1e8d8bef9SDimitry Andric //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // This pass flattens pairs nested loops into a single loop. 10e8d8bef9SDimitry Andric // 11e8d8bef9SDimitry Andric // The intention is to optimise loop nests like this, which together access an 12e8d8bef9SDimitry Andric // array linearly: 1304eeddc0SDimitry Andric // 14e8d8bef9SDimitry Andric // for (int i = 0; i < N; ++i) 15e8d8bef9SDimitry Andric // for (int j = 0; j < M; ++j) 16e8d8bef9SDimitry Andric // f(A[i*M+j]); 1704eeddc0SDimitry Andric // 18e8d8bef9SDimitry Andric // into one loop: 1904eeddc0SDimitry Andric // 20e8d8bef9SDimitry Andric // for (int i = 0; i < (N*M); ++i) 21e8d8bef9SDimitry Andric // f(A[i]); 22e8d8bef9SDimitry Andric // 23e8d8bef9SDimitry Andric // It can also flatten loops where the induction variables are not used in the 24e8d8bef9SDimitry Andric // loop. This is only worth doing if the induction variables are only used in an 25e8d8bef9SDimitry Andric // expression like i*M+j. If they had any other uses, we would have to insert a 26e8d8bef9SDimitry Andric // div/mod to reconstruct the original values, so this wouldn't be profitable. 27e8d8bef9SDimitry Andric // 2804eeddc0SDimitry Andric // We also need to prove that N*M will not overflow. The preferred solution is 2904eeddc0SDimitry Andric // to widen the IV, which avoids overflow checks, so that is tried first. If 3004eeddc0SDimitry Andric // the IV cannot be widened, then we try to determine that this new tripcount 3104eeddc0SDimitry Andric // expression won't overflow. 3204eeddc0SDimitry Andric // 3304eeddc0SDimitry Andric // Q: Does LoopFlatten use SCEV? 3404eeddc0SDimitry Andric // Short answer: Yes and no. 3504eeddc0SDimitry Andric // 3604eeddc0SDimitry Andric // Long answer: 3704eeddc0SDimitry Andric // For this transformation to be valid, we require all uses of the induction 3804eeddc0SDimitry Andric // variables to be linear expressions of the form i*M+j. The different Loop 3904eeddc0SDimitry Andric // APIs are used to get some loop components like the induction variable, 4004eeddc0SDimitry Andric // compare statement, etc. In addition, we do some pattern matching to find the 4104eeddc0SDimitry Andric // linear expressions and other loop components like the loop increment. The 4204eeddc0SDimitry Andric // latter are examples of expressions that do use the induction variable, but 4304eeddc0SDimitry Andric // are safe to ignore when we check all uses to be of the form i*M+j. We keep 4404eeddc0SDimitry Andric // track of all of this in bookkeeping struct FlattenInfo. 4504eeddc0SDimitry Andric // We assume the loops to be canonical, i.e. starting at 0 and increment with 4604eeddc0SDimitry Andric // 1. This makes RHS of the compare the loop tripcount (with the right 4704eeddc0SDimitry Andric // predicate). We use SCEV to then sanity check that this tripcount matches 4804eeddc0SDimitry Andric // with the tripcount as computed by SCEV. 49e8d8bef9SDimitry Andric // 50e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 51e8d8bef9SDimitry Andric 52e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/LoopFlatten.h" 53349cc55cSDimitry Andric 54349cc55cSDimitry Andric #include "llvm/ADT/Statistic.h" 55e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 56e8d8bef9SDimitry Andric #include "llvm/Analysis/LoopInfo.h" 57*81ad6265SDimitry Andric #include "llvm/Analysis/LoopNestAnalysis.h" 5804eeddc0SDimitry Andric #include "llvm/Analysis/MemorySSAUpdater.h" 59e8d8bef9SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60e8d8bef9SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h" 61e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 62e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 63e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 64e8d8bef9SDimitry Andric #include "llvm/IR/Function.h" 65e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h" 66e8d8bef9SDimitry Andric #include "llvm/IR/Module.h" 67e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h" 68e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h" 69e8d8bef9SDimitry Andric #include "llvm/Pass.h" 70e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h" 71e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h" 72e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar.h" 73*81ad6265SDimitry Andric #include "llvm/Transforms/Scalar/LoopPassManager.h" 74e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 75e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h" 76e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 77e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/SimplifyIndVar.h" 78e8d8bef9SDimitry Andric 79e8d8bef9SDimitry Andric using namespace llvm; 80e8d8bef9SDimitry Andric using namespace llvm::PatternMatch; 81e8d8bef9SDimitry Andric 82349cc55cSDimitry Andric #define DEBUG_TYPE "loop-flatten" 83349cc55cSDimitry Andric 84349cc55cSDimitry Andric STATISTIC(NumFlattened, "Number of loops flattened"); 85349cc55cSDimitry Andric 86e8d8bef9SDimitry Andric static cl::opt<unsigned> RepeatedInstructionThreshold( 87e8d8bef9SDimitry Andric "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 88e8d8bef9SDimitry Andric cl::desc("Limit on the cost of instructions that can be repeated due to " 89e8d8bef9SDimitry Andric "loop flattening")); 90e8d8bef9SDimitry Andric 91e8d8bef9SDimitry Andric static cl::opt<bool> 92e8d8bef9SDimitry Andric AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 93e8d8bef9SDimitry Andric cl::init(false), 94e8d8bef9SDimitry Andric cl::desc("Assume that the product of the two iteration " 95fe6060f1SDimitry Andric "trip counts will never overflow")); 96e8d8bef9SDimitry Andric 97e8d8bef9SDimitry Andric static cl::opt<bool> 9804eeddc0SDimitry Andric WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 99e8d8bef9SDimitry Andric cl::desc("Widen the loop induction variables, if possible, so " 100e8d8bef9SDimitry Andric "overflow checks won't reject flattening")); 101e8d8bef9SDimitry Andric 10204eeddc0SDimitry Andric // We require all uses of both induction variables to match this pattern: 10304eeddc0SDimitry Andric // 10404eeddc0SDimitry Andric // (OuterPHI * InnerTripCount) + InnerPHI 10504eeddc0SDimitry Andric // 10604eeddc0SDimitry Andric // I.e., it needs to be a linear expression of the induction variables and the 10704eeddc0SDimitry Andric // inner loop trip count. We keep track of all different expressions on which 10804eeddc0SDimitry Andric // checks will be performed in this bookkeeping struct. 10904eeddc0SDimitry Andric // 110e8d8bef9SDimitry Andric struct FlattenInfo { 11104eeddc0SDimitry Andric Loop *OuterLoop = nullptr; // The loop pair to be flattened. 112e8d8bef9SDimitry Andric Loop *InnerLoop = nullptr; 11304eeddc0SDimitry Andric 11404eeddc0SDimitry Andric PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 11504eeddc0SDimitry Andric PHINode *OuterInductionPHI = nullptr; // induction variables, which are 11604eeddc0SDimitry Andric // expected to start at zero and 11704eeddc0SDimitry Andric // increment by one on each loop. 11804eeddc0SDimitry Andric 11904eeddc0SDimitry Andric Value *InnerTripCount = nullptr; // The product of these two tripcounts 12004eeddc0SDimitry Andric Value *OuterTripCount = nullptr; // will be the new flattened loop 12104eeddc0SDimitry Andric // tripcount. Also used to recognise a 12204eeddc0SDimitry Andric // linear expression that will be replaced. 12304eeddc0SDimitry Andric 12404eeddc0SDimitry Andric SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 12504eeddc0SDimitry Andric // of the form i*M+j that will be 12604eeddc0SDimitry Andric // replaced. 12704eeddc0SDimitry Andric 12804eeddc0SDimitry Andric BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 12904eeddc0SDimitry Andric BinaryOperator *OuterIncrement = nullptr; // loop control statements that 13004eeddc0SDimitry Andric BranchInst *InnerBranch = nullptr; // are safe to ignore. 13104eeddc0SDimitry Andric 13204eeddc0SDimitry Andric BranchInst *OuterBranch = nullptr; // The instruction that needs to be 13304eeddc0SDimitry Andric // updated with new tripcount. 13404eeddc0SDimitry Andric 135e8d8bef9SDimitry Andric SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 136e8d8bef9SDimitry Andric 13704eeddc0SDimitry Andric bool Widened = false; // Whether this holds the flatten info before or after 13804eeddc0SDimitry Andric // widening. 139e8d8bef9SDimitry Andric 14004eeddc0SDimitry Andric PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 14104eeddc0SDimitry Andric PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 14204eeddc0SDimitry Andric // has been apllied. Used to skip 14304eeddc0SDimitry Andric // checks on phi nodes. 144349cc55cSDimitry Andric 145e8d8bef9SDimitry Andric FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 146349cc55cSDimitry Andric 147349cc55cSDimitry Andric bool isNarrowInductionPhi(PHINode *Phi) { 148349cc55cSDimitry Andric // This can't be the narrow phi if we haven't widened the IV first. 149349cc55cSDimitry Andric if (!Widened) 150349cc55cSDimitry Andric return false; 151349cc55cSDimitry Andric return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 152349cc55cSDimitry Andric } 15304eeddc0SDimitry Andric bool isInnerLoopIncrement(User *U) { 15404eeddc0SDimitry Andric return InnerIncrement == U; 15504eeddc0SDimitry Andric } 15604eeddc0SDimitry Andric bool isOuterLoopIncrement(User *U) { 15704eeddc0SDimitry Andric return OuterIncrement == U; 15804eeddc0SDimitry Andric } 15904eeddc0SDimitry Andric bool isInnerLoopTest(User *U) { 16004eeddc0SDimitry Andric return InnerBranch->getCondition() == U; 16104eeddc0SDimitry Andric } 16204eeddc0SDimitry Andric 16304eeddc0SDimitry Andric bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 16404eeddc0SDimitry Andric for (User *U : OuterInductionPHI->users()) { 16504eeddc0SDimitry Andric if (isOuterLoopIncrement(U)) 16604eeddc0SDimitry Andric continue; 16704eeddc0SDimitry Andric 16804eeddc0SDimitry Andric auto IsValidOuterPHIUses = [&] (User *U) -> bool { 16904eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 17004eeddc0SDimitry Andric if (!ValidOuterPHIUses.count(U)) { 17104eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 17204eeddc0SDimitry Andric return false; 17304eeddc0SDimitry Andric } 17404eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 17504eeddc0SDimitry Andric return true; 17604eeddc0SDimitry Andric }; 17704eeddc0SDimitry Andric 17804eeddc0SDimitry Andric if (auto *V = dyn_cast<TruncInst>(U)) { 17904eeddc0SDimitry Andric for (auto *K : V->users()) { 18004eeddc0SDimitry Andric if (!IsValidOuterPHIUses(K)) 18104eeddc0SDimitry Andric return false; 18204eeddc0SDimitry Andric } 18304eeddc0SDimitry Andric continue; 18404eeddc0SDimitry Andric } 18504eeddc0SDimitry Andric 18604eeddc0SDimitry Andric if (!IsValidOuterPHIUses(U)) 18704eeddc0SDimitry Andric return false; 18804eeddc0SDimitry Andric } 18904eeddc0SDimitry Andric return true; 19004eeddc0SDimitry Andric } 19104eeddc0SDimitry Andric 19204eeddc0SDimitry Andric bool matchLinearIVUser(User *U, Value *InnerTripCount, 19304eeddc0SDimitry Andric SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 19404eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 19504eeddc0SDimitry Andric Value *MatchedMul = nullptr; 19604eeddc0SDimitry Andric Value *MatchedItCount = nullptr; 19704eeddc0SDimitry Andric 19804eeddc0SDimitry Andric bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 19904eeddc0SDimitry Andric m_Value(MatchedMul))) && 20004eeddc0SDimitry Andric match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 20104eeddc0SDimitry Andric m_Value(MatchedItCount))); 20204eeddc0SDimitry Andric 20304eeddc0SDimitry Andric // Matches the same pattern as above, except it also looks for truncs 20404eeddc0SDimitry Andric // on the phi, which can be the result of widening the induction variables. 20504eeddc0SDimitry Andric bool IsAddTrunc = 20604eeddc0SDimitry Andric match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 20704eeddc0SDimitry Andric m_Value(MatchedMul))) && 20804eeddc0SDimitry Andric match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 20904eeddc0SDimitry Andric m_Value(MatchedItCount))); 21004eeddc0SDimitry Andric 21104eeddc0SDimitry Andric if (!MatchedItCount) 21204eeddc0SDimitry Andric return false; 21304eeddc0SDimitry Andric 214*81ad6265SDimitry Andric // Look through extends if the IV has been widened. Don't look through 215*81ad6265SDimitry Andric // extends if we already looked through a trunc. 216*81ad6265SDimitry Andric if (Widened && IsAdd && 21704eeddc0SDimitry Andric (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 21804eeddc0SDimitry Andric assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 21904eeddc0SDimitry Andric "Unexpected type mismatch in types after widening"); 22004eeddc0SDimitry Andric MatchedItCount = isa<SExtInst>(MatchedItCount) 22104eeddc0SDimitry Andric ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 22204eeddc0SDimitry Andric : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 22304eeddc0SDimitry Andric } 22404eeddc0SDimitry Andric 22504eeddc0SDimitry Andric if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 22604eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 22704eeddc0SDimitry Andric ValidOuterPHIUses.insert(MatchedMul); 22804eeddc0SDimitry Andric LinearIVUses.insert(U); 22904eeddc0SDimitry Andric return true; 23004eeddc0SDimitry Andric } 23104eeddc0SDimitry Andric 23204eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 23304eeddc0SDimitry Andric return false; 23404eeddc0SDimitry Andric } 23504eeddc0SDimitry Andric 23604eeddc0SDimitry Andric bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 23704eeddc0SDimitry Andric Value *SExtInnerTripCount = InnerTripCount; 23804eeddc0SDimitry Andric if (Widened && 23904eeddc0SDimitry Andric (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 24004eeddc0SDimitry Andric SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 24104eeddc0SDimitry Andric 24204eeddc0SDimitry Andric for (User *U : InnerInductionPHI->users()) { 24304eeddc0SDimitry Andric if (isInnerLoopIncrement(U)) 24404eeddc0SDimitry Andric continue; 24504eeddc0SDimitry Andric 24604eeddc0SDimitry Andric // After widening the IVs, a trunc instruction might have been introduced, 24704eeddc0SDimitry Andric // so look through truncs. 24804eeddc0SDimitry Andric if (isa<TruncInst>(U)) { 24904eeddc0SDimitry Andric if (!U->hasOneUse()) 25004eeddc0SDimitry Andric return false; 25104eeddc0SDimitry Andric U = *U->user_begin(); 25204eeddc0SDimitry Andric } 25304eeddc0SDimitry Andric 25404eeddc0SDimitry Andric // If the use is in the compare (which is also the condition of the inner 25504eeddc0SDimitry Andric // branch) then the compare has been altered by another transformation e.g 25604eeddc0SDimitry Andric // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 25704eeddc0SDimitry Andric // a constant. Ignore this use as the compare gets removed later anyway. 25804eeddc0SDimitry Andric if (isInnerLoopTest(U)) 25904eeddc0SDimitry Andric continue; 26004eeddc0SDimitry Andric 26104eeddc0SDimitry Andric if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) 26204eeddc0SDimitry Andric return false; 26304eeddc0SDimitry Andric } 26404eeddc0SDimitry Andric return true; 26504eeddc0SDimitry Andric } 266e8d8bef9SDimitry Andric }; 267e8d8bef9SDimitry Andric 268349cc55cSDimitry Andric static bool 269349cc55cSDimitry Andric setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 270349cc55cSDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions) { 271349cc55cSDimitry Andric TripCount = TC; 272349cc55cSDimitry Andric IterationInstructions.insert(Increment); 273349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 274349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 275349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 276349cc55cSDimitry Andric return true; 277349cc55cSDimitry Andric } 278349cc55cSDimitry Andric 27904eeddc0SDimitry Andric // Given the RHS of the loop latch compare instruction, verify with SCEV 28004eeddc0SDimitry Andric // that this is indeed the loop tripcount. 28104eeddc0SDimitry Andric // TODO: This used to be a straightforward check but has grown to be quite 28204eeddc0SDimitry Andric // complicated now. It is therefore worth revisiting what the additional 28304eeddc0SDimitry Andric // benefits are of this (compared to relying on canonical loops and pattern 28404eeddc0SDimitry Andric // matching). 28504eeddc0SDimitry Andric static bool verifyTripCount(Value *RHS, Loop *L, 28604eeddc0SDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions, 28704eeddc0SDimitry Andric PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 28804eeddc0SDimitry Andric BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 28904eeddc0SDimitry Andric const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 29004eeddc0SDimitry Andric if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 29104eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 29204eeddc0SDimitry Andric return false; 29304eeddc0SDimitry Andric } 29404eeddc0SDimitry Andric 29504eeddc0SDimitry Andric // The Extend=false flag is used for getTripCountFromExitCount as we want 29604eeddc0SDimitry Andric // to verify and match it with the pattern matched tripcount. Please note 29704eeddc0SDimitry Andric // that overflow checks are performed in checkOverflow, but are first tried 29804eeddc0SDimitry Andric // to avoid by widening the IV. 29904eeddc0SDimitry Andric const SCEV *SCEVTripCount = 30004eeddc0SDimitry Andric SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false); 30104eeddc0SDimitry Andric 30204eeddc0SDimitry Andric const SCEV *SCEVRHS = SE->getSCEV(RHS); 30304eeddc0SDimitry Andric if (SCEVRHS == SCEVTripCount) 30404eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 30504eeddc0SDimitry Andric ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 30604eeddc0SDimitry Andric if (ConstantRHS) { 30704eeddc0SDimitry Andric const SCEV *BackedgeTCExt = nullptr; 30804eeddc0SDimitry Andric if (IsWidened) { 30904eeddc0SDimitry Andric const SCEV *SCEVTripCountExt; 31004eeddc0SDimitry Andric // Find the extended backedge taken count and extended trip count using 31104eeddc0SDimitry Andric // SCEV. One of these should now match the RHS of the compare. 31204eeddc0SDimitry Andric BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 31304eeddc0SDimitry Andric SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false); 31404eeddc0SDimitry Andric if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 31504eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 31604eeddc0SDimitry Andric return false; 31704eeddc0SDimitry Andric } 31804eeddc0SDimitry Andric } 31904eeddc0SDimitry Andric // If the RHS of the compare is equal to the backedge taken count we need 32004eeddc0SDimitry Andric // to add one to get the trip count. 32104eeddc0SDimitry Andric if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 32204eeddc0SDimitry Andric ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1); 32304eeddc0SDimitry Andric Value *NewRHS = ConstantInt::get( 32404eeddc0SDimitry Andric ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue()); 32504eeddc0SDimitry Andric return setLoopComponents(NewRHS, TripCount, Increment, 32604eeddc0SDimitry Andric IterationInstructions); 32704eeddc0SDimitry Andric } 32804eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 32904eeddc0SDimitry Andric } 33004eeddc0SDimitry Andric // If the RHS isn't a constant then check that the reason it doesn't match 33104eeddc0SDimitry Andric // the SCEV trip count is because the RHS is a ZExt or SExt instruction 33204eeddc0SDimitry Andric // (and take the trip count to be the RHS). 33304eeddc0SDimitry Andric if (!IsWidened) { 33404eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 33504eeddc0SDimitry Andric return false; 33604eeddc0SDimitry Andric } 33704eeddc0SDimitry Andric auto *TripCountInst = dyn_cast<Instruction>(RHS); 33804eeddc0SDimitry Andric if (!TripCountInst) { 33904eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 34004eeddc0SDimitry Andric return false; 34104eeddc0SDimitry Andric } 34204eeddc0SDimitry Andric if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 34304eeddc0SDimitry Andric SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 34404eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 34504eeddc0SDimitry Andric return false; 34604eeddc0SDimitry Andric } 34704eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 34804eeddc0SDimitry Andric } 34904eeddc0SDimitry Andric 350fe6060f1SDimitry Andric // Finds the induction variable, increment and trip count for a simple loop that 351fe6060f1SDimitry Andric // we can flatten. 352e8d8bef9SDimitry Andric static bool findLoopComponents( 353e8d8bef9SDimitry Andric Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 354fe6060f1SDimitry Andric PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 355fe6060f1SDimitry Andric BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 356e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 357e8d8bef9SDimitry Andric 358e8d8bef9SDimitry Andric if (!L->isLoopSimplifyForm()) { 359e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 360e8d8bef9SDimitry Andric return false; 361e8d8bef9SDimitry Andric } 362e8d8bef9SDimitry Andric 363fe6060f1SDimitry Andric // Currently, to simplify the implementation, the Loop induction variable must 364fe6060f1SDimitry Andric // start at zero and increment with a step size of one. 365fe6060f1SDimitry Andric if (!L->isCanonical(*SE)) { 366fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 367fe6060f1SDimitry Andric return false; 368fe6060f1SDimitry Andric } 369fe6060f1SDimitry Andric 370e8d8bef9SDimitry Andric // There must be exactly one exiting block, and it must be the same at the 371e8d8bef9SDimitry Andric // latch. 372e8d8bef9SDimitry Andric BasicBlock *Latch = L->getLoopLatch(); 373e8d8bef9SDimitry Andric if (L->getExitingBlock() != Latch) { 374e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 375e8d8bef9SDimitry Andric return false; 376e8d8bef9SDimitry Andric } 377e8d8bef9SDimitry Andric 378e8d8bef9SDimitry Andric // Find the induction PHI. If there is no induction PHI, we can't do the 379e8d8bef9SDimitry Andric // transformation. TODO: could other variables trigger this? Do we have to 380e8d8bef9SDimitry Andric // search for the best one? 381fe6060f1SDimitry Andric InductionPHI = L->getInductionVariable(*SE); 382e8d8bef9SDimitry Andric if (!InductionPHI) { 383e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 384e8d8bef9SDimitry Andric return false; 385e8d8bef9SDimitry Andric } 386fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 387e8d8bef9SDimitry Andric 388fe6060f1SDimitry Andric bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 389e8d8bef9SDimitry Andric auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 390e8d8bef9SDimitry Andric if (ContinueOnTrue) 391e8d8bef9SDimitry Andric return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 392e8d8bef9SDimitry Andric else 393e8d8bef9SDimitry Andric return Pred == CmpInst::ICMP_EQ; 394e8d8bef9SDimitry Andric }; 395e8d8bef9SDimitry Andric 396fe6060f1SDimitry Andric // Find Compare and make sure it is valid. getLatchCmpInst checks that the 397fe6060f1SDimitry Andric // back branch of the latch is conditional. 398fe6060f1SDimitry Andric ICmpInst *Compare = L->getLatchCmpInst(); 399e8d8bef9SDimitry Andric if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 400e8d8bef9SDimitry Andric Compare->hasNUsesOrMore(2)) { 401e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 402e8d8bef9SDimitry Andric return false; 403e8d8bef9SDimitry Andric } 404fe6060f1SDimitry Andric BackBranch = cast<BranchInst>(Latch->getTerminator()); 405fe6060f1SDimitry Andric IterationInstructions.insert(BackBranch); 406fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 407e8d8bef9SDimitry Andric IterationInstructions.insert(Compare); 408e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 409e8d8bef9SDimitry Andric 410fe6060f1SDimitry Andric // Find increment and trip count. 411fe6060f1SDimitry Andric // There are exactly 2 incoming values to the induction phi; one from the 412fe6060f1SDimitry Andric // pre-header and one from the latch. The incoming latch value is the 413fe6060f1SDimitry Andric // increment variable. 414fe6060f1SDimitry Andric Increment = 415*81ad6265SDimitry Andric cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 416fe6060f1SDimitry Andric if (Increment->hasNUsesOrMore(3)) { 417fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 418e8d8bef9SDimitry Andric return false; 419e8d8bef9SDimitry Andric } 420fe6060f1SDimitry Andric // The trip count is the RHS of the compare. If this doesn't match the trip 421349cc55cSDimitry Andric // count computed by SCEV then this is because the trip count variable 422349cc55cSDimitry Andric // has been widened so the types don't match, or because it is a constant and 423349cc55cSDimitry Andric // another transformation has changed the compare (e.g. icmp ult %inc, 424349cc55cSDimitry Andric // tripcount -> icmp ult %j, tripcount-1), or both. 425349cc55cSDimitry Andric Value *RHS = Compare->getOperand(1); 42604eeddc0SDimitry Andric 42704eeddc0SDimitry Andric return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 42804eeddc0SDimitry Andric Increment, BackBranch, SE, IsWidened); 429e8d8bef9SDimitry Andric } 430e8d8bef9SDimitry Andric 431fe6060f1SDimitry Andric static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 432e8d8bef9SDimitry Andric // All PHIs in the inner and outer headers must either be: 433e8d8bef9SDimitry Andric // - The induction PHI, which we are going to rewrite as one induction in 434e8d8bef9SDimitry Andric // the new loop. This is already checked by findLoopComponents. 435e8d8bef9SDimitry Andric // - An outer header PHI with all incoming values from outside the loop. 436e8d8bef9SDimitry Andric // LoopSimplify guarantees we have a pre-header, so we don't need to 437e8d8bef9SDimitry Andric // worry about that here. 438e8d8bef9SDimitry Andric // - Pairs of PHIs in the inner and outer headers, which implement a 439e8d8bef9SDimitry Andric // loop-carried dependency that will still be valid in the new loop. To 440e8d8bef9SDimitry Andric // be valid, this variable must be modified only in the inner loop. 441e8d8bef9SDimitry Andric 442e8d8bef9SDimitry Andric // The set of PHI nodes in the outer loop header that we know will still be 443e8d8bef9SDimitry Andric // valid after the transformation. These will not need to be modified (with 444e8d8bef9SDimitry Andric // the exception of the induction variable), but we do need to check that 445e8d8bef9SDimitry Andric // there are no unsafe PHI nodes. 446e8d8bef9SDimitry Andric SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 447e8d8bef9SDimitry Andric SafeOuterPHIs.insert(FI.OuterInductionPHI); 448e8d8bef9SDimitry Andric 449e8d8bef9SDimitry Andric // Check that all PHI nodes in the inner loop header match one of the valid 450e8d8bef9SDimitry Andric // patterns. 451e8d8bef9SDimitry Andric for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 452e8d8bef9SDimitry Andric // The induction PHIs break these rules, and that's OK because we treat 453e8d8bef9SDimitry Andric // them specially when doing the transformation. 454e8d8bef9SDimitry Andric if (&InnerPHI == FI.InnerInductionPHI) 455e8d8bef9SDimitry Andric continue; 456349cc55cSDimitry Andric if (FI.isNarrowInductionPhi(&InnerPHI)) 457349cc55cSDimitry Andric continue; 458e8d8bef9SDimitry Andric 459e8d8bef9SDimitry Andric // Each inner loop PHI node must have two incoming values/blocks - one 460e8d8bef9SDimitry Andric // from the pre-header, and one from the latch. 461e8d8bef9SDimitry Andric assert(InnerPHI.getNumIncomingValues() == 2); 462e8d8bef9SDimitry Andric Value *PreHeaderValue = 463e8d8bef9SDimitry Andric InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 464e8d8bef9SDimitry Andric Value *LatchValue = 465e8d8bef9SDimitry Andric InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 466e8d8bef9SDimitry Andric 467e8d8bef9SDimitry Andric // The incoming value from the outer loop must be the PHI node in the 468e8d8bef9SDimitry Andric // outer loop header, with no modifications made in the top of the outer 469e8d8bef9SDimitry Andric // loop. 470e8d8bef9SDimitry Andric PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 471e8d8bef9SDimitry Andric if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 472e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 473e8d8bef9SDimitry Andric return false; 474e8d8bef9SDimitry Andric } 475e8d8bef9SDimitry Andric 476e8d8bef9SDimitry Andric // The other incoming value must come from the inner loop, without any 477e8d8bef9SDimitry Andric // modifications in the tail end of the outer loop. We are in LCSSA form, 478e8d8bef9SDimitry Andric // so this will actually be a PHI in the inner loop's exit block, which 479e8d8bef9SDimitry Andric // only uses values from inside the inner loop. 480e8d8bef9SDimitry Andric PHINode *LCSSAPHI = dyn_cast<PHINode>( 481e8d8bef9SDimitry Andric OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 482e8d8bef9SDimitry Andric if (!LCSSAPHI) { 483e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 484e8d8bef9SDimitry Andric return false; 485e8d8bef9SDimitry Andric } 486e8d8bef9SDimitry Andric 487e8d8bef9SDimitry Andric // The value used by the LCSSA PHI must be the same one that the inner 488e8d8bef9SDimitry Andric // loop's PHI uses. 489e8d8bef9SDimitry Andric if (LCSSAPHI->hasConstantValue() != LatchValue) { 490e8d8bef9SDimitry Andric LLVM_DEBUG( 491e8d8bef9SDimitry Andric dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 492e8d8bef9SDimitry Andric return false; 493e8d8bef9SDimitry Andric } 494e8d8bef9SDimitry Andric 495e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 496e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 497e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 498e8d8bef9SDimitry Andric SafeOuterPHIs.insert(OuterPHI); 499e8d8bef9SDimitry Andric FI.InnerPHIsToTransform.insert(&InnerPHI); 500e8d8bef9SDimitry Andric } 501e8d8bef9SDimitry Andric 502e8d8bef9SDimitry Andric for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 503349cc55cSDimitry Andric if (FI.isNarrowInductionPhi(&OuterPHI)) 504349cc55cSDimitry Andric continue; 505e8d8bef9SDimitry Andric if (!SafeOuterPHIs.count(&OuterPHI)) { 506e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 507e8d8bef9SDimitry Andric return false; 508e8d8bef9SDimitry Andric } 509e8d8bef9SDimitry Andric } 510e8d8bef9SDimitry Andric 511e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 512e8d8bef9SDimitry Andric return true; 513e8d8bef9SDimitry Andric } 514e8d8bef9SDimitry Andric 515e8d8bef9SDimitry Andric static bool 516fe6060f1SDimitry Andric checkOuterLoopInsts(FlattenInfo &FI, 517e8d8bef9SDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions, 518e8d8bef9SDimitry Andric const TargetTransformInfo *TTI) { 519e8d8bef9SDimitry Andric // Check for instructions in the outer but not inner loop. If any of these 520e8d8bef9SDimitry Andric // have side-effects then this transformation is not legal, and if there is 521e8d8bef9SDimitry Andric // a significant amount of code here which can't be optimised out that it's 522e8d8bef9SDimitry Andric // not profitable (as these instructions would get executed for each 523e8d8bef9SDimitry Andric // iteration of the inner loop). 524fe6060f1SDimitry Andric InstructionCost RepeatedInstrCost = 0; 525e8d8bef9SDimitry Andric for (auto *B : FI.OuterLoop->getBlocks()) { 526e8d8bef9SDimitry Andric if (FI.InnerLoop->contains(B)) 527e8d8bef9SDimitry Andric continue; 528e8d8bef9SDimitry Andric 529e8d8bef9SDimitry Andric for (auto &I : *B) { 530e8d8bef9SDimitry Andric if (!isa<PHINode>(&I) && !I.isTerminator() && 531e8d8bef9SDimitry Andric !isSafeToSpeculativelyExecute(&I)) { 532e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 533e8d8bef9SDimitry Andric "side effects: "; 534e8d8bef9SDimitry Andric I.dump()); 535e8d8bef9SDimitry Andric return false; 536e8d8bef9SDimitry Andric } 537e8d8bef9SDimitry Andric // The execution count of the outer loop's iteration instructions 538e8d8bef9SDimitry Andric // (increment, compare and branch) will be increased, but the 539e8d8bef9SDimitry Andric // equivalent instructions will be removed from the inner loop, so 540e8d8bef9SDimitry Andric // they make a net difference of zero. 541e8d8bef9SDimitry Andric if (IterationInstructions.count(&I)) 542e8d8bef9SDimitry Andric continue; 543e8d8bef9SDimitry Andric // The uncoditional branch to the inner loop's header will turn into 544e8d8bef9SDimitry Andric // a fall-through, so adds no cost. 545e8d8bef9SDimitry Andric BranchInst *Br = dyn_cast<BranchInst>(&I); 546e8d8bef9SDimitry Andric if (Br && Br->isUnconditional() && 547e8d8bef9SDimitry Andric Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 548e8d8bef9SDimitry Andric continue; 549e8d8bef9SDimitry Andric // Multiplies of the outer iteration variable and inner iteration 550e8d8bef9SDimitry Andric // count will be optimised out. 551e8d8bef9SDimitry Andric if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 552fe6060f1SDimitry Andric m_Specific(FI.InnerTripCount)))) 553e8d8bef9SDimitry Andric continue; 554fe6060f1SDimitry Andric InstructionCost Cost = 555fe6060f1SDimitry Andric TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 556e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 557e8d8bef9SDimitry Andric RepeatedInstrCost += Cost; 558e8d8bef9SDimitry Andric } 559e8d8bef9SDimitry Andric } 560e8d8bef9SDimitry Andric 561e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 562e8d8bef9SDimitry Andric << RepeatedInstrCost << "\n"); 563e8d8bef9SDimitry Andric // Bail out if flattening the loops would cause instructions in the outer 564e8d8bef9SDimitry Andric // loop but not in the inner loop to be executed extra times. 565e8d8bef9SDimitry Andric if (RepeatedInstrCost > RepeatedInstructionThreshold) { 566e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 567e8d8bef9SDimitry Andric return false; 568e8d8bef9SDimitry Andric } 569e8d8bef9SDimitry Andric 570e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 571e8d8bef9SDimitry Andric return true; 572e8d8bef9SDimitry Andric } 573e8d8bef9SDimitry Andric 57404eeddc0SDimitry Andric 57504eeddc0SDimitry Andric 576e8d8bef9SDimitry Andric // We require all uses of both induction variables to match this pattern: 577e8d8bef9SDimitry Andric // 578fe6060f1SDimitry Andric // (OuterPHI * InnerTripCount) + InnerPHI 579e8d8bef9SDimitry Andric // 580e8d8bef9SDimitry Andric // Any uses of the induction variables not matching that pattern would 581e8d8bef9SDimitry Andric // require a div/mod to reconstruct in the flattened loop, so the 582e8d8bef9SDimitry Andric // transformation wouldn't be profitable. 58304eeddc0SDimitry Andric static bool checkIVUsers(FlattenInfo &FI) { 584e8d8bef9SDimitry Andric // Check that all uses of the inner loop's induction variable match the 585e8d8bef9SDimitry Andric // expected pattern, recording the uses of the outer IV. 586e8d8bef9SDimitry Andric SmallPtrSet<Value *, 4> ValidOuterPHIUses; 58704eeddc0SDimitry Andric if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 588e8d8bef9SDimitry Andric return false; 589e8d8bef9SDimitry Andric 590e8d8bef9SDimitry Andric // Check that there are no uses of the outer IV other than the ones found 591e8d8bef9SDimitry Andric // as part of the pattern above. 59204eeddc0SDimitry Andric if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 593e8d8bef9SDimitry Andric return false; 594e8d8bef9SDimitry Andric 595e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 596e8d8bef9SDimitry Andric dbgs() << "Found " << FI.LinearIVUses.size() 597e8d8bef9SDimitry Andric << " value(s) that can be replaced:\n"; 598e8d8bef9SDimitry Andric for (Value *V : FI.LinearIVUses) { 599e8d8bef9SDimitry Andric dbgs() << " "; 600e8d8bef9SDimitry Andric V->dump(); 601e8d8bef9SDimitry Andric }); 602e8d8bef9SDimitry Andric return true; 603e8d8bef9SDimitry Andric } 604e8d8bef9SDimitry Andric 605e8d8bef9SDimitry Andric // Return an OverflowResult dependant on if overflow of the multiplication of 606fe6060f1SDimitry Andric // InnerTripCount and OuterTripCount can be assumed not to happen. 607fe6060f1SDimitry Andric static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 608fe6060f1SDimitry Andric AssumptionCache *AC) { 609e8d8bef9SDimitry Andric Function *F = FI.OuterLoop->getHeader()->getParent(); 610e8d8bef9SDimitry Andric const DataLayout &DL = F->getParent()->getDataLayout(); 611e8d8bef9SDimitry Andric 612e8d8bef9SDimitry Andric // For debugging/testing. 613e8d8bef9SDimitry Andric if (AssumeNoOverflow) 614e8d8bef9SDimitry Andric return OverflowResult::NeverOverflows; 615e8d8bef9SDimitry Andric 616e8d8bef9SDimitry Andric // Check if the multiply could not overflow due to known ranges of the 617e8d8bef9SDimitry Andric // input values. 618e8d8bef9SDimitry Andric OverflowResult OR = computeOverflowForUnsignedMul( 619fe6060f1SDimitry Andric FI.InnerTripCount, FI.OuterTripCount, DL, AC, 620e8d8bef9SDimitry Andric FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 621e8d8bef9SDimitry Andric if (OR != OverflowResult::MayOverflow) 622e8d8bef9SDimitry Andric return OR; 623e8d8bef9SDimitry Andric 624e8d8bef9SDimitry Andric for (Value *V : FI.LinearIVUses) { 625e8d8bef9SDimitry Andric for (Value *U : V->users()) { 626e8d8bef9SDimitry Andric if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 627349cc55cSDimitry Andric for (Value *GEPUser : U->users()) { 62804eeddc0SDimitry Andric auto *GEPUserInst = cast<Instruction>(GEPUser); 629349cc55cSDimitry Andric if (!isa<LoadInst>(GEPUserInst) && 630349cc55cSDimitry Andric !(isa<StoreInst>(GEPUserInst) && 631349cc55cSDimitry Andric GEP == GEPUserInst->getOperand(1))) 632349cc55cSDimitry Andric continue; 633349cc55cSDimitry Andric if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, 634349cc55cSDimitry Andric FI.InnerLoop)) 635349cc55cSDimitry Andric continue; 636349cc55cSDimitry Andric // The IV is used as the operand of a GEP which dominates the loop 637349cc55cSDimitry Andric // latch, and the IV is at least as wide as the address space of the 638349cc55cSDimitry Andric // GEP. In this case, the GEP would wrap around the address space 639349cc55cSDimitry Andric // before the IV increment wraps, which would be UB. 640e8d8bef9SDimitry Andric if (GEP->isInBounds() && 641e8d8bef9SDimitry Andric V->getType()->getIntegerBitWidth() >= 642e8d8bef9SDimitry Andric DL.getPointerTypeSizeInBits(GEP->getType())) { 643e8d8bef9SDimitry Andric LLVM_DEBUG( 644e8d8bef9SDimitry Andric dbgs() << "use of linear IV would be UB if overflow occurred: "; 645e8d8bef9SDimitry Andric GEP->dump()); 646e8d8bef9SDimitry Andric return OverflowResult::NeverOverflows; 647e8d8bef9SDimitry Andric } 648e8d8bef9SDimitry Andric } 649e8d8bef9SDimitry Andric } 650e8d8bef9SDimitry Andric } 651349cc55cSDimitry Andric } 652e8d8bef9SDimitry Andric 653e8d8bef9SDimitry Andric return OverflowResult::MayOverflow; 654e8d8bef9SDimitry Andric } 655e8d8bef9SDimitry Andric 656fe6060f1SDimitry Andric static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 657fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 658fe6060f1SDimitry Andric const TargetTransformInfo *TTI) { 659e8d8bef9SDimitry Andric SmallPtrSet<Instruction *, 8> IterationInstructions; 660fe6060f1SDimitry Andric if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 661fe6060f1SDimitry Andric FI.InnerInductionPHI, FI.InnerTripCount, 662fe6060f1SDimitry Andric FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 663e8d8bef9SDimitry Andric return false; 664fe6060f1SDimitry Andric if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 665fe6060f1SDimitry Andric FI.OuterInductionPHI, FI.OuterTripCount, 666fe6060f1SDimitry Andric FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 667e8d8bef9SDimitry Andric return false; 668e8d8bef9SDimitry Andric 669fe6060f1SDimitry Andric // Both of the loop trip count values must be invariant in the outer loop 670e8d8bef9SDimitry Andric // (non-instructions are all inherently invariant). 671fe6060f1SDimitry Andric if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 672fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 673e8d8bef9SDimitry Andric return false; 674e8d8bef9SDimitry Andric } 675fe6060f1SDimitry Andric if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 676fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 677e8d8bef9SDimitry Andric return false; 678e8d8bef9SDimitry Andric } 679e8d8bef9SDimitry Andric 680e8d8bef9SDimitry Andric if (!checkPHIs(FI, TTI)) 681e8d8bef9SDimitry Andric return false; 682e8d8bef9SDimitry Andric 683e8d8bef9SDimitry Andric // FIXME: it should be possible to handle different types correctly. 684e8d8bef9SDimitry Andric if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 685e8d8bef9SDimitry Andric return false; 686e8d8bef9SDimitry Andric 687e8d8bef9SDimitry Andric if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 688e8d8bef9SDimitry Andric return false; 689e8d8bef9SDimitry Andric 690e8d8bef9SDimitry Andric // Find the values in the loop that can be replaced with the linearized 691e8d8bef9SDimitry Andric // induction variable, and check that there are no other uses of the inner 692e8d8bef9SDimitry Andric // or outer induction variable. If there were, we could still do this 693e8d8bef9SDimitry Andric // transformation, but we'd have to insert a div/mod to calculate the 694e8d8bef9SDimitry Andric // original IVs, so it wouldn't be profitable. 695e8d8bef9SDimitry Andric if (!checkIVUsers(FI)) 696e8d8bef9SDimitry Andric return false; 697e8d8bef9SDimitry Andric 698e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 699e8d8bef9SDimitry Andric return true; 700e8d8bef9SDimitry Andric } 701e8d8bef9SDimitry Andric 702fe6060f1SDimitry Andric static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 703fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 70404eeddc0SDimitry Andric const TargetTransformInfo *TTI, LPMUpdater *U, 70504eeddc0SDimitry Andric MemorySSAUpdater *MSSAU) { 706e8d8bef9SDimitry Andric Function *F = FI.OuterLoop->getHeader()->getParent(); 707e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 708e8d8bef9SDimitry Andric { 709e8d8bef9SDimitry Andric using namespace ore; 710e8d8bef9SDimitry Andric OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 711e8d8bef9SDimitry Andric FI.InnerLoop->getHeader()); 712e8d8bef9SDimitry Andric OptimizationRemarkEmitter ORE(F); 713e8d8bef9SDimitry Andric Remark << "Flattened into outer loop"; 714e8d8bef9SDimitry Andric ORE.emit(Remark); 715e8d8bef9SDimitry Andric } 716e8d8bef9SDimitry Andric 717fe6060f1SDimitry Andric Value *NewTripCount = BinaryOperator::CreateMul( 718fe6060f1SDimitry Andric FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 719e8d8bef9SDimitry Andric FI.OuterLoop->getLoopPreheader()->getTerminator()); 720e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 721e8d8bef9SDimitry Andric NewTripCount->dump()); 722e8d8bef9SDimitry Andric 723e8d8bef9SDimitry Andric // Fix up PHI nodes that take values from the inner loop back-edge, which 724e8d8bef9SDimitry Andric // we are about to remove. 725e8d8bef9SDimitry Andric FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 726e8d8bef9SDimitry Andric 727e8d8bef9SDimitry Andric // The old Phi will be optimised away later, but for now we can't leave 728e8d8bef9SDimitry Andric // leave it in an invalid state, so are updating them too. 729e8d8bef9SDimitry Andric for (PHINode *PHI : FI.InnerPHIsToTransform) 730e8d8bef9SDimitry Andric PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 731e8d8bef9SDimitry Andric 732e8d8bef9SDimitry Andric // Modify the trip count of the outer loop to be the product of the two 733e8d8bef9SDimitry Andric // trip counts. 734e8d8bef9SDimitry Andric cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 735e8d8bef9SDimitry Andric 736e8d8bef9SDimitry Andric // Replace the inner loop backedge with an unconditional branch to the exit. 737e8d8bef9SDimitry Andric BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 738e8d8bef9SDimitry Andric BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 739e8d8bef9SDimitry Andric InnerExitingBlock->getTerminator()->eraseFromParent(); 740e8d8bef9SDimitry Andric BranchInst::Create(InnerExitBlock, InnerExitingBlock); 74104eeddc0SDimitry Andric 74204eeddc0SDimitry Andric // Update the DomTree and MemorySSA. 743e8d8bef9SDimitry Andric DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 74404eeddc0SDimitry Andric if (MSSAU) 74504eeddc0SDimitry Andric MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 746e8d8bef9SDimitry Andric 747e8d8bef9SDimitry Andric // Replace all uses of the polynomial calculated from the two induction 748e8d8bef9SDimitry Andric // variables with the one new one. 749e8d8bef9SDimitry Andric IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 750e8d8bef9SDimitry Andric for (Value *V : FI.LinearIVUses) { 751e8d8bef9SDimitry Andric Value *OuterValue = FI.OuterInductionPHI; 752e8d8bef9SDimitry Andric if (FI.Widened) 753e8d8bef9SDimitry Andric OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 754e8d8bef9SDimitry Andric "flatten.trunciv"); 755e8d8bef9SDimitry Andric 75604eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 75704eeddc0SDimitry Andric OuterValue->dump()); 758e8d8bef9SDimitry Andric V->replaceAllUsesWith(OuterValue); 759e8d8bef9SDimitry Andric } 760e8d8bef9SDimitry Andric 761e8d8bef9SDimitry Andric // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 762e8d8bef9SDimitry Andric // deleted, and any information that have about the outer loop invalidated. 763e8d8bef9SDimitry Andric SE->forgetLoop(FI.OuterLoop); 764e8d8bef9SDimitry Andric SE->forgetLoop(FI.InnerLoop); 765349cc55cSDimitry Andric if (U) 766349cc55cSDimitry Andric U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 767e8d8bef9SDimitry Andric LI->erase(FI.InnerLoop); 768349cc55cSDimitry Andric 769349cc55cSDimitry Andric // Increment statistic value. 770349cc55cSDimitry Andric NumFlattened++; 771349cc55cSDimitry Andric 772e8d8bef9SDimitry Andric return true; 773e8d8bef9SDimitry Andric } 774e8d8bef9SDimitry Andric 775fe6060f1SDimitry Andric static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 776fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 777fe6060f1SDimitry Andric const TargetTransformInfo *TTI) { 778e8d8bef9SDimitry Andric if (!WidenIV) { 779e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 780e8d8bef9SDimitry Andric return false; 781e8d8bef9SDimitry Andric } 782e8d8bef9SDimitry Andric 783e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 784e8d8bef9SDimitry Andric Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 785e8d8bef9SDimitry Andric auto &DL = M->getDataLayout(); 786e8d8bef9SDimitry Andric auto *InnerType = FI.InnerInductionPHI->getType(); 787e8d8bef9SDimitry Andric auto *OuterType = FI.OuterInductionPHI->getType(); 788e8d8bef9SDimitry Andric unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 789e8d8bef9SDimitry Andric auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 790e8d8bef9SDimitry Andric 791e8d8bef9SDimitry Andric // If both induction types are less than the maximum legal integer width, 792e8d8bef9SDimitry Andric // promote both to the widest type available so we know calculating 793fe6060f1SDimitry Andric // (OuterTripCount * InnerTripCount) as the new trip count is safe. 794e8d8bef9SDimitry Andric if (InnerType != OuterType || 795e8d8bef9SDimitry Andric InnerType->getScalarSizeInBits() >= MaxLegalSize || 79604eeddc0SDimitry Andric MaxLegalType->getScalarSizeInBits() < 79704eeddc0SDimitry Andric InnerType->getScalarSizeInBits() * 2) { 798e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 799e8d8bef9SDimitry Andric return false; 800e8d8bef9SDimitry Andric } 801e8d8bef9SDimitry Andric 802e8d8bef9SDimitry Andric SCEVExpander Rewriter(*SE, DL, "loopflatten"); 803e8d8bef9SDimitry Andric SmallVector<WeakTrackingVH, 4> DeadInsts; 804fe6060f1SDimitry Andric unsigned ElimExt = 0; 805fe6060f1SDimitry Andric unsigned Widened = 0; 806e8d8bef9SDimitry Andric 807349cc55cSDimitry Andric auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 80804eeddc0SDimitry Andric PHINode *WidePhi = 80904eeddc0SDimitry Andric createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 81004eeddc0SDimitry Andric true /* HasGuards */, true /* UsePostIncrementRanges */); 811e8d8bef9SDimitry Andric if (!WidePhi) 812e8d8bef9SDimitry Andric return false; 813e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 814fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 815349cc55cSDimitry Andric Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 816349cc55cSDimitry Andric return true; 817349cc55cSDimitry Andric }; 818349cc55cSDimitry Andric 819349cc55cSDimitry Andric bool Deleted; 820349cc55cSDimitry Andric if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 821349cc55cSDimitry Andric return false; 822349cc55cSDimitry Andric // Add the narrow phi to list, so that it will be adjusted later when the 823349cc55cSDimitry Andric // the transformation is performed. 824349cc55cSDimitry Andric if (!Deleted) 825349cc55cSDimitry Andric FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 826349cc55cSDimitry Andric 827349cc55cSDimitry Andric if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 828349cc55cSDimitry Andric return false; 829349cc55cSDimitry Andric 830fe6060f1SDimitry Andric assert(Widened && "Widened IV expected"); 831e8d8bef9SDimitry Andric FI.Widened = true; 832349cc55cSDimitry Andric 833349cc55cSDimitry Andric // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 834349cc55cSDimitry Andric FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 835349cc55cSDimitry Andric FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 836349cc55cSDimitry Andric 837349cc55cSDimitry Andric // After widening, rediscover all the loop components. 838e8d8bef9SDimitry Andric return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 839e8d8bef9SDimitry Andric } 840e8d8bef9SDimitry Andric 841fe6060f1SDimitry Andric static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 842fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 84304eeddc0SDimitry Andric const TargetTransformInfo *TTI, LPMUpdater *U, 84404eeddc0SDimitry Andric MemorySSAUpdater *MSSAU) { 845e8d8bef9SDimitry Andric LLVM_DEBUG( 846e8d8bef9SDimitry Andric dbgs() << "Loop flattening running on outer loop " 847e8d8bef9SDimitry Andric << FI.OuterLoop->getHeader()->getName() << " and inner loop " 848e8d8bef9SDimitry Andric << FI.InnerLoop->getHeader()->getName() << " in " 849e8d8bef9SDimitry Andric << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 850e8d8bef9SDimitry Andric 851e8d8bef9SDimitry Andric if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 852e8d8bef9SDimitry Andric return false; 853e8d8bef9SDimitry Andric 854e8d8bef9SDimitry Andric // Check if we can widen the induction variables to avoid overflow checks. 855349cc55cSDimitry Andric bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 856e8d8bef9SDimitry Andric 857349cc55cSDimitry Andric // It can happen that after widening of the IV, flattening may not be 858349cc55cSDimitry Andric // possible/happening, e.g. when it is deemed unprofitable. So bail here if 859349cc55cSDimitry Andric // that is the case. 860349cc55cSDimitry Andric // TODO: IV widening without performing the actual flattening transformation 861349cc55cSDimitry Andric // is not ideal. While this codegen change should not matter much, it is an 862349cc55cSDimitry Andric // unnecessary change which is better to avoid. It's unlikely this happens 863349cc55cSDimitry Andric // often, because if it's unprofitibale after widening, it should be 864349cc55cSDimitry Andric // unprofitabe before widening as checked in the first round of checks. But 865349cc55cSDimitry Andric // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 866349cc55cSDimitry Andric // relaxed. Because this is making a code change (the IV widening, but not 867349cc55cSDimitry Andric // the flattening), we return true here. 868349cc55cSDimitry Andric if (FI.Widened && !CanFlatten) 869349cc55cSDimitry Andric return true; 870349cc55cSDimitry Andric 871349cc55cSDimitry Andric // If we have widened and can perform the transformation, do that here. 872349cc55cSDimitry Andric if (CanFlatten) 87304eeddc0SDimitry Andric return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 874349cc55cSDimitry Andric 875349cc55cSDimitry Andric // Otherwise, if we haven't widened the IV, check if the new iteration 876349cc55cSDimitry Andric // variable might overflow. In this case, we need to version the loop, and 877349cc55cSDimitry Andric // select the original version at runtime if the iteration space is too 878349cc55cSDimitry Andric // large. 879e8d8bef9SDimitry Andric // TODO: We currently don't version the loop. 880e8d8bef9SDimitry Andric OverflowResult OR = checkOverflow(FI, DT, AC); 881e8d8bef9SDimitry Andric if (OR == OverflowResult::AlwaysOverflowsHigh || 882e8d8bef9SDimitry Andric OR == OverflowResult::AlwaysOverflowsLow) { 883e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 884e8d8bef9SDimitry Andric return false; 885e8d8bef9SDimitry Andric } else if (OR == OverflowResult::MayOverflow) { 886e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 887e8d8bef9SDimitry Andric return false; 888e8d8bef9SDimitry Andric } 889e8d8bef9SDimitry Andric 890e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 89104eeddc0SDimitry Andric return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 892e8d8bef9SDimitry Andric } 893e8d8bef9SDimitry Andric 894fe6060f1SDimitry Andric bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 89504eeddc0SDimitry Andric AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U, 89604eeddc0SDimitry Andric MemorySSAUpdater *MSSAU) { 897e8d8bef9SDimitry Andric bool Changed = false; 898fe6060f1SDimitry Andric for (Loop *InnerLoop : LN.getLoops()) { 899e8d8bef9SDimitry Andric auto *OuterLoop = InnerLoop->getParentLoop(); 900e8d8bef9SDimitry Andric if (!OuterLoop) 901e8d8bef9SDimitry Andric continue; 902fe6060f1SDimitry Andric FlattenInfo FI(OuterLoop, InnerLoop); 90304eeddc0SDimitry Andric Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 904e8d8bef9SDimitry Andric } 905e8d8bef9SDimitry Andric return Changed; 906e8d8bef9SDimitry Andric } 907e8d8bef9SDimitry Andric 908fe6060f1SDimitry Andric PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 909fe6060f1SDimitry Andric LoopStandardAnalysisResults &AR, 910fe6060f1SDimitry Andric LPMUpdater &U) { 911e8d8bef9SDimitry Andric 912fe6060f1SDimitry Andric bool Changed = false; 913fe6060f1SDimitry Andric 91404eeddc0SDimitry Andric Optional<MemorySSAUpdater> MSSAU; 91504eeddc0SDimitry Andric if (AR.MSSA) { 91604eeddc0SDimitry Andric MSSAU = MemorySSAUpdater(AR.MSSA); 91704eeddc0SDimitry Andric if (VerifyMemorySSA) 91804eeddc0SDimitry Andric AR.MSSA->verifyMemorySSA(); 91904eeddc0SDimitry Andric } 92004eeddc0SDimitry Andric 921fe6060f1SDimitry Andric // The loop flattening pass requires loops to be 922fe6060f1SDimitry Andric // in simplified form, and also needs LCSSA. Running 923fe6060f1SDimitry Andric // this pass will simplify all loops that contain inner loops, 924fe6060f1SDimitry Andric // regardless of whether anything ends up being flattened. 92504eeddc0SDimitry Andric Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 926*81ad6265SDimitry Andric MSSAU ? MSSAU.getPointer() : nullptr); 927fe6060f1SDimitry Andric 928fe6060f1SDimitry Andric if (!Changed) 929e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 930e8d8bef9SDimitry Andric 93104eeddc0SDimitry Andric if (AR.MSSA && VerifyMemorySSA) 93204eeddc0SDimitry Andric AR.MSSA->verifyMemorySSA(); 93304eeddc0SDimitry Andric 93404eeddc0SDimitry Andric auto PA = getLoopPassPreservedAnalyses(); 93504eeddc0SDimitry Andric if (AR.MSSA) 93604eeddc0SDimitry Andric PA.preserve<MemorySSAAnalysis>(); 93704eeddc0SDimitry Andric return PA; 938e8d8bef9SDimitry Andric } 939e8d8bef9SDimitry Andric 940e8d8bef9SDimitry Andric namespace { 941e8d8bef9SDimitry Andric class LoopFlattenLegacyPass : public FunctionPass { 942e8d8bef9SDimitry Andric public: 943e8d8bef9SDimitry Andric static char ID; // Pass ID, replacement for typeid 944e8d8bef9SDimitry Andric LoopFlattenLegacyPass() : FunctionPass(ID) { 945e8d8bef9SDimitry Andric initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 946e8d8bef9SDimitry Andric } 947e8d8bef9SDimitry Andric 948e8d8bef9SDimitry Andric // Possibly flatten loop L into its child. 949e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override; 950e8d8bef9SDimitry Andric 951e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 952e8d8bef9SDimitry Andric getLoopAnalysisUsage(AU); 953e8d8bef9SDimitry Andric AU.addRequired<TargetTransformInfoWrapperPass>(); 954e8d8bef9SDimitry Andric AU.addPreserved<TargetTransformInfoWrapperPass>(); 955e8d8bef9SDimitry Andric AU.addRequired<AssumptionCacheTracker>(); 956e8d8bef9SDimitry Andric AU.addPreserved<AssumptionCacheTracker>(); 95704eeddc0SDimitry Andric AU.addPreserved<MemorySSAWrapperPass>(); 958e8d8bef9SDimitry Andric } 959e8d8bef9SDimitry Andric }; 960e8d8bef9SDimitry Andric } // namespace 961e8d8bef9SDimitry Andric 962e8d8bef9SDimitry Andric char LoopFlattenLegacyPass::ID = 0; 963e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 964e8d8bef9SDimitry Andric false, false) 965e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 966e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 967e8d8bef9SDimitry Andric INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 968e8d8bef9SDimitry Andric false, false) 969e8d8bef9SDimitry Andric 97004eeddc0SDimitry Andric FunctionPass *llvm::createLoopFlattenPass() { 97104eeddc0SDimitry Andric return new LoopFlattenLegacyPass(); 97204eeddc0SDimitry Andric } 973e8d8bef9SDimitry Andric 974e8d8bef9SDimitry Andric bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 975e8d8bef9SDimitry Andric ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 976e8d8bef9SDimitry Andric LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 977e8d8bef9SDimitry Andric auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 978e8d8bef9SDimitry Andric DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 979e8d8bef9SDimitry Andric auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 980e8d8bef9SDimitry Andric auto *TTI = &TTIP.getTTI(F); 981e8d8bef9SDimitry Andric auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 98204eeddc0SDimitry Andric auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 98304eeddc0SDimitry Andric 98404eeddc0SDimitry Andric Optional<MemorySSAUpdater> MSSAU; 98504eeddc0SDimitry Andric if (MSSA) 98604eeddc0SDimitry Andric MSSAU = MemorySSAUpdater(&MSSA->getMSSA()); 98704eeddc0SDimitry Andric 988fe6060f1SDimitry Andric bool Changed = false; 989fe6060f1SDimitry Andric for (Loop *L : *LI) { 990fe6060f1SDimitry Andric auto LN = LoopNest::getLoopNest(*L, *SE); 99104eeddc0SDimitry Andric Changed |= Flatten(*LN, DT, LI, SE, AC, TTI, nullptr, 992*81ad6265SDimitry Andric MSSAU ? MSSAU.getPointer() : nullptr); 993fe6060f1SDimitry Andric } 994fe6060f1SDimitry Andric return Changed; 995e8d8bef9SDimitry Andric } 996