConstantSize) { 928 // Memset size is constant. 929 // Check if the pointer stride matches the memset size. If so, then 930 // we know that every byte is touched in the loop. 931 LLVM_DEBUG(dbgs() << " memset size is constant\n"); 932 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 933 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 934 if (!ConstStride) 935 return false; 936 937 APInt Stride = ConstStride->getAPInt(); 938 if (SizeInBytes != Stride && SizeInBytes != -Stride) 939 return false; 940 941 IsNegStride = SizeInBytes == -Stride; 942 } else { 943 // Memset size is non-constant. 944 // Check if the pointer stride matches the memset size. 945 // To be conservative, the pass would not promote pointers that aren't in 946 // address space zero. Also, the pass only handles memset length and stride 947 // that are invariant for the top level loop. 948 LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); 949 if (Pointer->getType()->getPointerAddressSpace() != 0) { 950 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " 951 << "abort\n"); 952 return false; 953 } 954 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { 955 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " 956 << "abort\n"); 957 return false; 958 } 959 960 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV 961 IsNegStride = PointerStrideSCEV->isNonConstantNegative(); 962 const SCEV *PositiveStrideSCEV = 963 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) 964 : PointerStrideSCEV; 965 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" 966 << " PositiveStrideSCEV: " << *PositiveStrideSCEV 967 << "\n"); 968 969 if (PositiveStrideSCEV != MemsetSizeSCEV) { 970 // If an expression is covered by the loop guard, compare again and 971 // proceed with optimization if equal. 972 const SCEV *FoldedPositiveStride = 973 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); 974 const SCEV *FoldedMemsetSize = 975 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); 976 977 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" 978 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" 979 << " FoldedPositiveStride: " << *FoldedPositiveStride 980 << "\n"); 981 982 if (FoldedPositiveStride != FoldedMemsetSize) { 983 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); 984 return false; 985 } 986 } 987 } 988 989 // Verify that the memset value is loop invariant. If not, we can't promote 990 // the memset. 991 Value *SplatValue = MSI->getValue(); 992 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 993 return false; 994 995 SmallPtrSet<Instruction *, 1> MSIs; 996 MSIs.insert(MSI); 997 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), 998 MaybeAlign(MSI->getDestAlignment()), 999 SplatValue, MSI, MSIs, Ev, BECount, 1000 IsNegStride, /*IsLoopMemset=*/true); 1001 } 1002 1003 /// mayLoopAccessLocation - Return true if the specified loop might access the 1004 /// specified pointer location, which is a loop-strided access. The 'Access' 1005 /// argument specifies what the verboten forms of access are (read or write). 1006 static bool 1007 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 1008 const SCEV *BECount, const SCEV *StoreSizeSCEV, 1009 AliasAnalysis &AA, 1010 SmallPtrSetImpl<Instruction *> &IgnoredInsts) { 1011 // Get the location that may be stored across the loop. Since the access is 1012 // strided positively through memory, we say that the modified location starts 1013 // at the pointer and has infinite size. 1014 LocationSize AccessSize = LocationSize::afterPointer(); 1015 1016 // If the loop iterates a fixed number of times, we can refine the access size 1017 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 1018 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); 1019 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1020 if (BECst && ConstSize) 1021 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 1022 ConstSize->getValue()->getZExtValue()); 1023 1024 // TODO: For this to be really effective, we have to dive into the pointer 1025 // operand in the store. Store to &A[i] of 100 will always return may alias 1026 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 1027 // which will then no-alias a store to &A[100]. 1028 MemoryLocation StoreLoc(Ptr, AccessSize); 1029 1030 for (BasicBlock *B : L->blocks()) 1031 for (Instruction &I : *B) 1032 if (!IgnoredInsts.contains(&I) && 1033 isModOrRefSet( 1034 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 1035 return true; 1036 return false; 1037 } 1038 1039 // If we have a negative stride, Start refers to the end of the memory location 1040 // we're trying to memset. Therefore, we need to recompute the base pointer, 1041 // which is just Start - BECount*Size. 1042 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 1043 Type *IntPtr, const SCEV *StoreSizeSCEV, 1044 ScalarEvolution *SE) { 1045 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 1046 if (!StoreSizeSCEV->isOne()) { 1047 // index = back edge count * store size 1048 Index = SE->getMulExpr(Index, 1049 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1050 SCEV::FlagNUW); 1051 } 1052 // base pointer = start - index * store size 1053 return SE->getMinusSCEV(Start, Index); 1054 } 1055 1056 /// Compute trip count from the backedge taken count. 1057 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr, 1058 Loop *CurLoop, const DataLayout *DL, 1059 ScalarEvolution *SE) { 1060 const SCEV *TripCountS = nullptr; 1061 // The # stored bytes is (BECount+1). Expand the trip count out to 1062 // pointer size if it isn't already. 1063 // 1064 // If we're going to need to zero extend the BE count, check if we can add 1065 // one to it prior to zero extending without overflow. Provided this is safe, 1066 // it allows better simplification of the +1. 1067 if (DL->getTypeSizeInBits(BECount->getType()) < 1068 DL->getTypeSizeInBits(IntPtr) && 1069 SE->isLoopEntryGuardedByCond( 1070 CurLoop, ICmpInst::ICMP_NE, BECount, 1071 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 1072 TripCountS = SE->getZeroExtendExpr( 1073 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 1074 IntPtr); 1075 } else { 1076 TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 1077 SE->getOne(IntPtr), SCEV::FlagNUW); 1078 } 1079 1080 return TripCountS; 1081 } 1082 1083 /// Compute the number of bytes as a SCEV from the backedge taken count. 1084 /// 1085 /// This also maps the SCEV into the provided type and tries to handle the 1086 /// computation in a way that will fold cleanly. 1087 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 1088 const SCEV *StoreSizeSCEV, Loop *CurLoop, 1089 const DataLayout *DL, ScalarEvolution *SE) { 1090 const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE); 1091 1092 return SE->getMulExpr(TripCountSCEV, 1093 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1094 SCEV::FlagNUW); 1095 } 1096 1097 /// processLoopStridedStore - We see a strided store of some value. If we can 1098 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1099 bool LoopIdiomRecognize::processLoopStridedStore( 1100 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, 1101 Value *StoredVal, Instruction *TheStore, 1102 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1103 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { 1104 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1105 Constant *PatternValue = nullptr; 1106 1107 if (!SplatValue) 1108 PatternValue = getMemSetPatternValue(StoredVal, DL); 1109 1110 assert((SplatValue || PatternValue) && 1111 "Expected either splat value or pattern value."); 1112 1113 // The trip count of the loop and the base pointer of the addrec SCEV is 1114 // guaranteed to be loop invariant, which means that it should dominate the 1115 // header. This allows us to insert code for it in the preheader. 1116 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1117 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1118 IRBuilder<> Builder(Preheader->getTerminator()); 1119 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1120 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1121 1122 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 1123 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1124 1125 bool Changed = false; 1126 const SCEV *Start = Ev->getStart(); 1127 // Handle negative strided loops. 1128 if (IsNegStride) 1129 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); 1130 1131 // TODO: ideally we should still be able to generate memset if SCEV expander 1132 // is taught to generate the dependencies at the latest point. 1133 if (!isSafeToExpand(Start, *SE)) 1134 return Changed; 1135 1136 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1137 // this into a memset in the loop preheader now if we want. However, this 1138 // would be unsafe to do if there is anything else in the loop that may read 1139 // or write to the aliased location. Check for any overlap by generating the 1140 // base pointer and checking the region. 1141 Value *BasePtr = 1142 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1143 1144 // From here on out, conservatively report to the pass manager that we've 1145 // changed the IR, even if we later clean up these added instructions. There 1146 // may be structural differences e.g. in the order of use lists not accounted 1147 // for in just a textual dump of the IR. This is written as a variable, even 1148 // though statically all the places this dominates could be replaced with 1149 // 'true', with the hope that anyone trying to be clever / "more precise" with 1150 // the return value will read this comment, and leave them alone. 1151 Changed = true; 1152 1153 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1154 StoreSizeSCEV, *AA, Stores)) 1155 return Changed; 1156 1157 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1158 return Changed; 1159 1160 // Okay, everything looks good, insert the memset. 1161 1162 const SCEV *NumBytesS = 1163 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1164 1165 // TODO: ideally we should still be able to generate memset if SCEV expander 1166 // is taught to generate the dependencies at the latest point. 1167 if (!isSafeToExpand(NumBytesS, *SE)) 1168 return Changed; 1169 1170 Value *NumBytes = 1171 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1172 1173 CallInst *NewCall; 1174 if (SplatValue) { 1175 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, 1176 MaybeAlign(StoreAlignment)); 1177 } else { 1178 // Everything is emitted in default address space 1179 Type *Int8PtrTy = DestInt8PtrTy; 1180 1181 Module *M = TheStore->getModule(); 1182 StringRef FuncName = "memset_pattern16"; 1183 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 1184 Int8PtrTy, Int8PtrTy, IntIdxTy); 1185 inferLibFuncAttributes(M, FuncName, *TLI); 1186 1187 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1188 // an constant array of 16-bytes. Plop the value into a mergable global. 1189 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1190 GlobalValue::PrivateLinkage, 1191 PatternValue, ".memset_pattern"); 1192 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1193 GV->setAlignment(Align(16)); 1194 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1195 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1196 } 1197 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1198 1199 if (MSSAU) { 1200 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1201 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1202 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1203 } 1204 1205 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1206 << " from store to: " << *Ev << " at: " << *TheStore 1207 << "\n"); 1208 1209 ORE.emit([&]() { 1210 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", 1211 NewCall->getDebugLoc(), Preheader); 1212 R << "Transformed loop-strided store in " 1213 << ore::NV("Function", TheStore->getFunction()) 1214 << " function into a call to " 1215 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1216 << "() intrinsic"; 1217 if (!Stores.empty()) 1218 R << ore::setExtraArgs(); 1219 for (auto *I : Stores) { 1220 R << ore::NV("FromBlock", I->getParent()->getName()) 1221 << ore::NV("ToBlock", Preheader->getName()); 1222 } 1223 return R; 1224 }); 1225 1226 // Okay, the memset has been formed. Zap the original store and anything that 1227 // feeds into it. 1228 for (auto *I : Stores) { 1229 if (MSSAU) 1230 MSSAU->removeMemoryAccess(I, true); 1231 deleteDeadInstruction(I); 1232 } 1233 if (MSSAU && VerifyMemorySSA) 1234 MSSAU->getMemorySSA()->verifyMemorySSA(); 1235 ++NumMemSet; 1236 ExpCleaner.markResultUsed(); 1237 return true; 1238 } 1239 1240 /// If the stored value is a strided load in the same loop with the same stride 1241 /// this may be transformable into a memcpy. This kicks in for stuff like 1242 /// for (i) A[i] = B[i]; 1243 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1244 const SCEV *BECount) { 1245 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1246 1247 Value *StorePtr = SI->getPointerOperand(); 1248 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1249 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1250 1251 // The store must be feeding a non-volatile load. 1252 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1253 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1254 1255 // See if the pointer expression is an AddRec like {base,+,1} on the current 1256 // loop, which indicates a strided load. If we have something else, it's a 1257 // random load we can't handle. 1258 Value *LoadPtr = LI->getPointerOperand(); 1259 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1260 1261 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); 1262 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, 1263 SI->getAlign(), LI->getAlign(), SI, LI, 1264 StoreEv, LoadEv, BECount); 1265 } 1266 1267 class MemmoveVerifier { 1268 public: 1269 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, 1270 const DataLayout &DL) 1271 : DL(DL), LoadOff(0), StoreOff(0), 1272 BP1(llvm::GetPointerBaseWithConstantOffset( 1273 LoadBasePtr.stripPointerCasts(), LoadOff, DL)), 1274 BP2(llvm::GetPointerBaseWithConstantOffset( 1275 StoreBasePtr.stripPointerCasts(), StoreOff, DL)), 1276 IsSameObject(BP1 == BP2) {} 1277 1278 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, 1279 const Instruction &TheLoad, 1280 bool IsMemCpy) const { 1281 if (IsMemCpy) { 1282 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1283 // for negative stride. 1284 if ((!IsNegStride && LoadOff <= StoreOff) || 1285 (IsNegStride && LoadOff >= StoreOff)) 1286 return false; 1287 } else { 1288 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1289 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. 1290 int64_t LoadSize = 1291 DL.getTypeSizeInBits(TheLoad.getType()).getFixedSize() / 8; 1292 if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) 1293 return false; 1294 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || 1295 (IsNegStride && LoadOff + LoadSize > StoreOff)) 1296 return false; 1297 } 1298 return true; 1299 } 1300 1301 private: 1302 const DataLayout &DL; 1303 int64_t LoadOff; 1304 int64_t StoreOff; 1305 const Value *BP1; 1306 const Value *BP2; 1307 1308 public: 1309 const bool IsSameObject; 1310 }; 1311 1312 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1313 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, 1314 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, 1315 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, 1316 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { 1317 1318 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1319 // conservatively bail here, since otherwise we may have to transform 1320 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1321 if (isa<MemCpyInlineInst>(TheStore)) 1322 return false; 1323 1324 // The trip count of the loop and the base pointer of the addrec SCEV is 1325 // guaranteed to be loop invariant, which means that it should dominate the 1326 // header. This allows us to insert code for it in the preheader. 1327 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1328 IRBuilder<> Builder(Preheader->getTerminator()); 1329 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1330 1331 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1332 1333 bool Changed = false; 1334 const SCEV *StrStart = StoreEv->getStart(); 1335 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1336 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1337 1338 APInt Stride = getStoreStride(StoreEv); 1339 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1340 1341 // TODO: Deal with non-constant size; Currently expect constant store size 1342 assert(ConstStoreSize && "store size is expected to be a constant"); 1343 1344 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); 1345 bool IsNegStride = StoreSize == -Stride; 1346 1347 // Handle negative strided loops. 1348 if (IsNegStride) 1349 StrStart = 1350 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1351 1352 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1353 // this into a memcpy in the loop preheader now if we want. However, this 1354 // would be unsafe to do if there is anything else in the loop that may read 1355 // or write the memory region we're storing to. This includes the load that 1356 // feeds the stores. Check for an alias by generating the base address and 1357 // checking everything. 1358 Value *StoreBasePtr = Expander.expandCodeFor( 1359 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1360 1361 // From here on out, conservatively report to the pass manager that we've 1362 // changed the IR, even if we later clean up these added instructions. There 1363 // may be structural differences e.g. in the order of use lists not accounted 1364 // for in just a textual dump of the IR. This is written as a variable, even 1365 // though statically all the places this dominates could be replaced with 1366 // 'true', with the hope that anyone trying to be clever / "more precise" with 1367 // the return value will read this comment, and leave them alone. 1368 Changed = true; 1369 1370 SmallPtrSet<Instruction *, 2> IgnoredInsts; 1371 IgnoredInsts.insert(TheStore); 1372 1373 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1374 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1375 1376 bool LoopAccessStore = 1377 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1378 StoreSizeSCEV, *AA, IgnoredInsts); 1379 if (LoopAccessStore) { 1380 // For memmove case it's not enough to guarantee that loop doesn't access 1381 // TheStore and TheLoad. Additionally we need to make sure that TheStore is 1382 // the only user of TheLoad. 1383 if (!TheLoad->hasOneUse()) 1384 return Changed; 1385 IgnoredInsts.insert(TheLoad); 1386 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 1387 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { 1388 ORE.emit([&]() { 1389 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1390 TheStore) 1391 << ore::NV("Inst", InstRemark) << " in " 1392 << ore::NV("Function", TheStore->getFunction()) 1393 << " function will not be hoisted: " 1394 << ore::NV("Reason", "The loop may access store location"); 1395 }); 1396 return Changed; 1397 } 1398 IgnoredInsts.erase(TheLoad); 1399 } 1400 1401 const SCEV *LdStart = LoadEv->getStart(); 1402 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1403 1404 // Handle negative strided loops. 1405 if (IsNegStride) 1406 LdStart = 1407 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1408 1409 // For a memcpy, we have to make sure that the input array is not being 1410 // mutated by the loop. 1411 Value *LoadBasePtr = Expander.expandCodeFor( 1412 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1413 1414 // If the store is a memcpy instruction, we must check if it will write to 1415 // the load memory locations. So remove it from the ignored stores. 1416 if (IsMemCpy) 1417 IgnoredInsts.erase(TheStore); 1418 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); 1419 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1420 StoreSizeSCEV, *AA, IgnoredInsts)) { 1421 if (!IsMemCpy) { 1422 ORE.emit([&]() { 1423 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", 1424 TheLoad) 1425 << ore::NV("Inst", InstRemark) << " in " 1426 << ore::NV("Function", TheStore->getFunction()) 1427 << " function will not be hoisted: " 1428 << ore::NV("Reason", "The loop may access load location"); 1429 }); 1430 return Changed; 1431 } 1432 // At this point loop may access load only for memcpy in same underlying 1433 // object. If that's not the case bail out. 1434 if (!Verifier.IsSameObject) 1435 return Changed; 1436 } 1437 1438 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; 1439 if (UseMemMove) 1440 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, 1441 IsMemCpy)) 1442 return Changed; 1443 1444 if (avoidLIRForMultiBlockLoop()) 1445 return Changed; 1446 1447 // Okay, everything is safe, we can transform this! 1448 1449 const SCEV *NumBytesS = 1450 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1451 1452 Value *NumBytes = 1453 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1454 1455 CallInst *NewCall = nullptr; 1456 // Check whether to generate an unordered atomic memcpy: 1457 // If the load or store are atomic, then they must necessarily be unordered 1458 // by previous checks. 1459 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { 1460 if (UseMemMove) 1461 NewCall = Builder.CreateMemMove(StoreBasePtr, StoreAlign, LoadBasePtr, 1462 LoadAlign, NumBytes); 1463 else 1464 NewCall = Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, 1465 LoadAlign, NumBytes); 1466 } else { 1467 // For now don't support unordered atomic memmove. 1468 if (UseMemMove) 1469 return Changed; 1470 // We cannot allow unaligned ops for unordered load/store, so reject 1471 // anything where the alignment isn't at least the element size. 1472 assert((StoreAlign.hasValue() && LoadAlign.hasValue()) && 1473 "Expect unordered load/store to have align."); 1474 if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize) 1475 return Changed; 1476 1477 // If the element.atomic memcpy is not lowered into explicit 1478 // loads/stores later, then it will be lowered into an element-size 1479 // specific lib call. If the lib call doesn't exist for our store size, then 1480 // we shouldn't generate the memcpy. 1481 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1482 return Changed; 1483 1484 // Create the call. 1485 // Note that unordered atomic loads/stores are *required* by the spec to 1486 // have an alignment but non-atomic loads/stores may not. 1487 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1488 StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(), 1489 NumBytes, StoreSize); 1490 } 1491 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1492 1493 if (MSSAU) { 1494 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1495 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1496 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1497 } 1498 1499 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" 1500 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1501 << "\n" 1502 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1503 << "\n"); 1504 1505 ORE.emit([&]() { 1506 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1507 NewCall->getDebugLoc(), Preheader) 1508 << "Formed a call to " 1509 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1510 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1511 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1512 << " function" 1513 << ore::setExtraArgs() 1514 << ore::NV("FromBlock", TheStore->getParent()->getName()) 1515 << ore::NV("ToBlock", Preheader->getName()); 1516 }); 1517 1518 // Okay, a new call to memcpy/memmove has been formed. Zap the original store 1519 // and anything that feeds into it. 1520 if (MSSAU) 1521 MSSAU->removeMemoryAccess(TheStore, true); 1522 deleteDeadInstruction(TheStore); 1523 if (MSSAU && VerifyMemorySSA) 1524 MSSAU->getMemorySSA()->verifyMemorySSA(); 1525 if (UseMemMove) 1526 ++NumMemMove; 1527 else 1528 ++NumMemCpy; 1529 ExpCleaner.markResultUsed(); 1530 return true; 1531 } 1532 1533 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1534 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1535 // 1536 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1537 bool IsLoopMemset) { 1538 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1539 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1540 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1541 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1542 << " avoided: multi-block top-level loop\n"); 1543 return true; 1544 } 1545 } 1546 1547 return false; 1548 } 1549 1550 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1551 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1552 << CurLoop->getHeader()->getParent()->getName() 1553 << "] Noncountable Loop %" 1554 << CurLoop->getHeader()->getName() << "\n"); 1555 1556 return recognizePopcount() || recognizeAndInsertFFS() || 1557 recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); 1558 } 1559 1560 /// Check if the given conditional branch is based on the comparison between 1561 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1562 /// true), the control yields to the loop entry. If the branch matches the 1563 /// behavior, the variable involved in the comparison is returned. This function 1564 /// will be called to see if the precondition and postcondition of the loop are 1565 /// in desirable form. 1566 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1567 bool JmpOnZero = false) { 1568 if (!BI || !BI->isConditional()) 1569 return nullptr; 1570 1571 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1572 if (!Cond) 1573 return nullptr; 1574 1575 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1576 if (!CmpZero || !CmpZero->isZero()) 1577 return nullptr; 1578 1579 BasicBlock *TrueSucc = BI->getSuccessor(0); 1580 BasicBlock *FalseSucc = BI->getSuccessor(1); 1581 if (JmpOnZero) 1582 std::swap(TrueSucc, FalseSucc); 1583 1584 ICmpInst::Predicate Pred = Cond->getPredicate(); 1585 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1586 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1587 return Cond->getOperand(0); 1588 1589 return nullptr; 1590 } 1591 1592 // Check if the recurrence variable `VarX` is in the right form to create 1593 // the idiom. Returns the value coerced to a PHINode if so. 1594 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1595 BasicBlock *LoopEntry) { 1596 auto *PhiX = dyn_cast<PHINode>(VarX); 1597 if (PhiX && PhiX->getParent() == LoopEntry && 1598 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1599 return PhiX; 1600 return nullptr; 1601 } 1602 1603 /// Return true iff the idiom is detected in the loop. 1604 /// 1605 /// Additionally: 1606 /// 1) \p CntInst is set to the instruction counting the population bit. 1607 /// 2) \p CntPhi is set to the corresponding phi node. 1608 /// 3) \p Var is set to the value whose population bits are being counted. 1609 /// 1610 /// The core idiom we are trying to detect is: 1611 /// \code 1612 /// if (x0 != 0) 1613 /// goto loop-exit // the precondition of the loop 1614 /// cnt0 = init-val; 1615 /// do { 1616 /// x1 = phi (x0, x2); 1617 /// cnt1 = phi(cnt0, cnt2); 1618 /// 1619 /// cnt2 = cnt1 + 1; 1620 /// ... 1621 /// x2 = x1 & (x1 - 1); 1622 /// ... 1623 /// } while(x != 0); 1624 /// 1625 /// loop-exit: 1626 /// \endcode 1627 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1628 Instruction *&CntInst, PHINode *&CntPhi, 1629 Value *&Var) { 1630 // step 1: Check to see if the look-back branch match this pattern: 1631 // "if (a!=0) goto loop-entry". 1632 BasicBlock *LoopEntry; 1633 Instruction *DefX2, *CountInst; 1634 Value *VarX1, *VarX0; 1635 PHINode *PhiX, *CountPhi; 1636 1637 DefX2 = CountInst = nullptr; 1638 VarX1 = VarX0 = nullptr; 1639 PhiX = CountPhi = nullptr; 1640 LoopEntry = *(CurLoop->block_begin()); 1641 1642 // step 1: Check if the loop-back branch is in desirable form. 1643 { 1644 if (Value *T = matchCondition( 1645 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1646 DefX2 = dyn_cast<Instruction>(T); 1647 else 1648 return false; 1649 } 1650 1651 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1652 { 1653 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1654 return false; 1655 1656 BinaryOperator *SubOneOp; 1657 1658 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1659 VarX1 = DefX2->getOperand(1); 1660 else { 1661 VarX1 = DefX2->getOperand(0); 1662 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1663 } 1664 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1665 return false; 1666 1667 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1668 if (!Dec || 1669 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1670 (SubOneOp->getOpcode() == Instruction::Add && 1671 Dec->isMinusOne()))) { 1672 return false; 1673 } 1674 } 1675 1676 // step 3: Check the recurrence of variable X 1677 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1678 if (!PhiX) 1679 return false; 1680 1681 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1682 { 1683 CountInst = nullptr; 1684 for (Instruction &Inst : llvm::make_range( 1685 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1686 if (Inst.getOpcode() != Instruction::Add) 1687 continue; 1688 1689 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1690 if (!Inc || !Inc->isOne()) 1691 continue; 1692 1693 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1694 if (!Phi) 1695 continue; 1696 1697 // Check if the result of the instruction is live of the loop. 1698 bool LiveOutLoop = false; 1699 for (User *U : Inst.users()) { 1700 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1701 LiveOutLoop = true; 1702 break; 1703 } 1704 } 1705 1706 if (LiveOutLoop) { 1707 CountInst = &Inst; 1708 CountPhi = Phi; 1709 break; 1710 } 1711 } 1712 1713 if (!CountInst) 1714 return false; 1715 } 1716 1717 // step 5: check if the precondition is in this form: 1718 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1719 { 1720 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1721 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1722 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1723 return false; 1724 1725 CntInst = CountInst; 1726 CntPhi = CountPhi; 1727 Var = T; 1728 } 1729 1730 return true; 1731 } 1732 1733 /// Return true if the idiom is detected in the loop. 1734 /// 1735 /// Additionally: 1736 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1737 /// or nullptr if there is no such. 1738 /// 2) \p CntPhi is set to the corresponding phi node 1739 /// or nullptr if there is no such. 1740 /// 3) \p Var is set to the value whose CTLZ could be used. 1741 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1742 /// 1743 /// The core idiom we are trying to detect is: 1744 /// \code 1745 /// if (x0 == 0) 1746 /// goto loop-exit // the precondition of the loop 1747 /// cnt0 = init-val; 1748 /// do { 1749 /// x = phi (x0, x.next); //PhiX 1750 /// cnt = phi(cnt0, cnt.next); 1751 /// 1752 /// cnt.next = cnt + 1; 1753 /// ... 1754 /// x.next = x >> 1; // DefX 1755 /// ... 1756 /// } while(x.next != 0); 1757 /// 1758 /// loop-exit: 1759 /// \endcode 1760 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1761 Intrinsic::ID &IntrinID, Value *&InitX, 1762 Instruction *&CntInst, PHINode *&CntPhi, 1763 Instruction *&DefX) { 1764 BasicBlock *LoopEntry; 1765 Value *VarX = nullptr; 1766 1767 DefX = nullptr; 1768 CntInst = nullptr; 1769 CntPhi = nullptr; 1770 LoopEntry = *(CurLoop->block_begin()); 1771 1772 // step 1: Check if the loop-back branch is in desirable form. 1773 if (Value *T = matchCondition( 1774 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1775 DefX = dyn_cast<Instruction>(T); 1776 else 1777 return false; 1778 1779 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1780 if (!DefX || !DefX->isShift()) 1781 return false; 1782 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1783 Intrinsic::ctlz; 1784 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1785 if (!Shft || !Shft->isOne()) 1786 return false; 1787 VarX = DefX->getOperand(0); 1788 1789 // step 3: Check the recurrence of variable X 1790 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1791 if (!PhiX) 1792 return false; 1793 1794 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1795 1796 // Make sure the initial value can't be negative otherwise the ashr in the 1797 // loop might never reach zero which would make the loop infinite. 1798 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1799 return false; 1800 1801 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1802 // or cnt.next = cnt + -1. 1803 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1804 // then all uses of "cnt.next" could be optimized to the trip count 1805 // plus "cnt0". Currently it is not optimized. 1806 // This step could be used to detect POPCNT instruction: 1807 // cnt.next = cnt + (x.next & 1) 1808 for (Instruction &Inst : llvm::make_range( 1809 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1810 if (Inst.getOpcode() != Instruction::Add) 1811 continue; 1812 1813 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1814 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1815 continue; 1816 1817 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1818 if (!Phi) 1819 continue; 1820 1821 CntInst = &Inst; 1822 CntPhi = Phi; 1823 break; 1824 } 1825 if (!CntInst) 1826 return false; 1827 1828 return true; 1829 } 1830 1831 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1832 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1833 /// trip count returns true; otherwise, returns false. 1834 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1835 // Give up if the loop has multiple blocks or multiple backedges. 1836 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1837 return false; 1838 1839 Intrinsic::ID IntrinID; 1840 Value *InitX; 1841 Instruction *DefX = nullptr; 1842 PHINode *CntPhi = nullptr; 1843 Instruction *CntInst = nullptr; 1844 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1845 // this is always 6. 1846 size_t IdiomCanonicalSize = 6; 1847 1848 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1849 CntInst, CntPhi, DefX)) 1850 return false; 1851 1852 bool IsCntPhiUsedOutsideLoop = false; 1853 for (User *U : CntPhi->users()) 1854 if (!CurLoop->contains(cast<Instruction>(U))) { 1855 IsCntPhiUsedOutsideLoop = true; 1856 break; 1857 } 1858 bool IsCntInstUsedOutsideLoop = false; 1859 for (User *U : CntInst->users()) 1860 if (!CurLoop->contains(cast<Instruction>(U))) { 1861 IsCntInstUsedOutsideLoop = true; 1862 break; 1863 } 1864 // If both CntInst and CntPhi are used outside the loop the profitability 1865 // is questionable. 1866 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1867 return false; 1868 1869 // For some CPUs result of CTLZ(X) intrinsic is undefined 1870 // when X is 0. If we can not guarantee X != 0, we need to check this 1871 // when expand. 1872 bool ZeroCheck = false; 1873 // It is safe to assume Preheader exist as it was checked in 1874 // parent function RunOnLoop. 1875 BasicBlock *PH = CurLoop->getLoopPreheader(); 1876 1877 // If we are using the count instruction outside the loop, make sure we 1878 // have a zero check as a precondition. Without the check the loop would run 1879 // one iteration for before any check of the input value. This means 0 and 1 1880 // would have identical behavior in the original loop and thus 1881 if (!IsCntPhiUsedOutsideLoop) { 1882 auto *PreCondBB = PH->getSinglePredecessor(); 1883 if (!PreCondBB) 1884 return false; 1885 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1886 if (!PreCondBI) 1887 return false; 1888 if (matchCondition(PreCondBI, PH) != InitX) 1889 return false; 1890 ZeroCheck = true; 1891 } 1892 1893 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1894 // profitable if we delete the loop. 1895 1896 // the loop has only 6 instructions: 1897 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1898 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1899 // %shr = ashr %n.addr.0, 1 1900 // %tobool = icmp eq %shr, 0 1901 // %inc = add nsw %i.0, 1 1902 // br i1 %tobool 1903 1904 const Value *Args[] = {InitX, 1905 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1906 1907 // @llvm.dbg doesn't count as they have no semantic effect. 1908 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1909 uint32_t HeaderSize = 1910 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1911 1912 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1913 InstructionCost Cost = 1914 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1915 if (HeaderSize != IdiomCanonicalSize && 1916 Cost > TargetTransformInfo::TCC_Basic) 1917 return false; 1918 1919 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1920 DefX->getDebugLoc(), ZeroCheck, 1921 IsCntPhiUsedOutsideLoop); 1922 return true; 1923 } 1924 1925 /// Recognizes a population count idiom in a non-countable loop. 1926 /// 1927 /// If detected, transforms the relevant code to issue the popcount intrinsic 1928 /// function call, and returns true; otherwise, returns false. 1929 bool LoopIdiomRecognize::recognizePopcount() { 1930 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1931 return false; 1932 1933 // Counting population are usually conducted by few arithmetic instructions. 1934 // Such instructions can be easily "absorbed" by vacant slots in a 1935 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1936 // in a compact loop. 1937 1938 // Give up if the loop has multiple blocks or multiple backedges. 1939 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1940 return false; 1941 1942 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1943 if (LoopBody->size() >= 20) { 1944 // The loop is too big, bail out. 1945 return false; 1946 } 1947 1948 // It should have a preheader containing nothing but an unconditional branch. 1949 BasicBlock *PH = CurLoop->getLoopPreheader(); 1950 if (!PH || &PH->front() != PH->getTerminator()) 1951 return false; 1952 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1953 if (!EntryBI || EntryBI->isConditional()) 1954 return false; 1955 1956 // It should have a precondition block where the generated popcount intrinsic 1957 // function can be inserted. 1958 auto *PreCondBB = PH->getSinglePredecessor(); 1959 if (!PreCondBB) 1960 return false; 1961 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1962 if (!PreCondBI || PreCondBI->isUnconditional()) 1963 return false; 1964 1965 Instruction *CntInst; 1966 PHINode *CntPhi; 1967 Value *Val; 1968 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1969 return false; 1970 1971 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1972 return true; 1973 } 1974 1975 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1976 const DebugLoc &DL) { 1977 Value *Ops[] = {Val}; 1978 Type *Tys[] = {Val->getType()}; 1979 1980 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1981 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1982 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1983 CI->setDebugLoc(DL); 1984 1985 return CI; 1986 } 1987 1988 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1989 const DebugLoc &DL, bool ZeroCheck, 1990 Intrinsic::ID IID) { 1991 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 1992 Type *Tys[] = {Val->getType()}; 1993 1994 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1995 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1996 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1997 CI->setDebugLoc(DL); 1998 1999 return CI; 2000 } 2001 2002 /// Transform the following loop (Using CTLZ, CTTZ is similar): 2003 /// loop: 2004 /// CntPhi = PHI [Cnt0, CntInst] 2005 /// PhiX = PHI [InitX, DefX] 2006 /// CntInst = CntPhi + 1 2007 /// DefX = PhiX >> 1 2008 /// LOOP_BODY 2009 /// Br: loop if (DefX != 0) 2010 /// Use(CntPhi) or Use(CntInst) 2011 /// 2012 /// Into: 2013 /// If CntPhi used outside the loop: 2014 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 2015 /// Count = CountPrev + 1 2016 /// else 2017 /// Count = BitWidth(InitX) - CTLZ(InitX) 2018 /// loop: 2019 /// CntPhi = PHI [Cnt0, CntInst] 2020 /// PhiX = PHI [InitX, DefX] 2021 /// PhiCount = PHI [Count, Dec] 2022 /// CntInst = CntPhi + 1 2023 /// DefX = PhiX >> 1 2024 /// Dec = PhiCount - 1 2025 /// LOOP_BODY 2026 /// Br: loop if (Dec != 0) 2027 /// Use(CountPrev + Cnt0) // Use(CntPhi) 2028 /// or 2029 /// Use(Count + Cnt0) // Use(CntInst) 2030 /// 2031 /// If LOOP_BODY is empty the loop will be deleted. 2032 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 2033 void LoopIdiomRecognize::transformLoopToCountable( 2034 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 2035 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 2036 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 2037 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 2038 2039 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 2040 IRBuilder<> Builder(PreheaderBr); 2041 Builder.SetCurrentDebugLocation(DL); 2042 2043 // If there are no uses of CntPhi crate: 2044 // Count = BitWidth - CTLZ(InitX); 2045 // NewCount = Count; 2046 // If there are uses of CntPhi create: 2047 // NewCount = BitWidth - CTLZ(InitX >> 1); 2048 // Count = NewCount + 1; 2049 Value *InitXNext; 2050 if (IsCntPhiUsedOutsideLoop) { 2051 if (DefX->getOpcode() == Instruction::AShr) 2052 InitXNext = Builder.CreateAShr(InitX, 1); 2053 else if (DefX->getOpcode() == Instruction::LShr) 2054 InitXNext = Builder.CreateLShr(InitX, 1); 2055 else if (DefX->getOpcode() == Instruction::Shl) // cttz 2056 InitXNext = Builder.CreateShl(InitX, 1); 2057 else 2058 llvm_unreachable("Unexpected opcode!"); 2059 } else 2060 InitXNext = InitX; 2061 Value *Count = 2062 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 2063 Type *CountTy = Count->getType(); 2064 Count = Builder.CreateSub( 2065 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 2066 Value *NewCount = Count; 2067 if (IsCntPhiUsedOutsideLoop) 2068 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 2069 2070 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 2071 2072 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 2073 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 2074 // If the counter was being incremented in the loop, add NewCount to the 2075 // counter's initial value, but only if the initial value is not zero. 2076 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2077 if (!InitConst || !InitConst->isZero()) 2078 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2079 } else { 2080 // If the count was being decremented in the loop, subtract NewCount from 2081 // the counter's initial value. 2082 NewCount = Builder.CreateSub(CntInitVal, NewCount); 2083 } 2084 2085 // Step 2: Insert new IV and loop condition: 2086 // loop: 2087 // ... 2088 // PhiCount = PHI [Count, Dec] 2089 // ... 2090 // Dec = PhiCount - 1 2091 // ... 2092 // Br: loop if (Dec != 0) 2093 BasicBlock *Body = *(CurLoop->block_begin()); 2094 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2095 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2096 2097 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); 2098 2099 Builder.SetInsertPoint(LbCond); 2100 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 2101 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 2102 2103 TcPhi->addIncoming(Count, Preheader); 2104 TcPhi->addIncoming(TcDec, Body); 2105 2106 CmpInst::Predicate Pred = 2107 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 2108 LbCond->setPredicate(Pred); 2109 LbCond->setOperand(0, TcDec); 2110 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 2111 2112 // Step 3: All the references to the original counter outside 2113 // the loop are replaced with the NewCount 2114 if (IsCntPhiUsedOutsideLoop) 2115 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 2116 else 2117 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2118 2119 // step 4: Forget the "non-computable" trip-count SCEV associated with the 2120 // loop. The loop would otherwise not be deleted even if it becomes empty. 2121 SE->forgetLoop(CurLoop); 2122 } 2123 2124 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 2125 Instruction *CntInst, 2126 PHINode *CntPhi, Value *Var) { 2127 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 2128 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 2129 const DebugLoc &DL = CntInst->getDebugLoc(); 2130 2131 // Assuming before transformation, the loop is following: 2132 // if (x) // the precondition 2133 // do { cnt++; x &= x - 1; } while(x); 2134 2135 // Step 1: Insert the ctpop instruction at the end of the precondition block 2136 IRBuilder<> Builder(PreCondBr); 2137 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 2138 { 2139 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 2140 NewCount = PopCntZext = 2141 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 2142 2143 if (NewCount != PopCnt) 2144 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2145 2146 // TripCnt is exactly the number of iterations the loop has 2147 TripCnt = NewCount; 2148 2149 // If the population counter's initial value is not zero, insert Add Inst. 2150 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 2151 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2152 if (!InitConst || !InitConst->isZero()) { 2153 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2154 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2155 } 2156 } 2157 2158 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 2159 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 2160 // function would be partial dead code, and downstream passes will drag 2161 // it back from the precondition block to the preheader. 2162 { 2163 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 2164 2165 Value *Opnd0 = PopCntZext; 2166 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2167 if (PreCond->getOperand(0) != Var) 2168 std::swap(Opnd0, Opnd1); 2169 2170 ICmpInst *NewPreCond = cast<ICmpInst>( 2171 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2172 PreCondBr->setCondition(NewPreCond); 2173 2174 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2175 } 2176 2177 // Step 3: Note that the population count is exactly the trip count of the 2178 // loop in question, which enable us to convert the loop from noncountable 2179 // loop into a countable one. The benefit is twofold: 2180 // 2181 // - If the loop only counts population, the entire loop becomes dead after 2182 // the transformation. It is a lot easier to prove a countable loop dead 2183 // than to prove a noncountable one. (In some C dialects, an infinite loop 2184 // isn't dead even if it computes nothing useful. In general, DCE needs 2185 // to prove a noncountable loop finite before safely delete it.) 2186 // 2187 // - If the loop also performs something else, it remains alive. 2188 // Since it is transformed to countable form, it can be aggressively 2189 // optimized by some optimizations which are in general not applicable 2190 // to a noncountable loop. 2191 // 2192 // After this step, this loop (conceptually) would look like following: 2193 // newcnt = __builtin_ctpop(x); 2194 // t = newcnt; 2195 // if (x) 2196 // do { cnt++; x &= x-1; t--) } while (t > 0); 2197 BasicBlock *Body = *(CurLoop->block_begin()); 2198 { 2199 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2200 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2201 Type *Ty = TripCnt->getType(); 2202 2203 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 2204 2205 Builder.SetInsertPoint(LbCond); 2206 Instruction *TcDec = cast<Instruction>( 2207 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2208 "tcdec", false, true)); 2209 2210 TcPhi->addIncoming(TripCnt, PreHead); 2211 TcPhi->addIncoming(TcDec, Body); 2212 2213 CmpInst::Predicate Pred = 2214 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2215 LbCond->setPredicate(Pred); 2216 LbCond->setOperand(0, TcDec); 2217 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2218 } 2219 2220 // Step 4: All the references to the original population counter outside 2221 // the loop are replaced with the NewCount -- the value returned from 2222 // __builtin_ctpop(). 2223 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2224 2225 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2226 // loop. The loop would otherwise not be deleted even if it becomes empty. 2227 SE->forgetLoop(CurLoop); 2228 } 2229 2230 /// Match loop-invariant value. 2231 template <typename SubPattern_t> struct match_LoopInvariant { 2232 SubPattern_t SubPattern; 2233 const Loop *L; 2234 2235 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2236 : SubPattern(SP), L(L) {} 2237 2238 template <typename ITy> bool match(ITy *V) { 2239 return L->isLoopInvariant(V) && SubPattern.match(V); 2240 } 2241 }; 2242 2243 /// Matches if the value is loop-invariant. 2244 template <typename Ty> 2245 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2246 return match_LoopInvariant<Ty>(M, L); 2247 } 2248 2249 /// Return true if the idiom is detected in the loop. 2250 /// 2251 /// The core idiom we are trying to detect is: 2252 /// \code 2253 /// entry: 2254 /// <...> 2255 /// %bitmask = shl i32 1, %bitpos 2256 /// br label %loop 2257 /// 2258 /// loop: 2259 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2260 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2261 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2262 /// %x.next = shl i32 %x.curr, 1 2263 /// <...> 2264 /// br i1 %x.curr.isbitunset, label %loop, label %end 2265 /// 2266 /// end: 2267 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2268 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2269 /// <...> 2270 /// \endcode 2271 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2272 Value *&BitMask, Value *&BitPos, 2273 Value *&CurrX, Instruction *&NextX) { 2274 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2275 " Performing shift-until-bittest idiom detection.\n"); 2276 2277 // Give up if the loop has multiple blocks or multiple backedges. 2278 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2279 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2280 return false; 2281 } 2282 2283 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2284 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2285 assert(LoopPreheaderBB && "There is always a loop preheader."); 2286 2287 using namespace PatternMatch; 2288 2289 // Step 1: Check if the loop backedge is in desirable form. 2290 2291 ICmpInst::Predicate Pred; 2292 Value *CmpLHS, *CmpRHS; 2293 BasicBlock *TrueBB, *FalseBB; 2294 if (!match(LoopHeaderBB->getTerminator(), 2295 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2296 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2297 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2298 return false; 2299 } 2300 2301 // Step 2: Check if the backedge's condition is in desirable form. 2302 2303 auto MatchVariableBitMask = [&]() { 2304 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2305 match(CmpLHS, 2306 m_c_And(m_Value(CurrX), 2307 m_CombineAnd( 2308 m_Value(BitMask), 2309 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2310 CurLoop)))); 2311 }; 2312 auto MatchConstantBitMask = [&]() { 2313 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2314 match(CmpLHS, m_And(m_Value(CurrX), 2315 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2316 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2317 }; 2318 auto MatchDecomposableConstantBitMask = [&]() { 2319 APInt Mask; 2320 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2321 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2322 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2323 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2324 }; 2325 2326 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2327 !MatchDecomposableConstantBitMask()) { 2328 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2329 return false; 2330 } 2331 2332 // Step 3: Check if the recurrence is in desirable form. 2333 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2334 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2335 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2336 return false; 2337 } 2338 2339 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2340 NextX = 2341 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2342 2343 assert(CurLoop->isLoopInvariant(BaseX) && 2344 "Expected BaseX to be avaliable in the preheader!"); 2345 2346 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2347 // FIXME: support right-shift? 2348 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2349 return false; 2350 } 2351 2352 // Step 4: Check if the backedge's destinations are in desirable form. 2353 2354 assert(ICmpInst::isEquality(Pred) && 2355 "Should only get equality predicates here."); 2356 2357 // cmp-br is commutative, so canonicalize to a single variant. 2358 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2359 Pred = ICmpInst::getInversePredicate(Pred); 2360 std::swap(TrueBB, FalseBB); 2361 } 2362 2363 // We expect to exit loop when comparison yields false, 2364 // so when it yields true we should branch back to loop header. 2365 if (TrueBB != LoopHeaderBB) { 2366 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2367 return false; 2368 } 2369 2370 // Okay, idiom checks out. 2371 return true; 2372 } 2373 2374 /// Look for the following loop: 2375 /// \code 2376 /// entry: 2377 /// <...> 2378 /// %bitmask = shl i32 1, %bitpos 2379 /// br label %loop 2380 /// 2381 /// loop: 2382 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2383 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2384 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2385 /// %x.next = shl i32 %x.curr, 1 2386 /// <...> 2387 /// br i1 %x.curr.isbitunset, label %loop, label %end 2388 /// 2389 /// end: 2390 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2391 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2392 /// <...> 2393 /// \endcode 2394 /// 2395 /// And transform it into: 2396 /// \code 2397 /// entry: 2398 /// %bitmask = shl i32 1, %bitpos 2399 /// %lowbitmask = add i32 %bitmask, -1 2400 /// %mask = or i32 %lowbitmask, %bitmask 2401 /// %x.masked = and i32 %x, %mask 2402 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2403 /// i1 true) 2404 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2405 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2406 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2407 /// %tripcount = add i32 %backedgetakencount, 1 2408 /// %x.curr = shl i32 %x, %backedgetakencount 2409 /// %x.next = shl i32 %x, %tripcount 2410 /// br label %loop 2411 /// 2412 /// loop: 2413 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2414 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2415 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2416 /// <...> 2417 /// br i1 %loop.ivcheck, label %end, label %loop 2418 /// 2419 /// end: 2420 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2421 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2422 /// <...> 2423 /// \endcode 2424 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2425 bool MadeChange = false; 2426 2427 Value *X, *BitMask, *BitPos, *XCurr; 2428 Instruction *XNext; 2429 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2430 XNext)) { 2431 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2432 " shift-until-bittest idiom detection failed.\n"); 2433 return MadeChange; 2434 } 2435 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2436 2437 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2438 // but is it profitable to transform? 2439 2440 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2441 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2442 assert(LoopPreheaderBB && "There is always a loop preheader."); 2443 2444 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2445 assert(SuccessorBB && "There is only a single successor."); 2446 2447 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2448 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2449 2450 Intrinsic::ID IntrID = Intrinsic::ctlz; 2451 Type *Ty = X->getType(); 2452 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2453 2454 TargetTransformInfo::TargetCostKind CostKind = 2455 TargetTransformInfo::TCK_SizeAndLatency; 2456 2457 // The rewrite is considered to be unprofitable iff and only iff the 2458 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2459 // making the loop countable, even if nothing else changes. 2460 IntrinsicCostAttributes Attrs( 2461 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); 2462 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2463 if (Cost > TargetTransformInfo::TCC_Basic) { 2464 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2465 " Intrinsic is too costly, not beneficial\n"); 2466 return MadeChange; 2467 } 2468 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2469 TargetTransformInfo::TCC_Basic) { 2470 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2471 return MadeChange; 2472 } 2473 2474 // Ok, transform appears worthwhile. 2475 MadeChange = true; 2476 2477 // Step 1: Compute the loop trip count. 2478 2479 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2480 BitPos->getName() + ".lowbitmask"); 2481 Value *Mask = 2482 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2483 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2484 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2485 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, 2486 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2487 Value *XMaskedNumActiveBits = Builder.CreateSub( 2488 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2489 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2490 /*HasNSW=*/Bitwidth != 2); 2491 Value *XMaskedLeadingOnePos = 2492 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2493 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2494 /*HasNSW=*/Bitwidth > 2); 2495 2496 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2497 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2498 /*HasNUW=*/true, /*HasNSW=*/true); 2499 // We know loop's backedge-taken count, but what's loop's trip count? 2500 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2501 Value *LoopTripCount = 2502 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2503 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2504 /*HasNSW=*/Bitwidth != 2); 2505 2506 // Step 2: Compute the recurrence's final value without a loop. 2507 2508 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2509 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2510 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2511 NewX->takeName(XCurr); 2512 if (auto *I = dyn_cast<Instruction>(NewX)) 2513 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2514 2515 Value *NewXNext; 2516 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2517 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2518 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2519 // that isn't the case, we'll need to emit an alternative, safe IR. 2520 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2521 PatternMatch::match( 2522 BitPos, PatternMatch::m_SpecificInt_ICMP( 2523 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2524 Ty->getScalarSizeInBits() - 1)))) 2525 NewXNext = Builder.CreateShl(X, LoopTripCount); 2526 else { 2527 // Otherwise, just additionally shift by one. It's the smallest solution, 2528 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2529 // and select 0 instead. 2530 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2531 } 2532 2533 NewXNext->takeName(XNext); 2534 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2535 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2536 2537 // Step 3: Adjust the successor basic block to recieve the computed 2538 // recurrence's final value instead of the recurrence itself. 2539 2540 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2541 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2542 2543 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2544 2545 // The new canonical induction variable. 2546 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2547 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2548 2549 // The induction itself. 2550 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2551 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2552 auto *IVNext = 2553 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2554 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2555 2556 // The loop trip count check. 2557 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2558 CurLoop->getName() + ".ivcheck"); 2559 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2560 LoopHeaderBB->getTerminator()->eraseFromParent(); 2561 2562 // Populate the IV PHI. 2563 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2564 IV->addIncoming(IVNext, LoopHeaderBB); 2565 2566 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2567 // loop. The loop would otherwise not be deleted even if it becomes empty. 2568 2569 SE->forgetLoop(CurLoop); 2570 2571 // Other passes will take care of actually deleting the loop if possible. 2572 2573 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2574 2575 ++NumShiftUntilBitTest; 2576 return MadeChange; 2577 } 2578 2579 /// Return true if the idiom is detected in the loop. 2580 /// 2581 /// The core idiom we are trying to detect is: 2582 /// \code 2583 /// entry: 2584 /// <...> 2585 /// %start = <...> 2586 /// %extraoffset = <...> 2587 /// <...> 2588 /// br label %for.cond 2589 /// 2590 /// loop: 2591 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2592 /// %nbits = add nsw i8 %iv, %extraoffset 2593 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2594 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2595 /// %iv.next = add i8 %iv, 1 2596 /// <...> 2597 /// br i1 %val.shifted.iszero, label %end, label %loop 2598 /// 2599 /// end: 2600 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2601 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2602 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2603 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2604 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2605 /// <...> 2606 /// \endcode 2607 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2608 Instruction *&ValShiftedIsZero, 2609 Intrinsic::ID &IntrinID, Instruction *&IV, 2610 Value *&Start, Value *&Val, 2611 const SCEV *&ExtraOffsetExpr, 2612 bool &InvertedCond) { 2613 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2614 " Performing shift-until-zero idiom detection.\n"); 2615 2616 // Give up if the loop has multiple blocks or multiple backedges. 2617 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2618 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2619 return false; 2620 } 2621 2622 Instruction *ValShifted, *NBits, *IVNext; 2623 Value *ExtraOffset; 2624 2625 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2626 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2627 assert(LoopPreheaderBB && "There is always a loop preheader."); 2628 2629 using namespace PatternMatch; 2630 2631 // Step 1: Check if the loop backedge, condition is in desirable form. 2632 2633 ICmpInst::Predicate Pred; 2634 BasicBlock *TrueBB, *FalseBB; 2635 if (!match(LoopHeaderBB->getTerminator(), 2636 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2637 m_BasicBlock(FalseBB))) || 2638 !match(ValShiftedIsZero, 2639 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2640 !ICmpInst::isEquality(Pred)) { 2641 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2642 return false; 2643 } 2644 2645 // Step 2: Check if the comparison's operand is in desirable form. 2646 // FIXME: Val could be a one-input PHI node, which we should look past. 2647 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2648 m_Instruction(NBits)))) { 2649 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2650 return false; 2651 } 2652 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2653 : Intrinsic::ctlz; 2654 2655 // Step 3: Check if the shift amount is in desirable form. 2656 2657 if (match(NBits, m_c_Add(m_Instruction(IV), 2658 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2659 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2660 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2661 else if (match(NBits, 2662 m_Sub(m_Instruction(IV), 2663 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2664 NBits->hasNoSignedWrap()) 2665 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2666 else { 2667 IV = NBits; 2668 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2669 } 2670 2671 // Step 4: Check if the recurrence is in desirable form. 2672 auto *IVPN = dyn_cast<PHINode>(IV); 2673 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2674 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2675 return false; 2676 } 2677 2678 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2679 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2680 2681 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2682 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2683 return false; 2684 } 2685 2686 // Step 4: Check if the backedge's destinations are in desirable form. 2687 2688 assert(ICmpInst::isEquality(Pred) && 2689 "Should only get equality predicates here."); 2690 2691 // cmp-br is commutative, so canonicalize to a single variant. 2692 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2693 if (InvertedCond) { 2694 Pred = ICmpInst::getInversePredicate(Pred); 2695 std::swap(TrueBB, FalseBB); 2696 } 2697 2698 // We expect to exit loop when comparison yields true, 2699 // so when it yields false we should branch back to loop header. 2700 if (FalseBB != LoopHeaderBB) { 2701 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2702 return false; 2703 } 2704 2705 // The new, countable, loop will certainly only run a known number of 2706 // iterations, It won't be infinite. But the old loop might be infinite 2707 // under certain conditions. For logical shifts, the value will become zero 2708 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2709 // right-shift, iff the sign bit was set, the value will never become zero, 2710 // and the loop may never finish. 2711 if (ValShifted->getOpcode() == Instruction::AShr && 2712 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2713 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2714 return false; 2715 } 2716 2717 // Okay, idiom checks out. 2718 return true; 2719 } 2720 2721 /// Look for the following loop: 2722 /// \code 2723 /// entry: 2724 /// <...> 2725 /// %start = <...> 2726 /// %extraoffset = <...> 2727 /// <...> 2728 /// br label %for.cond 2729 /// 2730 /// loop: 2731 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2732 /// %nbits = add nsw i8 %iv, %extraoffset 2733 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2734 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2735 /// %iv.next = add i8 %iv, 1 2736 /// <...> 2737 /// br i1 %val.shifted.iszero, label %end, label %loop 2738 /// 2739 /// end: 2740 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2741 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2742 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2743 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2744 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2745 /// <...> 2746 /// \endcode 2747 /// 2748 /// And transform it into: 2749 /// \code 2750 /// entry: 2751 /// <...> 2752 /// %start = <...> 2753 /// %extraoffset = <...> 2754 /// <...> 2755 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2756 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2757 /// %extraoffset.neg = sub i8 0, %extraoffset 2758 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2759 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2760 /// %loop.tripcount = sub i8 %iv.final, %start 2761 /// br label %loop 2762 /// 2763 /// loop: 2764 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2765 /// %loop.iv.next = add i8 %loop.iv, 1 2766 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2767 /// %iv = add i8 %loop.iv, %start 2768 /// <...> 2769 /// br i1 %loop.ivcheck, label %end, label %loop 2770 /// 2771 /// end: 2772 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2773 /// <...> 2774 /// \endcode 2775 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2776 bool MadeChange = false; 2777 2778 Instruction *ValShiftedIsZero; 2779 Intrinsic::ID IntrID; 2780 Instruction *IV; 2781 Value *Start, *Val; 2782 const SCEV *ExtraOffsetExpr; 2783 bool InvertedCond; 2784 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2785 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2786 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2787 " shift-until-zero idiom detection failed.\n"); 2788 return MadeChange; 2789 } 2790 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2791 2792 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2793 // but is it profitable to transform? 2794 2795 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2796 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2797 assert(LoopPreheaderBB && "There is always a loop preheader."); 2798 2799 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2800 assert(SuccessorBB && "There is only a single successor."); 2801 2802 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2803 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2804 2805 Type *Ty = Val->getType(); 2806 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2807 2808 TargetTransformInfo::TargetCostKind CostKind = 2809 TargetTransformInfo::TCK_SizeAndLatency; 2810 2811 // The rewrite is considered to be unprofitable iff and only iff the 2812 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2813 // making the loop countable, even if nothing else changes. 2814 IntrinsicCostAttributes Attrs( 2815 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()}); 2816 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2817 if (Cost > TargetTransformInfo::TCC_Basic) { 2818 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2819 " Intrinsic is too costly, not beneficial\n"); 2820 return MadeChange; 2821 } 2822 2823 // Ok, transform appears worthwhile. 2824 MadeChange = true; 2825 2826 bool OffsetIsZero = false; 2827 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2828 OffsetIsZero = ExtraOffsetExprC->isZero(); 2829 2830 // Step 1: Compute the loop's final IV value / trip count. 2831 2832 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 2833 IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()}, 2834 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 2835 Value *ValNumActiveBits = Builder.CreateSub( 2836 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 2837 Val->getName() + ".numactivebits", /*HasNUW=*/true, 2838 /*HasNSW=*/Bitwidth != 2); 2839 2840 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 2841 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 2842 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 2843 2844 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 2845 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 2846 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 2847 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 2848 {ValNumActiveBitsOffset, Start}, 2849 /*FMFSource=*/nullptr, "iv.final"); 2850 2851 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 2852 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 2853 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 2854 // FIXME: or when the offset was `add nuw` 2855 2856 // We know loop's backedge-taken count, but what's loop's trip count? 2857 Value *LoopTripCount = 2858 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2859 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2860 /*HasNSW=*/Bitwidth != 2); 2861 2862 // Step 2: Adjust the successor basic block to recieve the original 2863 // induction variable's final value instead of the orig. IV itself. 2864 2865 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 2866 2867 // Step 3: Rewrite the loop into a countable form, with canonical IV. 2868 2869 // The new canonical induction variable. 2870 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2871 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2872 2873 // The induction itself. 2874 Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); 2875 auto *CIVNext = 2876 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 2877 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2878 2879 // The loop trip count check. 2880 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 2881 CurLoop->getName() + ".ivcheck"); 2882 auto *NewIVCheck = CIVCheck; 2883 if (InvertedCond) { 2884 NewIVCheck = Builder.CreateNot(CIVCheck); 2885 NewIVCheck->takeName(ValShiftedIsZero); 2886 } 2887 2888 // The original IV, but rebased to be an offset to the CIV. 2889 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 2890 /*HasNSW=*/true); // FIXME: what about NUW? 2891 IVDePHId->takeName(IV); 2892 2893 // The loop terminator. 2894 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2895 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 2896 LoopHeaderBB->getTerminator()->eraseFromParent(); 2897 2898 // Populate the IV PHI. 2899 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2900 CIV->addIncoming(CIVNext, LoopHeaderBB); 2901 2902 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 2903 // loop. The loop would otherwise not be deleted even if it becomes empty. 2904 2905 SE->forgetLoop(CurLoop); 2906 2907 // Step 5: Try to cleanup the loop's body somewhat. 2908 IV->replaceAllUsesWith(IVDePHId); 2909 IV->eraseFromParent(); 2910 2911 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 2912 ValShiftedIsZero->eraseFromParent(); 2913 2914 // Other passes will take care of actually deleting the loop if possible. 2915 2916 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 2917 2918 ++NumShiftUntilZero; 2919 return MadeChange; 2920 } 2921