xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision 349cc55c9796c4596a5b9904cd3281af295f878f)
1e8d8bef9SDimitry Andric //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric //
9e8d8bef9SDimitry Andric // This pass flattens pairs nested loops into a single loop.
10e8d8bef9SDimitry Andric //
11e8d8bef9SDimitry Andric // The intention is to optimise loop nests like this, which together access an
12e8d8bef9SDimitry Andric // array linearly:
13e8d8bef9SDimitry Andric //   for (int i = 0; i < N; ++i)
14e8d8bef9SDimitry Andric //     for (int j = 0; j < M; ++j)
15e8d8bef9SDimitry Andric //       f(A[i*M+j]);
16e8d8bef9SDimitry Andric // into one loop:
17e8d8bef9SDimitry Andric //   for (int i = 0; i < (N*M); ++i)
18e8d8bef9SDimitry Andric //     f(A[i]);
19e8d8bef9SDimitry Andric //
20e8d8bef9SDimitry Andric // It can also flatten loops where the induction variables are not used in the
21e8d8bef9SDimitry Andric // loop. This is only worth doing if the induction variables are only used in an
22e8d8bef9SDimitry Andric // expression like i*M+j. If they had any other uses, we would have to insert a
23e8d8bef9SDimitry Andric // div/mod to reconstruct the original values, so this wouldn't be profitable.
24e8d8bef9SDimitry Andric //
25e8d8bef9SDimitry Andric // We also need to prove that N*M will not overflow.
26e8d8bef9SDimitry Andric //
27e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
28e8d8bef9SDimitry Andric 
29e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/LoopFlatten.h"
30*349cc55cSDimitry Andric 
31*349cc55cSDimitry Andric #include "llvm/ADT/Statistic.h"
32e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
33e8d8bef9SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
34e8d8bef9SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35e8d8bef9SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h"
36e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
37e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
38e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h"
39e8d8bef9SDimitry Andric #include "llvm/IR/Function.h"
40e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h"
41e8d8bef9SDimitry Andric #include "llvm/IR/Module.h"
42e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h"
43e8d8bef9SDimitry Andric #include "llvm/IR/Verifier.h"
44e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h"
45e8d8bef9SDimitry Andric #include "llvm/Pass.h"
46e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h"
47e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h"
48e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar.h"
49e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
50e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
51e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
52e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/SimplifyIndVar.h"
53e8d8bef9SDimitry Andric 
54e8d8bef9SDimitry Andric using namespace llvm;
55e8d8bef9SDimitry Andric using namespace llvm::PatternMatch;
56e8d8bef9SDimitry Andric 
57*349cc55cSDimitry Andric #define DEBUG_TYPE "loop-flatten"
58*349cc55cSDimitry Andric 
59*349cc55cSDimitry Andric STATISTIC(NumFlattened, "Number of loops flattened");
60*349cc55cSDimitry Andric 
61e8d8bef9SDimitry Andric static cl::opt<unsigned> RepeatedInstructionThreshold(
62e8d8bef9SDimitry Andric     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
63e8d8bef9SDimitry Andric     cl::desc("Limit on the cost of instructions that can be repeated due to "
64e8d8bef9SDimitry Andric              "loop flattening"));
65e8d8bef9SDimitry Andric 
66e8d8bef9SDimitry Andric static cl::opt<bool>
67e8d8bef9SDimitry Andric     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
68e8d8bef9SDimitry Andric                      cl::init(false),
69e8d8bef9SDimitry Andric                      cl::desc("Assume that the product of the two iteration "
70fe6060f1SDimitry Andric                               "trip counts will never overflow"));
71e8d8bef9SDimitry Andric 
72e8d8bef9SDimitry Andric static cl::opt<bool>
73e8d8bef9SDimitry Andric     WidenIV("loop-flatten-widen-iv", cl::Hidden,
74e8d8bef9SDimitry Andric             cl::init(true),
75e8d8bef9SDimitry Andric             cl::desc("Widen the loop induction variables, if possible, so "
76e8d8bef9SDimitry Andric                      "overflow checks won't reject flattening"));
77e8d8bef9SDimitry Andric 
78e8d8bef9SDimitry Andric struct FlattenInfo {
79e8d8bef9SDimitry Andric   Loop *OuterLoop = nullptr;
80e8d8bef9SDimitry Andric   Loop *InnerLoop = nullptr;
81fe6060f1SDimitry Andric   // These PHINodes correspond to loop induction variables, which are expected
82fe6060f1SDimitry Andric   // to start at zero and increment by one on each loop.
83e8d8bef9SDimitry Andric   PHINode *InnerInductionPHI = nullptr;
84e8d8bef9SDimitry Andric   PHINode *OuterInductionPHI = nullptr;
85fe6060f1SDimitry Andric   Value *InnerTripCount = nullptr;
86fe6060f1SDimitry Andric   Value *OuterTripCount = nullptr;
87e8d8bef9SDimitry Andric   BinaryOperator *InnerIncrement = nullptr;
88e8d8bef9SDimitry Andric   BinaryOperator *OuterIncrement = nullptr;
89e8d8bef9SDimitry Andric   BranchInst *InnerBranch = nullptr;
90e8d8bef9SDimitry Andric   BranchInst *OuterBranch = nullptr;
91e8d8bef9SDimitry Andric   SmallPtrSet<Value *, 4> LinearIVUses;
92e8d8bef9SDimitry Andric   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
93e8d8bef9SDimitry Andric 
94e8d8bef9SDimitry Andric   // Whether this holds the flatten info before or after widening.
95e8d8bef9SDimitry Andric   bool Widened = false;
96e8d8bef9SDimitry Andric 
97*349cc55cSDimitry Andric   // Holds the old/narrow induction phis, i.e. the Phis before IV widening has
98*349cc55cSDimitry Andric   // been applied. This bookkeeping is used so we can skip some checks on these
99*349cc55cSDimitry Andric   // phi nodes.
100*349cc55cSDimitry Andric   PHINode *NarrowInnerInductionPHI = nullptr;
101*349cc55cSDimitry Andric   PHINode *NarrowOuterInductionPHI = nullptr;
102*349cc55cSDimitry Andric 
103e8d8bef9SDimitry Andric   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
104*349cc55cSDimitry Andric 
105*349cc55cSDimitry Andric   bool isNarrowInductionPhi(PHINode *Phi) {
106*349cc55cSDimitry Andric     // This can't be the narrow phi if we haven't widened the IV first.
107*349cc55cSDimitry Andric     if (!Widened)
108*349cc55cSDimitry Andric       return false;
109*349cc55cSDimitry Andric     return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
110*349cc55cSDimitry Andric   }
111e8d8bef9SDimitry Andric };
112e8d8bef9SDimitry Andric 
113*349cc55cSDimitry Andric static bool
114*349cc55cSDimitry Andric setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
115*349cc55cSDimitry Andric                   SmallPtrSetImpl<Instruction *> &IterationInstructions) {
116*349cc55cSDimitry Andric   TripCount = TC;
117*349cc55cSDimitry Andric   IterationInstructions.insert(Increment);
118*349cc55cSDimitry Andric   LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
119*349cc55cSDimitry Andric   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
120*349cc55cSDimitry Andric   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
121*349cc55cSDimitry Andric   return true;
122*349cc55cSDimitry Andric }
123*349cc55cSDimitry Andric 
124fe6060f1SDimitry Andric // Finds the induction variable, increment and trip count for a simple loop that
125fe6060f1SDimitry Andric // we can flatten.
126e8d8bef9SDimitry Andric static bool findLoopComponents(
127e8d8bef9SDimitry Andric     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
128fe6060f1SDimitry Andric     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
129fe6060f1SDimitry Andric     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
130e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
131e8d8bef9SDimitry Andric 
132e8d8bef9SDimitry Andric   if (!L->isLoopSimplifyForm()) {
133e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
134e8d8bef9SDimitry Andric     return false;
135e8d8bef9SDimitry Andric   }
136e8d8bef9SDimitry Andric 
137fe6060f1SDimitry Andric   // Currently, to simplify the implementation, the Loop induction variable must
138fe6060f1SDimitry Andric   // start at zero and increment with a step size of one.
139fe6060f1SDimitry Andric   if (!L->isCanonical(*SE)) {
140fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
141fe6060f1SDimitry Andric     return false;
142fe6060f1SDimitry Andric   }
143fe6060f1SDimitry Andric 
144e8d8bef9SDimitry Andric   // There must be exactly one exiting block, and it must be the same at the
145e8d8bef9SDimitry Andric   // latch.
146e8d8bef9SDimitry Andric   BasicBlock *Latch = L->getLoopLatch();
147e8d8bef9SDimitry Andric   if (L->getExitingBlock() != Latch) {
148e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
149e8d8bef9SDimitry Andric     return false;
150e8d8bef9SDimitry Andric   }
151e8d8bef9SDimitry Andric 
152e8d8bef9SDimitry Andric   // Find the induction PHI. If there is no induction PHI, we can't do the
153e8d8bef9SDimitry Andric   // transformation. TODO: could other variables trigger this? Do we have to
154e8d8bef9SDimitry Andric   // search for the best one?
155fe6060f1SDimitry Andric   InductionPHI = L->getInductionVariable(*SE);
156e8d8bef9SDimitry Andric   if (!InductionPHI) {
157e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
158e8d8bef9SDimitry Andric     return false;
159e8d8bef9SDimitry Andric   }
160fe6060f1SDimitry Andric   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
161e8d8bef9SDimitry Andric 
162fe6060f1SDimitry Andric   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
163e8d8bef9SDimitry Andric   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
164e8d8bef9SDimitry Andric     if (ContinueOnTrue)
165e8d8bef9SDimitry Andric       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
166e8d8bef9SDimitry Andric     else
167e8d8bef9SDimitry Andric       return Pred == CmpInst::ICMP_EQ;
168e8d8bef9SDimitry Andric   };
169e8d8bef9SDimitry Andric 
170fe6060f1SDimitry Andric   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
171fe6060f1SDimitry Andric   // back branch of the latch is conditional.
172fe6060f1SDimitry Andric   ICmpInst *Compare = L->getLatchCmpInst();
173e8d8bef9SDimitry Andric   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
174e8d8bef9SDimitry Andric       Compare->hasNUsesOrMore(2)) {
175e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
176e8d8bef9SDimitry Andric     return false;
177e8d8bef9SDimitry Andric   }
178fe6060f1SDimitry Andric   BackBranch = cast<BranchInst>(Latch->getTerminator());
179fe6060f1SDimitry Andric   IterationInstructions.insert(BackBranch);
180fe6060f1SDimitry Andric   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
181e8d8bef9SDimitry Andric   IterationInstructions.insert(Compare);
182e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
183e8d8bef9SDimitry Andric 
184fe6060f1SDimitry Andric   // Find increment and trip count.
185fe6060f1SDimitry Andric   // There are exactly 2 incoming values to the induction phi; one from the
186fe6060f1SDimitry Andric   // pre-header and one from the latch. The incoming latch value is the
187fe6060f1SDimitry Andric   // increment variable.
188fe6060f1SDimitry Andric   Increment =
189fe6060f1SDimitry Andric       dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
190fe6060f1SDimitry Andric   if (Increment->hasNUsesOrMore(3)) {
191fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
192e8d8bef9SDimitry Andric     return false;
193e8d8bef9SDimitry Andric   }
194fe6060f1SDimitry Andric   // The trip count is the RHS of the compare. If this doesn't match the trip
195*349cc55cSDimitry Andric   // count computed by SCEV then this is because the trip count variable
196*349cc55cSDimitry Andric   // has been widened so the types don't match, or because it is a constant and
197*349cc55cSDimitry Andric   // another transformation has changed the compare (e.g. icmp ult %inc,
198*349cc55cSDimitry Andric   // tripcount -> icmp ult %j, tripcount-1), or both.
199*349cc55cSDimitry Andric   Value *RHS = Compare->getOperand(1);
200*349cc55cSDimitry Andric   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
201*349cc55cSDimitry Andric   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
202*349cc55cSDimitry Andric     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
203*349cc55cSDimitry Andric     return false;
204*349cc55cSDimitry Andric   }
205*349cc55cSDimitry Andric   // The use of the Extend=false flag on getTripCountFromExitCount was added
206*349cc55cSDimitry Andric   // during a refactoring to preserve existing behavior.  However, there's
207*349cc55cSDimitry Andric   // nothing obvious in the surrounding code when handles the overflow case.
208*349cc55cSDimitry Andric   // FIXME: audit code to establish whether there's a latent bug here.
209fe6060f1SDimitry Andric   const SCEV *SCEVTripCount =
210*349cc55cSDimitry Andric     SE->getTripCountFromExitCount(BackedgeTakenCount, false);
211*349cc55cSDimitry Andric   const SCEV *SCEVRHS = SE->getSCEV(RHS);
212*349cc55cSDimitry Andric   if (SCEVRHS == SCEVTripCount)
213*349cc55cSDimitry Andric     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
214*349cc55cSDimitry Andric   ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
215*349cc55cSDimitry Andric   if (ConstantRHS) {
216*349cc55cSDimitry Andric     const SCEV *BackedgeTCExt = nullptr;
217*349cc55cSDimitry Andric     if (IsWidened) {
218*349cc55cSDimitry Andric       const SCEV *SCEVTripCountExt;
219*349cc55cSDimitry Andric       // Find the extended backedge taken count and extended trip count using
220*349cc55cSDimitry Andric       // SCEV. One of these should now match the RHS of the compare.
221*349cc55cSDimitry Andric       BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
222*349cc55cSDimitry Andric       SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false);
223*349cc55cSDimitry Andric       if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
224*349cc55cSDimitry Andric         LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
225*349cc55cSDimitry Andric         return false;
226*349cc55cSDimitry Andric       }
227*349cc55cSDimitry Andric     }
228*349cc55cSDimitry Andric     // If the RHS of the compare is equal to the backedge taken count we need
229*349cc55cSDimitry Andric     // to add one to get the trip count.
230*349cc55cSDimitry Andric     if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
231*349cc55cSDimitry Andric       ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
232*349cc55cSDimitry Andric       Value *NewRHS = ConstantInt::get(
233*349cc55cSDimitry Andric           ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
234*349cc55cSDimitry Andric       return setLoopComponents(NewRHS, TripCount, Increment,
235*349cc55cSDimitry Andric                                IterationInstructions);
236*349cc55cSDimitry Andric     }
237*349cc55cSDimitry Andric     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
238*349cc55cSDimitry Andric   }
239*349cc55cSDimitry Andric   // If the RHS isn't a constant then check that the reason it doesn't match
240*349cc55cSDimitry Andric   // the SCEV trip count is because the RHS is a ZExt or SExt instruction
241*349cc55cSDimitry Andric   // (and take the trip count to be the RHS).
242fe6060f1SDimitry Andric   if (!IsWidened) {
243fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
244fe6060f1SDimitry Andric     return false;
245fe6060f1SDimitry Andric   }
246*349cc55cSDimitry Andric   auto *TripCountInst = dyn_cast<Instruction>(RHS);
247fe6060f1SDimitry Andric   if (!TripCountInst) {
248*349cc55cSDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
249fe6060f1SDimitry Andric     return false;
250fe6060f1SDimitry Andric   }
251fe6060f1SDimitry Andric   if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
252fe6060f1SDimitry Andric       SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
253fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
254fe6060f1SDimitry Andric     return false;
255fe6060f1SDimitry Andric   }
256*349cc55cSDimitry Andric   return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
257e8d8bef9SDimitry Andric }
258e8d8bef9SDimitry Andric 
259fe6060f1SDimitry Andric static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
260e8d8bef9SDimitry Andric   // All PHIs in the inner and outer headers must either be:
261e8d8bef9SDimitry Andric   // - The induction PHI, which we are going to rewrite as one induction in
262e8d8bef9SDimitry Andric   //   the new loop. This is already checked by findLoopComponents.
263e8d8bef9SDimitry Andric   // - An outer header PHI with all incoming values from outside the loop.
264e8d8bef9SDimitry Andric   //   LoopSimplify guarantees we have a pre-header, so we don't need to
265e8d8bef9SDimitry Andric   //   worry about that here.
266e8d8bef9SDimitry Andric   // - Pairs of PHIs in the inner and outer headers, which implement a
267e8d8bef9SDimitry Andric   //   loop-carried dependency that will still be valid in the new loop. To
268e8d8bef9SDimitry Andric   //   be valid, this variable must be modified only in the inner loop.
269e8d8bef9SDimitry Andric 
270e8d8bef9SDimitry Andric   // The set of PHI nodes in the outer loop header that we know will still be
271e8d8bef9SDimitry Andric   // valid after the transformation. These will not need to be modified (with
272e8d8bef9SDimitry Andric   // the exception of the induction variable), but we do need to check that
273e8d8bef9SDimitry Andric   // there are no unsafe PHI nodes.
274e8d8bef9SDimitry Andric   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
275e8d8bef9SDimitry Andric   SafeOuterPHIs.insert(FI.OuterInductionPHI);
276e8d8bef9SDimitry Andric 
277e8d8bef9SDimitry Andric   // Check that all PHI nodes in the inner loop header match one of the valid
278e8d8bef9SDimitry Andric   // patterns.
279e8d8bef9SDimitry Andric   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
280e8d8bef9SDimitry Andric     // The induction PHIs break these rules, and that's OK because we treat
281e8d8bef9SDimitry Andric     // them specially when doing the transformation.
282e8d8bef9SDimitry Andric     if (&InnerPHI == FI.InnerInductionPHI)
283e8d8bef9SDimitry Andric       continue;
284*349cc55cSDimitry Andric     if (FI.isNarrowInductionPhi(&InnerPHI))
285*349cc55cSDimitry Andric       continue;
286e8d8bef9SDimitry Andric 
287e8d8bef9SDimitry Andric     // Each inner loop PHI node must have two incoming values/blocks - one
288e8d8bef9SDimitry Andric     // from the pre-header, and one from the latch.
289e8d8bef9SDimitry Andric     assert(InnerPHI.getNumIncomingValues() == 2);
290e8d8bef9SDimitry Andric     Value *PreHeaderValue =
291e8d8bef9SDimitry Andric         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
292e8d8bef9SDimitry Andric     Value *LatchValue =
293e8d8bef9SDimitry Andric         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
294e8d8bef9SDimitry Andric 
295e8d8bef9SDimitry Andric     // The incoming value from the outer loop must be the PHI node in the
296e8d8bef9SDimitry Andric     // outer loop header, with no modifications made in the top of the outer
297e8d8bef9SDimitry Andric     // loop.
298e8d8bef9SDimitry Andric     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
299e8d8bef9SDimitry Andric     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
300e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
301e8d8bef9SDimitry Andric       return false;
302e8d8bef9SDimitry Andric     }
303e8d8bef9SDimitry Andric 
304e8d8bef9SDimitry Andric     // The other incoming value must come from the inner loop, without any
305e8d8bef9SDimitry Andric     // modifications in the tail end of the outer loop. We are in LCSSA form,
306e8d8bef9SDimitry Andric     // so this will actually be a PHI in the inner loop's exit block, which
307e8d8bef9SDimitry Andric     // only uses values from inside the inner loop.
308e8d8bef9SDimitry Andric     PHINode *LCSSAPHI = dyn_cast<PHINode>(
309e8d8bef9SDimitry Andric         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
310e8d8bef9SDimitry Andric     if (!LCSSAPHI) {
311e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
312e8d8bef9SDimitry Andric       return false;
313e8d8bef9SDimitry Andric     }
314e8d8bef9SDimitry Andric 
315e8d8bef9SDimitry Andric     // The value used by the LCSSA PHI must be the same one that the inner
316e8d8bef9SDimitry Andric     // loop's PHI uses.
317e8d8bef9SDimitry Andric     if (LCSSAPHI->hasConstantValue() != LatchValue) {
318e8d8bef9SDimitry Andric       LLVM_DEBUG(
319e8d8bef9SDimitry Andric           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
320e8d8bef9SDimitry Andric       return false;
321e8d8bef9SDimitry Andric     }
322e8d8bef9SDimitry Andric 
323e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
324e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
325e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
326e8d8bef9SDimitry Andric     SafeOuterPHIs.insert(OuterPHI);
327e8d8bef9SDimitry Andric     FI.InnerPHIsToTransform.insert(&InnerPHI);
328e8d8bef9SDimitry Andric   }
329e8d8bef9SDimitry Andric 
330e8d8bef9SDimitry Andric   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
331*349cc55cSDimitry Andric     if (FI.isNarrowInductionPhi(&OuterPHI))
332*349cc55cSDimitry Andric       continue;
333e8d8bef9SDimitry Andric     if (!SafeOuterPHIs.count(&OuterPHI)) {
334e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
335e8d8bef9SDimitry Andric       return false;
336e8d8bef9SDimitry Andric     }
337e8d8bef9SDimitry Andric   }
338e8d8bef9SDimitry Andric 
339e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
340e8d8bef9SDimitry Andric   return true;
341e8d8bef9SDimitry Andric }
342e8d8bef9SDimitry Andric 
343e8d8bef9SDimitry Andric static bool
344fe6060f1SDimitry Andric checkOuterLoopInsts(FlattenInfo &FI,
345e8d8bef9SDimitry Andric                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
346e8d8bef9SDimitry Andric                     const TargetTransformInfo *TTI) {
347e8d8bef9SDimitry Andric   // Check for instructions in the outer but not inner loop. If any of these
348e8d8bef9SDimitry Andric   // have side-effects then this transformation is not legal, and if there is
349e8d8bef9SDimitry Andric   // a significant amount of code here which can't be optimised out that it's
350e8d8bef9SDimitry Andric   // not profitable (as these instructions would get executed for each
351e8d8bef9SDimitry Andric   // iteration of the inner loop).
352fe6060f1SDimitry Andric   InstructionCost RepeatedInstrCost = 0;
353e8d8bef9SDimitry Andric   for (auto *B : FI.OuterLoop->getBlocks()) {
354e8d8bef9SDimitry Andric     if (FI.InnerLoop->contains(B))
355e8d8bef9SDimitry Andric       continue;
356e8d8bef9SDimitry Andric 
357e8d8bef9SDimitry Andric     for (auto &I : *B) {
358e8d8bef9SDimitry Andric       if (!isa<PHINode>(&I) && !I.isTerminator() &&
359e8d8bef9SDimitry Andric           !isSafeToSpeculativelyExecute(&I)) {
360e8d8bef9SDimitry Andric         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
361e8d8bef9SDimitry Andric                              "side effects: ";
362e8d8bef9SDimitry Andric                    I.dump());
363e8d8bef9SDimitry Andric         return false;
364e8d8bef9SDimitry Andric       }
365e8d8bef9SDimitry Andric       // The execution count of the outer loop's iteration instructions
366e8d8bef9SDimitry Andric       // (increment, compare and branch) will be increased, but the
367e8d8bef9SDimitry Andric       // equivalent instructions will be removed from the inner loop, so
368e8d8bef9SDimitry Andric       // they make a net difference of zero.
369e8d8bef9SDimitry Andric       if (IterationInstructions.count(&I))
370e8d8bef9SDimitry Andric         continue;
371e8d8bef9SDimitry Andric       // The uncoditional branch to the inner loop's header will turn into
372e8d8bef9SDimitry Andric       // a fall-through, so adds no cost.
373e8d8bef9SDimitry Andric       BranchInst *Br = dyn_cast<BranchInst>(&I);
374e8d8bef9SDimitry Andric       if (Br && Br->isUnconditional() &&
375e8d8bef9SDimitry Andric           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
376e8d8bef9SDimitry Andric         continue;
377e8d8bef9SDimitry Andric       // Multiplies of the outer iteration variable and inner iteration
378e8d8bef9SDimitry Andric       // count will be optimised out.
379e8d8bef9SDimitry Andric       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
380fe6060f1SDimitry Andric                             m_Specific(FI.InnerTripCount))))
381e8d8bef9SDimitry Andric         continue;
382fe6060f1SDimitry Andric       InstructionCost Cost =
383fe6060f1SDimitry Andric           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
384e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
385e8d8bef9SDimitry Andric       RepeatedInstrCost += Cost;
386e8d8bef9SDimitry Andric     }
387e8d8bef9SDimitry Andric   }
388e8d8bef9SDimitry Andric 
389e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
390e8d8bef9SDimitry Andric                     << RepeatedInstrCost << "\n");
391e8d8bef9SDimitry Andric   // Bail out if flattening the loops would cause instructions in the outer
392e8d8bef9SDimitry Andric   // loop but not in the inner loop to be executed extra times.
393e8d8bef9SDimitry Andric   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
394e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
395e8d8bef9SDimitry Andric     return false;
396e8d8bef9SDimitry Andric   }
397e8d8bef9SDimitry Andric 
398e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
399e8d8bef9SDimitry Andric   return true;
400e8d8bef9SDimitry Andric }
401e8d8bef9SDimitry Andric 
402fe6060f1SDimitry Andric static bool checkIVUsers(FlattenInfo &FI) {
403e8d8bef9SDimitry Andric   // We require all uses of both induction variables to match this pattern:
404e8d8bef9SDimitry Andric   //
405fe6060f1SDimitry Andric   //   (OuterPHI * InnerTripCount) + InnerPHI
406e8d8bef9SDimitry Andric   //
407e8d8bef9SDimitry Andric   // Any uses of the induction variables not matching that pattern would
408e8d8bef9SDimitry Andric   // require a div/mod to reconstruct in the flattened loop, so the
409e8d8bef9SDimitry Andric   // transformation wouldn't be profitable.
410e8d8bef9SDimitry Andric 
411fe6060f1SDimitry Andric   Value *InnerTripCount = FI.InnerTripCount;
412e8d8bef9SDimitry Andric   if (FI.Widened &&
413fe6060f1SDimitry Andric       (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
414fe6060f1SDimitry Andric     InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
415e8d8bef9SDimitry Andric 
416e8d8bef9SDimitry Andric   // Check that all uses of the inner loop's induction variable match the
417e8d8bef9SDimitry Andric   // expected pattern, recording the uses of the outer IV.
418e8d8bef9SDimitry Andric   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
419e8d8bef9SDimitry Andric   for (User *U : FI.InnerInductionPHI->users()) {
420e8d8bef9SDimitry Andric     if (U == FI.InnerIncrement)
421e8d8bef9SDimitry Andric       continue;
422e8d8bef9SDimitry Andric 
423*349cc55cSDimitry Andric     // After widening the IVs, a trunc instruction might have been introduced,
424*349cc55cSDimitry Andric     // so look through truncs.
425e8d8bef9SDimitry Andric     if (isa<TruncInst>(U)) {
426e8d8bef9SDimitry Andric       if (!U->hasOneUse())
427e8d8bef9SDimitry Andric         return false;
428e8d8bef9SDimitry Andric       U = *U->user_begin();
429e8d8bef9SDimitry Andric     }
430e8d8bef9SDimitry Andric 
431*349cc55cSDimitry Andric     // If the use is in the compare (which is also the condition of the inner
432*349cc55cSDimitry Andric     // branch) then the compare has been altered by another transformation e.g
433*349cc55cSDimitry Andric     // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
434*349cc55cSDimitry Andric     // a constant. Ignore this use as the compare gets removed later anyway.
435*349cc55cSDimitry Andric     if (U == FI.InnerBranch->getCondition())
436*349cc55cSDimitry Andric       continue;
437*349cc55cSDimitry Andric 
438e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
439e8d8bef9SDimitry Andric 
440*349cc55cSDimitry Andric     Value *MatchedMul = nullptr;
441*349cc55cSDimitry Andric     Value *MatchedItCount = nullptr;
442e8d8bef9SDimitry Andric     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
443e8d8bef9SDimitry Andric                                   m_Value(MatchedMul))) &&
444e8d8bef9SDimitry Andric                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
445e8d8bef9SDimitry Andric                                            m_Value(MatchedItCount)));
446e8d8bef9SDimitry Andric 
447e8d8bef9SDimitry Andric     // Matches the same pattern as above, except it also looks for truncs
448e8d8bef9SDimitry Andric     // on the phi, which can be the result of widening the induction variables.
449*349cc55cSDimitry Andric     bool IsAddTrunc =
450*349cc55cSDimitry Andric         match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
451e8d8bef9SDimitry Andric                          m_Value(MatchedMul))) &&
452*349cc55cSDimitry Andric         match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
453e8d8bef9SDimitry Andric                                   m_Value(MatchedItCount)));
454e8d8bef9SDimitry Andric 
455*349cc55cSDimitry Andric     if (!MatchedItCount)
456*349cc55cSDimitry Andric       return false;
457*349cc55cSDimitry Andric     // Look through extends if the IV has been widened.
458*349cc55cSDimitry Andric     if (FI.Widened &&
459*349cc55cSDimitry Andric         (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
460*349cc55cSDimitry Andric       assert(MatchedItCount->getType() == FI.InnerInductionPHI->getType() &&
461*349cc55cSDimitry Andric              "Unexpected type mismatch in types after widening");
462*349cc55cSDimitry Andric       MatchedItCount = isa<SExtInst>(MatchedItCount)
463*349cc55cSDimitry Andric                            ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
464*349cc55cSDimitry Andric                            : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
465*349cc55cSDimitry Andric     }
466*349cc55cSDimitry Andric 
467fe6060f1SDimitry Andric     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
468e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
469e8d8bef9SDimitry Andric       ValidOuterPHIUses.insert(MatchedMul);
470e8d8bef9SDimitry Andric       FI.LinearIVUses.insert(U);
471e8d8bef9SDimitry Andric     } else {
472e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
473e8d8bef9SDimitry Andric       return false;
474e8d8bef9SDimitry Andric     }
475e8d8bef9SDimitry Andric   }
476e8d8bef9SDimitry Andric 
477e8d8bef9SDimitry Andric   // Check that there are no uses of the outer IV other than the ones found
478e8d8bef9SDimitry Andric   // as part of the pattern above.
479e8d8bef9SDimitry Andric   for (User *U : FI.OuterInductionPHI->users()) {
480e8d8bef9SDimitry Andric     if (U == FI.OuterIncrement)
481e8d8bef9SDimitry Andric       continue;
482e8d8bef9SDimitry Andric 
483e8d8bef9SDimitry Andric     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
484e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
485e8d8bef9SDimitry Andric       if (!ValidOuterPHIUses.count(U)) {
486e8d8bef9SDimitry Andric         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
487e8d8bef9SDimitry Andric         return false;
488e8d8bef9SDimitry Andric       }
489e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
490e8d8bef9SDimitry Andric       return true;
491e8d8bef9SDimitry Andric     };
492e8d8bef9SDimitry Andric 
493e8d8bef9SDimitry Andric     if (auto *V = dyn_cast<TruncInst>(U)) {
494e8d8bef9SDimitry Andric       for (auto *K : V->users()) {
495e8d8bef9SDimitry Andric         if (!IsValidOuterPHIUses(K))
496e8d8bef9SDimitry Andric           return false;
497e8d8bef9SDimitry Andric       }
498e8d8bef9SDimitry Andric       continue;
499e8d8bef9SDimitry Andric     }
500e8d8bef9SDimitry Andric 
501e8d8bef9SDimitry Andric     if (!IsValidOuterPHIUses(U))
502e8d8bef9SDimitry Andric       return false;
503e8d8bef9SDimitry Andric   }
504e8d8bef9SDimitry Andric 
505e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
506e8d8bef9SDimitry Andric              dbgs() << "Found " << FI.LinearIVUses.size()
507e8d8bef9SDimitry Andric                     << " value(s) that can be replaced:\n";
508e8d8bef9SDimitry Andric              for (Value *V : FI.LinearIVUses) {
509e8d8bef9SDimitry Andric                dbgs() << "  ";
510e8d8bef9SDimitry Andric                V->dump();
511e8d8bef9SDimitry Andric              });
512e8d8bef9SDimitry Andric   return true;
513e8d8bef9SDimitry Andric }
514e8d8bef9SDimitry Andric 
515e8d8bef9SDimitry Andric // Return an OverflowResult dependant on if overflow of the multiplication of
516fe6060f1SDimitry Andric // InnerTripCount and OuterTripCount can be assumed not to happen.
517fe6060f1SDimitry Andric static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
518fe6060f1SDimitry Andric                                     AssumptionCache *AC) {
519e8d8bef9SDimitry Andric   Function *F = FI.OuterLoop->getHeader()->getParent();
520e8d8bef9SDimitry Andric   const DataLayout &DL = F->getParent()->getDataLayout();
521e8d8bef9SDimitry Andric 
522e8d8bef9SDimitry Andric   // For debugging/testing.
523e8d8bef9SDimitry Andric   if (AssumeNoOverflow)
524e8d8bef9SDimitry Andric     return OverflowResult::NeverOverflows;
525e8d8bef9SDimitry Andric 
526e8d8bef9SDimitry Andric   // Check if the multiply could not overflow due to known ranges of the
527e8d8bef9SDimitry Andric   // input values.
528e8d8bef9SDimitry Andric   OverflowResult OR = computeOverflowForUnsignedMul(
529fe6060f1SDimitry Andric       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
530e8d8bef9SDimitry Andric       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
531e8d8bef9SDimitry Andric   if (OR != OverflowResult::MayOverflow)
532e8d8bef9SDimitry Andric     return OR;
533e8d8bef9SDimitry Andric 
534e8d8bef9SDimitry Andric   for (Value *V : FI.LinearIVUses) {
535e8d8bef9SDimitry Andric     for (Value *U : V->users()) {
536e8d8bef9SDimitry Andric       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
537*349cc55cSDimitry Andric         for (Value *GEPUser : U->users()) {
538*349cc55cSDimitry Andric           Instruction *GEPUserInst = dyn_cast<Instruction>(GEPUser);
539*349cc55cSDimitry Andric           if (!isa<LoadInst>(GEPUserInst) &&
540*349cc55cSDimitry Andric               !(isa<StoreInst>(GEPUserInst) &&
541*349cc55cSDimitry Andric                 GEP == GEPUserInst->getOperand(1)))
542*349cc55cSDimitry Andric             continue;
543*349cc55cSDimitry Andric           if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
544*349cc55cSDimitry Andric                                                       FI.InnerLoop))
545*349cc55cSDimitry Andric             continue;
546*349cc55cSDimitry Andric           // The IV is used as the operand of a GEP which dominates the loop
547*349cc55cSDimitry Andric           // latch, and the IV is at least as wide as the address space of the
548*349cc55cSDimitry Andric           // GEP. In this case, the GEP would wrap around the address space
549*349cc55cSDimitry Andric           // before the IV increment wraps, which would be UB.
550e8d8bef9SDimitry Andric           if (GEP->isInBounds() &&
551e8d8bef9SDimitry Andric               V->getType()->getIntegerBitWidth() >=
552e8d8bef9SDimitry Andric                   DL.getPointerTypeSizeInBits(GEP->getType())) {
553e8d8bef9SDimitry Andric             LLVM_DEBUG(
554e8d8bef9SDimitry Andric                 dbgs() << "use of linear IV would be UB if overflow occurred: ";
555e8d8bef9SDimitry Andric                 GEP->dump());
556e8d8bef9SDimitry Andric             return OverflowResult::NeverOverflows;
557e8d8bef9SDimitry Andric           }
558e8d8bef9SDimitry Andric         }
559e8d8bef9SDimitry Andric       }
560e8d8bef9SDimitry Andric     }
561*349cc55cSDimitry Andric   }
562e8d8bef9SDimitry Andric 
563e8d8bef9SDimitry Andric   return OverflowResult::MayOverflow;
564e8d8bef9SDimitry Andric }
565e8d8bef9SDimitry Andric 
566fe6060f1SDimitry Andric static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
567fe6060f1SDimitry Andric                                ScalarEvolution *SE, AssumptionCache *AC,
568fe6060f1SDimitry Andric                                const TargetTransformInfo *TTI) {
569e8d8bef9SDimitry Andric   SmallPtrSet<Instruction *, 8> IterationInstructions;
570fe6060f1SDimitry Andric   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
571fe6060f1SDimitry Andric                           FI.InnerInductionPHI, FI.InnerTripCount,
572fe6060f1SDimitry Andric                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
573e8d8bef9SDimitry Andric     return false;
574fe6060f1SDimitry Andric   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
575fe6060f1SDimitry Andric                           FI.OuterInductionPHI, FI.OuterTripCount,
576fe6060f1SDimitry Andric                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
577e8d8bef9SDimitry Andric     return false;
578e8d8bef9SDimitry Andric 
579fe6060f1SDimitry Andric   // Both of the loop trip count values must be invariant in the outer loop
580e8d8bef9SDimitry Andric   // (non-instructions are all inherently invariant).
581fe6060f1SDimitry Andric   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
582fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
583e8d8bef9SDimitry Andric     return false;
584e8d8bef9SDimitry Andric   }
585fe6060f1SDimitry Andric   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
586fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
587e8d8bef9SDimitry Andric     return false;
588e8d8bef9SDimitry Andric   }
589e8d8bef9SDimitry Andric 
590e8d8bef9SDimitry Andric   if (!checkPHIs(FI, TTI))
591e8d8bef9SDimitry Andric     return false;
592e8d8bef9SDimitry Andric 
593e8d8bef9SDimitry Andric   // FIXME: it should be possible to handle different types correctly.
594e8d8bef9SDimitry Andric   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
595e8d8bef9SDimitry Andric     return false;
596e8d8bef9SDimitry Andric 
597e8d8bef9SDimitry Andric   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
598e8d8bef9SDimitry Andric     return false;
599e8d8bef9SDimitry Andric 
600e8d8bef9SDimitry Andric   // Find the values in the loop that can be replaced with the linearized
601e8d8bef9SDimitry Andric   // induction variable, and check that there are no other uses of the inner
602e8d8bef9SDimitry Andric   // or outer induction variable. If there were, we could still do this
603e8d8bef9SDimitry Andric   // transformation, but we'd have to insert a div/mod to calculate the
604e8d8bef9SDimitry Andric   // original IVs, so it wouldn't be profitable.
605e8d8bef9SDimitry Andric   if (!checkIVUsers(FI))
606e8d8bef9SDimitry Andric     return false;
607e8d8bef9SDimitry Andric 
608e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
609e8d8bef9SDimitry Andric   return true;
610e8d8bef9SDimitry Andric }
611e8d8bef9SDimitry Andric 
612fe6060f1SDimitry Andric static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
613fe6060f1SDimitry Andric                               ScalarEvolution *SE, AssumptionCache *AC,
614*349cc55cSDimitry Andric                               const TargetTransformInfo *TTI, LPMUpdater *U) {
615e8d8bef9SDimitry Andric   Function *F = FI.OuterLoop->getHeader()->getParent();
616e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
617e8d8bef9SDimitry Andric   {
618e8d8bef9SDimitry Andric     using namespace ore;
619e8d8bef9SDimitry Andric     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
620e8d8bef9SDimitry Andric                               FI.InnerLoop->getHeader());
621e8d8bef9SDimitry Andric     OptimizationRemarkEmitter ORE(F);
622e8d8bef9SDimitry Andric     Remark << "Flattened into outer loop";
623e8d8bef9SDimitry Andric     ORE.emit(Remark);
624e8d8bef9SDimitry Andric   }
625e8d8bef9SDimitry Andric 
626fe6060f1SDimitry Andric   Value *NewTripCount = BinaryOperator::CreateMul(
627fe6060f1SDimitry Andric       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
628e8d8bef9SDimitry Andric       FI.OuterLoop->getLoopPreheader()->getTerminator());
629e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
630e8d8bef9SDimitry Andric              NewTripCount->dump());
631e8d8bef9SDimitry Andric 
632e8d8bef9SDimitry Andric   // Fix up PHI nodes that take values from the inner loop back-edge, which
633e8d8bef9SDimitry Andric   // we are about to remove.
634e8d8bef9SDimitry Andric   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
635e8d8bef9SDimitry Andric 
636e8d8bef9SDimitry Andric   // The old Phi will be optimised away later, but for now we can't leave
637e8d8bef9SDimitry Andric   // leave it in an invalid state, so are updating them too.
638e8d8bef9SDimitry Andric   for (PHINode *PHI : FI.InnerPHIsToTransform)
639e8d8bef9SDimitry Andric     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
640e8d8bef9SDimitry Andric 
641e8d8bef9SDimitry Andric   // Modify the trip count of the outer loop to be the product of the two
642e8d8bef9SDimitry Andric   // trip counts.
643e8d8bef9SDimitry Andric   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
644e8d8bef9SDimitry Andric 
645e8d8bef9SDimitry Andric   // Replace the inner loop backedge with an unconditional branch to the exit.
646e8d8bef9SDimitry Andric   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
647e8d8bef9SDimitry Andric   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
648e8d8bef9SDimitry Andric   InnerExitingBlock->getTerminator()->eraseFromParent();
649e8d8bef9SDimitry Andric   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
650e8d8bef9SDimitry Andric   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
651e8d8bef9SDimitry Andric 
652e8d8bef9SDimitry Andric   // Replace all uses of the polynomial calculated from the two induction
653e8d8bef9SDimitry Andric   // variables with the one new one.
654e8d8bef9SDimitry Andric   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
655e8d8bef9SDimitry Andric   for (Value *V : FI.LinearIVUses) {
656e8d8bef9SDimitry Andric     Value *OuterValue = FI.OuterInductionPHI;
657e8d8bef9SDimitry Andric     if (FI.Widened)
658e8d8bef9SDimitry Andric       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
659e8d8bef9SDimitry Andric                                        "flatten.trunciv");
660e8d8bef9SDimitry Andric 
661e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
662e8d8bef9SDimitry Andric                dbgs() << "with:      "; OuterValue->dump());
663e8d8bef9SDimitry Andric     V->replaceAllUsesWith(OuterValue);
664e8d8bef9SDimitry Andric   }
665e8d8bef9SDimitry Andric 
666e8d8bef9SDimitry Andric   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
667e8d8bef9SDimitry Andric   // deleted, and any information that have about the outer loop invalidated.
668e8d8bef9SDimitry Andric   SE->forgetLoop(FI.OuterLoop);
669e8d8bef9SDimitry Andric   SE->forgetLoop(FI.InnerLoop);
670*349cc55cSDimitry Andric   if (U)
671*349cc55cSDimitry Andric     U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
672e8d8bef9SDimitry Andric   LI->erase(FI.InnerLoop);
673*349cc55cSDimitry Andric 
674*349cc55cSDimitry Andric   // Increment statistic value.
675*349cc55cSDimitry Andric   NumFlattened++;
676*349cc55cSDimitry Andric 
677e8d8bef9SDimitry Andric   return true;
678e8d8bef9SDimitry Andric }
679e8d8bef9SDimitry Andric 
680fe6060f1SDimitry Andric static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
681fe6060f1SDimitry Andric                        ScalarEvolution *SE, AssumptionCache *AC,
682fe6060f1SDimitry Andric                        const TargetTransformInfo *TTI) {
683e8d8bef9SDimitry Andric   if (!WidenIV) {
684e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
685e8d8bef9SDimitry Andric     return false;
686e8d8bef9SDimitry Andric   }
687e8d8bef9SDimitry Andric 
688e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
689e8d8bef9SDimitry Andric   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
690e8d8bef9SDimitry Andric   auto &DL = M->getDataLayout();
691e8d8bef9SDimitry Andric   auto *InnerType = FI.InnerInductionPHI->getType();
692e8d8bef9SDimitry Andric   auto *OuterType = FI.OuterInductionPHI->getType();
693e8d8bef9SDimitry Andric   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
694e8d8bef9SDimitry Andric   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
695e8d8bef9SDimitry Andric 
696e8d8bef9SDimitry Andric   // If both induction types are less than the maximum legal integer width,
697e8d8bef9SDimitry Andric   // promote both to the widest type available so we know calculating
698fe6060f1SDimitry Andric   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
699e8d8bef9SDimitry Andric   if (InnerType != OuterType ||
700e8d8bef9SDimitry Andric       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
701e8d8bef9SDimitry Andric       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
702e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
703e8d8bef9SDimitry Andric     return false;
704e8d8bef9SDimitry Andric   }
705e8d8bef9SDimitry Andric 
706e8d8bef9SDimitry Andric   SCEVExpander Rewriter(*SE, DL, "loopflatten");
707e8d8bef9SDimitry Andric   SmallVector<WeakTrackingVH, 4> DeadInsts;
708fe6060f1SDimitry Andric   unsigned ElimExt = 0;
709fe6060f1SDimitry Andric   unsigned Widened = 0;
710e8d8bef9SDimitry Andric 
711*349cc55cSDimitry Andric   auto CreateWideIV = [&] (WideIVInfo WideIV, bool &Deleted) -> bool {
712fe6060f1SDimitry Andric     PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
713e8d8bef9SDimitry Andric                                     ElimExt, Widened, true /* HasGuards */,
714e8d8bef9SDimitry Andric                                     true /* UsePostIncrementRanges */);
715e8d8bef9SDimitry Andric     if (!WidePhi)
716e8d8bef9SDimitry Andric       return false;
717e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
718fe6060f1SDimitry Andric     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
719*349cc55cSDimitry Andric     Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
720*349cc55cSDimitry Andric     return true;
721*349cc55cSDimitry Andric   };
722*349cc55cSDimitry Andric 
723*349cc55cSDimitry Andric   bool Deleted;
724*349cc55cSDimitry Andric   if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false }, Deleted))
725*349cc55cSDimitry Andric     return false;
726*349cc55cSDimitry Andric   // Add the narrow phi to list, so that it will be adjusted later when the
727*349cc55cSDimitry Andric   // the transformation is performed.
728*349cc55cSDimitry Andric   if (!Deleted)
729*349cc55cSDimitry Andric     FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
730*349cc55cSDimitry Andric 
731*349cc55cSDimitry Andric   if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false }, Deleted))
732*349cc55cSDimitry Andric     return false;
733*349cc55cSDimitry Andric 
734fe6060f1SDimitry Andric   assert(Widened && "Widened IV expected");
735e8d8bef9SDimitry Andric   FI.Widened = true;
736*349cc55cSDimitry Andric 
737*349cc55cSDimitry Andric   // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
738*349cc55cSDimitry Andric   FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
739*349cc55cSDimitry Andric   FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
740*349cc55cSDimitry Andric 
741*349cc55cSDimitry Andric   // After widening, rediscover all the loop components.
742e8d8bef9SDimitry Andric   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
743e8d8bef9SDimitry Andric }
744e8d8bef9SDimitry Andric 
745fe6060f1SDimitry Andric static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
746fe6060f1SDimitry Andric                             ScalarEvolution *SE, AssumptionCache *AC,
747*349cc55cSDimitry Andric                             const TargetTransformInfo *TTI, LPMUpdater *U) {
748e8d8bef9SDimitry Andric   LLVM_DEBUG(
749e8d8bef9SDimitry Andric       dbgs() << "Loop flattening running on outer loop "
750e8d8bef9SDimitry Andric              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
751e8d8bef9SDimitry Andric              << FI.InnerLoop->getHeader()->getName() << " in "
752e8d8bef9SDimitry Andric              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
753e8d8bef9SDimitry Andric 
754e8d8bef9SDimitry Andric   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
755e8d8bef9SDimitry Andric     return false;
756e8d8bef9SDimitry Andric 
757e8d8bef9SDimitry Andric   // Check if we can widen the induction variables to avoid overflow checks.
758*349cc55cSDimitry Andric   bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
759e8d8bef9SDimitry Andric 
760*349cc55cSDimitry Andric   // It can happen that after widening of the IV, flattening may not be
761*349cc55cSDimitry Andric   // possible/happening, e.g. when it is deemed unprofitable. So bail here if
762*349cc55cSDimitry Andric   // that is the case.
763*349cc55cSDimitry Andric   // TODO: IV widening without performing the actual flattening transformation
764*349cc55cSDimitry Andric   // is not ideal. While this codegen change should not matter much, it is an
765*349cc55cSDimitry Andric   // unnecessary change which is better to avoid. It's unlikely this happens
766*349cc55cSDimitry Andric   // often, because if it's unprofitibale after widening, it should be
767*349cc55cSDimitry Andric   // unprofitabe before widening as checked in the first round of checks. But
768*349cc55cSDimitry Andric   // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
769*349cc55cSDimitry Andric   // relaxed. Because this is making a code change (the IV widening, but not
770*349cc55cSDimitry Andric   // the flattening), we return true here.
771*349cc55cSDimitry Andric   if (FI.Widened && !CanFlatten)
772*349cc55cSDimitry Andric     return true;
773*349cc55cSDimitry Andric 
774*349cc55cSDimitry Andric   // If we have widened and can perform the transformation, do that here.
775*349cc55cSDimitry Andric   if (CanFlatten)
776*349cc55cSDimitry Andric     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U);
777*349cc55cSDimitry Andric 
778*349cc55cSDimitry Andric   // Otherwise, if we haven't widened the IV, check if the new iteration
779*349cc55cSDimitry Andric   // variable might overflow. In this case, we need to version the loop, and
780*349cc55cSDimitry Andric   // select the original version at runtime if the iteration space is too
781*349cc55cSDimitry Andric   // large.
782e8d8bef9SDimitry Andric   // TODO: We currently don't version the loop.
783e8d8bef9SDimitry Andric   OverflowResult OR = checkOverflow(FI, DT, AC);
784e8d8bef9SDimitry Andric   if (OR == OverflowResult::AlwaysOverflowsHigh ||
785e8d8bef9SDimitry Andric       OR == OverflowResult::AlwaysOverflowsLow) {
786e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
787e8d8bef9SDimitry Andric     return false;
788e8d8bef9SDimitry Andric   } else if (OR == OverflowResult::MayOverflow) {
789e8d8bef9SDimitry Andric     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
790e8d8bef9SDimitry Andric     return false;
791e8d8bef9SDimitry Andric   }
792e8d8bef9SDimitry Andric 
793e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
794*349cc55cSDimitry Andric   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U);
795e8d8bef9SDimitry Andric }
796e8d8bef9SDimitry Andric 
797fe6060f1SDimitry Andric bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
798*349cc55cSDimitry Andric              AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U) {
799e8d8bef9SDimitry Andric   bool Changed = false;
800fe6060f1SDimitry Andric   for (Loop *InnerLoop : LN.getLoops()) {
801e8d8bef9SDimitry Andric     auto *OuterLoop = InnerLoop->getParentLoop();
802e8d8bef9SDimitry Andric     if (!OuterLoop)
803e8d8bef9SDimitry Andric       continue;
804fe6060f1SDimitry Andric     FlattenInfo FI(OuterLoop, InnerLoop);
805*349cc55cSDimitry Andric     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U);
806e8d8bef9SDimitry Andric   }
807e8d8bef9SDimitry Andric   return Changed;
808e8d8bef9SDimitry Andric }
809e8d8bef9SDimitry Andric 
810fe6060f1SDimitry Andric PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
811fe6060f1SDimitry Andric                                        LoopStandardAnalysisResults &AR,
812fe6060f1SDimitry Andric                                        LPMUpdater &U) {
813e8d8bef9SDimitry Andric 
814fe6060f1SDimitry Andric   bool Changed = false;
815fe6060f1SDimitry Andric 
816fe6060f1SDimitry Andric   // The loop flattening pass requires loops to be
817fe6060f1SDimitry Andric   // in simplified form, and also needs LCSSA. Running
818fe6060f1SDimitry Andric   // this pass will simplify all loops that contain inner loops,
819fe6060f1SDimitry Andric   // regardless of whether anything ends up being flattened.
820*349cc55cSDimitry Andric   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U);
821fe6060f1SDimitry Andric 
822fe6060f1SDimitry Andric   if (!Changed)
823e8d8bef9SDimitry Andric     return PreservedAnalyses::all();
824e8d8bef9SDimitry Andric 
825*349cc55cSDimitry Andric   return getLoopPassPreservedAnalyses();
826e8d8bef9SDimitry Andric }
827e8d8bef9SDimitry Andric 
828e8d8bef9SDimitry Andric namespace {
829e8d8bef9SDimitry Andric class LoopFlattenLegacyPass : public FunctionPass {
830e8d8bef9SDimitry Andric public:
831e8d8bef9SDimitry Andric   static char ID; // Pass ID, replacement for typeid
832e8d8bef9SDimitry Andric   LoopFlattenLegacyPass() : FunctionPass(ID) {
833e8d8bef9SDimitry Andric     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
834e8d8bef9SDimitry Andric   }
835e8d8bef9SDimitry Andric 
836e8d8bef9SDimitry Andric   // Possibly flatten loop L into its child.
837e8d8bef9SDimitry Andric   bool runOnFunction(Function &F) override;
838e8d8bef9SDimitry Andric 
839e8d8bef9SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
840e8d8bef9SDimitry Andric     getLoopAnalysisUsage(AU);
841e8d8bef9SDimitry Andric     AU.addRequired<TargetTransformInfoWrapperPass>();
842e8d8bef9SDimitry Andric     AU.addPreserved<TargetTransformInfoWrapperPass>();
843e8d8bef9SDimitry Andric     AU.addRequired<AssumptionCacheTracker>();
844e8d8bef9SDimitry Andric     AU.addPreserved<AssumptionCacheTracker>();
845e8d8bef9SDimitry Andric   }
846e8d8bef9SDimitry Andric };
847e8d8bef9SDimitry Andric } // namespace
848e8d8bef9SDimitry Andric 
849e8d8bef9SDimitry Andric char LoopFlattenLegacyPass::ID = 0;
850e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
851e8d8bef9SDimitry Andric                       false, false)
852e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
853e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
854e8d8bef9SDimitry Andric INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
855e8d8bef9SDimitry Andric                     false, false)
856e8d8bef9SDimitry Andric 
857e8d8bef9SDimitry Andric FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
858e8d8bef9SDimitry Andric 
859e8d8bef9SDimitry Andric bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
860e8d8bef9SDimitry Andric   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
861e8d8bef9SDimitry Andric   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
862e8d8bef9SDimitry Andric   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
863e8d8bef9SDimitry Andric   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
864e8d8bef9SDimitry Andric   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
865e8d8bef9SDimitry Andric   auto *TTI = &TTIP.getTTI(F);
866e8d8bef9SDimitry Andric   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
867fe6060f1SDimitry Andric   bool Changed = false;
868fe6060f1SDimitry Andric   for (Loop *L : *LI) {
869fe6060f1SDimitry Andric     auto LN = LoopNest::getLoopNest(*L, *SE);
870*349cc55cSDimitry Andric     Changed |= Flatten(*LN, DT, LI, SE, AC, TTI, nullptr);
871fe6060f1SDimitry Andric   }
872fe6060f1SDimitry Andric   return Changed;
873e8d8bef9SDimitry Andric }
874