xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision fe6060f10f634930ff71b7c50291ddc610da2475)
1e8d8bef9SDimitry Andric //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric //
9e8d8bef9SDimitry Andric // This pass flattens pairs nested loops into a single loop.
10e8d8bef9SDimitry Andric //
11e8d8bef9SDimitry Andric // The intention is to optimise loop nests like this, which together access an
12e8d8bef9SDimitry Andric // array linearly:
13e8d8bef9SDimitry Andric //   for (int i = 0; i < N; ++i)
14e8d8bef9SDimitry Andric //     for (int j = 0; j < M; ++j)
15e8d8bef9SDimitry Andric //       f(A[i*M+j]);
16e8d8bef9SDimitry Andric // into one loop:
17e8d8bef9SDimitry Andric //   for (int i = 0; i < (N*M); ++i)
18e8d8bef9SDimitry Andric //     f(A[i]);
19e8d8bef9SDimitry Andric //
20e8d8bef9SDimitry Andric // It can also flatten loops where the induction variables are not used in the
21e8d8bef9SDimitry Andric // loop. This is only worth doing if the induction variables are only used in an
22e8d8bef9SDimitry Andric // expression like i*M+j. If they had any other uses, we would have to insert a
23e8d8bef9SDimitry Andric // div/mod to reconstruct the original values, so this wouldn't be profitable.
24e8d8bef9SDimitry Andric //
25e8d8bef9SDimitry Andric // We also need to prove that N*M will not overflow.
26e8d8bef9SDimitry Andric //
27e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
28e8d8bef9SDimitry Andric 
29e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/LoopFlatten.h"
30e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
31e8d8bef9SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
32e8d8bef9SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33e8d8bef9SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h"
34e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
35e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
36e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h"
37e8d8bef9SDimitry Andric #include "llvm/IR/Function.h"
38e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h"
39e8d8bef9SDimitry Andric #include "llvm/IR/Module.h"
40e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h"
41e8d8bef9SDimitry Andric #include "llvm/IR/Verifier.h"
42e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h"
43e8d8bef9SDimitry Andric #include "llvm/Pass.h"
44e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h"
45e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h"
46e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar.h"
47e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
48e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
49e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/SimplifyIndVar.h"
51e8d8bef9SDimitry Andric 
52e8d8bef9SDimitry Andric #define DEBUG_TYPE "loop-flatten"
53e8d8bef9SDimitry Andric 
54e8d8bef9SDimitry Andric using namespace llvm;
55e8d8bef9SDimitry Andric using namespace llvm::PatternMatch;
56e8d8bef9SDimitry Andric 
57e8d8bef9SDimitry Andric static cl::opt<unsigned> RepeatedInstructionThreshold(
58e8d8bef9SDimitry Andric     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
59e8d8bef9SDimitry Andric     cl::desc("Limit on the cost of instructions that can be repeated due to "
60e8d8bef9SDimitry Andric              "loop flattening"));
61e8d8bef9SDimitry Andric 
62e8d8bef9SDimitry Andric static cl::opt<bool>
63e8d8bef9SDimitry Andric     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
64e8d8bef9SDimitry Andric                      cl::init(false),
65e8d8bef9SDimitry Andric                      cl::desc("Assume that the product of the two iteration "
66*fe6060f1SDimitry Andric                               "trip counts will never overflow"));
67e8d8bef9SDimitry Andric 
68e8d8bef9SDimitry Andric static cl::opt<bool>
69e8d8bef9SDimitry Andric     WidenIV("loop-flatten-widen-iv", cl::Hidden,
70e8d8bef9SDimitry Andric             cl::init(true),
71e8d8bef9SDimitry Andric             cl::desc("Widen the loop induction variables, if possible, so "
72e8d8bef9SDimitry Andric                      "overflow checks won't reject flattening"));
73e8d8bef9SDimitry Andric 
74e8d8bef9SDimitry Andric struct FlattenInfo {
75e8d8bef9SDimitry Andric   Loop *OuterLoop = nullptr;
76e8d8bef9SDimitry Andric   Loop *InnerLoop = nullptr;
77*fe6060f1SDimitry Andric   // These PHINodes correspond to loop induction variables, which are expected
78*fe6060f1SDimitry Andric   // to start at zero and increment by one on each loop.
79e8d8bef9SDimitry Andric   PHINode *InnerInductionPHI = nullptr;
80e8d8bef9SDimitry Andric   PHINode *OuterInductionPHI = nullptr;
81*fe6060f1SDimitry Andric   Value *InnerTripCount = nullptr;
82*fe6060f1SDimitry Andric   Value *OuterTripCount = nullptr;
83e8d8bef9SDimitry Andric   BinaryOperator *InnerIncrement = nullptr;
84e8d8bef9SDimitry Andric   BinaryOperator *OuterIncrement = nullptr;
85e8d8bef9SDimitry Andric   BranchInst *InnerBranch = nullptr;
86e8d8bef9SDimitry Andric   BranchInst *OuterBranch = nullptr;
87e8d8bef9SDimitry Andric   SmallPtrSet<Value *, 4> LinearIVUses;
88e8d8bef9SDimitry Andric   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
89e8d8bef9SDimitry Andric 
90e8d8bef9SDimitry Andric   // Whether this holds the flatten info before or after widening.
91e8d8bef9SDimitry Andric   bool Widened = false;
92e8d8bef9SDimitry Andric 
93e8d8bef9SDimitry Andric   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
94e8d8bef9SDimitry Andric };
95e8d8bef9SDimitry Andric 
96*fe6060f1SDimitry Andric // Finds the induction variable, increment and trip count for a simple loop that
97*fe6060f1SDimitry Andric // we can flatten.
98e8d8bef9SDimitry Andric static bool findLoopComponents(
99e8d8bef9SDimitry Andric     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
100*fe6060f1SDimitry Andric     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
101*fe6060f1SDimitry Andric     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
102e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
103e8d8bef9SDimitry Andric 
104e8d8bef9SDimitry Andric   if (!L->isLoopSimplifyForm()) {
105e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
106e8d8bef9SDimitry Andric     return false;
107e8d8bef9SDimitry Andric   }
108e8d8bef9SDimitry Andric 
109*fe6060f1SDimitry Andric   // Currently, to simplify the implementation, the Loop induction variable must
110*fe6060f1SDimitry Andric   // start at zero and increment with a step size of one.
111*fe6060f1SDimitry Andric   if (!L->isCanonical(*SE)) {
112*fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
113*fe6060f1SDimitry Andric     return false;
114*fe6060f1SDimitry Andric   }
115*fe6060f1SDimitry Andric 
116e8d8bef9SDimitry Andric   // There must be exactly one exiting block, and it must be the same at the
117e8d8bef9SDimitry Andric   // latch.
118e8d8bef9SDimitry Andric   BasicBlock *Latch = L->getLoopLatch();
119e8d8bef9SDimitry Andric   if (L->getExitingBlock() != Latch) {
120e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
121e8d8bef9SDimitry Andric     return false;
122e8d8bef9SDimitry Andric   }
123e8d8bef9SDimitry Andric 
124e8d8bef9SDimitry Andric   // Find the induction PHI. If there is no induction PHI, we can't do the
125e8d8bef9SDimitry Andric   // transformation. TODO: could other variables trigger this? Do we have to
126e8d8bef9SDimitry Andric   // search for the best one?
127*fe6060f1SDimitry Andric   InductionPHI = L->getInductionVariable(*SE);
128e8d8bef9SDimitry Andric   if (!InductionPHI) {
129e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
130e8d8bef9SDimitry Andric     return false;
131e8d8bef9SDimitry Andric   }
132*fe6060f1SDimitry Andric   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
133e8d8bef9SDimitry Andric 
134*fe6060f1SDimitry Andric   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
135e8d8bef9SDimitry Andric   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
136e8d8bef9SDimitry Andric     if (ContinueOnTrue)
137e8d8bef9SDimitry Andric       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
138e8d8bef9SDimitry Andric     else
139e8d8bef9SDimitry Andric       return Pred == CmpInst::ICMP_EQ;
140e8d8bef9SDimitry Andric   };
141e8d8bef9SDimitry Andric 
142*fe6060f1SDimitry Andric   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
143*fe6060f1SDimitry Andric   // back branch of the latch is conditional.
144*fe6060f1SDimitry Andric   ICmpInst *Compare = L->getLatchCmpInst();
145e8d8bef9SDimitry Andric   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
146e8d8bef9SDimitry Andric       Compare->hasNUsesOrMore(2)) {
147e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
148e8d8bef9SDimitry Andric     return false;
149e8d8bef9SDimitry Andric   }
150*fe6060f1SDimitry Andric   BackBranch = cast<BranchInst>(Latch->getTerminator());
151*fe6060f1SDimitry Andric   IterationInstructions.insert(BackBranch);
152*fe6060f1SDimitry Andric   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
153e8d8bef9SDimitry Andric   IterationInstructions.insert(Compare);
154e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
155e8d8bef9SDimitry Andric 
156*fe6060f1SDimitry Andric   // Find increment and trip count.
157*fe6060f1SDimitry Andric   // There are exactly 2 incoming values to the induction phi; one from the
158*fe6060f1SDimitry Andric   // pre-header and one from the latch. The incoming latch value is the
159*fe6060f1SDimitry Andric   // increment variable.
160*fe6060f1SDimitry Andric   Increment =
161*fe6060f1SDimitry Andric       dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
162*fe6060f1SDimitry Andric   if (Increment->hasNUsesOrMore(3)) {
163*fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
164e8d8bef9SDimitry Andric     return false;
165e8d8bef9SDimitry Andric   }
166*fe6060f1SDimitry Andric   // The trip count is the RHS of the compare. If this doesn't match the trip
167*fe6060f1SDimitry Andric   // count computed by SCEV then this is either because the trip count variable
168*fe6060f1SDimitry Andric   // has been widened (then leave the trip count as it is), or because it is a
169*fe6060f1SDimitry Andric   // constant and another transformation has changed the compare, e.g.
170*fe6060f1SDimitry Andric   // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, then we don't flatten
171*fe6060f1SDimitry Andric   // the loop (yet).
172*fe6060f1SDimitry Andric   TripCount = Compare->getOperand(1);
173*fe6060f1SDimitry Andric   const SCEV *SCEVTripCount =
174*fe6060f1SDimitry Andric       SE->getTripCountFromExitCount(SE->getBackedgeTakenCount(L));
175*fe6060f1SDimitry Andric   if (SE->getSCEV(TripCount) != SCEVTripCount) {
176*fe6060f1SDimitry Andric     if (!IsWidened) {
177*fe6060f1SDimitry Andric       LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
178*fe6060f1SDimitry Andric       return false;
179*fe6060f1SDimitry Andric     }
180*fe6060f1SDimitry Andric     auto TripCountInst = dyn_cast<Instruction>(TripCount);
181*fe6060f1SDimitry Andric     if (!TripCountInst) {
182*fe6060f1SDimitry Andric       LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
183*fe6060f1SDimitry Andric       return false;
184*fe6060f1SDimitry Andric     }
185*fe6060f1SDimitry Andric     if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
186*fe6060f1SDimitry Andric         SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
187*fe6060f1SDimitry Andric       LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
188*fe6060f1SDimitry Andric       return false;
189*fe6060f1SDimitry Andric     }
190*fe6060f1SDimitry Andric   }
191e8d8bef9SDimitry Andric   IterationInstructions.insert(Increment);
192e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
193*fe6060f1SDimitry Andric   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
194e8d8bef9SDimitry Andric 
195e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
196e8d8bef9SDimitry Andric   return true;
197e8d8bef9SDimitry Andric }
198e8d8bef9SDimitry Andric 
199*fe6060f1SDimitry Andric static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
200e8d8bef9SDimitry Andric   // All PHIs in the inner and outer headers must either be:
201e8d8bef9SDimitry Andric   // - The induction PHI, which we are going to rewrite as one induction in
202e8d8bef9SDimitry Andric   //   the new loop. This is already checked by findLoopComponents.
203e8d8bef9SDimitry Andric   // - An outer header PHI with all incoming values from outside the loop.
204e8d8bef9SDimitry Andric   //   LoopSimplify guarantees we have a pre-header, so we don't need to
205e8d8bef9SDimitry Andric   //   worry about that here.
206e8d8bef9SDimitry Andric   // - Pairs of PHIs in the inner and outer headers, which implement a
207e8d8bef9SDimitry Andric   //   loop-carried dependency that will still be valid in the new loop. To
208e8d8bef9SDimitry Andric   //   be valid, this variable must be modified only in the inner loop.
209e8d8bef9SDimitry Andric 
210e8d8bef9SDimitry Andric   // The set of PHI nodes in the outer loop header that we know will still be
211e8d8bef9SDimitry Andric   // valid after the transformation. These will not need to be modified (with
212e8d8bef9SDimitry Andric   // the exception of the induction variable), but we do need to check that
213e8d8bef9SDimitry Andric   // there are no unsafe PHI nodes.
214e8d8bef9SDimitry Andric   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
215e8d8bef9SDimitry Andric   SafeOuterPHIs.insert(FI.OuterInductionPHI);
216e8d8bef9SDimitry Andric 
217e8d8bef9SDimitry Andric   // Check that all PHI nodes in the inner loop header match one of the valid
218e8d8bef9SDimitry Andric   // patterns.
219e8d8bef9SDimitry Andric   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
220e8d8bef9SDimitry Andric     // The induction PHIs break these rules, and that's OK because we treat
221e8d8bef9SDimitry Andric     // them specially when doing the transformation.
222e8d8bef9SDimitry Andric     if (&InnerPHI == FI.InnerInductionPHI)
223e8d8bef9SDimitry Andric       continue;
224e8d8bef9SDimitry Andric 
225e8d8bef9SDimitry Andric     // Each inner loop PHI node must have two incoming values/blocks - one
226e8d8bef9SDimitry Andric     // from the pre-header, and one from the latch.
227e8d8bef9SDimitry Andric     assert(InnerPHI.getNumIncomingValues() == 2);
228e8d8bef9SDimitry Andric     Value *PreHeaderValue =
229e8d8bef9SDimitry Andric         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
230e8d8bef9SDimitry Andric     Value *LatchValue =
231e8d8bef9SDimitry Andric         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
232e8d8bef9SDimitry Andric 
233e8d8bef9SDimitry Andric     // The incoming value from the outer loop must be the PHI node in the
234e8d8bef9SDimitry Andric     // outer loop header, with no modifications made in the top of the outer
235e8d8bef9SDimitry Andric     // loop.
236e8d8bef9SDimitry Andric     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
237e8d8bef9SDimitry Andric     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
238e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
239e8d8bef9SDimitry Andric       return false;
240e8d8bef9SDimitry Andric     }
241e8d8bef9SDimitry Andric 
242e8d8bef9SDimitry Andric     // The other incoming value must come from the inner loop, without any
243e8d8bef9SDimitry Andric     // modifications in the tail end of the outer loop. We are in LCSSA form,
244e8d8bef9SDimitry Andric     // so this will actually be a PHI in the inner loop's exit block, which
245e8d8bef9SDimitry Andric     // only uses values from inside the inner loop.
246e8d8bef9SDimitry Andric     PHINode *LCSSAPHI = dyn_cast<PHINode>(
247e8d8bef9SDimitry Andric         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
248e8d8bef9SDimitry Andric     if (!LCSSAPHI) {
249e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
250e8d8bef9SDimitry Andric       return false;
251e8d8bef9SDimitry Andric     }
252e8d8bef9SDimitry Andric 
253e8d8bef9SDimitry Andric     // The value used by the LCSSA PHI must be the same one that the inner
254e8d8bef9SDimitry Andric     // loop's PHI uses.
255e8d8bef9SDimitry Andric     if (LCSSAPHI->hasConstantValue() != LatchValue) {
256e8d8bef9SDimitry Andric       LLVM_DEBUG(
257e8d8bef9SDimitry Andric           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
258e8d8bef9SDimitry Andric       return false;
259e8d8bef9SDimitry Andric     }
260e8d8bef9SDimitry Andric 
261e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
262e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
263e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
264e8d8bef9SDimitry Andric     SafeOuterPHIs.insert(OuterPHI);
265e8d8bef9SDimitry Andric     FI.InnerPHIsToTransform.insert(&InnerPHI);
266e8d8bef9SDimitry Andric   }
267e8d8bef9SDimitry Andric 
268e8d8bef9SDimitry Andric   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
269e8d8bef9SDimitry Andric     if (!SafeOuterPHIs.count(&OuterPHI)) {
270e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
271e8d8bef9SDimitry Andric       return false;
272e8d8bef9SDimitry Andric     }
273e8d8bef9SDimitry Andric   }
274e8d8bef9SDimitry Andric 
275e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
276e8d8bef9SDimitry Andric   return true;
277e8d8bef9SDimitry Andric }
278e8d8bef9SDimitry Andric 
279e8d8bef9SDimitry Andric static bool
280*fe6060f1SDimitry Andric checkOuterLoopInsts(FlattenInfo &FI,
281e8d8bef9SDimitry Andric                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
282e8d8bef9SDimitry Andric                     const TargetTransformInfo *TTI) {
283e8d8bef9SDimitry Andric   // Check for instructions in the outer but not inner loop. If any of these
284e8d8bef9SDimitry Andric   // have side-effects then this transformation is not legal, and if there is
285e8d8bef9SDimitry Andric   // a significant amount of code here which can't be optimised out that it's
286e8d8bef9SDimitry Andric   // not profitable (as these instructions would get executed for each
287e8d8bef9SDimitry Andric   // iteration of the inner loop).
288*fe6060f1SDimitry Andric   InstructionCost RepeatedInstrCost = 0;
289e8d8bef9SDimitry Andric   for (auto *B : FI.OuterLoop->getBlocks()) {
290e8d8bef9SDimitry Andric     if (FI.InnerLoop->contains(B))
291e8d8bef9SDimitry Andric       continue;
292e8d8bef9SDimitry Andric 
293e8d8bef9SDimitry Andric     for (auto &I : *B) {
294e8d8bef9SDimitry Andric       if (!isa<PHINode>(&I) && !I.isTerminator() &&
295e8d8bef9SDimitry Andric           !isSafeToSpeculativelyExecute(&I)) {
296e8d8bef9SDimitry Andric         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
297e8d8bef9SDimitry Andric                              "side effects: ";
298e8d8bef9SDimitry Andric                    I.dump());
299e8d8bef9SDimitry Andric         return false;
300e8d8bef9SDimitry Andric       }
301e8d8bef9SDimitry Andric       // The execution count of the outer loop's iteration instructions
302e8d8bef9SDimitry Andric       // (increment, compare and branch) will be increased, but the
303e8d8bef9SDimitry Andric       // equivalent instructions will be removed from the inner loop, so
304e8d8bef9SDimitry Andric       // they make a net difference of zero.
305e8d8bef9SDimitry Andric       if (IterationInstructions.count(&I))
306e8d8bef9SDimitry Andric         continue;
307e8d8bef9SDimitry Andric       // The uncoditional branch to the inner loop's header will turn into
308e8d8bef9SDimitry Andric       // a fall-through, so adds no cost.
309e8d8bef9SDimitry Andric       BranchInst *Br = dyn_cast<BranchInst>(&I);
310e8d8bef9SDimitry Andric       if (Br && Br->isUnconditional() &&
311e8d8bef9SDimitry Andric           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
312e8d8bef9SDimitry Andric         continue;
313e8d8bef9SDimitry Andric       // Multiplies of the outer iteration variable and inner iteration
314e8d8bef9SDimitry Andric       // count will be optimised out.
315e8d8bef9SDimitry Andric       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
316*fe6060f1SDimitry Andric                             m_Specific(FI.InnerTripCount))))
317e8d8bef9SDimitry Andric         continue;
318*fe6060f1SDimitry Andric       InstructionCost Cost =
319*fe6060f1SDimitry Andric           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
320e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
321e8d8bef9SDimitry Andric       RepeatedInstrCost += Cost;
322e8d8bef9SDimitry Andric     }
323e8d8bef9SDimitry Andric   }
324e8d8bef9SDimitry Andric 
325e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
326e8d8bef9SDimitry Andric                     << RepeatedInstrCost << "\n");
327e8d8bef9SDimitry Andric   // Bail out if flattening the loops would cause instructions in the outer
328e8d8bef9SDimitry Andric   // loop but not in the inner loop to be executed extra times.
329e8d8bef9SDimitry Andric   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
330e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
331e8d8bef9SDimitry Andric     return false;
332e8d8bef9SDimitry Andric   }
333e8d8bef9SDimitry Andric 
334e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
335e8d8bef9SDimitry Andric   return true;
336e8d8bef9SDimitry Andric }
337e8d8bef9SDimitry Andric 
338*fe6060f1SDimitry Andric static bool checkIVUsers(FlattenInfo &FI) {
339e8d8bef9SDimitry Andric   // We require all uses of both induction variables to match this pattern:
340e8d8bef9SDimitry Andric   //
341*fe6060f1SDimitry Andric   //   (OuterPHI * InnerTripCount) + InnerPHI
342e8d8bef9SDimitry Andric   //
343e8d8bef9SDimitry Andric   // Any uses of the induction variables not matching that pattern would
344e8d8bef9SDimitry Andric   // require a div/mod to reconstruct in the flattened loop, so the
345e8d8bef9SDimitry Andric   // transformation wouldn't be profitable.
346e8d8bef9SDimitry Andric 
347*fe6060f1SDimitry Andric   Value *InnerTripCount = FI.InnerTripCount;
348e8d8bef9SDimitry Andric   if (FI.Widened &&
349*fe6060f1SDimitry Andric       (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
350*fe6060f1SDimitry Andric     InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
351e8d8bef9SDimitry Andric 
352e8d8bef9SDimitry Andric   // Check that all uses of the inner loop's induction variable match the
353e8d8bef9SDimitry Andric   // expected pattern, recording the uses of the outer IV.
354e8d8bef9SDimitry Andric   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
355e8d8bef9SDimitry Andric   for (User *U : FI.InnerInductionPHI->users()) {
356e8d8bef9SDimitry Andric     if (U == FI.InnerIncrement)
357e8d8bef9SDimitry Andric       continue;
358e8d8bef9SDimitry Andric 
359e8d8bef9SDimitry Andric     // After widening the IVs, a trunc instruction might have been introduced, so
360e8d8bef9SDimitry Andric     // look through truncs.
361e8d8bef9SDimitry Andric     if (isa<TruncInst>(U)) {
362e8d8bef9SDimitry Andric       if (!U->hasOneUse())
363e8d8bef9SDimitry Andric         return false;
364e8d8bef9SDimitry Andric       U = *U->user_begin();
365e8d8bef9SDimitry Andric     }
366e8d8bef9SDimitry Andric 
367e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
368e8d8bef9SDimitry Andric 
369e8d8bef9SDimitry Andric     Value *MatchedMul;
370e8d8bef9SDimitry Andric     Value *MatchedItCount;
371e8d8bef9SDimitry Andric     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
372e8d8bef9SDimitry Andric                                   m_Value(MatchedMul))) &&
373e8d8bef9SDimitry Andric                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
374e8d8bef9SDimitry Andric                                            m_Value(MatchedItCount)));
375e8d8bef9SDimitry Andric 
376e8d8bef9SDimitry Andric     // Matches the same pattern as above, except it also looks for truncs
377e8d8bef9SDimitry Andric     // on the phi, which can be the result of widening the induction variables.
378e8d8bef9SDimitry Andric     bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
379e8d8bef9SDimitry Andric                                        m_Value(MatchedMul))) &&
380e8d8bef9SDimitry Andric                       match(MatchedMul,
381e8d8bef9SDimitry Andric                             m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
382e8d8bef9SDimitry Andric                             m_Value(MatchedItCount)));
383e8d8bef9SDimitry Andric 
384*fe6060f1SDimitry Andric     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
385e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
386e8d8bef9SDimitry Andric       ValidOuterPHIUses.insert(MatchedMul);
387e8d8bef9SDimitry Andric       FI.LinearIVUses.insert(U);
388e8d8bef9SDimitry Andric     } else {
389e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
390e8d8bef9SDimitry Andric       return false;
391e8d8bef9SDimitry Andric     }
392e8d8bef9SDimitry Andric   }
393e8d8bef9SDimitry Andric 
394e8d8bef9SDimitry Andric   // Check that there are no uses of the outer IV other than the ones found
395e8d8bef9SDimitry Andric   // as part of the pattern above.
396e8d8bef9SDimitry Andric   for (User *U : FI.OuterInductionPHI->users()) {
397e8d8bef9SDimitry Andric     if (U == FI.OuterIncrement)
398e8d8bef9SDimitry Andric       continue;
399e8d8bef9SDimitry Andric 
400e8d8bef9SDimitry Andric     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
401e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
402e8d8bef9SDimitry Andric       if (!ValidOuterPHIUses.count(U)) {
403e8d8bef9SDimitry Andric         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
404e8d8bef9SDimitry Andric         return false;
405e8d8bef9SDimitry Andric       }
406e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
407e8d8bef9SDimitry Andric       return true;
408e8d8bef9SDimitry Andric     };
409e8d8bef9SDimitry Andric 
410e8d8bef9SDimitry Andric     if (auto *V = dyn_cast<TruncInst>(U)) {
411e8d8bef9SDimitry Andric       for (auto *K : V->users()) {
412e8d8bef9SDimitry Andric         if (!IsValidOuterPHIUses(K))
413e8d8bef9SDimitry Andric           return false;
414e8d8bef9SDimitry Andric       }
415e8d8bef9SDimitry Andric       continue;
416e8d8bef9SDimitry Andric     }
417e8d8bef9SDimitry Andric 
418e8d8bef9SDimitry Andric     if (!IsValidOuterPHIUses(U))
419e8d8bef9SDimitry Andric       return false;
420e8d8bef9SDimitry Andric   }
421e8d8bef9SDimitry Andric 
422e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
423e8d8bef9SDimitry Andric              dbgs() << "Found " << FI.LinearIVUses.size()
424e8d8bef9SDimitry Andric                     << " value(s) that can be replaced:\n";
425e8d8bef9SDimitry Andric              for (Value *V : FI.LinearIVUses) {
426e8d8bef9SDimitry Andric                dbgs() << "  ";
427e8d8bef9SDimitry Andric                V->dump();
428e8d8bef9SDimitry Andric              });
429e8d8bef9SDimitry Andric   return true;
430e8d8bef9SDimitry Andric }
431e8d8bef9SDimitry Andric 
432e8d8bef9SDimitry Andric // Return an OverflowResult dependant on if overflow of the multiplication of
433*fe6060f1SDimitry Andric // InnerTripCount and OuterTripCount can be assumed not to happen.
434*fe6060f1SDimitry Andric static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
435*fe6060f1SDimitry Andric                                     AssumptionCache *AC) {
436e8d8bef9SDimitry Andric   Function *F = FI.OuterLoop->getHeader()->getParent();
437e8d8bef9SDimitry Andric   const DataLayout &DL = F->getParent()->getDataLayout();
438e8d8bef9SDimitry Andric 
439e8d8bef9SDimitry Andric   // For debugging/testing.
440e8d8bef9SDimitry Andric   if (AssumeNoOverflow)
441e8d8bef9SDimitry Andric     return OverflowResult::NeverOverflows;
442e8d8bef9SDimitry Andric 
443e8d8bef9SDimitry Andric   // Check if the multiply could not overflow due to known ranges of the
444e8d8bef9SDimitry Andric   // input values.
445e8d8bef9SDimitry Andric   OverflowResult OR = computeOverflowForUnsignedMul(
446*fe6060f1SDimitry Andric       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
447e8d8bef9SDimitry Andric       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
448e8d8bef9SDimitry Andric   if (OR != OverflowResult::MayOverflow)
449e8d8bef9SDimitry Andric     return OR;
450e8d8bef9SDimitry Andric 
451e8d8bef9SDimitry Andric   for (Value *V : FI.LinearIVUses) {
452e8d8bef9SDimitry Andric     for (Value *U : V->users()) {
453e8d8bef9SDimitry Andric       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
454e8d8bef9SDimitry Andric         // The IV is used as the operand of a GEP, and the IV is at least as
455e8d8bef9SDimitry Andric         // wide as the address space of the GEP. In this case, the GEP would
456e8d8bef9SDimitry Andric         // wrap around the address space before the IV increment wraps, which
457e8d8bef9SDimitry Andric         // would be UB.
458e8d8bef9SDimitry Andric         if (GEP->isInBounds() &&
459e8d8bef9SDimitry Andric             V->getType()->getIntegerBitWidth() >=
460e8d8bef9SDimitry Andric                 DL.getPointerTypeSizeInBits(GEP->getType())) {
461e8d8bef9SDimitry Andric           LLVM_DEBUG(
462e8d8bef9SDimitry Andric               dbgs() << "use of linear IV would be UB if overflow occurred: ";
463e8d8bef9SDimitry Andric               GEP->dump());
464e8d8bef9SDimitry Andric           return OverflowResult::NeverOverflows;
465e8d8bef9SDimitry Andric         }
466e8d8bef9SDimitry Andric       }
467e8d8bef9SDimitry Andric     }
468e8d8bef9SDimitry Andric   }
469e8d8bef9SDimitry Andric 
470e8d8bef9SDimitry Andric   return OverflowResult::MayOverflow;
471e8d8bef9SDimitry Andric }
472e8d8bef9SDimitry Andric 
473*fe6060f1SDimitry Andric static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
474*fe6060f1SDimitry Andric                                ScalarEvolution *SE, AssumptionCache *AC,
475*fe6060f1SDimitry Andric                                const TargetTransformInfo *TTI) {
476e8d8bef9SDimitry Andric   SmallPtrSet<Instruction *, 8> IterationInstructions;
477*fe6060f1SDimitry Andric   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
478*fe6060f1SDimitry Andric                           FI.InnerInductionPHI, FI.InnerTripCount,
479*fe6060f1SDimitry Andric                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
480e8d8bef9SDimitry Andric     return false;
481*fe6060f1SDimitry Andric   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
482*fe6060f1SDimitry Andric                           FI.OuterInductionPHI, FI.OuterTripCount,
483*fe6060f1SDimitry Andric                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
484e8d8bef9SDimitry Andric     return false;
485e8d8bef9SDimitry Andric 
486*fe6060f1SDimitry Andric   // Both of the loop trip count values must be invariant in the outer loop
487e8d8bef9SDimitry Andric   // (non-instructions are all inherently invariant).
488*fe6060f1SDimitry Andric   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
489*fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
490e8d8bef9SDimitry Andric     return false;
491e8d8bef9SDimitry Andric   }
492*fe6060f1SDimitry Andric   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
493*fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
494e8d8bef9SDimitry Andric     return false;
495e8d8bef9SDimitry Andric   }
496e8d8bef9SDimitry Andric 
497e8d8bef9SDimitry Andric   if (!checkPHIs(FI, TTI))
498e8d8bef9SDimitry Andric     return false;
499e8d8bef9SDimitry Andric 
500e8d8bef9SDimitry Andric   // FIXME: it should be possible to handle different types correctly.
501e8d8bef9SDimitry Andric   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
502e8d8bef9SDimitry Andric     return false;
503e8d8bef9SDimitry Andric 
504e8d8bef9SDimitry Andric   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
505e8d8bef9SDimitry Andric     return false;
506e8d8bef9SDimitry Andric 
507e8d8bef9SDimitry Andric   // Find the values in the loop that can be replaced with the linearized
508e8d8bef9SDimitry Andric   // induction variable, and check that there are no other uses of the inner
509e8d8bef9SDimitry Andric   // or outer induction variable. If there were, we could still do this
510e8d8bef9SDimitry Andric   // transformation, but we'd have to insert a div/mod to calculate the
511e8d8bef9SDimitry Andric   // original IVs, so it wouldn't be profitable.
512e8d8bef9SDimitry Andric   if (!checkIVUsers(FI))
513e8d8bef9SDimitry Andric     return false;
514e8d8bef9SDimitry Andric 
515e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
516e8d8bef9SDimitry Andric   return true;
517e8d8bef9SDimitry Andric }
518e8d8bef9SDimitry Andric 
519*fe6060f1SDimitry Andric static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
520*fe6060f1SDimitry Andric                               ScalarEvolution *SE, AssumptionCache *AC,
521e8d8bef9SDimitry Andric                               const TargetTransformInfo *TTI) {
522e8d8bef9SDimitry Andric   Function *F = FI.OuterLoop->getHeader()->getParent();
523e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
524e8d8bef9SDimitry Andric   {
525e8d8bef9SDimitry Andric     using namespace ore;
526e8d8bef9SDimitry Andric     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
527e8d8bef9SDimitry Andric                               FI.InnerLoop->getHeader());
528e8d8bef9SDimitry Andric     OptimizationRemarkEmitter ORE(F);
529e8d8bef9SDimitry Andric     Remark << "Flattened into outer loop";
530e8d8bef9SDimitry Andric     ORE.emit(Remark);
531e8d8bef9SDimitry Andric   }
532e8d8bef9SDimitry Andric 
533*fe6060f1SDimitry Andric   Value *NewTripCount = BinaryOperator::CreateMul(
534*fe6060f1SDimitry Andric       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
535e8d8bef9SDimitry Andric       FI.OuterLoop->getLoopPreheader()->getTerminator());
536e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
537e8d8bef9SDimitry Andric              NewTripCount->dump());
538e8d8bef9SDimitry Andric 
539e8d8bef9SDimitry Andric   // Fix up PHI nodes that take values from the inner loop back-edge, which
540e8d8bef9SDimitry Andric   // we are about to remove.
541e8d8bef9SDimitry Andric   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
542e8d8bef9SDimitry Andric 
543e8d8bef9SDimitry Andric   // The old Phi will be optimised away later, but for now we can't leave
544e8d8bef9SDimitry Andric   // leave it in an invalid state, so are updating them too.
545e8d8bef9SDimitry Andric   for (PHINode *PHI : FI.InnerPHIsToTransform)
546e8d8bef9SDimitry Andric     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
547e8d8bef9SDimitry Andric 
548e8d8bef9SDimitry Andric   // Modify the trip count of the outer loop to be the product of the two
549e8d8bef9SDimitry Andric   // trip counts.
550e8d8bef9SDimitry Andric   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
551e8d8bef9SDimitry Andric 
552e8d8bef9SDimitry Andric   // Replace the inner loop backedge with an unconditional branch to the exit.
553e8d8bef9SDimitry Andric   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
554e8d8bef9SDimitry Andric   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
555e8d8bef9SDimitry Andric   InnerExitingBlock->getTerminator()->eraseFromParent();
556e8d8bef9SDimitry Andric   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
557e8d8bef9SDimitry Andric   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
558e8d8bef9SDimitry Andric 
559e8d8bef9SDimitry Andric   // Replace all uses of the polynomial calculated from the two induction
560e8d8bef9SDimitry Andric   // variables with the one new one.
561e8d8bef9SDimitry Andric   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
562e8d8bef9SDimitry Andric   for (Value *V : FI.LinearIVUses) {
563e8d8bef9SDimitry Andric     Value *OuterValue = FI.OuterInductionPHI;
564e8d8bef9SDimitry Andric     if (FI.Widened)
565e8d8bef9SDimitry Andric       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
566e8d8bef9SDimitry Andric                                        "flatten.trunciv");
567e8d8bef9SDimitry Andric 
568e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
569e8d8bef9SDimitry Andric                dbgs() << "with:      "; OuterValue->dump());
570e8d8bef9SDimitry Andric     V->replaceAllUsesWith(OuterValue);
571e8d8bef9SDimitry Andric   }
572e8d8bef9SDimitry Andric 
573e8d8bef9SDimitry Andric   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
574e8d8bef9SDimitry Andric   // deleted, and any information that have about the outer loop invalidated.
575e8d8bef9SDimitry Andric   SE->forgetLoop(FI.OuterLoop);
576e8d8bef9SDimitry Andric   SE->forgetLoop(FI.InnerLoop);
577e8d8bef9SDimitry Andric   LI->erase(FI.InnerLoop);
578e8d8bef9SDimitry Andric   return true;
579e8d8bef9SDimitry Andric }
580e8d8bef9SDimitry Andric 
581*fe6060f1SDimitry Andric static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
582*fe6060f1SDimitry Andric                        ScalarEvolution *SE, AssumptionCache *AC,
583*fe6060f1SDimitry Andric                        const TargetTransformInfo *TTI) {
584e8d8bef9SDimitry Andric   if (!WidenIV) {
585e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
586e8d8bef9SDimitry Andric     return false;
587e8d8bef9SDimitry Andric   }
588e8d8bef9SDimitry Andric 
589e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
590e8d8bef9SDimitry Andric   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
591e8d8bef9SDimitry Andric   auto &DL = M->getDataLayout();
592e8d8bef9SDimitry Andric   auto *InnerType = FI.InnerInductionPHI->getType();
593e8d8bef9SDimitry Andric   auto *OuterType = FI.OuterInductionPHI->getType();
594e8d8bef9SDimitry Andric   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
595e8d8bef9SDimitry Andric   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
596e8d8bef9SDimitry Andric 
597e8d8bef9SDimitry Andric   // If both induction types are less than the maximum legal integer width,
598e8d8bef9SDimitry Andric   // promote both to the widest type available so we know calculating
599*fe6060f1SDimitry Andric   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
600e8d8bef9SDimitry Andric   if (InnerType != OuterType ||
601e8d8bef9SDimitry Andric       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
602e8d8bef9SDimitry Andric       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
603e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
604e8d8bef9SDimitry Andric     return false;
605e8d8bef9SDimitry Andric   }
606e8d8bef9SDimitry Andric 
607e8d8bef9SDimitry Andric   SCEVExpander Rewriter(*SE, DL, "loopflatten");
608e8d8bef9SDimitry Andric   SmallVector<WideIVInfo, 2> WideIVs;
609e8d8bef9SDimitry Andric   SmallVector<WeakTrackingVH, 4> DeadInsts;
610e8d8bef9SDimitry Andric   WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
611e8d8bef9SDimitry Andric   WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
612*fe6060f1SDimitry Andric   unsigned ElimExt = 0;
613*fe6060f1SDimitry Andric   unsigned Widened = 0;
614e8d8bef9SDimitry Andric 
615*fe6060f1SDimitry Andric   for (const auto &WideIV : WideIVs) {
616*fe6060f1SDimitry Andric     PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
617e8d8bef9SDimitry Andric                                     ElimExt, Widened, true /* HasGuards */,
618e8d8bef9SDimitry Andric                                     true /* UsePostIncrementRanges */);
619e8d8bef9SDimitry Andric     if (!WidePhi)
620e8d8bef9SDimitry Andric       return false;
621e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
622*fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
623*fe6060f1SDimitry Andric     RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
624e8d8bef9SDimitry Andric   }
625e8d8bef9SDimitry Andric   // After widening, rediscover all the loop components.
626*fe6060f1SDimitry Andric   assert(Widened && "Widened IV expected");
627e8d8bef9SDimitry Andric   FI.Widened = true;
628e8d8bef9SDimitry Andric   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
629e8d8bef9SDimitry Andric }
630e8d8bef9SDimitry Andric 
631*fe6060f1SDimitry Andric static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
632*fe6060f1SDimitry Andric                             ScalarEvolution *SE, AssumptionCache *AC,
633e8d8bef9SDimitry Andric                             const TargetTransformInfo *TTI) {
634e8d8bef9SDimitry Andric   LLVM_DEBUG(
635e8d8bef9SDimitry Andric       dbgs() << "Loop flattening running on outer loop "
636e8d8bef9SDimitry Andric              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
637e8d8bef9SDimitry Andric              << FI.InnerLoop->getHeader()->getName() << " in "
638e8d8bef9SDimitry Andric              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
639e8d8bef9SDimitry Andric 
640e8d8bef9SDimitry Andric   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
641e8d8bef9SDimitry Andric     return false;
642e8d8bef9SDimitry Andric 
643e8d8bef9SDimitry Andric   // Check if we can widen the induction variables to avoid overflow checks.
644e8d8bef9SDimitry Andric   if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
645e8d8bef9SDimitry Andric     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
646e8d8bef9SDimitry Andric 
647e8d8bef9SDimitry Andric   // Check if the new iteration variable might overflow. In this case, we
648e8d8bef9SDimitry Andric   // need to version the loop, and select the original version at runtime if
649e8d8bef9SDimitry Andric   // the iteration space is too large.
650e8d8bef9SDimitry Andric   // TODO: We currently don't version the loop.
651e8d8bef9SDimitry Andric   OverflowResult OR = checkOverflow(FI, DT, AC);
652e8d8bef9SDimitry Andric   if (OR == OverflowResult::AlwaysOverflowsHigh ||
653e8d8bef9SDimitry Andric       OR == OverflowResult::AlwaysOverflowsLow) {
654e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
655e8d8bef9SDimitry Andric     return false;
656e8d8bef9SDimitry Andric   } else if (OR == OverflowResult::MayOverflow) {
657e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
658e8d8bef9SDimitry Andric     return false;
659e8d8bef9SDimitry Andric   }
660e8d8bef9SDimitry Andric 
661e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
662e8d8bef9SDimitry Andric   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
663e8d8bef9SDimitry Andric }
664e8d8bef9SDimitry Andric 
665*fe6060f1SDimitry Andric bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
666e8d8bef9SDimitry Andric              AssumptionCache *AC, TargetTransformInfo *TTI) {
667e8d8bef9SDimitry Andric   bool Changed = false;
668*fe6060f1SDimitry Andric   for (Loop *InnerLoop : LN.getLoops()) {
669e8d8bef9SDimitry Andric     auto *OuterLoop = InnerLoop->getParentLoop();
670e8d8bef9SDimitry Andric     if (!OuterLoop)
671e8d8bef9SDimitry Andric       continue;
672*fe6060f1SDimitry Andric     FlattenInfo FI(OuterLoop, InnerLoop);
673e8d8bef9SDimitry Andric     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
674e8d8bef9SDimitry Andric   }
675e8d8bef9SDimitry Andric   return Changed;
676e8d8bef9SDimitry Andric }
677e8d8bef9SDimitry Andric 
678*fe6060f1SDimitry Andric PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
679*fe6060f1SDimitry Andric                                        LoopStandardAnalysisResults &AR,
680*fe6060f1SDimitry Andric                                        LPMUpdater &U) {
681e8d8bef9SDimitry Andric 
682*fe6060f1SDimitry Andric   bool Changed = false;
683*fe6060f1SDimitry Andric 
684*fe6060f1SDimitry Andric   // The loop flattening pass requires loops to be
685*fe6060f1SDimitry Andric   // in simplified form, and also needs LCSSA. Running
686*fe6060f1SDimitry Andric   // this pass will simplify all loops that contain inner loops,
687*fe6060f1SDimitry Andric   // regardless of whether anything ends up being flattened.
688*fe6060f1SDimitry Andric   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI);
689*fe6060f1SDimitry Andric 
690*fe6060f1SDimitry Andric   if (!Changed)
691e8d8bef9SDimitry Andric     return PreservedAnalyses::all();
692e8d8bef9SDimitry Andric 
693*fe6060f1SDimitry Andric   return PreservedAnalyses::none();
694e8d8bef9SDimitry Andric }
695e8d8bef9SDimitry Andric 
696e8d8bef9SDimitry Andric namespace {
697e8d8bef9SDimitry Andric class LoopFlattenLegacyPass : public FunctionPass {
698e8d8bef9SDimitry Andric public:
699e8d8bef9SDimitry Andric   static char ID; // Pass ID, replacement for typeid
700e8d8bef9SDimitry Andric   LoopFlattenLegacyPass() : FunctionPass(ID) {
701e8d8bef9SDimitry Andric     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
702e8d8bef9SDimitry Andric   }
703e8d8bef9SDimitry Andric 
704e8d8bef9SDimitry Andric   // Possibly flatten loop L into its child.
705e8d8bef9SDimitry Andric   bool runOnFunction(Function &F) override;
706e8d8bef9SDimitry Andric 
707e8d8bef9SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
708e8d8bef9SDimitry Andric     getLoopAnalysisUsage(AU);
709e8d8bef9SDimitry Andric     AU.addRequired<TargetTransformInfoWrapperPass>();
710e8d8bef9SDimitry Andric     AU.addPreserved<TargetTransformInfoWrapperPass>();
711e8d8bef9SDimitry Andric     AU.addRequired<AssumptionCacheTracker>();
712e8d8bef9SDimitry Andric     AU.addPreserved<AssumptionCacheTracker>();
713e8d8bef9SDimitry Andric   }
714e8d8bef9SDimitry Andric };
715e8d8bef9SDimitry Andric } // namespace
716e8d8bef9SDimitry Andric 
717e8d8bef9SDimitry Andric char LoopFlattenLegacyPass::ID = 0;
718e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
719e8d8bef9SDimitry Andric                       false, false)
720e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
721e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
722e8d8bef9SDimitry Andric INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
723e8d8bef9SDimitry Andric                     false, false)
724e8d8bef9SDimitry Andric 
725e8d8bef9SDimitry Andric FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
726e8d8bef9SDimitry Andric 
727e8d8bef9SDimitry Andric bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
728e8d8bef9SDimitry Andric   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
729e8d8bef9SDimitry Andric   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
730e8d8bef9SDimitry Andric   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
731e8d8bef9SDimitry Andric   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
732e8d8bef9SDimitry Andric   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
733e8d8bef9SDimitry Andric   auto *TTI = &TTIP.getTTI(F);
734e8d8bef9SDimitry Andric   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
735*fe6060f1SDimitry Andric   bool Changed = false;
736*fe6060f1SDimitry Andric   for (Loop *L : *LI) {
737*fe6060f1SDimitry Andric     auto LN = LoopNest::getLoopNest(*L, *SE);
738*fe6060f1SDimitry Andric     Changed |= Flatten(*LN, DT, LI, SE, AC, TTI);
739*fe6060f1SDimitry Andric   }
740*fe6060f1SDimitry Andric   return Changed;
741e8d8bef9SDimitry Andric }
742