1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The code below implements dead store elimination using MemorySSA. It uses 10 // the following general approach: given a MemoryDef, walk upwards to find 11 // clobbering MemoryDefs that may be killed by the starting def. Then check 12 // that there are no uses that may read the location of the original MemoryDef 13 // in between both MemoryDefs. A bit more concretely: 14 // 15 // For all MemoryDefs StartDef: 16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking 17 // upwards. 18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by 19 // checking all uses starting at MaybeDeadAccess and walking until we see 20 // StartDef. 21 // 3. For each found CurrentDef, check that: 22 // 1. There are no barrier instructions between CurrentDef and StartDef (like 23 // throws or stores with ordering constraints). 24 // 2. StartDef is executed whenever CurrentDef is executed. 25 // 3. StartDef completely overwrites CurrentDef. 26 // 4. Erase CurrentDef from the function and MemorySSA. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/SetVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringRef.h" 40 #include "llvm/Analysis/AliasAnalysis.h" 41 #include "llvm/Analysis/AssumptionCache.h" 42 #include "llvm/Analysis/CaptureTracking.h" 43 #include "llvm/Analysis/CodeMetrics.h" 44 #include "llvm/Analysis/GlobalsModRef.h" 45 #include "llvm/Analysis/LoopInfo.h" 46 #include "llvm/Analysis/MemoryBuiltins.h" 47 #include "llvm/Analysis/MemoryLocation.h" 48 #include "llvm/Analysis/MemorySSA.h" 49 #include "llvm/Analysis/MemorySSAUpdater.h" 50 #include "llvm/Analysis/MustExecute.h" 51 #include "llvm/Analysis/PostDominators.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/Argument.h" 55 #include "llvm/IR/BasicBlock.h" 56 #include "llvm/IR/Constant.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/IRBuilder.h" 62 #include "llvm/IR/InstIterator.h" 63 #include "llvm/IR/InstrTypes.h" 64 #include "llvm/IR/Instruction.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/DebugCounter.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Scalar.h" 80 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 81 #include "llvm/Transforms/Utils/BuildLibCalls.h" 82 #include "llvm/Transforms/Utils/Local.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstdint> 86 #include <iterator> 87 #include <map> 88 #include <utility> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "dse" 94 95 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE"); 96 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 97 STATISTIC(NumFastStores, "Number of stores deleted"); 98 STATISTIC(NumFastOther, "Number of other instrs removed"); 99 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 100 STATISTIC(NumModifiedStores, "Number of stores modified"); 101 STATISTIC(NumCFGChecks, "Number of stores modified"); 102 STATISTIC(NumCFGTries, "Number of stores modified"); 103 STATISTIC(NumCFGSuccess, "Number of stores modified"); 104 STATISTIC(NumGetDomMemoryDefPassed, 105 "Number of times a valid candidate is returned from getDomMemoryDef"); 106 STATISTIC(NumDomMemDefChecks, 107 "Number iterations check for reads in getDomMemoryDef"); 108 109 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa", 110 "Controls which MemoryDefs are eliminated."); 111 112 static cl::opt<bool> 113 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 114 cl::init(true), cl::Hidden, 115 cl::desc("Enable partial-overwrite tracking in DSE")); 116 117 static cl::opt<bool> 118 EnablePartialStoreMerging("enable-dse-partial-store-merging", 119 cl::init(true), cl::Hidden, 120 cl::desc("Enable partial store merging in DSE")); 121 122 static cl::opt<unsigned> 123 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, 124 cl::desc("The number of memory instructions to scan for " 125 "dead store elimination (default = 150)")); 126 static cl::opt<unsigned> MemorySSAUpwardsStepLimit( 127 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden, 128 cl::desc("The maximum number of steps while walking upwards to find " 129 "MemoryDefs that may be killed (default = 90)")); 130 131 static cl::opt<unsigned> MemorySSAPartialStoreLimit( 132 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, 133 cl::desc("The maximum number candidates that only partially overwrite the " 134 "killing MemoryDef to consider" 135 " (default = 5)")); 136 137 static cl::opt<unsigned> MemorySSADefsPerBlockLimit( 138 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, 139 cl::desc("The number of MemoryDefs we consider as candidates to eliminated " 140 "other stores per basic block (default = 5000)")); 141 142 static cl::opt<unsigned> MemorySSASameBBStepCost( 143 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, 144 cl::desc( 145 "The cost of a step in the same basic block as the killing MemoryDef" 146 "(default = 1)")); 147 148 static cl::opt<unsigned> 149 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), 150 cl::Hidden, 151 cl::desc("The cost of a step in a different basic " 152 "block than the killing MemoryDef" 153 "(default = 5)")); 154 155 static cl::opt<unsigned> MemorySSAPathCheckLimit( 156 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, 157 cl::desc("The maximum number of blocks to check when trying to prove that " 158 "all paths to an exit go through a killing block (default = 50)")); 159 160 // This flags allows or disallows DSE to optimize MemorySSA during its 161 // traversal. Note that DSE optimizing MemorySSA may impact other passes 162 // downstream of the DSE invocation and can lead to issues not being 163 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In 164 // those cases, the flag can be used to check if DSE's MemorySSA optimizations 165 // impact follow-up passes. 166 static cl::opt<bool> 167 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden, 168 cl::desc("Allow DSE to optimize memory accesses.")); 169 170 //===----------------------------------------------------------------------===// 171 // Helper functions 172 //===----------------------------------------------------------------------===// 173 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 174 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 175 176 /// Returns true if the end of this instruction can be safely shortened in 177 /// length. 178 static bool isShortenableAtTheEnd(Instruction *I) { 179 // Don't shorten stores for now 180 if (isa<StoreInst>(I)) 181 return false; 182 183 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 184 switch (II->getIntrinsicID()) { 185 default: return false; 186 case Intrinsic::memset: 187 case Intrinsic::memcpy: 188 case Intrinsic::memcpy_element_unordered_atomic: 189 case Intrinsic::memset_element_unordered_atomic: 190 // Do shorten memory intrinsics. 191 // FIXME: Add memmove if it's also safe to transform. 192 return true; 193 } 194 } 195 196 // Don't shorten libcalls calls for now. 197 198 return false; 199 } 200 201 /// Returns true if the beginning of this instruction can be safely shortened 202 /// in length. 203 static bool isShortenableAtTheBeginning(Instruction *I) { 204 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 205 // easily done by offsetting the source address. 206 return isa<AnyMemSetInst>(I); 207 } 208 209 static uint64_t getPointerSize(const Value *V, const DataLayout &DL, 210 const TargetLibraryInfo &TLI, 211 const Function *F) { 212 uint64_t Size; 213 ObjectSizeOpts Opts; 214 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 215 216 if (getObjectSize(V, Size, DL, &TLI, Opts)) 217 return Size; 218 return MemoryLocation::UnknownSize; 219 } 220 221 namespace { 222 223 enum OverwriteResult { 224 OW_Begin, 225 OW_Complete, 226 OW_End, 227 OW_PartialEarlierWithFullLater, 228 OW_MaybePartial, 229 OW_None, 230 OW_Unknown 231 }; 232 233 } // end anonymous namespace 234 235 /// Check if two instruction are masked stores that completely 236 /// overwrite one another. More specifically, \p KillingI has to 237 /// overwrite \p DeadI. 238 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI, 239 const Instruction *DeadI, 240 BatchAAResults &AA) { 241 const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI); 242 const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI); 243 if (KillingII == nullptr || DeadII == nullptr) 244 return OW_Unknown; 245 if (KillingII->getIntrinsicID() != Intrinsic::masked_store || 246 DeadII->getIntrinsicID() != Intrinsic::masked_store) 247 return OW_Unknown; 248 // Pointers. 249 Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts(); 250 Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts(); 251 if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr)) 252 return OW_Unknown; 253 // Masks. 254 // TODO: check that KillingII's mask is a superset of the DeadII's mask. 255 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3)) 256 return OW_Unknown; 257 return OW_Complete; 258 } 259 260 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely 261 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the 262 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin' 263 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'. 264 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was 265 /// overwritten by a killing (smaller) store which doesn't write outside the big 266 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 267 /// NOTE: This function must only be called if both \p KillingLoc and \p 268 /// DeadLoc belong to the same underlying object with valid \p KillingOff and 269 /// \p DeadOff. 270 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc, 271 const MemoryLocation &DeadLoc, 272 int64_t KillingOff, int64_t DeadOff, 273 Instruction *DeadI, 274 InstOverlapIntervalsTy &IOL) { 275 const uint64_t KillingSize = KillingLoc.Size.getValue(); 276 const uint64_t DeadSize = DeadLoc.Size.getValue(); 277 // We may now overlap, although the overlap is not complete. There might also 278 // be other incomplete overlaps, and together, they might cover the complete 279 // dead store. 280 // Note: The correctness of this logic depends on the fact that this function 281 // is not even called providing DepWrite when there are any intervening reads. 282 if (EnablePartialOverwriteTracking && 283 KillingOff < int64_t(DeadOff + DeadSize) && 284 int64_t(KillingOff + KillingSize) >= DeadOff) { 285 286 // Insert our part of the overlap into the map. 287 auto &IM = IOL[DeadI]; 288 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", " 289 << int64_t(DeadOff + DeadSize) << ") KillingLoc [" 290 << KillingOff << ", " << int64_t(KillingOff + KillingSize) 291 << ")\n"); 292 293 // Make sure that we only insert non-overlapping intervals and combine 294 // adjacent intervals. The intervals are stored in the map with the ending 295 // offset as the key (in the half-open sense) and the starting offset as 296 // the value. 297 int64_t KillingIntStart = KillingOff; 298 int64_t KillingIntEnd = KillingOff + KillingSize; 299 300 // Find any intervals ending at, or after, KillingIntStart which start 301 // before KillingIntEnd. 302 auto ILI = IM.lower_bound(KillingIntStart); 303 if (ILI != IM.end() && ILI->second <= KillingIntEnd) { 304 // This existing interval is overlapped with the current store somewhere 305 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing 306 // intervals and adjusting our start and end. 307 KillingIntStart = std::min(KillingIntStart, ILI->second); 308 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 309 ILI = IM.erase(ILI); 310 311 // Continue erasing and adjusting our end in case other previous 312 // intervals are also overlapped with the current store. 313 // 314 // |--- dead 1 ---| |--- dead 2 ---| 315 // |------- killing---------| 316 // 317 while (ILI != IM.end() && ILI->second <= KillingIntEnd) { 318 assert(ILI->second > KillingIntStart && "Unexpected interval"); 319 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 320 ILI = IM.erase(ILI); 321 } 322 } 323 324 IM[KillingIntEnd] = KillingIntStart; 325 326 ILI = IM.begin(); 327 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) { 328 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc [" 329 << DeadOff << ", " << int64_t(DeadOff + DeadSize) 330 << ") Composite KillingLoc [" << ILI->second << ", " 331 << ILI->first << ")\n"); 332 ++NumCompletePartials; 333 return OW_Complete; 334 } 335 } 336 337 // Check for a dead store which writes to all the memory locations that 338 // the killing store writes to. 339 if (EnablePartialStoreMerging && KillingOff >= DeadOff && 340 int64_t(DeadOff + DeadSize) > KillingOff && 341 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) { 342 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff 343 << ", " << int64_t(DeadOff + DeadSize) 344 << ") by a killing store [" << KillingOff << ", " 345 << int64_t(KillingOff + KillingSize) << ")\n"); 346 // TODO: Maybe come up with a better name? 347 return OW_PartialEarlierWithFullLater; 348 } 349 350 // Another interesting case is if the killing store overwrites the end of the 351 // dead store. 352 // 353 // |--dead--| 354 // |-- killing --| 355 // 356 // In this case we may want to trim the size of dead store to avoid 357 // generating stores to addresses which will definitely be overwritten killing 358 // store. 359 if (!EnablePartialOverwriteTracking && 360 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) && 361 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize))) 362 return OW_End; 363 364 // Finally, we also need to check if the killing store overwrites the 365 // beginning of the dead store. 366 // 367 // |--dead--| 368 // |-- killing --| 369 // 370 // In this case we may want to move the destination address and trim the size 371 // of dead store to avoid generating stores to addresses which will definitely 372 // be overwritten killing store. 373 if (!EnablePartialOverwriteTracking && 374 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) { 375 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) && 376 "Expect to be handled as OW_Complete"); 377 return OW_Begin; 378 } 379 // Otherwise, they don't completely overlap. 380 return OW_Unknown; 381 } 382 383 /// Returns true if the memory which is accessed by the second instruction is not 384 /// modified between the first and the second instruction. 385 /// Precondition: Second instruction must be dominated by the first 386 /// instruction. 387 static bool 388 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, 389 BatchAAResults &AA, const DataLayout &DL, 390 DominatorTree *DT) { 391 // Do a backwards scan through the CFG from SecondI to FirstI. Look for 392 // instructions which can modify the memory location accessed by SecondI. 393 // 394 // While doing the walk keep track of the address to check. It might be 395 // different in different basic blocks due to PHI translation. 396 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>; 397 SmallVector<BlockAddressPair, 16> WorkList; 398 // Keep track of the address we visited each block with. Bail out if we 399 // visit a block with different addresses. 400 DenseMap<BasicBlock *, Value *> Visited; 401 402 BasicBlock::iterator FirstBBI(FirstI); 403 ++FirstBBI; 404 BasicBlock::iterator SecondBBI(SecondI); 405 BasicBlock *FirstBB = FirstI->getParent(); 406 BasicBlock *SecondBB = SecondI->getParent(); 407 MemoryLocation MemLoc; 408 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI)) 409 MemLoc = MemoryLocation::getForDest(MemSet); 410 else 411 MemLoc = MemoryLocation::get(SecondI); 412 413 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr); 414 415 // Start checking the SecondBB. 416 WorkList.push_back( 417 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr))); 418 bool isFirstBlock = true; 419 420 // Check all blocks going backward until we reach the FirstBB. 421 while (!WorkList.empty()) { 422 BlockAddressPair Current = WorkList.pop_back_val(); 423 BasicBlock *B = Current.first; 424 PHITransAddr &Addr = Current.second; 425 Value *Ptr = Addr.getAddr(); 426 427 // Ignore instructions before FirstI if this is the FirstBB. 428 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 429 430 BasicBlock::iterator EI; 431 if (isFirstBlock) { 432 // Ignore instructions after SecondI if this is the first visit of SecondBB. 433 assert(B == SecondBB && "first block is not the store block"); 434 EI = SecondBBI; 435 isFirstBlock = false; 436 } else { 437 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 438 // In this case we also have to look at instructions after SecondI. 439 EI = B->end(); 440 } 441 for (; BI != EI; ++BI) { 442 Instruction *I = &*BI; 443 if (I->mayWriteToMemory() && I != SecondI) 444 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr)))) 445 return false; 446 } 447 if (B != FirstBB) { 448 assert(B != &FirstBB->getParent()->getEntryBlock() && 449 "Should not hit the entry block because SI must be dominated by LI"); 450 for (BasicBlock *Pred : predecessors(B)) { 451 PHITransAddr PredAddr = Addr; 452 if (PredAddr.NeedsPHITranslationFromBlock(B)) { 453 if (!PredAddr.IsPotentiallyPHITranslatable()) 454 return false; 455 if (PredAddr.PHITranslateValue(B, Pred, DT, false)) 456 return false; 457 } 458 Value *TranslatedPtr = PredAddr.getAddr(); 459 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr)); 460 if (!Inserted.second) { 461 // We already visited this block before. If it was with a different 462 // address - bail out! 463 if (TranslatedPtr != Inserted.first->second) 464 return false; 465 // ... otherwise just skip it. 466 continue; 467 } 468 WorkList.push_back(std::make_pair(Pred, PredAddr)); 469 } 470 } 471 } 472 return true; 473 } 474 475 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart, 476 uint64_t &DeadSize, int64_t KillingStart, 477 uint64_t KillingSize, bool IsOverwriteEnd) { 478 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI); 479 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne(); 480 481 // We assume that memet/memcpy operates in chunks of the "largest" native 482 // type size and aligned on the same value. That means optimal start and size 483 // of memset/memcpy should be modulo of preferred alignment of that type. That 484 // is it there is no any sense in trying to reduce store size any further 485 // since any "extra" stores comes for free anyway. 486 // On the other hand, maximum alignment we can achieve is limited by alignment 487 // of initial store. 488 489 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the 490 // "largest" native type. 491 // Note: What is the proper way to get that value? 492 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else? 493 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign); 494 495 int64_t ToRemoveStart = 0; 496 uint64_t ToRemoveSize = 0; 497 // Compute start and size of the region to remove. Make sure 'PrefAlign' is 498 // maintained on the remaining store. 499 if (IsOverwriteEnd) { 500 // Calculate required adjustment for 'KillingStart' in order to keep 501 // remaining store size aligned on 'PerfAlign'. 502 uint64_t Off = 503 offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign); 504 ToRemoveStart = KillingStart + Off; 505 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart)) 506 return false; 507 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart); 508 } else { 509 ToRemoveStart = DeadStart; 510 assert(KillingSize >= uint64_t(DeadStart - KillingStart) && 511 "Not overlapping accesses?"); 512 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart); 513 // Calculate required adjustment for 'ToRemoveSize'in order to keep 514 // start of the remaining store aligned on 'PerfAlign'. 515 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign); 516 if (Off != 0) { 517 if (ToRemoveSize <= (PrefAlign.value() - Off)) 518 return false; 519 ToRemoveSize -= PrefAlign.value() - Off; 520 } 521 assert(isAligned(PrefAlign, ToRemoveSize) && 522 "Should preserve selected alignment"); 523 } 524 525 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove"); 526 assert(DeadSize > ToRemoveSize && "Can't remove more than original size"); 527 528 uint64_t NewSize = DeadSize - ToRemoveSize; 529 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) { 530 // When shortening an atomic memory intrinsic, the newly shortened 531 // length must remain an integer multiple of the element size. 532 const uint32_t ElementSize = AMI->getElementSizeInBytes(); 533 if (0 != NewSize % ElementSize) 534 return false; 535 } 536 537 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 538 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI 539 << "\n KILLER [" << ToRemoveStart << ", " 540 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n"); 541 542 Value *DeadWriteLength = DeadIntrinsic->getLength(); 543 Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize); 544 DeadIntrinsic->setLength(TrimmedLength); 545 DeadIntrinsic->setDestAlignment(PrefAlign); 546 547 if (!IsOverwriteEnd) { 548 Value *OrigDest = DeadIntrinsic->getRawDest(); 549 Type *Int8PtrTy = 550 Type::getInt8PtrTy(DeadIntrinsic->getContext(), 551 OrigDest->getType()->getPointerAddressSpace()); 552 Value *Dest = OrigDest; 553 if (OrigDest->getType() != Int8PtrTy) 554 Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI); 555 Value *Indices[1] = { 556 ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)}; 557 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds( 558 Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI); 559 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc()); 560 if (NewDestGEP->getType() != OrigDest->getType()) 561 NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(), 562 "", DeadI); 563 DeadIntrinsic->setDest(NewDestGEP); 564 } 565 566 // Finally update start and size of dead access. 567 if (!IsOverwriteEnd) 568 DeadStart += ToRemoveSize; 569 DeadSize = NewSize; 570 571 return true; 572 } 573 574 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, 575 int64_t &DeadStart, uint64_t &DeadSize) { 576 if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI)) 577 return false; 578 579 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 580 int64_t KillingStart = OII->second; 581 uint64_t KillingSize = OII->first - KillingStart; 582 583 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 584 585 if (KillingStart > DeadStart && 586 // Note: "KillingStart - KillingStart" is known to be positive due to 587 // preceding check. 588 (uint64_t)(KillingStart - DeadStart) < DeadSize && 589 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to 590 // be non negative due to preceding checks. 591 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) { 592 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 593 true)) { 594 IntervalMap.erase(OII); 595 return true; 596 } 597 } 598 return false; 599 } 600 601 static bool tryToShortenBegin(Instruction *DeadI, 602 OverlapIntervalsTy &IntervalMap, 603 int64_t &DeadStart, uint64_t &DeadSize) { 604 if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI)) 605 return false; 606 607 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 608 int64_t KillingStart = OII->second; 609 uint64_t KillingSize = OII->first - KillingStart; 610 611 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 612 613 if (KillingStart <= DeadStart && 614 // Note: "DeadStart - KillingStart" is known to be non negative due to 615 // preceding check. 616 KillingSize > (uint64_t)(DeadStart - KillingStart)) { 617 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to 618 // be positive due to preceding checks. 619 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize && 620 "Should have been handled as OW_Complete"); 621 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 622 false)) { 623 IntervalMap.erase(OII); 624 return true; 625 } 626 } 627 return false; 628 } 629 630 static Constant * 631 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI, 632 int64_t KillingOffset, int64_t DeadOffset, 633 const DataLayout &DL, BatchAAResults &AA, 634 DominatorTree *DT) { 635 636 if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) && 637 DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) && 638 KillingI && isa<ConstantInt>(KillingI->getValueOperand()) && 639 DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) && 640 memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) { 641 // If the store we find is: 642 // a) partially overwritten by the store to 'Loc' 643 // b) the killing store is fully contained in the dead one and 644 // c) they both have a constant value 645 // d) none of the two stores need padding 646 // Merge the two stores, replacing the dead store's value with a 647 // merge of both values. 648 // TODO: Deal with other constant types (vectors, etc), and probably 649 // some mem intrinsics (if needed) 650 651 APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue(); 652 APInt KillingValue = 653 cast<ConstantInt>(KillingI->getValueOperand())->getValue(); 654 unsigned KillingBits = KillingValue.getBitWidth(); 655 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth()); 656 KillingValue = KillingValue.zext(DeadValue.getBitWidth()); 657 658 // Offset of the smaller store inside the larger store 659 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8; 660 unsigned LShiftAmount = 661 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits 662 : BitOffsetDiff; 663 APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount, 664 LShiftAmount + KillingBits); 665 // Clear the bits we'll be replacing, then OR with the smaller 666 // store, shifted appropriately. 667 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount); 668 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI 669 << "\n Killing: " << *KillingI 670 << "\n Merged Value: " << Merged << '\n'); 671 return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged); 672 } 673 return nullptr; 674 } 675 676 namespace { 677 // Returns true if \p I is an intrisnic that does not read or write memory. 678 bool isNoopIntrinsic(Instruction *I) { 679 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 680 switch (II->getIntrinsicID()) { 681 case Intrinsic::lifetime_start: 682 case Intrinsic::lifetime_end: 683 case Intrinsic::invariant_end: 684 case Intrinsic::launder_invariant_group: 685 case Intrinsic::assume: 686 return true; 687 case Intrinsic::dbg_addr: 688 case Intrinsic::dbg_declare: 689 case Intrinsic::dbg_label: 690 case Intrinsic::dbg_value: 691 llvm_unreachable("Intrinsic should not be modeled in MemorySSA"); 692 default: 693 return false; 694 } 695 } 696 return false; 697 } 698 699 // Check if we can ignore \p D for DSE. 700 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) { 701 Instruction *DI = D->getMemoryInst(); 702 // Calls that only access inaccessible memory cannot read or write any memory 703 // locations we consider for elimination. 704 if (auto *CB = dyn_cast<CallBase>(DI)) 705 if (CB->onlyAccessesInaccessibleMemory()) 706 return true; 707 708 // We can eliminate stores to locations not visible to the caller across 709 // throwing instructions. 710 if (DI->mayThrow() && !DefVisibleToCaller) 711 return true; 712 713 // We can remove the dead stores, irrespective of the fence and its ordering 714 // (release/acquire/seq_cst). Fences only constraints the ordering of 715 // already visible stores, it does not make a store visible to other 716 // threads. So, skipping over a fence does not change a store from being 717 // dead. 718 if (isa<FenceInst>(DI)) 719 return true; 720 721 // Skip intrinsics that do not really read or modify memory. 722 if (isNoopIntrinsic(DI)) 723 return true; 724 725 return false; 726 } 727 728 struct DSEState { 729 Function &F; 730 AliasAnalysis &AA; 731 EarliestEscapeInfo EI; 732 733 /// The single BatchAA instance that is used to cache AA queries. It will 734 /// not be invalidated over the whole run. This is safe, because: 735 /// 1. Only memory writes are removed, so the alias cache for memory 736 /// locations remains valid. 737 /// 2. No new instructions are added (only instructions removed), so cached 738 /// information for a deleted value cannot be accessed by a re-used new 739 /// value pointer. 740 BatchAAResults BatchAA; 741 742 MemorySSA &MSSA; 743 DominatorTree &DT; 744 PostDominatorTree &PDT; 745 const TargetLibraryInfo &TLI; 746 const DataLayout &DL; 747 const LoopInfo &LI; 748 749 // Whether the function contains any irreducible control flow, useful for 750 // being accurately able to detect loops. 751 bool ContainsIrreducibleLoops; 752 753 // All MemoryDefs that potentially could kill other MemDefs. 754 SmallVector<MemoryDef *, 64> MemDefs; 755 // Any that should be skipped as they are already deleted 756 SmallPtrSet<MemoryAccess *, 4> SkipStores; 757 // Keep track whether a given object is captured before return or not. 758 DenseMap<const Value *, bool> CapturedBeforeReturn; 759 // Keep track of all of the objects that are invisible to the caller after 760 // the function returns. 761 DenseMap<const Value *, bool> InvisibleToCallerAfterRet; 762 // Keep track of blocks with throwing instructions not modeled in MemorySSA. 763 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks; 764 // Post-order numbers for each basic block. Used to figure out if memory 765 // accesses are executed before another access. 766 DenseMap<BasicBlock *, unsigned> PostOrderNumbers; 767 // Values that are only used with assumes. Used to refine pointer escape 768 // analysis. 769 SmallPtrSet<const Value *, 32> EphValues; 770 771 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per 772 /// basic block. 773 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs; 774 // Check if there are root nodes that are terminated by UnreachableInst. 775 // Those roots pessimize post-dominance queries. If there are such roots, 776 // fall back to CFG scan starting from all non-unreachable roots. 777 bool AnyUnreachableExit; 778 779 // Class contains self-reference, make sure it's not copied/moved. 780 DSEState(const DSEState &) = delete; 781 DSEState &operator=(const DSEState &) = delete; 782 783 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, 784 PostDominatorTree &PDT, AssumptionCache &AC, 785 const TargetLibraryInfo &TLI, const LoopInfo &LI) 786 : F(F), AA(AA), EI(DT, LI, EphValues), BatchAA(AA, &EI), MSSA(MSSA), 787 DT(DT), PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) { 788 // Collect blocks with throwing instructions not modeled in MemorySSA and 789 // alloc-like objects. 790 unsigned PO = 0; 791 for (BasicBlock *BB : post_order(&F)) { 792 PostOrderNumbers[BB] = PO++; 793 for (Instruction &I : *BB) { 794 MemoryAccess *MA = MSSA.getMemoryAccess(&I); 795 if (I.mayThrow() && !MA) 796 ThrowingBlocks.insert(I.getParent()); 797 798 auto *MD = dyn_cast_or_null<MemoryDef>(MA); 799 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit && 800 (getLocForWrite(&I) || isMemTerminatorInst(&I))) 801 MemDefs.push_back(MD); 802 } 803 } 804 805 // Treat byval or inalloca arguments the same as Allocas, stores to them are 806 // dead at the end of the function. 807 for (Argument &AI : F.args()) 808 if (AI.hasPassPointeeByValueCopyAttr()) 809 InvisibleToCallerAfterRet.insert({&AI, true}); 810 811 // Collect whether there is any irreducible control flow in the function. 812 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI); 813 814 AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) { 815 return isa<UnreachableInst>(E->getTerminator()); 816 }); 817 818 CodeMetrics::collectEphemeralValues(&F, &AC, EphValues); 819 } 820 821 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p 822 /// KillingI instruction) completely overwrites a store to the 'DeadLoc' 823 /// location (by \p DeadI instruction). 824 /// Return OW_MaybePartial if \p KillingI does not completely overwrite 825 /// \p DeadI, but they both write to the same underlying object. In that 826 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites 827 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the 828 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined. 829 OverwriteResult isOverwrite(const Instruction *KillingI, 830 const Instruction *DeadI, 831 const MemoryLocation &KillingLoc, 832 const MemoryLocation &DeadLoc, 833 int64_t &KillingOff, int64_t &DeadOff) { 834 // AliasAnalysis does not always account for loops. Limit overwrite checks 835 // to dependencies for which we can guarantee they are independent of any 836 // loops they are in. 837 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc)) 838 return OW_Unknown; 839 840 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts(); 841 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts(); 842 const Value *DeadUndObj = getUnderlyingObject(DeadPtr); 843 const Value *KillingUndObj = getUnderlyingObject(KillingPtr); 844 845 // Check whether the killing store overwrites the whole object, in which 846 // case the size/offset of the dead store does not matter. 847 if (DeadUndObj == KillingUndObj && KillingLoc.Size.isPrecise()) { 848 uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F); 849 if (KillingUndObjSize != MemoryLocation::UnknownSize && 850 KillingUndObjSize == KillingLoc.Size.getValue()) 851 return OW_Complete; 852 } 853 854 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll 855 // get imprecise values here, though (except for unknown sizes). 856 if (!KillingLoc.Size.isPrecise() || !DeadLoc.Size.isPrecise()) { 857 // In case no constant size is known, try to an IR values for the number 858 // of bytes written and check if they match. 859 const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI); 860 const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI); 861 if (KillingMemI && DeadMemI) { 862 const Value *KillingV = KillingMemI->getLength(); 863 const Value *DeadV = DeadMemI->getLength(); 864 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc)) 865 return OW_Complete; 866 } 867 868 // Masked stores have imprecise locations, but we can reason about them 869 // to some extent. 870 return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA); 871 } 872 873 const uint64_t KillingSize = KillingLoc.Size.getValue(); 874 const uint64_t DeadSize = DeadLoc.Size.getValue(); 875 876 // Query the alias information 877 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc); 878 879 // If the start pointers are the same, we just have to compare sizes to see if 880 // the killing store was larger than the dead store. 881 if (AAR == AliasResult::MustAlias) { 882 // Make sure that the KillingSize size is >= the DeadSize size. 883 if (KillingSize >= DeadSize) 884 return OW_Complete; 885 } 886 887 // If we hit a partial alias we may have a full overwrite 888 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) { 889 int32_t Off = AAR.getOffset(); 890 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize) 891 return OW_Complete; 892 } 893 894 // If we can't resolve the same pointers to the same object, then we can't 895 // analyze them at all. 896 if (DeadUndObj != KillingUndObj) { 897 // Non aliasing stores to different objects don't overlap. Note that 898 // if the killing store is known to overwrite whole object (out of 899 // bounds access overwrites whole object as well) then it is assumed to 900 // completely overwrite any store to the same object even if they don't 901 // actually alias (see next check). 902 if (AAR == AliasResult::NoAlias) 903 return OW_None; 904 return OW_Unknown; 905 } 906 907 // Okay, we have stores to two completely different pointers. Try to 908 // decompose the pointer into a "base + constant_offset" form. If the base 909 // pointers are equal, then we can reason about the two stores. 910 DeadOff = 0; 911 KillingOff = 0; 912 const Value *DeadBasePtr = 913 GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL); 914 const Value *KillingBasePtr = 915 GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL); 916 917 // If the base pointers still differ, we have two completely different 918 // stores. 919 if (DeadBasePtr != KillingBasePtr) 920 return OW_Unknown; 921 922 // The killing access completely overlaps the dead store if and only if 923 // both start and end of the dead one is "inside" the killing one: 924 // |<->|--dead--|<->| 925 // |-----killing------| 926 // Accesses may overlap if and only if start of one of them is "inside" 927 // another one: 928 // |<->|--dead--|<-------->| 929 // |-------killing--------| 930 // OR 931 // |-------dead-------| 932 // |<->|---killing---|<----->| 933 // 934 // We have to be careful here as *Off is signed while *.Size is unsigned. 935 936 // Check if the dead access starts "not before" the killing one. 937 if (DeadOff >= KillingOff) { 938 // If the dead access ends "not after" the killing access then the 939 // dead one is completely overwritten by the killing one. 940 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize) 941 return OW_Complete; 942 // If start of the dead access is "before" end of the killing access 943 // then accesses overlap. 944 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize) 945 return OW_MaybePartial; 946 } 947 // If start of the killing access is "before" end of the dead access then 948 // accesses overlap. 949 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) { 950 return OW_MaybePartial; 951 } 952 953 // Can reach here only if accesses are known not to overlap. 954 return OW_None; 955 } 956 957 bool isInvisibleToCallerAfterRet(const Value *V) { 958 if (isa<AllocaInst>(V)) 959 return true; 960 auto I = InvisibleToCallerAfterRet.insert({V, false}); 961 if (I.second) { 962 if (!isInvisibleToCallerOnUnwind(V)) { 963 I.first->second = false; 964 } else if (isNoAliasCall(V)) { 965 I.first->second = !PointerMayBeCaptured(V, true, false, EphValues); 966 } 967 } 968 return I.first->second; 969 } 970 971 bool isInvisibleToCallerOnUnwind(const Value *V) { 972 bool RequiresNoCaptureBeforeUnwind; 973 if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind)) 974 return false; 975 if (!RequiresNoCaptureBeforeUnwind) 976 return true; 977 978 auto I = CapturedBeforeReturn.insert({V, true}); 979 if (I.second) 980 // NOTE: This could be made more precise by PointerMayBeCapturedBefore 981 // with the killing MemoryDef. But we refrain from doing so for now to 982 // limit compile-time and this does not cause any changes to the number 983 // of stores removed on a large test set in practice. 984 I.first->second = PointerMayBeCaptured(V, false, true, EphValues); 985 return !I.first->second; 986 } 987 988 Optional<MemoryLocation> getLocForWrite(Instruction *I) const { 989 if (!I->mayWriteToMemory()) 990 return None; 991 992 if (auto *CB = dyn_cast<CallBase>(I)) 993 return MemoryLocation::getForDest(CB, TLI); 994 995 return MemoryLocation::getOrNone(I); 996 } 997 998 /// Assuming this instruction has a dead analyzable write, can we delete 999 /// this instruction? 1000 bool isRemovable(Instruction *I) { 1001 assert(getLocForWrite(I) && "Must have analyzable write"); 1002 1003 // Don't remove volatile/atomic stores. 1004 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1005 return SI->isUnordered(); 1006 1007 if (auto *CB = dyn_cast<CallBase>(I)) { 1008 // Don't remove volatile memory intrinsics. 1009 if (auto *MI = dyn_cast<MemIntrinsic>(CB)) 1010 return !MI->isVolatile(); 1011 1012 // Never remove dead lifetime intrinsics, e.g. because they are followed 1013 // by a free. 1014 if (CB->isLifetimeStartOrEnd()) 1015 return false; 1016 1017 return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() && 1018 !CB->isTerminator(); 1019 } 1020 1021 return false; 1022 } 1023 1024 /// Returns true if \p UseInst completely overwrites \p DefLoc 1025 /// (stored by \p DefInst). 1026 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst, 1027 Instruction *UseInst) { 1028 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a 1029 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a 1030 // MemoryDef. 1031 if (!UseInst->mayWriteToMemory()) 1032 return false; 1033 1034 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1035 if (CB->onlyAccessesInaccessibleMemory()) 1036 return false; 1037 1038 int64_t InstWriteOffset, DepWriteOffset; 1039 if (auto CC = getLocForWrite(UseInst)) 1040 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset, 1041 DepWriteOffset) == OW_Complete; 1042 return false; 1043 } 1044 1045 /// Returns true if \p Def is not read before returning from the function. 1046 bool isWriteAtEndOfFunction(MemoryDef *Def) { 1047 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " (" 1048 << *Def->getMemoryInst() 1049 << ") is at the end the function \n"); 1050 1051 auto MaybeLoc = getLocForWrite(Def->getMemoryInst()); 1052 if (!MaybeLoc) { 1053 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n"); 1054 return false; 1055 } 1056 1057 SmallVector<MemoryAccess *, 4> WorkList; 1058 SmallPtrSet<MemoryAccess *, 8> Visited; 1059 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) { 1060 if (!Visited.insert(Acc).second) 1061 return; 1062 for (Use &U : Acc->uses()) 1063 WorkList.push_back(cast<MemoryAccess>(U.getUser())); 1064 }; 1065 PushMemUses(Def); 1066 for (unsigned I = 0; I < WorkList.size(); I++) { 1067 if (WorkList.size() >= MemorySSAScanLimit) { 1068 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n"); 1069 return false; 1070 } 1071 1072 MemoryAccess *UseAccess = WorkList[I]; 1073 // Simply adding the users of MemoryPhi to the worklist is not enough, 1074 // because we might miss read clobbers in different iterations of a loop, 1075 // for example. 1076 // TODO: Add support for phi translation to handle the loop case. 1077 if (isa<MemoryPhi>(UseAccess)) 1078 return false; 1079 1080 // TODO: Checking for aliasing is expensive. Consider reducing the amount 1081 // of times this is called and/or caching it. 1082 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1083 if (isReadClobber(*MaybeLoc, UseInst)) { 1084 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n"); 1085 return false; 1086 } 1087 1088 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) 1089 PushMemUses(UseDef); 1090 } 1091 return true; 1092 } 1093 1094 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a 1095 /// pair with the MemoryLocation terminated by \p I and a boolean flag 1096 /// indicating whether \p I is a free-like call. 1097 Optional<std::pair<MemoryLocation, bool>> 1098 getLocForTerminator(Instruction *I) const { 1099 uint64_t Len; 1100 Value *Ptr; 1101 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len), 1102 m_Value(Ptr)))) 1103 return {std::make_pair(MemoryLocation(Ptr, Len), false)}; 1104 1105 if (auto *CB = dyn_cast<CallBase>(I)) { 1106 if (isFreeCall(I, &TLI)) 1107 return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)), 1108 true)}; 1109 } 1110 1111 return None; 1112 } 1113 1114 /// Returns true if \p I is a memory terminator instruction like 1115 /// llvm.lifetime.end or free. 1116 bool isMemTerminatorInst(Instruction *I) const { 1117 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1118 return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) || 1119 isFreeCall(I, &TLI); 1120 } 1121 1122 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from 1123 /// instruction \p AccessI. 1124 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI, 1125 Instruction *MaybeTerm) { 1126 Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc = 1127 getLocForTerminator(MaybeTerm); 1128 1129 if (!MaybeTermLoc) 1130 return false; 1131 1132 // If the terminator is a free-like call, all accesses to the underlying 1133 // object can be considered terminated. 1134 if (getUnderlyingObject(Loc.Ptr) != 1135 getUnderlyingObject(MaybeTermLoc->first.Ptr)) 1136 return false; 1137 1138 auto TermLoc = MaybeTermLoc->first; 1139 if (MaybeTermLoc->second) { 1140 const Value *LocUO = getUnderlyingObject(Loc.Ptr); 1141 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO); 1142 } 1143 int64_t InstWriteOffset = 0; 1144 int64_t DepWriteOffset = 0; 1145 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset, 1146 DepWriteOffset) == OW_Complete; 1147 } 1148 1149 // Returns true if \p Use may read from \p DefLoc. 1150 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) { 1151 if (isNoopIntrinsic(UseInst)) 1152 return false; 1153 1154 // Monotonic or weaker atomic stores can be re-ordered and do not need to be 1155 // treated as read clobber. 1156 if (auto SI = dyn_cast<StoreInst>(UseInst)) 1157 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic); 1158 1159 if (!UseInst->mayReadFromMemory()) 1160 return false; 1161 1162 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1163 if (CB->onlyAccessesInaccessibleMemory()) 1164 return false; 1165 1166 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc)); 1167 } 1168 1169 /// Returns true if a dependency between \p Current and \p KillingDef is 1170 /// guaranteed to be loop invariant for the loops that they are in. Either 1171 /// because they are known to be in the same block, in the same loop level or 1172 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation 1173 /// during execution of the containing function. 1174 bool isGuaranteedLoopIndependent(const Instruction *Current, 1175 const Instruction *KillingDef, 1176 const MemoryLocation &CurrentLoc) { 1177 // If the dependency is within the same block or loop level (being careful 1178 // of irreducible loops), we know that AA will return a valid result for the 1179 // memory dependency. (Both at the function level, outside of any loop, 1180 // would also be valid but we currently disable that to limit compile time). 1181 if (Current->getParent() == KillingDef->getParent()) 1182 return true; 1183 const Loop *CurrentLI = LI.getLoopFor(Current->getParent()); 1184 if (!ContainsIrreducibleLoops && CurrentLI && 1185 CurrentLI == LI.getLoopFor(KillingDef->getParent())) 1186 return true; 1187 // Otherwise check the memory location is invariant to any loops. 1188 return isGuaranteedLoopInvariant(CurrentLoc.Ptr); 1189 } 1190 1191 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1192 /// loop. In particular, this guarantees that it only references a single 1193 /// MemoryLocation during execution of the containing function. 1194 bool isGuaranteedLoopInvariant(const Value *Ptr) { 1195 Ptr = Ptr->stripPointerCasts(); 1196 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) 1197 if (GEP->hasAllConstantIndices()) 1198 Ptr = GEP->getPointerOperand()->stripPointerCasts(); 1199 1200 if (auto *I = dyn_cast<Instruction>(Ptr)) 1201 return I->getParent()->isEntryBlock(); 1202 return true; 1203 } 1204 1205 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess, 1206 // with no read access between them or on any other path to a function exit 1207 // block if \p KillingLoc is not accessible after the function returns. If 1208 // there is no such MemoryDef, return None. The returned value may not 1209 // (completely) overwrite \p KillingLoc. Currently we bail out when we 1210 // encounter an aliasing MemoryUse (read). 1211 Optional<MemoryAccess *> 1212 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess, 1213 const MemoryLocation &KillingLoc, const Value *KillingUndObj, 1214 unsigned &ScanLimit, unsigned &WalkerStepLimit, 1215 bool IsMemTerm, unsigned &PartialLimit) { 1216 if (ScanLimit == 0 || WalkerStepLimit == 0) { 1217 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1218 return None; 1219 } 1220 1221 MemoryAccess *Current = StartAccess; 1222 Instruction *KillingI = KillingDef->getMemoryInst(); 1223 LLVM_DEBUG(dbgs() << " trying to get dominating access\n"); 1224 1225 // Only optimize defining access of KillingDef when directly starting at its 1226 // defining access. The defining access also must only access KillingLoc. At 1227 // the moment we only support instructions with a single write location, so 1228 // it should be sufficient to disable optimizations for instructions that 1229 // also read from memory. 1230 bool CanOptimize = OptimizeMemorySSA && 1231 KillingDef->getDefiningAccess() == StartAccess && 1232 !KillingI->mayReadFromMemory(); 1233 1234 // Find the next clobbering Mod access for DefLoc, starting at StartAccess. 1235 Optional<MemoryLocation> CurrentLoc; 1236 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) { 1237 LLVM_DEBUG({ 1238 dbgs() << " visiting " << *Current; 1239 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current)) 1240 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst() 1241 << ")"; 1242 dbgs() << "\n"; 1243 }); 1244 1245 // Reached TOP. 1246 if (MSSA.isLiveOnEntryDef(Current)) { 1247 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n"); 1248 if (CanOptimize && Current != KillingDef->getDefiningAccess()) 1249 // The first clobbering def is... none. 1250 KillingDef->setOptimized(Current); 1251 return None; 1252 } 1253 1254 // Cost of a step. Accesses in the same block are more likely to be valid 1255 // candidates for elimination, hence consider them cheaper. 1256 unsigned StepCost = KillingDef->getBlock() == Current->getBlock() 1257 ? MemorySSASameBBStepCost 1258 : MemorySSAOtherBBStepCost; 1259 if (WalkerStepLimit <= StepCost) { 1260 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n"); 1261 return None; 1262 } 1263 WalkerStepLimit -= StepCost; 1264 1265 // Return for MemoryPhis. They cannot be eliminated directly and the 1266 // caller is responsible for traversing them. 1267 if (isa<MemoryPhi>(Current)) { 1268 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n"); 1269 return Current; 1270 } 1271 1272 // Below, check if CurrentDef is a valid candidate to be eliminated by 1273 // KillingDef. If it is not, check the next candidate. 1274 MemoryDef *CurrentDef = cast<MemoryDef>(Current); 1275 Instruction *CurrentI = CurrentDef->getMemoryInst(); 1276 1277 if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) { 1278 CanOptimize = false; 1279 continue; 1280 } 1281 1282 // Before we try to remove anything, check for any extra throwing 1283 // instructions that block us from DSEing 1284 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) { 1285 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n"); 1286 return None; 1287 } 1288 1289 // Check for anything that looks like it will be a barrier to further 1290 // removal 1291 if (isDSEBarrier(KillingUndObj, CurrentI)) { 1292 LLVM_DEBUG(dbgs() << " ... skip, barrier\n"); 1293 return None; 1294 } 1295 1296 // If Current is known to be on path that reads DefLoc or is a read 1297 // clobber, bail out, as the path is not profitable. We skip this check 1298 // for intrinsic calls, because the code knows how to handle memcpy 1299 // intrinsics. 1300 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI)) 1301 return None; 1302 1303 // Quick check if there are direct uses that are read-clobbers. 1304 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) { 1305 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser())) 1306 return !MSSA.dominates(StartAccess, UseOrDef) && 1307 isReadClobber(KillingLoc, UseOrDef->getMemoryInst()); 1308 return false; 1309 })) { 1310 LLVM_DEBUG(dbgs() << " ... found a read clobber\n"); 1311 return None; 1312 } 1313 1314 // If Current does not have an analyzable write location or is not 1315 // removable, skip it. 1316 CurrentLoc = getLocForWrite(CurrentI); 1317 if (!CurrentLoc || !isRemovable(CurrentI)) { 1318 CanOptimize = false; 1319 continue; 1320 } 1321 1322 // AliasAnalysis does not account for loops. Limit elimination to 1323 // candidates for which we can guarantee they always store to the same 1324 // memory location and not located in different loops. 1325 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) { 1326 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n"); 1327 CanOptimize = false; 1328 continue; 1329 } 1330 1331 if (IsMemTerm) { 1332 // If the killing def is a memory terminator (e.g. lifetime.end), check 1333 // the next candidate if the current Current does not write the same 1334 // underlying object as the terminator. 1335 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) { 1336 CanOptimize = false; 1337 continue; 1338 } 1339 } else { 1340 int64_t KillingOffset = 0; 1341 int64_t DeadOffset = 0; 1342 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc, 1343 KillingOffset, DeadOffset); 1344 if (CanOptimize) { 1345 // CurrentDef is the earliest write clobber of KillingDef. Use it as 1346 // optimized access. Do not optimize if CurrentDef is already the 1347 // defining access of KillingDef. 1348 if (CurrentDef != KillingDef->getDefiningAccess() && 1349 (OR == OW_Complete || OR == OW_MaybePartial)) 1350 KillingDef->setOptimized(CurrentDef); 1351 1352 // Once a may-aliasing def is encountered do not set an optimized 1353 // access. 1354 if (OR != OW_None) 1355 CanOptimize = false; 1356 } 1357 1358 // If Current does not write to the same object as KillingDef, check 1359 // the next candidate. 1360 if (OR == OW_Unknown || OR == OW_None) 1361 continue; 1362 else if (OR == OW_MaybePartial) { 1363 // If KillingDef only partially overwrites Current, check the next 1364 // candidate if the partial step limit is exceeded. This aggressively 1365 // limits the number of candidates for partial store elimination, 1366 // which are less likely to be removable in the end. 1367 if (PartialLimit <= 1) { 1368 WalkerStepLimit -= 1; 1369 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n"); 1370 continue; 1371 } 1372 PartialLimit -= 1; 1373 } 1374 } 1375 break; 1376 }; 1377 1378 // Accesses to objects accessible after the function returns can only be 1379 // eliminated if the access is dead along all paths to the exit. Collect 1380 // the blocks with killing (=completely overwriting MemoryDefs) and check if 1381 // they cover all paths from MaybeDeadAccess to any function exit. 1382 SmallPtrSet<Instruction *, 16> KillingDefs; 1383 KillingDefs.insert(KillingDef->getMemoryInst()); 1384 MemoryAccess *MaybeDeadAccess = Current; 1385 MemoryLocation MaybeDeadLoc = *CurrentLoc; 1386 Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst(); 1387 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " (" 1388 << *MaybeDeadI << ")\n"); 1389 1390 SmallSetVector<MemoryAccess *, 32> WorkList; 1391 auto PushMemUses = [&WorkList](MemoryAccess *Acc) { 1392 for (Use &U : Acc->uses()) 1393 WorkList.insert(cast<MemoryAccess>(U.getUser())); 1394 }; 1395 PushMemUses(MaybeDeadAccess); 1396 1397 // Check if DeadDef may be read. 1398 for (unsigned I = 0; I < WorkList.size(); I++) { 1399 MemoryAccess *UseAccess = WorkList[I]; 1400 1401 LLVM_DEBUG(dbgs() << " " << *UseAccess); 1402 // Bail out if the number of accesses to check exceeds the scan limit. 1403 if (ScanLimit < (WorkList.size() - I)) { 1404 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1405 return None; 1406 } 1407 --ScanLimit; 1408 NumDomMemDefChecks++; 1409 1410 if (isa<MemoryPhi>(UseAccess)) { 1411 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) { 1412 return DT.properlyDominates(KI->getParent(), 1413 UseAccess->getBlock()); 1414 })) { 1415 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n"); 1416 continue; 1417 } 1418 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n"); 1419 PushMemUses(UseAccess); 1420 continue; 1421 } 1422 1423 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1424 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n"); 1425 1426 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) { 1427 return DT.dominates(KI, UseInst); 1428 })) { 1429 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n"); 1430 continue; 1431 } 1432 1433 // A memory terminator kills all preceeding MemoryDefs and all succeeding 1434 // MemoryAccesses. We do not have to check it's users. 1435 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1436 LLVM_DEBUG( 1437 dbgs() 1438 << " ... skipping, memterminator invalidates following accesses\n"); 1439 continue; 1440 } 1441 1442 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) { 1443 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n"); 1444 PushMemUses(UseAccess); 1445 continue; 1446 } 1447 1448 if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) { 1449 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n"); 1450 return None; 1451 } 1452 1453 // Uses which may read the original MemoryDef mean we cannot eliminate the 1454 // original MD. Stop walk. 1455 if (isReadClobber(MaybeDeadLoc, UseInst)) { 1456 LLVM_DEBUG(dbgs() << " ... found read clobber\n"); 1457 return None; 1458 } 1459 1460 // If this worklist walks back to the original memory access (and the 1461 // pointer is not guarenteed loop invariant) then we cannot assume that a 1462 // store kills itself. 1463 if (MaybeDeadAccess == UseAccess && 1464 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) { 1465 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n"); 1466 return None; 1467 } 1468 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check 1469 // if it reads the memory location. 1470 // TODO: It would probably be better to check for self-reads before 1471 // calling the function. 1472 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) { 1473 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n"); 1474 continue; 1475 } 1476 1477 // Check all uses for MemoryDefs, except for defs completely overwriting 1478 // the original location. Otherwise we have to check uses of *all* 1479 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might 1480 // miss cases like the following 1481 // 1 = Def(LoE) ; <----- DeadDef stores [0,1] 1482 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3] 1483 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3]. 1484 // (The Use points to the *first* Def it may alias) 1485 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias, 1486 // stores [0,1] 1487 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) { 1488 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1489 BasicBlock *MaybeKillingBlock = UseInst->getParent(); 1490 if (PostOrderNumbers.find(MaybeKillingBlock)->second < 1491 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) { 1492 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1493 LLVM_DEBUG(dbgs() 1494 << " ... found killing def " << *UseInst << "\n"); 1495 KillingDefs.insert(UseInst); 1496 } 1497 } else { 1498 LLVM_DEBUG(dbgs() 1499 << " ... found preceeding def " << *UseInst << "\n"); 1500 return None; 1501 } 1502 } else 1503 PushMemUses(UseDef); 1504 } 1505 } 1506 1507 // For accesses to locations visible after the function returns, make sure 1508 // that the location is dead (=overwritten) along all paths from 1509 // MaybeDeadAccess to the exit. 1510 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1511 SmallPtrSet<BasicBlock *, 16> KillingBlocks; 1512 for (Instruction *KD : KillingDefs) 1513 KillingBlocks.insert(KD->getParent()); 1514 assert(!KillingBlocks.empty() && 1515 "Expected at least a single killing block"); 1516 1517 // Find the common post-dominator of all killing blocks. 1518 BasicBlock *CommonPred = *KillingBlocks.begin(); 1519 for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) { 1520 if (!CommonPred) 1521 break; 1522 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB); 1523 } 1524 1525 // If the common post-dominator does not post-dominate MaybeDeadAccess, 1526 // there is a path from MaybeDeadAccess to an exit not going through a 1527 // killing block. 1528 if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) { 1529 if (!AnyUnreachableExit) 1530 return None; 1531 1532 // Fall back to CFG scan starting at all non-unreachable roots if not 1533 // all paths to the exit go through CommonPred. 1534 CommonPred = nullptr; 1535 } 1536 1537 // If CommonPred itself is in the set of killing blocks, we're done. 1538 if (KillingBlocks.count(CommonPred)) 1539 return {MaybeDeadAccess}; 1540 1541 SetVector<BasicBlock *> WorkList; 1542 // If CommonPred is null, there are multiple exits from the function. 1543 // They all have to be added to the worklist. 1544 if (CommonPred) 1545 WorkList.insert(CommonPred); 1546 else 1547 for (BasicBlock *R : PDT.roots()) { 1548 if (!isa<UnreachableInst>(R->getTerminator())) 1549 WorkList.insert(R); 1550 } 1551 1552 NumCFGTries++; 1553 // Check if all paths starting from an exit node go through one of the 1554 // killing blocks before reaching MaybeDeadAccess. 1555 for (unsigned I = 0; I < WorkList.size(); I++) { 1556 NumCFGChecks++; 1557 BasicBlock *Current = WorkList[I]; 1558 if (KillingBlocks.count(Current)) 1559 continue; 1560 if (Current == MaybeDeadAccess->getBlock()) 1561 return None; 1562 1563 // MaybeDeadAccess is reachable from the entry, so we don't have to 1564 // explore unreachable blocks further. 1565 if (!DT.isReachableFromEntry(Current)) 1566 continue; 1567 1568 for (BasicBlock *Pred : predecessors(Current)) 1569 WorkList.insert(Pred); 1570 1571 if (WorkList.size() >= MemorySSAPathCheckLimit) 1572 return None; 1573 } 1574 NumCFGSuccess++; 1575 } 1576 1577 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is 1578 // potentially dead. 1579 return {MaybeDeadAccess}; 1580 } 1581 1582 // Delete dead memory defs 1583 void deleteDeadInstruction(Instruction *SI) { 1584 MemorySSAUpdater Updater(&MSSA); 1585 SmallVector<Instruction *, 32> NowDeadInsts; 1586 NowDeadInsts.push_back(SI); 1587 --NumFastOther; 1588 1589 while (!NowDeadInsts.empty()) { 1590 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 1591 ++NumFastOther; 1592 1593 // Try to preserve debug information attached to the dead instruction. 1594 salvageDebugInfo(*DeadInst); 1595 salvageKnowledge(DeadInst); 1596 1597 // Remove the Instruction from MSSA. 1598 if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) { 1599 if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) { 1600 SkipStores.insert(MD); 1601 } 1602 1603 Updater.removeMemoryAccess(MA); 1604 } 1605 1606 auto I = IOLs.find(DeadInst->getParent()); 1607 if (I != IOLs.end()) 1608 I->second.erase(DeadInst); 1609 // Remove its operands 1610 for (Use &O : DeadInst->operands()) 1611 if (Instruction *OpI = dyn_cast<Instruction>(O)) { 1612 O = nullptr; 1613 if (isInstructionTriviallyDead(OpI, &TLI)) 1614 NowDeadInsts.push_back(OpI); 1615 } 1616 1617 EI.removeInstruction(DeadInst); 1618 DeadInst->eraseFromParent(); 1619 } 1620 } 1621 1622 // Check for any extra throws between \p KillingI and \p DeadI that block 1623 // DSE. This only checks extra maythrows (those that aren't MemoryDef's). 1624 // MemoryDef that may throw are handled during the walk from one def to the 1625 // next. 1626 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI, 1627 const Value *KillingUndObj) { 1628 // First see if we can ignore it by using the fact that KillingI is an 1629 // alloca/alloca like object that is not visible to the caller during 1630 // execution of the function. 1631 if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj)) 1632 return false; 1633 1634 if (KillingI->getParent() == DeadI->getParent()) 1635 return ThrowingBlocks.count(KillingI->getParent()); 1636 return !ThrowingBlocks.empty(); 1637 } 1638 1639 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following 1640 // instructions act as barriers: 1641 // * A memory instruction that may throw and \p KillingI accesses a non-stack 1642 // object. 1643 // * Atomic stores stronger that monotonic. 1644 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) { 1645 // If DeadI may throw it acts as a barrier, unless we are to an 1646 // alloca/alloca like object that does not escape. 1647 if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) 1648 return true; 1649 1650 // If DeadI is an atomic load/store stronger than monotonic, do not try to 1651 // eliminate/reorder it. 1652 if (DeadI->isAtomic()) { 1653 if (auto *LI = dyn_cast<LoadInst>(DeadI)) 1654 return isStrongerThanMonotonic(LI->getOrdering()); 1655 if (auto *SI = dyn_cast<StoreInst>(DeadI)) 1656 return isStrongerThanMonotonic(SI->getOrdering()); 1657 if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI)) 1658 return isStrongerThanMonotonic(ARMW->getOrdering()); 1659 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI)) 1660 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) || 1661 isStrongerThanMonotonic(CmpXchg->getFailureOrdering()); 1662 llvm_unreachable("other instructions should be skipped in MemorySSA"); 1663 } 1664 return false; 1665 } 1666 1667 /// Eliminate writes to objects that are not visible in the caller and are not 1668 /// accessed before returning from the function. 1669 bool eliminateDeadWritesAtEndOfFunction() { 1670 bool MadeChange = false; 1671 LLVM_DEBUG( 1672 dbgs() 1673 << "Trying to eliminate MemoryDefs at the end of the function\n"); 1674 for (MemoryDef *Def : llvm::reverse(MemDefs)) { 1675 if (SkipStores.contains(Def)) 1676 continue; 1677 1678 Instruction *DefI = Def->getMemoryInst(); 1679 auto DefLoc = getLocForWrite(DefI); 1680 if (!DefLoc || !isRemovable(DefI)) 1681 continue; 1682 1683 // NOTE: Currently eliminating writes at the end of a function is limited 1684 // to MemoryDefs with a single underlying object, to save compile-time. In 1685 // practice it appears the case with multiple underlying objects is very 1686 // uncommon. If it turns out to be important, we can use 1687 // getUnderlyingObjects here instead. 1688 const Value *UO = getUnderlyingObject(DefLoc->Ptr); 1689 if (!isInvisibleToCallerAfterRet(UO)) 1690 continue; 1691 1692 if (isWriteAtEndOfFunction(Def)) { 1693 // See through pointer-to-pointer bitcasts 1694 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end " 1695 "of the function\n"); 1696 deleteDeadInstruction(DefI); 1697 ++NumFastStores; 1698 MadeChange = true; 1699 } 1700 } 1701 return MadeChange; 1702 } 1703 1704 /// If we have a zero initializing memset following a call to malloc, 1705 /// try folding it into a call to calloc. 1706 bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) { 1707 Instruction *DefI = Def->getMemoryInst(); 1708 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI); 1709 if (!MemSet) 1710 // TODO: Could handle zero store to small allocation as well. 1711 return false; 1712 Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1713 if (!StoredConstant || !StoredConstant->isNullValue()) 1714 return false; 1715 1716 if (!isRemovable(DefI)) 1717 // The memset might be volatile.. 1718 return false; 1719 1720 if (F.hasFnAttribute(Attribute::SanitizeMemory) || 1721 F.hasFnAttribute(Attribute::SanitizeAddress) || 1722 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 1723 F.getName() == "calloc") 1724 return false; 1725 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO)); 1726 if (!Malloc) 1727 return false; 1728 auto *InnerCallee = Malloc->getCalledFunction(); 1729 if (!InnerCallee) 1730 return false; 1731 LibFunc Func; 1732 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 1733 Func != LibFunc_malloc) 1734 return false; 1735 1736 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) { 1737 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end 1738 // of malloc block 1739 auto *MallocBB = Malloc->getParent(), 1740 *MemsetBB = Memset->getParent(); 1741 if (MallocBB == MemsetBB) 1742 return true; 1743 auto *Ptr = Memset->getArgOperand(0); 1744 auto *TI = MallocBB->getTerminator(); 1745 ICmpInst::Predicate Pred; 1746 BasicBlock *TrueBB, *FalseBB; 1747 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB, 1748 FalseBB))) 1749 return false; 1750 if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB) 1751 return false; 1752 return true; 1753 }; 1754 1755 if (Malloc->getOperand(0) != MemSet->getLength()) 1756 return false; 1757 if (!shouldCreateCalloc(Malloc, MemSet) || 1758 !DT.dominates(Malloc, MemSet) || 1759 !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT)) 1760 return false; 1761 IRBuilder<> IRB(Malloc); 1762 const auto &DL = Malloc->getModule()->getDataLayout(); 1763 auto *Calloc = 1764 emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1), 1765 Malloc->getArgOperand(0), IRB, TLI); 1766 if (!Calloc) 1767 return false; 1768 MemorySSAUpdater Updater(&MSSA); 1769 auto *LastDef = 1770 cast<MemoryDef>(Updater.getMemorySSA()->getMemoryAccess(Malloc)); 1771 auto *NewAccess = 1772 Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), LastDef, 1773 LastDef); 1774 auto *NewAccessMD = cast<MemoryDef>(NewAccess); 1775 Updater.insertDef(NewAccessMD, /*RenameUses=*/true); 1776 Updater.removeMemoryAccess(Malloc); 1777 Malloc->replaceAllUsesWith(Calloc); 1778 Malloc->eraseFromParent(); 1779 return true; 1780 } 1781 1782 /// \returns true if \p Def is a no-op store, either because it 1783 /// directly stores back a loaded value or stores zero to a calloced object. 1784 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) { 1785 Instruction *DefI = Def->getMemoryInst(); 1786 StoreInst *Store = dyn_cast<StoreInst>(DefI); 1787 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI); 1788 Constant *StoredConstant = nullptr; 1789 if (Store) 1790 StoredConstant = dyn_cast<Constant>(Store->getOperand(0)); 1791 else if (MemSet) 1792 StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1793 else 1794 return false; 1795 1796 if (!isRemovable(DefI)) 1797 return false; 1798 1799 if (StoredConstant) { 1800 Constant *InitC = 1801 getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType()); 1802 // If the clobbering access is LiveOnEntry, no instructions between them 1803 // can modify the memory location. 1804 if (InitC && InitC == StoredConstant) 1805 return MSSA.isLiveOnEntryDef( 1806 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def)); 1807 } 1808 1809 if (!Store) 1810 return false; 1811 1812 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) { 1813 if (LoadI->getPointerOperand() == Store->getOperand(1)) { 1814 // Get the defining access for the load. 1815 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess(); 1816 // Fast path: the defining accesses are the same. 1817 if (LoadAccess == Def->getDefiningAccess()) 1818 return true; 1819 1820 // Look through phi accesses. Recursively scan all phi accesses by 1821 // adding them to a worklist. Bail when we run into a memory def that 1822 // does not match LoadAccess. 1823 SetVector<MemoryAccess *> ToCheck; 1824 MemoryAccess *Current = 1825 MSSA.getWalker()->getClobberingMemoryAccess(Def); 1826 // We don't want to bail when we run into the store memory def. But, 1827 // the phi access may point to it. So, pretend like we've already 1828 // checked it. 1829 ToCheck.insert(Def); 1830 ToCheck.insert(Current); 1831 // Start at current (1) to simulate already having checked Def. 1832 for (unsigned I = 1; I < ToCheck.size(); ++I) { 1833 Current = ToCheck[I]; 1834 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) { 1835 // Check all the operands. 1836 for (auto &Use : PhiAccess->incoming_values()) 1837 ToCheck.insert(cast<MemoryAccess>(&Use)); 1838 continue; 1839 } 1840 1841 // If we found a memory def, bail. This happens when we have an 1842 // unrelated write in between an otherwise noop store. 1843 assert(isa<MemoryDef>(Current) && 1844 "Only MemoryDefs should reach here."); 1845 // TODO: Skip no alias MemoryDefs that have no aliasing reads. 1846 // We are searching for the definition of the store's destination. 1847 // So, if that is the same definition as the load, then this is a 1848 // noop. Otherwise, fail. 1849 if (LoadAccess != Current) 1850 return false; 1851 } 1852 return true; 1853 } 1854 } 1855 1856 return false; 1857 } 1858 1859 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) { 1860 bool Changed = false; 1861 for (auto OI : IOL) { 1862 Instruction *DeadI = OI.first; 1863 MemoryLocation Loc = *getLocForWrite(DeadI); 1864 assert(isRemovable(DeadI) && "Expect only removable instruction"); 1865 1866 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 1867 int64_t DeadStart = 0; 1868 uint64_t DeadSize = Loc.Size.getValue(); 1869 GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL); 1870 OverlapIntervalsTy &IntervalMap = OI.second; 1871 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize); 1872 if (IntervalMap.empty()) 1873 continue; 1874 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize); 1875 } 1876 return Changed; 1877 } 1878 1879 /// Eliminates writes to locations where the value that is being written 1880 /// is already stored at the same location. 1881 bool eliminateRedundantStoresOfExistingValues() { 1882 bool MadeChange = false; 1883 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the " 1884 "already existing value\n"); 1885 for (auto *Def : MemDefs) { 1886 if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def)) 1887 continue; 1888 1889 Instruction *DefInst = Def->getMemoryInst(); 1890 auto MaybeDefLoc = getLocForWrite(DefInst); 1891 if (!MaybeDefLoc || !isRemovable(DefInst)) 1892 continue; 1893 1894 MemoryDef *UpperDef; 1895 // To conserve compile-time, we avoid walking to the next clobbering def. 1896 // Instead, we just try to get the optimized access, if it exists. DSE 1897 // will try to optimize defs during the earlier traversal. 1898 if (Def->isOptimized()) 1899 UpperDef = dyn_cast<MemoryDef>(Def->getOptimized()); 1900 else 1901 UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess()); 1902 if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef)) 1903 continue; 1904 1905 Instruction *UpperInst = UpperDef->getMemoryInst(); 1906 auto IsRedundantStore = [&]() { 1907 if (DefInst->isIdenticalTo(UpperInst)) 1908 return true; 1909 if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) { 1910 if (auto *SI = dyn_cast<StoreInst>(DefInst)) { 1911 // MemSetInst must have a write location. 1912 MemoryLocation UpperLoc = *getLocForWrite(UpperInst); 1913 int64_t InstWriteOffset = 0; 1914 int64_t DepWriteOffset = 0; 1915 auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc, 1916 InstWriteOffset, DepWriteOffset); 1917 Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL); 1918 return StoredByte && StoredByte == MemSetI->getOperand(1) && 1919 OR == OW_Complete; 1920 } 1921 } 1922 return false; 1923 }; 1924 1925 if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst)) 1926 continue; 1927 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst 1928 << '\n'); 1929 deleteDeadInstruction(DefInst); 1930 NumRedundantStores++; 1931 MadeChange = true; 1932 } 1933 return MadeChange; 1934 } 1935 }; 1936 1937 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, 1938 DominatorTree &DT, PostDominatorTree &PDT, 1939 AssumptionCache &AC, 1940 const TargetLibraryInfo &TLI, 1941 const LoopInfo &LI) { 1942 bool MadeChange = false; 1943 1944 MSSA.ensureOptimizedUses(); 1945 DSEState State(F, AA, MSSA, DT, PDT, AC, TLI, LI); 1946 // For each store: 1947 for (unsigned I = 0; I < State.MemDefs.size(); I++) { 1948 MemoryDef *KillingDef = State.MemDefs[I]; 1949 if (State.SkipStores.count(KillingDef)) 1950 continue; 1951 Instruction *KillingI = KillingDef->getMemoryInst(); 1952 1953 Optional<MemoryLocation> MaybeKillingLoc; 1954 if (State.isMemTerminatorInst(KillingI)) 1955 MaybeKillingLoc = State.getLocForTerminator(KillingI).map( 1956 [](const std::pair<MemoryLocation, bool> &P) { return P.first; }); 1957 else 1958 MaybeKillingLoc = State.getLocForWrite(KillingI); 1959 1960 if (!MaybeKillingLoc) { 1961 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for " 1962 << *KillingI << "\n"); 1963 continue; 1964 } 1965 MemoryLocation KillingLoc = *MaybeKillingLoc; 1966 assert(KillingLoc.Ptr && "KillingLoc should not be null"); 1967 const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr); 1968 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by " 1969 << *KillingDef << " (" << *KillingI << ")\n"); 1970 1971 unsigned ScanLimit = MemorySSAScanLimit; 1972 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit; 1973 unsigned PartialLimit = MemorySSAPartialStoreLimit; 1974 // Worklist of MemoryAccesses that may be killed by KillingDef. 1975 SetVector<MemoryAccess *> ToCheck; 1976 ToCheck.insert(KillingDef->getDefiningAccess()); 1977 1978 bool Shortend = false; 1979 bool IsMemTerm = State.isMemTerminatorInst(KillingI); 1980 // Check if MemoryAccesses in the worklist are killed by KillingDef. 1981 for (unsigned I = 0; I < ToCheck.size(); I++) { 1982 MemoryAccess *Current = ToCheck[I]; 1983 if (State.SkipStores.count(Current)) 1984 continue; 1985 1986 Optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef( 1987 KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit, 1988 WalkerStepLimit, IsMemTerm, PartialLimit); 1989 1990 if (!MaybeDeadAccess) { 1991 LLVM_DEBUG(dbgs() << " finished walk\n"); 1992 continue; 1993 } 1994 1995 MemoryAccess *DeadAccess = *MaybeDeadAccess; 1996 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess); 1997 if (isa<MemoryPhi>(DeadAccess)) { 1998 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n"); 1999 for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) { 2000 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V); 2001 BasicBlock *IncomingBlock = IncomingAccess->getBlock(); 2002 BasicBlock *PhiBlock = DeadAccess->getBlock(); 2003 2004 // We only consider incoming MemoryAccesses that come before the 2005 // MemoryPhi. Otherwise we could discover candidates that do not 2006 // strictly dominate our starting def. 2007 if (State.PostOrderNumbers[IncomingBlock] > 2008 State.PostOrderNumbers[PhiBlock]) 2009 ToCheck.insert(IncomingAccess); 2010 } 2011 continue; 2012 } 2013 auto *DeadDefAccess = cast<MemoryDef>(DeadAccess); 2014 Instruction *DeadI = DeadDefAccess->getMemoryInst(); 2015 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n"); 2016 ToCheck.insert(DeadDefAccess->getDefiningAccess()); 2017 NumGetDomMemoryDefPassed++; 2018 2019 if (!DebugCounter::shouldExecute(MemorySSACounter)) 2020 continue; 2021 2022 MemoryLocation DeadLoc = *State.getLocForWrite(DeadI); 2023 2024 if (IsMemTerm) { 2025 const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr); 2026 if (KillingUndObj != DeadUndObj) 2027 continue; 2028 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2029 << "\n KILLER: " << *KillingI << '\n'); 2030 State.deleteDeadInstruction(DeadI); 2031 ++NumFastStores; 2032 MadeChange = true; 2033 } else { 2034 // Check if DeadI overwrites KillingI. 2035 int64_t KillingOffset = 0; 2036 int64_t DeadOffset = 0; 2037 OverwriteResult OR = State.isOverwrite( 2038 KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset); 2039 if (OR == OW_MaybePartial) { 2040 auto Iter = State.IOLs.insert( 2041 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>( 2042 DeadI->getParent(), InstOverlapIntervalsTy())); 2043 auto &IOL = Iter.first->second; 2044 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset, 2045 DeadOffset, DeadI, IOL); 2046 } 2047 2048 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) { 2049 auto *DeadSI = dyn_cast<StoreInst>(DeadI); 2050 auto *KillingSI = dyn_cast<StoreInst>(KillingI); 2051 // We are re-using tryToMergePartialOverlappingStores, which requires 2052 // DeadSI to dominate DeadSI. 2053 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA. 2054 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) { 2055 if (Constant *Merged = tryToMergePartialOverlappingStores( 2056 KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL, 2057 State.BatchAA, &DT)) { 2058 2059 // Update stored value of earlier store to merged constant. 2060 DeadSI->setOperand(0, Merged); 2061 ++NumModifiedStores; 2062 MadeChange = true; 2063 2064 Shortend = true; 2065 // Remove killing store and remove any outstanding overlap 2066 // intervals for the updated store. 2067 State.deleteDeadInstruction(KillingSI); 2068 auto I = State.IOLs.find(DeadSI->getParent()); 2069 if (I != State.IOLs.end()) 2070 I->second.erase(DeadSI); 2071 break; 2072 } 2073 } 2074 } 2075 2076 if (OR == OW_Complete) { 2077 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2078 << "\n KILLER: " << *KillingI << '\n'); 2079 State.deleteDeadInstruction(DeadI); 2080 ++NumFastStores; 2081 MadeChange = true; 2082 } 2083 } 2084 } 2085 2086 // Check if the store is a no-op. 2087 if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) { 2088 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI 2089 << '\n'); 2090 State.deleteDeadInstruction(KillingI); 2091 NumRedundantStores++; 2092 MadeChange = true; 2093 continue; 2094 } 2095 2096 // Can we form a calloc from a memset/malloc pair? 2097 if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) { 2098 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n" 2099 << " DEAD: " << *KillingI << '\n'); 2100 State.deleteDeadInstruction(KillingI); 2101 MadeChange = true; 2102 continue; 2103 } 2104 } 2105 2106 if (EnablePartialOverwriteTracking) 2107 for (auto &KV : State.IOLs) 2108 MadeChange |= State.removePartiallyOverlappedStores(KV.second); 2109 2110 MadeChange |= State.eliminateRedundantStoresOfExistingValues(); 2111 MadeChange |= State.eliminateDeadWritesAtEndOfFunction(); 2112 return MadeChange; 2113 } 2114 } // end anonymous namespace 2115 2116 //===----------------------------------------------------------------------===// 2117 // DSE Pass 2118 //===----------------------------------------------------------------------===// 2119 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 2120 AliasAnalysis &AA = AM.getResult<AAManager>(F); 2121 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 2122 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 2123 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2124 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2125 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 2126 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 2127 2128 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI); 2129 2130 #ifdef LLVM_ENABLE_STATS 2131 if (AreStatisticsEnabled()) 2132 for (auto &I : instructions(F)) 2133 NumRemainingStores += isa<StoreInst>(&I); 2134 #endif 2135 2136 if (!Changed) 2137 return PreservedAnalyses::all(); 2138 2139 PreservedAnalyses PA; 2140 PA.preserveSet<CFGAnalyses>(); 2141 PA.preserve<MemorySSAAnalysis>(); 2142 PA.preserve<LoopAnalysis>(); 2143 return PA; 2144 } 2145 2146 namespace { 2147 2148 /// A legacy pass for the legacy pass manager that wraps \c DSEPass. 2149 class DSELegacyPass : public FunctionPass { 2150 public: 2151 static char ID; // Pass identification, replacement for typeid 2152 2153 DSELegacyPass() : FunctionPass(ID) { 2154 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); 2155 } 2156 2157 bool runOnFunction(Function &F) override { 2158 if (skipFunction(F)) 2159 return false; 2160 2161 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2162 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2163 const TargetLibraryInfo &TLI = 2164 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2165 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2166 PostDominatorTree &PDT = 2167 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 2168 AssumptionCache &AC = 2169 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2170 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2171 2172 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, AC, TLI, LI); 2173 2174 #ifdef LLVM_ENABLE_STATS 2175 if (AreStatisticsEnabled()) 2176 for (auto &I : instructions(F)) 2177 NumRemainingStores += isa<StoreInst>(&I); 2178 #endif 2179 2180 return Changed; 2181 } 2182 2183 void getAnalysisUsage(AnalysisUsage &AU) const override { 2184 AU.setPreservesCFG(); 2185 AU.addRequired<AAResultsWrapperPass>(); 2186 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2187 AU.addPreserved<GlobalsAAWrapperPass>(); 2188 AU.addRequired<DominatorTreeWrapperPass>(); 2189 AU.addPreserved<DominatorTreeWrapperPass>(); 2190 AU.addRequired<PostDominatorTreeWrapperPass>(); 2191 AU.addRequired<MemorySSAWrapperPass>(); 2192 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2193 AU.addPreserved<MemorySSAWrapperPass>(); 2194 AU.addRequired<LoopInfoWrapperPass>(); 2195 AU.addPreserved<LoopInfoWrapperPass>(); 2196 AU.addRequired<AssumptionCacheTracker>(); 2197 } 2198 }; 2199 2200 } // end anonymous namespace 2201 2202 char DSELegacyPass::ID = 0; 2203 2204 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, 2205 false) 2206 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2207 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 2208 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2209 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2210 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2211 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2212 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2213 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2214 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2215 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, 2216 false) 2217 2218 FunctionPass *llvm::createDeadStoreEliminationPass() { 2219 return new DSELegacyPass(); 2220 } 2221