1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PointerIntPair.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/CFG.h" 32 #include "llvm/Analysis/DomTreeUpdater.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/MemoryBuiltins.h" 37 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/PHITransAddr.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/ValueTracking.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Compiler.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/SSAUpdater.h" 76 #include "llvm/Transforms/Utils/VNCoercion.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstdint> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace llvm::gvn; 85 using namespace llvm::VNCoercion; 86 using namespace PatternMatch; 87 88 #define DEBUG_TYPE "gvn" 89 90 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 91 STATISTIC(NumGVNLoad, "Number of loads deleted"); 92 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 93 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 94 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 95 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 96 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 97 98 static cl::opt<bool> EnablePRE("enable-pre", 99 cl::init(true), cl::Hidden); 100 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); 101 static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true)); 102 103 // Maximum allowed recursion depth. 104 static cl::opt<uint32_t> 105 MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, 106 cl::desc("Max recurse depth in GVN (default = 1000)")); 107 108 static cl::opt<uint32_t> MaxNumDeps( 109 "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, 110 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 111 112 struct llvm::GVN::Expression { 113 uint32_t opcode; 114 Type *type; 115 bool commutative = false; 116 SmallVector<uint32_t, 4> varargs; 117 118 Expression(uint32_t o = ~2U) : opcode(o) {} 119 120 bool operator==(const Expression &other) const { 121 if (opcode != other.opcode) 122 return false; 123 if (opcode == ~0U || opcode == ~1U) 124 return true; 125 if (type != other.type) 126 return false; 127 if (varargs != other.varargs) 128 return false; 129 return true; 130 } 131 132 friend hash_code hash_value(const Expression &Value) { 133 return hash_combine( 134 Value.opcode, Value.type, 135 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 136 } 137 }; 138 139 namespace llvm { 140 141 template <> struct DenseMapInfo<GVN::Expression> { 142 static inline GVN::Expression getEmptyKey() { return ~0U; } 143 static inline GVN::Expression getTombstoneKey() { return ~1U; } 144 145 static unsigned getHashValue(const GVN::Expression &e) { 146 using llvm::hash_value; 147 148 return static_cast<unsigned>(hash_value(e)); 149 } 150 151 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { 152 return LHS == RHS; 153 } 154 }; 155 156 } // end namespace llvm 157 158 /// Represents a particular available value that we know how to materialize. 159 /// Materialization of an AvailableValue never fails. An AvailableValue is 160 /// implicitly associated with a rematerialization point which is the 161 /// location of the instruction from which it was formed. 162 struct llvm::gvn::AvailableValue { 163 enum ValType { 164 SimpleVal, // A simple offsetted value that is accessed. 165 LoadVal, // A value produced by a load. 166 MemIntrin, // A memory intrinsic which is loaded from. 167 UndefVal // A UndefValue representing a value from dead block (which 168 // is not yet physically removed from the CFG). 169 }; 170 171 /// V - The value that is live out of the block. 172 PointerIntPair<Value *, 2, ValType> Val; 173 174 /// Offset - The byte offset in Val that is interesting for the load query. 175 unsigned Offset; 176 177 static AvailableValue get(Value *V, unsigned Offset = 0) { 178 AvailableValue Res; 179 Res.Val.setPointer(V); 180 Res.Val.setInt(SimpleVal); 181 Res.Offset = Offset; 182 return Res; 183 } 184 185 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 186 AvailableValue Res; 187 Res.Val.setPointer(MI); 188 Res.Val.setInt(MemIntrin); 189 Res.Offset = Offset; 190 return Res; 191 } 192 193 static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { 194 AvailableValue Res; 195 Res.Val.setPointer(LI); 196 Res.Val.setInt(LoadVal); 197 Res.Offset = Offset; 198 return Res; 199 } 200 201 static AvailableValue getUndef() { 202 AvailableValue Res; 203 Res.Val.setPointer(nullptr); 204 Res.Val.setInt(UndefVal); 205 Res.Offset = 0; 206 return Res; 207 } 208 209 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 210 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 211 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 212 bool isUndefValue() const { return Val.getInt() == UndefVal; } 213 214 Value *getSimpleValue() const { 215 assert(isSimpleValue() && "Wrong accessor"); 216 return Val.getPointer(); 217 } 218 219 LoadInst *getCoercedLoadValue() const { 220 assert(isCoercedLoadValue() && "Wrong accessor"); 221 return cast<LoadInst>(Val.getPointer()); 222 } 223 224 MemIntrinsic *getMemIntrinValue() const { 225 assert(isMemIntrinValue() && "Wrong accessor"); 226 return cast<MemIntrinsic>(Val.getPointer()); 227 } 228 229 /// Emit code at the specified insertion point to adjust the value defined 230 /// here to the specified type. This handles various coercion cases. 231 Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, 232 GVN &gvn) const; 233 }; 234 235 /// Represents an AvailableValue which can be rematerialized at the end of 236 /// the associated BasicBlock. 237 struct llvm::gvn::AvailableValueInBlock { 238 /// BB - The basic block in question. 239 BasicBlock *BB; 240 241 /// AV - The actual available value 242 AvailableValue AV; 243 244 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 245 AvailableValueInBlock Res; 246 Res.BB = BB; 247 Res.AV = std::move(AV); 248 return Res; 249 } 250 251 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 252 unsigned Offset = 0) { 253 return get(BB, AvailableValue::get(V, Offset)); 254 } 255 256 static AvailableValueInBlock getUndef(BasicBlock *BB) { 257 return get(BB, AvailableValue::getUndef()); 258 } 259 260 /// Emit code at the end of this block to adjust the value defined here to 261 /// the specified type. This handles various coercion cases. 262 Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { 263 return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); 264 } 265 }; 266 267 //===----------------------------------------------------------------------===// 268 // ValueTable Internal Functions 269 //===----------------------------------------------------------------------===// 270 271 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { 272 Expression e; 273 e.type = I->getType(); 274 e.opcode = I->getOpcode(); 275 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 276 OI != OE; ++OI) 277 e.varargs.push_back(lookupOrAdd(*OI)); 278 if (I->isCommutative()) { 279 // Ensure that commutative instructions that only differ by a permutation 280 // of their operands get the same value number by sorting the operand value 281 // numbers. Since all commutative instructions have two operands it is more 282 // efficient to sort by hand rather than using, say, std::sort. 283 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 284 if (e.varargs[0] > e.varargs[1]) 285 std::swap(e.varargs[0], e.varargs[1]); 286 e.commutative = true; 287 } 288 289 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 290 // Sort the operand value numbers so x<y and y>x get the same value number. 291 CmpInst::Predicate Predicate = C->getPredicate(); 292 if (e.varargs[0] > e.varargs[1]) { 293 std::swap(e.varargs[0], e.varargs[1]); 294 Predicate = CmpInst::getSwappedPredicate(Predicate); 295 } 296 e.opcode = (C->getOpcode() << 8) | Predicate; 297 e.commutative = true; 298 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { 299 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); 300 II != IE; ++II) 301 e.varargs.push_back(*II); 302 } 303 304 return e; 305 } 306 307 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, 308 CmpInst::Predicate Predicate, 309 Value *LHS, Value *RHS) { 310 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 311 "Not a comparison!"); 312 Expression e; 313 e.type = CmpInst::makeCmpResultType(LHS->getType()); 314 e.varargs.push_back(lookupOrAdd(LHS)); 315 e.varargs.push_back(lookupOrAdd(RHS)); 316 317 // Sort the operand value numbers so x<y and y>x get the same value number. 318 if (e.varargs[0] > e.varargs[1]) { 319 std::swap(e.varargs[0], e.varargs[1]); 320 Predicate = CmpInst::getSwappedPredicate(Predicate); 321 } 322 e.opcode = (Opcode << 8) | Predicate; 323 e.commutative = true; 324 return e; 325 } 326 327 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 328 assert(EI && "Not an ExtractValueInst?"); 329 Expression e; 330 e.type = EI->getType(); 331 e.opcode = 0; 332 333 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 334 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 335 // EI is an extract from one of our with.overflow intrinsics. Synthesize 336 // a semantically equivalent expression instead of an extract value 337 // expression. 338 e.opcode = WO->getBinaryOp(); 339 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 340 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 341 return e; 342 } 343 344 // Not a recognised intrinsic. Fall back to producing an extract value 345 // expression. 346 e.opcode = EI->getOpcode(); 347 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); 348 OI != OE; ++OI) 349 e.varargs.push_back(lookupOrAdd(*OI)); 350 351 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); 352 II != IE; ++II) 353 e.varargs.push_back(*II); 354 355 return e; 356 } 357 358 //===----------------------------------------------------------------------===// 359 // ValueTable External Functions 360 //===----------------------------------------------------------------------===// 361 362 GVN::ValueTable::ValueTable() = default; 363 GVN::ValueTable::ValueTable(const ValueTable &) = default; 364 GVN::ValueTable::ValueTable(ValueTable &&) = default; 365 GVN::ValueTable::~ValueTable() = default; 366 367 /// add - Insert a value into the table with a specified value number. 368 void GVN::ValueTable::add(Value *V, uint32_t num) { 369 valueNumbering.insert(std::make_pair(V, num)); 370 if (PHINode *PN = dyn_cast<PHINode>(V)) 371 NumberingPhi[num] = PN; 372 } 373 374 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { 375 if (AA->doesNotAccessMemory(C)) { 376 Expression exp = createExpr(C); 377 uint32_t e = assignExpNewValueNum(exp).first; 378 valueNumbering[C] = e; 379 return e; 380 } else if (MD && AA->onlyReadsMemory(C)) { 381 Expression exp = createExpr(C); 382 auto ValNum = assignExpNewValueNum(exp); 383 if (ValNum.second) { 384 valueNumbering[C] = ValNum.first; 385 return ValNum.first; 386 } 387 388 MemDepResult local_dep = MD->getDependency(C); 389 390 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 391 valueNumbering[C] = nextValueNumber; 392 return nextValueNumber++; 393 } 394 395 if (local_dep.isDef()) { 396 CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); 397 398 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 399 valueNumbering[C] = nextValueNumber; 400 return nextValueNumber++; 401 } 402 403 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 404 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 405 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 406 if (c_vn != cd_vn) { 407 valueNumbering[C] = nextValueNumber; 408 return nextValueNumber++; 409 } 410 } 411 412 uint32_t v = lookupOrAdd(local_cdep); 413 valueNumbering[C] = v; 414 return v; 415 } 416 417 // Non-local case. 418 const MemoryDependenceResults::NonLocalDepInfo &deps = 419 MD->getNonLocalCallDependency(C); 420 // FIXME: Move the checking logic to MemDep! 421 CallInst* cdep = nullptr; 422 423 // Check to see if we have a single dominating call instruction that is 424 // identical to C. 425 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 426 const NonLocalDepEntry *I = &deps[i]; 427 if (I->getResult().isNonLocal()) 428 continue; 429 430 // We don't handle non-definitions. If we already have a call, reject 431 // instruction dependencies. 432 if (!I->getResult().isDef() || cdep != nullptr) { 433 cdep = nullptr; 434 break; 435 } 436 437 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 438 // FIXME: All duplicated with non-local case. 439 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 440 cdep = NonLocalDepCall; 441 continue; 442 } 443 444 cdep = nullptr; 445 break; 446 } 447 448 if (!cdep) { 449 valueNumbering[C] = nextValueNumber; 450 return nextValueNumber++; 451 } 452 453 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 454 valueNumbering[C] = nextValueNumber; 455 return nextValueNumber++; 456 } 457 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 458 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 459 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 460 if (c_vn != cd_vn) { 461 valueNumbering[C] = nextValueNumber; 462 return nextValueNumber++; 463 } 464 } 465 466 uint32_t v = lookupOrAdd(cdep); 467 valueNumbering[C] = v; 468 return v; 469 } else { 470 valueNumbering[C] = nextValueNumber; 471 return nextValueNumber++; 472 } 473 } 474 475 /// Returns true if a value number exists for the specified value. 476 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } 477 478 /// lookup_or_add - Returns the value number for the specified value, assigning 479 /// it a new number if it did not have one before. 480 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { 481 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 482 if (VI != valueNumbering.end()) 483 return VI->second; 484 485 if (!isa<Instruction>(V)) { 486 valueNumbering[V] = nextValueNumber; 487 return nextValueNumber++; 488 } 489 490 Instruction* I = cast<Instruction>(V); 491 Expression exp; 492 switch (I->getOpcode()) { 493 case Instruction::Call: 494 return lookupOrAddCall(cast<CallInst>(I)); 495 case Instruction::FNeg: 496 case Instruction::Add: 497 case Instruction::FAdd: 498 case Instruction::Sub: 499 case Instruction::FSub: 500 case Instruction::Mul: 501 case Instruction::FMul: 502 case Instruction::UDiv: 503 case Instruction::SDiv: 504 case Instruction::FDiv: 505 case Instruction::URem: 506 case Instruction::SRem: 507 case Instruction::FRem: 508 case Instruction::Shl: 509 case Instruction::LShr: 510 case Instruction::AShr: 511 case Instruction::And: 512 case Instruction::Or: 513 case Instruction::Xor: 514 case Instruction::ICmp: 515 case Instruction::FCmp: 516 case Instruction::Trunc: 517 case Instruction::ZExt: 518 case Instruction::SExt: 519 case Instruction::FPToUI: 520 case Instruction::FPToSI: 521 case Instruction::UIToFP: 522 case Instruction::SIToFP: 523 case Instruction::FPTrunc: 524 case Instruction::FPExt: 525 case Instruction::PtrToInt: 526 case Instruction::IntToPtr: 527 case Instruction::AddrSpaceCast: 528 case Instruction::BitCast: 529 case Instruction::Select: 530 case Instruction::ExtractElement: 531 case Instruction::InsertElement: 532 case Instruction::ShuffleVector: 533 case Instruction::InsertValue: 534 case Instruction::GetElementPtr: 535 exp = createExpr(I); 536 break; 537 case Instruction::ExtractValue: 538 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 539 break; 540 case Instruction::PHI: 541 valueNumbering[V] = nextValueNumber; 542 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 543 return nextValueNumber++; 544 default: 545 valueNumbering[V] = nextValueNumber; 546 return nextValueNumber++; 547 } 548 549 uint32_t e = assignExpNewValueNum(exp).first; 550 valueNumbering[V] = e; 551 return e; 552 } 553 554 /// Returns the value number of the specified value. Fails if 555 /// the value has not yet been numbered. 556 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { 557 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 558 if (Verify) { 559 assert(VI != valueNumbering.end() && "Value not numbered?"); 560 return VI->second; 561 } 562 return (VI != valueNumbering.end()) ? VI->second : 0; 563 } 564 565 /// Returns the value number of the given comparison, 566 /// assigning it a new number if it did not have one before. Useful when 567 /// we deduced the result of a comparison, but don't immediately have an 568 /// instruction realizing that comparison to hand. 569 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, 570 CmpInst::Predicate Predicate, 571 Value *LHS, Value *RHS) { 572 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 573 return assignExpNewValueNum(exp).first; 574 } 575 576 /// Remove all entries from the ValueTable. 577 void GVN::ValueTable::clear() { 578 valueNumbering.clear(); 579 expressionNumbering.clear(); 580 NumberingPhi.clear(); 581 PhiTranslateTable.clear(); 582 nextValueNumber = 1; 583 Expressions.clear(); 584 ExprIdx.clear(); 585 nextExprNumber = 0; 586 } 587 588 /// Remove a value from the value numbering. 589 void GVN::ValueTable::erase(Value *V) { 590 uint32_t Num = valueNumbering.lookup(V); 591 valueNumbering.erase(V); 592 // If V is PHINode, V <--> value number is an one-to-one mapping. 593 if (isa<PHINode>(V)) 594 NumberingPhi.erase(Num); 595 } 596 597 /// verifyRemoved - Verify that the value is removed from all internal data 598 /// structures. 599 void GVN::ValueTable::verifyRemoved(const Value *V) const { 600 for (DenseMap<Value*, uint32_t>::const_iterator 601 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 602 assert(I->first != V && "Inst still occurs in value numbering map!"); 603 } 604 } 605 606 //===----------------------------------------------------------------------===// 607 // GVN Pass 608 //===----------------------------------------------------------------------===// 609 610 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { 611 // FIXME: The order of evaluation of these 'getResult' calls is very 612 // significant! Re-ordering these variables will cause GVN when run alone to 613 // be less effective! We should fix memdep and basic-aa to not exhibit this 614 // behavior, but until then don't change the order here. 615 auto &AC = AM.getResult<AssumptionAnalysis>(F); 616 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 617 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 618 auto &AA = AM.getResult<AAManager>(F); 619 auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F); 620 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 621 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 622 bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE); 623 if (!Changed) 624 return PreservedAnalyses::all(); 625 PreservedAnalyses PA; 626 PA.preserve<DominatorTreeAnalysis>(); 627 PA.preserve<GlobalsAA>(); 628 PA.preserve<TargetLibraryAnalysis>(); 629 return PA; 630 } 631 632 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 633 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { 634 errs() << "{\n"; 635 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), 636 E = d.end(); I != E; ++I) { 637 errs() << I->first << "\n"; 638 I->second->dump(); 639 } 640 errs() << "}\n"; 641 } 642 #endif 643 644 /// Return true if we can prove that the value 645 /// we're analyzing is fully available in the specified block. As we go, keep 646 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 647 /// map is actually a tri-state map with the following values: 648 /// 0) we know the block *is not* fully available. 649 /// 1) we know the block *is* fully available. 650 /// 2) we do not know whether the block is fully available or not, but we are 651 /// currently speculating that it will be. 652 /// 3) we are speculating for this block and have used that to speculate for 653 /// other blocks. 654 static bool IsValueFullyAvailableInBlock(BasicBlock *BB, 655 DenseMap<BasicBlock*, char> &FullyAvailableBlocks, 656 uint32_t RecurseDepth) { 657 if (RecurseDepth > MaxRecurseDepth) 658 return false; 659 660 // Optimistically assume that the block is fully available and check to see 661 // if we already know about this block in one lookup. 662 std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV = 663 FullyAvailableBlocks.insert(std::make_pair(BB, 2)); 664 665 // If the entry already existed for this block, return the precomputed value. 666 if (!IV.second) { 667 // If this is a speculative "available" value, mark it as being used for 668 // speculation of other blocks. 669 if (IV.first->second == 2) 670 IV.first->second = 3; 671 return IV.first->second != 0; 672 } 673 674 // Otherwise, see if it is fully available in all predecessors. 675 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 676 677 // If this block has no predecessors, it isn't live-in here. 678 if (PI == PE) 679 goto SpeculationFailure; 680 681 for (; PI != PE; ++PI) 682 // If the value isn't fully available in one of our predecessors, then it 683 // isn't fully available in this block either. Undo our previous 684 // optimistic assumption and bail out. 685 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) 686 goto SpeculationFailure; 687 688 return true; 689 690 // If we get here, we found out that this is not, after 691 // all, a fully-available block. We have a problem if we speculated on this and 692 // used the speculation to mark other blocks as available. 693 SpeculationFailure: 694 char &BBVal = FullyAvailableBlocks[BB]; 695 696 // If we didn't speculate on this, just return with it set to false. 697 if (BBVal == 2) { 698 BBVal = 0; 699 return false; 700 } 701 702 // If we did speculate on this value, we could have blocks set to 1 that are 703 // incorrect. Walk the (transitive) successors of this block and mark them as 704 // 0 if set to one. 705 SmallVector<BasicBlock*, 32> BBWorklist; 706 BBWorklist.push_back(BB); 707 708 do { 709 BasicBlock *Entry = BBWorklist.pop_back_val(); 710 // Note that this sets blocks to 0 (unavailable) if they happen to not 711 // already be in FullyAvailableBlocks. This is safe. 712 char &EntryVal = FullyAvailableBlocks[Entry]; 713 if (EntryVal == 0) continue; // Already unavailable. 714 715 // Mark as unavailable. 716 EntryVal = 0; 717 718 BBWorklist.append(succ_begin(Entry), succ_end(Entry)); 719 } while (!BBWorklist.empty()); 720 721 return false; 722 } 723 724 /// Given a set of loads specified by ValuesPerBlock, 725 /// construct SSA form, allowing us to eliminate LI. This returns the value 726 /// that should be used at LI's definition site. 727 static Value *ConstructSSAForLoadSet(LoadInst *LI, 728 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 729 GVN &gvn) { 730 // Check for the fully redundant, dominating load case. In this case, we can 731 // just use the dominating value directly. 732 if (ValuesPerBlock.size() == 1 && 733 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 734 LI->getParent())) { 735 assert(!ValuesPerBlock[0].AV.isUndefValue() && 736 "Dead BB dominate this block"); 737 return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); 738 } 739 740 // Otherwise, we have to construct SSA form. 741 SmallVector<PHINode*, 8> NewPHIs; 742 SSAUpdater SSAUpdate(&NewPHIs); 743 SSAUpdate.Initialize(LI->getType(), LI->getName()); 744 745 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 746 BasicBlock *BB = AV.BB; 747 748 if (SSAUpdate.HasValueForBlock(BB)) 749 continue; 750 751 // If the value is the load that we will be eliminating, and the block it's 752 // available in is the block that the load is in, then don't add it as 753 // SSAUpdater will resolve the value to the relevant phi which may let it 754 // avoid phi construction entirely if there's actually only one value. 755 if (BB == LI->getParent() && 756 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) || 757 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI))) 758 continue; 759 760 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); 761 } 762 763 // Perform PHI construction. 764 return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); 765 } 766 767 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, 768 Instruction *InsertPt, 769 GVN &gvn) const { 770 Value *Res; 771 Type *LoadTy = LI->getType(); 772 const DataLayout &DL = LI->getModule()->getDataLayout(); 773 if (isSimpleValue()) { 774 Res = getSimpleValue(); 775 if (Res->getType() != LoadTy) { 776 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 777 778 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 779 << " " << *getSimpleValue() << '\n' 780 << *Res << '\n' 781 << "\n\n\n"); 782 } 783 } else if (isCoercedLoadValue()) { 784 LoadInst *Load = getCoercedLoadValue(); 785 if (Load->getType() == LoadTy && Offset == 0) { 786 Res = Load; 787 } else { 788 Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL); 789 // We would like to use gvn.markInstructionForDeletion here, but we can't 790 // because the load is already memoized into the leader map table that GVN 791 // tracks. It is potentially possible to remove the load from the table, 792 // but then there all of the operations based on it would need to be 793 // rehashed. Just leave the dead load around. 794 gvn.getMemDep().removeInstruction(Load); 795 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 796 << " " << *getCoercedLoadValue() << '\n' 797 << *Res << '\n' 798 << "\n\n\n"); 799 } 800 } else if (isMemIntrinValue()) { 801 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 802 InsertPt, DL); 803 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 804 << " " << *getMemIntrinValue() << '\n' 805 << *Res << '\n' 806 << "\n\n\n"); 807 } else { 808 assert(isUndefValue() && "Should be UndefVal"); 809 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); 810 return UndefValue::get(LoadTy); 811 } 812 assert(Res && "failed to materialize?"); 813 return Res; 814 } 815 816 static bool isLifetimeStart(const Instruction *Inst) { 817 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 818 return II->getIntrinsicID() == Intrinsic::lifetime_start; 819 return false; 820 } 821 822 /// Try to locate the three instruction involved in a missed 823 /// load-elimination case that is due to an intervening store. 824 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo, 825 DominatorTree *DT, 826 OptimizationRemarkEmitter *ORE) { 827 using namespace ore; 828 829 User *OtherAccess = nullptr; 830 831 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI); 832 R << "load of type " << NV("Type", LI->getType()) << " not eliminated" 833 << setExtraArgs(); 834 835 for (auto *U : LI->getPointerOperand()->users()) 836 if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 837 DT->dominates(cast<Instruction>(U), LI)) { 838 // FIXME: for now give up if there are multiple memory accesses that 839 // dominate the load. We need further analysis to decide which one is 840 // that we're forwarding from. 841 if (OtherAccess) 842 OtherAccess = nullptr; 843 else 844 OtherAccess = U; 845 } 846 847 if (OtherAccess) 848 R << " in favor of " << NV("OtherAccess", OtherAccess); 849 850 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 851 852 ORE->emit(R); 853 } 854 855 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, 856 Value *Address, AvailableValue &Res) { 857 assert((DepInfo.isDef() || DepInfo.isClobber()) && 858 "expected a local dependence"); 859 assert(LI->isUnordered() && "rules below are incorrect for ordered access"); 860 861 const DataLayout &DL = LI->getModule()->getDataLayout(); 862 863 Instruction *DepInst = DepInfo.getInst(); 864 if (DepInfo.isClobber()) { 865 // If the dependence is to a store that writes to a superset of the bits 866 // read by the load, we can extract the bits we need for the load from the 867 // stored value. 868 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 869 // Can't forward from non-atomic to atomic without violating memory model. 870 if (Address && LI->isAtomic() <= DepSI->isAtomic()) { 871 int Offset = 872 analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL); 873 if (Offset != -1) { 874 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 875 return true; 876 } 877 } 878 } 879 880 // Check to see if we have something like this: 881 // load i32* P 882 // load i8* (P+1) 883 // if we have this, replace the later with an extraction from the former. 884 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { 885 // If this is a clobber and L is the first instruction in its block, then 886 // we have the first instruction in the entry block. 887 // Can't forward from non-atomic to atomic without violating memory model. 888 if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { 889 int Offset = 890 analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); 891 892 if (Offset != -1) { 893 Res = AvailableValue::getLoad(DepLI, Offset); 894 return true; 895 } 896 } 897 } 898 899 // If the clobbering value is a memset/memcpy/memmove, see if we can 900 // forward a value on from it. 901 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 902 if (Address && !LI->isAtomic()) { 903 int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address, 904 DepMI, DL); 905 if (Offset != -1) { 906 Res = AvailableValue::getMI(DepMI, Offset); 907 return true; 908 } 909 } 910 } 911 // Nothing known about this clobber, have to be conservative 912 LLVM_DEBUG( 913 // fast print dep, using operator<< on instruction is too slow. 914 dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); 915 dbgs() << " is clobbered by " << *DepInst << '\n';); 916 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 917 reportMayClobberedLoad(LI, DepInfo, DT, ORE); 918 919 return false; 920 } 921 assert(DepInfo.isDef() && "follows from above"); 922 923 // Loading the allocation -> undef. 924 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 925 // Loading immediately after lifetime begin -> undef. 926 isLifetimeStart(DepInst)) { 927 Res = AvailableValue::get(UndefValue::get(LI->getType())); 928 return true; 929 } 930 931 // Loading from calloc (which zero initializes memory) -> zero 932 if (isCallocLikeFn(DepInst, TLI)) { 933 Res = AvailableValue::get(Constant::getNullValue(LI->getType())); 934 return true; 935 } 936 937 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 938 // Reject loads and stores that are to the same address but are of 939 // different types if we have to. If the stored value is larger or equal to 940 // the loaded value, we can reuse it. 941 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(), 942 DL)) 943 return false; 944 945 // Can't forward from non-atomic to atomic without violating memory model. 946 if (S->isAtomic() < LI->isAtomic()) 947 return false; 948 949 Res = AvailableValue::get(S->getValueOperand()); 950 return true; 951 } 952 953 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 954 // If the types mismatch and we can't handle it, reject reuse of the load. 955 // If the stored value is larger or equal to the loaded value, we can reuse 956 // it. 957 if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) 958 return false; 959 960 // Can't forward from non-atomic to atomic without violating memory model. 961 if (LD->isAtomic() < LI->isAtomic()) 962 return false; 963 964 Res = AvailableValue::getLoad(LD); 965 return true; 966 } 967 968 // Unknown def - must be conservative 969 LLVM_DEBUG( 970 // fast print dep, using operator<< on instruction is too slow. 971 dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); 972 dbgs() << " has unknown def " << *DepInst << '\n';); 973 return false; 974 } 975 976 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 977 AvailValInBlkVect &ValuesPerBlock, 978 UnavailBlkVect &UnavailableBlocks) { 979 // Filter out useless results (non-locals, etc). Keep track of the blocks 980 // where we have a value available in repl, also keep track of whether we see 981 // dependencies that produce an unknown value for the load (such as a call 982 // that could potentially clobber the load). 983 unsigned NumDeps = Deps.size(); 984 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 985 BasicBlock *DepBB = Deps[i].getBB(); 986 MemDepResult DepInfo = Deps[i].getResult(); 987 988 if (DeadBlocks.count(DepBB)) { 989 // Dead dependent mem-op disguise as a load evaluating the same value 990 // as the load in question. 991 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 992 continue; 993 } 994 995 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 996 UnavailableBlocks.push_back(DepBB); 997 continue; 998 } 999 1000 // The address being loaded in this non-local block may not be the same as 1001 // the pointer operand of the load if PHI translation occurs. Make sure 1002 // to consider the right address. 1003 Value *Address = Deps[i].getAddress(); 1004 1005 AvailableValue AV; 1006 if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { 1007 // subtlety: because we know this was a non-local dependency, we know 1008 // it's safe to materialize anywhere between the instruction within 1009 // DepInfo and the end of it's block. 1010 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1011 std::move(AV))); 1012 } else { 1013 UnavailableBlocks.push_back(DepBB); 1014 } 1015 } 1016 1017 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1018 "post condition violation"); 1019 } 1020 1021 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 1022 UnavailBlkVect &UnavailableBlocks) { 1023 // Okay, we have *some* definitions of the value. This means that the value 1024 // is available in some of our (transitive) predecessors. Lets think about 1025 // doing PRE of this load. This will involve inserting a new load into the 1026 // predecessor when it's not available. We could do this in general, but 1027 // prefer to not increase code size. As such, we only do this when we know 1028 // that we only have to insert *one* load (which means we're basically moving 1029 // the load, not inserting a new one). 1030 1031 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1032 UnavailableBlocks.end()); 1033 1034 // Let's find the first basic block with more than one predecessor. Walk 1035 // backwards through predecessors if needed. 1036 BasicBlock *LoadBB = LI->getParent(); 1037 BasicBlock *TmpBB = LoadBB; 1038 bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI); 1039 1040 // Check that there is no implicit control flow instructions above our load in 1041 // its block. If there is an instruction that doesn't always pass the 1042 // execution to the following instruction, then moving through it may become 1043 // invalid. For example: 1044 // 1045 // int arr[LEN]; 1046 // int index = ???; 1047 // ... 1048 // guard(0 <= index && index < LEN); 1049 // use(arr[index]); 1050 // 1051 // It is illegal to move the array access to any point above the guard, 1052 // because if the index is out of bounds we should deoptimize rather than 1053 // access the array. 1054 // Check that there is no guard in this block above our instruction. 1055 if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI)) 1056 return false; 1057 while (TmpBB->getSinglePredecessor()) { 1058 TmpBB = TmpBB->getSinglePredecessor(); 1059 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1060 return false; 1061 if (Blockers.count(TmpBB)) 1062 return false; 1063 1064 // If any of these blocks has more than one successor (i.e. if the edge we 1065 // just traversed was critical), then there are other paths through this 1066 // block along which the load may not be anticipated. Hoisting the load 1067 // above this block would be adding the load to execution paths along 1068 // which it was not previously executed. 1069 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1070 return false; 1071 1072 // Check that there is no implicit control flow in a block above. 1073 if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB)) 1074 return false; 1075 } 1076 1077 assert(TmpBB); 1078 LoadBB = TmpBB; 1079 1080 // Check to see how many predecessors have the loaded value fully 1081 // available. 1082 MapVector<BasicBlock *, Value *> PredLoads; 1083 DenseMap<BasicBlock*, char> FullyAvailableBlocks; 1084 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1085 FullyAvailableBlocks[AV.BB] = true; 1086 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1087 FullyAvailableBlocks[UnavailableBB] = false; 1088 1089 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1090 for (BasicBlock *Pred : predecessors(LoadBB)) { 1091 // If any predecessor block is an EH pad that does not allow non-PHI 1092 // instructions before the terminator, we can't PRE the load. 1093 if (Pred->getTerminator()->isEHPad()) { 1094 LLVM_DEBUG( 1095 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1096 << Pred->getName() << "': " << *LI << '\n'); 1097 return false; 1098 } 1099 1100 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { 1101 continue; 1102 } 1103 1104 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1105 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1106 LLVM_DEBUG( 1107 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1108 << Pred->getName() << "': " << *LI << '\n'); 1109 return false; 1110 } 1111 1112 // FIXME: Can we support the fallthrough edge? 1113 if (isa<CallBrInst>(Pred->getTerminator())) { 1114 LLVM_DEBUG( 1115 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" 1116 << Pred->getName() << "': " << *LI << '\n'); 1117 return false; 1118 } 1119 1120 if (LoadBB->isEHPad()) { 1121 LLVM_DEBUG( 1122 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1123 << Pred->getName() << "': " << *LI << '\n'); 1124 return false; 1125 } 1126 1127 CriticalEdgePred.push_back(Pred); 1128 } else { 1129 // Only add the predecessors that will not be split for now. 1130 PredLoads[Pred] = nullptr; 1131 } 1132 } 1133 1134 // Decide whether PRE is profitable for this load. 1135 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1136 assert(NumUnavailablePreds != 0 && 1137 "Fully available value should already be eliminated!"); 1138 1139 // If this load is unavailable in multiple predecessors, reject it. 1140 // FIXME: If we could restructure the CFG, we could make a common pred with 1141 // all the preds that don't have an available LI and insert a new load into 1142 // that one block. 1143 if (NumUnavailablePreds != 1) 1144 return false; 1145 1146 // Split critical edges, and update the unavailable predecessors accordingly. 1147 for (BasicBlock *OrigPred : CriticalEdgePred) { 1148 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1149 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1150 PredLoads[NewPred] = nullptr; 1151 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1152 << LoadBB->getName() << '\n'); 1153 } 1154 1155 // Check if the load can safely be moved to all the unavailable predecessors. 1156 bool CanDoPRE = true; 1157 const DataLayout &DL = LI->getModule()->getDataLayout(); 1158 SmallVector<Instruction*, 8> NewInsts; 1159 for (auto &PredLoad : PredLoads) { 1160 BasicBlock *UnavailablePred = PredLoad.first; 1161 1162 // Do PHI translation to get its value in the predecessor if necessary. The 1163 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1164 1165 // If all preds have a single successor, then we know it is safe to insert 1166 // the load on the pred (?!?), so we can insert code to materialize the 1167 // pointer if it is not available. 1168 PHITransAddr Address(LI->getPointerOperand(), DL, AC); 1169 Value *LoadPtr = nullptr; 1170 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, 1171 *DT, NewInsts); 1172 1173 // If we couldn't find or insert a computation of this phi translated value, 1174 // we fail PRE. 1175 if (!LoadPtr) { 1176 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1177 << *LI->getPointerOperand() << "\n"); 1178 CanDoPRE = false; 1179 break; 1180 } 1181 1182 PredLoad.second = LoadPtr; 1183 } 1184 1185 if (!CanDoPRE) { 1186 while (!NewInsts.empty()) { 1187 Instruction *I = NewInsts.pop_back_val(); 1188 markInstructionForDeletion(I); 1189 } 1190 // HINT: Don't revert the edge-splitting as following transformation may 1191 // also need to split these critical edges. 1192 return !CriticalEdgePred.empty(); 1193 } 1194 1195 // Okay, we can eliminate this load by inserting a reload in the predecessor 1196 // and using PHI construction to get the value in the other predecessors, do 1197 // it. 1198 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); 1199 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() 1200 << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() 1201 << '\n'); 1202 1203 // Assign value numbers to the new instructions. 1204 for (Instruction *I : NewInsts) { 1205 // Instructions that have been inserted in predecessor(s) to materialize 1206 // the load address do not retain their original debug locations. Doing 1207 // so could lead to confusing (but correct) source attributions. 1208 if (const DebugLoc &DL = I->getDebugLoc()) 1209 I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 1210 1211 // FIXME: We really _ought_ to insert these value numbers into their 1212 // parent's availability map. However, in doing so, we risk getting into 1213 // ordering issues. If a block hasn't been processed yet, we would be 1214 // marking a value as AVAIL-IN, which isn't what we intend. 1215 VN.lookupOrAdd(I); 1216 } 1217 1218 for (const auto &PredLoad : PredLoads) { 1219 BasicBlock *UnavailablePred = PredLoad.first; 1220 Value *LoadPtr = PredLoad.second; 1221 1222 auto *NewLoad = 1223 new LoadInst(LI->getType(), LoadPtr, LI->getName() + ".pre", 1224 LI->isVolatile(), LI->getAlignment(), LI->getOrdering(), 1225 LI->getSyncScopeID(), UnavailablePred->getTerminator()); 1226 NewLoad->setDebugLoc(LI->getDebugLoc()); 1227 1228 // Transfer the old load's AA tags to the new load. 1229 AAMDNodes Tags; 1230 LI->getAAMetadata(Tags); 1231 if (Tags) 1232 NewLoad->setAAMetadata(Tags); 1233 1234 if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) 1235 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1236 if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) 1237 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1238 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) 1239 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1240 1241 // We do not propagate the old load's debug location, because the new 1242 // load now lives in a different BB, and we want to avoid a jumpy line 1243 // table. 1244 // FIXME: How do we retain source locations without causing poor debugging 1245 // behavior? 1246 1247 // Add the newly created load. 1248 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, 1249 NewLoad)); 1250 MD->invalidateCachedPointerInfo(LoadPtr); 1251 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1252 } 1253 1254 // Perform PHI construction. 1255 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1256 LI->replaceAllUsesWith(V); 1257 if (isa<PHINode>(V)) 1258 V->takeName(LI); 1259 if (Instruction *I = dyn_cast<Instruction>(V)) 1260 I->setDebugLoc(LI->getDebugLoc()); 1261 if (V->getType()->isPtrOrPtrVectorTy()) 1262 MD->invalidateCachedPointerInfo(V); 1263 markInstructionForDeletion(LI); 1264 ORE->emit([&]() { 1265 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI) 1266 << "load eliminated by PRE"; 1267 }); 1268 ++NumPRELoad; 1269 return true; 1270 } 1271 1272 static void reportLoadElim(LoadInst *LI, Value *AvailableValue, 1273 OptimizationRemarkEmitter *ORE) { 1274 using namespace ore; 1275 1276 ORE->emit([&]() { 1277 return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI) 1278 << "load of type " << NV("Type", LI->getType()) << " eliminated" 1279 << setExtraArgs() << " in favor of " 1280 << NV("InfavorOfValue", AvailableValue); 1281 }); 1282 } 1283 1284 /// Attempt to eliminate a load whose dependencies are 1285 /// non-local by performing PHI construction. 1286 bool GVN::processNonLocalLoad(LoadInst *LI) { 1287 // non-local speculations are not allowed under asan. 1288 if (LI->getParent()->getParent()->hasFnAttribute( 1289 Attribute::SanitizeAddress) || 1290 LI->getParent()->getParent()->hasFnAttribute( 1291 Attribute::SanitizeHWAddress)) 1292 return false; 1293 1294 // Step 1: Find the non-local dependencies of the load. 1295 LoadDepVect Deps; 1296 MD->getNonLocalPointerDependency(LI, Deps); 1297 1298 // If we had to process more than one hundred blocks to find the 1299 // dependencies, this load isn't worth worrying about. Optimizing 1300 // it will be too expensive. 1301 unsigned NumDeps = Deps.size(); 1302 if (NumDeps > MaxNumDeps) 1303 return false; 1304 1305 // If we had a phi translation failure, we'll have a single entry which is a 1306 // clobber in the current block. Reject this early. 1307 if (NumDeps == 1 && 1308 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1309 LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs()); 1310 dbgs() << " has unknown dependencies\n";); 1311 return false; 1312 } 1313 1314 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1315 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) { 1316 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), 1317 OE = GEP->idx_end(); 1318 OI != OE; ++OI) 1319 if (Instruction *I = dyn_cast<Instruction>(OI->get())) 1320 performScalarPRE(I); 1321 } 1322 1323 // Step 2: Analyze the availability of the load 1324 AvailValInBlkVect ValuesPerBlock; 1325 UnavailBlkVect UnavailableBlocks; 1326 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); 1327 1328 // If we have no predecessors that produce a known value for this load, exit 1329 // early. 1330 if (ValuesPerBlock.empty()) 1331 return false; 1332 1333 // Step 3: Eliminate fully redundancy. 1334 // 1335 // If all of the instructions we depend on produce a known value for this 1336 // load, then it is fully redundant and we can use PHI insertion to compute 1337 // its value. Insert PHIs and remove the fully redundant value now. 1338 if (UnavailableBlocks.empty()) { 1339 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); 1340 1341 // Perform PHI construction. 1342 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1343 LI->replaceAllUsesWith(V); 1344 1345 if (isa<PHINode>(V)) 1346 V->takeName(LI); 1347 if (Instruction *I = dyn_cast<Instruction>(V)) 1348 // If instruction I has debug info, then we should not update it. 1349 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1350 // to propagate LI's DebugLoc because LI may not post-dominate I. 1351 if (LI->getDebugLoc() && LI->getParent() == I->getParent()) 1352 I->setDebugLoc(LI->getDebugLoc()); 1353 if (V->getType()->isPtrOrPtrVectorTy()) 1354 MD->invalidateCachedPointerInfo(V); 1355 markInstructionForDeletion(LI); 1356 ++NumGVNLoad; 1357 reportLoadElim(LI, V, ORE); 1358 return true; 1359 } 1360 1361 // Step 4: Eliminate partial redundancy. 1362 if (!EnablePRE || !EnableLoadPRE) 1363 return false; 1364 1365 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); 1366 } 1367 1368 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { 1369 assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && 1370 "This function can only be called with llvm.assume intrinsic"); 1371 Value *V = IntrinsicI->getArgOperand(0); 1372 1373 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1374 if (Cond->isZero()) { 1375 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1376 // Insert a new store to null instruction before the load to indicate that 1377 // this code is not reachable. FIXME: We could insert unreachable 1378 // instruction directly because we can modify the CFG. 1379 new StoreInst(UndefValue::get(Int8Ty), 1380 Constant::getNullValue(Int8Ty->getPointerTo()), 1381 IntrinsicI); 1382 } 1383 markInstructionForDeletion(IntrinsicI); 1384 return false; 1385 } else if (isa<Constant>(V)) { 1386 // If it's not false, and constant, it must evaluate to true. This means our 1387 // assume is assume(true), and thus, pointless, and we don't want to do 1388 // anything more here. 1389 return false; 1390 } 1391 1392 Constant *True = ConstantInt::getTrue(V->getContext()); 1393 bool Changed = false; 1394 1395 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1396 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1397 1398 // This property is only true in dominated successors, propagateEquality 1399 // will check dominance for us. 1400 Changed |= propagateEquality(V, True, Edge, false); 1401 } 1402 1403 // We can replace assume value with true, which covers cases like this: 1404 // call void @llvm.assume(i1 %cmp) 1405 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1406 ReplaceWithConstMap[V] = True; 1407 1408 // If one of *cmp *eq operand is const, adding it to map will cover this: 1409 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1410 // call void @llvm.assume(i1 %cmp) 1411 // ret float %0 ; will change it to ret float 3.000000e+00 1412 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1413 if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ || 1414 CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1415 (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1416 CmpI->getFastMathFlags().noNaNs())) { 1417 Value *CmpLHS = CmpI->getOperand(0); 1418 Value *CmpRHS = CmpI->getOperand(1); 1419 if (isa<Constant>(CmpLHS)) 1420 std::swap(CmpLHS, CmpRHS); 1421 auto *RHSConst = dyn_cast<Constant>(CmpRHS); 1422 1423 // If only one operand is constant. 1424 if (RHSConst != nullptr && !isa<Constant>(CmpLHS)) 1425 ReplaceWithConstMap[CmpLHS] = RHSConst; 1426 } 1427 } 1428 return Changed; 1429 } 1430 1431 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1432 patchReplacementInstruction(I, Repl); 1433 I->replaceAllUsesWith(Repl); 1434 } 1435 1436 /// Attempt to eliminate a load, first by eliminating it 1437 /// locally, and then attempting non-local elimination if that fails. 1438 bool GVN::processLoad(LoadInst *L) { 1439 if (!MD) 1440 return false; 1441 1442 // This code hasn't been audited for ordered or volatile memory access 1443 if (!L->isUnordered()) 1444 return false; 1445 1446 if (L->use_empty()) { 1447 markInstructionForDeletion(L); 1448 return true; 1449 } 1450 1451 // ... to a pointer that has been loaded from before... 1452 MemDepResult Dep = MD->getDependency(L); 1453 1454 // If it is defined in another block, try harder. 1455 if (Dep.isNonLocal()) 1456 return processNonLocalLoad(L); 1457 1458 // Only handle the local case below 1459 if (!Dep.isDef() && !Dep.isClobber()) { 1460 // This might be a NonFuncLocal or an Unknown 1461 LLVM_DEBUG( 1462 // fast print dep, using operator<< on instruction is too slow. 1463 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 1464 dbgs() << " has unknown dependence\n";); 1465 return false; 1466 } 1467 1468 AvailableValue AV; 1469 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { 1470 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 1471 1472 // Replace the load! 1473 patchAndReplaceAllUsesWith(L, AvailableValue); 1474 markInstructionForDeletion(L); 1475 ++NumGVNLoad; 1476 reportLoadElim(L, AvailableValue, ORE); 1477 // Tell MDA to rexamine the reused pointer since we might have more 1478 // information after forwarding it. 1479 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 1480 MD->invalidateCachedPointerInfo(AvailableValue); 1481 return true; 1482 } 1483 1484 return false; 1485 } 1486 1487 /// Return a pair the first field showing the value number of \p Exp and the 1488 /// second field showing whether it is a value number newly created. 1489 std::pair<uint32_t, bool> 1490 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { 1491 uint32_t &e = expressionNumbering[Exp]; 1492 bool CreateNewValNum = !e; 1493 if (CreateNewValNum) { 1494 Expressions.push_back(Exp); 1495 if (ExprIdx.size() < nextValueNumber + 1) 1496 ExprIdx.resize(nextValueNumber * 2); 1497 e = nextValueNumber; 1498 ExprIdx[nextValueNumber++] = nextExprNumber++; 1499 } 1500 return {e, CreateNewValNum}; 1501 } 1502 1503 /// Return whether all the values related with the same \p num are 1504 /// defined in \p BB. 1505 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 1506 GVN &Gvn) { 1507 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1508 while (Vals && Vals->BB == BB) 1509 Vals = Vals->Next; 1510 return !Vals; 1511 } 1512 1513 /// Wrap phiTranslateImpl to provide caching functionality. 1514 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, 1515 const BasicBlock *PhiBlock, uint32_t Num, 1516 GVN &Gvn) { 1517 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1518 if (FindRes != PhiTranslateTable.end()) 1519 return FindRes->second; 1520 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 1521 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 1522 return NewNum; 1523 } 1524 1525 /// Translate value number \p Num using phis, so that it has the values of 1526 /// the phis in BB. 1527 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 1528 const BasicBlock *PhiBlock, 1529 uint32_t Num, GVN &Gvn) { 1530 if (PHINode *PN = NumberingPhi[Num]) { 1531 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 1532 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 1533 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 1534 return TransVal; 1535 } 1536 return Num; 1537 } 1538 1539 // If there is any value related with Num is defined in a BB other than 1540 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 1541 // a backedge. We can do an early exit in that case to save compile time. 1542 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 1543 return Num; 1544 1545 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 1546 return Num; 1547 Expression Exp = Expressions[ExprIdx[Num]]; 1548 1549 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 1550 // For InsertValue and ExtractValue, some varargs are index numbers 1551 // instead of value numbers. Those index numbers should not be 1552 // translated. 1553 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 1554 (i > 0 && Exp.opcode == Instruction::ExtractValue)) 1555 continue; 1556 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 1557 } 1558 1559 if (Exp.commutative) { 1560 assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!"); 1561 if (Exp.varargs[0] > Exp.varargs[1]) { 1562 std::swap(Exp.varargs[0], Exp.varargs[1]); 1563 uint32_t Opcode = Exp.opcode >> 8; 1564 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 1565 Exp.opcode = (Opcode << 8) | 1566 CmpInst::getSwappedPredicate( 1567 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 1568 } 1569 } 1570 1571 if (uint32_t NewNum = expressionNumbering[Exp]) 1572 return NewNum; 1573 return Num; 1574 } 1575 1576 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 1577 /// again. 1578 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, 1579 const BasicBlock &CurrBlock) { 1580 for (const BasicBlock *Pred : predecessors(&CurrBlock)) { 1581 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1582 if (FindRes != PhiTranslateTable.end()) 1583 PhiTranslateTable.erase(FindRes); 1584 } 1585 } 1586 1587 // In order to find a leader for a given value number at a 1588 // specific basic block, we first obtain the list of all Values for that number, 1589 // and then scan the list to find one whose block dominates the block in 1590 // question. This is fast because dominator tree queries consist of only 1591 // a few comparisons of DFS numbers. 1592 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 1593 LeaderTableEntry Vals = LeaderTable[num]; 1594 if (!Vals.Val) return nullptr; 1595 1596 Value *Val = nullptr; 1597 if (DT->dominates(Vals.BB, BB)) { 1598 Val = Vals.Val; 1599 if (isa<Constant>(Val)) return Val; 1600 } 1601 1602 LeaderTableEntry* Next = Vals.Next; 1603 while (Next) { 1604 if (DT->dominates(Next->BB, BB)) { 1605 if (isa<Constant>(Next->Val)) return Next->Val; 1606 if (!Val) Val = Next->Val; 1607 } 1608 1609 Next = Next->Next; 1610 } 1611 1612 return Val; 1613 } 1614 1615 /// There is an edge from 'Src' to 'Dst'. Return 1616 /// true if every path from the entry block to 'Dst' passes via this edge. In 1617 /// particular 'Dst' must not be reachable via another edge from 'Src'. 1618 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 1619 DominatorTree *DT) { 1620 // While in theory it is interesting to consider the case in which Dst has 1621 // more than one predecessor, because Dst might be part of a loop which is 1622 // only reachable from Src, in practice it is pointless since at the time 1623 // GVN runs all such loops have preheaders, which means that Dst will have 1624 // been changed to have only one predecessor, namely Src. 1625 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 1626 assert((!Pred || Pred == E.getStart()) && 1627 "No edge between these basic blocks!"); 1628 return Pred != nullptr; 1629 } 1630 1631 void GVN::assignBlockRPONumber(Function &F) { 1632 BlockRPONumber.clear(); 1633 uint32_t NextBlockNumber = 1; 1634 ReversePostOrderTraversal<Function *> RPOT(&F); 1635 for (BasicBlock *BB : RPOT) 1636 BlockRPONumber[BB] = NextBlockNumber++; 1637 InvalidBlockRPONumbers = false; 1638 } 1639 1640 // Tries to replace instruction with const, using information from 1641 // ReplaceWithConstMap. 1642 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const { 1643 bool Changed = false; 1644 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 1645 Value *Operand = Instr->getOperand(OpNum); 1646 auto it = ReplaceWithConstMap.find(Operand); 1647 if (it != ReplaceWithConstMap.end()) { 1648 assert(!isa<Constant>(Operand) && 1649 "Replacing constants with constants is invalid"); 1650 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 1651 << *it->second << " in instruction " << *Instr << '\n'); 1652 Instr->setOperand(OpNum, it->second); 1653 Changed = true; 1654 } 1655 } 1656 return Changed; 1657 } 1658 1659 /// The given values are known to be equal in every block 1660 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 1661 /// 'RHS' everywhere in the scope. Returns whether a change was made. 1662 /// If DominatesByEdge is false, then it means that we will propagate the RHS 1663 /// value starting from the end of Root.Start. 1664 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, 1665 bool DominatesByEdge) { 1666 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 1667 Worklist.push_back(std::make_pair(LHS, RHS)); 1668 bool Changed = false; 1669 // For speed, compute a conservative fast approximation to 1670 // DT->dominates(Root, Root.getEnd()); 1671 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 1672 1673 while (!Worklist.empty()) { 1674 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 1675 LHS = Item.first; RHS = Item.second; 1676 1677 if (LHS == RHS) 1678 continue; 1679 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 1680 1681 // Don't try to propagate equalities between constants. 1682 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 1683 continue; 1684 1685 // Prefer a constant on the right-hand side, or an Argument if no constants. 1686 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 1687 std::swap(LHS, RHS); 1688 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 1689 1690 // If there is no obvious reason to prefer the left-hand side over the 1691 // right-hand side, ensure the longest lived term is on the right-hand side, 1692 // so the shortest lived term will be replaced by the longest lived. 1693 // This tends to expose more simplifications. 1694 uint32_t LVN = VN.lookupOrAdd(LHS); 1695 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 1696 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 1697 // Move the 'oldest' value to the right-hand side, using the value number 1698 // as a proxy for age. 1699 uint32_t RVN = VN.lookupOrAdd(RHS); 1700 if (LVN < RVN) { 1701 std::swap(LHS, RHS); 1702 LVN = RVN; 1703 } 1704 } 1705 1706 // If value numbering later sees that an instruction in the scope is equal 1707 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 1708 // the invariant that instructions only occur in the leader table for their 1709 // own value number (this is used by removeFromLeaderTable), do not do this 1710 // if RHS is an instruction (if an instruction in the scope is morphed into 1711 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 1712 // using the leader table is about compiling faster, not optimizing better). 1713 // The leader table only tracks basic blocks, not edges. Only add to if we 1714 // have the simple case where the edge dominates the end. 1715 if (RootDominatesEnd && !isa<Instruction>(RHS)) 1716 addToLeaderTable(LVN, RHS, Root.getEnd()); 1717 1718 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 1719 // LHS always has at least one use that is not dominated by Root, this will 1720 // never do anything if LHS has only one use. 1721 if (!LHS->hasOneUse()) { 1722 unsigned NumReplacements = 1723 DominatesByEdge 1724 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 1725 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 1726 1727 Changed |= NumReplacements > 0; 1728 NumGVNEqProp += NumReplacements; 1729 // Cached information for anything that uses LHS will be invalid. 1730 if (MD) 1731 MD->invalidateCachedPointerInfo(LHS); 1732 } 1733 1734 // Now try to deduce additional equalities from this one. For example, if 1735 // the known equality was "(A != B)" == "false" then it follows that A and B 1736 // are equal in the scope. Only boolean equalities with an explicit true or 1737 // false RHS are currently supported. 1738 if (!RHS->getType()->isIntegerTy(1)) 1739 // Not a boolean equality - bail out. 1740 continue; 1741 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 1742 if (!CI) 1743 // RHS neither 'true' nor 'false' - bail out. 1744 continue; 1745 // Whether RHS equals 'true'. Otherwise it equals 'false'. 1746 bool isKnownTrue = CI->isMinusOne(); 1747 bool isKnownFalse = !isKnownTrue; 1748 1749 // If "A && B" is known true then both A and B are known true. If "A || B" 1750 // is known false then both A and B are known false. 1751 Value *A, *B; 1752 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || 1753 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { 1754 Worklist.push_back(std::make_pair(A, RHS)); 1755 Worklist.push_back(std::make_pair(B, RHS)); 1756 continue; 1757 } 1758 1759 // If we are propagating an equality like "(A == B)" == "true" then also 1760 // propagate the equality A == B. When propagating a comparison such as 1761 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 1762 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 1763 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 1764 1765 // If "A == B" is known true, or "A != B" is known false, then replace 1766 // A with B everywhere in the scope. 1767 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || 1768 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) 1769 Worklist.push_back(std::make_pair(Op0, Op1)); 1770 1771 // Handle the floating point versions of equality comparisons too. 1772 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) || 1773 (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) { 1774 1775 // Floating point -0.0 and 0.0 compare equal, so we can only 1776 // propagate values if we know that we have a constant and that 1777 // its value is non-zero. 1778 1779 // FIXME: We should do this optimization if 'no signed zeros' is 1780 // applicable via an instruction-level fast-math-flag or some other 1781 // indicator that relaxed FP semantics are being used. 1782 1783 if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero()) 1784 Worklist.push_back(std::make_pair(Op0, Op1)); 1785 } 1786 1787 // If "A >= B" is known true, replace "A < B" with false everywhere. 1788 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 1789 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 1790 // Since we don't have the instruction "A < B" immediately to hand, work 1791 // out the value number that it would have and use that to find an 1792 // appropriate instruction (if any). 1793 uint32_t NextNum = VN.getNextUnusedValueNumber(); 1794 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 1795 // If the number we were assigned was brand new then there is no point in 1796 // looking for an instruction realizing it: there cannot be one! 1797 if (Num < NextNum) { 1798 Value *NotCmp = findLeader(Root.getEnd(), Num); 1799 if (NotCmp && isa<Instruction>(NotCmp)) { 1800 unsigned NumReplacements = 1801 DominatesByEdge 1802 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 1803 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 1804 Root.getStart()); 1805 Changed |= NumReplacements > 0; 1806 NumGVNEqProp += NumReplacements; 1807 // Cached information for anything that uses NotCmp will be invalid. 1808 if (MD) 1809 MD->invalidateCachedPointerInfo(NotCmp); 1810 } 1811 } 1812 // Ensure that any instruction in scope that gets the "A < B" value number 1813 // is replaced with false. 1814 // The leader table only tracks basic blocks, not edges. Only add to if we 1815 // have the simple case where the edge dominates the end. 1816 if (RootDominatesEnd) 1817 addToLeaderTable(Num, NotVal, Root.getEnd()); 1818 1819 continue; 1820 } 1821 } 1822 1823 return Changed; 1824 } 1825 1826 /// When calculating availability, handle an instruction 1827 /// by inserting it into the appropriate sets 1828 bool GVN::processInstruction(Instruction *I) { 1829 // Ignore dbg info intrinsics. 1830 if (isa<DbgInfoIntrinsic>(I)) 1831 return false; 1832 1833 // If the instruction can be easily simplified then do so now in preference 1834 // to value numbering it. Value numbering often exposes redundancies, for 1835 // example if it determines that %y is equal to %x then the instruction 1836 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 1837 const DataLayout &DL = I->getModule()->getDataLayout(); 1838 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { 1839 bool Changed = false; 1840 if (!I->use_empty()) { 1841 I->replaceAllUsesWith(V); 1842 Changed = true; 1843 } 1844 if (isInstructionTriviallyDead(I, TLI)) { 1845 markInstructionForDeletion(I); 1846 Changed = true; 1847 } 1848 if (Changed) { 1849 if (MD && V->getType()->isPtrOrPtrVectorTy()) 1850 MD->invalidateCachedPointerInfo(V); 1851 ++NumGVNSimpl; 1852 return true; 1853 } 1854 } 1855 1856 if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I)) 1857 if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) 1858 return processAssumeIntrinsic(IntrinsicI); 1859 1860 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1861 if (processLoad(LI)) 1862 return true; 1863 1864 unsigned Num = VN.lookupOrAdd(LI); 1865 addToLeaderTable(Num, LI, LI->getParent()); 1866 return false; 1867 } 1868 1869 // For conditional branches, we can perform simple conditional propagation on 1870 // the condition value itself. 1871 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1872 if (!BI->isConditional()) 1873 return false; 1874 1875 if (isa<Constant>(BI->getCondition())) 1876 return processFoldableCondBr(BI); 1877 1878 Value *BranchCond = BI->getCondition(); 1879 BasicBlock *TrueSucc = BI->getSuccessor(0); 1880 BasicBlock *FalseSucc = BI->getSuccessor(1); 1881 // Avoid multiple edges early. 1882 if (TrueSucc == FalseSucc) 1883 return false; 1884 1885 BasicBlock *Parent = BI->getParent(); 1886 bool Changed = false; 1887 1888 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 1889 BasicBlockEdge TrueE(Parent, TrueSucc); 1890 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 1891 1892 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 1893 BasicBlockEdge FalseE(Parent, FalseSucc); 1894 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 1895 1896 return Changed; 1897 } 1898 1899 // For switches, propagate the case values into the case destinations. 1900 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1901 Value *SwitchCond = SI->getCondition(); 1902 BasicBlock *Parent = SI->getParent(); 1903 bool Changed = false; 1904 1905 // Remember how many outgoing edges there are to every successor. 1906 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 1907 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 1908 ++SwitchEdges[SI->getSuccessor(i)]; 1909 1910 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 1911 i != e; ++i) { 1912 BasicBlock *Dst = i->getCaseSuccessor(); 1913 // If there is only a single edge, propagate the case value into it. 1914 if (SwitchEdges.lookup(Dst) == 1) { 1915 BasicBlockEdge E(Parent, Dst); 1916 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 1917 } 1918 } 1919 return Changed; 1920 } 1921 1922 // Instructions with void type don't return a value, so there's 1923 // no point in trying to find redundancies in them. 1924 if (I->getType()->isVoidTy()) 1925 return false; 1926 1927 uint32_t NextNum = VN.getNextUnusedValueNumber(); 1928 unsigned Num = VN.lookupOrAdd(I); 1929 1930 // Allocations are always uniquely numbered, so we can save time and memory 1931 // by fast failing them. 1932 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 1933 addToLeaderTable(Num, I, I->getParent()); 1934 return false; 1935 } 1936 1937 // If the number we were assigned was a brand new VN, then we don't 1938 // need to do a lookup to see if the number already exists 1939 // somewhere in the domtree: it can't! 1940 if (Num >= NextNum) { 1941 addToLeaderTable(Num, I, I->getParent()); 1942 return false; 1943 } 1944 1945 // Perform fast-path value-number based elimination of values inherited from 1946 // dominators. 1947 Value *Repl = findLeader(I->getParent(), Num); 1948 if (!Repl) { 1949 // Failure, just remember this instance for future use. 1950 addToLeaderTable(Num, I, I->getParent()); 1951 return false; 1952 } else if (Repl == I) { 1953 // If I was the result of a shortcut PRE, it might already be in the table 1954 // and the best replacement for itself. Nothing to do. 1955 return false; 1956 } 1957 1958 // Remove it! 1959 patchAndReplaceAllUsesWith(I, Repl); 1960 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 1961 MD->invalidateCachedPointerInfo(Repl); 1962 markInstructionForDeletion(I); 1963 return true; 1964 } 1965 1966 /// runOnFunction - This is the main transformation entry point for a function. 1967 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 1968 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 1969 MemoryDependenceResults *RunMD, LoopInfo *LI, 1970 OptimizationRemarkEmitter *RunORE) { 1971 AC = &RunAC; 1972 DT = &RunDT; 1973 VN.setDomTree(DT); 1974 TLI = &RunTLI; 1975 VN.setAliasAnalysis(&RunAA); 1976 MD = RunMD; 1977 ImplicitControlFlowTracking ImplicitCFT(DT); 1978 ICF = &ImplicitCFT; 1979 VN.setMemDep(MD); 1980 ORE = RunORE; 1981 InvalidBlockRPONumbers = true; 1982 1983 bool Changed = false; 1984 bool ShouldContinue = true; 1985 1986 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 1987 // Merge unconditional branches, allowing PRE to catch more 1988 // optimization opportunities. 1989 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 1990 BasicBlock *BB = &*FI++; 1991 1992 bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD); 1993 if (removedBlock) 1994 ++NumGVNBlocks; 1995 1996 Changed |= removedBlock; 1997 } 1998 1999 unsigned Iteration = 0; 2000 while (ShouldContinue) { 2001 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2002 ShouldContinue = iterateOnFunction(F); 2003 Changed |= ShouldContinue; 2004 ++Iteration; 2005 } 2006 2007 if (EnablePRE) { 2008 // Fabricate val-num for dead-code in order to suppress assertion in 2009 // performPRE(). 2010 assignValNumForDeadCode(); 2011 bool PREChanged = true; 2012 while (PREChanged) { 2013 PREChanged = performPRE(F); 2014 Changed |= PREChanged; 2015 } 2016 } 2017 2018 // FIXME: Should perform GVN again after PRE does something. PRE can move 2019 // computations into blocks where they become fully redundant. Note that 2020 // we can't do this until PRE's critical edge splitting updates memdep. 2021 // Actually, when this happens, we should just fully integrate PRE into GVN. 2022 2023 cleanupGlobalSets(); 2024 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2025 // iteration. 2026 DeadBlocks.clear(); 2027 2028 return Changed; 2029 } 2030 2031 bool GVN::processBlock(BasicBlock *BB) { 2032 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2033 // (and incrementing BI before processing an instruction). 2034 assert(InstrsToErase.empty() && 2035 "We expect InstrsToErase to be empty across iterations"); 2036 if (DeadBlocks.count(BB)) 2037 return false; 2038 2039 // Clearing map before every BB because it can be used only for single BB. 2040 ReplaceWithConstMap.clear(); 2041 bool ChangedFunction = false; 2042 2043 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2044 BI != BE;) { 2045 if (!ReplaceWithConstMap.empty()) 2046 ChangedFunction |= replaceOperandsWithConsts(&*BI); 2047 ChangedFunction |= processInstruction(&*BI); 2048 2049 if (InstrsToErase.empty()) { 2050 ++BI; 2051 continue; 2052 } 2053 2054 // If we need some instructions deleted, do it now. 2055 NumGVNInstr += InstrsToErase.size(); 2056 2057 // Avoid iterator invalidation. 2058 bool AtStart = BI == BB->begin(); 2059 if (!AtStart) 2060 --BI; 2061 2062 for (auto *I : InstrsToErase) { 2063 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2064 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2065 salvageDebugInfo(*I); 2066 if (MD) MD->removeInstruction(I); 2067 LLVM_DEBUG(verifyRemoved(I)); 2068 ICF->removeInstruction(I); 2069 I->eraseFromParent(); 2070 } 2071 InstrsToErase.clear(); 2072 2073 if (AtStart) 2074 BI = BB->begin(); 2075 else 2076 ++BI; 2077 } 2078 2079 return ChangedFunction; 2080 } 2081 2082 // Instantiate an expression in a predecessor that lacked it. 2083 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2084 BasicBlock *Curr, unsigned int ValNo) { 2085 // Because we are going top-down through the block, all value numbers 2086 // will be available in the predecessor by the time we need them. Any 2087 // that weren't originally present will have been instantiated earlier 2088 // in this loop. 2089 bool success = true; 2090 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2091 Value *Op = Instr->getOperand(i); 2092 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2093 continue; 2094 // This could be a newly inserted instruction, in which case, we won't 2095 // find a value number, and should give up before we hurt ourselves. 2096 // FIXME: Rewrite the infrastructure to let it easier to value number 2097 // and process newly inserted instructions. 2098 if (!VN.exists(Op)) { 2099 success = false; 2100 break; 2101 } 2102 uint32_t TValNo = 2103 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2104 if (Value *V = findLeader(Pred, TValNo)) { 2105 Instr->setOperand(i, V); 2106 } else { 2107 success = false; 2108 break; 2109 } 2110 } 2111 2112 // Fail out if we encounter an operand that is not available in 2113 // the PRE predecessor. This is typically because of loads which 2114 // are not value numbered precisely. 2115 if (!success) 2116 return false; 2117 2118 Instr->insertBefore(Pred->getTerminator()); 2119 Instr->setName(Instr->getName() + ".pre"); 2120 Instr->setDebugLoc(Instr->getDebugLoc()); 2121 2122 unsigned Num = VN.lookupOrAdd(Instr); 2123 VN.add(Instr, Num); 2124 2125 // Update the availability map to include the new instruction. 2126 addToLeaderTable(Num, Instr, Pred); 2127 return true; 2128 } 2129 2130 bool GVN::performScalarPRE(Instruction *CurInst) { 2131 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2132 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2133 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2134 isa<DbgInfoIntrinsic>(CurInst)) 2135 return false; 2136 2137 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2138 // sinking the compare again, and it would force the code generator to 2139 // move the i1 from processor flags or predicate registers into a general 2140 // purpose register. 2141 if (isa<CmpInst>(CurInst)) 2142 return false; 2143 2144 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2145 // sinking the addressing mode computation back to its uses. Extending the 2146 // GEP's live range increases the register pressure, and therefore it can 2147 // introduce unnecessary spills. 2148 // 2149 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2150 // to the load by moving it to the predecessor block if necessary. 2151 if (isa<GetElementPtrInst>(CurInst)) 2152 return false; 2153 2154 // We don't currently value number ANY inline asm calls. 2155 if (auto *CallB = dyn_cast<CallBase>(CurInst)) 2156 if (CallB->isInlineAsm()) 2157 return false; 2158 2159 uint32_t ValNo = VN.lookup(CurInst); 2160 2161 // Look for the predecessors for PRE opportunities. We're 2162 // only trying to solve the basic diamond case, where 2163 // a value is computed in the successor and one predecessor, 2164 // but not the other. We also explicitly disallow cases 2165 // where the successor is its own predecessor, because they're 2166 // more complicated to get right. 2167 unsigned NumWith = 0; 2168 unsigned NumWithout = 0; 2169 BasicBlock *PREPred = nullptr; 2170 BasicBlock *CurrentBlock = CurInst->getParent(); 2171 2172 // Update the RPO numbers for this function. 2173 if (InvalidBlockRPONumbers) 2174 assignBlockRPONumber(*CurrentBlock->getParent()); 2175 2176 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2177 for (BasicBlock *P : predecessors(CurrentBlock)) { 2178 // We're not interested in PRE where blocks with predecessors that are 2179 // not reachable. 2180 if (!DT->isReachableFromEntry(P)) { 2181 NumWithout = 2; 2182 break; 2183 } 2184 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and 2185 // when CurInst has operand defined in CurrentBlock (so it may be defined 2186 // by phi in the loop header). 2187 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2188 "Invalid BlockRPONumber map."); 2189 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && 2190 llvm::any_of(CurInst->operands(), [&](const Use &U) { 2191 if (auto *Inst = dyn_cast<Instruction>(U.get())) 2192 return Inst->getParent() == CurrentBlock; 2193 return false; 2194 })) { 2195 NumWithout = 2; 2196 break; 2197 } 2198 2199 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2200 Value *predV = findLeader(P, TValNo); 2201 if (!predV) { 2202 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2203 PREPred = P; 2204 ++NumWithout; 2205 } else if (predV == CurInst) { 2206 /* CurInst dominates this predecessor. */ 2207 NumWithout = 2; 2208 break; 2209 } else { 2210 predMap.push_back(std::make_pair(predV, P)); 2211 ++NumWith; 2212 } 2213 } 2214 2215 // Don't do PRE when it might increase code size, i.e. when 2216 // we would need to insert instructions in more than one pred. 2217 if (NumWithout > 1 || NumWith == 0) 2218 return false; 2219 2220 // We may have a case where all predecessors have the instruction, 2221 // and we just need to insert a phi node. Otherwise, perform 2222 // insertion. 2223 Instruction *PREInstr = nullptr; 2224 2225 if (NumWithout != 0) { 2226 if (!isSafeToSpeculativelyExecute(CurInst)) { 2227 // It is only valid to insert a new instruction if the current instruction 2228 // is always executed. An instruction with implicit control flow could 2229 // prevent us from doing it. If we cannot speculate the execution, then 2230 // PRE should be prohibited. 2231 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2232 return false; 2233 } 2234 2235 // Don't do PRE across indirect branch. 2236 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2237 return false; 2238 2239 // Don't do PRE across callbr. 2240 // FIXME: Can we do this across the fallthrough edge? 2241 if (isa<CallBrInst>(PREPred->getTerminator())) 2242 return false; 2243 2244 // We can't do PRE safely on a critical edge, so instead we schedule 2245 // the edge to be split and perform the PRE the next time we iterate 2246 // on the function. 2247 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2248 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2249 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2250 return false; 2251 } 2252 // We need to insert somewhere, so let's give it a shot 2253 PREInstr = CurInst->clone(); 2254 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2255 // If we failed insertion, make sure we remove the instruction. 2256 LLVM_DEBUG(verifyRemoved(PREInstr)); 2257 PREInstr->deleteValue(); 2258 return false; 2259 } 2260 } 2261 2262 // Either we should have filled in the PRE instruction, or we should 2263 // not have needed insertions. 2264 assert(PREInstr != nullptr || NumWithout == 0); 2265 2266 ++NumGVNPRE; 2267 2268 // Create a PHI to make the value available in this block. 2269 PHINode *Phi = 2270 PHINode::Create(CurInst->getType(), predMap.size(), 2271 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2272 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2273 if (Value *V = predMap[i].first) { 2274 // If we use an existing value in this phi, we have to patch the original 2275 // value because the phi will be used to replace a later value. 2276 patchReplacementInstruction(CurInst, V); 2277 Phi->addIncoming(V, predMap[i].second); 2278 } else 2279 Phi->addIncoming(PREInstr, PREPred); 2280 } 2281 2282 VN.add(Phi, ValNo); 2283 // After creating a new PHI for ValNo, the phi translate result for ValNo will 2284 // be changed, so erase the related stale entries in phi translate cache. 2285 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 2286 addToLeaderTable(ValNo, Phi, CurrentBlock); 2287 Phi->setDebugLoc(CurInst->getDebugLoc()); 2288 CurInst->replaceAllUsesWith(Phi); 2289 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 2290 MD->invalidateCachedPointerInfo(Phi); 2291 VN.erase(CurInst); 2292 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2293 2294 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2295 if (MD) 2296 MD->removeInstruction(CurInst); 2297 LLVM_DEBUG(verifyRemoved(CurInst)); 2298 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes 2299 // some assertion failures. 2300 ICF->removeInstruction(CurInst); 2301 CurInst->eraseFromParent(); 2302 ++NumGVNInstr; 2303 2304 return true; 2305 } 2306 2307 /// Perform a purely local form of PRE that looks for diamond 2308 /// control flow patterns and attempts to perform simple PRE at the join point. 2309 bool GVN::performPRE(Function &F) { 2310 bool Changed = false; 2311 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2312 // Nothing to PRE in the entry block. 2313 if (CurrentBlock == &F.getEntryBlock()) 2314 continue; 2315 2316 // Don't perform PRE on an EH pad. 2317 if (CurrentBlock->isEHPad()) 2318 continue; 2319 2320 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2321 BE = CurrentBlock->end(); 2322 BI != BE;) { 2323 Instruction *CurInst = &*BI++; 2324 Changed |= performScalarPRE(CurInst); 2325 } 2326 } 2327 2328 if (splitCriticalEdges()) 2329 Changed = true; 2330 2331 return Changed; 2332 } 2333 2334 /// Split the critical edge connecting the given two blocks, and return 2335 /// the block inserted to the critical edge. 2336 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2337 BasicBlock *BB = 2338 SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT)); 2339 if (MD) 2340 MD->invalidateCachedPredecessors(); 2341 InvalidBlockRPONumbers = true; 2342 return BB; 2343 } 2344 2345 /// Split critical edges found during the previous 2346 /// iteration that may enable further optimization. 2347 bool GVN::splitCriticalEdges() { 2348 if (toSplit.empty()) 2349 return false; 2350 do { 2351 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 2352 SplitCriticalEdge(Edge.first, Edge.second, 2353 CriticalEdgeSplittingOptions(DT)); 2354 } while (!toSplit.empty()); 2355 if (MD) MD->invalidateCachedPredecessors(); 2356 InvalidBlockRPONumbers = true; 2357 return true; 2358 } 2359 2360 /// Executes one iteration of GVN 2361 bool GVN::iterateOnFunction(Function &F) { 2362 cleanupGlobalSets(); 2363 2364 // Top-down walk of the dominator tree 2365 bool Changed = false; 2366 // Needed for value numbering with phi construction to work. 2367 // RPOT walks the graph in its constructor and will not be invalidated during 2368 // processBlock. 2369 ReversePostOrderTraversal<Function *> RPOT(&F); 2370 2371 for (BasicBlock *BB : RPOT) 2372 Changed |= processBlock(BB); 2373 2374 return Changed; 2375 } 2376 2377 void GVN::cleanupGlobalSets() { 2378 VN.clear(); 2379 LeaderTable.clear(); 2380 BlockRPONumber.clear(); 2381 TableAllocator.Reset(); 2382 ICF->clear(); 2383 InvalidBlockRPONumbers = true; 2384 } 2385 2386 /// Verify that the specified instruction does not occur in our 2387 /// internal data structures. 2388 void GVN::verifyRemoved(const Instruction *Inst) const { 2389 VN.verifyRemoved(Inst); 2390 2391 // Walk through the value number scope to make sure the instruction isn't 2392 // ferreted away in it. 2393 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator 2394 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { 2395 const LeaderTableEntry *Node = &I->second; 2396 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2397 2398 while (Node->Next) { 2399 Node = Node->Next; 2400 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2401 } 2402 } 2403 } 2404 2405 /// BB is declared dead, which implied other blocks become dead as well. This 2406 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 2407 /// live successors, update their phi nodes by replacing the operands 2408 /// corresponding to dead blocks with UndefVal. 2409 void GVN::addDeadBlock(BasicBlock *BB) { 2410 SmallVector<BasicBlock *, 4> NewDead; 2411 SmallSetVector<BasicBlock *, 4> DF; 2412 2413 NewDead.push_back(BB); 2414 while (!NewDead.empty()) { 2415 BasicBlock *D = NewDead.pop_back_val(); 2416 if (DeadBlocks.count(D)) 2417 continue; 2418 2419 // All blocks dominated by D are dead. 2420 SmallVector<BasicBlock *, 8> Dom; 2421 DT->getDescendants(D, Dom); 2422 DeadBlocks.insert(Dom.begin(), Dom.end()); 2423 2424 // Figure out the dominance-frontier(D). 2425 for (BasicBlock *B : Dom) { 2426 for (BasicBlock *S : successors(B)) { 2427 if (DeadBlocks.count(S)) 2428 continue; 2429 2430 bool AllPredDead = true; 2431 for (BasicBlock *P : predecessors(S)) 2432 if (!DeadBlocks.count(P)) { 2433 AllPredDead = false; 2434 break; 2435 } 2436 2437 if (!AllPredDead) { 2438 // S could be proved dead later on. That is why we don't update phi 2439 // operands at this moment. 2440 DF.insert(S); 2441 } else { 2442 // While S is not dominated by D, it is dead by now. This could take 2443 // place if S already have a dead predecessor before D is declared 2444 // dead. 2445 NewDead.push_back(S); 2446 } 2447 } 2448 } 2449 } 2450 2451 // For the dead blocks' live successors, update their phi nodes by replacing 2452 // the operands corresponding to dead blocks with UndefVal. 2453 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end(); 2454 I != E; I++) { 2455 BasicBlock *B = *I; 2456 if (DeadBlocks.count(B)) 2457 continue; 2458 2459 SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B)); 2460 for (BasicBlock *P : Preds) { 2461 if (!DeadBlocks.count(P)) 2462 continue; 2463 2464 if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) { 2465 if (BasicBlock *S = splitCriticalEdges(P, B)) 2466 DeadBlocks.insert(P = S); 2467 } 2468 2469 for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) { 2470 PHINode &Phi = cast<PHINode>(*II); 2471 Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); 2472 if (MD) 2473 MD->invalidateCachedPointerInfo(&Phi); 2474 } 2475 } 2476 } 2477 } 2478 2479 // If the given branch is recognized as a foldable branch (i.e. conditional 2480 // branch with constant condition), it will perform following analyses and 2481 // transformation. 2482 // 1) If the dead out-coming edge is a critical-edge, split it. Let 2483 // R be the target of the dead out-coming edge. 2484 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 2485 // edge. The result of this step will be {X| X is dominated by R} 2486 // 2) Identify those blocks which haves at least one dead predecessor. The 2487 // result of this step will be dominance-frontier(R). 2488 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 2489 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 2490 // 2491 // Return true iff *NEW* dead code are found. 2492 bool GVN::processFoldableCondBr(BranchInst *BI) { 2493 if (!BI || BI->isUnconditional()) 2494 return false; 2495 2496 // If a branch has two identical successors, we cannot declare either dead. 2497 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 2498 return false; 2499 2500 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 2501 if (!Cond) 2502 return false; 2503 2504 BasicBlock *DeadRoot = 2505 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 2506 if (DeadBlocks.count(DeadRoot)) 2507 return false; 2508 2509 if (!DeadRoot->getSinglePredecessor()) 2510 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 2511 2512 addDeadBlock(DeadRoot); 2513 return true; 2514 } 2515 2516 // performPRE() will trigger assert if it comes across an instruction without 2517 // associated val-num. As it normally has far more live instructions than dead 2518 // instructions, it makes more sense just to "fabricate" a val-number for the 2519 // dead code than checking if instruction involved is dead or not. 2520 void GVN::assignValNumForDeadCode() { 2521 for (BasicBlock *BB : DeadBlocks) { 2522 for (Instruction &Inst : *BB) { 2523 unsigned ValNum = VN.lookupOrAdd(&Inst); 2524 addToLeaderTable(ValNum, &Inst, BB); 2525 } 2526 } 2527 } 2528 2529 class llvm::gvn::GVNLegacyPass : public FunctionPass { 2530 public: 2531 static char ID; // Pass identification, replacement for typeid 2532 2533 explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep) 2534 : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) { 2535 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 2536 } 2537 2538 bool runOnFunction(Function &F) override { 2539 if (skipFunction(F)) 2540 return false; 2541 2542 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2543 2544 return Impl.runImpl( 2545 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 2546 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 2547 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 2548 getAnalysis<AAResultsWrapperPass>().getAAResults(), 2549 NoMemDepAnalysis ? nullptr 2550 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(), 2551 LIWP ? &LIWP->getLoopInfo() : nullptr, 2552 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE()); 2553 } 2554 2555 void getAnalysisUsage(AnalysisUsage &AU) const override { 2556 AU.addRequired<AssumptionCacheTracker>(); 2557 AU.addRequired<DominatorTreeWrapperPass>(); 2558 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2559 if (!NoMemDepAnalysis) 2560 AU.addRequired<MemoryDependenceWrapperPass>(); 2561 AU.addRequired<AAResultsWrapperPass>(); 2562 2563 AU.addPreserved<DominatorTreeWrapperPass>(); 2564 AU.addPreserved<GlobalsAAWrapperPass>(); 2565 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 2566 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2567 } 2568 2569 private: 2570 bool NoMemDepAnalysis; 2571 GVN Impl; 2572 }; 2573 2574 char GVNLegacyPass::ID = 0; 2575 2576 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2577 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2578 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2579 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2580 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2581 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2582 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2583 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2584 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2585 2586 // The public interface to this file... 2587 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 2588 return new GVNLegacyPass(NoMemDepAnalysis); 2589 } 2590