xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/CmpInstAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/MemorySSA.h"
56 #include "llvm/Analysis/MemorySSAUpdater.h"
57 #include "llvm/Analysis/MustExecute.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/GlobalValue.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/InstructionCost.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Transforms/Scalar.h"
96 #include "llvm/Transforms/Utils/BuildLibCalls.h"
97 #include "llvm/Transforms/Utils/Local.h"
98 #include "llvm/Transforms/Utils/LoopUtils.h"
99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <utility>
104 #include <vector>
105 
106 using namespace llvm;
107 
108 #define DEBUG_TYPE "loop-idiom"
109 
110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
112 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
113 STATISTIC(
114     NumShiftUntilBitTest,
115     "Number of uncountable loops recognized as 'shift until bitttest' idiom");
116 STATISTIC(NumShiftUntilZero,
117           "Number of uncountable loops recognized as 'shift until zero' idiom");
118 
119 bool DisableLIRP::All;
120 static cl::opt<bool, true>
121     DisableLIRPAll("disable-" DEBUG_TYPE "-all",
122                    cl::desc("Options to disable Loop Idiom Recognize Pass."),
123                    cl::location(DisableLIRP::All), cl::init(false),
124                    cl::ReallyHidden);
125 
126 bool DisableLIRP::Memset;
127 static cl::opt<bool, true>
128     DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
129                       cl::desc("Proceed with loop idiom recognize pass, but do "
130                                "not convert loop(s) to memset."),
131                       cl::location(DisableLIRP::Memset), cl::init(false),
132                       cl::ReallyHidden);
133 
134 bool DisableLIRP::Memcpy;
135 static cl::opt<bool, true>
136     DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
137                       cl::desc("Proceed with loop idiom recognize pass, but do "
138                                "not convert loop(s) to memcpy."),
139                       cl::location(DisableLIRP::Memcpy), cl::init(false),
140                       cl::ReallyHidden);
141 
142 static cl::opt<bool> UseLIRCodeSizeHeurs(
143     "use-lir-code-size-heurs",
144     cl::desc("Use loop idiom recognition code size heuristics when compiling"
145              "with -Os/-Oz"),
146     cl::init(true), cl::Hidden);
147 
148 namespace {
149 
150 class LoopIdiomRecognize {
151   Loop *CurLoop = nullptr;
152   AliasAnalysis *AA;
153   DominatorTree *DT;
154   LoopInfo *LI;
155   ScalarEvolution *SE;
156   TargetLibraryInfo *TLI;
157   const TargetTransformInfo *TTI;
158   const DataLayout *DL;
159   OptimizationRemarkEmitter &ORE;
160   bool ApplyCodeSizeHeuristics;
161   std::unique_ptr<MemorySSAUpdater> MSSAU;
162 
163 public:
164   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
165                               LoopInfo *LI, ScalarEvolution *SE,
166                               TargetLibraryInfo *TLI,
167                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
168                               const DataLayout *DL,
169                               OptimizationRemarkEmitter &ORE)
170       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
171     if (MSSA)
172       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
173   }
174 
175   bool runOnLoop(Loop *L);
176 
177 private:
178   using StoreList = SmallVector<StoreInst *, 8>;
179   using StoreListMap = MapVector<Value *, StoreList>;
180 
181   StoreListMap StoreRefsForMemset;
182   StoreListMap StoreRefsForMemsetPattern;
183   StoreList StoreRefsForMemcpy;
184   bool HasMemset;
185   bool HasMemsetPattern;
186   bool HasMemcpy;
187 
188   /// Return code for isLegalStore()
189   enum LegalStoreKind {
190     None = 0,
191     Memset,
192     MemsetPattern,
193     Memcpy,
194     UnorderedAtomicMemcpy,
195     DontUse // Dummy retval never to be used. Allows catching errors in retval
196             // handling.
197   };
198 
199   /// \name Countable Loop Idiom Handling
200   /// @{
201 
202   bool runOnCountableLoop();
203   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
204                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
205 
206   void collectStores(BasicBlock *BB);
207   LegalStoreKind isLegalStore(StoreInst *SI);
208   enum class ForMemset { No, Yes };
209   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
210                          ForMemset For);
211 
212   template <typename MemInst>
213   bool processLoopMemIntrinsic(
214       BasicBlock *BB,
215       bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
216       const SCEV *BECount);
217   bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
218   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
219 
220   bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
221                                MaybeAlign StoreAlignment, Value *StoredVal,
222                                Instruction *TheStore,
223                                SmallPtrSetImpl<Instruction *> &Stores,
224                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
225                                bool IsNegStride, bool IsLoopMemset = false);
226   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
227   bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
228                                   const SCEV *StoreSize, MaybeAlign StoreAlign,
229                                   MaybeAlign LoadAlign, Instruction *TheStore,
230                                   Instruction *TheLoad,
231                                   const SCEVAddRecExpr *StoreEv,
232                                   const SCEVAddRecExpr *LoadEv,
233                                   const SCEV *BECount);
234   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
235                                  bool IsLoopMemset = false);
236 
237   /// @}
238   /// \name Noncountable Loop Idiom Handling
239   /// @{
240 
241   bool runOnNoncountableLoop();
242 
243   bool recognizePopcount();
244   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
245                                PHINode *CntPhi, Value *Var);
246   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
247   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
248                                 Instruction *CntInst, PHINode *CntPhi,
249                                 Value *Var, Instruction *DefX,
250                                 const DebugLoc &DL, bool ZeroCheck,
251                                 bool IsCntPhiUsedOutsideLoop);
252 
253   bool recognizeShiftUntilBitTest();
254   bool recognizeShiftUntilZero();
255 
256   /// @}
257 };
258 
259 class LoopIdiomRecognizeLegacyPass : public LoopPass {
260 public:
261   static char ID;
262 
263   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
264     initializeLoopIdiomRecognizeLegacyPassPass(
265         *PassRegistry::getPassRegistry());
266   }
267 
268   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
269     if (DisableLIRP::All)
270       return false;
271 
272     if (skipLoop(L))
273       return false;
274 
275     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
276     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
277     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
278     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
279     TargetLibraryInfo *TLI =
280         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
281             *L->getHeader()->getParent());
282     const TargetTransformInfo *TTI =
283         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
284             *L->getHeader()->getParent());
285     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
286     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
287     MemorySSA *MSSA = nullptr;
288     if (MSSAAnalysis)
289       MSSA = &MSSAAnalysis->getMSSA();
290 
291     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
292     // pass.  Function analyses need to be preserved across loop transformations
293     // but ORE cannot be preserved (see comment before the pass definition).
294     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
295 
296     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
297     return LIR.runOnLoop(L);
298   }
299 
300   /// This transformation requires natural loop information & requires that
301   /// loop preheaders be inserted into the CFG.
302   void getAnalysisUsage(AnalysisUsage &AU) const override {
303     AU.addRequired<TargetLibraryInfoWrapperPass>();
304     AU.addRequired<TargetTransformInfoWrapperPass>();
305     AU.addPreserved<MemorySSAWrapperPass>();
306     getLoopAnalysisUsage(AU);
307   }
308 };
309 
310 } // end anonymous namespace
311 
312 char LoopIdiomRecognizeLegacyPass::ID = 0;
313 
314 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
315                                               LoopStandardAnalysisResults &AR,
316                                               LPMUpdater &) {
317   if (DisableLIRP::All)
318     return PreservedAnalyses::all();
319 
320   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
321 
322   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
323   // pass.  Function analyses need to be preserved across loop transformations
324   // but ORE cannot be preserved (see comment before the pass definition).
325   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
326 
327   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
328                          AR.MSSA, DL, ORE);
329   if (!LIR.runOnLoop(&L))
330     return PreservedAnalyses::all();
331 
332   auto PA = getLoopPassPreservedAnalyses();
333   if (AR.MSSA)
334     PA.preserve<MemorySSAAnalysis>();
335   return PA;
336 }
337 
338 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
339                       "Recognize loop idioms", false, false)
340 INITIALIZE_PASS_DEPENDENCY(LoopPass)
341 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
342 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
343 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
344                     "Recognize loop idioms", false, false)
345 
346 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
347 
348 static void deleteDeadInstruction(Instruction *I) {
349   I->replaceAllUsesWith(UndefValue::get(I->getType()));
350   I->eraseFromParent();
351 }
352 
353 //===----------------------------------------------------------------------===//
354 //
355 //          Implementation of LoopIdiomRecognize
356 //
357 //===----------------------------------------------------------------------===//
358 
359 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
360   CurLoop = L;
361   // If the loop could not be converted to canonical form, it must have an
362   // indirectbr in it, just give up.
363   if (!L->getLoopPreheader())
364     return false;
365 
366   // Disable loop idiom recognition if the function's name is a common idiom.
367   StringRef Name = L->getHeader()->getParent()->getName();
368   if (Name == "memset" || Name == "memcpy")
369     return false;
370 
371   // Determine if code size heuristics need to be applied.
372   ApplyCodeSizeHeuristics =
373       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
374 
375   HasMemset = TLI->has(LibFunc_memset);
376   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
377   HasMemcpy = TLI->has(LibFunc_memcpy);
378 
379   if (HasMemset || HasMemsetPattern || HasMemcpy)
380     if (SE->hasLoopInvariantBackedgeTakenCount(L))
381       return runOnCountableLoop();
382 
383   return runOnNoncountableLoop();
384 }
385 
386 bool LoopIdiomRecognize::runOnCountableLoop() {
387   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
388   assert(!isa<SCEVCouldNotCompute>(BECount) &&
389          "runOnCountableLoop() called on a loop without a predictable"
390          "backedge-taken count");
391 
392   // If this loop executes exactly one time, then it should be peeled, not
393   // optimized by this pass.
394   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
395     if (BECst->getAPInt() == 0)
396       return false;
397 
398   SmallVector<BasicBlock *, 8> ExitBlocks;
399   CurLoop->getUniqueExitBlocks(ExitBlocks);
400 
401   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
402                     << CurLoop->getHeader()->getParent()->getName()
403                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
404                     << "\n");
405 
406   // The following transforms hoist stores/memsets into the loop pre-header.
407   // Give up if the loop has instructions that may throw.
408   SimpleLoopSafetyInfo SafetyInfo;
409   SafetyInfo.computeLoopSafetyInfo(CurLoop);
410   if (SafetyInfo.anyBlockMayThrow())
411     return false;
412 
413   bool MadeChange = false;
414 
415   // Scan all the blocks in the loop that are not in subloops.
416   for (auto *BB : CurLoop->getBlocks()) {
417     // Ignore blocks in subloops.
418     if (LI->getLoopFor(BB) != CurLoop)
419       continue;
420 
421     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
422   }
423   return MadeChange;
424 }
425 
426 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
427   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
428   return ConstStride->getAPInt();
429 }
430 
431 /// getMemSetPatternValue - If a strided store of the specified value is safe to
432 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
433 /// be passed in.  Otherwise, return null.
434 ///
435 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
436 /// just replicate their input array and then pass on to memset_pattern16.
437 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
438   // FIXME: This could check for UndefValue because it can be merged into any
439   // other valid pattern.
440 
441   // If the value isn't a constant, we can't promote it to being in a constant
442   // array.  We could theoretically do a store to an alloca or something, but
443   // that doesn't seem worthwhile.
444   Constant *C = dyn_cast<Constant>(V);
445   if (!C)
446     return nullptr;
447 
448   // Only handle simple values that are a power of two bytes in size.
449   uint64_t Size = DL->getTypeSizeInBits(V->getType());
450   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
451     return nullptr;
452 
453   // Don't care enough about darwin/ppc to implement this.
454   if (DL->isBigEndian())
455     return nullptr;
456 
457   // Convert to size in bytes.
458   Size /= 8;
459 
460   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
461   // if the top and bottom are the same (e.g. for vectors and large integers).
462   if (Size > 16)
463     return nullptr;
464 
465   // If the constant is exactly 16 bytes, just use it.
466   if (Size == 16)
467     return C;
468 
469   // Otherwise, we'll use an array of the constants.
470   unsigned ArraySize = 16 / Size;
471   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
472   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
473 }
474 
475 LoopIdiomRecognize::LegalStoreKind
476 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
477   // Don't touch volatile stores.
478   if (SI->isVolatile())
479     return LegalStoreKind::None;
480   // We only want simple or unordered-atomic stores.
481   if (!SI->isUnordered())
482     return LegalStoreKind::None;
483 
484   // Avoid merging nontemporal stores.
485   if (SI->getMetadata(LLVMContext::MD_nontemporal))
486     return LegalStoreKind::None;
487 
488   Value *StoredVal = SI->getValueOperand();
489   Value *StorePtr = SI->getPointerOperand();
490 
491   // Don't convert stores of non-integral pointer types to memsets (which stores
492   // integers).
493   if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
494     return LegalStoreKind::None;
495 
496   // Reject stores that are so large that they overflow an unsigned.
497   // When storing out scalable vectors we bail out for now, since the code
498   // below currently only works for constant strides.
499   TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
500   if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
501       (SizeInBits.getFixedSize() >> 32) != 0)
502     return LegalStoreKind::None;
503 
504   // See if the pointer expression is an AddRec like {base,+,1} on the current
505   // loop, which indicates a strided store.  If we have something else, it's a
506   // random store we can't handle.
507   const SCEVAddRecExpr *StoreEv =
508       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
509   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
510     return LegalStoreKind::None;
511 
512   // Check to see if we have a constant stride.
513   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
514     return LegalStoreKind::None;
515 
516   // See if the store can be turned into a memset.
517 
518   // If the stored value is a byte-wise value (like i32 -1), then it may be
519   // turned into a memset of i8 -1, assuming that all the consecutive bytes
520   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
521   // but it can be turned into memset_pattern if the target supports it.
522   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
523 
524   // Note: memset and memset_pattern on unordered-atomic is yet not supported
525   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
526 
527   // If we're allowed to form a memset, and the stored value would be
528   // acceptable for memset, use it.
529   if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
530       // Verify that the stored value is loop invariant.  If not, we can't
531       // promote the memset.
532       CurLoop->isLoopInvariant(SplatValue)) {
533     // It looks like we can use SplatValue.
534     return LegalStoreKind::Memset;
535   }
536   if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
537       // Don't create memset_pattern16s with address spaces.
538       StorePtr->getType()->getPointerAddressSpace() == 0 &&
539       getMemSetPatternValue(StoredVal, DL)) {
540     // It looks like we can use PatternValue!
541     return LegalStoreKind::MemsetPattern;
542   }
543 
544   // Otherwise, see if the store can be turned into a memcpy.
545   if (HasMemcpy && !DisableLIRP::Memcpy) {
546     // Check to see if the stride matches the size of the store.  If so, then we
547     // know that every byte is touched in the loop.
548     APInt Stride = getStoreStride(StoreEv);
549     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
550     if (StoreSize != Stride && StoreSize != -Stride)
551       return LegalStoreKind::None;
552 
553     // The store must be feeding a non-volatile load.
554     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
555 
556     // Only allow non-volatile loads
557     if (!LI || LI->isVolatile())
558       return LegalStoreKind::None;
559     // Only allow simple or unordered-atomic loads
560     if (!LI->isUnordered())
561       return LegalStoreKind::None;
562 
563     // See if the pointer expression is an AddRec like {base,+,1} on the current
564     // loop, which indicates a strided load.  If we have something else, it's a
565     // random load we can't handle.
566     const SCEVAddRecExpr *LoadEv =
567         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
568     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
569       return LegalStoreKind::None;
570 
571     // The store and load must share the same stride.
572     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
573       return LegalStoreKind::None;
574 
575     // Success.  This store can be converted into a memcpy.
576     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
577     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
578                            : LegalStoreKind::Memcpy;
579   }
580   // This store can't be transformed into a memset/memcpy.
581   return LegalStoreKind::None;
582 }
583 
584 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
585   StoreRefsForMemset.clear();
586   StoreRefsForMemsetPattern.clear();
587   StoreRefsForMemcpy.clear();
588   for (Instruction &I : *BB) {
589     StoreInst *SI = dyn_cast<StoreInst>(&I);
590     if (!SI)
591       continue;
592 
593     // Make sure this is a strided store with a constant stride.
594     switch (isLegalStore(SI)) {
595     case LegalStoreKind::None:
596       // Nothing to do
597       break;
598     case LegalStoreKind::Memset: {
599       // Find the base pointer.
600       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
601       StoreRefsForMemset[Ptr].push_back(SI);
602     } break;
603     case LegalStoreKind::MemsetPattern: {
604       // Find the base pointer.
605       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
606       StoreRefsForMemsetPattern[Ptr].push_back(SI);
607     } break;
608     case LegalStoreKind::Memcpy:
609     case LegalStoreKind::UnorderedAtomicMemcpy:
610       StoreRefsForMemcpy.push_back(SI);
611       break;
612     default:
613       assert(false && "unhandled return value");
614       break;
615     }
616   }
617 }
618 
619 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
620 /// with the specified backedge count.  This block is known to be in the current
621 /// loop and not in any subloops.
622 bool LoopIdiomRecognize::runOnLoopBlock(
623     BasicBlock *BB, const SCEV *BECount,
624     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
625   // We can only promote stores in this block if they are unconditionally
626   // executed in the loop.  For a block to be unconditionally executed, it has
627   // to dominate all the exit blocks of the loop.  Verify this now.
628   for (BasicBlock *ExitBlock : ExitBlocks)
629     if (!DT->dominates(BB, ExitBlock))
630       return false;
631 
632   bool MadeChange = false;
633   // Look for store instructions, which may be optimized to memset/memcpy.
634   collectStores(BB);
635 
636   // Look for a single store or sets of stores with a common base, which can be
637   // optimized into a memset (memset_pattern).  The latter most commonly happens
638   // with structs and handunrolled loops.
639   for (auto &SL : StoreRefsForMemset)
640     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
641 
642   for (auto &SL : StoreRefsForMemsetPattern)
643     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
644 
645   // Optimize the store into a memcpy, if it feeds an similarly strided load.
646   for (auto &SI : StoreRefsForMemcpy)
647     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
648 
649   MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
650       BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
651   MadeChange |= processLoopMemIntrinsic<MemSetInst>(
652       BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
653 
654   return MadeChange;
655 }
656 
657 /// See if this store(s) can be promoted to a memset.
658 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
659                                            const SCEV *BECount, ForMemset For) {
660   // Try to find consecutive stores that can be transformed into memsets.
661   SetVector<StoreInst *> Heads, Tails;
662   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
663 
664   // Do a quadratic search on all of the given stores and find
665   // all of the pairs of stores that follow each other.
666   SmallVector<unsigned, 16> IndexQueue;
667   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
668     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
669 
670     Value *FirstStoredVal = SL[i]->getValueOperand();
671     Value *FirstStorePtr = SL[i]->getPointerOperand();
672     const SCEVAddRecExpr *FirstStoreEv =
673         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
674     APInt FirstStride = getStoreStride(FirstStoreEv);
675     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
676 
677     // See if we can optimize just this store in isolation.
678     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
679       Heads.insert(SL[i]);
680       continue;
681     }
682 
683     Value *FirstSplatValue = nullptr;
684     Constant *FirstPatternValue = nullptr;
685 
686     if (For == ForMemset::Yes)
687       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
688     else
689       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
690 
691     assert((FirstSplatValue || FirstPatternValue) &&
692            "Expected either splat value or pattern value.");
693 
694     IndexQueue.clear();
695     // If a store has multiple consecutive store candidates, search Stores
696     // array according to the sequence: from i+1 to e, then from i-1 to 0.
697     // This is because usually pairing with immediate succeeding or preceding
698     // candidate create the best chance to find memset opportunity.
699     unsigned j = 0;
700     for (j = i + 1; j < e; ++j)
701       IndexQueue.push_back(j);
702     for (j = i; j > 0; --j)
703       IndexQueue.push_back(j - 1);
704 
705     for (auto &k : IndexQueue) {
706       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
707       Value *SecondStorePtr = SL[k]->getPointerOperand();
708       const SCEVAddRecExpr *SecondStoreEv =
709           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
710       APInt SecondStride = getStoreStride(SecondStoreEv);
711 
712       if (FirstStride != SecondStride)
713         continue;
714 
715       Value *SecondStoredVal = SL[k]->getValueOperand();
716       Value *SecondSplatValue = nullptr;
717       Constant *SecondPatternValue = nullptr;
718 
719       if (For == ForMemset::Yes)
720         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
721       else
722         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
723 
724       assert((SecondSplatValue || SecondPatternValue) &&
725              "Expected either splat value or pattern value.");
726 
727       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
728         if (For == ForMemset::Yes) {
729           if (isa<UndefValue>(FirstSplatValue))
730             FirstSplatValue = SecondSplatValue;
731           if (FirstSplatValue != SecondSplatValue)
732             continue;
733         } else {
734           if (isa<UndefValue>(FirstPatternValue))
735             FirstPatternValue = SecondPatternValue;
736           if (FirstPatternValue != SecondPatternValue)
737             continue;
738         }
739         Tails.insert(SL[k]);
740         Heads.insert(SL[i]);
741         ConsecutiveChain[SL[i]] = SL[k];
742         break;
743       }
744     }
745   }
746 
747   // We may run into multiple chains that merge into a single chain. We mark the
748   // stores that we transformed so that we don't visit the same store twice.
749   SmallPtrSet<Value *, 16> TransformedStores;
750   bool Changed = false;
751 
752   // For stores that start but don't end a link in the chain:
753   for (StoreInst *I : Heads) {
754     if (Tails.count(I))
755       continue;
756 
757     // We found a store instr that starts a chain. Now follow the chain and try
758     // to transform it.
759     SmallPtrSet<Instruction *, 8> AdjacentStores;
760     StoreInst *HeadStore = I;
761     unsigned StoreSize = 0;
762 
763     // Collect the chain into a list.
764     while (Tails.count(I) || Heads.count(I)) {
765       if (TransformedStores.count(I))
766         break;
767       AdjacentStores.insert(I);
768 
769       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
770       // Move to the next value in the chain.
771       I = ConsecutiveChain[I];
772     }
773 
774     Value *StoredVal = HeadStore->getValueOperand();
775     Value *StorePtr = HeadStore->getPointerOperand();
776     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
777     APInt Stride = getStoreStride(StoreEv);
778 
779     // Check to see if the stride matches the size of the stores.  If so, then
780     // we know that every byte is touched in the loop.
781     if (StoreSize != Stride && StoreSize != -Stride)
782       continue;
783 
784     bool IsNegStride = StoreSize == -Stride;
785 
786     Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
787     const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
788     if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
789                                 MaybeAlign(HeadStore->getAlign()), StoredVal,
790                                 HeadStore, AdjacentStores, StoreEv, BECount,
791                                 IsNegStride)) {
792       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
793       Changed = true;
794     }
795   }
796 
797   return Changed;
798 }
799 
800 /// processLoopMemIntrinsic - Template function for calling different processor
801 /// functions based on mem instrinsic type.
802 template <typename MemInst>
803 bool LoopIdiomRecognize::processLoopMemIntrinsic(
804     BasicBlock *BB,
805     bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
806     const SCEV *BECount) {
807   bool MadeChange = false;
808   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
809     Instruction *Inst = &*I++;
810     // Look for memory instructions, which may be optimized to a larger one.
811     if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
812       WeakTrackingVH InstPtr(&*I);
813       if (!(this->*Processor)(MI, BECount))
814         continue;
815       MadeChange = true;
816 
817       // If processing the instruction invalidated our iterator, start over from
818       // the top of the block.
819       if (!InstPtr)
820         I = BB->begin();
821     }
822   }
823   return MadeChange;
824 }
825 
826 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
827 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
828                                            const SCEV *BECount) {
829   // We can only handle non-volatile memcpys with a constant size.
830   if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
831     return false;
832 
833   // If we're not allowed to hack on memcpy, we fail.
834   if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
835     return false;
836 
837   Value *Dest = MCI->getDest();
838   Value *Source = MCI->getSource();
839   if (!Dest || !Source)
840     return false;
841 
842   // See if the load and store pointer expressions are AddRec like {base,+,1} on
843   // the current loop, which indicates a strided load and store.  If we have
844   // something else, it's a random load or store we can't handle.
845   const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
846   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
847     return false;
848   const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
849   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
850     return false;
851 
852   // Reject memcpys that are so large that they overflow an unsigned.
853   uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
854   if ((SizeInBytes >> 32) != 0)
855     return false;
856 
857   // Check if the stride matches the size of the memcpy. If so, then we know
858   // that every byte is touched in the loop.
859   const SCEVConstant *ConstStoreStride =
860       dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
861   const SCEVConstant *ConstLoadStride =
862       dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
863   if (!ConstStoreStride || !ConstLoadStride)
864     return false;
865 
866   APInt StoreStrideValue = ConstStoreStride->getAPInt();
867   APInt LoadStrideValue = ConstLoadStride->getAPInt();
868   // Huge stride value - give up
869   if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
870     return false;
871 
872   if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
873     ORE.emit([&]() {
874       return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
875              << ore::NV("Inst", "memcpy") << " in "
876              << ore::NV("Function", MCI->getFunction())
877              << " function will not be hoisted: "
878              << ore::NV("Reason", "memcpy size is not equal to stride");
879     });
880     return false;
881   }
882 
883   int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
884   int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
885   // Check if the load stride matches the store stride.
886   if (StoreStrideInt != LoadStrideInt)
887     return false;
888 
889   return processLoopStoreOfLoopLoad(
890       Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
891       MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
892       BECount);
893 }
894 
895 /// processLoopMemSet - See if this memset can be promoted to a large memset.
896 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
897                                            const SCEV *BECount) {
898   // We can only handle non-volatile memsets.
899   if (MSI->isVolatile())
900     return false;
901 
902   // If we're not allowed to hack on memset, we fail.
903   if (!HasMemset || DisableLIRP::Memset)
904     return false;
905 
906   Value *Pointer = MSI->getDest();
907 
908   // See if the pointer expression is an AddRec like {base,+,1} on the current
909   // loop, which indicates a strided store.  If we have something else, it's a
910   // random store we can't handle.
911   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
912   if (!Ev || Ev->getLoop() != CurLoop)
913     return false;
914   if (!Ev->isAffine()) {
915     LLVM_DEBUG(dbgs() << "  Pointer is not affine, abort\n");
916     return false;
917   }
918 
919   const SCEV *PointerStrideSCEV = Ev->getOperand(1);
920   const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
921   if (!PointerStrideSCEV || !MemsetSizeSCEV)
922     return false;
923 
924   bool IsNegStride = false;
925   const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
926 
927   if (IsConstantSize) {
928     // Memset size is constant.
929     // Check if the pointer stride matches the memset size. If so, then
930     // we know that every byte is touched in the loop.
931     LLVM_DEBUG(dbgs() << "  memset size is constant\n");
932     uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
933     const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
934     if (!ConstStride)
935       return false;
936 
937     APInt Stride = ConstStride->getAPInt();
938     if (SizeInBytes != Stride && SizeInBytes != -Stride)
939       return false;
940 
941     IsNegStride = SizeInBytes == -Stride;
942   } else {
943     // Memset size is non-constant.
944     // Check if the pointer stride matches the memset size.
945     // To be conservative, the pass would not promote pointers that aren't in
946     // address space zero. Also, the pass only handles memset length and stride
947     // that are invariant for the top level loop.
948     LLVM_DEBUG(dbgs() << "  memset size is non-constant\n");
949     if (Pointer->getType()->getPointerAddressSpace() != 0) {
950       LLVM_DEBUG(dbgs() << "  pointer is not in address space zero, "
951                         << "abort\n");
952       return false;
953     }
954     if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
955       LLVM_DEBUG(dbgs() << "  memset size is not a loop-invariant, "
956                         << "abort\n");
957       return false;
958     }
959 
960     // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
961     IsNegStride = PointerStrideSCEV->isNonConstantNegative();
962     const SCEV *PositiveStrideSCEV =
963         IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
964                     : PointerStrideSCEV;
965     LLVM_DEBUG(dbgs() << "  MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
966                       << "  PositiveStrideSCEV: " << *PositiveStrideSCEV
967                       << "\n");
968 
969     if (PositiveStrideSCEV != MemsetSizeSCEV) {
970       // If an expression is covered by the loop guard, compare again and
971       // proceed with optimization if equal.
972       const SCEV *FoldedPositiveStride =
973           SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
974       const SCEV *FoldedMemsetSize =
975           SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
976 
977       LLVM_DEBUG(dbgs() << "  Try to fold SCEV based on loop guard\n"
978                         << "    FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
979                         << "    FoldedPositiveStride: " << *FoldedPositiveStride
980                         << "\n");
981 
982       if (FoldedPositiveStride != FoldedMemsetSize) {
983         LLVM_DEBUG(dbgs() << "  SCEV don't match, abort\n");
984         return false;
985       }
986     }
987   }
988 
989   // Verify that the memset value is loop invariant.  If not, we can't promote
990   // the memset.
991   Value *SplatValue = MSI->getValue();
992   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
993     return false;
994 
995   SmallPtrSet<Instruction *, 1> MSIs;
996   MSIs.insert(MSI);
997   return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
998                                  MaybeAlign(MSI->getDestAlignment()),
999                                  SplatValue, MSI, MSIs, Ev, BECount,
1000                                  IsNegStride, /*IsLoopMemset=*/true);
1001 }
1002 
1003 /// mayLoopAccessLocation - Return true if the specified loop might access the
1004 /// specified pointer location, which is a loop-strided access.  The 'Access'
1005 /// argument specifies what the verboten forms of access are (read or write).
1006 static bool
1007 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1008                       const SCEV *BECount, const SCEV *StoreSizeSCEV,
1009                       AliasAnalysis &AA,
1010                       SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
1011   // Get the location that may be stored across the loop.  Since the access is
1012   // strided positively through memory, we say that the modified location starts
1013   // at the pointer and has infinite size.
1014   LocationSize AccessSize = LocationSize::afterPointer();
1015 
1016   // If the loop iterates a fixed number of times, we can refine the access size
1017   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
1018   const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
1019   const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1020   if (BECst && ConstSize)
1021     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1022                                        ConstSize->getValue()->getZExtValue());
1023 
1024   // TODO: For this to be really effective, we have to dive into the pointer
1025   // operand in the store.  Store to &A[i] of 100 will always return may alias
1026   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1027   // which will then no-alias a store to &A[100].
1028   MemoryLocation StoreLoc(Ptr, AccessSize);
1029 
1030   for (BasicBlock *B : L->blocks())
1031     for (Instruction &I : *B)
1032       if (!IgnoredInsts.contains(&I) &&
1033           isModOrRefSet(
1034               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
1035         return true;
1036   return false;
1037 }
1038 
1039 // If we have a negative stride, Start refers to the end of the memory location
1040 // we're trying to memset.  Therefore, we need to recompute the base pointer,
1041 // which is just Start - BECount*Size.
1042 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
1043                                         Type *IntPtr, const SCEV *StoreSizeSCEV,
1044                                         ScalarEvolution *SE) {
1045   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1046   if (!StoreSizeSCEV->isOne()) {
1047     // index = back edge count * store size
1048     Index = SE->getMulExpr(Index,
1049                            SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1050                            SCEV::FlagNUW);
1051   }
1052   // base pointer = start - index * store size
1053   return SE->getMinusSCEV(Start, Index);
1054 }
1055 
1056 /// Compute trip count from the backedge taken count.
1057 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr,
1058                                 Loop *CurLoop, const DataLayout *DL,
1059                                 ScalarEvolution *SE) {
1060   const SCEV *TripCountS = nullptr;
1061   // The # stored bytes is (BECount+1).  Expand the trip count out to
1062   // pointer size if it isn't already.
1063   //
1064   // If we're going to need to zero extend the BE count, check if we can add
1065   // one to it prior to zero extending without overflow. Provided this is safe,
1066   // it allows better simplification of the +1.
1067   if (DL->getTypeSizeInBits(BECount->getType()) <
1068           DL->getTypeSizeInBits(IntPtr) &&
1069       SE->isLoopEntryGuardedByCond(
1070           CurLoop, ICmpInst::ICMP_NE, BECount,
1071           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
1072     TripCountS = SE->getZeroExtendExpr(
1073         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
1074         IntPtr);
1075   } else {
1076     TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
1077                                 SE->getOne(IntPtr), SCEV::FlagNUW);
1078   }
1079 
1080   return TripCountS;
1081 }
1082 
1083 /// Compute the number of bytes as a SCEV from the backedge taken count.
1084 ///
1085 /// This also maps the SCEV into the provided type and tries to handle the
1086 /// computation in a way that will fold cleanly.
1087 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
1088                                const SCEV *StoreSizeSCEV, Loop *CurLoop,
1089                                const DataLayout *DL, ScalarEvolution *SE) {
1090   const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE);
1091 
1092   return SE->getMulExpr(TripCountSCEV,
1093                         SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1094                         SCEV::FlagNUW);
1095 }
1096 
1097 /// processLoopStridedStore - We see a strided store of some value.  If we can
1098 /// transform this into a memset or memset_pattern in the loop preheader, do so.
1099 bool LoopIdiomRecognize::processLoopStridedStore(
1100     Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1101     Value *StoredVal, Instruction *TheStore,
1102     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1103     const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1104   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1105   Constant *PatternValue = nullptr;
1106 
1107   if (!SplatValue)
1108     PatternValue = getMemSetPatternValue(StoredVal, DL);
1109 
1110   assert((SplatValue || PatternValue) &&
1111          "Expected either splat value or pattern value.");
1112 
1113   // The trip count of the loop and the base pointer of the addrec SCEV is
1114   // guaranteed to be loop invariant, which means that it should dominate the
1115   // header.  This allows us to insert code for it in the preheader.
1116   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1117   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1118   IRBuilder<> Builder(Preheader->getTerminator());
1119   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1120   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1121 
1122   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
1123   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1124 
1125   bool Changed = false;
1126   const SCEV *Start = Ev->getStart();
1127   // Handle negative strided loops.
1128   if (IsNegStride)
1129     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1130 
1131   // TODO: ideally we should still be able to generate memset if SCEV expander
1132   // is taught to generate the dependencies at the latest point.
1133   if (!isSafeToExpand(Start, *SE))
1134     return Changed;
1135 
1136   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
1137   // this into a memset in the loop preheader now if we want.  However, this
1138   // would be unsafe to do if there is anything else in the loop that may read
1139   // or write to the aliased location.  Check for any overlap by generating the
1140   // base pointer and checking the region.
1141   Value *BasePtr =
1142       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1143 
1144   // From here on out, conservatively report to the pass manager that we've
1145   // changed the IR, even if we later clean up these added instructions. There
1146   // may be structural differences e.g. in the order of use lists not accounted
1147   // for in just a textual dump of the IR. This is written as a variable, even
1148   // though statically all the places this dominates could be replaced with
1149   // 'true', with the hope that anyone trying to be clever / "more precise" with
1150   // the return value will read this comment, and leave them alone.
1151   Changed = true;
1152 
1153   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1154                             StoreSizeSCEV, *AA, Stores))
1155     return Changed;
1156 
1157   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1158     return Changed;
1159 
1160   // Okay, everything looks good, insert the memset.
1161 
1162   const SCEV *NumBytesS =
1163       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1164 
1165   // TODO: ideally we should still be able to generate memset if SCEV expander
1166   // is taught to generate the dependencies at the latest point.
1167   if (!isSafeToExpand(NumBytesS, *SE))
1168     return Changed;
1169 
1170   Value *NumBytes =
1171       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1172 
1173   CallInst *NewCall;
1174   if (SplatValue) {
1175     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
1176                                    MaybeAlign(StoreAlignment));
1177   } else {
1178     // Everything is emitted in default address space
1179     Type *Int8PtrTy = DestInt8PtrTy;
1180 
1181     Module *M = TheStore->getModule();
1182     StringRef FuncName = "memset_pattern16";
1183     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
1184                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
1185     inferLibFuncAttributes(M, FuncName, *TLI);
1186 
1187     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1188     // an constant array of 16-bytes.  Plop the value into a mergable global.
1189     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1190                                             GlobalValue::PrivateLinkage,
1191                                             PatternValue, ".memset_pattern");
1192     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1193     GV->setAlignment(Align(16));
1194     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1195     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1196   }
1197   NewCall->setDebugLoc(TheStore->getDebugLoc());
1198 
1199   if (MSSAU) {
1200     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1201         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1202     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1203   }
1204 
1205   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1206                     << "    from store to: " << *Ev << " at: " << *TheStore
1207                     << "\n");
1208 
1209   ORE.emit([&]() {
1210     OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
1211                          NewCall->getDebugLoc(), Preheader);
1212     R << "Transformed loop-strided store in "
1213       << ore::NV("Function", TheStore->getFunction())
1214       << " function into a call to "
1215       << ore::NV("NewFunction", NewCall->getCalledFunction())
1216       << "() intrinsic";
1217     if (!Stores.empty())
1218       R << ore::setExtraArgs();
1219     for (auto *I : Stores) {
1220       R << ore::NV("FromBlock", I->getParent()->getName())
1221         << ore::NV("ToBlock", Preheader->getName());
1222     }
1223     return R;
1224   });
1225 
1226   // Okay, the memset has been formed.  Zap the original store and anything that
1227   // feeds into it.
1228   for (auto *I : Stores) {
1229     if (MSSAU)
1230       MSSAU->removeMemoryAccess(I, true);
1231     deleteDeadInstruction(I);
1232   }
1233   if (MSSAU && VerifyMemorySSA)
1234     MSSAU->getMemorySSA()->verifyMemorySSA();
1235   ++NumMemSet;
1236   ExpCleaner.markResultUsed();
1237   return true;
1238 }
1239 
1240 /// If the stored value is a strided load in the same loop with the same stride
1241 /// this may be transformable into a memcpy.  This kicks in for stuff like
1242 /// for (i) A[i] = B[i];
1243 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1244                                                     const SCEV *BECount) {
1245   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1246 
1247   Value *StorePtr = SI->getPointerOperand();
1248   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1249   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1250 
1251   // The store must be feeding a non-volatile load.
1252   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1253   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1254 
1255   // See if the pointer expression is an AddRec like {base,+,1} on the current
1256   // loop, which indicates a strided load.  If we have something else, it's a
1257   // random load we can't handle.
1258   Value *LoadPtr = LI->getPointerOperand();
1259   const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1260 
1261   const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
1262   return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1263                                     SI->getAlign(), LI->getAlign(), SI, LI,
1264                                     StoreEv, LoadEv, BECount);
1265 }
1266 
1267 class MemmoveVerifier {
1268 public:
1269   explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
1270                            const DataLayout &DL)
1271       : DL(DL), LoadOff(0), StoreOff(0),
1272         BP1(llvm::GetPointerBaseWithConstantOffset(
1273             LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
1274         BP2(llvm::GetPointerBaseWithConstantOffset(
1275             StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
1276         IsSameObject(BP1 == BP2) {}
1277 
1278   bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
1279                                   const Instruction &TheLoad,
1280                                   bool IsMemCpy) const {
1281     if (IsMemCpy) {
1282       // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1283       // for negative stride.
1284       if ((!IsNegStride && LoadOff <= StoreOff) ||
1285           (IsNegStride && LoadOff >= StoreOff))
1286         return false;
1287     } else {
1288       // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1289       // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1290       int64_t LoadSize =
1291           DL.getTypeSizeInBits(TheLoad.getType()).getFixedSize() / 8;
1292       if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1293         return false;
1294       if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1295           (IsNegStride && LoadOff + LoadSize > StoreOff))
1296         return false;
1297     }
1298     return true;
1299   }
1300 
1301 private:
1302   const DataLayout &DL;
1303   int64_t LoadOff;
1304   int64_t StoreOff;
1305   const Value *BP1;
1306   const Value *BP2;
1307 
1308 public:
1309   const bool IsSameObject;
1310 };
1311 
1312 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1313     Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
1314     MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
1315     Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
1316     const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
1317 
1318   // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1319   // conservatively bail here, since otherwise we may have to transform
1320   // llvm.memcpy.inline into llvm.memcpy which is illegal.
1321   if (isa<MemCpyInlineInst>(TheStore))
1322     return false;
1323 
1324   // The trip count of the loop and the base pointer of the addrec SCEV is
1325   // guaranteed to be loop invariant, which means that it should dominate the
1326   // header.  This allows us to insert code for it in the preheader.
1327   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1328   IRBuilder<> Builder(Preheader->getTerminator());
1329   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1330 
1331   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1332 
1333   bool Changed = false;
1334   const SCEV *StrStart = StoreEv->getStart();
1335   unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1336   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1337 
1338   APInt Stride = getStoreStride(StoreEv);
1339   const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1340 
1341   // TODO: Deal with non-constant size; Currently expect constant store size
1342   assert(ConstStoreSize && "store size is expected to be a constant");
1343 
1344   int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
1345   bool IsNegStride = StoreSize == -Stride;
1346 
1347   // Handle negative strided loops.
1348   if (IsNegStride)
1349     StrStart =
1350         getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1351 
1352   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1353   // this into a memcpy in the loop preheader now if we want.  However, this
1354   // would be unsafe to do if there is anything else in the loop that may read
1355   // or write the memory region we're storing to.  This includes the load that
1356   // feeds the stores.  Check for an alias by generating the base address and
1357   // checking everything.
1358   Value *StoreBasePtr = Expander.expandCodeFor(
1359       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1360 
1361   // From here on out, conservatively report to the pass manager that we've
1362   // changed the IR, even if we later clean up these added instructions. There
1363   // may be structural differences e.g. in the order of use lists not accounted
1364   // for in just a textual dump of the IR. This is written as a variable, even
1365   // though statically all the places this dominates could be replaced with
1366   // 'true', with the hope that anyone trying to be clever / "more precise" with
1367   // the return value will read this comment, and leave them alone.
1368   Changed = true;
1369 
1370   SmallPtrSet<Instruction *, 2> IgnoredInsts;
1371   IgnoredInsts.insert(TheStore);
1372 
1373   bool IsMemCpy = isa<MemCpyInst>(TheStore);
1374   const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1375 
1376   bool LoopAccessStore =
1377       mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1378                             StoreSizeSCEV, *AA, IgnoredInsts);
1379   if (LoopAccessStore) {
1380     // For memmove case it's not enough to guarantee that loop doesn't access
1381     // TheStore and TheLoad. Additionally we need to make sure that TheStore is
1382     // the only user of TheLoad.
1383     if (!TheLoad->hasOneUse())
1384       return Changed;
1385     IgnoredInsts.insert(TheLoad);
1386     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1387                               BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
1388       ORE.emit([&]() {
1389         return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1390                                         TheStore)
1391                << ore::NV("Inst", InstRemark) << " in "
1392                << ore::NV("Function", TheStore->getFunction())
1393                << " function will not be hoisted: "
1394                << ore::NV("Reason", "The loop may access store location");
1395       });
1396       return Changed;
1397     }
1398     IgnoredInsts.erase(TheLoad);
1399   }
1400 
1401   const SCEV *LdStart = LoadEv->getStart();
1402   unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1403 
1404   // Handle negative strided loops.
1405   if (IsNegStride)
1406     LdStart =
1407         getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1408 
1409   // For a memcpy, we have to make sure that the input array is not being
1410   // mutated by the loop.
1411   Value *LoadBasePtr = Expander.expandCodeFor(
1412       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1413 
1414   // If the store is a memcpy instruction, we must check if it will write to
1415   // the load memory locations. So remove it from the ignored stores.
1416   if (IsMemCpy)
1417     IgnoredInsts.erase(TheStore);
1418   MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
1419   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1420                             StoreSizeSCEV, *AA, IgnoredInsts)) {
1421     if (!IsMemCpy) {
1422       ORE.emit([&]() {
1423         return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad",
1424                                         TheLoad)
1425                << ore::NV("Inst", InstRemark) << " in "
1426                << ore::NV("Function", TheStore->getFunction())
1427                << " function will not be hoisted: "
1428                << ore::NV("Reason", "The loop may access load location");
1429       });
1430       return Changed;
1431     }
1432     // At this point loop may access load only for memcpy in same underlying
1433     // object. If that's not the case bail out.
1434     if (!Verifier.IsSameObject)
1435       return Changed;
1436   }
1437 
1438   bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
1439   if (UseMemMove)
1440     if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1441                                              IsMemCpy))
1442       return Changed;
1443 
1444   if (avoidLIRForMultiBlockLoop())
1445     return Changed;
1446 
1447   // Okay, everything is safe, we can transform this!
1448 
1449   const SCEV *NumBytesS =
1450       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1451 
1452   Value *NumBytes =
1453       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1454 
1455   CallInst *NewCall = nullptr;
1456   // Check whether to generate an unordered atomic memcpy:
1457   //  If the load or store are atomic, then they must necessarily be unordered
1458   //  by previous checks.
1459   if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1460     if (UseMemMove)
1461       NewCall = Builder.CreateMemMove(StoreBasePtr, StoreAlign, LoadBasePtr,
1462                                       LoadAlign, NumBytes);
1463     else
1464       NewCall = Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr,
1465                                      LoadAlign, NumBytes);
1466   } else {
1467     // For now don't support unordered atomic memmove.
1468     if (UseMemMove)
1469       return Changed;
1470     // We cannot allow unaligned ops for unordered load/store, so reject
1471     // anything where the alignment isn't at least the element size.
1472     assert((StoreAlign.hasValue() && LoadAlign.hasValue()) &&
1473            "Expect unordered load/store to have align.");
1474     if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize)
1475       return Changed;
1476 
1477     // If the element.atomic memcpy is not lowered into explicit
1478     // loads/stores later, then it will be lowered into an element-size
1479     // specific lib call. If the lib call doesn't exist for our store size, then
1480     // we shouldn't generate the memcpy.
1481     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1482       return Changed;
1483 
1484     // Create the call.
1485     // Note that unordered atomic loads/stores are *required* by the spec to
1486     // have an alignment but non-atomic loads/stores may not.
1487     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1488         StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(),
1489         NumBytes, StoreSize);
1490   }
1491   NewCall->setDebugLoc(TheStore->getDebugLoc());
1492 
1493   if (MSSAU) {
1494     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1495         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1496     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1497   }
1498 
1499   LLVM_DEBUG(dbgs() << "  Formed new call: " << *NewCall << "\n"
1500                     << "    from load ptr=" << *LoadEv << " at: " << *TheLoad
1501                     << "\n"
1502                     << "    from store ptr=" << *StoreEv << " at: " << *TheStore
1503                     << "\n");
1504 
1505   ORE.emit([&]() {
1506     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1507                               NewCall->getDebugLoc(), Preheader)
1508            << "Formed a call to "
1509            << ore::NV("NewFunction", NewCall->getCalledFunction())
1510            << "() intrinsic from " << ore::NV("Inst", InstRemark)
1511            << " instruction in " << ore::NV("Function", TheStore->getFunction())
1512            << " function"
1513            << ore::setExtraArgs()
1514            << ore::NV("FromBlock", TheStore->getParent()->getName())
1515            << ore::NV("ToBlock", Preheader->getName());
1516   });
1517 
1518   // Okay, a new call to memcpy/memmove has been formed.  Zap the original store
1519   // and anything that feeds into it.
1520   if (MSSAU)
1521     MSSAU->removeMemoryAccess(TheStore, true);
1522   deleteDeadInstruction(TheStore);
1523   if (MSSAU && VerifyMemorySSA)
1524     MSSAU->getMemorySSA()->verifyMemorySSA();
1525   if (UseMemMove)
1526     ++NumMemMove;
1527   else
1528     ++NumMemCpy;
1529   ExpCleaner.markResultUsed();
1530   return true;
1531 }
1532 
1533 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1534 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1535 //
1536 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1537                                                    bool IsLoopMemset) {
1538   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1539     if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1540       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1541                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1542                         << " avoided: multi-block top-level loop\n");
1543       return true;
1544     }
1545   }
1546 
1547   return false;
1548 }
1549 
1550 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1551   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1552                     << CurLoop->getHeader()->getParent()->getName()
1553                     << "] Noncountable Loop %"
1554                     << CurLoop->getHeader()->getName() << "\n");
1555 
1556   return recognizePopcount() || recognizeAndInsertFFS() ||
1557          recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
1558 }
1559 
1560 /// Check if the given conditional branch is based on the comparison between
1561 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1562 /// true), the control yields to the loop entry. If the branch matches the
1563 /// behavior, the variable involved in the comparison is returned. This function
1564 /// will be called to see if the precondition and postcondition of the loop are
1565 /// in desirable form.
1566 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1567                              bool JmpOnZero = false) {
1568   if (!BI || !BI->isConditional())
1569     return nullptr;
1570 
1571   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1572   if (!Cond)
1573     return nullptr;
1574 
1575   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1576   if (!CmpZero || !CmpZero->isZero())
1577     return nullptr;
1578 
1579   BasicBlock *TrueSucc = BI->getSuccessor(0);
1580   BasicBlock *FalseSucc = BI->getSuccessor(1);
1581   if (JmpOnZero)
1582     std::swap(TrueSucc, FalseSucc);
1583 
1584   ICmpInst::Predicate Pred = Cond->getPredicate();
1585   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1586       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1587     return Cond->getOperand(0);
1588 
1589   return nullptr;
1590 }
1591 
1592 // Check if the recurrence variable `VarX` is in the right form to create
1593 // the idiom. Returns the value coerced to a PHINode if so.
1594 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1595                                  BasicBlock *LoopEntry) {
1596   auto *PhiX = dyn_cast<PHINode>(VarX);
1597   if (PhiX && PhiX->getParent() == LoopEntry &&
1598       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1599     return PhiX;
1600   return nullptr;
1601 }
1602 
1603 /// Return true iff the idiom is detected in the loop.
1604 ///
1605 /// Additionally:
1606 /// 1) \p CntInst is set to the instruction counting the population bit.
1607 /// 2) \p CntPhi is set to the corresponding phi node.
1608 /// 3) \p Var is set to the value whose population bits are being counted.
1609 ///
1610 /// The core idiom we are trying to detect is:
1611 /// \code
1612 ///    if (x0 != 0)
1613 ///      goto loop-exit // the precondition of the loop
1614 ///    cnt0 = init-val;
1615 ///    do {
1616 ///       x1 = phi (x0, x2);
1617 ///       cnt1 = phi(cnt0, cnt2);
1618 ///
1619 ///       cnt2 = cnt1 + 1;
1620 ///        ...
1621 ///       x2 = x1 & (x1 - 1);
1622 ///        ...
1623 ///    } while(x != 0);
1624 ///
1625 /// loop-exit:
1626 /// \endcode
1627 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1628                                 Instruction *&CntInst, PHINode *&CntPhi,
1629                                 Value *&Var) {
1630   // step 1: Check to see if the look-back branch match this pattern:
1631   //    "if (a!=0) goto loop-entry".
1632   BasicBlock *LoopEntry;
1633   Instruction *DefX2, *CountInst;
1634   Value *VarX1, *VarX0;
1635   PHINode *PhiX, *CountPhi;
1636 
1637   DefX2 = CountInst = nullptr;
1638   VarX1 = VarX0 = nullptr;
1639   PhiX = CountPhi = nullptr;
1640   LoopEntry = *(CurLoop->block_begin());
1641 
1642   // step 1: Check if the loop-back branch is in desirable form.
1643   {
1644     if (Value *T = matchCondition(
1645             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1646       DefX2 = dyn_cast<Instruction>(T);
1647     else
1648       return false;
1649   }
1650 
1651   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1652   {
1653     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1654       return false;
1655 
1656     BinaryOperator *SubOneOp;
1657 
1658     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1659       VarX1 = DefX2->getOperand(1);
1660     else {
1661       VarX1 = DefX2->getOperand(0);
1662       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1663     }
1664     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1665       return false;
1666 
1667     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1668     if (!Dec ||
1669         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1670           (SubOneOp->getOpcode() == Instruction::Add &&
1671            Dec->isMinusOne()))) {
1672       return false;
1673     }
1674   }
1675 
1676   // step 3: Check the recurrence of variable X
1677   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1678   if (!PhiX)
1679     return false;
1680 
1681   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1682   {
1683     CountInst = nullptr;
1684     for (Instruction &Inst : llvm::make_range(
1685              LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1686       if (Inst.getOpcode() != Instruction::Add)
1687         continue;
1688 
1689       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1690       if (!Inc || !Inc->isOne())
1691         continue;
1692 
1693       PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1694       if (!Phi)
1695         continue;
1696 
1697       // Check if the result of the instruction is live of the loop.
1698       bool LiveOutLoop = false;
1699       for (User *U : Inst.users()) {
1700         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1701           LiveOutLoop = true;
1702           break;
1703         }
1704       }
1705 
1706       if (LiveOutLoop) {
1707         CountInst = &Inst;
1708         CountPhi = Phi;
1709         break;
1710       }
1711     }
1712 
1713     if (!CountInst)
1714       return false;
1715   }
1716 
1717   // step 5: check if the precondition is in this form:
1718   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1719   {
1720     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1721     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1722     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1723       return false;
1724 
1725     CntInst = CountInst;
1726     CntPhi = CountPhi;
1727     Var = T;
1728   }
1729 
1730   return true;
1731 }
1732 
1733 /// Return true if the idiom is detected in the loop.
1734 ///
1735 /// Additionally:
1736 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1737 ///       or nullptr if there is no such.
1738 /// 2) \p CntPhi is set to the corresponding phi node
1739 ///       or nullptr if there is no such.
1740 /// 3) \p Var is set to the value whose CTLZ could be used.
1741 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1742 ///
1743 /// The core idiom we are trying to detect is:
1744 /// \code
1745 ///    if (x0 == 0)
1746 ///      goto loop-exit // the precondition of the loop
1747 ///    cnt0 = init-val;
1748 ///    do {
1749 ///       x = phi (x0, x.next);   //PhiX
1750 ///       cnt = phi(cnt0, cnt.next);
1751 ///
1752 ///       cnt.next = cnt + 1;
1753 ///        ...
1754 ///       x.next = x >> 1;   // DefX
1755 ///        ...
1756 ///    } while(x.next != 0);
1757 ///
1758 /// loop-exit:
1759 /// \endcode
1760 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1761                                       Intrinsic::ID &IntrinID, Value *&InitX,
1762                                       Instruction *&CntInst, PHINode *&CntPhi,
1763                                       Instruction *&DefX) {
1764   BasicBlock *LoopEntry;
1765   Value *VarX = nullptr;
1766 
1767   DefX = nullptr;
1768   CntInst = nullptr;
1769   CntPhi = nullptr;
1770   LoopEntry = *(CurLoop->block_begin());
1771 
1772   // step 1: Check if the loop-back branch is in desirable form.
1773   if (Value *T = matchCondition(
1774           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1775     DefX = dyn_cast<Instruction>(T);
1776   else
1777     return false;
1778 
1779   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1780   if (!DefX || !DefX->isShift())
1781     return false;
1782   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1783                                                      Intrinsic::ctlz;
1784   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1785   if (!Shft || !Shft->isOne())
1786     return false;
1787   VarX = DefX->getOperand(0);
1788 
1789   // step 3: Check the recurrence of variable X
1790   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1791   if (!PhiX)
1792     return false;
1793 
1794   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1795 
1796   // Make sure the initial value can't be negative otherwise the ashr in the
1797   // loop might never reach zero which would make the loop infinite.
1798   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1799     return false;
1800 
1801   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1802   //         or cnt.next = cnt + -1.
1803   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1804   //       then all uses of "cnt.next" could be optimized to the trip count
1805   //       plus "cnt0". Currently it is not optimized.
1806   //       This step could be used to detect POPCNT instruction:
1807   //       cnt.next = cnt + (x.next & 1)
1808   for (Instruction &Inst : llvm::make_range(
1809            LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1810     if (Inst.getOpcode() != Instruction::Add)
1811       continue;
1812 
1813     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1814     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1815       continue;
1816 
1817     PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1818     if (!Phi)
1819       continue;
1820 
1821     CntInst = &Inst;
1822     CntPhi = Phi;
1823     break;
1824   }
1825   if (!CntInst)
1826     return false;
1827 
1828   return true;
1829 }
1830 
1831 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1832 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1833 /// trip count returns true; otherwise, returns false.
1834 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1835   // Give up if the loop has multiple blocks or multiple backedges.
1836   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1837     return false;
1838 
1839   Intrinsic::ID IntrinID;
1840   Value *InitX;
1841   Instruction *DefX = nullptr;
1842   PHINode *CntPhi = nullptr;
1843   Instruction *CntInst = nullptr;
1844   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1845   // this is always 6.
1846   size_t IdiomCanonicalSize = 6;
1847 
1848   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1849                                  CntInst, CntPhi, DefX))
1850     return false;
1851 
1852   bool IsCntPhiUsedOutsideLoop = false;
1853   for (User *U : CntPhi->users())
1854     if (!CurLoop->contains(cast<Instruction>(U))) {
1855       IsCntPhiUsedOutsideLoop = true;
1856       break;
1857     }
1858   bool IsCntInstUsedOutsideLoop = false;
1859   for (User *U : CntInst->users())
1860     if (!CurLoop->contains(cast<Instruction>(U))) {
1861       IsCntInstUsedOutsideLoop = true;
1862       break;
1863     }
1864   // If both CntInst and CntPhi are used outside the loop the profitability
1865   // is questionable.
1866   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1867     return false;
1868 
1869   // For some CPUs result of CTLZ(X) intrinsic is undefined
1870   // when X is 0. If we can not guarantee X != 0, we need to check this
1871   // when expand.
1872   bool ZeroCheck = false;
1873   // It is safe to assume Preheader exist as it was checked in
1874   // parent function RunOnLoop.
1875   BasicBlock *PH = CurLoop->getLoopPreheader();
1876 
1877   // If we are using the count instruction outside the loop, make sure we
1878   // have a zero check as a precondition. Without the check the loop would run
1879   // one iteration for before any check of the input value. This means 0 and 1
1880   // would have identical behavior in the original loop and thus
1881   if (!IsCntPhiUsedOutsideLoop) {
1882     auto *PreCondBB = PH->getSinglePredecessor();
1883     if (!PreCondBB)
1884       return false;
1885     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1886     if (!PreCondBI)
1887       return false;
1888     if (matchCondition(PreCondBI, PH) != InitX)
1889       return false;
1890     ZeroCheck = true;
1891   }
1892 
1893   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1894   // profitable if we delete the loop.
1895 
1896   // the loop has only 6 instructions:
1897   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1898   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1899   //  %shr = ashr %n.addr.0, 1
1900   //  %tobool = icmp eq %shr, 0
1901   //  %inc = add nsw %i.0, 1
1902   //  br i1 %tobool
1903 
1904   const Value *Args[] = {InitX,
1905                          ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1906 
1907   // @llvm.dbg doesn't count as they have no semantic effect.
1908   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1909   uint32_t HeaderSize =
1910       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1911 
1912   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1913   InstructionCost Cost =
1914     TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1915   if (HeaderSize != IdiomCanonicalSize &&
1916       Cost > TargetTransformInfo::TCC_Basic)
1917     return false;
1918 
1919   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1920                            DefX->getDebugLoc(), ZeroCheck,
1921                            IsCntPhiUsedOutsideLoop);
1922   return true;
1923 }
1924 
1925 /// Recognizes a population count idiom in a non-countable loop.
1926 ///
1927 /// If detected, transforms the relevant code to issue the popcount intrinsic
1928 /// function call, and returns true; otherwise, returns false.
1929 bool LoopIdiomRecognize::recognizePopcount() {
1930   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1931     return false;
1932 
1933   // Counting population are usually conducted by few arithmetic instructions.
1934   // Such instructions can be easily "absorbed" by vacant slots in a
1935   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1936   // in a compact loop.
1937 
1938   // Give up if the loop has multiple blocks or multiple backedges.
1939   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1940     return false;
1941 
1942   BasicBlock *LoopBody = *(CurLoop->block_begin());
1943   if (LoopBody->size() >= 20) {
1944     // The loop is too big, bail out.
1945     return false;
1946   }
1947 
1948   // It should have a preheader containing nothing but an unconditional branch.
1949   BasicBlock *PH = CurLoop->getLoopPreheader();
1950   if (!PH || &PH->front() != PH->getTerminator())
1951     return false;
1952   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1953   if (!EntryBI || EntryBI->isConditional())
1954     return false;
1955 
1956   // It should have a precondition block where the generated popcount intrinsic
1957   // function can be inserted.
1958   auto *PreCondBB = PH->getSinglePredecessor();
1959   if (!PreCondBB)
1960     return false;
1961   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1962   if (!PreCondBI || PreCondBI->isUnconditional())
1963     return false;
1964 
1965   Instruction *CntInst;
1966   PHINode *CntPhi;
1967   Value *Val;
1968   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1969     return false;
1970 
1971   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1972   return true;
1973 }
1974 
1975 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1976                                        const DebugLoc &DL) {
1977   Value *Ops[] = {Val};
1978   Type *Tys[] = {Val->getType()};
1979 
1980   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1981   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1982   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1983   CI->setDebugLoc(DL);
1984 
1985   return CI;
1986 }
1987 
1988 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1989                                     const DebugLoc &DL, bool ZeroCheck,
1990                                     Intrinsic::ID IID) {
1991   Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
1992   Type *Tys[] = {Val->getType()};
1993 
1994   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1995   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1996   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1997   CI->setDebugLoc(DL);
1998 
1999   return CI;
2000 }
2001 
2002 /// Transform the following loop (Using CTLZ, CTTZ is similar):
2003 /// loop:
2004 ///   CntPhi = PHI [Cnt0, CntInst]
2005 ///   PhiX = PHI [InitX, DefX]
2006 ///   CntInst = CntPhi + 1
2007 ///   DefX = PhiX >> 1
2008 ///   LOOP_BODY
2009 ///   Br: loop if (DefX != 0)
2010 /// Use(CntPhi) or Use(CntInst)
2011 ///
2012 /// Into:
2013 /// If CntPhi used outside the loop:
2014 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
2015 ///   Count = CountPrev + 1
2016 /// else
2017 ///   Count = BitWidth(InitX) - CTLZ(InitX)
2018 /// loop:
2019 ///   CntPhi = PHI [Cnt0, CntInst]
2020 ///   PhiX = PHI [InitX, DefX]
2021 ///   PhiCount = PHI [Count, Dec]
2022 ///   CntInst = CntPhi + 1
2023 ///   DefX = PhiX >> 1
2024 ///   Dec = PhiCount - 1
2025 ///   LOOP_BODY
2026 ///   Br: loop if (Dec != 0)
2027 /// Use(CountPrev + Cnt0) // Use(CntPhi)
2028 /// or
2029 /// Use(Count + Cnt0) // Use(CntInst)
2030 ///
2031 /// If LOOP_BODY is empty the loop will be deleted.
2032 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
2033 void LoopIdiomRecognize::transformLoopToCountable(
2034     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
2035     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
2036     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
2037   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
2038 
2039   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
2040   IRBuilder<> Builder(PreheaderBr);
2041   Builder.SetCurrentDebugLocation(DL);
2042 
2043   // If there are no uses of CntPhi crate:
2044   //   Count = BitWidth - CTLZ(InitX);
2045   //   NewCount = Count;
2046   // If there are uses of CntPhi create:
2047   //   NewCount = BitWidth - CTLZ(InitX >> 1);
2048   //   Count = NewCount + 1;
2049   Value *InitXNext;
2050   if (IsCntPhiUsedOutsideLoop) {
2051     if (DefX->getOpcode() == Instruction::AShr)
2052       InitXNext = Builder.CreateAShr(InitX, 1);
2053     else if (DefX->getOpcode() == Instruction::LShr)
2054       InitXNext = Builder.CreateLShr(InitX, 1);
2055     else if (DefX->getOpcode() == Instruction::Shl) // cttz
2056       InitXNext = Builder.CreateShl(InitX, 1);
2057     else
2058       llvm_unreachable("Unexpected opcode!");
2059   } else
2060     InitXNext = InitX;
2061   Value *Count =
2062       createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
2063   Type *CountTy = Count->getType();
2064   Count = Builder.CreateSub(
2065       ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
2066   Value *NewCount = Count;
2067   if (IsCntPhiUsedOutsideLoop)
2068     Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
2069 
2070   NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2071 
2072   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2073   if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2074     // If the counter was being incremented in the loop, add NewCount to the
2075     // counter's initial value, but only if the initial value is not zero.
2076     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2077     if (!InitConst || !InitConst->isZero())
2078       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2079   } else {
2080     // If the count was being decremented in the loop, subtract NewCount from
2081     // the counter's initial value.
2082     NewCount = Builder.CreateSub(CntInitVal, NewCount);
2083   }
2084 
2085   // Step 2: Insert new IV and loop condition:
2086   // loop:
2087   //   ...
2088   //   PhiCount = PHI [Count, Dec]
2089   //   ...
2090   //   Dec = PhiCount - 1
2091   //   ...
2092   //   Br: loop if (Dec != 0)
2093   BasicBlock *Body = *(CurLoop->block_begin());
2094   auto *LbBr = cast<BranchInst>(Body->getTerminator());
2095   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2096 
2097   PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front());
2098 
2099   Builder.SetInsertPoint(LbCond);
2100   Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2101       TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2102 
2103   TcPhi->addIncoming(Count, Preheader);
2104   TcPhi->addIncoming(TcDec, Body);
2105 
2106   CmpInst::Predicate Pred =
2107       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2108   LbCond->setPredicate(Pred);
2109   LbCond->setOperand(0, TcDec);
2110   LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2111 
2112   // Step 3: All the references to the original counter outside
2113   //  the loop are replaced with the NewCount
2114   if (IsCntPhiUsedOutsideLoop)
2115     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2116   else
2117     CntInst->replaceUsesOutsideBlock(NewCount, Body);
2118 
2119   // step 4: Forget the "non-computable" trip-count SCEV associated with the
2120   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2121   SE->forgetLoop(CurLoop);
2122 }
2123 
2124 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2125                                                  Instruction *CntInst,
2126                                                  PHINode *CntPhi, Value *Var) {
2127   BasicBlock *PreHead = CurLoop->getLoopPreheader();
2128   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2129   const DebugLoc &DL = CntInst->getDebugLoc();
2130 
2131   // Assuming before transformation, the loop is following:
2132   //  if (x) // the precondition
2133   //     do { cnt++; x &= x - 1; } while(x);
2134 
2135   // Step 1: Insert the ctpop instruction at the end of the precondition block
2136   IRBuilder<> Builder(PreCondBr);
2137   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2138   {
2139     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2140     NewCount = PopCntZext =
2141         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2142 
2143     if (NewCount != PopCnt)
2144       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2145 
2146     // TripCnt is exactly the number of iterations the loop has
2147     TripCnt = NewCount;
2148 
2149     // If the population counter's initial value is not zero, insert Add Inst.
2150     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2151     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2152     if (!InitConst || !InitConst->isZero()) {
2153       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2154       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2155     }
2156   }
2157 
2158   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2159   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2160   //   function would be partial dead code, and downstream passes will drag
2161   //   it back from the precondition block to the preheader.
2162   {
2163     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2164 
2165     Value *Opnd0 = PopCntZext;
2166     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2167     if (PreCond->getOperand(0) != Var)
2168       std::swap(Opnd0, Opnd1);
2169 
2170     ICmpInst *NewPreCond = cast<ICmpInst>(
2171         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2172     PreCondBr->setCondition(NewPreCond);
2173 
2174     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2175   }
2176 
2177   // Step 3: Note that the population count is exactly the trip count of the
2178   // loop in question, which enable us to convert the loop from noncountable
2179   // loop into a countable one. The benefit is twofold:
2180   //
2181   //  - If the loop only counts population, the entire loop becomes dead after
2182   //    the transformation. It is a lot easier to prove a countable loop dead
2183   //    than to prove a noncountable one. (In some C dialects, an infinite loop
2184   //    isn't dead even if it computes nothing useful. In general, DCE needs
2185   //    to prove a noncountable loop finite before safely delete it.)
2186   //
2187   //  - If the loop also performs something else, it remains alive.
2188   //    Since it is transformed to countable form, it can be aggressively
2189   //    optimized by some optimizations which are in general not applicable
2190   //    to a noncountable loop.
2191   //
2192   // After this step, this loop (conceptually) would look like following:
2193   //   newcnt = __builtin_ctpop(x);
2194   //   t = newcnt;
2195   //   if (x)
2196   //     do { cnt++; x &= x-1; t--) } while (t > 0);
2197   BasicBlock *Body = *(CurLoop->block_begin());
2198   {
2199     auto *LbBr = cast<BranchInst>(Body->getTerminator());
2200     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2201     Type *Ty = TripCnt->getType();
2202 
2203     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
2204 
2205     Builder.SetInsertPoint(LbCond);
2206     Instruction *TcDec = cast<Instruction>(
2207         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2208                           "tcdec", false, true));
2209 
2210     TcPhi->addIncoming(TripCnt, PreHead);
2211     TcPhi->addIncoming(TcDec, Body);
2212 
2213     CmpInst::Predicate Pred =
2214         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2215     LbCond->setPredicate(Pred);
2216     LbCond->setOperand(0, TcDec);
2217     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2218   }
2219 
2220   // Step 4: All the references to the original population counter outside
2221   //  the loop are replaced with the NewCount -- the value returned from
2222   //  __builtin_ctpop().
2223   CntInst->replaceUsesOutsideBlock(NewCount, Body);
2224 
2225   // step 5: Forget the "non-computable" trip-count SCEV associated with the
2226   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2227   SE->forgetLoop(CurLoop);
2228 }
2229 
2230 /// Match loop-invariant value.
2231 template <typename SubPattern_t> struct match_LoopInvariant {
2232   SubPattern_t SubPattern;
2233   const Loop *L;
2234 
2235   match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2236       : SubPattern(SP), L(L) {}
2237 
2238   template <typename ITy> bool match(ITy *V) {
2239     return L->isLoopInvariant(V) && SubPattern.match(V);
2240   }
2241 };
2242 
2243 /// Matches if the value is loop-invariant.
2244 template <typename Ty>
2245 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2246   return match_LoopInvariant<Ty>(M, L);
2247 }
2248 
2249 /// Return true if the idiom is detected in the loop.
2250 ///
2251 /// The core idiom we are trying to detect is:
2252 /// \code
2253 ///   entry:
2254 ///     <...>
2255 ///     %bitmask = shl i32 1, %bitpos
2256 ///     br label %loop
2257 ///
2258 ///   loop:
2259 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2260 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2261 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2262 ///     %x.next = shl i32 %x.curr, 1
2263 ///     <...>
2264 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2265 ///
2266 ///   end:
2267 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2268 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2269 ///     <...>
2270 /// \endcode
2271 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2272                                          Value *&BitMask, Value *&BitPos,
2273                                          Value *&CurrX, Instruction *&NextX) {
2274   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2275              " Performing shift-until-bittest idiom detection.\n");
2276 
2277   // Give up if the loop has multiple blocks or multiple backedges.
2278   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2279     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2280     return false;
2281   }
2282 
2283   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2284   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2285   assert(LoopPreheaderBB && "There is always a loop preheader.");
2286 
2287   using namespace PatternMatch;
2288 
2289   // Step 1: Check if the loop backedge is in desirable form.
2290 
2291   ICmpInst::Predicate Pred;
2292   Value *CmpLHS, *CmpRHS;
2293   BasicBlock *TrueBB, *FalseBB;
2294   if (!match(LoopHeaderBB->getTerminator(),
2295              m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2296                   m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2297     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2298     return false;
2299   }
2300 
2301   // Step 2: Check if the backedge's condition is in desirable form.
2302 
2303   auto MatchVariableBitMask = [&]() {
2304     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2305            match(CmpLHS,
2306                  m_c_And(m_Value(CurrX),
2307                          m_CombineAnd(
2308                              m_Value(BitMask),
2309                              m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2310                                              CurLoop))));
2311   };
2312   auto MatchConstantBitMask = [&]() {
2313     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2314            match(CmpLHS, m_And(m_Value(CurrX),
2315                                m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2316            (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2317   };
2318   auto MatchDecomposableConstantBitMask = [&]() {
2319     APInt Mask;
2320     return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2321            ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2322            (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2323            (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2324   };
2325 
2326   if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2327       !MatchDecomposableConstantBitMask()) {
2328     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2329     return false;
2330   }
2331 
2332   // Step 3: Check if the recurrence is in desirable form.
2333   auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2334   if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2335     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2336     return false;
2337   }
2338 
2339   BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2340   NextX =
2341       dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2342 
2343   assert(CurLoop->isLoopInvariant(BaseX) &&
2344          "Expected BaseX to be avaliable in the preheader!");
2345 
2346   if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2347     // FIXME: support right-shift?
2348     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2349     return false;
2350   }
2351 
2352   // Step 4: Check if the backedge's destinations are in desirable form.
2353 
2354   assert(ICmpInst::isEquality(Pred) &&
2355          "Should only get equality predicates here.");
2356 
2357   // cmp-br is commutative, so canonicalize to a single variant.
2358   if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2359     Pred = ICmpInst::getInversePredicate(Pred);
2360     std::swap(TrueBB, FalseBB);
2361   }
2362 
2363   // We expect to exit loop when comparison yields false,
2364   // so when it yields true we should branch back to loop header.
2365   if (TrueBB != LoopHeaderBB) {
2366     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2367     return false;
2368   }
2369 
2370   // Okay, idiom checks out.
2371   return true;
2372 }
2373 
2374 /// Look for the following loop:
2375 /// \code
2376 ///   entry:
2377 ///     <...>
2378 ///     %bitmask = shl i32 1, %bitpos
2379 ///     br label %loop
2380 ///
2381 ///   loop:
2382 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2383 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2384 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2385 ///     %x.next = shl i32 %x.curr, 1
2386 ///     <...>
2387 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2388 ///
2389 ///   end:
2390 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2391 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2392 ///     <...>
2393 /// \endcode
2394 ///
2395 /// And transform it into:
2396 /// \code
2397 ///   entry:
2398 ///     %bitmask = shl i32 1, %bitpos
2399 ///     %lowbitmask = add i32 %bitmask, -1
2400 ///     %mask = or i32 %lowbitmask, %bitmask
2401 ///     %x.masked = and i32 %x, %mask
2402 ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2403 ///                                                         i1 true)
2404 ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2405 ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2406 ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2407 ///     %tripcount = add i32 %backedgetakencount, 1
2408 ///     %x.curr = shl i32 %x, %backedgetakencount
2409 ///     %x.next = shl i32 %x, %tripcount
2410 ///     br label %loop
2411 ///
2412 ///   loop:
2413 ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2414 ///     %loop.iv.next = add nuw i32 %loop.iv, 1
2415 ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2416 ///     <...>
2417 ///     br i1 %loop.ivcheck, label %end, label %loop
2418 ///
2419 ///   end:
2420 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2421 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2422 ///     <...>
2423 /// \endcode
2424 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2425   bool MadeChange = false;
2426 
2427   Value *X, *BitMask, *BitPos, *XCurr;
2428   Instruction *XNext;
2429   if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2430                                     XNext)) {
2431     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2432                " shift-until-bittest idiom detection failed.\n");
2433     return MadeChange;
2434   }
2435   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2436 
2437   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2438   // but is it profitable to transform?
2439 
2440   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2441   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2442   assert(LoopPreheaderBB && "There is always a loop preheader.");
2443 
2444   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2445   assert(SuccessorBB && "There is only a single successor.");
2446 
2447   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2448   Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2449 
2450   Intrinsic::ID IntrID = Intrinsic::ctlz;
2451   Type *Ty = X->getType();
2452   unsigned Bitwidth = Ty->getScalarSizeInBits();
2453 
2454   TargetTransformInfo::TargetCostKind CostKind =
2455       TargetTransformInfo::TCK_SizeAndLatency;
2456 
2457   // The rewrite is considered to be unprofitable iff and only iff the
2458   // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2459   // making the loop countable, even if nothing else changes.
2460   IntrinsicCostAttributes Attrs(
2461       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
2462   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2463   if (Cost > TargetTransformInfo::TCC_Basic) {
2464     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2465                " Intrinsic is too costly, not beneficial\n");
2466     return MadeChange;
2467   }
2468   if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2469       TargetTransformInfo::TCC_Basic) {
2470     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2471     return MadeChange;
2472   }
2473 
2474   // Ok, transform appears worthwhile.
2475   MadeChange = true;
2476 
2477   // Step 1: Compute the loop trip count.
2478 
2479   Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2480                                         BitPos->getName() + ".lowbitmask");
2481   Value *Mask =
2482       Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2483   Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2484   CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2485       IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
2486       /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2487   Value *XMaskedNumActiveBits = Builder.CreateSub(
2488       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2489       XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2490       /*HasNSW=*/Bitwidth != 2);
2491   Value *XMaskedLeadingOnePos =
2492       Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2493                         XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2494                         /*HasNSW=*/Bitwidth > 2);
2495 
2496   Value *LoopBackedgeTakenCount = Builder.CreateSub(
2497       BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2498       /*HasNUW=*/true, /*HasNSW=*/true);
2499   // We know loop's backedge-taken count, but what's loop's trip count?
2500   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2501   Value *LoopTripCount =
2502       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2503                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2504                         /*HasNSW=*/Bitwidth != 2);
2505 
2506   // Step 2: Compute the recurrence's final value without a loop.
2507 
2508   // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2509   // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2510   Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2511   NewX->takeName(XCurr);
2512   if (auto *I = dyn_cast<Instruction>(NewX))
2513     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2514 
2515   Value *NewXNext;
2516   // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2517   // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2518   // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2519   // that isn't the case, we'll need to emit an alternative, safe IR.
2520   if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2521       PatternMatch::match(
2522           BitPos, PatternMatch::m_SpecificInt_ICMP(
2523                       ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2524                                                Ty->getScalarSizeInBits() - 1))))
2525     NewXNext = Builder.CreateShl(X, LoopTripCount);
2526   else {
2527     // Otherwise, just additionally shift by one. It's the smallest solution,
2528     // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2529     // and select 0 instead.
2530     NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2531   }
2532 
2533   NewXNext->takeName(XNext);
2534   if (auto *I = dyn_cast<Instruction>(NewXNext))
2535     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2536 
2537   // Step 3: Adjust the successor basic block to recieve the computed
2538   //         recurrence's final value instead of the recurrence itself.
2539 
2540   XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2541   XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2542 
2543   // Step 4: Rewrite the loop into a countable form, with canonical IV.
2544 
2545   // The new canonical induction variable.
2546   Builder.SetInsertPoint(&LoopHeaderBB->front());
2547   auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2548 
2549   // The induction itself.
2550   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2551   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2552   auto *IVNext =
2553       Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2554                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2555 
2556   // The loop trip count check.
2557   auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2558                                        CurLoop->getName() + ".ivcheck");
2559   Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2560   LoopHeaderBB->getTerminator()->eraseFromParent();
2561 
2562   // Populate the IV PHI.
2563   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2564   IV->addIncoming(IVNext, LoopHeaderBB);
2565 
2566   // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2567   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2568 
2569   SE->forgetLoop(CurLoop);
2570 
2571   // Other passes will take care of actually deleting the loop if possible.
2572 
2573   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2574 
2575   ++NumShiftUntilBitTest;
2576   return MadeChange;
2577 }
2578 
2579 /// Return true if the idiom is detected in the loop.
2580 ///
2581 /// The core idiom we are trying to detect is:
2582 /// \code
2583 ///   entry:
2584 ///     <...>
2585 ///     %start = <...>
2586 ///     %extraoffset = <...>
2587 ///     <...>
2588 ///     br label %for.cond
2589 ///
2590 ///   loop:
2591 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2592 ///     %nbits = add nsw i8 %iv, %extraoffset
2593 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2594 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2595 ///     %iv.next = add i8 %iv, 1
2596 ///     <...>
2597 ///     br i1 %val.shifted.iszero, label %end, label %loop
2598 ///
2599 ///   end:
2600 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2601 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2602 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2603 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2604 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2605 ///     <...>
2606 /// \endcode
2607 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2608                                       Instruction *&ValShiftedIsZero,
2609                                       Intrinsic::ID &IntrinID, Instruction *&IV,
2610                                       Value *&Start, Value *&Val,
2611                                       const SCEV *&ExtraOffsetExpr,
2612                                       bool &InvertedCond) {
2613   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2614              " Performing shift-until-zero idiom detection.\n");
2615 
2616   // Give up if the loop has multiple blocks or multiple backedges.
2617   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2618     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2619     return false;
2620   }
2621 
2622   Instruction *ValShifted, *NBits, *IVNext;
2623   Value *ExtraOffset;
2624 
2625   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2626   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2627   assert(LoopPreheaderBB && "There is always a loop preheader.");
2628 
2629   using namespace PatternMatch;
2630 
2631   // Step 1: Check if the loop backedge, condition is in desirable form.
2632 
2633   ICmpInst::Predicate Pred;
2634   BasicBlock *TrueBB, *FalseBB;
2635   if (!match(LoopHeaderBB->getTerminator(),
2636              m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2637                   m_BasicBlock(FalseBB))) ||
2638       !match(ValShiftedIsZero,
2639              m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2640       !ICmpInst::isEquality(Pred)) {
2641     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2642     return false;
2643   }
2644 
2645   // Step 2: Check if the comparison's operand is in desirable form.
2646   // FIXME: Val could be a one-input PHI node, which we should look past.
2647   if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2648                                  m_Instruction(NBits)))) {
2649     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2650     return false;
2651   }
2652   IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2653                                                          : Intrinsic::ctlz;
2654 
2655   // Step 3: Check if the shift amount is in desirable form.
2656 
2657   if (match(NBits, m_c_Add(m_Instruction(IV),
2658                            m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2659       (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2660     ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2661   else if (match(NBits,
2662                  m_Sub(m_Instruction(IV),
2663                        m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2664            NBits->hasNoSignedWrap())
2665     ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2666   else {
2667     IV = NBits;
2668     ExtraOffsetExpr = SE->getZero(NBits->getType());
2669   }
2670 
2671   // Step 4: Check if the recurrence is in desirable form.
2672   auto *IVPN = dyn_cast<PHINode>(IV);
2673   if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2674     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2675     return false;
2676   }
2677 
2678   Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2679   IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2680 
2681   if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2682     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2683     return false;
2684   }
2685 
2686   // Step 4: Check if the backedge's destinations are in desirable form.
2687 
2688   assert(ICmpInst::isEquality(Pred) &&
2689          "Should only get equality predicates here.");
2690 
2691   // cmp-br is commutative, so canonicalize to a single variant.
2692   InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2693   if (InvertedCond) {
2694     Pred = ICmpInst::getInversePredicate(Pred);
2695     std::swap(TrueBB, FalseBB);
2696   }
2697 
2698   // We expect to exit loop when comparison yields true,
2699   // so when it yields false we should branch back to loop header.
2700   if (FalseBB != LoopHeaderBB) {
2701     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2702     return false;
2703   }
2704 
2705   // The new, countable, loop will certainly only run a known number of
2706   // iterations, It won't be infinite. But the old loop might be infinite
2707   // under certain conditions. For logical shifts, the value will become zero
2708   // after at most bitwidth(%Val) loop iterations. However, for arithmetic
2709   // right-shift, iff the sign bit was set, the value will never become zero,
2710   // and the loop may never finish.
2711   if (ValShifted->getOpcode() == Instruction::AShr &&
2712       !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2713     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2714     return false;
2715   }
2716 
2717   // Okay, idiom checks out.
2718   return true;
2719 }
2720 
2721 /// Look for the following loop:
2722 /// \code
2723 ///   entry:
2724 ///     <...>
2725 ///     %start = <...>
2726 ///     %extraoffset = <...>
2727 ///     <...>
2728 ///     br label %for.cond
2729 ///
2730 ///   loop:
2731 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2732 ///     %nbits = add nsw i8 %iv, %extraoffset
2733 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2734 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2735 ///     %iv.next = add i8 %iv, 1
2736 ///     <...>
2737 ///     br i1 %val.shifted.iszero, label %end, label %loop
2738 ///
2739 ///   end:
2740 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2741 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2742 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2743 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2744 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2745 ///     <...>
2746 /// \endcode
2747 ///
2748 /// And transform it into:
2749 /// \code
2750 ///   entry:
2751 ///     <...>
2752 ///     %start = <...>
2753 ///     %extraoffset = <...>
2754 ///     <...>
2755 ///     %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2756 ///     %val.numactivebits = sub i8 8, %val.numleadingzeros
2757 ///     %extraoffset.neg = sub i8 0, %extraoffset
2758 ///     %tmp = add i8 %val.numactivebits, %extraoffset.neg
2759 ///     %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2760 ///     %loop.tripcount = sub i8 %iv.final, %start
2761 ///     br label %loop
2762 ///
2763 ///   loop:
2764 ///     %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2765 ///     %loop.iv.next = add i8 %loop.iv, 1
2766 ///     %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2767 ///     %iv = add i8 %loop.iv, %start
2768 ///     <...>
2769 ///     br i1 %loop.ivcheck, label %end, label %loop
2770 ///
2771 ///   end:
2772 ///     %iv.res = phi i8 [ %iv.final, %loop ] <...>
2773 ///     <...>
2774 /// \endcode
2775 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2776   bool MadeChange = false;
2777 
2778   Instruction *ValShiftedIsZero;
2779   Intrinsic::ID IntrID;
2780   Instruction *IV;
2781   Value *Start, *Val;
2782   const SCEV *ExtraOffsetExpr;
2783   bool InvertedCond;
2784   if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2785                                  Start, Val, ExtraOffsetExpr, InvertedCond)) {
2786     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2787                " shift-until-zero idiom detection failed.\n");
2788     return MadeChange;
2789   }
2790   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2791 
2792   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2793   // but is it profitable to transform?
2794 
2795   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2796   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2797   assert(LoopPreheaderBB && "There is always a loop preheader.");
2798 
2799   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2800   assert(SuccessorBB && "There is only a single successor.");
2801 
2802   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2803   Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2804 
2805   Type *Ty = Val->getType();
2806   unsigned Bitwidth = Ty->getScalarSizeInBits();
2807 
2808   TargetTransformInfo::TargetCostKind CostKind =
2809       TargetTransformInfo::TCK_SizeAndLatency;
2810 
2811   // The rewrite is considered to be unprofitable iff and only iff the
2812   // intrinsic we'll use are not cheap. Note that we are okay with *just*
2813   // making the loop countable, even if nothing else changes.
2814   IntrinsicCostAttributes Attrs(
2815       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()});
2816   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2817   if (Cost > TargetTransformInfo::TCC_Basic) {
2818     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2819                " Intrinsic is too costly, not beneficial\n");
2820     return MadeChange;
2821   }
2822 
2823   // Ok, transform appears worthwhile.
2824   MadeChange = true;
2825 
2826   bool OffsetIsZero = false;
2827   if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2828     OffsetIsZero = ExtraOffsetExprC->isZero();
2829 
2830   // Step 1: Compute the loop's final IV value / trip count.
2831 
2832   CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
2833       IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()},
2834       /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
2835   Value *ValNumActiveBits = Builder.CreateSub(
2836       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
2837       Val->getName() + ".numactivebits", /*HasNUW=*/true,
2838       /*HasNSW=*/Bitwidth != 2);
2839 
2840   SCEVExpander Expander(*SE, *DL, "loop-idiom");
2841   Expander.setInsertPoint(&*Builder.GetInsertPoint());
2842   Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
2843 
2844   Value *ValNumActiveBitsOffset = Builder.CreateAdd(
2845       ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
2846       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
2847   Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
2848                                            {ValNumActiveBitsOffset, Start},
2849                                            /*FMFSource=*/nullptr, "iv.final");
2850 
2851   auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
2852       IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
2853       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
2854   // FIXME: or when the offset was `add nuw`
2855 
2856   // We know loop's backedge-taken count, but what's loop's trip count?
2857   Value *LoopTripCount =
2858       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2859                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2860                         /*HasNSW=*/Bitwidth != 2);
2861 
2862   // Step 2: Adjust the successor basic block to recieve the original
2863   //         induction variable's final value instead of the orig. IV itself.
2864 
2865   IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
2866 
2867   // Step 3: Rewrite the loop into a countable form, with canonical IV.
2868 
2869   // The new canonical induction variable.
2870   Builder.SetInsertPoint(&LoopHeaderBB->front());
2871   auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2872 
2873   // The induction itself.
2874   Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI());
2875   auto *CIVNext =
2876       Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
2877                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2878 
2879   // The loop trip count check.
2880   auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
2881                                         CurLoop->getName() + ".ivcheck");
2882   auto *NewIVCheck = CIVCheck;
2883   if (InvertedCond) {
2884     NewIVCheck = Builder.CreateNot(CIVCheck);
2885     NewIVCheck->takeName(ValShiftedIsZero);
2886   }
2887 
2888   // The original IV, but rebased to be an offset to the CIV.
2889   auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
2890                                      /*HasNSW=*/true); // FIXME: what about NUW?
2891   IVDePHId->takeName(IV);
2892 
2893   // The loop terminator.
2894   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2895   Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
2896   LoopHeaderBB->getTerminator()->eraseFromParent();
2897 
2898   // Populate the IV PHI.
2899   CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2900   CIV->addIncoming(CIVNext, LoopHeaderBB);
2901 
2902   // Step 4: Forget the "non-computable" trip-count SCEV associated with the
2903   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2904 
2905   SE->forgetLoop(CurLoop);
2906 
2907   // Step 5: Try to cleanup the loop's body somewhat.
2908   IV->replaceAllUsesWith(IVDePHId);
2909   IV->eraseFromParent();
2910 
2911   ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
2912   ValShiftedIsZero->eraseFromParent();
2913 
2914   // Other passes will take care of actually deleting the loop if possible.
2915 
2916   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
2917 
2918   ++NumShiftUntilZero;
2919   return MadeChange;
2920 }
2921