1e8d8bef9SDimitry Andric //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // This pass flattens pairs nested loops into a single loop. 10e8d8bef9SDimitry Andric // 11e8d8bef9SDimitry Andric // The intention is to optimise loop nests like this, which together access an 12e8d8bef9SDimitry Andric // array linearly: 1304eeddc0SDimitry Andric // 14e8d8bef9SDimitry Andric // for (int i = 0; i < N; ++i) 15e8d8bef9SDimitry Andric // for (int j = 0; j < M; ++j) 16e8d8bef9SDimitry Andric // f(A[i*M+j]); 1704eeddc0SDimitry Andric // 18e8d8bef9SDimitry Andric // into one loop: 1904eeddc0SDimitry Andric // 20e8d8bef9SDimitry Andric // for (int i = 0; i < (N*M); ++i) 21e8d8bef9SDimitry Andric // f(A[i]); 22e8d8bef9SDimitry Andric // 23e8d8bef9SDimitry Andric // It can also flatten loops where the induction variables are not used in the 24e8d8bef9SDimitry Andric // loop. This is only worth doing if the induction variables are only used in an 25e8d8bef9SDimitry Andric // expression like i*M+j. If they had any other uses, we would have to insert a 26e8d8bef9SDimitry Andric // div/mod to reconstruct the original values, so this wouldn't be profitable. 27e8d8bef9SDimitry Andric // 2804eeddc0SDimitry Andric // We also need to prove that N*M will not overflow. The preferred solution is 2904eeddc0SDimitry Andric // to widen the IV, which avoids overflow checks, so that is tried first. If 3004eeddc0SDimitry Andric // the IV cannot be widened, then we try to determine that this new tripcount 3104eeddc0SDimitry Andric // expression won't overflow. 3204eeddc0SDimitry Andric // 3304eeddc0SDimitry Andric // Q: Does LoopFlatten use SCEV? 3404eeddc0SDimitry Andric // Short answer: Yes and no. 3504eeddc0SDimitry Andric // 3604eeddc0SDimitry Andric // Long answer: 3704eeddc0SDimitry Andric // For this transformation to be valid, we require all uses of the induction 3804eeddc0SDimitry Andric // variables to be linear expressions of the form i*M+j. The different Loop 3904eeddc0SDimitry Andric // APIs are used to get some loop components like the induction variable, 4004eeddc0SDimitry Andric // compare statement, etc. In addition, we do some pattern matching to find the 4104eeddc0SDimitry Andric // linear expressions and other loop components like the loop increment. The 4204eeddc0SDimitry Andric // latter are examples of expressions that do use the induction variable, but 4304eeddc0SDimitry Andric // are safe to ignore when we check all uses to be of the form i*M+j. We keep 4404eeddc0SDimitry Andric // track of all of this in bookkeeping struct FlattenInfo. 4504eeddc0SDimitry Andric // We assume the loops to be canonical, i.e. starting at 0 and increment with 4604eeddc0SDimitry Andric // 1. This makes RHS of the compare the loop tripcount (with the right 4704eeddc0SDimitry Andric // predicate). We use SCEV to then sanity check that this tripcount matches 4804eeddc0SDimitry Andric // with the tripcount as computed by SCEV. 49e8d8bef9SDimitry Andric // 50e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 51e8d8bef9SDimitry Andric 52e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/LoopFlatten.h" 53349cc55cSDimitry Andric 54349cc55cSDimitry Andric #include "llvm/ADT/Statistic.h" 55e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 56e8d8bef9SDimitry Andric #include "llvm/Analysis/LoopInfo.h" 5781ad6265SDimitry Andric #include "llvm/Analysis/LoopNestAnalysis.h" 5804eeddc0SDimitry Andric #include "llvm/Analysis/MemorySSAUpdater.h" 59e8d8bef9SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60e8d8bef9SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h" 61e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 62e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 63e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 64e8d8bef9SDimitry Andric #include "llvm/IR/Function.h" 65e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h" 66e8d8bef9SDimitry Andric #include "llvm/IR/Module.h" 67e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h" 68e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h" 69e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h" 7081ad6265SDimitry Andric #include "llvm/Transforms/Scalar/LoopPassManager.h" 71e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 72e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h" 73*0fca6ea1SDimitry Andric #include "llvm/Transforms/Utils/LoopVersioning.h" 74e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 75e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/SimplifyIndVar.h" 76bdd1243dSDimitry Andric #include <optional> 77e8d8bef9SDimitry Andric 78e8d8bef9SDimitry Andric using namespace llvm; 79e8d8bef9SDimitry Andric using namespace llvm::PatternMatch; 80e8d8bef9SDimitry Andric 81349cc55cSDimitry Andric #define DEBUG_TYPE "loop-flatten" 82349cc55cSDimitry Andric 83349cc55cSDimitry Andric STATISTIC(NumFlattened, "Number of loops flattened"); 84349cc55cSDimitry Andric 85e8d8bef9SDimitry Andric static cl::opt<unsigned> RepeatedInstructionThreshold( 86e8d8bef9SDimitry Andric "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 87e8d8bef9SDimitry Andric cl::desc("Limit on the cost of instructions that can be repeated due to " 88e8d8bef9SDimitry Andric "loop flattening")); 89e8d8bef9SDimitry Andric 90e8d8bef9SDimitry Andric static cl::opt<bool> 91e8d8bef9SDimitry Andric AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 92e8d8bef9SDimitry Andric cl::init(false), 93e8d8bef9SDimitry Andric cl::desc("Assume that the product of the two iteration " 94fe6060f1SDimitry Andric "trip counts will never overflow")); 95e8d8bef9SDimitry Andric 96e8d8bef9SDimitry Andric static cl::opt<bool> 9704eeddc0SDimitry Andric WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 98e8d8bef9SDimitry Andric cl::desc("Widen the loop induction variables, if possible, so " 99e8d8bef9SDimitry Andric "overflow checks won't reject flattening")); 100e8d8bef9SDimitry Andric 101*0fca6ea1SDimitry Andric static cl::opt<bool> 102*0fca6ea1SDimitry Andric VersionLoops("loop-flatten-version-loops", cl::Hidden, cl::init(true), 103*0fca6ea1SDimitry Andric cl::desc("Version loops if flattened loop could overflow")); 104*0fca6ea1SDimitry Andric 105bdd1243dSDimitry Andric namespace { 10604eeddc0SDimitry Andric // We require all uses of both induction variables to match this pattern: 10704eeddc0SDimitry Andric // 10804eeddc0SDimitry Andric // (OuterPHI * InnerTripCount) + InnerPHI 10904eeddc0SDimitry Andric // 11004eeddc0SDimitry Andric // I.e., it needs to be a linear expression of the induction variables and the 11104eeddc0SDimitry Andric // inner loop trip count. We keep track of all different expressions on which 11204eeddc0SDimitry Andric // checks will be performed in this bookkeeping struct. 11304eeddc0SDimitry Andric // 114e8d8bef9SDimitry Andric struct FlattenInfo { 11504eeddc0SDimitry Andric Loop *OuterLoop = nullptr; // The loop pair to be flattened. 116e8d8bef9SDimitry Andric Loop *InnerLoop = nullptr; 11704eeddc0SDimitry Andric 11804eeddc0SDimitry Andric PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 11904eeddc0SDimitry Andric PHINode *OuterInductionPHI = nullptr; // induction variables, which are 12004eeddc0SDimitry Andric // expected to start at zero and 12104eeddc0SDimitry Andric // increment by one on each loop. 12204eeddc0SDimitry Andric 12304eeddc0SDimitry Andric Value *InnerTripCount = nullptr; // The product of these two tripcounts 12404eeddc0SDimitry Andric Value *OuterTripCount = nullptr; // will be the new flattened loop 12504eeddc0SDimitry Andric // tripcount. Also used to recognise a 12604eeddc0SDimitry Andric // linear expression that will be replaced. 12704eeddc0SDimitry Andric 12804eeddc0SDimitry Andric SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 12904eeddc0SDimitry Andric // of the form i*M+j that will be 13004eeddc0SDimitry Andric // replaced. 13104eeddc0SDimitry Andric 13204eeddc0SDimitry Andric BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 13304eeddc0SDimitry Andric BinaryOperator *OuterIncrement = nullptr; // loop control statements that 13404eeddc0SDimitry Andric BranchInst *InnerBranch = nullptr; // are safe to ignore. 13504eeddc0SDimitry Andric 13604eeddc0SDimitry Andric BranchInst *OuterBranch = nullptr; // The instruction that needs to be 13704eeddc0SDimitry Andric // updated with new tripcount. 13804eeddc0SDimitry Andric 139e8d8bef9SDimitry Andric SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 140e8d8bef9SDimitry Andric 14104eeddc0SDimitry Andric bool Widened = false; // Whether this holds the flatten info before or after 14204eeddc0SDimitry Andric // widening. 143e8d8bef9SDimitry Andric 14404eeddc0SDimitry Andric PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 14504eeddc0SDimitry Andric PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 146bdd1243dSDimitry Andric // has been applied. Used to skip 14704eeddc0SDimitry Andric // checks on phi nodes. 148349cc55cSDimitry Andric 149*0fca6ea1SDimitry Andric Value *NewTripCount = nullptr; // The tripcount of the flattened loop. 150*0fca6ea1SDimitry Andric 151e8d8bef9SDimitry Andric FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 152349cc55cSDimitry Andric 153349cc55cSDimitry Andric bool isNarrowInductionPhi(PHINode *Phi) { 154349cc55cSDimitry Andric // This can't be the narrow phi if we haven't widened the IV first. 155349cc55cSDimitry Andric if (!Widened) 156349cc55cSDimitry Andric return false; 157349cc55cSDimitry Andric return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 158349cc55cSDimitry Andric } 15904eeddc0SDimitry Andric bool isInnerLoopIncrement(User *U) { 16004eeddc0SDimitry Andric return InnerIncrement == U; 16104eeddc0SDimitry Andric } 16204eeddc0SDimitry Andric bool isOuterLoopIncrement(User *U) { 16304eeddc0SDimitry Andric return OuterIncrement == U; 16404eeddc0SDimitry Andric } 16504eeddc0SDimitry Andric bool isInnerLoopTest(User *U) { 16604eeddc0SDimitry Andric return InnerBranch->getCondition() == U; 16704eeddc0SDimitry Andric } 16804eeddc0SDimitry Andric 16904eeddc0SDimitry Andric bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 17004eeddc0SDimitry Andric for (User *U : OuterInductionPHI->users()) { 17104eeddc0SDimitry Andric if (isOuterLoopIncrement(U)) 17204eeddc0SDimitry Andric continue; 17304eeddc0SDimitry Andric 17404eeddc0SDimitry Andric auto IsValidOuterPHIUses = [&] (User *U) -> bool { 17504eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 17604eeddc0SDimitry Andric if (!ValidOuterPHIUses.count(U)) { 17704eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 17804eeddc0SDimitry Andric return false; 17904eeddc0SDimitry Andric } 18004eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 18104eeddc0SDimitry Andric return true; 18204eeddc0SDimitry Andric }; 18304eeddc0SDimitry Andric 18404eeddc0SDimitry Andric if (auto *V = dyn_cast<TruncInst>(U)) { 18504eeddc0SDimitry Andric for (auto *K : V->users()) { 18604eeddc0SDimitry Andric if (!IsValidOuterPHIUses(K)) 18704eeddc0SDimitry Andric return false; 18804eeddc0SDimitry Andric } 18904eeddc0SDimitry Andric continue; 19004eeddc0SDimitry Andric } 19104eeddc0SDimitry Andric 19204eeddc0SDimitry Andric if (!IsValidOuterPHIUses(U)) 19304eeddc0SDimitry Andric return false; 19404eeddc0SDimitry Andric } 19504eeddc0SDimitry Andric return true; 19604eeddc0SDimitry Andric } 19704eeddc0SDimitry Andric 19804eeddc0SDimitry Andric bool matchLinearIVUser(User *U, Value *InnerTripCount, 19904eeddc0SDimitry Andric SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 200bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump()); 20104eeddc0SDimitry Andric Value *MatchedMul = nullptr; 20204eeddc0SDimitry Andric Value *MatchedItCount = nullptr; 20304eeddc0SDimitry Andric 20404eeddc0SDimitry Andric bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 20504eeddc0SDimitry Andric m_Value(MatchedMul))) && 20604eeddc0SDimitry Andric match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 20704eeddc0SDimitry Andric m_Value(MatchedItCount))); 20804eeddc0SDimitry Andric 20904eeddc0SDimitry Andric // Matches the same pattern as above, except it also looks for truncs 21004eeddc0SDimitry Andric // on the phi, which can be the result of widening the induction variables. 21104eeddc0SDimitry Andric bool IsAddTrunc = 21204eeddc0SDimitry Andric match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 21304eeddc0SDimitry Andric m_Value(MatchedMul))) && 21404eeddc0SDimitry Andric match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 21504eeddc0SDimitry Andric m_Value(MatchedItCount))); 21604eeddc0SDimitry Andric 217297eecfbSDimitry Andric // Matches the pattern ptr+i*M+j, with the two additions being done via GEP. 218297eecfbSDimitry Andric bool IsGEP = match(U, m_GEP(m_GEP(m_Value(), m_Value(MatchedMul)), 219297eecfbSDimitry Andric m_Specific(InnerInductionPHI))) && 220297eecfbSDimitry Andric match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 221297eecfbSDimitry Andric m_Value(MatchedItCount))); 222297eecfbSDimitry Andric 22304eeddc0SDimitry Andric if (!MatchedItCount) 22404eeddc0SDimitry Andric return false; 22504eeddc0SDimitry Andric 226bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump()); 227bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump()); 228bdd1243dSDimitry Andric 229bdd1243dSDimitry Andric // The mul should not have any other uses. Widening may leave trivially dead 230bdd1243dSDimitry Andric // uses, which can be ignored. 231bdd1243dSDimitry Andric if (count_if(MatchedMul->users(), [](User *U) { 232bdd1243dSDimitry Andric return !isInstructionTriviallyDead(cast<Instruction>(U)); 233bdd1243dSDimitry Andric }) > 1) { 234bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Multiply has more than one use\n"); 235bdd1243dSDimitry Andric return false; 236bdd1243dSDimitry Andric } 237bdd1243dSDimitry Andric 23881ad6265SDimitry Andric // Look through extends if the IV has been widened. Don't look through 23981ad6265SDimitry Andric // extends if we already looked through a trunc. 240297eecfbSDimitry Andric if (Widened && (IsAdd || IsGEP) && 24104eeddc0SDimitry Andric (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 24204eeddc0SDimitry Andric assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 24304eeddc0SDimitry Andric "Unexpected type mismatch in types after widening"); 24404eeddc0SDimitry Andric MatchedItCount = isa<SExtInst>(MatchedItCount) 24504eeddc0SDimitry Andric ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 24604eeddc0SDimitry Andric : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 24704eeddc0SDimitry Andric } 24804eeddc0SDimitry Andric 249bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Looking for inner trip count: "; 250bdd1243dSDimitry Andric InnerTripCount->dump()); 251bdd1243dSDimitry Andric 252297eecfbSDimitry Andric if ((IsAdd || IsAddTrunc || IsGEP) && MatchedItCount == InnerTripCount) { 253bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n"); 25404eeddc0SDimitry Andric ValidOuterPHIUses.insert(MatchedMul); 25504eeddc0SDimitry Andric LinearIVUses.insert(U); 25604eeddc0SDimitry Andric return true; 25704eeddc0SDimitry Andric } 25804eeddc0SDimitry Andric 25904eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 26004eeddc0SDimitry Andric return false; 26104eeddc0SDimitry Andric } 26204eeddc0SDimitry Andric 26304eeddc0SDimitry Andric bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 26404eeddc0SDimitry Andric Value *SExtInnerTripCount = InnerTripCount; 26504eeddc0SDimitry Andric if (Widened && 26604eeddc0SDimitry Andric (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 26704eeddc0SDimitry Andric SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 26804eeddc0SDimitry Andric 26904eeddc0SDimitry Andric for (User *U : InnerInductionPHI->users()) { 270bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Checking User: "; U->dump()); 271bdd1243dSDimitry Andric if (isInnerLoopIncrement(U)) { 272bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n"); 27304eeddc0SDimitry Andric continue; 274bdd1243dSDimitry Andric } 27504eeddc0SDimitry Andric 27604eeddc0SDimitry Andric // After widening the IVs, a trunc instruction might have been introduced, 27704eeddc0SDimitry Andric // so look through truncs. 27804eeddc0SDimitry Andric if (isa<TruncInst>(U)) { 27904eeddc0SDimitry Andric if (!U->hasOneUse()) 28004eeddc0SDimitry Andric return false; 28104eeddc0SDimitry Andric U = *U->user_begin(); 28204eeddc0SDimitry Andric } 28304eeddc0SDimitry Andric 28404eeddc0SDimitry Andric // If the use is in the compare (which is also the condition of the inner 28504eeddc0SDimitry Andric // branch) then the compare has been altered by another transformation e.g 28604eeddc0SDimitry Andric // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 28704eeddc0SDimitry Andric // a constant. Ignore this use as the compare gets removed later anyway. 288bdd1243dSDimitry Andric if (isInnerLoopTest(U)) { 289bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n"); 29004eeddc0SDimitry Andric continue; 291bdd1243dSDimitry Andric } 29204eeddc0SDimitry Andric 293bdd1243dSDimitry Andric if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) { 294bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Not a linear IV user\n"); 29504eeddc0SDimitry Andric return false; 29604eeddc0SDimitry Andric } 297bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Linear IV users found!\n"); 298bdd1243dSDimitry Andric } 29904eeddc0SDimitry Andric return true; 30004eeddc0SDimitry Andric } 301e8d8bef9SDimitry Andric }; 302bdd1243dSDimitry Andric } // namespace 303e8d8bef9SDimitry Andric 304349cc55cSDimitry Andric static bool 305349cc55cSDimitry Andric setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 306349cc55cSDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions) { 307349cc55cSDimitry Andric TripCount = TC; 308349cc55cSDimitry Andric IterationInstructions.insert(Increment); 309349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 310349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 311349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 312349cc55cSDimitry Andric return true; 313349cc55cSDimitry Andric } 314349cc55cSDimitry Andric 31504eeddc0SDimitry Andric // Given the RHS of the loop latch compare instruction, verify with SCEV 31604eeddc0SDimitry Andric // that this is indeed the loop tripcount. 31704eeddc0SDimitry Andric // TODO: This used to be a straightforward check but has grown to be quite 31804eeddc0SDimitry Andric // complicated now. It is therefore worth revisiting what the additional 31904eeddc0SDimitry Andric // benefits are of this (compared to relying on canonical loops and pattern 32004eeddc0SDimitry Andric // matching). 32104eeddc0SDimitry Andric static bool verifyTripCount(Value *RHS, Loop *L, 32204eeddc0SDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions, 32304eeddc0SDimitry Andric PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 32404eeddc0SDimitry Andric BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 32504eeddc0SDimitry Andric const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 32604eeddc0SDimitry Andric if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 32704eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 32804eeddc0SDimitry Andric return false; 32904eeddc0SDimitry Andric } 33004eeddc0SDimitry Andric 33106c3fb27SDimitry Andric // Evaluating in the trip count's type can not overflow here as the overflow 33206c3fb27SDimitry Andric // checks are performed in checkOverflow, but are first tried to avoid by 33306c3fb27SDimitry Andric // widening the IV. 33404eeddc0SDimitry Andric const SCEV *SCEVTripCount = 33506c3fb27SDimitry Andric SE->getTripCountFromExitCount(BackedgeTakenCount, 33606c3fb27SDimitry Andric BackedgeTakenCount->getType(), L); 33704eeddc0SDimitry Andric 33804eeddc0SDimitry Andric const SCEV *SCEVRHS = SE->getSCEV(RHS); 33904eeddc0SDimitry Andric if (SCEVRHS == SCEVTripCount) 34004eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 34104eeddc0SDimitry Andric ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 34204eeddc0SDimitry Andric if (ConstantRHS) { 34304eeddc0SDimitry Andric const SCEV *BackedgeTCExt = nullptr; 34404eeddc0SDimitry Andric if (IsWidened) { 34504eeddc0SDimitry Andric const SCEV *SCEVTripCountExt; 34604eeddc0SDimitry Andric // Find the extended backedge taken count and extended trip count using 34704eeddc0SDimitry Andric // SCEV. One of these should now match the RHS of the compare. 34804eeddc0SDimitry Andric BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 34906c3fb27SDimitry Andric SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, 35006c3fb27SDimitry Andric RHS->getType(), L); 35104eeddc0SDimitry Andric if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 35204eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 35304eeddc0SDimitry Andric return false; 35404eeddc0SDimitry Andric } 35504eeddc0SDimitry Andric } 35604eeddc0SDimitry Andric // If the RHS of the compare is equal to the backedge taken count we need 35704eeddc0SDimitry Andric // to add one to get the trip count. 35804eeddc0SDimitry Andric if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 359cb14a3feSDimitry Andric Value *NewRHS = ConstantInt::get(ConstantRHS->getContext(), 360cb14a3feSDimitry Andric ConstantRHS->getValue() + 1); 36104eeddc0SDimitry Andric return setLoopComponents(NewRHS, TripCount, Increment, 36204eeddc0SDimitry Andric IterationInstructions); 36304eeddc0SDimitry Andric } 36404eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 36504eeddc0SDimitry Andric } 36604eeddc0SDimitry Andric // If the RHS isn't a constant then check that the reason it doesn't match 36704eeddc0SDimitry Andric // the SCEV trip count is because the RHS is a ZExt or SExt instruction 36804eeddc0SDimitry Andric // (and take the trip count to be the RHS). 36904eeddc0SDimitry Andric if (!IsWidened) { 37004eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 37104eeddc0SDimitry Andric return false; 37204eeddc0SDimitry Andric } 37304eeddc0SDimitry Andric auto *TripCountInst = dyn_cast<Instruction>(RHS); 37404eeddc0SDimitry Andric if (!TripCountInst) { 37504eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 37604eeddc0SDimitry Andric return false; 37704eeddc0SDimitry Andric } 37804eeddc0SDimitry Andric if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 37904eeddc0SDimitry Andric SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 38004eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 38104eeddc0SDimitry Andric return false; 38204eeddc0SDimitry Andric } 38304eeddc0SDimitry Andric return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 38404eeddc0SDimitry Andric } 38504eeddc0SDimitry Andric 386fe6060f1SDimitry Andric // Finds the induction variable, increment and trip count for a simple loop that 387fe6060f1SDimitry Andric // we can flatten. 388e8d8bef9SDimitry Andric static bool findLoopComponents( 389e8d8bef9SDimitry Andric Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 390fe6060f1SDimitry Andric PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 391fe6060f1SDimitry Andric BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 392e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 393e8d8bef9SDimitry Andric 394e8d8bef9SDimitry Andric if (!L->isLoopSimplifyForm()) { 395e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 396e8d8bef9SDimitry Andric return false; 397e8d8bef9SDimitry Andric } 398e8d8bef9SDimitry Andric 399fe6060f1SDimitry Andric // Currently, to simplify the implementation, the Loop induction variable must 400fe6060f1SDimitry Andric // start at zero and increment with a step size of one. 401fe6060f1SDimitry Andric if (!L->isCanonical(*SE)) { 402fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 403fe6060f1SDimitry Andric return false; 404fe6060f1SDimitry Andric } 405fe6060f1SDimitry Andric 406e8d8bef9SDimitry Andric // There must be exactly one exiting block, and it must be the same at the 407e8d8bef9SDimitry Andric // latch. 408e8d8bef9SDimitry Andric BasicBlock *Latch = L->getLoopLatch(); 409e8d8bef9SDimitry Andric if (L->getExitingBlock() != Latch) { 410e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 411e8d8bef9SDimitry Andric return false; 412e8d8bef9SDimitry Andric } 413e8d8bef9SDimitry Andric 414e8d8bef9SDimitry Andric // Find the induction PHI. If there is no induction PHI, we can't do the 415e8d8bef9SDimitry Andric // transformation. TODO: could other variables trigger this? Do we have to 416e8d8bef9SDimitry Andric // search for the best one? 417fe6060f1SDimitry Andric InductionPHI = L->getInductionVariable(*SE); 418e8d8bef9SDimitry Andric if (!InductionPHI) { 419e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 420e8d8bef9SDimitry Andric return false; 421e8d8bef9SDimitry Andric } 422fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 423e8d8bef9SDimitry Andric 424fe6060f1SDimitry Andric bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 425e8d8bef9SDimitry Andric auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 426e8d8bef9SDimitry Andric if (ContinueOnTrue) 427e8d8bef9SDimitry Andric return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 428e8d8bef9SDimitry Andric else 429e8d8bef9SDimitry Andric return Pred == CmpInst::ICMP_EQ; 430e8d8bef9SDimitry Andric }; 431e8d8bef9SDimitry Andric 432fe6060f1SDimitry Andric // Find Compare and make sure it is valid. getLatchCmpInst checks that the 433fe6060f1SDimitry Andric // back branch of the latch is conditional. 434fe6060f1SDimitry Andric ICmpInst *Compare = L->getLatchCmpInst(); 435e8d8bef9SDimitry Andric if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 436e8d8bef9SDimitry Andric Compare->hasNUsesOrMore(2)) { 437e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 438e8d8bef9SDimitry Andric return false; 439e8d8bef9SDimitry Andric } 440fe6060f1SDimitry Andric BackBranch = cast<BranchInst>(Latch->getTerminator()); 441fe6060f1SDimitry Andric IterationInstructions.insert(BackBranch); 442fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 443e8d8bef9SDimitry Andric IterationInstructions.insert(Compare); 444e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 445e8d8bef9SDimitry Andric 446fe6060f1SDimitry Andric // Find increment and trip count. 447fe6060f1SDimitry Andric // There are exactly 2 incoming values to the induction phi; one from the 448fe6060f1SDimitry Andric // pre-header and one from the latch. The incoming latch value is the 449fe6060f1SDimitry Andric // increment variable. 450fe6060f1SDimitry Andric Increment = 45181ad6265SDimitry Andric cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 452bdd1243dSDimitry Andric if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) && 453bdd1243dSDimitry Andric !Increment->hasNUses(1)) { 454fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 455e8d8bef9SDimitry Andric return false; 456e8d8bef9SDimitry Andric } 457fe6060f1SDimitry Andric // The trip count is the RHS of the compare. If this doesn't match the trip 458349cc55cSDimitry Andric // count computed by SCEV then this is because the trip count variable 459349cc55cSDimitry Andric // has been widened so the types don't match, or because it is a constant and 460349cc55cSDimitry Andric // another transformation has changed the compare (e.g. icmp ult %inc, 461349cc55cSDimitry Andric // tripcount -> icmp ult %j, tripcount-1), or both. 462349cc55cSDimitry Andric Value *RHS = Compare->getOperand(1); 46304eeddc0SDimitry Andric 46404eeddc0SDimitry Andric return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 46504eeddc0SDimitry Andric Increment, BackBranch, SE, IsWidened); 466e8d8bef9SDimitry Andric } 467e8d8bef9SDimitry Andric 468fe6060f1SDimitry Andric static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 469e8d8bef9SDimitry Andric // All PHIs in the inner and outer headers must either be: 470e8d8bef9SDimitry Andric // - The induction PHI, which we are going to rewrite as one induction in 471e8d8bef9SDimitry Andric // the new loop. This is already checked by findLoopComponents. 472e8d8bef9SDimitry Andric // - An outer header PHI with all incoming values from outside the loop. 473e8d8bef9SDimitry Andric // LoopSimplify guarantees we have a pre-header, so we don't need to 474e8d8bef9SDimitry Andric // worry about that here. 475e8d8bef9SDimitry Andric // - Pairs of PHIs in the inner and outer headers, which implement a 476e8d8bef9SDimitry Andric // loop-carried dependency that will still be valid in the new loop. To 477e8d8bef9SDimitry Andric // be valid, this variable must be modified only in the inner loop. 478e8d8bef9SDimitry Andric 479e8d8bef9SDimitry Andric // The set of PHI nodes in the outer loop header that we know will still be 480e8d8bef9SDimitry Andric // valid after the transformation. These will not need to be modified (with 481e8d8bef9SDimitry Andric // the exception of the induction variable), but we do need to check that 482e8d8bef9SDimitry Andric // there are no unsafe PHI nodes. 483e8d8bef9SDimitry Andric SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 484e8d8bef9SDimitry Andric SafeOuterPHIs.insert(FI.OuterInductionPHI); 485e8d8bef9SDimitry Andric 486e8d8bef9SDimitry Andric // Check that all PHI nodes in the inner loop header match one of the valid 487e8d8bef9SDimitry Andric // patterns. 488e8d8bef9SDimitry Andric for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 489e8d8bef9SDimitry Andric // The induction PHIs break these rules, and that's OK because we treat 490e8d8bef9SDimitry Andric // them specially when doing the transformation. 491e8d8bef9SDimitry Andric if (&InnerPHI == FI.InnerInductionPHI) 492e8d8bef9SDimitry Andric continue; 493349cc55cSDimitry Andric if (FI.isNarrowInductionPhi(&InnerPHI)) 494349cc55cSDimitry Andric continue; 495e8d8bef9SDimitry Andric 496e8d8bef9SDimitry Andric // Each inner loop PHI node must have two incoming values/blocks - one 497e8d8bef9SDimitry Andric // from the pre-header, and one from the latch. 498e8d8bef9SDimitry Andric assert(InnerPHI.getNumIncomingValues() == 2); 499e8d8bef9SDimitry Andric Value *PreHeaderValue = 500e8d8bef9SDimitry Andric InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 501e8d8bef9SDimitry Andric Value *LatchValue = 502e8d8bef9SDimitry Andric InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 503e8d8bef9SDimitry Andric 504e8d8bef9SDimitry Andric // The incoming value from the outer loop must be the PHI node in the 505e8d8bef9SDimitry Andric // outer loop header, with no modifications made in the top of the outer 506e8d8bef9SDimitry Andric // loop. 507e8d8bef9SDimitry Andric PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 508e8d8bef9SDimitry Andric if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 509e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 510e8d8bef9SDimitry Andric return false; 511e8d8bef9SDimitry Andric } 512e8d8bef9SDimitry Andric 513e8d8bef9SDimitry Andric // The other incoming value must come from the inner loop, without any 514e8d8bef9SDimitry Andric // modifications in the tail end of the outer loop. We are in LCSSA form, 515e8d8bef9SDimitry Andric // so this will actually be a PHI in the inner loop's exit block, which 516e8d8bef9SDimitry Andric // only uses values from inside the inner loop. 517e8d8bef9SDimitry Andric PHINode *LCSSAPHI = dyn_cast<PHINode>( 518e8d8bef9SDimitry Andric OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 519e8d8bef9SDimitry Andric if (!LCSSAPHI) { 520e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 521e8d8bef9SDimitry Andric return false; 522e8d8bef9SDimitry Andric } 523e8d8bef9SDimitry Andric 524e8d8bef9SDimitry Andric // The value used by the LCSSA PHI must be the same one that the inner 525e8d8bef9SDimitry Andric // loop's PHI uses. 526e8d8bef9SDimitry Andric if (LCSSAPHI->hasConstantValue() != LatchValue) { 527e8d8bef9SDimitry Andric LLVM_DEBUG( 528e8d8bef9SDimitry Andric dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 529e8d8bef9SDimitry Andric return false; 530e8d8bef9SDimitry Andric } 531e8d8bef9SDimitry Andric 532e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 533e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 534e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 535e8d8bef9SDimitry Andric SafeOuterPHIs.insert(OuterPHI); 536e8d8bef9SDimitry Andric FI.InnerPHIsToTransform.insert(&InnerPHI); 537e8d8bef9SDimitry Andric } 538e8d8bef9SDimitry Andric 539e8d8bef9SDimitry Andric for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 540349cc55cSDimitry Andric if (FI.isNarrowInductionPhi(&OuterPHI)) 541349cc55cSDimitry Andric continue; 542e8d8bef9SDimitry Andric if (!SafeOuterPHIs.count(&OuterPHI)) { 543e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 544e8d8bef9SDimitry Andric return false; 545e8d8bef9SDimitry Andric } 546e8d8bef9SDimitry Andric } 547e8d8bef9SDimitry Andric 548e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 549e8d8bef9SDimitry Andric return true; 550e8d8bef9SDimitry Andric } 551e8d8bef9SDimitry Andric 552e8d8bef9SDimitry Andric static bool 553fe6060f1SDimitry Andric checkOuterLoopInsts(FlattenInfo &FI, 554e8d8bef9SDimitry Andric SmallPtrSetImpl<Instruction *> &IterationInstructions, 555e8d8bef9SDimitry Andric const TargetTransformInfo *TTI) { 556e8d8bef9SDimitry Andric // Check for instructions in the outer but not inner loop. If any of these 557e8d8bef9SDimitry Andric // have side-effects then this transformation is not legal, and if there is 558e8d8bef9SDimitry Andric // a significant amount of code here which can't be optimised out that it's 559e8d8bef9SDimitry Andric // not profitable (as these instructions would get executed for each 560e8d8bef9SDimitry Andric // iteration of the inner loop). 561fe6060f1SDimitry Andric InstructionCost RepeatedInstrCost = 0; 562e8d8bef9SDimitry Andric for (auto *B : FI.OuterLoop->getBlocks()) { 563e8d8bef9SDimitry Andric if (FI.InnerLoop->contains(B)) 564e8d8bef9SDimitry Andric continue; 565e8d8bef9SDimitry Andric 566e8d8bef9SDimitry Andric for (auto &I : *B) { 567e8d8bef9SDimitry Andric if (!isa<PHINode>(&I) && !I.isTerminator() && 568e8d8bef9SDimitry Andric !isSafeToSpeculativelyExecute(&I)) { 569e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 570e8d8bef9SDimitry Andric "side effects: "; 571e8d8bef9SDimitry Andric I.dump()); 572e8d8bef9SDimitry Andric return false; 573e8d8bef9SDimitry Andric } 574e8d8bef9SDimitry Andric // The execution count of the outer loop's iteration instructions 575e8d8bef9SDimitry Andric // (increment, compare and branch) will be increased, but the 576e8d8bef9SDimitry Andric // equivalent instructions will be removed from the inner loop, so 577e8d8bef9SDimitry Andric // they make a net difference of zero. 578e8d8bef9SDimitry Andric if (IterationInstructions.count(&I)) 579e8d8bef9SDimitry Andric continue; 580bdd1243dSDimitry Andric // The unconditional branch to the inner loop's header will turn into 581e8d8bef9SDimitry Andric // a fall-through, so adds no cost. 582e8d8bef9SDimitry Andric BranchInst *Br = dyn_cast<BranchInst>(&I); 583e8d8bef9SDimitry Andric if (Br && Br->isUnconditional() && 584e8d8bef9SDimitry Andric Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 585e8d8bef9SDimitry Andric continue; 586e8d8bef9SDimitry Andric // Multiplies of the outer iteration variable and inner iteration 587e8d8bef9SDimitry Andric // count will be optimised out. 588e8d8bef9SDimitry Andric if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 589fe6060f1SDimitry Andric m_Specific(FI.InnerTripCount)))) 590e8d8bef9SDimitry Andric continue; 591fe6060f1SDimitry Andric InstructionCost Cost = 592bdd1243dSDimitry Andric TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 593e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 594e8d8bef9SDimitry Andric RepeatedInstrCost += Cost; 595e8d8bef9SDimitry Andric } 596e8d8bef9SDimitry Andric } 597e8d8bef9SDimitry Andric 598e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 599e8d8bef9SDimitry Andric << RepeatedInstrCost << "\n"); 600e8d8bef9SDimitry Andric // Bail out if flattening the loops would cause instructions in the outer 601e8d8bef9SDimitry Andric // loop but not in the inner loop to be executed extra times. 602e8d8bef9SDimitry Andric if (RepeatedInstrCost > RepeatedInstructionThreshold) { 603e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 604e8d8bef9SDimitry Andric return false; 605e8d8bef9SDimitry Andric } 606e8d8bef9SDimitry Andric 607e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 608e8d8bef9SDimitry Andric return true; 609e8d8bef9SDimitry Andric } 610e8d8bef9SDimitry Andric 61104eeddc0SDimitry Andric 61204eeddc0SDimitry Andric 613e8d8bef9SDimitry Andric // We require all uses of both induction variables to match this pattern: 614e8d8bef9SDimitry Andric // 615fe6060f1SDimitry Andric // (OuterPHI * InnerTripCount) + InnerPHI 616e8d8bef9SDimitry Andric // 617e8d8bef9SDimitry Andric // Any uses of the induction variables not matching that pattern would 618e8d8bef9SDimitry Andric // require a div/mod to reconstruct in the flattened loop, so the 619e8d8bef9SDimitry Andric // transformation wouldn't be profitable. 62004eeddc0SDimitry Andric static bool checkIVUsers(FlattenInfo &FI) { 621e8d8bef9SDimitry Andric // Check that all uses of the inner loop's induction variable match the 622e8d8bef9SDimitry Andric // expected pattern, recording the uses of the outer IV. 623e8d8bef9SDimitry Andric SmallPtrSet<Value *, 4> ValidOuterPHIUses; 62404eeddc0SDimitry Andric if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 625e8d8bef9SDimitry Andric return false; 626e8d8bef9SDimitry Andric 627e8d8bef9SDimitry Andric // Check that there are no uses of the outer IV other than the ones found 628e8d8bef9SDimitry Andric // as part of the pattern above. 62904eeddc0SDimitry Andric if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 630e8d8bef9SDimitry Andric return false; 631e8d8bef9SDimitry Andric 632e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 633e8d8bef9SDimitry Andric dbgs() << "Found " << FI.LinearIVUses.size() 634e8d8bef9SDimitry Andric << " value(s) that can be replaced:\n"; 635e8d8bef9SDimitry Andric for (Value *V : FI.LinearIVUses) { 636e8d8bef9SDimitry Andric dbgs() << " "; 637e8d8bef9SDimitry Andric V->dump(); 638e8d8bef9SDimitry Andric }); 639e8d8bef9SDimitry Andric return true; 640e8d8bef9SDimitry Andric } 641e8d8bef9SDimitry Andric 642e8d8bef9SDimitry Andric // Return an OverflowResult dependant on if overflow of the multiplication of 643fe6060f1SDimitry Andric // InnerTripCount and OuterTripCount can be assumed not to happen. 644fe6060f1SDimitry Andric static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 645fe6060f1SDimitry Andric AssumptionCache *AC) { 646e8d8bef9SDimitry Andric Function *F = FI.OuterLoop->getHeader()->getParent(); 647*0fca6ea1SDimitry Andric const DataLayout &DL = F->getDataLayout(); 648e8d8bef9SDimitry Andric 649e8d8bef9SDimitry Andric // For debugging/testing. 650e8d8bef9SDimitry Andric if (AssumeNoOverflow) 651e8d8bef9SDimitry Andric return OverflowResult::NeverOverflows; 652e8d8bef9SDimitry Andric 653e8d8bef9SDimitry Andric // Check if the multiply could not overflow due to known ranges of the 654e8d8bef9SDimitry Andric // input values. 655e8d8bef9SDimitry Andric OverflowResult OR = computeOverflowForUnsignedMul( 6565f757f3fSDimitry Andric FI.InnerTripCount, FI.OuterTripCount, 6575f757f3fSDimitry Andric SimplifyQuery(DL, DT, AC, 6585f757f3fSDimitry Andric FI.OuterLoop->getLoopPreheader()->getTerminator())); 659e8d8bef9SDimitry Andric if (OR != OverflowResult::MayOverflow) 660e8d8bef9SDimitry Andric return OR; 661e8d8bef9SDimitry Andric 662297eecfbSDimitry Andric auto CheckGEP = [&](GetElementPtrInst *GEP, Value *GEPOperand) { 663297eecfbSDimitry Andric for (Value *GEPUser : GEP->users()) { 66404eeddc0SDimitry Andric auto *GEPUserInst = cast<Instruction>(GEPUser); 665349cc55cSDimitry Andric if (!isa<LoadInst>(GEPUserInst) && 666297eecfbSDimitry Andric !(isa<StoreInst>(GEPUserInst) && GEP == GEPUserInst->getOperand(1))) 667349cc55cSDimitry Andric continue; 668297eecfbSDimitry Andric if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, FI.InnerLoop)) 669349cc55cSDimitry Andric continue; 670349cc55cSDimitry Andric // The IV is used as the operand of a GEP which dominates the loop 671349cc55cSDimitry Andric // latch, and the IV is at least as wide as the address space of the 672349cc55cSDimitry Andric // GEP. In this case, the GEP would wrap around the address space 673349cc55cSDimitry Andric // before the IV increment wraps, which would be UB. 674e8d8bef9SDimitry Andric if (GEP->isInBounds() && 675297eecfbSDimitry Andric GEPOperand->getType()->getIntegerBitWidth() >= 676e8d8bef9SDimitry Andric DL.getPointerTypeSizeInBits(GEP->getType())) { 677e8d8bef9SDimitry Andric LLVM_DEBUG( 678e8d8bef9SDimitry Andric dbgs() << "use of linear IV would be UB if overflow occurred: "; 679e8d8bef9SDimitry Andric GEP->dump()); 680297eecfbSDimitry Andric return true; 681297eecfbSDimitry Andric } 682297eecfbSDimitry Andric } 683297eecfbSDimitry Andric return false; 684297eecfbSDimitry Andric }; 685297eecfbSDimitry Andric 686297eecfbSDimitry Andric // Check if any IV user is, or is used by, a GEP that would cause UB if the 687297eecfbSDimitry Andric // multiply overflows. 688297eecfbSDimitry Andric for (Value *V : FI.LinearIVUses) { 689297eecfbSDimitry Andric if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 690297eecfbSDimitry Andric if (GEP->getNumIndices() == 1 && CheckGEP(GEP, GEP->getOperand(1))) 691e8d8bef9SDimitry Andric return OverflowResult::NeverOverflows; 692297eecfbSDimitry Andric for (Value *U : V->users()) 693297eecfbSDimitry Andric if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 694297eecfbSDimitry Andric if (CheckGEP(GEP, V)) 695297eecfbSDimitry Andric return OverflowResult::NeverOverflows; 696349cc55cSDimitry Andric } 697e8d8bef9SDimitry Andric 698e8d8bef9SDimitry Andric return OverflowResult::MayOverflow; 699e8d8bef9SDimitry Andric } 700e8d8bef9SDimitry Andric 701fe6060f1SDimitry Andric static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 702fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 703fe6060f1SDimitry Andric const TargetTransformInfo *TTI) { 704e8d8bef9SDimitry Andric SmallPtrSet<Instruction *, 8> IterationInstructions; 705fe6060f1SDimitry Andric if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 706fe6060f1SDimitry Andric FI.InnerInductionPHI, FI.InnerTripCount, 707fe6060f1SDimitry Andric FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 708e8d8bef9SDimitry Andric return false; 709fe6060f1SDimitry Andric if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 710fe6060f1SDimitry Andric FI.OuterInductionPHI, FI.OuterTripCount, 711fe6060f1SDimitry Andric FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 712e8d8bef9SDimitry Andric return false; 713e8d8bef9SDimitry Andric 714fe6060f1SDimitry Andric // Both of the loop trip count values must be invariant in the outer loop 715e8d8bef9SDimitry Andric // (non-instructions are all inherently invariant). 716fe6060f1SDimitry Andric if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 717fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 718e8d8bef9SDimitry Andric return false; 719e8d8bef9SDimitry Andric } 720fe6060f1SDimitry Andric if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 721fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 722e8d8bef9SDimitry Andric return false; 723e8d8bef9SDimitry Andric } 724e8d8bef9SDimitry Andric 725e8d8bef9SDimitry Andric if (!checkPHIs(FI, TTI)) 726e8d8bef9SDimitry Andric return false; 727e8d8bef9SDimitry Andric 728e8d8bef9SDimitry Andric // FIXME: it should be possible to handle different types correctly. 729e8d8bef9SDimitry Andric if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 730e8d8bef9SDimitry Andric return false; 731e8d8bef9SDimitry Andric 732e8d8bef9SDimitry Andric if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 733e8d8bef9SDimitry Andric return false; 734e8d8bef9SDimitry Andric 735e8d8bef9SDimitry Andric // Find the values in the loop that can be replaced with the linearized 736e8d8bef9SDimitry Andric // induction variable, and check that there are no other uses of the inner 737e8d8bef9SDimitry Andric // or outer induction variable. If there were, we could still do this 738e8d8bef9SDimitry Andric // transformation, but we'd have to insert a div/mod to calculate the 739e8d8bef9SDimitry Andric // original IVs, so it wouldn't be profitable. 740e8d8bef9SDimitry Andric if (!checkIVUsers(FI)) 741e8d8bef9SDimitry Andric return false; 742e8d8bef9SDimitry Andric 743e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 744e8d8bef9SDimitry Andric return true; 745e8d8bef9SDimitry Andric } 746e8d8bef9SDimitry Andric 747fe6060f1SDimitry Andric static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 748fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 74904eeddc0SDimitry Andric const TargetTransformInfo *TTI, LPMUpdater *U, 75004eeddc0SDimitry Andric MemorySSAUpdater *MSSAU) { 751e8d8bef9SDimitry Andric Function *F = FI.OuterLoop->getHeader()->getParent(); 752e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 753e8d8bef9SDimitry Andric { 754e8d8bef9SDimitry Andric using namespace ore; 755e8d8bef9SDimitry Andric OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 756e8d8bef9SDimitry Andric FI.InnerLoop->getHeader()); 757e8d8bef9SDimitry Andric OptimizationRemarkEmitter ORE(F); 758e8d8bef9SDimitry Andric Remark << "Flattened into outer loop"; 759e8d8bef9SDimitry Andric ORE.emit(Remark); 760e8d8bef9SDimitry Andric } 761e8d8bef9SDimitry Andric 762*0fca6ea1SDimitry Andric if (!FI.NewTripCount) { 763*0fca6ea1SDimitry Andric FI.NewTripCount = BinaryOperator::CreateMul( 764fe6060f1SDimitry Andric FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 765*0fca6ea1SDimitry Andric FI.OuterLoop->getLoopPreheader()->getTerminator()->getIterator()); 766e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 767*0fca6ea1SDimitry Andric FI.NewTripCount->dump()); 768*0fca6ea1SDimitry Andric } 769e8d8bef9SDimitry Andric 770e8d8bef9SDimitry Andric // Fix up PHI nodes that take values from the inner loop back-edge, which 771e8d8bef9SDimitry Andric // we are about to remove. 772e8d8bef9SDimitry Andric FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 773e8d8bef9SDimitry Andric 774e8d8bef9SDimitry Andric // The old Phi will be optimised away later, but for now we can't leave 775e8d8bef9SDimitry Andric // leave it in an invalid state, so are updating them too. 776e8d8bef9SDimitry Andric for (PHINode *PHI : FI.InnerPHIsToTransform) 777e8d8bef9SDimitry Andric PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 778e8d8bef9SDimitry Andric 779e8d8bef9SDimitry Andric // Modify the trip count of the outer loop to be the product of the two 780e8d8bef9SDimitry Andric // trip counts. 781*0fca6ea1SDimitry Andric cast<User>(FI.OuterBranch->getCondition())->setOperand(1, FI.NewTripCount); 782e8d8bef9SDimitry Andric 783e8d8bef9SDimitry Andric // Replace the inner loop backedge with an unconditional branch to the exit. 784e8d8bef9SDimitry Andric BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 785e8d8bef9SDimitry Andric BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 786*0fca6ea1SDimitry Andric Instruction *Term = InnerExitingBlock->getTerminator(); 787*0fca6ea1SDimitry Andric Instruction *BI = BranchInst::Create(InnerExitBlock, InnerExitingBlock); 788*0fca6ea1SDimitry Andric BI->setDebugLoc(Term->getDebugLoc()); 789*0fca6ea1SDimitry Andric Term->eraseFromParent(); 79004eeddc0SDimitry Andric 79104eeddc0SDimitry Andric // Update the DomTree and MemorySSA. 792e8d8bef9SDimitry Andric DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 79304eeddc0SDimitry Andric if (MSSAU) 79404eeddc0SDimitry Andric MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 795e8d8bef9SDimitry Andric 796e8d8bef9SDimitry Andric // Replace all uses of the polynomial calculated from the two induction 797e8d8bef9SDimitry Andric // variables with the one new one. 798e8d8bef9SDimitry Andric IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 799e8d8bef9SDimitry Andric for (Value *V : FI.LinearIVUses) { 800e8d8bef9SDimitry Andric Value *OuterValue = FI.OuterInductionPHI; 801e8d8bef9SDimitry Andric if (FI.Widened) 802e8d8bef9SDimitry Andric OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 803e8d8bef9SDimitry Andric "flatten.trunciv"); 804e8d8bef9SDimitry Andric 805297eecfbSDimitry Andric if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) { 806297eecfbSDimitry Andric // Replace the GEP with one that uses OuterValue as the offset. 807297eecfbSDimitry Andric auto *InnerGEP = cast<GetElementPtrInst>(GEP->getOperand(0)); 808297eecfbSDimitry Andric Value *Base = InnerGEP->getOperand(0); 809297eecfbSDimitry Andric // When the base of the GEP doesn't dominate the outer induction phi then 810297eecfbSDimitry Andric // we need to insert the new GEP where the old GEP was. 811297eecfbSDimitry Andric if (!DT->dominates(Base, &*Builder.GetInsertPoint())) 812297eecfbSDimitry Andric Builder.SetInsertPoint(cast<Instruction>(V)); 813*0fca6ea1SDimitry Andric OuterValue = 814*0fca6ea1SDimitry Andric Builder.CreateGEP(GEP->getSourceElementType(), Base, OuterValue, 815*0fca6ea1SDimitry Andric "flatten." + V->getName(), 816*0fca6ea1SDimitry Andric GEP->isInBounds() && InnerGEP->isInBounds()); 817297eecfbSDimitry Andric } 818297eecfbSDimitry Andric 81904eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 82004eeddc0SDimitry Andric OuterValue->dump()); 821e8d8bef9SDimitry Andric V->replaceAllUsesWith(OuterValue); 822e8d8bef9SDimitry Andric } 823e8d8bef9SDimitry Andric 824e8d8bef9SDimitry Andric // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 825bdd1243dSDimitry Andric // deleted, and invalidate any outer loop information. 826e8d8bef9SDimitry Andric SE->forgetLoop(FI.OuterLoop); 827bdd1243dSDimitry Andric SE->forgetBlockAndLoopDispositions(); 828349cc55cSDimitry Andric if (U) 829349cc55cSDimitry Andric U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 830e8d8bef9SDimitry Andric LI->erase(FI.InnerLoop); 831349cc55cSDimitry Andric 832349cc55cSDimitry Andric // Increment statistic value. 833349cc55cSDimitry Andric NumFlattened++; 834349cc55cSDimitry Andric 835e8d8bef9SDimitry Andric return true; 836e8d8bef9SDimitry Andric } 837e8d8bef9SDimitry Andric 838fe6060f1SDimitry Andric static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 839fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 840fe6060f1SDimitry Andric const TargetTransformInfo *TTI) { 841e8d8bef9SDimitry Andric if (!WidenIV) { 842e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 843e8d8bef9SDimitry Andric return false; 844e8d8bef9SDimitry Andric } 845e8d8bef9SDimitry Andric 846e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 847e8d8bef9SDimitry Andric Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 848e8d8bef9SDimitry Andric auto &DL = M->getDataLayout(); 849e8d8bef9SDimitry Andric auto *InnerType = FI.InnerInductionPHI->getType(); 850e8d8bef9SDimitry Andric auto *OuterType = FI.OuterInductionPHI->getType(); 851e8d8bef9SDimitry Andric unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 852e8d8bef9SDimitry Andric auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 853e8d8bef9SDimitry Andric 854e8d8bef9SDimitry Andric // If both induction types are less than the maximum legal integer width, 855e8d8bef9SDimitry Andric // promote both to the widest type available so we know calculating 856fe6060f1SDimitry Andric // (OuterTripCount * InnerTripCount) as the new trip count is safe. 857e8d8bef9SDimitry Andric if (InnerType != OuterType || 858e8d8bef9SDimitry Andric InnerType->getScalarSizeInBits() >= MaxLegalSize || 85904eeddc0SDimitry Andric MaxLegalType->getScalarSizeInBits() < 86004eeddc0SDimitry Andric InnerType->getScalarSizeInBits() * 2) { 861e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 862e8d8bef9SDimitry Andric return false; 863e8d8bef9SDimitry Andric } 864e8d8bef9SDimitry Andric 865e8d8bef9SDimitry Andric SCEVExpander Rewriter(*SE, DL, "loopflatten"); 866e8d8bef9SDimitry Andric SmallVector<WeakTrackingVH, 4> DeadInsts; 867fe6060f1SDimitry Andric unsigned ElimExt = 0; 868fe6060f1SDimitry Andric unsigned Widened = 0; 869e8d8bef9SDimitry Andric 870349cc55cSDimitry Andric auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 87104eeddc0SDimitry Andric PHINode *WidePhi = 87204eeddc0SDimitry Andric createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 87304eeddc0SDimitry Andric true /* HasGuards */, true /* UsePostIncrementRanges */); 874e8d8bef9SDimitry Andric if (!WidePhi) 875e8d8bef9SDimitry Andric return false; 876e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 877fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 878349cc55cSDimitry Andric Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 879349cc55cSDimitry Andric return true; 880349cc55cSDimitry Andric }; 881349cc55cSDimitry Andric 882349cc55cSDimitry Andric bool Deleted; 883349cc55cSDimitry Andric if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 884349cc55cSDimitry Andric return false; 885349cc55cSDimitry Andric // Add the narrow phi to list, so that it will be adjusted later when the 886349cc55cSDimitry Andric // the transformation is performed. 887349cc55cSDimitry Andric if (!Deleted) 888349cc55cSDimitry Andric FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 889349cc55cSDimitry Andric 890349cc55cSDimitry Andric if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 891349cc55cSDimitry Andric return false; 892349cc55cSDimitry Andric 893fe6060f1SDimitry Andric assert(Widened && "Widened IV expected"); 894e8d8bef9SDimitry Andric FI.Widened = true; 895349cc55cSDimitry Andric 896349cc55cSDimitry Andric // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 897349cc55cSDimitry Andric FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 898349cc55cSDimitry Andric FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 899349cc55cSDimitry Andric 900349cc55cSDimitry Andric // After widening, rediscover all the loop components. 901e8d8bef9SDimitry Andric return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 902e8d8bef9SDimitry Andric } 903e8d8bef9SDimitry Andric 904fe6060f1SDimitry Andric static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 905fe6060f1SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC, 90604eeddc0SDimitry Andric const TargetTransformInfo *TTI, LPMUpdater *U, 907*0fca6ea1SDimitry Andric MemorySSAUpdater *MSSAU, 908*0fca6ea1SDimitry Andric const LoopAccessInfo &LAI) { 909e8d8bef9SDimitry Andric LLVM_DEBUG( 910e8d8bef9SDimitry Andric dbgs() << "Loop flattening running on outer loop " 911e8d8bef9SDimitry Andric << FI.OuterLoop->getHeader()->getName() << " and inner loop " 912e8d8bef9SDimitry Andric << FI.InnerLoop->getHeader()->getName() << " in " 913e8d8bef9SDimitry Andric << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 914e8d8bef9SDimitry Andric 915e8d8bef9SDimitry Andric if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 916e8d8bef9SDimitry Andric return false; 917e8d8bef9SDimitry Andric 918e8d8bef9SDimitry Andric // Check if we can widen the induction variables to avoid overflow checks. 919349cc55cSDimitry Andric bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 920e8d8bef9SDimitry Andric 921349cc55cSDimitry Andric // It can happen that after widening of the IV, flattening may not be 922349cc55cSDimitry Andric // possible/happening, e.g. when it is deemed unprofitable. So bail here if 923349cc55cSDimitry Andric // that is the case. 924349cc55cSDimitry Andric // TODO: IV widening without performing the actual flattening transformation 925349cc55cSDimitry Andric // is not ideal. While this codegen change should not matter much, it is an 926349cc55cSDimitry Andric // unnecessary change which is better to avoid. It's unlikely this happens 927349cc55cSDimitry Andric // often, because if it's unprofitibale after widening, it should be 928349cc55cSDimitry Andric // unprofitabe before widening as checked in the first round of checks. But 929349cc55cSDimitry Andric // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 930349cc55cSDimitry Andric // relaxed. Because this is making a code change (the IV widening, but not 931349cc55cSDimitry Andric // the flattening), we return true here. 932349cc55cSDimitry Andric if (FI.Widened && !CanFlatten) 933349cc55cSDimitry Andric return true; 934349cc55cSDimitry Andric 935349cc55cSDimitry Andric // If we have widened and can perform the transformation, do that here. 936349cc55cSDimitry Andric if (CanFlatten) 93704eeddc0SDimitry Andric return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 938349cc55cSDimitry Andric 939349cc55cSDimitry Andric // Otherwise, if we haven't widened the IV, check if the new iteration 940349cc55cSDimitry Andric // variable might overflow. In this case, we need to version the loop, and 941349cc55cSDimitry Andric // select the original version at runtime if the iteration space is too 942349cc55cSDimitry Andric // large. 943e8d8bef9SDimitry Andric OverflowResult OR = checkOverflow(FI, DT, AC); 944e8d8bef9SDimitry Andric if (OR == OverflowResult::AlwaysOverflowsHigh || 945e8d8bef9SDimitry Andric OR == OverflowResult::AlwaysOverflowsLow) { 946e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 947e8d8bef9SDimitry Andric return false; 948e8d8bef9SDimitry Andric } else if (OR == OverflowResult::MayOverflow) { 949*0fca6ea1SDimitry Andric Module *M = FI.OuterLoop->getHeader()->getParent()->getParent(); 950*0fca6ea1SDimitry Andric const DataLayout &DL = M->getDataLayout(); 951*0fca6ea1SDimitry Andric if (!VersionLoops) { 952e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 953e8d8bef9SDimitry Andric return false; 954*0fca6ea1SDimitry Andric } else if (!DL.isLegalInteger( 955*0fca6ea1SDimitry Andric FI.OuterTripCount->getType()->getScalarSizeInBits())) { 956*0fca6ea1SDimitry Andric // If the trip count type isn't legal then it won't be possible to check 957*0fca6ea1SDimitry Andric // for overflow using only a single multiply instruction, so don't 958*0fca6ea1SDimitry Andric // flatten. 959*0fca6ea1SDimitry Andric LLVM_DEBUG( 960*0fca6ea1SDimitry Andric dbgs() << "Can't check overflow efficiently, not flattening\n"); 961*0fca6ea1SDimitry Andric return false; 962*0fca6ea1SDimitry Andric } 963*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply might overflow, versioning loop\n"); 964*0fca6ea1SDimitry Andric 965*0fca6ea1SDimitry Andric // Version the loop. The overflow check isn't a runtime pointer check, so we 966*0fca6ea1SDimitry Andric // pass an empty list of runtime pointer checks, causing LoopVersioning to 967*0fca6ea1SDimitry Andric // emit 'false' as the branch condition, and add our own check afterwards. 968*0fca6ea1SDimitry Andric BasicBlock *CheckBlock = FI.OuterLoop->getLoopPreheader(); 969*0fca6ea1SDimitry Andric ArrayRef<RuntimePointerCheck> Checks(nullptr, nullptr); 970*0fca6ea1SDimitry Andric LoopVersioning LVer(LAI, Checks, FI.OuterLoop, LI, DT, SE); 971*0fca6ea1SDimitry Andric LVer.versionLoop(); 972*0fca6ea1SDimitry Andric 973*0fca6ea1SDimitry Andric // Check for overflow by calculating the new tripcount using 974*0fca6ea1SDimitry Andric // umul_with_overflow and then checking if it overflowed. 975*0fca6ea1SDimitry Andric BranchInst *Br = cast<BranchInst>(CheckBlock->getTerminator()); 976*0fca6ea1SDimitry Andric assert(Br->isConditional() && 977*0fca6ea1SDimitry Andric "Expected LoopVersioning to generate a conditional branch"); 978*0fca6ea1SDimitry Andric assert(match(Br->getCondition(), m_Zero()) && 979*0fca6ea1SDimitry Andric "Expected branch condition to be false"); 980*0fca6ea1SDimitry Andric IRBuilder<> Builder(Br); 981*0fca6ea1SDimitry Andric Function *F = Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, 982*0fca6ea1SDimitry Andric FI.OuterTripCount->getType()); 983*0fca6ea1SDimitry Andric Value *Call = Builder.CreateCall(F, {FI.OuterTripCount, FI.InnerTripCount}, 984*0fca6ea1SDimitry Andric "flatten.mul"); 985*0fca6ea1SDimitry Andric FI.NewTripCount = Builder.CreateExtractValue(Call, 0, "flatten.tripcount"); 986*0fca6ea1SDimitry Andric Value *Overflow = Builder.CreateExtractValue(Call, 1, "flatten.overflow"); 987*0fca6ea1SDimitry Andric Br->setCondition(Overflow); 988*0fca6ea1SDimitry Andric } else { 989*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 990e8d8bef9SDimitry Andric } 991e8d8bef9SDimitry Andric 99204eeddc0SDimitry Andric return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 993e8d8bef9SDimitry Andric } 994e8d8bef9SDimitry Andric 995fe6060f1SDimitry Andric PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 996fe6060f1SDimitry Andric LoopStandardAnalysisResults &AR, 997fe6060f1SDimitry Andric LPMUpdater &U) { 998e8d8bef9SDimitry Andric 999fe6060f1SDimitry Andric bool Changed = false; 1000fe6060f1SDimitry Andric 1001bdd1243dSDimitry Andric std::optional<MemorySSAUpdater> MSSAU; 100204eeddc0SDimitry Andric if (AR.MSSA) { 100304eeddc0SDimitry Andric MSSAU = MemorySSAUpdater(AR.MSSA); 100404eeddc0SDimitry Andric if (VerifyMemorySSA) 100504eeddc0SDimitry Andric AR.MSSA->verifyMemorySSA(); 100604eeddc0SDimitry Andric } 100704eeddc0SDimitry Andric 1008fe6060f1SDimitry Andric // The loop flattening pass requires loops to be 1009fe6060f1SDimitry Andric // in simplified form, and also needs LCSSA. Running 1010fe6060f1SDimitry Andric // this pass will simplify all loops that contain inner loops, 1011fe6060f1SDimitry Andric // regardless of whether anything ends up being flattened. 1012*0fca6ea1SDimitry Andric LoopAccessInfoManager LAIM(AR.SE, AR.AA, AR.DT, AR.LI, &AR.TTI, nullptr); 101306c3fb27SDimitry Andric for (Loop *InnerLoop : LN.getLoops()) { 101406c3fb27SDimitry Andric auto *OuterLoop = InnerLoop->getParentLoop(); 101506c3fb27SDimitry Andric if (!OuterLoop) 101606c3fb27SDimitry Andric continue; 101706c3fb27SDimitry Andric FlattenInfo FI(OuterLoop, InnerLoop); 1018*0fca6ea1SDimitry Andric Changed |= 1019*0fca6ea1SDimitry Andric FlattenLoopPair(FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 1020*0fca6ea1SDimitry Andric MSSAU ? &*MSSAU : nullptr, LAIM.getInfo(*OuterLoop)); 102106c3fb27SDimitry Andric } 1022fe6060f1SDimitry Andric 1023fe6060f1SDimitry Andric if (!Changed) 1024e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 1025e8d8bef9SDimitry Andric 102604eeddc0SDimitry Andric if (AR.MSSA && VerifyMemorySSA) 102704eeddc0SDimitry Andric AR.MSSA->verifyMemorySSA(); 102804eeddc0SDimitry Andric 102904eeddc0SDimitry Andric auto PA = getLoopPassPreservedAnalyses(); 103004eeddc0SDimitry Andric if (AR.MSSA) 103104eeddc0SDimitry Andric PA.preserve<MemorySSAAnalysis>(); 103204eeddc0SDimitry Andric return PA; 1033e8d8bef9SDimitry Andric } 1034