1e8d8bef9SDimitry Andric //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // This pass flattens pairs nested loops into a single loop. 10e8d8bef9SDimitry Andric // 11e8d8bef9SDimitry Andric // The intention is to optimise loop nests like this, which together access an 12e8d8bef9SDimitry Andric // array linearly: 13*04eeddc0SDimitry Andric // 14e8d8bef9SDimitry Andric // for (int i = 0; i < N; ++i) 15e8d8bef9SDimitry Andric // for (int j = 0; j < M; ++j) 16e8d8bef9SDimitry Andric // f(A[i*M+j]); 17*04eeddc0SDimitry Andric // 18e8d8bef9SDimitry Andric // into one loop: 19*04eeddc0SDimitry Andric // 20e8d8bef9SDimitry Andric // for (int i = 0; i < (N*M); ++i) 21e8d8bef9SDimitry Andric // f(A[i]); 22e8d8bef9SDimitry Andric // 23e8d8bef9SDimitry Andric // It can also flatten loops where the induction variables are not used in the 24e8d8bef9SDimitry Andric // loop. This is only worth doing if the induction variables are only used in an 25e8d8bef9SDimitry Andric // expression like i*M+j. If they had any other uses, we would have to insert a 26e8d8bef9SDimitry Andric // div/mod to reconstruct the original values, so this wouldn't be profitable. 27e8d8bef9SDimitry Andric // 28*04eeddc0SDimitry Andric // We also need to prove that N*M will not overflow. The preferred solution is 29*04eeddc0SDimitry Andric // to widen the IV, which avoids overflow checks, so that is tried first. If 30*04eeddc0SDimitry Andric // the IV cannot be widened, then we try to determine that this new tripcount 31*04eeddc0SDimitry Andric // expression won't overflow. 32*04eeddc0SDimitry Andric // 33*04eeddc0SDimitry Andric // Q: Does LoopFlatten use SCEV? 34*04eeddc0SDimitry Andric // Short answer: Yes and no. 35*04eeddc0SDimitry Andric // 36*04eeddc0SDimitry Andric // Long answer: 37*04eeddc0SDimitry Andric // For this transformation to be valid, we require all uses of the induction 38*04eeddc0SDimitry Andric // variables to be linear expressions of the form i*M+j. The different Loop 39*04eeddc0SDimitry Andric // APIs are used to get some loop components like the induction variable, 40*04eeddc0SDimitry Andric // compare statement, etc. In addition, we do some pattern matching to find the 41*04eeddc0SDimitry Andric // linear expressions and other loop components like the loop increment. The 42*04eeddc0SDimitry Andric // latter are examples of expressions that do use the induction variable, but 43*04eeddc0SDimitry Andric // are safe to ignore when we check all uses to be of the form i*M+j. We keep 44*04eeddc0SDimitry Andric // track of all of this in bookkeeping struct FlattenInfo. 45*04eeddc0SDimitry Andric // We assume the loops to be canonical, i.e. starting at 0 and increment with 46*04eeddc0SDimitry Andric // 1. This makes RHS of the compare the loop tripcount (with the right 47*04eeddc0SDimitry Andric // predicate). We use SCEV to then sanity check that this tripcount matches 48*04eeddc0SDimitry Andric // with the tripcount as computed by SCEV. 49e8d8bef9SDimitry Andric // 50e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 51e8d8bef9SDimitry Andric 52e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/LoopFlatten.h" 53349cc55cSDimitry Andric 54349cc55cSDimitry Andric #include "llvm/ADT/Statistic.h" 55e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 56e8d8bef9SDimitry Andric #include "llvm/Analysis/LoopInfo.h" 57*04eeddc0SDimitry Andric #include "llvm/Analysis/MemorySSAUpdater.h" 58e8d8bef9SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59e8d8bef9SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h" 60e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 61e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 62e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 63e8d8bef9SDimitry Andric #include "llvm/IR/Function.h" 64e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h" 65e8d8bef9SDimitry Andric #include "llvm/IR/Module.h" 66e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h" 67e8d8bef9SDimitry Andric #include "llvm/IR/Verifier.h" 68e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h" 69e8d8bef9SDimitry Andric #include "llvm/Pass.h" 70e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h" 71e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h" 72e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar.h" 73e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 74e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h" 75e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 76e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/SimplifyIndVar.h" 77e8d8bef9SDimitry Andric 78e8d8bef9SDimitry Andric using namespace llvm; 79e8d8bef9SDimitry Andric using namespace llvm::PatternMatch; 80e8d8bef9SDimitry Andric 81349cc55cSDimitry Andric #define DEBUG_TYPE "loop-flatten" 82349cc55cSDimitry Andric 83349cc55cSDimitry Andric STATISTIC(NumFlattened, "Number of loops flattened"); 84349cc55cSDimitry Andric 85e8d8bef9SDimitry Andric static cl::opt<unsigned> RepeatedInstructionThreshold( 86e8d8bef9SDimitry Andric "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 87e8d8bef9SDimitry Andric cl::desc("Limit on the cost of instructions that can be repeated due to " 88e8d8bef9SDimitry Andric "loop flattening")); 89e8d8bef9SDimitry Andric 90e8d8bef9SDimitry Andric static cl::opt<bool> 91e8d8bef9SDimitry Andric AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 92e8d8bef9SDimitry Andric cl::init(false), 93e8d8bef9SDimitry Andric cl::desc("Assume that the product of the two iteration " 94fe6060f1SDimitry Andric "trip counts will never overflow")); 95e8d8bef9SDimitry Andric 96e8d8bef9SDimitry Andric static cl::opt<bool> 97*04eeddc0SDimitry Andric WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 98e8d8bef9SDimitry Andric cl::desc("Widen the loop induction variables, if possible, so " 99e8d8bef9SDimitry Andric "overflow checks won't reject flattening")); 100e8d8bef9SDimitry Andric 101*04eeddc0SDimitry Andric // We require all uses of both induction variables to match this pattern: 102*04eeddc0SDimitry Andric // 103*04eeddc0SDimitry Andric // (OuterPHI * InnerTripCount) + InnerPHI 104*04eeddc0SDimitry Andric // 105*04eeddc0SDimitry Andric // I.e., it needs to be a linear expression of the induction variables and the 106*04eeddc0SDimitry Andric // inner loop trip count. We keep track of all different expressions on which 107*04eeddc0SDimitry Andric // checks will be performed in this bookkeeping struct. 108*04eeddc0SDimitry Andric // 109e8d8bef9SDimitry Andric struct FlattenInfo { 110*04eeddc0SDimitry Andric Loop *OuterLoop = nullptr; // The loop pair to be flattened. 111e8d8bef9SDimitry Andric Loop *InnerLoop = nullptr; 112*04eeddc0SDimitry Andric 113*04eeddc0SDimitry Andric PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 114*04eeddc0SDimitry Andric PHINode *OuterInductionPHI = nullptr; // induction variables, which are 115*04eeddc0SDimitry Andric // expected to start at zero and 116*04eeddc0SDimitry Andric // increment by one on each loop. 117*04eeddc0SDimitry Andric 118*04eeddc0SDimitry Andric Value *InnerTripCount = nullptr; // The product of these two tripcounts 119*04eeddc0SDimitry Andric Value *OuterTripCount = nullptr; // will be the new flattened loop 120*04eeddc0SDimitry Andric // tripcount. Also used to recognise a 121*04eeddc0SDimitry Andric // linear expression that will be replaced. 122*04eeddc0SDimitry Andric 123*04eeddc0SDimitry Andric SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 124*04eeddc0SDimitry Andric // of the form i*M+j that will be 125*04eeddc0SDimitry Andric // replaced. 126*04eeddc0SDimitry Andric 127*04eeddc0SDimitry Andric BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 128*04eeddc0SDimitry Andric BinaryOperator *OuterIncrement = nullptr; // loop control statements that 129*04eeddc0SDimitry Andric BranchInst *InnerBranch = nullptr; // are safe to ignore. 130*04eeddc0SDimitry Andric 131*04eeddc0SDimitry Andric BranchInst *OuterBranch = nullptr; // The instruction that needs to be 132*04eeddc0SDimitry Andric // updated with new tripcount. 133*04eeddc0SDimitry Andric 134e8d8bef9SDimitry Andric SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 135e8d8bef9SDimitry Andric 136*04eeddc0SDimitry Andric bool Widened = false; // Whether this holds the flatten info before or after 137*04eeddc0SDimitry Andric // widening. 138e8d8bef9SDimitry Andric 139*04eeddc0SDimitry Andric PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 140*04eeddc0SDimitry Andric PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 141*04eeddc0SDimitry Andric // has been apllied. Used to skip 142*04eeddc0SDimitry Andric // checks on phi nodes. 143349cc55cSDimitry Andric 144e8d8bef9SDimitry Andric FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 145349cc55cSDimitry Andric 146349cc55cSDimitry Andric bool isNarrowInductionPhi(PHINode *Phi) { 147349cc55cSDimitry Andric // This can't be the narrow phi if we haven't widened the IV first. 148349cc55cSDimitry Andric if (!Widened) 149349cc55cSDimitry Andric return false; 150349cc55cSDimitry Andric return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 151349cc55cSDimitry Andric } 152*04eeddc0SDimitry Andric bool isInnerLoopIncrement(User *U) { 153*04eeddc0SDimitry Andric return InnerIncrement == U; 154*04eeddc0SDimitry Andric } 155*04eeddc0SDimitry Andric bool isOuterLoopIncrement(User *U) { 156*04eeddc0SDimitry Andric return OuterIncrement == U; 157*04eeddc0SDimitry Andric } 158*04eeddc0SDimitry Andric bool isInnerLoopTest(User *U) { 159*04eeddc0SDimitry Andric return InnerBranch->getCondition() == U; 160*04eeddc0SDimitry Andric } 161*04eeddc0SDimitry Andric 162*04eeddc0SDimitry Andric bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 163*04eeddc0SDimitry Andric for (User *U : OuterInductionPHI->users()) { 164*04eeddc0SDimitry Andric if (isOuterLoopIncrement(U)) 165*04eeddc0SDimitry Andric continue; 166*04eeddc0SDimitry Andric 167*04eeddc0SDimitry Andric auto IsValidOuterPHIUses = [&] (User *U) -> bool { 168*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 169*04eeddc0SDimitry Andric if (!ValidOuterPHIUses.count(U)) { 170*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 171*04eeddc0SDimitry Andric return false; 172*04eeddc0SDimitry Andric } 173*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 174*04eeddc0SDimitry Andric return true; 175*04eeddc0SDimitry Andric }; 176*04eeddc0SDimitry Andric 177*04eeddc0SDimitry Andric if (auto *V = dyn_cast<TruncInst>(U)) { 178*04eeddc0SDimitry Andric for (auto *K : V->users()) { 179*04eeddc0SDimitry Andric if (!IsValidOuterPHIUses(K)) 180*04eeddc0SDimitry Andric return false; 181*04eeddc0SDimitry Andric } 182*04eeddc0SDimitry Andric continue; 183*04eeddc0SDimitry Andric } 184*04eeddc0SDimitry Andric 185*04eeddc0SDimitry Andric if (!IsValidOuterPHIUses(U)) 186*04eeddc0SDimitry Andric return false; 187*04eeddc0SDimitry Andric } 188*04eeddc0SDimitry Andric return true; 189*04eeddc0SDimitry Andric } 190*04eeddc0SDimitry Andric 191*04eeddc0SDimitry Andric bool matchLinearIVUser(User *U, Value *InnerTripCount, 192*04eeddc0SDimitry Andric SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 193*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 194*04eeddc0SDimitry Andric Value *MatchedMul = nullptr; 195*04eeddc0SDimitry Andric Value *MatchedItCount = nullptr; 196*04eeddc0SDimitry Andric 197*04eeddc0SDimitry Andric bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 198*04eeddc0SDimitry Andric m_Value(MatchedMul))) && 199*04eeddc0SDimitry Andric match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 200*04eeddc0SDimitry Andric m_Value(MatchedItCount))); 201*04eeddc0SDimitry Andric 202*04eeddc0SDimitry Andric // Matches the same pattern as above, except it also looks for truncs 203*04eeddc0SDimitry Andric // on the phi, which can be the result of widening the induction variables. 204*04eeddc0SDimitry Andric bool IsAddTrunc = 205*04eeddc0SDimitry Andric match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 206*04eeddc0SDimitry Andric m_Value(MatchedMul))) && 207*04eeddc0SDimitry Andric match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 208*04eeddc0SDimitry Andric m_Value(MatchedItCount))); 209*04eeddc0SDimitry Andric 210*04eeddc0SDimitry Andric if (!MatchedItCount) 211*04eeddc0SDimitry Andric return false; 212*04eeddc0SDimitry Andric 213*04eeddc0SDimitry Andric // Look through extends if the IV has been widened. 214*04eeddc0SDimitry Andric if (Widened && 215*04eeddc0SDimitry Andric (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 216*04eeddc0SDimitry Andric assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 217*04eeddc0SDimitry Andric "Unexpected type mismatch in types after widening"); 218*04eeddc0SDimitry Andric MatchedItCount = isa<SExtInst>(MatchedItCount) 219*04eeddc0SDimitry Andric ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 220*04eeddc0SDimitry Andric : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 221*04eeddc0SDimitry Andric } 222*04eeddc0SDimitry Andric 223*04eeddc0SDimitry Andric if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 224*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 225*04eeddc0SDimitry Andric ValidOuterPHIUses.insert(MatchedMul); 226*04eeddc0SDimitry Andric LinearIVUses.insert(U); 227*04eeddc0SDimitry Andric return true; 228*04eeddc0SDimitry Andric } 229*04eeddc0SDimitry Andric 230*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 231*04eeddc0SDimitry Andric return false; 232*04eeddc0SDimitry Andric } 233*04eeddc0SDimitry Andric 234*04eeddc0SDimitry Andric bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 235*04eeddc0SDimitry Andric Value *SExtInnerTripCount = InnerTripCount; 236*04eeddc0SDimitry Andric if (Widened && 237*04eeddc0SDimitry Andric (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 238*04eeddc0SDimitry Andric SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 239*04eeddc0SDimitry Andric 240*04eeddc0SDimitry Andric for (User *U : InnerInductionPHI->users()) { 241*04eeddc0SDimitry Andric if (isInnerLoopIncrement(U)) 242*04eeddc0SDimitry Andric continue; 243*04eeddc0SDimitry Andric 244*04eeddc0SDimitry Andric // After widening the IVs, a trunc instruction might have been introduced, 245*04eeddc0SDimitry Andric // so look through truncs. 246*04eeddc0SDimitry Andric if (isa<TruncInst>(U)) { 247*04eeddc0SDimitry Andric if (!U->hasOneUse()) 248*04eeddc0SDimitry Andric return false; 249*04eeddc0SDimitry Andric U = *U->user_begin(); 250*04eeddc0SDimitry Andric } 251*04eeddc0SDimitry Andric 252*04eeddc0SDimitry Andric // If the use is in the compare (which is also the condition of the inner 253*04eeddc0SDimitry Andric // branch) then the compare has been altered by another transformation e.g 254*04eeddc0SDimitry Andric // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 255*04eeddc0SDimitry Andric // a constant. Ignore this use as the compare gets removed later anyway. 256*04eeddc0SDimitry Andric if (isInnerLoopTest(U)) 257*04eeddc0SDimitry Andric continue; 258*04eeddc0SDimitry Andric 259*04eeddc0SDimitry Andric if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) 260*04eeddc0SDimitry Andric return false; 261*04eeddc0SDimitry Andric } 262*04eeddc0SDimitry Andric return true; 263*04eeddc0SDimitry Andric } 264e8d8bef9SDimitry Andric }; 265e8d8bef9SDimitry Andric 266349cc55cSDimitry Andric static bool 267349cc55cSDimitry Andric setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 268349cc55cSDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions) { 269349cc55cSDimitry Andric TripCount = TC; 270349cc55cSDimitry Andric IterationInstructions.insert(Increment); 271349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 272349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 273349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 274349cc55cSDimitry Andric return true; 275349cc55cSDimitry Andric } 276349cc55cSDimitry Andric 277*04eeddc0SDimitry Andric // Given the RHS of the loop latch compare instruction, verify with SCEV 278*04eeddc0SDimitry Andric // that this is indeed the loop tripcount. 279*04eeddc0SDimitry Andric // TODO: This used to be a straightforward check but has grown to be quite 280*04eeddc0SDimitry Andric // complicated now. It is therefore worth revisiting what the additional 281*04eeddc0SDimitry Andric // benefits are of this (compared to relying on canonical loops and pattern 282*04eeddc0SDimitry Andric // matching). 283*04eeddc0SDimitry Andric static bool verifyTripCount(Value *RHS, Loop *L, 284*04eeddc0SDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions, 285*04eeddc0SDimitry Andric PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 286*04eeddc0SDimitry Andric BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 287*04eeddc0SDimitry Andric const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 288*04eeddc0SDimitry Andric if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 289*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 290*04eeddc0SDimitry Andric return false; 291*04eeddc0SDimitry Andric } 292*04eeddc0SDimitry Andric 293*04eeddc0SDimitry Andric // The Extend=false flag is used for getTripCountFromExitCount as we want 294*04eeddc0SDimitry Andric // to verify and match it with the pattern matched tripcount. Please note 295*04eeddc0SDimitry Andric // that overflow checks are performed in checkOverflow, but are first tried 296*04eeddc0SDimitry Andric // to avoid by widening the IV. 297*04eeddc0SDimitry Andric const SCEV *SCEVTripCount = 298*04eeddc0SDimitry Andric SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false); 299*04eeddc0SDimitry Andric 300*04eeddc0SDimitry Andric const SCEV *SCEVRHS = SE->getSCEV(RHS); 301*04eeddc0SDimitry Andric if (SCEVRHS == SCEVTripCount) 302*04eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 303*04eeddc0SDimitry Andric ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 304*04eeddc0SDimitry Andric if (ConstantRHS) { 305*04eeddc0SDimitry Andric const SCEV *BackedgeTCExt = nullptr; 306*04eeddc0SDimitry Andric if (IsWidened) { 307*04eeddc0SDimitry Andric const SCEV *SCEVTripCountExt; 308*04eeddc0SDimitry Andric // Find the extended backedge taken count and extended trip count using 309*04eeddc0SDimitry Andric // SCEV. One of these should now match the RHS of the compare. 310*04eeddc0SDimitry Andric BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 311*04eeddc0SDimitry Andric SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false); 312*04eeddc0SDimitry Andric if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 313*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 314*04eeddc0SDimitry Andric return false; 315*04eeddc0SDimitry Andric } 316*04eeddc0SDimitry Andric } 317*04eeddc0SDimitry Andric // If the RHS of the compare is equal to the backedge taken count we need 318*04eeddc0SDimitry Andric // to add one to get the trip count. 319*04eeddc0SDimitry Andric if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 320*04eeddc0SDimitry Andric ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1); 321*04eeddc0SDimitry Andric Value *NewRHS = ConstantInt::get( 322*04eeddc0SDimitry Andric ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue()); 323*04eeddc0SDimitry Andric return setLoopComponents(NewRHS, TripCount, Increment, 324*04eeddc0SDimitry Andric IterationInstructions); 325*04eeddc0SDimitry Andric } 326*04eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 327*04eeddc0SDimitry Andric } 328*04eeddc0SDimitry Andric // If the RHS isn't a constant then check that the reason it doesn't match 329*04eeddc0SDimitry Andric // the SCEV trip count is because the RHS is a ZExt or SExt instruction 330*04eeddc0SDimitry Andric // (and take the trip count to be the RHS). 331*04eeddc0SDimitry Andric if (!IsWidened) { 332*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 333*04eeddc0SDimitry Andric return false; 334*04eeddc0SDimitry Andric } 335*04eeddc0SDimitry Andric auto *TripCountInst = dyn_cast<Instruction>(RHS); 336*04eeddc0SDimitry Andric if (!TripCountInst) { 337*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 338*04eeddc0SDimitry Andric return false; 339*04eeddc0SDimitry Andric } 340*04eeddc0SDimitry Andric if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 341*04eeddc0SDimitry Andric SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 342*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 343*04eeddc0SDimitry Andric return false; 344*04eeddc0SDimitry Andric } 345*04eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 346*04eeddc0SDimitry Andric } 347*04eeddc0SDimitry Andric 348fe6060f1SDimitry Andric // Finds the induction variable, increment and trip count for a simple loop that 349fe6060f1SDimitry Andric // we can flatten. 350e8d8bef9SDimitry Andric static bool findLoopComponents( 351e8d8bef9SDimitry Andric Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 352fe6060f1SDimitry Andric PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 353fe6060f1SDimitry Andric BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 354e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 355e8d8bef9SDimitry Andric 356e8d8bef9SDimitry Andric if (!L->isLoopSimplifyForm()) { 357e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 358e8d8bef9SDimitry Andric return false; 359e8d8bef9SDimitry Andric } 360e8d8bef9SDimitry Andric 361fe6060f1SDimitry Andric // Currently, to simplify the implementation, the Loop induction variable must 362fe6060f1SDimitry Andric // start at zero and increment with a step size of one. 363fe6060f1SDimitry Andric if (!L->isCanonical(*SE)) { 364fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 365fe6060f1SDimitry Andric return false; 366fe6060f1SDimitry Andric } 367fe6060f1SDimitry Andric 368e8d8bef9SDimitry Andric // There must be exactly one exiting block, and it must be the same at the 369e8d8bef9SDimitry Andric // latch. 370e8d8bef9SDimitry Andric BasicBlock *Latch = L->getLoopLatch(); 371e8d8bef9SDimitry Andric if (L->getExitingBlock() != Latch) { 372e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 373e8d8bef9SDimitry Andric return false; 374e8d8bef9SDimitry Andric } 375e8d8bef9SDimitry Andric 376e8d8bef9SDimitry Andric // Find the induction PHI. If there is no induction PHI, we can't do the 377e8d8bef9SDimitry Andric // transformation. TODO: could other variables trigger this? Do we have to 378e8d8bef9SDimitry Andric // search for the best one? 379fe6060f1SDimitry Andric InductionPHI = L->getInductionVariable(*SE); 380e8d8bef9SDimitry Andric if (!InductionPHI) { 381e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 382e8d8bef9SDimitry Andric return false; 383e8d8bef9SDimitry Andric } 384fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 385e8d8bef9SDimitry Andric 386fe6060f1SDimitry Andric bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 387e8d8bef9SDimitry Andric auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 388e8d8bef9SDimitry Andric if (ContinueOnTrue) 389e8d8bef9SDimitry Andric return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 390e8d8bef9SDimitry Andric else 391e8d8bef9SDimitry Andric return Pred == CmpInst::ICMP_EQ; 392e8d8bef9SDimitry Andric }; 393e8d8bef9SDimitry Andric 394fe6060f1SDimitry Andric // Find Compare and make sure it is valid. getLatchCmpInst checks that the 395fe6060f1SDimitry Andric // back branch of the latch is conditional. 396fe6060f1SDimitry Andric ICmpInst *Compare = L->getLatchCmpInst(); 397e8d8bef9SDimitry Andric if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 398e8d8bef9SDimitry Andric Compare->hasNUsesOrMore(2)) { 399e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 400e8d8bef9SDimitry Andric return false; 401e8d8bef9SDimitry Andric } 402fe6060f1SDimitry Andric BackBranch = cast<BranchInst>(Latch->getTerminator()); 403fe6060f1SDimitry Andric IterationInstructions.insert(BackBranch); 404fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 405e8d8bef9SDimitry Andric IterationInstructions.insert(Compare); 406e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 407e8d8bef9SDimitry Andric 408fe6060f1SDimitry Andric // Find increment and trip count. 409fe6060f1SDimitry Andric // There are exactly 2 incoming values to the induction phi; one from the 410fe6060f1SDimitry Andric // pre-header and one from the latch. The incoming latch value is the 411fe6060f1SDimitry Andric // increment variable. 412fe6060f1SDimitry Andric Increment = 413fe6060f1SDimitry Andric dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 414fe6060f1SDimitry Andric if (Increment->hasNUsesOrMore(3)) { 415fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 416e8d8bef9SDimitry Andric return false; 417e8d8bef9SDimitry Andric } 418fe6060f1SDimitry Andric // The trip count is the RHS of the compare. If this doesn't match the trip 419349cc55cSDimitry Andric // count computed by SCEV then this is because the trip count variable 420349cc55cSDimitry Andric // has been widened so the types don't match, or because it is a constant and 421349cc55cSDimitry Andric // another transformation has changed the compare (e.g. icmp ult %inc, 422349cc55cSDimitry Andric // tripcount -> icmp ult %j, tripcount-1), or both. 423349cc55cSDimitry Andric Value *RHS = Compare->getOperand(1); 424*04eeddc0SDimitry Andric 425*04eeddc0SDimitry Andric return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 426*04eeddc0SDimitry Andric Increment, BackBranch, SE, IsWidened); 427e8d8bef9SDimitry Andric } 428e8d8bef9SDimitry Andric 429fe6060f1SDimitry Andric static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 430e8d8bef9SDimitry Andric // All PHIs in the inner and outer headers must either be: 431e8d8bef9SDimitry Andric // - The induction PHI, which we are going to rewrite as one induction in 432e8d8bef9SDimitry Andric // the new loop. This is already checked by findLoopComponents. 433e8d8bef9SDimitry Andric // - An outer header PHI with all incoming values from outside the loop. 434e8d8bef9SDimitry Andric // LoopSimplify guarantees we have a pre-header, so we don't need to 435e8d8bef9SDimitry Andric // worry about that here. 436e8d8bef9SDimitry Andric // - Pairs of PHIs in the inner and outer headers, which implement a 437e8d8bef9SDimitry Andric // loop-carried dependency that will still be valid in the new loop. To 438e8d8bef9SDimitry Andric // be valid, this variable must be modified only in the inner loop. 439e8d8bef9SDimitry Andric 440e8d8bef9SDimitry Andric // The set of PHI nodes in the outer loop header that we know will still be 441e8d8bef9SDimitry Andric // valid after the transformation. These will not need to be modified (with 442e8d8bef9SDimitry Andric // the exception of the induction variable), but we do need to check that 443e8d8bef9SDimitry Andric // there are no unsafe PHI nodes. 444e8d8bef9SDimitry Andric SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 445e8d8bef9SDimitry Andric SafeOuterPHIs.insert(FI.OuterInductionPHI); 446e8d8bef9SDimitry Andric 447e8d8bef9SDimitry Andric // Check that all PHI nodes in the inner loop header match one of the valid 448e8d8bef9SDimitry Andric // patterns. 449e8d8bef9SDimitry Andric for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 450e8d8bef9SDimitry Andric // The induction PHIs break these rules, and that's OK because we treat 451e8d8bef9SDimitry Andric // them specially when doing the transformation. 452e8d8bef9SDimitry Andric if (&InnerPHI == FI.InnerInductionPHI) 453e8d8bef9SDimitry Andric continue; 454349cc55cSDimitry Andric if (FI.isNarrowInductionPhi(&InnerPHI)) 455349cc55cSDimitry Andric continue; 456e8d8bef9SDimitry Andric 457e8d8bef9SDimitry Andric // Each inner loop PHI node must have two incoming values/blocks - one 458e8d8bef9SDimitry Andric // from the pre-header, and one from the latch. 459e8d8bef9SDimitry Andric assert(InnerPHI.getNumIncomingValues() == 2); 460e8d8bef9SDimitry Andric Value *PreHeaderValue = 461e8d8bef9SDimitry Andric InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 462e8d8bef9SDimitry Andric Value *LatchValue = 463e8d8bef9SDimitry Andric InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 464e8d8bef9SDimitry Andric 465e8d8bef9SDimitry Andric // The incoming value from the outer loop must be the PHI node in the 466e8d8bef9SDimitry Andric // outer loop header, with no modifications made in the top of the outer 467e8d8bef9SDimitry Andric // loop. 468e8d8bef9SDimitry Andric PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 469e8d8bef9SDimitry Andric if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 470e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 471e8d8bef9SDimitry Andric return false; 472e8d8bef9SDimitry Andric } 473e8d8bef9SDimitry Andric 474e8d8bef9SDimitry Andric // The other incoming value must come from the inner loop, without any 475e8d8bef9SDimitry Andric // modifications in the tail end of the outer loop. We are in LCSSA form, 476e8d8bef9SDimitry Andric // so this will actually be a PHI in the inner loop's exit block, which 477e8d8bef9SDimitry Andric // only uses values from inside the inner loop. 478e8d8bef9SDimitry Andric PHINode *LCSSAPHI = dyn_cast<PHINode>( 479e8d8bef9SDimitry Andric OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 480e8d8bef9SDimitry Andric if (!LCSSAPHI) { 481e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 482e8d8bef9SDimitry Andric return false; 483e8d8bef9SDimitry Andric } 484e8d8bef9SDimitry Andric 485e8d8bef9SDimitry Andric // The value used by the LCSSA PHI must be the same one that the inner 486e8d8bef9SDimitry Andric // loop's PHI uses. 487e8d8bef9SDimitry Andric if (LCSSAPHI->hasConstantValue() != LatchValue) { 488e8d8bef9SDimitry Andric LLVM_DEBUG( 489e8d8bef9SDimitry Andric dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 490e8d8bef9SDimitry Andric return false; 491e8d8bef9SDimitry Andric } 492e8d8bef9SDimitry Andric 493e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 494e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 495e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 496e8d8bef9SDimitry Andric SafeOuterPHIs.insert(OuterPHI); 497e8d8bef9SDimitry Andric FI.InnerPHIsToTransform.insert(&InnerPHI); 498e8d8bef9SDimitry Andric } 499e8d8bef9SDimitry Andric 500e8d8bef9SDimitry Andric for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 501349cc55cSDimitry Andric if (FI.isNarrowInductionPhi(&OuterPHI)) 502349cc55cSDimitry Andric continue; 503e8d8bef9SDimitry Andric if (!SafeOuterPHIs.count(&OuterPHI)) { 504e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 505e8d8bef9SDimitry Andric return false; 506e8d8bef9SDimitry Andric } 507e8d8bef9SDimitry Andric } 508e8d8bef9SDimitry Andric 509e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 510e8d8bef9SDimitry Andric return true; 511e8d8bef9SDimitry Andric } 512e8d8bef9SDimitry Andric 513e8d8bef9SDimitry Andric static bool 514fe6060f1SDimitry Andric checkOuterLoopInsts(FlattenInfo &FI, 515e8d8bef9SDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions, 516e8d8bef9SDimitry Andric const TargetTransformInfo *TTI) { 517e8d8bef9SDimitry Andric // Check for instructions in the outer but not inner loop. If any of these 518e8d8bef9SDimitry Andric // have side-effects then this transformation is not legal, and if there is 519e8d8bef9SDimitry Andric // a significant amount of code here which can't be optimised out that it's 520e8d8bef9SDimitry Andric // not profitable (as these instructions would get executed for each 521e8d8bef9SDimitry Andric // iteration of the inner loop). 522fe6060f1SDimitry Andric InstructionCost RepeatedInstrCost = 0; 523e8d8bef9SDimitry Andric for (auto *B : FI.OuterLoop->getBlocks()) { 524e8d8bef9SDimitry Andric if (FI.InnerLoop->contains(B)) 525e8d8bef9SDimitry Andric continue; 526e8d8bef9SDimitry Andric 527e8d8bef9SDimitry Andric for (auto &I : *B) { 528e8d8bef9SDimitry Andric if (!isa<PHINode>(&I) && !I.isTerminator() && 529e8d8bef9SDimitry Andric !isSafeToSpeculativelyExecute(&I)) { 530e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 531e8d8bef9SDimitry Andric "side effects: "; 532e8d8bef9SDimitry Andric I.dump()); 533e8d8bef9SDimitry Andric return false; 534e8d8bef9SDimitry Andric } 535e8d8bef9SDimitry Andric // The execution count of the outer loop's iteration instructions 536e8d8bef9SDimitry Andric // (increment, compare and branch) will be increased, but the 537e8d8bef9SDimitry Andric // equivalent instructions will be removed from the inner loop, so 538e8d8bef9SDimitry Andric // they make a net difference of zero. 539e8d8bef9SDimitry Andric if (IterationInstructions.count(&I)) 540e8d8bef9SDimitry Andric continue; 541e8d8bef9SDimitry Andric // The uncoditional branch to the inner loop's header will turn into 542e8d8bef9SDimitry Andric // a fall-through, so adds no cost. 543e8d8bef9SDimitry Andric BranchInst *Br = dyn_cast<BranchInst>(&I); 544e8d8bef9SDimitry Andric if (Br && Br->isUnconditional() && 545e8d8bef9SDimitry Andric Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 546e8d8bef9SDimitry Andric continue; 547e8d8bef9SDimitry Andric // Multiplies of the outer iteration variable and inner iteration 548e8d8bef9SDimitry Andric // count will be optimised out. 549e8d8bef9SDimitry Andric if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 550fe6060f1SDimitry Andric m_Specific(FI.InnerTripCount)))) 551e8d8bef9SDimitry Andric continue; 552fe6060f1SDimitry Andric InstructionCost Cost = 553fe6060f1SDimitry Andric TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 554e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 555e8d8bef9SDimitry Andric RepeatedInstrCost += Cost; 556e8d8bef9SDimitry Andric } 557e8d8bef9SDimitry Andric } 558e8d8bef9SDimitry Andric 559e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 560e8d8bef9SDimitry Andric << RepeatedInstrCost << "\n"); 561e8d8bef9SDimitry Andric // Bail out if flattening the loops would cause instructions in the outer 562e8d8bef9SDimitry Andric // loop but not in the inner loop to be executed extra times. 563e8d8bef9SDimitry Andric if (RepeatedInstrCost > RepeatedInstructionThreshold) { 564e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 565e8d8bef9SDimitry Andric return false; 566e8d8bef9SDimitry Andric } 567e8d8bef9SDimitry Andric 568e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 569e8d8bef9SDimitry Andric return true; 570e8d8bef9SDimitry Andric } 571e8d8bef9SDimitry Andric 572*04eeddc0SDimitry Andric 573*04eeddc0SDimitry Andric 574e8d8bef9SDimitry Andric // We require all uses of both induction variables to match this pattern: 575e8d8bef9SDimitry Andric // 576fe6060f1SDimitry Andric // (OuterPHI * InnerTripCount) + InnerPHI 577e8d8bef9SDimitry Andric // 578e8d8bef9SDimitry Andric // Any uses of the induction variables not matching that pattern would 579e8d8bef9SDimitry Andric // require a div/mod to reconstruct in the flattened loop, so the 580e8d8bef9SDimitry Andric // transformation wouldn't be profitable. 581*04eeddc0SDimitry Andric static bool checkIVUsers(FlattenInfo &FI) { 582e8d8bef9SDimitry Andric // Check that all uses of the inner loop's induction variable match the 583e8d8bef9SDimitry Andric // expected pattern, recording the uses of the outer IV. 584e8d8bef9SDimitry Andric SmallPtrSet<Value *, 4> ValidOuterPHIUses; 585*04eeddc0SDimitry Andric if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 586e8d8bef9SDimitry Andric return false; 587e8d8bef9SDimitry Andric 588e8d8bef9SDimitry Andric // Check that there are no uses of the outer IV other than the ones found 589e8d8bef9SDimitry Andric // as part of the pattern above. 590*04eeddc0SDimitry Andric if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 591e8d8bef9SDimitry Andric return false; 592e8d8bef9SDimitry Andric 593e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 594e8d8bef9SDimitry Andric dbgs() << "Found " << FI.LinearIVUses.size() 595e8d8bef9SDimitry Andric << " value(s) that can be replaced:\n"; 596e8d8bef9SDimitry Andric for (Value *V : FI.LinearIVUses) { 597e8d8bef9SDimitry Andric dbgs() << " "; 598e8d8bef9SDimitry Andric V->dump(); 599e8d8bef9SDimitry Andric }); 600e8d8bef9SDimitry Andric return true; 601e8d8bef9SDimitry Andric } 602e8d8bef9SDimitry Andric 603e8d8bef9SDimitry Andric // Return an OverflowResult dependant on if overflow of the multiplication of 604fe6060f1SDimitry Andric // InnerTripCount and OuterTripCount can be assumed not to happen. 605fe6060f1SDimitry Andric static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 606fe6060f1SDimitry Andric AssumptionCache *AC) { 607e8d8bef9SDimitry Andric Function *F = FI.OuterLoop->getHeader()->getParent(); 608e8d8bef9SDimitry Andric const DataLayout &DL = F->getParent()->getDataLayout(); 609e8d8bef9SDimitry Andric 610e8d8bef9SDimitry Andric // For debugging/testing. 611e8d8bef9SDimitry Andric if (AssumeNoOverflow) 612e8d8bef9SDimitry Andric return OverflowResult::NeverOverflows; 613e8d8bef9SDimitry Andric 614e8d8bef9SDimitry Andric // Check if the multiply could not overflow due to known ranges of the 615e8d8bef9SDimitry Andric // input values. 616e8d8bef9SDimitry Andric OverflowResult OR = computeOverflowForUnsignedMul( 617fe6060f1SDimitry Andric FI.InnerTripCount, FI.OuterTripCount, DL, AC, 618e8d8bef9SDimitry Andric FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 619e8d8bef9SDimitry Andric if (OR != OverflowResult::MayOverflow) 620e8d8bef9SDimitry Andric return OR; 621e8d8bef9SDimitry Andric 622e8d8bef9SDimitry Andric for (Value *V : FI.LinearIVUses) { 623e8d8bef9SDimitry Andric for (Value *U : V->users()) { 624e8d8bef9SDimitry Andric if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 625349cc55cSDimitry Andric for (Value *GEPUser : U->users()) { 626*04eeddc0SDimitry Andric auto *GEPUserInst = cast<Instruction>(GEPUser); 627349cc55cSDimitry Andric if (!isa<LoadInst>(GEPUserInst) && 628349cc55cSDimitry Andric !(isa<StoreInst>(GEPUserInst) && 629349cc55cSDimitry Andric GEP == GEPUserInst->getOperand(1))) 630349cc55cSDimitry Andric continue; 631349cc55cSDimitry Andric if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, 632349cc55cSDimitry Andric FI.InnerLoop)) 633349cc55cSDimitry Andric continue; 634349cc55cSDimitry Andric // The IV is used as the operand of a GEP which dominates the loop 635349cc55cSDimitry Andric // latch, and the IV is at least as wide as the address space of the 636349cc55cSDimitry Andric // GEP. In this case, the GEP would wrap around the address space 637349cc55cSDimitry Andric // before the IV increment wraps, which would be UB. 638e8d8bef9SDimitry Andric if (GEP->isInBounds() && 639e8d8bef9SDimitry Andric V->getType()->getIntegerBitWidth() >= 640e8d8bef9SDimitry Andric DL.getPointerTypeSizeInBits(GEP->getType())) { 641e8d8bef9SDimitry Andric LLVM_DEBUG( 642e8d8bef9SDimitry Andric dbgs() << "use of linear IV would be UB if overflow occurred: "; 643e8d8bef9SDimitry Andric GEP->dump()); 644e8d8bef9SDimitry Andric return OverflowResult::NeverOverflows; 645e8d8bef9SDimitry Andric } 646e8d8bef9SDimitry Andric } 647e8d8bef9SDimitry Andric } 648e8d8bef9SDimitry Andric } 649349cc55cSDimitry Andric } 650e8d8bef9SDimitry Andric 651e8d8bef9SDimitry Andric return OverflowResult::MayOverflow; 652e8d8bef9SDimitry Andric } 653e8d8bef9SDimitry Andric 654fe6060f1SDimitry Andric static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 655fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 656fe6060f1SDimitry Andric const TargetTransformInfo *TTI) { 657e8d8bef9SDimitry Andric SmallPtrSet<Instruction *, 8> IterationInstructions; 658fe6060f1SDimitry Andric if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 659fe6060f1SDimitry Andric FI.InnerInductionPHI, FI.InnerTripCount, 660fe6060f1SDimitry Andric FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 661e8d8bef9SDimitry Andric return false; 662fe6060f1SDimitry Andric if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 663fe6060f1SDimitry Andric FI.OuterInductionPHI, FI.OuterTripCount, 664fe6060f1SDimitry Andric FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 665e8d8bef9SDimitry Andric return false; 666e8d8bef9SDimitry Andric 667fe6060f1SDimitry Andric // Both of the loop trip count values must be invariant in the outer loop 668e8d8bef9SDimitry Andric // (non-instructions are all inherently invariant). 669fe6060f1SDimitry Andric if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 670fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 671e8d8bef9SDimitry Andric return false; 672e8d8bef9SDimitry Andric } 673fe6060f1SDimitry Andric if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 674fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 675e8d8bef9SDimitry Andric return false; 676e8d8bef9SDimitry Andric } 677e8d8bef9SDimitry Andric 678e8d8bef9SDimitry Andric if (!checkPHIs(FI, TTI)) 679e8d8bef9SDimitry Andric return false; 680e8d8bef9SDimitry Andric 681e8d8bef9SDimitry Andric // FIXME: it should be possible to handle different types correctly. 682e8d8bef9SDimitry Andric if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 683e8d8bef9SDimitry Andric return false; 684e8d8bef9SDimitry Andric 685e8d8bef9SDimitry Andric if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 686e8d8bef9SDimitry Andric return false; 687e8d8bef9SDimitry Andric 688e8d8bef9SDimitry Andric // Find the values in the loop that can be replaced with the linearized 689e8d8bef9SDimitry Andric // induction variable, and check that there are no other uses of the inner 690e8d8bef9SDimitry Andric // or outer induction variable. If there were, we could still do this 691e8d8bef9SDimitry Andric // transformation, but we'd have to insert a div/mod to calculate the 692e8d8bef9SDimitry Andric // original IVs, so it wouldn't be profitable. 693e8d8bef9SDimitry Andric if (!checkIVUsers(FI)) 694e8d8bef9SDimitry Andric return false; 695e8d8bef9SDimitry Andric 696e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 697e8d8bef9SDimitry Andric return true; 698e8d8bef9SDimitry Andric } 699e8d8bef9SDimitry Andric 700fe6060f1SDimitry Andric static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 701fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 702*04eeddc0SDimitry Andric const TargetTransformInfo *TTI, LPMUpdater *U, 703*04eeddc0SDimitry Andric MemorySSAUpdater *MSSAU) { 704e8d8bef9SDimitry Andric Function *F = FI.OuterLoop->getHeader()->getParent(); 705e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 706e8d8bef9SDimitry Andric { 707e8d8bef9SDimitry Andric using namespace ore; 708e8d8bef9SDimitry Andric OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 709e8d8bef9SDimitry Andric FI.InnerLoop->getHeader()); 710e8d8bef9SDimitry Andric OptimizationRemarkEmitter ORE(F); 711e8d8bef9SDimitry Andric Remark << "Flattened into outer loop"; 712e8d8bef9SDimitry Andric ORE.emit(Remark); 713e8d8bef9SDimitry Andric } 714e8d8bef9SDimitry Andric 715fe6060f1SDimitry Andric Value *NewTripCount = BinaryOperator::CreateMul( 716fe6060f1SDimitry Andric FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 717e8d8bef9SDimitry Andric FI.OuterLoop->getLoopPreheader()->getTerminator()); 718e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 719e8d8bef9SDimitry Andric NewTripCount->dump()); 720e8d8bef9SDimitry Andric 721e8d8bef9SDimitry Andric // Fix up PHI nodes that take values from the inner loop back-edge, which 722e8d8bef9SDimitry Andric // we are about to remove. 723e8d8bef9SDimitry Andric FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 724e8d8bef9SDimitry Andric 725e8d8bef9SDimitry Andric // The old Phi will be optimised away later, but for now we can't leave 726e8d8bef9SDimitry Andric // leave it in an invalid state, so are updating them too. 727e8d8bef9SDimitry Andric for (PHINode *PHI : FI.InnerPHIsToTransform) 728e8d8bef9SDimitry Andric PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 729e8d8bef9SDimitry Andric 730e8d8bef9SDimitry Andric // Modify the trip count of the outer loop to be the product of the two 731e8d8bef9SDimitry Andric // trip counts. 732e8d8bef9SDimitry Andric cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 733e8d8bef9SDimitry Andric 734e8d8bef9SDimitry Andric // Replace the inner loop backedge with an unconditional branch to the exit. 735e8d8bef9SDimitry Andric BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 736e8d8bef9SDimitry Andric BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 737e8d8bef9SDimitry Andric InnerExitingBlock->getTerminator()->eraseFromParent(); 738e8d8bef9SDimitry Andric BranchInst::Create(InnerExitBlock, InnerExitingBlock); 739*04eeddc0SDimitry Andric 740*04eeddc0SDimitry Andric // Update the DomTree and MemorySSA. 741e8d8bef9SDimitry Andric DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 742*04eeddc0SDimitry Andric if (MSSAU) 743*04eeddc0SDimitry Andric MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 744e8d8bef9SDimitry Andric 745e8d8bef9SDimitry Andric // Replace all uses of the polynomial calculated from the two induction 746e8d8bef9SDimitry Andric // variables with the one new one. 747e8d8bef9SDimitry Andric IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 748e8d8bef9SDimitry Andric for (Value *V : FI.LinearIVUses) { 749e8d8bef9SDimitry Andric Value *OuterValue = FI.OuterInductionPHI; 750e8d8bef9SDimitry Andric if (FI.Widened) 751e8d8bef9SDimitry Andric OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 752e8d8bef9SDimitry Andric "flatten.trunciv"); 753e8d8bef9SDimitry Andric 754*04eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 755*04eeddc0SDimitry Andric OuterValue->dump()); 756e8d8bef9SDimitry Andric V->replaceAllUsesWith(OuterValue); 757e8d8bef9SDimitry Andric } 758e8d8bef9SDimitry Andric 759e8d8bef9SDimitry Andric // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 760e8d8bef9SDimitry Andric // deleted, and any information that have about the outer loop invalidated. 761e8d8bef9SDimitry Andric SE->forgetLoop(FI.OuterLoop); 762e8d8bef9SDimitry Andric SE->forgetLoop(FI.InnerLoop); 763349cc55cSDimitry Andric if (U) 764349cc55cSDimitry Andric U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 765e8d8bef9SDimitry Andric LI->erase(FI.InnerLoop); 766349cc55cSDimitry Andric 767349cc55cSDimitry Andric // Increment statistic value. 768349cc55cSDimitry Andric NumFlattened++; 769349cc55cSDimitry Andric 770e8d8bef9SDimitry Andric return true; 771e8d8bef9SDimitry Andric } 772e8d8bef9SDimitry Andric 773fe6060f1SDimitry Andric static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 774fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 775fe6060f1SDimitry Andric const TargetTransformInfo *TTI) { 776e8d8bef9SDimitry Andric if (!WidenIV) { 777e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 778e8d8bef9SDimitry Andric return false; 779e8d8bef9SDimitry Andric } 780e8d8bef9SDimitry Andric 781e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 782e8d8bef9SDimitry Andric Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 783e8d8bef9SDimitry Andric auto &DL = M->getDataLayout(); 784e8d8bef9SDimitry Andric auto *InnerType = FI.InnerInductionPHI->getType(); 785e8d8bef9SDimitry Andric auto *OuterType = FI.OuterInductionPHI->getType(); 786e8d8bef9SDimitry Andric unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 787e8d8bef9SDimitry Andric auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 788e8d8bef9SDimitry Andric 789e8d8bef9SDimitry Andric // If both induction types are less than the maximum legal integer width, 790e8d8bef9SDimitry Andric // promote both to the widest type available so we know calculating 791fe6060f1SDimitry Andric // (OuterTripCount * InnerTripCount) as the new trip count is safe. 792e8d8bef9SDimitry Andric if (InnerType != OuterType || 793e8d8bef9SDimitry Andric InnerType->getScalarSizeInBits() >= MaxLegalSize || 794*04eeddc0SDimitry Andric MaxLegalType->getScalarSizeInBits() < 795*04eeddc0SDimitry Andric InnerType->getScalarSizeInBits() * 2) { 796e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 797e8d8bef9SDimitry Andric return false; 798e8d8bef9SDimitry Andric } 799e8d8bef9SDimitry Andric 800e8d8bef9SDimitry Andric SCEVExpander Rewriter(*SE, DL, "loopflatten"); 801e8d8bef9SDimitry Andric SmallVector<WeakTrackingVH, 4> DeadInsts; 802fe6060f1SDimitry Andric unsigned ElimExt = 0; 803fe6060f1SDimitry Andric unsigned Widened = 0; 804e8d8bef9SDimitry Andric 805349cc55cSDimitry Andric auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 806*04eeddc0SDimitry Andric PHINode *WidePhi = 807*04eeddc0SDimitry Andric createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 808*04eeddc0SDimitry Andric true /* HasGuards */, true /* UsePostIncrementRanges */); 809e8d8bef9SDimitry Andric if (!WidePhi) 810e8d8bef9SDimitry Andric return false; 811e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 812fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 813349cc55cSDimitry Andric Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 814349cc55cSDimitry Andric return true; 815349cc55cSDimitry Andric }; 816349cc55cSDimitry Andric 817349cc55cSDimitry Andric bool Deleted; 818349cc55cSDimitry Andric if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 819349cc55cSDimitry Andric return false; 820349cc55cSDimitry Andric // Add the narrow phi to list, so that it will be adjusted later when the 821349cc55cSDimitry Andric // the transformation is performed. 822349cc55cSDimitry Andric if (!Deleted) 823349cc55cSDimitry Andric FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 824349cc55cSDimitry Andric 825349cc55cSDimitry Andric if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 826349cc55cSDimitry Andric return false; 827349cc55cSDimitry Andric 828fe6060f1SDimitry Andric assert(Widened && "Widened IV expected"); 829e8d8bef9SDimitry Andric FI.Widened = true; 830349cc55cSDimitry Andric 831349cc55cSDimitry Andric // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 832349cc55cSDimitry Andric FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 833349cc55cSDimitry Andric FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 834349cc55cSDimitry Andric 835349cc55cSDimitry Andric // After widening, rediscover all the loop components. 836e8d8bef9SDimitry Andric return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 837e8d8bef9SDimitry Andric } 838e8d8bef9SDimitry Andric 839fe6060f1SDimitry Andric static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 840fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 841*04eeddc0SDimitry Andric const TargetTransformInfo *TTI, LPMUpdater *U, 842*04eeddc0SDimitry Andric MemorySSAUpdater *MSSAU) { 843e8d8bef9SDimitry Andric LLVM_DEBUG( 844e8d8bef9SDimitry Andric dbgs() << "Loop flattening running on outer loop " 845e8d8bef9SDimitry Andric << FI.OuterLoop->getHeader()->getName() << " and inner loop " 846e8d8bef9SDimitry Andric << FI.InnerLoop->getHeader()->getName() << " in " 847e8d8bef9SDimitry Andric << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 848e8d8bef9SDimitry Andric 849e8d8bef9SDimitry Andric if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 850e8d8bef9SDimitry Andric return false; 851e8d8bef9SDimitry Andric 852e8d8bef9SDimitry Andric // Check if we can widen the induction variables to avoid overflow checks. 853349cc55cSDimitry Andric bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 854e8d8bef9SDimitry Andric 855349cc55cSDimitry Andric // It can happen that after widening of the IV, flattening may not be 856349cc55cSDimitry Andric // possible/happening, e.g. when it is deemed unprofitable. So bail here if 857349cc55cSDimitry Andric // that is the case. 858349cc55cSDimitry Andric // TODO: IV widening without performing the actual flattening transformation 859349cc55cSDimitry Andric // is not ideal. While this codegen change should not matter much, it is an 860349cc55cSDimitry Andric // unnecessary change which is better to avoid. It's unlikely this happens 861349cc55cSDimitry Andric // often, because if it's unprofitibale after widening, it should be 862349cc55cSDimitry Andric // unprofitabe before widening as checked in the first round of checks. But 863349cc55cSDimitry Andric // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 864349cc55cSDimitry Andric // relaxed. Because this is making a code change (the IV widening, but not 865349cc55cSDimitry Andric // the flattening), we return true here. 866349cc55cSDimitry Andric if (FI.Widened && !CanFlatten) 867349cc55cSDimitry Andric return true; 868349cc55cSDimitry Andric 869349cc55cSDimitry Andric // If we have widened and can perform the transformation, do that here. 870349cc55cSDimitry Andric if (CanFlatten) 871*04eeddc0SDimitry Andric return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 872349cc55cSDimitry Andric 873349cc55cSDimitry Andric // Otherwise, if we haven't widened the IV, check if the new iteration 874349cc55cSDimitry Andric // variable might overflow. In this case, we need to version the loop, and 875349cc55cSDimitry Andric // select the original version at runtime if the iteration space is too 876349cc55cSDimitry Andric // large. 877e8d8bef9SDimitry Andric // TODO: We currently don't version the loop. 878e8d8bef9SDimitry Andric OverflowResult OR = checkOverflow(FI, DT, AC); 879e8d8bef9SDimitry Andric if (OR == OverflowResult::AlwaysOverflowsHigh || 880e8d8bef9SDimitry Andric OR == OverflowResult::AlwaysOverflowsLow) { 881e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 882e8d8bef9SDimitry Andric return false; 883e8d8bef9SDimitry Andric } else if (OR == OverflowResult::MayOverflow) { 884e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 885e8d8bef9SDimitry Andric return false; 886e8d8bef9SDimitry Andric } 887e8d8bef9SDimitry Andric 888e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 889*04eeddc0SDimitry Andric return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 890e8d8bef9SDimitry Andric } 891e8d8bef9SDimitry Andric 892fe6060f1SDimitry Andric bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 893*04eeddc0SDimitry Andric AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U, 894*04eeddc0SDimitry Andric MemorySSAUpdater *MSSAU) { 895e8d8bef9SDimitry Andric bool Changed = false; 896fe6060f1SDimitry Andric for (Loop *InnerLoop : LN.getLoops()) { 897e8d8bef9SDimitry Andric auto *OuterLoop = InnerLoop->getParentLoop(); 898e8d8bef9SDimitry Andric if (!OuterLoop) 899e8d8bef9SDimitry Andric continue; 900fe6060f1SDimitry Andric FlattenInfo FI(OuterLoop, InnerLoop); 901*04eeddc0SDimitry Andric Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 902e8d8bef9SDimitry Andric } 903e8d8bef9SDimitry Andric return Changed; 904e8d8bef9SDimitry Andric } 905e8d8bef9SDimitry Andric 906fe6060f1SDimitry Andric PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 907fe6060f1SDimitry Andric LoopStandardAnalysisResults &AR, 908fe6060f1SDimitry Andric LPMUpdater &U) { 909e8d8bef9SDimitry Andric 910fe6060f1SDimitry Andric bool Changed = false; 911fe6060f1SDimitry Andric 912*04eeddc0SDimitry Andric Optional<MemorySSAUpdater> MSSAU; 913*04eeddc0SDimitry Andric if (AR.MSSA) { 914*04eeddc0SDimitry Andric MSSAU = MemorySSAUpdater(AR.MSSA); 915*04eeddc0SDimitry Andric if (VerifyMemorySSA) 916*04eeddc0SDimitry Andric AR.MSSA->verifyMemorySSA(); 917*04eeddc0SDimitry Andric } 918*04eeddc0SDimitry Andric 919fe6060f1SDimitry Andric // The loop flattening pass requires loops to be 920fe6060f1SDimitry Andric // in simplified form, and also needs LCSSA. Running 921fe6060f1SDimitry Andric // this pass will simplify all loops that contain inner loops, 922fe6060f1SDimitry Andric // regardless of whether anything ends up being flattened. 923*04eeddc0SDimitry Andric Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 924*04eeddc0SDimitry Andric MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 925fe6060f1SDimitry Andric 926fe6060f1SDimitry Andric if (!Changed) 927e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 928e8d8bef9SDimitry Andric 929*04eeddc0SDimitry Andric if (AR.MSSA && VerifyMemorySSA) 930*04eeddc0SDimitry Andric AR.MSSA->verifyMemorySSA(); 931*04eeddc0SDimitry Andric 932*04eeddc0SDimitry Andric auto PA = getLoopPassPreservedAnalyses(); 933*04eeddc0SDimitry Andric if (AR.MSSA) 934*04eeddc0SDimitry Andric PA.preserve<MemorySSAAnalysis>(); 935*04eeddc0SDimitry Andric return PA; 936e8d8bef9SDimitry Andric } 937e8d8bef9SDimitry Andric 938e8d8bef9SDimitry Andric namespace { 939e8d8bef9SDimitry Andric class LoopFlattenLegacyPass : public FunctionPass { 940e8d8bef9SDimitry Andric public: 941e8d8bef9SDimitry Andric static char ID; // Pass ID, replacement for typeid 942e8d8bef9SDimitry Andric LoopFlattenLegacyPass() : FunctionPass(ID) { 943e8d8bef9SDimitry Andric initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 944e8d8bef9SDimitry Andric } 945e8d8bef9SDimitry Andric 946e8d8bef9SDimitry Andric // Possibly flatten loop L into its child. 947e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override; 948e8d8bef9SDimitry Andric 949e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 950e8d8bef9SDimitry Andric getLoopAnalysisUsage(AU); 951e8d8bef9SDimitry Andric AU.addRequired<TargetTransformInfoWrapperPass>(); 952e8d8bef9SDimitry Andric AU.addPreserved<TargetTransformInfoWrapperPass>(); 953e8d8bef9SDimitry Andric AU.addRequired<AssumptionCacheTracker>(); 954e8d8bef9SDimitry Andric AU.addPreserved<AssumptionCacheTracker>(); 955*04eeddc0SDimitry Andric AU.addPreserved<MemorySSAWrapperPass>(); 956e8d8bef9SDimitry Andric } 957e8d8bef9SDimitry Andric }; 958e8d8bef9SDimitry Andric } // namespace 959e8d8bef9SDimitry Andric 960e8d8bef9SDimitry Andric char LoopFlattenLegacyPass::ID = 0; 961e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 962e8d8bef9SDimitry Andric false, false) 963e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 964e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 965e8d8bef9SDimitry Andric INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 966e8d8bef9SDimitry Andric false, false) 967e8d8bef9SDimitry Andric 968*04eeddc0SDimitry Andric FunctionPass *llvm::createLoopFlattenPass() { 969*04eeddc0SDimitry Andric return new LoopFlattenLegacyPass(); 970*04eeddc0SDimitry Andric } 971e8d8bef9SDimitry Andric 972e8d8bef9SDimitry Andric bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 973e8d8bef9SDimitry Andric ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 974e8d8bef9SDimitry Andric LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 975e8d8bef9SDimitry Andric auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 976e8d8bef9SDimitry Andric DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 977e8d8bef9SDimitry Andric auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 978e8d8bef9SDimitry Andric auto *TTI = &TTIP.getTTI(F); 979e8d8bef9SDimitry Andric auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 980*04eeddc0SDimitry Andric auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 981*04eeddc0SDimitry Andric 982*04eeddc0SDimitry Andric Optional<MemorySSAUpdater> MSSAU; 983*04eeddc0SDimitry Andric if (MSSA) 984*04eeddc0SDimitry Andric MSSAU = MemorySSAUpdater(&MSSA->getMSSA()); 985*04eeddc0SDimitry Andric 986fe6060f1SDimitry Andric bool Changed = false; 987fe6060f1SDimitry Andric for (Loop *L : *LI) { 988fe6060f1SDimitry Andric auto LN = LoopNest::getLoopNest(*L, *SE); 989*04eeddc0SDimitry Andric Changed |= Flatten(*LN, DT, LI, SE, AC, TTI, nullptr, 990*04eeddc0SDimitry Andric MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 991fe6060f1SDimitry Andric } 992fe6060f1SDimitry Andric return Changed; 993e8d8bef9SDimitry Andric } 994