xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision bdd1243df58e60e85101c09001d9812a789b6bc4)
1e8d8bef9SDimitry Andric //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric //
9e8d8bef9SDimitry Andric // This pass flattens pairs nested loops into a single loop.
10e8d8bef9SDimitry Andric //
11e8d8bef9SDimitry Andric // The intention is to optimise loop nests like this, which together access an
12e8d8bef9SDimitry Andric // array linearly:
1304eeddc0SDimitry Andric //
14e8d8bef9SDimitry Andric //   for (int i = 0; i < N; ++i)
15e8d8bef9SDimitry Andric //     for (int j = 0; j < M; ++j)
16e8d8bef9SDimitry Andric //       f(A[i*M+j]);
1704eeddc0SDimitry Andric //
18e8d8bef9SDimitry Andric // into one loop:
1904eeddc0SDimitry Andric //
20e8d8bef9SDimitry Andric //   for (int i = 0; i < (N*M); ++i)
21e8d8bef9SDimitry Andric //     f(A[i]);
22e8d8bef9SDimitry Andric //
23e8d8bef9SDimitry Andric // It can also flatten loops where the induction variables are not used in the
24e8d8bef9SDimitry Andric // loop. This is only worth doing if the induction variables are only used in an
25e8d8bef9SDimitry Andric // expression like i*M+j. If they had any other uses, we would have to insert a
26e8d8bef9SDimitry Andric // div/mod to reconstruct the original values, so this wouldn't be profitable.
27e8d8bef9SDimitry Andric //
2804eeddc0SDimitry Andric // We also need to prove that N*M will not overflow. The preferred solution is
2904eeddc0SDimitry Andric // to widen the IV, which avoids overflow checks, so that is tried first. If
3004eeddc0SDimitry Andric // the IV cannot be widened, then we try to determine that this new tripcount
3104eeddc0SDimitry Andric // expression won't overflow.
3204eeddc0SDimitry Andric //
3304eeddc0SDimitry Andric // Q: Does LoopFlatten use SCEV?
3404eeddc0SDimitry Andric // Short answer: Yes and no.
3504eeddc0SDimitry Andric //
3604eeddc0SDimitry Andric // Long answer:
3704eeddc0SDimitry Andric // For this transformation to be valid, we require all uses of the induction
3804eeddc0SDimitry Andric // variables to be linear expressions of the form i*M+j. The different Loop
3904eeddc0SDimitry Andric // APIs are used to get some loop components like the induction variable,
4004eeddc0SDimitry Andric // compare statement, etc. In addition, we do some pattern matching to find the
4104eeddc0SDimitry Andric // linear expressions and other loop components like the loop increment. The
4204eeddc0SDimitry Andric // latter are examples of expressions that do use the induction variable, but
4304eeddc0SDimitry Andric // are safe to ignore when we check all uses to be of the form i*M+j. We keep
4404eeddc0SDimitry Andric // track of all of this in bookkeeping struct FlattenInfo.
4504eeddc0SDimitry Andric // We assume the loops to be canonical, i.e. starting at 0 and increment with
4604eeddc0SDimitry Andric // 1. This makes RHS of the compare the loop tripcount (with the right
4704eeddc0SDimitry Andric // predicate). We use SCEV to then sanity check that this tripcount matches
4804eeddc0SDimitry Andric // with the tripcount as computed by SCEV.
49e8d8bef9SDimitry Andric //
50e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
51e8d8bef9SDimitry Andric 
52e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/LoopFlatten.h"
53349cc55cSDimitry Andric 
54349cc55cSDimitry Andric #include "llvm/ADT/Statistic.h"
55e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
56e8d8bef9SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
5781ad6265SDimitry Andric #include "llvm/Analysis/LoopNestAnalysis.h"
5804eeddc0SDimitry Andric #include "llvm/Analysis/MemorySSAUpdater.h"
59e8d8bef9SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60e8d8bef9SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h"
61e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
62e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
63e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h"
64e8d8bef9SDimitry Andric #include "llvm/IR/Function.h"
65e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h"
66e8d8bef9SDimitry Andric #include "llvm/IR/Module.h"
67e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h"
68e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h"
69e8d8bef9SDimitry Andric #include "llvm/Pass.h"
70e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h"
71e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h"
72e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar.h"
7381ad6265SDimitry Andric #include "llvm/Transforms/Scalar/LoopPassManager.h"
74e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
75e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
76e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
77e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/SimplifyIndVar.h"
78*bdd1243dSDimitry Andric #include <optional>
79e8d8bef9SDimitry Andric 
80e8d8bef9SDimitry Andric using namespace llvm;
81e8d8bef9SDimitry Andric using namespace llvm::PatternMatch;
82e8d8bef9SDimitry Andric 
83349cc55cSDimitry Andric #define DEBUG_TYPE "loop-flatten"
84349cc55cSDimitry Andric 
85349cc55cSDimitry Andric STATISTIC(NumFlattened, "Number of loops flattened");
86349cc55cSDimitry Andric 
87e8d8bef9SDimitry Andric static cl::opt<unsigned> RepeatedInstructionThreshold(
88e8d8bef9SDimitry Andric     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
89e8d8bef9SDimitry Andric     cl::desc("Limit on the cost of instructions that can be repeated due to "
90e8d8bef9SDimitry Andric              "loop flattening"));
91e8d8bef9SDimitry Andric 
92e8d8bef9SDimitry Andric static cl::opt<bool>
93e8d8bef9SDimitry Andric     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
94e8d8bef9SDimitry Andric                      cl::init(false),
95e8d8bef9SDimitry Andric                      cl::desc("Assume that the product of the two iteration "
96fe6060f1SDimitry Andric                               "trip counts will never overflow"));
97e8d8bef9SDimitry Andric 
98e8d8bef9SDimitry Andric static cl::opt<bool>
9904eeddc0SDimitry Andric     WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
100e8d8bef9SDimitry Andric             cl::desc("Widen the loop induction variables, if possible, so "
101e8d8bef9SDimitry Andric                      "overflow checks won't reject flattening"));
102e8d8bef9SDimitry Andric 
103*bdd1243dSDimitry Andric namespace {
10404eeddc0SDimitry Andric // We require all uses of both induction variables to match this pattern:
10504eeddc0SDimitry Andric //
10604eeddc0SDimitry Andric //   (OuterPHI * InnerTripCount) + InnerPHI
10704eeddc0SDimitry Andric //
10804eeddc0SDimitry Andric // I.e., it needs to be a linear expression of the induction variables and the
10904eeddc0SDimitry Andric // inner loop trip count. We keep track of all different expressions on which
11004eeddc0SDimitry Andric // checks will be performed in this bookkeeping struct.
11104eeddc0SDimitry Andric //
112e8d8bef9SDimitry Andric struct FlattenInfo {
11304eeddc0SDimitry Andric   Loop *OuterLoop = nullptr;  // The loop pair to be flattened.
114e8d8bef9SDimitry Andric   Loop *InnerLoop = nullptr;
11504eeddc0SDimitry Andric 
11604eeddc0SDimitry Andric   PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
11704eeddc0SDimitry Andric   PHINode *OuterInductionPHI = nullptr; // induction variables, which are
11804eeddc0SDimitry Andric                                         // expected to start at zero and
11904eeddc0SDimitry Andric                                         // increment by one on each loop.
12004eeddc0SDimitry Andric 
12104eeddc0SDimitry Andric   Value *InnerTripCount = nullptr; // The product of these two tripcounts
12204eeddc0SDimitry Andric   Value *OuterTripCount = nullptr; // will be the new flattened loop
12304eeddc0SDimitry Andric                                    // tripcount. Also used to recognise a
12404eeddc0SDimitry Andric                                    // linear expression that will be replaced.
12504eeddc0SDimitry Andric 
12604eeddc0SDimitry Andric   SmallPtrSet<Value *, 4> LinearIVUses;  // Contains the linear expressions
12704eeddc0SDimitry Andric                                          // of the form i*M+j that will be
12804eeddc0SDimitry Andric                                          // replaced.
12904eeddc0SDimitry Andric 
13004eeddc0SDimitry Andric   BinaryOperator *InnerIncrement = nullptr;  // Uses of induction variables in
13104eeddc0SDimitry Andric   BinaryOperator *OuterIncrement = nullptr;  // loop control statements that
13204eeddc0SDimitry Andric   BranchInst *InnerBranch = nullptr;         // are safe to ignore.
13304eeddc0SDimitry Andric 
13404eeddc0SDimitry Andric   BranchInst *OuterBranch = nullptr; // The instruction that needs to be
13504eeddc0SDimitry Andric                                      // updated with new tripcount.
13604eeddc0SDimitry Andric 
137e8d8bef9SDimitry Andric   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
138e8d8bef9SDimitry Andric 
13904eeddc0SDimitry Andric   bool Widened = false; // Whether this holds the flatten info before or after
14004eeddc0SDimitry Andric                         // widening.
141e8d8bef9SDimitry Andric 
14204eeddc0SDimitry Andric   PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
14304eeddc0SDimitry Andric   PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
144*bdd1243dSDimitry Andric                                               // has been applied. Used to skip
14504eeddc0SDimitry Andric                                               // checks on phi nodes.
146349cc55cSDimitry Andric 
147e8d8bef9SDimitry Andric   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
148349cc55cSDimitry Andric 
149349cc55cSDimitry Andric   bool isNarrowInductionPhi(PHINode *Phi) {
150349cc55cSDimitry Andric     // This can't be the narrow phi if we haven't widened the IV first.
151349cc55cSDimitry Andric     if (!Widened)
152349cc55cSDimitry Andric       return false;
153349cc55cSDimitry Andric     return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
154349cc55cSDimitry Andric   }
15504eeddc0SDimitry Andric   bool isInnerLoopIncrement(User *U) {
15604eeddc0SDimitry Andric     return InnerIncrement == U;
15704eeddc0SDimitry Andric   }
15804eeddc0SDimitry Andric   bool isOuterLoopIncrement(User *U) {
15904eeddc0SDimitry Andric     return OuterIncrement == U;
16004eeddc0SDimitry Andric   }
16104eeddc0SDimitry Andric   bool isInnerLoopTest(User *U) {
16204eeddc0SDimitry Andric     return InnerBranch->getCondition() == U;
16304eeddc0SDimitry Andric   }
16404eeddc0SDimitry Andric 
16504eeddc0SDimitry Andric   bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
16604eeddc0SDimitry Andric     for (User *U : OuterInductionPHI->users()) {
16704eeddc0SDimitry Andric       if (isOuterLoopIncrement(U))
16804eeddc0SDimitry Andric         continue;
16904eeddc0SDimitry Andric 
17004eeddc0SDimitry Andric       auto IsValidOuterPHIUses = [&] (User *U) -> bool {
17104eeddc0SDimitry Andric         LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
17204eeddc0SDimitry Andric         if (!ValidOuterPHIUses.count(U)) {
17304eeddc0SDimitry Andric           LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
17404eeddc0SDimitry Andric           return false;
17504eeddc0SDimitry Andric         }
17604eeddc0SDimitry Andric         LLVM_DEBUG(dbgs() << "Use is optimisable\n");
17704eeddc0SDimitry Andric         return true;
17804eeddc0SDimitry Andric       };
17904eeddc0SDimitry Andric 
18004eeddc0SDimitry Andric       if (auto *V = dyn_cast<TruncInst>(U)) {
18104eeddc0SDimitry Andric         for (auto *K : V->users()) {
18204eeddc0SDimitry Andric           if (!IsValidOuterPHIUses(K))
18304eeddc0SDimitry Andric             return false;
18404eeddc0SDimitry Andric         }
18504eeddc0SDimitry Andric         continue;
18604eeddc0SDimitry Andric       }
18704eeddc0SDimitry Andric 
18804eeddc0SDimitry Andric       if (!IsValidOuterPHIUses(U))
18904eeddc0SDimitry Andric         return false;
19004eeddc0SDimitry Andric     }
19104eeddc0SDimitry Andric     return true;
19204eeddc0SDimitry Andric   }
19304eeddc0SDimitry Andric 
19404eeddc0SDimitry Andric   bool matchLinearIVUser(User *U, Value *InnerTripCount,
19504eeddc0SDimitry Andric                          SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
196*bdd1243dSDimitry Andric     LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump());
19704eeddc0SDimitry Andric     Value *MatchedMul = nullptr;
19804eeddc0SDimitry Andric     Value *MatchedItCount = nullptr;
19904eeddc0SDimitry Andric 
20004eeddc0SDimitry Andric     bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
20104eeddc0SDimitry Andric                                   m_Value(MatchedMul))) &&
20204eeddc0SDimitry Andric                  match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
20304eeddc0SDimitry Andric                                            m_Value(MatchedItCount)));
20404eeddc0SDimitry Andric 
20504eeddc0SDimitry Andric     // Matches the same pattern as above, except it also looks for truncs
20604eeddc0SDimitry Andric     // on the phi, which can be the result of widening the induction variables.
20704eeddc0SDimitry Andric     bool IsAddTrunc =
20804eeddc0SDimitry Andric         match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
20904eeddc0SDimitry Andric                          m_Value(MatchedMul))) &&
21004eeddc0SDimitry Andric         match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
21104eeddc0SDimitry Andric                                   m_Value(MatchedItCount)));
21204eeddc0SDimitry Andric 
21304eeddc0SDimitry Andric     if (!MatchedItCount)
21404eeddc0SDimitry Andric       return false;
21504eeddc0SDimitry Andric 
216*bdd1243dSDimitry Andric     LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump());
217*bdd1243dSDimitry Andric     LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump());
218*bdd1243dSDimitry Andric 
219*bdd1243dSDimitry Andric     // The mul should not have any other uses. Widening may leave trivially dead
220*bdd1243dSDimitry Andric     // uses, which can be ignored.
221*bdd1243dSDimitry Andric     if (count_if(MatchedMul->users(), [](User *U) {
222*bdd1243dSDimitry Andric           return !isInstructionTriviallyDead(cast<Instruction>(U));
223*bdd1243dSDimitry Andric         }) > 1) {
224*bdd1243dSDimitry Andric       LLVM_DEBUG(dbgs() << "Multiply has more than one use\n");
225*bdd1243dSDimitry Andric       return false;
226*bdd1243dSDimitry Andric     }
227*bdd1243dSDimitry Andric 
22881ad6265SDimitry Andric     // Look through extends if the IV has been widened. Don't look through
22981ad6265SDimitry Andric     // extends if we already looked through a trunc.
23081ad6265SDimitry Andric     if (Widened && IsAdd &&
23104eeddc0SDimitry Andric         (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
23204eeddc0SDimitry Andric       assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
23304eeddc0SDimitry Andric              "Unexpected type mismatch in types after widening");
23404eeddc0SDimitry Andric       MatchedItCount = isa<SExtInst>(MatchedItCount)
23504eeddc0SDimitry Andric                            ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
23604eeddc0SDimitry Andric                            : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
23704eeddc0SDimitry Andric     }
23804eeddc0SDimitry Andric 
239*bdd1243dSDimitry Andric     LLVM_DEBUG(dbgs() << "Looking for inner trip count: ";
240*bdd1243dSDimitry Andric                InnerTripCount->dump());
241*bdd1243dSDimitry Andric 
24204eeddc0SDimitry Andric     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
243*bdd1243dSDimitry Andric       LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n");
24404eeddc0SDimitry Andric       ValidOuterPHIUses.insert(MatchedMul);
24504eeddc0SDimitry Andric       LinearIVUses.insert(U);
24604eeddc0SDimitry Andric       return true;
24704eeddc0SDimitry Andric     }
24804eeddc0SDimitry Andric 
24904eeddc0SDimitry Andric     LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
25004eeddc0SDimitry Andric     return false;
25104eeddc0SDimitry Andric   }
25204eeddc0SDimitry Andric 
25304eeddc0SDimitry Andric   bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
25404eeddc0SDimitry Andric     Value *SExtInnerTripCount = InnerTripCount;
25504eeddc0SDimitry Andric     if (Widened &&
25604eeddc0SDimitry Andric         (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
25704eeddc0SDimitry Andric       SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
25804eeddc0SDimitry Andric 
25904eeddc0SDimitry Andric     for (User *U : InnerInductionPHI->users()) {
260*bdd1243dSDimitry Andric       LLVM_DEBUG(dbgs() << "Checking User: "; U->dump());
261*bdd1243dSDimitry Andric       if (isInnerLoopIncrement(U)) {
262*bdd1243dSDimitry Andric         LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n");
26304eeddc0SDimitry Andric         continue;
264*bdd1243dSDimitry Andric       }
26504eeddc0SDimitry Andric 
26604eeddc0SDimitry Andric       // After widening the IVs, a trunc instruction might have been introduced,
26704eeddc0SDimitry Andric       // so look through truncs.
26804eeddc0SDimitry Andric       if (isa<TruncInst>(U)) {
26904eeddc0SDimitry Andric         if (!U->hasOneUse())
27004eeddc0SDimitry Andric           return false;
27104eeddc0SDimitry Andric         U = *U->user_begin();
27204eeddc0SDimitry Andric       }
27304eeddc0SDimitry Andric 
27404eeddc0SDimitry Andric       // If the use is in the compare (which is also the condition of the inner
27504eeddc0SDimitry Andric       // branch) then the compare has been altered by another transformation e.g
27604eeddc0SDimitry Andric       // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
27704eeddc0SDimitry Andric       // a constant. Ignore this use as the compare gets removed later anyway.
278*bdd1243dSDimitry Andric       if (isInnerLoopTest(U)) {
279*bdd1243dSDimitry Andric         LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n");
28004eeddc0SDimitry Andric         continue;
281*bdd1243dSDimitry Andric       }
28204eeddc0SDimitry Andric 
283*bdd1243dSDimitry Andric       if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) {
284*bdd1243dSDimitry Andric         LLVM_DEBUG(dbgs() << "Not a linear IV user\n");
28504eeddc0SDimitry Andric         return false;
28604eeddc0SDimitry Andric       }
287*bdd1243dSDimitry Andric       LLVM_DEBUG(dbgs() << "Linear IV users found!\n");
288*bdd1243dSDimitry Andric     }
28904eeddc0SDimitry Andric     return true;
29004eeddc0SDimitry Andric   }
291e8d8bef9SDimitry Andric };
292*bdd1243dSDimitry Andric } // namespace
293e8d8bef9SDimitry Andric 
294349cc55cSDimitry Andric static bool
295349cc55cSDimitry Andric setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
296349cc55cSDimitry Andric                   SmallPtrSetImpl<Instruction *> &IterationInstructions) {
297349cc55cSDimitry Andric   TripCount = TC;
298349cc55cSDimitry Andric   IterationInstructions.insert(Increment);
299349cc55cSDimitry Andric   LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
300349cc55cSDimitry Andric   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
301349cc55cSDimitry Andric   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
302349cc55cSDimitry Andric   return true;
303349cc55cSDimitry Andric }
304349cc55cSDimitry Andric 
30504eeddc0SDimitry Andric // Given the RHS of the loop latch compare instruction, verify with SCEV
30604eeddc0SDimitry Andric // that this is indeed the loop tripcount.
30704eeddc0SDimitry Andric // TODO: This used to be a straightforward check but has grown to be quite
30804eeddc0SDimitry Andric // complicated now. It is therefore worth revisiting what the additional
30904eeddc0SDimitry Andric // benefits are of this (compared to relying on canonical loops and pattern
31004eeddc0SDimitry Andric // matching).
31104eeddc0SDimitry Andric static bool verifyTripCount(Value *RHS, Loop *L,
31204eeddc0SDimitry Andric      SmallPtrSetImpl<Instruction *> &IterationInstructions,
31304eeddc0SDimitry Andric     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
31404eeddc0SDimitry Andric     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
31504eeddc0SDimitry Andric   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
31604eeddc0SDimitry Andric   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
31704eeddc0SDimitry Andric     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
31804eeddc0SDimitry Andric     return false;
31904eeddc0SDimitry Andric   }
32004eeddc0SDimitry Andric 
32104eeddc0SDimitry Andric   // The Extend=false flag is used for getTripCountFromExitCount as we want
32204eeddc0SDimitry Andric   // to verify and match it with the pattern matched tripcount. Please note
32304eeddc0SDimitry Andric   // that overflow checks are performed in checkOverflow, but are first tried
32404eeddc0SDimitry Andric   // to avoid by widening the IV.
32504eeddc0SDimitry Andric   const SCEV *SCEVTripCount =
32604eeddc0SDimitry Andric       SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false);
32704eeddc0SDimitry Andric 
32804eeddc0SDimitry Andric   const SCEV *SCEVRHS = SE->getSCEV(RHS);
32904eeddc0SDimitry Andric   if (SCEVRHS == SCEVTripCount)
33004eeddc0SDimitry Andric     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
33104eeddc0SDimitry Andric   ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
33204eeddc0SDimitry Andric   if (ConstantRHS) {
33304eeddc0SDimitry Andric     const SCEV *BackedgeTCExt = nullptr;
33404eeddc0SDimitry Andric     if (IsWidened) {
33504eeddc0SDimitry Andric       const SCEV *SCEVTripCountExt;
33604eeddc0SDimitry Andric       // Find the extended backedge taken count and extended trip count using
33704eeddc0SDimitry Andric       // SCEV. One of these should now match the RHS of the compare.
33804eeddc0SDimitry Andric       BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
33904eeddc0SDimitry Andric       SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false);
34004eeddc0SDimitry Andric       if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
34104eeddc0SDimitry Andric         LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
34204eeddc0SDimitry Andric         return false;
34304eeddc0SDimitry Andric       }
34404eeddc0SDimitry Andric     }
34504eeddc0SDimitry Andric     // If the RHS of the compare is equal to the backedge taken count we need
34604eeddc0SDimitry Andric     // to add one to get the trip count.
34704eeddc0SDimitry Andric     if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
34804eeddc0SDimitry Andric       ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
34904eeddc0SDimitry Andric       Value *NewRHS = ConstantInt::get(
35004eeddc0SDimitry Andric           ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
35104eeddc0SDimitry Andric       return setLoopComponents(NewRHS, TripCount, Increment,
35204eeddc0SDimitry Andric                                IterationInstructions);
35304eeddc0SDimitry Andric     }
35404eeddc0SDimitry Andric     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
35504eeddc0SDimitry Andric   }
35604eeddc0SDimitry Andric   // If the RHS isn't a constant then check that the reason it doesn't match
35704eeddc0SDimitry Andric   // the SCEV trip count is because the RHS is a ZExt or SExt instruction
35804eeddc0SDimitry Andric   // (and take the trip count to be the RHS).
35904eeddc0SDimitry Andric   if (!IsWidened) {
36004eeddc0SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
36104eeddc0SDimitry Andric     return false;
36204eeddc0SDimitry Andric   }
36304eeddc0SDimitry Andric   auto *TripCountInst = dyn_cast<Instruction>(RHS);
36404eeddc0SDimitry Andric   if (!TripCountInst) {
36504eeddc0SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
36604eeddc0SDimitry Andric     return false;
36704eeddc0SDimitry Andric   }
36804eeddc0SDimitry Andric   if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
36904eeddc0SDimitry Andric       SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
37004eeddc0SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
37104eeddc0SDimitry Andric     return false;
37204eeddc0SDimitry Andric   }
37304eeddc0SDimitry Andric   return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
37404eeddc0SDimitry Andric }
37504eeddc0SDimitry Andric 
376fe6060f1SDimitry Andric // Finds the induction variable, increment and trip count for a simple loop that
377fe6060f1SDimitry Andric // we can flatten.
378e8d8bef9SDimitry Andric static bool findLoopComponents(
379e8d8bef9SDimitry Andric     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
380fe6060f1SDimitry Andric     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
381fe6060f1SDimitry Andric     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
382e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
383e8d8bef9SDimitry Andric 
384e8d8bef9SDimitry Andric   if (!L->isLoopSimplifyForm()) {
385e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
386e8d8bef9SDimitry Andric     return false;
387e8d8bef9SDimitry Andric   }
388e8d8bef9SDimitry Andric 
389fe6060f1SDimitry Andric   // Currently, to simplify the implementation, the Loop induction variable must
390fe6060f1SDimitry Andric   // start at zero and increment with a step size of one.
391fe6060f1SDimitry Andric   if (!L->isCanonical(*SE)) {
392fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
393fe6060f1SDimitry Andric     return false;
394fe6060f1SDimitry Andric   }
395fe6060f1SDimitry Andric 
396e8d8bef9SDimitry Andric   // There must be exactly one exiting block, and it must be the same at the
397e8d8bef9SDimitry Andric   // latch.
398e8d8bef9SDimitry Andric   BasicBlock *Latch = L->getLoopLatch();
399e8d8bef9SDimitry Andric   if (L->getExitingBlock() != Latch) {
400e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
401e8d8bef9SDimitry Andric     return false;
402e8d8bef9SDimitry Andric   }
403e8d8bef9SDimitry Andric 
404e8d8bef9SDimitry Andric   // Find the induction PHI. If there is no induction PHI, we can't do the
405e8d8bef9SDimitry Andric   // transformation. TODO: could other variables trigger this? Do we have to
406e8d8bef9SDimitry Andric   // search for the best one?
407fe6060f1SDimitry Andric   InductionPHI = L->getInductionVariable(*SE);
408e8d8bef9SDimitry Andric   if (!InductionPHI) {
409e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
410e8d8bef9SDimitry Andric     return false;
411e8d8bef9SDimitry Andric   }
412fe6060f1SDimitry Andric   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
413e8d8bef9SDimitry Andric 
414fe6060f1SDimitry Andric   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
415e8d8bef9SDimitry Andric   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
416e8d8bef9SDimitry Andric     if (ContinueOnTrue)
417e8d8bef9SDimitry Andric       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
418e8d8bef9SDimitry Andric     else
419e8d8bef9SDimitry Andric       return Pred == CmpInst::ICMP_EQ;
420e8d8bef9SDimitry Andric   };
421e8d8bef9SDimitry Andric 
422fe6060f1SDimitry Andric   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
423fe6060f1SDimitry Andric   // back branch of the latch is conditional.
424fe6060f1SDimitry Andric   ICmpInst *Compare = L->getLatchCmpInst();
425e8d8bef9SDimitry Andric   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
426e8d8bef9SDimitry Andric       Compare->hasNUsesOrMore(2)) {
427e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
428e8d8bef9SDimitry Andric     return false;
429e8d8bef9SDimitry Andric   }
430fe6060f1SDimitry Andric   BackBranch = cast<BranchInst>(Latch->getTerminator());
431fe6060f1SDimitry Andric   IterationInstructions.insert(BackBranch);
432fe6060f1SDimitry Andric   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
433e8d8bef9SDimitry Andric   IterationInstructions.insert(Compare);
434e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
435e8d8bef9SDimitry Andric 
436fe6060f1SDimitry Andric   // Find increment and trip count.
437fe6060f1SDimitry Andric   // There are exactly 2 incoming values to the induction phi; one from the
438fe6060f1SDimitry Andric   // pre-header and one from the latch. The incoming latch value is the
439fe6060f1SDimitry Andric   // increment variable.
440fe6060f1SDimitry Andric   Increment =
44181ad6265SDimitry Andric       cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
442*bdd1243dSDimitry Andric   if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) &&
443*bdd1243dSDimitry Andric       !Increment->hasNUses(1)) {
444fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
445e8d8bef9SDimitry Andric     return false;
446e8d8bef9SDimitry Andric   }
447fe6060f1SDimitry Andric   // The trip count is the RHS of the compare. If this doesn't match the trip
448349cc55cSDimitry Andric   // count computed by SCEV then this is because the trip count variable
449349cc55cSDimitry Andric   // has been widened so the types don't match, or because it is a constant and
450349cc55cSDimitry Andric   // another transformation has changed the compare (e.g. icmp ult %inc,
451349cc55cSDimitry Andric   // tripcount -> icmp ult %j, tripcount-1), or both.
452349cc55cSDimitry Andric   Value *RHS = Compare->getOperand(1);
45304eeddc0SDimitry Andric 
45404eeddc0SDimitry Andric   return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
45504eeddc0SDimitry Andric                          Increment, BackBranch, SE, IsWidened);
456e8d8bef9SDimitry Andric }
457e8d8bef9SDimitry Andric 
458fe6060f1SDimitry Andric static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
459e8d8bef9SDimitry Andric   // All PHIs in the inner and outer headers must either be:
460e8d8bef9SDimitry Andric   // - The induction PHI, which we are going to rewrite as one induction in
461e8d8bef9SDimitry Andric   //   the new loop. This is already checked by findLoopComponents.
462e8d8bef9SDimitry Andric   // - An outer header PHI with all incoming values from outside the loop.
463e8d8bef9SDimitry Andric   //   LoopSimplify guarantees we have a pre-header, so we don't need to
464e8d8bef9SDimitry Andric   //   worry about that here.
465e8d8bef9SDimitry Andric   // - Pairs of PHIs in the inner and outer headers, which implement a
466e8d8bef9SDimitry Andric   //   loop-carried dependency that will still be valid in the new loop. To
467e8d8bef9SDimitry Andric   //   be valid, this variable must be modified only in the inner loop.
468e8d8bef9SDimitry Andric 
469e8d8bef9SDimitry Andric   // The set of PHI nodes in the outer loop header that we know will still be
470e8d8bef9SDimitry Andric   // valid after the transformation. These will not need to be modified (with
471e8d8bef9SDimitry Andric   // the exception of the induction variable), but we do need to check that
472e8d8bef9SDimitry Andric   // there are no unsafe PHI nodes.
473e8d8bef9SDimitry Andric   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
474e8d8bef9SDimitry Andric   SafeOuterPHIs.insert(FI.OuterInductionPHI);
475e8d8bef9SDimitry Andric 
476e8d8bef9SDimitry Andric   // Check that all PHI nodes in the inner loop header match one of the valid
477e8d8bef9SDimitry Andric   // patterns.
478e8d8bef9SDimitry Andric   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
479e8d8bef9SDimitry Andric     // The induction PHIs break these rules, and that's OK because we treat
480e8d8bef9SDimitry Andric     // them specially when doing the transformation.
481e8d8bef9SDimitry Andric     if (&InnerPHI == FI.InnerInductionPHI)
482e8d8bef9SDimitry Andric       continue;
483349cc55cSDimitry Andric     if (FI.isNarrowInductionPhi(&InnerPHI))
484349cc55cSDimitry Andric       continue;
485e8d8bef9SDimitry Andric 
486e8d8bef9SDimitry Andric     // Each inner loop PHI node must have two incoming values/blocks - one
487e8d8bef9SDimitry Andric     // from the pre-header, and one from the latch.
488e8d8bef9SDimitry Andric     assert(InnerPHI.getNumIncomingValues() == 2);
489e8d8bef9SDimitry Andric     Value *PreHeaderValue =
490e8d8bef9SDimitry Andric         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
491e8d8bef9SDimitry Andric     Value *LatchValue =
492e8d8bef9SDimitry Andric         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
493e8d8bef9SDimitry Andric 
494e8d8bef9SDimitry Andric     // The incoming value from the outer loop must be the PHI node in the
495e8d8bef9SDimitry Andric     // outer loop header, with no modifications made in the top of the outer
496e8d8bef9SDimitry Andric     // loop.
497e8d8bef9SDimitry Andric     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
498e8d8bef9SDimitry Andric     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
499e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
500e8d8bef9SDimitry Andric       return false;
501e8d8bef9SDimitry Andric     }
502e8d8bef9SDimitry Andric 
503e8d8bef9SDimitry Andric     // The other incoming value must come from the inner loop, without any
504e8d8bef9SDimitry Andric     // modifications in the tail end of the outer loop. We are in LCSSA form,
505e8d8bef9SDimitry Andric     // so this will actually be a PHI in the inner loop's exit block, which
506e8d8bef9SDimitry Andric     // only uses values from inside the inner loop.
507e8d8bef9SDimitry Andric     PHINode *LCSSAPHI = dyn_cast<PHINode>(
508e8d8bef9SDimitry Andric         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
509e8d8bef9SDimitry Andric     if (!LCSSAPHI) {
510e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
511e8d8bef9SDimitry Andric       return false;
512e8d8bef9SDimitry Andric     }
513e8d8bef9SDimitry Andric 
514e8d8bef9SDimitry Andric     // The value used by the LCSSA PHI must be the same one that the inner
515e8d8bef9SDimitry Andric     // loop's PHI uses.
516e8d8bef9SDimitry Andric     if (LCSSAPHI->hasConstantValue() != LatchValue) {
517e8d8bef9SDimitry Andric       LLVM_DEBUG(
518e8d8bef9SDimitry Andric           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
519e8d8bef9SDimitry Andric       return false;
520e8d8bef9SDimitry Andric     }
521e8d8bef9SDimitry Andric 
522e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
523e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
524e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
525e8d8bef9SDimitry Andric     SafeOuterPHIs.insert(OuterPHI);
526e8d8bef9SDimitry Andric     FI.InnerPHIsToTransform.insert(&InnerPHI);
527e8d8bef9SDimitry Andric   }
528e8d8bef9SDimitry Andric 
529e8d8bef9SDimitry Andric   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
530349cc55cSDimitry Andric     if (FI.isNarrowInductionPhi(&OuterPHI))
531349cc55cSDimitry Andric       continue;
532e8d8bef9SDimitry Andric     if (!SafeOuterPHIs.count(&OuterPHI)) {
533e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
534e8d8bef9SDimitry Andric       return false;
535e8d8bef9SDimitry Andric     }
536e8d8bef9SDimitry Andric   }
537e8d8bef9SDimitry Andric 
538e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
539e8d8bef9SDimitry Andric   return true;
540e8d8bef9SDimitry Andric }
541e8d8bef9SDimitry Andric 
542e8d8bef9SDimitry Andric static bool
543fe6060f1SDimitry Andric checkOuterLoopInsts(FlattenInfo &FI,
544e8d8bef9SDimitry Andric                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
545e8d8bef9SDimitry Andric                     const TargetTransformInfo *TTI) {
546e8d8bef9SDimitry Andric   // Check for instructions in the outer but not inner loop. If any of these
547e8d8bef9SDimitry Andric   // have side-effects then this transformation is not legal, and if there is
548e8d8bef9SDimitry Andric   // a significant amount of code here which can't be optimised out that it's
549e8d8bef9SDimitry Andric   // not profitable (as these instructions would get executed for each
550e8d8bef9SDimitry Andric   // iteration of the inner loop).
551fe6060f1SDimitry Andric   InstructionCost RepeatedInstrCost = 0;
552e8d8bef9SDimitry Andric   for (auto *B : FI.OuterLoop->getBlocks()) {
553e8d8bef9SDimitry Andric     if (FI.InnerLoop->contains(B))
554e8d8bef9SDimitry Andric       continue;
555e8d8bef9SDimitry Andric 
556e8d8bef9SDimitry Andric     for (auto &I : *B) {
557e8d8bef9SDimitry Andric       if (!isa<PHINode>(&I) && !I.isTerminator() &&
558e8d8bef9SDimitry Andric           !isSafeToSpeculativelyExecute(&I)) {
559e8d8bef9SDimitry Andric         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
560e8d8bef9SDimitry Andric                              "side effects: ";
561e8d8bef9SDimitry Andric                    I.dump());
562e8d8bef9SDimitry Andric         return false;
563e8d8bef9SDimitry Andric       }
564e8d8bef9SDimitry Andric       // The execution count of the outer loop's iteration instructions
565e8d8bef9SDimitry Andric       // (increment, compare and branch) will be increased, but the
566e8d8bef9SDimitry Andric       // equivalent instructions will be removed from the inner loop, so
567e8d8bef9SDimitry Andric       // they make a net difference of zero.
568e8d8bef9SDimitry Andric       if (IterationInstructions.count(&I))
569e8d8bef9SDimitry Andric         continue;
570*bdd1243dSDimitry Andric       // The unconditional branch to the inner loop's header will turn into
571e8d8bef9SDimitry Andric       // a fall-through, so adds no cost.
572e8d8bef9SDimitry Andric       BranchInst *Br = dyn_cast<BranchInst>(&I);
573e8d8bef9SDimitry Andric       if (Br && Br->isUnconditional() &&
574e8d8bef9SDimitry Andric           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
575e8d8bef9SDimitry Andric         continue;
576e8d8bef9SDimitry Andric       // Multiplies of the outer iteration variable and inner iteration
577e8d8bef9SDimitry Andric       // count will be optimised out.
578e8d8bef9SDimitry Andric       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
579fe6060f1SDimitry Andric                             m_Specific(FI.InnerTripCount))))
580e8d8bef9SDimitry Andric         continue;
581fe6060f1SDimitry Andric       InstructionCost Cost =
582*bdd1243dSDimitry Andric           TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
583e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
584e8d8bef9SDimitry Andric       RepeatedInstrCost += Cost;
585e8d8bef9SDimitry Andric     }
586e8d8bef9SDimitry Andric   }
587e8d8bef9SDimitry Andric 
588e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
589e8d8bef9SDimitry Andric                     << RepeatedInstrCost << "\n");
590e8d8bef9SDimitry Andric   // Bail out if flattening the loops would cause instructions in the outer
591e8d8bef9SDimitry Andric   // loop but not in the inner loop to be executed extra times.
592e8d8bef9SDimitry Andric   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
593e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
594e8d8bef9SDimitry Andric     return false;
595e8d8bef9SDimitry Andric   }
596e8d8bef9SDimitry Andric 
597e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
598e8d8bef9SDimitry Andric   return true;
599e8d8bef9SDimitry Andric }
600e8d8bef9SDimitry Andric 
60104eeddc0SDimitry Andric 
60204eeddc0SDimitry Andric 
603e8d8bef9SDimitry Andric // We require all uses of both induction variables to match this pattern:
604e8d8bef9SDimitry Andric //
605fe6060f1SDimitry Andric //   (OuterPHI * InnerTripCount) + InnerPHI
606e8d8bef9SDimitry Andric //
607e8d8bef9SDimitry Andric // Any uses of the induction variables not matching that pattern would
608e8d8bef9SDimitry Andric // require a div/mod to reconstruct in the flattened loop, so the
609e8d8bef9SDimitry Andric // transformation wouldn't be profitable.
61004eeddc0SDimitry Andric static bool checkIVUsers(FlattenInfo &FI) {
611e8d8bef9SDimitry Andric   // Check that all uses of the inner loop's induction variable match the
612e8d8bef9SDimitry Andric   // expected pattern, recording the uses of the outer IV.
613e8d8bef9SDimitry Andric   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
61404eeddc0SDimitry Andric   if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
615e8d8bef9SDimitry Andric     return false;
616e8d8bef9SDimitry Andric 
617e8d8bef9SDimitry Andric   // Check that there are no uses of the outer IV other than the ones found
618e8d8bef9SDimitry Andric   // as part of the pattern above.
61904eeddc0SDimitry Andric   if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
620e8d8bef9SDimitry Andric     return false;
621e8d8bef9SDimitry Andric 
622e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
623e8d8bef9SDimitry Andric              dbgs() << "Found " << FI.LinearIVUses.size()
624e8d8bef9SDimitry Andric                     << " value(s) that can be replaced:\n";
625e8d8bef9SDimitry Andric              for (Value *V : FI.LinearIVUses) {
626e8d8bef9SDimitry Andric                dbgs() << "  ";
627e8d8bef9SDimitry Andric                V->dump();
628e8d8bef9SDimitry Andric              });
629e8d8bef9SDimitry Andric   return true;
630e8d8bef9SDimitry Andric }
631e8d8bef9SDimitry Andric 
632e8d8bef9SDimitry Andric // Return an OverflowResult dependant on if overflow of the multiplication of
633fe6060f1SDimitry Andric // InnerTripCount and OuterTripCount can be assumed not to happen.
634fe6060f1SDimitry Andric static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
635fe6060f1SDimitry Andric                                     AssumptionCache *AC) {
636e8d8bef9SDimitry Andric   Function *F = FI.OuterLoop->getHeader()->getParent();
637e8d8bef9SDimitry Andric   const DataLayout &DL = F->getParent()->getDataLayout();
638e8d8bef9SDimitry Andric 
639e8d8bef9SDimitry Andric   // For debugging/testing.
640e8d8bef9SDimitry Andric   if (AssumeNoOverflow)
641e8d8bef9SDimitry Andric     return OverflowResult::NeverOverflows;
642e8d8bef9SDimitry Andric 
643e8d8bef9SDimitry Andric   // Check if the multiply could not overflow due to known ranges of the
644e8d8bef9SDimitry Andric   // input values.
645e8d8bef9SDimitry Andric   OverflowResult OR = computeOverflowForUnsignedMul(
646fe6060f1SDimitry Andric       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
647e8d8bef9SDimitry Andric       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
648e8d8bef9SDimitry Andric   if (OR != OverflowResult::MayOverflow)
649e8d8bef9SDimitry Andric     return OR;
650e8d8bef9SDimitry Andric 
651e8d8bef9SDimitry Andric   for (Value *V : FI.LinearIVUses) {
652e8d8bef9SDimitry Andric     for (Value *U : V->users()) {
653e8d8bef9SDimitry Andric       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
654349cc55cSDimitry Andric         for (Value *GEPUser : U->users()) {
65504eeddc0SDimitry Andric           auto *GEPUserInst = cast<Instruction>(GEPUser);
656349cc55cSDimitry Andric           if (!isa<LoadInst>(GEPUserInst) &&
657349cc55cSDimitry Andric               !(isa<StoreInst>(GEPUserInst) &&
658349cc55cSDimitry Andric                 GEP == GEPUserInst->getOperand(1)))
659349cc55cSDimitry Andric             continue;
660349cc55cSDimitry Andric           if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
661349cc55cSDimitry Andric                                                       FI.InnerLoop))
662349cc55cSDimitry Andric             continue;
663349cc55cSDimitry Andric           // The IV is used as the operand of a GEP which dominates the loop
664349cc55cSDimitry Andric           // latch, and the IV is at least as wide as the address space of the
665349cc55cSDimitry Andric           // GEP. In this case, the GEP would wrap around the address space
666349cc55cSDimitry Andric           // before the IV increment wraps, which would be UB.
667e8d8bef9SDimitry Andric           if (GEP->isInBounds() &&
668e8d8bef9SDimitry Andric               V->getType()->getIntegerBitWidth() >=
669e8d8bef9SDimitry Andric                   DL.getPointerTypeSizeInBits(GEP->getType())) {
670e8d8bef9SDimitry Andric             LLVM_DEBUG(
671e8d8bef9SDimitry Andric                 dbgs() << "use of linear IV would be UB if overflow occurred: ";
672e8d8bef9SDimitry Andric                 GEP->dump());
673e8d8bef9SDimitry Andric             return OverflowResult::NeverOverflows;
674e8d8bef9SDimitry Andric           }
675e8d8bef9SDimitry Andric         }
676e8d8bef9SDimitry Andric       }
677e8d8bef9SDimitry Andric     }
678349cc55cSDimitry Andric   }
679e8d8bef9SDimitry Andric 
680e8d8bef9SDimitry Andric   return OverflowResult::MayOverflow;
681e8d8bef9SDimitry Andric }
682e8d8bef9SDimitry Andric 
683fe6060f1SDimitry Andric static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
684fe6060f1SDimitry Andric                                ScalarEvolution *SE, AssumptionCache *AC,
685fe6060f1SDimitry Andric                                const TargetTransformInfo *TTI) {
686e8d8bef9SDimitry Andric   SmallPtrSet<Instruction *, 8> IterationInstructions;
687fe6060f1SDimitry Andric   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
688fe6060f1SDimitry Andric                           FI.InnerInductionPHI, FI.InnerTripCount,
689fe6060f1SDimitry Andric                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
690e8d8bef9SDimitry Andric     return false;
691fe6060f1SDimitry Andric   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
692fe6060f1SDimitry Andric                           FI.OuterInductionPHI, FI.OuterTripCount,
693fe6060f1SDimitry Andric                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
694e8d8bef9SDimitry Andric     return false;
695e8d8bef9SDimitry Andric 
696fe6060f1SDimitry Andric   // Both of the loop trip count values must be invariant in the outer loop
697e8d8bef9SDimitry Andric   // (non-instructions are all inherently invariant).
698fe6060f1SDimitry Andric   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
699fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
700e8d8bef9SDimitry Andric     return false;
701e8d8bef9SDimitry Andric   }
702fe6060f1SDimitry Andric   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
703fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
704e8d8bef9SDimitry Andric     return false;
705e8d8bef9SDimitry Andric   }
706e8d8bef9SDimitry Andric 
707e8d8bef9SDimitry Andric   if (!checkPHIs(FI, TTI))
708e8d8bef9SDimitry Andric     return false;
709e8d8bef9SDimitry Andric 
710e8d8bef9SDimitry Andric   // FIXME: it should be possible to handle different types correctly.
711e8d8bef9SDimitry Andric   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
712e8d8bef9SDimitry Andric     return false;
713e8d8bef9SDimitry Andric 
714e8d8bef9SDimitry Andric   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
715e8d8bef9SDimitry Andric     return false;
716e8d8bef9SDimitry Andric 
717e8d8bef9SDimitry Andric   // Find the values in the loop that can be replaced with the linearized
718e8d8bef9SDimitry Andric   // induction variable, and check that there are no other uses of the inner
719e8d8bef9SDimitry Andric   // or outer induction variable. If there were, we could still do this
720e8d8bef9SDimitry Andric   // transformation, but we'd have to insert a div/mod to calculate the
721e8d8bef9SDimitry Andric   // original IVs, so it wouldn't be profitable.
722e8d8bef9SDimitry Andric   if (!checkIVUsers(FI))
723e8d8bef9SDimitry Andric     return false;
724e8d8bef9SDimitry Andric 
725e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
726e8d8bef9SDimitry Andric   return true;
727e8d8bef9SDimitry Andric }
728e8d8bef9SDimitry Andric 
729fe6060f1SDimitry Andric static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
730fe6060f1SDimitry Andric                               ScalarEvolution *SE, AssumptionCache *AC,
73104eeddc0SDimitry Andric                               const TargetTransformInfo *TTI, LPMUpdater *U,
73204eeddc0SDimitry Andric                               MemorySSAUpdater *MSSAU) {
733e8d8bef9SDimitry Andric   Function *F = FI.OuterLoop->getHeader()->getParent();
734e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
735e8d8bef9SDimitry Andric   {
736e8d8bef9SDimitry Andric     using namespace ore;
737e8d8bef9SDimitry Andric     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
738e8d8bef9SDimitry Andric                               FI.InnerLoop->getHeader());
739e8d8bef9SDimitry Andric     OptimizationRemarkEmitter ORE(F);
740e8d8bef9SDimitry Andric     Remark << "Flattened into outer loop";
741e8d8bef9SDimitry Andric     ORE.emit(Remark);
742e8d8bef9SDimitry Andric   }
743e8d8bef9SDimitry Andric 
744fe6060f1SDimitry Andric   Value *NewTripCount = BinaryOperator::CreateMul(
745fe6060f1SDimitry Andric       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
746e8d8bef9SDimitry Andric       FI.OuterLoop->getLoopPreheader()->getTerminator());
747e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
748e8d8bef9SDimitry Andric              NewTripCount->dump());
749e8d8bef9SDimitry Andric 
750e8d8bef9SDimitry Andric   // Fix up PHI nodes that take values from the inner loop back-edge, which
751e8d8bef9SDimitry Andric   // we are about to remove.
752e8d8bef9SDimitry Andric   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
753e8d8bef9SDimitry Andric 
754e8d8bef9SDimitry Andric   // The old Phi will be optimised away later, but for now we can't leave
755e8d8bef9SDimitry Andric   // leave it in an invalid state, so are updating them too.
756e8d8bef9SDimitry Andric   for (PHINode *PHI : FI.InnerPHIsToTransform)
757e8d8bef9SDimitry Andric     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
758e8d8bef9SDimitry Andric 
759e8d8bef9SDimitry Andric   // Modify the trip count of the outer loop to be the product of the two
760e8d8bef9SDimitry Andric   // trip counts.
761e8d8bef9SDimitry Andric   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
762e8d8bef9SDimitry Andric 
763e8d8bef9SDimitry Andric   // Replace the inner loop backedge with an unconditional branch to the exit.
764e8d8bef9SDimitry Andric   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
765e8d8bef9SDimitry Andric   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
766e8d8bef9SDimitry Andric   InnerExitingBlock->getTerminator()->eraseFromParent();
767e8d8bef9SDimitry Andric   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
76804eeddc0SDimitry Andric 
76904eeddc0SDimitry Andric   // Update the DomTree and MemorySSA.
770e8d8bef9SDimitry Andric   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
77104eeddc0SDimitry Andric   if (MSSAU)
77204eeddc0SDimitry Andric     MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
773e8d8bef9SDimitry Andric 
774e8d8bef9SDimitry Andric   // Replace all uses of the polynomial calculated from the two induction
775e8d8bef9SDimitry Andric   // variables with the one new one.
776e8d8bef9SDimitry Andric   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
777e8d8bef9SDimitry Andric   for (Value *V : FI.LinearIVUses) {
778e8d8bef9SDimitry Andric     Value *OuterValue = FI.OuterInductionPHI;
779e8d8bef9SDimitry Andric     if (FI.Widened)
780e8d8bef9SDimitry Andric       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
781e8d8bef9SDimitry Andric                                        "flatten.trunciv");
782e8d8bef9SDimitry Andric 
78304eeddc0SDimitry Andric     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with:      ";
78404eeddc0SDimitry Andric                OuterValue->dump());
785e8d8bef9SDimitry Andric     V->replaceAllUsesWith(OuterValue);
786e8d8bef9SDimitry Andric   }
787e8d8bef9SDimitry Andric 
788e8d8bef9SDimitry Andric   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
789*bdd1243dSDimitry Andric   // deleted, and invalidate any outer loop information.
790e8d8bef9SDimitry Andric   SE->forgetLoop(FI.OuterLoop);
791*bdd1243dSDimitry Andric   SE->forgetBlockAndLoopDispositions();
792349cc55cSDimitry Andric   if (U)
793349cc55cSDimitry Andric     U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
794e8d8bef9SDimitry Andric   LI->erase(FI.InnerLoop);
795349cc55cSDimitry Andric 
796349cc55cSDimitry Andric   // Increment statistic value.
797349cc55cSDimitry Andric   NumFlattened++;
798349cc55cSDimitry Andric 
799e8d8bef9SDimitry Andric   return true;
800e8d8bef9SDimitry Andric }
801e8d8bef9SDimitry Andric 
802fe6060f1SDimitry Andric static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
803fe6060f1SDimitry Andric                        ScalarEvolution *SE, AssumptionCache *AC,
804fe6060f1SDimitry Andric                        const TargetTransformInfo *TTI) {
805e8d8bef9SDimitry Andric   if (!WidenIV) {
806e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
807e8d8bef9SDimitry Andric     return false;
808e8d8bef9SDimitry Andric   }
809e8d8bef9SDimitry Andric 
810e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
811e8d8bef9SDimitry Andric   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
812e8d8bef9SDimitry Andric   auto &DL = M->getDataLayout();
813e8d8bef9SDimitry Andric   auto *InnerType = FI.InnerInductionPHI->getType();
814e8d8bef9SDimitry Andric   auto *OuterType = FI.OuterInductionPHI->getType();
815e8d8bef9SDimitry Andric   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
816e8d8bef9SDimitry Andric   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
817e8d8bef9SDimitry Andric 
818e8d8bef9SDimitry Andric   // If both induction types are less than the maximum legal integer width,
819e8d8bef9SDimitry Andric   // promote both to the widest type available so we know calculating
820fe6060f1SDimitry Andric   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
821e8d8bef9SDimitry Andric   if (InnerType != OuterType ||
822e8d8bef9SDimitry Andric       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
82304eeddc0SDimitry Andric       MaxLegalType->getScalarSizeInBits() <
82404eeddc0SDimitry Andric           InnerType->getScalarSizeInBits() * 2) {
825e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
826e8d8bef9SDimitry Andric     return false;
827e8d8bef9SDimitry Andric   }
828e8d8bef9SDimitry Andric 
829e8d8bef9SDimitry Andric   SCEVExpander Rewriter(*SE, DL, "loopflatten");
830e8d8bef9SDimitry Andric   SmallVector<WeakTrackingVH, 4> DeadInsts;
831fe6060f1SDimitry Andric   unsigned ElimExt = 0;
832fe6060f1SDimitry Andric   unsigned Widened = 0;
833e8d8bef9SDimitry Andric 
834349cc55cSDimitry Andric   auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
83504eeddc0SDimitry Andric     PHINode *WidePhi =
83604eeddc0SDimitry Andric         createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
83704eeddc0SDimitry Andric                      true /* HasGuards */, true /* UsePostIncrementRanges */);
838e8d8bef9SDimitry Andric     if (!WidePhi)
839e8d8bef9SDimitry Andric       return false;
840e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
841fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
842349cc55cSDimitry Andric     Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
843349cc55cSDimitry Andric     return true;
844349cc55cSDimitry Andric   };
845349cc55cSDimitry Andric 
846349cc55cSDimitry Andric   bool Deleted;
847349cc55cSDimitry Andric   if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
848349cc55cSDimitry Andric     return false;
849349cc55cSDimitry Andric   // Add the narrow phi to list, so that it will be adjusted later when the
850349cc55cSDimitry Andric   // the transformation is performed.
851349cc55cSDimitry Andric   if (!Deleted)
852349cc55cSDimitry Andric     FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
853349cc55cSDimitry Andric 
854349cc55cSDimitry Andric   if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
855349cc55cSDimitry Andric     return false;
856349cc55cSDimitry Andric 
857fe6060f1SDimitry Andric   assert(Widened && "Widened IV expected");
858e8d8bef9SDimitry Andric   FI.Widened = true;
859349cc55cSDimitry Andric 
860349cc55cSDimitry Andric   // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
861349cc55cSDimitry Andric   FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
862349cc55cSDimitry Andric   FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
863349cc55cSDimitry Andric 
864349cc55cSDimitry Andric   // After widening, rediscover all the loop components.
865e8d8bef9SDimitry Andric   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
866e8d8bef9SDimitry Andric }
867e8d8bef9SDimitry Andric 
868fe6060f1SDimitry Andric static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
869fe6060f1SDimitry Andric                             ScalarEvolution *SE, AssumptionCache *AC,
87004eeddc0SDimitry Andric                             const TargetTransformInfo *TTI, LPMUpdater *U,
87104eeddc0SDimitry Andric                             MemorySSAUpdater *MSSAU) {
872e8d8bef9SDimitry Andric   LLVM_DEBUG(
873e8d8bef9SDimitry Andric       dbgs() << "Loop flattening running on outer loop "
874e8d8bef9SDimitry Andric              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
875e8d8bef9SDimitry Andric              << FI.InnerLoop->getHeader()->getName() << " in "
876e8d8bef9SDimitry Andric              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
877e8d8bef9SDimitry Andric 
878e8d8bef9SDimitry Andric   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
879e8d8bef9SDimitry Andric     return false;
880e8d8bef9SDimitry Andric 
881e8d8bef9SDimitry Andric   // Check if we can widen the induction variables to avoid overflow checks.
882349cc55cSDimitry Andric   bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
883e8d8bef9SDimitry Andric 
884349cc55cSDimitry Andric   // It can happen that after widening of the IV, flattening may not be
885349cc55cSDimitry Andric   // possible/happening, e.g. when it is deemed unprofitable. So bail here if
886349cc55cSDimitry Andric   // that is the case.
887349cc55cSDimitry Andric   // TODO: IV widening without performing the actual flattening transformation
888349cc55cSDimitry Andric   // is not ideal. While this codegen change should not matter much, it is an
889349cc55cSDimitry Andric   // unnecessary change which is better to avoid. It's unlikely this happens
890349cc55cSDimitry Andric   // often, because if it's unprofitibale after widening, it should be
891349cc55cSDimitry Andric   // unprofitabe before widening as checked in the first round of checks. But
892349cc55cSDimitry Andric   // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
893349cc55cSDimitry Andric   // relaxed. Because this is making a code change (the IV widening, but not
894349cc55cSDimitry Andric   // the flattening), we return true here.
895349cc55cSDimitry Andric   if (FI.Widened && !CanFlatten)
896349cc55cSDimitry Andric     return true;
897349cc55cSDimitry Andric 
898349cc55cSDimitry Andric   // If we have widened and can perform the transformation, do that here.
899349cc55cSDimitry Andric   if (CanFlatten)
90004eeddc0SDimitry Andric     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
901349cc55cSDimitry Andric 
902349cc55cSDimitry Andric   // Otherwise, if we haven't widened the IV, check if the new iteration
903349cc55cSDimitry Andric   // variable might overflow. In this case, we need to version the loop, and
904349cc55cSDimitry Andric   // select the original version at runtime if the iteration space is too
905349cc55cSDimitry Andric   // large.
906e8d8bef9SDimitry Andric   // TODO: We currently don't version the loop.
907e8d8bef9SDimitry Andric   OverflowResult OR = checkOverflow(FI, DT, AC);
908e8d8bef9SDimitry Andric   if (OR == OverflowResult::AlwaysOverflowsHigh ||
909e8d8bef9SDimitry Andric       OR == OverflowResult::AlwaysOverflowsLow) {
910e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
911e8d8bef9SDimitry Andric     return false;
912e8d8bef9SDimitry Andric   } else if (OR == OverflowResult::MayOverflow) {
913e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
914e8d8bef9SDimitry Andric     return false;
915e8d8bef9SDimitry Andric   }
916e8d8bef9SDimitry Andric 
917e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
91804eeddc0SDimitry Andric   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
919e8d8bef9SDimitry Andric }
920e8d8bef9SDimitry Andric 
921fe6060f1SDimitry Andric bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
92204eeddc0SDimitry Andric              AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U,
92304eeddc0SDimitry Andric              MemorySSAUpdater *MSSAU) {
924e8d8bef9SDimitry Andric   bool Changed = false;
925fe6060f1SDimitry Andric   for (Loop *InnerLoop : LN.getLoops()) {
926e8d8bef9SDimitry Andric     auto *OuterLoop = InnerLoop->getParentLoop();
927e8d8bef9SDimitry Andric     if (!OuterLoop)
928e8d8bef9SDimitry Andric       continue;
929fe6060f1SDimitry Andric     FlattenInfo FI(OuterLoop, InnerLoop);
93004eeddc0SDimitry Andric     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
931e8d8bef9SDimitry Andric   }
932e8d8bef9SDimitry Andric   return Changed;
933e8d8bef9SDimitry Andric }
934e8d8bef9SDimitry Andric 
935fe6060f1SDimitry Andric PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
936fe6060f1SDimitry Andric                                        LoopStandardAnalysisResults &AR,
937fe6060f1SDimitry Andric                                        LPMUpdater &U) {
938e8d8bef9SDimitry Andric 
939fe6060f1SDimitry Andric   bool Changed = false;
940fe6060f1SDimitry Andric 
941*bdd1243dSDimitry Andric   std::optional<MemorySSAUpdater> MSSAU;
94204eeddc0SDimitry Andric   if (AR.MSSA) {
94304eeddc0SDimitry Andric     MSSAU = MemorySSAUpdater(AR.MSSA);
94404eeddc0SDimitry Andric     if (VerifyMemorySSA)
94504eeddc0SDimitry Andric       AR.MSSA->verifyMemorySSA();
94604eeddc0SDimitry Andric   }
94704eeddc0SDimitry Andric 
948fe6060f1SDimitry Andric   // The loop flattening pass requires loops to be
949fe6060f1SDimitry Andric   // in simplified form, and also needs LCSSA. Running
950fe6060f1SDimitry Andric   // this pass will simplify all loops that contain inner loops,
951fe6060f1SDimitry Andric   // regardless of whether anything ends up being flattened.
95204eeddc0SDimitry Andric   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
953*bdd1243dSDimitry Andric                      MSSAU ? &*MSSAU : nullptr);
954fe6060f1SDimitry Andric 
955fe6060f1SDimitry Andric   if (!Changed)
956e8d8bef9SDimitry Andric     return PreservedAnalyses::all();
957e8d8bef9SDimitry Andric 
95804eeddc0SDimitry Andric   if (AR.MSSA && VerifyMemorySSA)
95904eeddc0SDimitry Andric     AR.MSSA->verifyMemorySSA();
96004eeddc0SDimitry Andric 
96104eeddc0SDimitry Andric   auto PA = getLoopPassPreservedAnalyses();
96204eeddc0SDimitry Andric   if (AR.MSSA)
96304eeddc0SDimitry Andric     PA.preserve<MemorySSAAnalysis>();
96404eeddc0SDimitry Andric   return PA;
965e8d8bef9SDimitry Andric }
966e8d8bef9SDimitry Andric 
967e8d8bef9SDimitry Andric namespace {
968e8d8bef9SDimitry Andric class LoopFlattenLegacyPass : public FunctionPass {
969e8d8bef9SDimitry Andric public:
970e8d8bef9SDimitry Andric   static char ID; // Pass ID, replacement for typeid
971e8d8bef9SDimitry Andric   LoopFlattenLegacyPass() : FunctionPass(ID) {
972e8d8bef9SDimitry Andric     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
973e8d8bef9SDimitry Andric   }
974e8d8bef9SDimitry Andric 
975e8d8bef9SDimitry Andric   // Possibly flatten loop L into its child.
976e8d8bef9SDimitry Andric   bool runOnFunction(Function &F) override;
977e8d8bef9SDimitry Andric 
978e8d8bef9SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
979e8d8bef9SDimitry Andric     getLoopAnalysisUsage(AU);
980e8d8bef9SDimitry Andric     AU.addRequired<TargetTransformInfoWrapperPass>();
981e8d8bef9SDimitry Andric     AU.addPreserved<TargetTransformInfoWrapperPass>();
982e8d8bef9SDimitry Andric     AU.addRequired<AssumptionCacheTracker>();
983e8d8bef9SDimitry Andric     AU.addPreserved<AssumptionCacheTracker>();
98404eeddc0SDimitry Andric     AU.addPreserved<MemorySSAWrapperPass>();
985e8d8bef9SDimitry Andric   }
986e8d8bef9SDimitry Andric };
987e8d8bef9SDimitry Andric } // namespace
988e8d8bef9SDimitry Andric 
989e8d8bef9SDimitry Andric char LoopFlattenLegacyPass::ID = 0;
990e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
991e8d8bef9SDimitry Andric                       false, false)
992e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
993e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
994e8d8bef9SDimitry Andric INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
995e8d8bef9SDimitry Andric                     false, false)
996e8d8bef9SDimitry Andric 
99704eeddc0SDimitry Andric FunctionPass *llvm::createLoopFlattenPass() {
99804eeddc0SDimitry Andric   return new LoopFlattenLegacyPass();
99904eeddc0SDimitry Andric }
1000e8d8bef9SDimitry Andric 
1001e8d8bef9SDimitry Andric bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
1002e8d8bef9SDimitry Andric   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1003e8d8bef9SDimitry Andric   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1004e8d8bef9SDimitry Andric   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1005e8d8bef9SDimitry Andric   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1006e8d8bef9SDimitry Andric   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
1007e8d8bef9SDimitry Andric   auto *TTI = &TTIP.getTTI(F);
1008e8d8bef9SDimitry Andric   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
100904eeddc0SDimitry Andric   auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
101004eeddc0SDimitry Andric 
1011*bdd1243dSDimitry Andric   std::optional<MemorySSAUpdater> MSSAU;
101204eeddc0SDimitry Andric   if (MSSA)
101304eeddc0SDimitry Andric     MSSAU = MemorySSAUpdater(&MSSA->getMSSA());
101404eeddc0SDimitry Andric 
1015fe6060f1SDimitry Andric   bool Changed = false;
1016fe6060f1SDimitry Andric   for (Loop *L : *LI) {
1017fe6060f1SDimitry Andric     auto LN = LoopNest::getLoopNest(*L, *SE);
1018*bdd1243dSDimitry Andric     Changed |=
1019*bdd1243dSDimitry Andric         Flatten(*LN, DT, LI, SE, AC, TTI, nullptr, MSSAU ? &*MSSAU : nullptr);
1020fe6060f1SDimitry Andric   }
1021fe6060f1SDimitry Andric   return Changed;
1022e8d8bef9SDimitry Andric }
1023