1e8d8bef9SDimitry Andric //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // Eliminate conditions based on constraints collected from dominating 10e8d8bef9SDimitry Andric // conditions. 11e8d8bef9SDimitry Andric // 12e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 13e8d8bef9SDimitry Andric 14e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15e8d8bef9SDimitry Andric #include "llvm/ADT/STLExtras.h" 16*fe6060f1SDimitry Andric #include "llvm/ADT/ScopeExit.h" 17e8d8bef9SDimitry Andric #include "llvm/ADT/SmallVector.h" 18e8d8bef9SDimitry Andric #include "llvm/ADT/Statistic.h" 19e8d8bef9SDimitry Andric #include "llvm/Analysis/ConstraintSystem.h" 20e8d8bef9SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h" 21e8d8bef9SDimitry Andric #include "llvm/IR/DataLayout.h" 22e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 23e8d8bef9SDimitry Andric #include "llvm/IR/Function.h" 24e8d8bef9SDimitry Andric #include "llvm/IR/Instructions.h" 25e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h" 26e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h" 27e8d8bef9SDimitry Andric #include "llvm/Pass.h" 28e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h" 29e8d8bef9SDimitry Andric #include "llvm/Support/DebugCounter.h" 30e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar.h" 31e8d8bef9SDimitry Andric 32*fe6060f1SDimitry Andric #include <string> 33*fe6060f1SDimitry Andric 34e8d8bef9SDimitry Andric using namespace llvm; 35e8d8bef9SDimitry Andric using namespace PatternMatch; 36e8d8bef9SDimitry Andric 37e8d8bef9SDimitry Andric #define DEBUG_TYPE "constraint-elimination" 38e8d8bef9SDimitry Andric 39e8d8bef9SDimitry Andric STATISTIC(NumCondsRemoved, "Number of instructions removed"); 40e8d8bef9SDimitry Andric DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 41e8d8bef9SDimitry Andric "Controls which conditions are eliminated"); 42e8d8bef9SDimitry Andric 43e8d8bef9SDimitry Andric static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 44e8d8bef9SDimitry Andric 45e8d8bef9SDimitry Andric // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The 46e8d8bef9SDimitry Andric // sum of the pairs equals \p V. The first pair is the constant-factor and X 47e8d8bef9SDimitry Andric // must be nullptr. If the expression cannot be decomposed, returns an empty 48e8d8bef9SDimitry Andric // vector. 49e8d8bef9SDimitry Andric static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) { 50e8d8bef9SDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(V)) { 51e8d8bef9SDimitry Andric if (CI->isNegative() || CI->uge(MaxConstraintValue)) 52e8d8bef9SDimitry Andric return {}; 53e8d8bef9SDimitry Andric return {{CI->getSExtValue(), nullptr}}; 54e8d8bef9SDimitry Andric } 55e8d8bef9SDimitry Andric auto *GEP = dyn_cast<GetElementPtrInst>(V); 56*fe6060f1SDimitry Andric if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 57*fe6060f1SDimitry Andric Value *Op0, *Op1; 58e8d8bef9SDimitry Andric ConstantInt *CI; 59*fe6060f1SDimitry Andric 60*fe6060f1SDimitry Andric // If the index is zero-extended, it is guaranteed to be positive. 61*fe6060f1SDimitry Andric if (match(GEP->getOperand(GEP->getNumOperands() - 1), 62*fe6060f1SDimitry Andric m_ZExt(m_Value(Op0)))) { 63*fe6060f1SDimitry Andric if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI)))) 64*fe6060f1SDimitry Andric return {{0, nullptr}, 65*fe6060f1SDimitry Andric {1, GEP->getPointerOperand()}, 66*fe6060f1SDimitry Andric {std::pow(int64_t(2), CI->getSExtValue()), Op1}}; 67*fe6060f1SDimitry Andric if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI)))) 68*fe6060f1SDimitry Andric return {{CI->getSExtValue(), nullptr}, 69*fe6060f1SDimitry Andric {1, GEP->getPointerOperand()}, 70*fe6060f1SDimitry Andric {1, Op1}}; 71*fe6060f1SDimitry Andric return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 72*fe6060f1SDimitry Andric } 73*fe6060f1SDimitry Andric 74*fe6060f1SDimitry Andric if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 75*fe6060f1SDimitry Andric !CI->isNegative()) 76*fe6060f1SDimitry Andric return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 77*fe6060f1SDimitry Andric 78*fe6060f1SDimitry Andric SmallVector<std::pair<int64_t, Value *>, 4> Result; 79e8d8bef9SDimitry Andric if (match(GEP->getOperand(GEP->getNumOperands() - 1), 80e8d8bef9SDimitry Andric m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))) 81*fe6060f1SDimitry Andric Result = {{0, nullptr}, 82e8d8bef9SDimitry Andric {1, GEP->getPointerOperand()}, 83e8d8bef9SDimitry Andric {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; 84*fe6060f1SDimitry Andric else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 85*fe6060f1SDimitry Andric m_NSWAdd(m_Value(Op0), m_ConstantInt(CI)))) 86*fe6060f1SDimitry Andric Result = {{CI->getSExtValue(), nullptr}, 87e8d8bef9SDimitry Andric {1, GEP->getPointerOperand()}, 88*fe6060f1SDimitry Andric {1, Op0}}; 89*fe6060f1SDimitry Andric else { 90*fe6060f1SDimitry Andric Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 91*fe6060f1SDimitry Andric Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 92*fe6060f1SDimitry Andric } 93*fe6060f1SDimitry Andric return Result; 94e8d8bef9SDimitry Andric } 95e8d8bef9SDimitry Andric 96e8d8bef9SDimitry Andric Value *Op0; 97*fe6060f1SDimitry Andric if (match(V, m_ZExt(m_Value(Op0)))) 98*fe6060f1SDimitry Andric V = Op0; 99*fe6060f1SDimitry Andric 100e8d8bef9SDimitry Andric Value *Op1; 101e8d8bef9SDimitry Andric ConstantInt *CI; 102e8d8bef9SDimitry Andric if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI)))) 103e8d8bef9SDimitry Andric return {{CI->getSExtValue(), nullptr}, {1, Op0}}; 104e8d8bef9SDimitry Andric if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) 105e8d8bef9SDimitry Andric return {{0, nullptr}, {1, Op0}, {1, Op1}}; 106e8d8bef9SDimitry Andric 107e8d8bef9SDimitry Andric if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) 108e8d8bef9SDimitry Andric return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 109e8d8bef9SDimitry Andric if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 110e8d8bef9SDimitry Andric return {{0, nullptr}, {1, Op0}, {1, Op1}}; 111e8d8bef9SDimitry Andric 112e8d8bef9SDimitry Andric return {{0, nullptr}, {1, V}}; 113e8d8bef9SDimitry Andric } 114e8d8bef9SDimitry Andric 115*fe6060f1SDimitry Andric struct ConstraintTy { 116*fe6060f1SDimitry Andric SmallVector<int64_t, 8> Coefficients; 117*fe6060f1SDimitry Andric 118*fe6060f1SDimitry Andric ConstraintTy(SmallVector<int64_t, 8> Coefficients) 119*fe6060f1SDimitry Andric : Coefficients(Coefficients) {} 120*fe6060f1SDimitry Andric 121*fe6060f1SDimitry Andric unsigned size() const { return Coefficients.size(); } 122*fe6060f1SDimitry Andric }; 123*fe6060f1SDimitry Andric 124*fe6060f1SDimitry Andric /// Turn a condition \p CmpI into a vector of constraints, using indices from \p 125*fe6060f1SDimitry Andric /// Value2Index. Additional indices for newly discovered values are added to \p 126*fe6060f1SDimitry Andric /// NewIndices. 127*fe6060f1SDimitry Andric static SmallVector<ConstraintTy, 4> 128e8d8bef9SDimitry Andric getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 129*fe6060f1SDimitry Andric const DenseMap<Value *, unsigned> &Value2Index, 130*fe6060f1SDimitry Andric DenseMap<Value *, unsigned> &NewIndices) { 131e8d8bef9SDimitry Andric int64_t Offset1 = 0; 132e8d8bef9SDimitry Andric int64_t Offset2 = 0; 133e8d8bef9SDimitry Andric 134*fe6060f1SDimitry Andric // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 135*fe6060f1SDimitry Andric // new entry to NewIndices. 136*fe6060f1SDimitry Andric auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 137*fe6060f1SDimitry Andric auto V2I = Value2Index.find(V); 138*fe6060f1SDimitry Andric if (V2I != Value2Index.end()) 139*fe6060f1SDimitry Andric return V2I->second; 140*fe6060f1SDimitry Andric auto NewI = NewIndices.find(V); 141*fe6060f1SDimitry Andric if (NewI != NewIndices.end()) 142*fe6060f1SDimitry Andric return NewI->second; 143*fe6060f1SDimitry Andric auto Insert = 144*fe6060f1SDimitry Andric NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 145*fe6060f1SDimitry Andric return Insert.first->second; 146e8d8bef9SDimitry Andric }; 147e8d8bef9SDimitry Andric 148e8d8bef9SDimitry Andric if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE) 149e8d8bef9SDimitry Andric return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0, 150*fe6060f1SDimitry Andric Value2Index, NewIndices); 151*fe6060f1SDimitry Andric 152*fe6060f1SDimitry Andric if (Pred == CmpInst::ICMP_EQ) { 153*fe6060f1SDimitry Andric auto A = 154*fe6060f1SDimitry Andric getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices); 155*fe6060f1SDimitry Andric auto B = 156*fe6060f1SDimitry Andric getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices); 157*fe6060f1SDimitry Andric append_range(A, B); 158*fe6060f1SDimitry Andric return A; 159*fe6060f1SDimitry Andric } 160*fe6060f1SDimitry Andric 161*fe6060f1SDimitry Andric if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) { 162*fe6060f1SDimitry Andric return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices); 163*fe6060f1SDimitry Andric } 164e8d8bef9SDimitry Andric 165e8d8bef9SDimitry Andric // Only ULE and ULT predicates are supported at the moment. 166e8d8bef9SDimitry Andric if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT) 167e8d8bef9SDimitry Andric return {}; 168e8d8bef9SDimitry Andric 169*fe6060f1SDimitry Andric auto ADec = decompose(Op0->stripPointerCastsSameRepresentation()); 170*fe6060f1SDimitry Andric auto BDec = decompose(Op1->stripPointerCastsSameRepresentation()); 171e8d8bef9SDimitry Andric // Skip if decomposing either of the values failed. 172e8d8bef9SDimitry Andric if (ADec.empty() || BDec.empty()) 173e8d8bef9SDimitry Andric return {}; 174e8d8bef9SDimitry Andric 175e8d8bef9SDimitry Andric // Skip trivial constraints without any variables. 176e8d8bef9SDimitry Andric if (ADec.size() == 1 && BDec.size() == 1) 177e8d8bef9SDimitry Andric return {}; 178e8d8bef9SDimitry Andric 179e8d8bef9SDimitry Andric Offset1 = ADec[0].first; 180e8d8bef9SDimitry Andric Offset2 = BDec[0].first; 181e8d8bef9SDimitry Andric Offset1 *= -1; 182e8d8bef9SDimitry Andric 183e8d8bef9SDimitry Andric // Create iterator ranges that skip the constant-factor. 184*fe6060f1SDimitry Andric auto VariablesA = llvm::drop_begin(ADec); 185*fe6060f1SDimitry Andric auto VariablesB = llvm::drop_begin(BDec); 186e8d8bef9SDimitry Andric 187*fe6060f1SDimitry Andric // Make sure all variables have entries in Value2Index or NewIndices. 188e8d8bef9SDimitry Andric for (const auto &KV : 189e8d8bef9SDimitry Andric concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB)) 190*fe6060f1SDimitry Andric GetOrAddIndex(KV.second); 191e8d8bef9SDimitry Andric 192e8d8bef9SDimitry Andric // Build result constraint, by first adding all coefficients from A and then 193e8d8bef9SDimitry Andric // subtracting all coefficients from B. 194*fe6060f1SDimitry Andric SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0); 195e8d8bef9SDimitry Andric for (const auto &KV : VariablesA) 196*fe6060f1SDimitry Andric R[GetOrAddIndex(KV.second)] += KV.first; 197e8d8bef9SDimitry Andric 198e8d8bef9SDimitry Andric for (const auto &KV : VariablesB) 199*fe6060f1SDimitry Andric R[GetOrAddIndex(KV.second)] -= KV.first; 200e8d8bef9SDimitry Andric 201e8d8bef9SDimitry Andric R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0); 202*fe6060f1SDimitry Andric return {R}; 203e8d8bef9SDimitry Andric } 204e8d8bef9SDimitry Andric 205*fe6060f1SDimitry Andric static SmallVector<ConstraintTy, 4> 206*fe6060f1SDimitry Andric getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index, 207*fe6060f1SDimitry Andric DenseMap<Value *, unsigned> &NewIndices) { 208e8d8bef9SDimitry Andric return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 209*fe6060f1SDimitry Andric Cmp->getOperand(1), Value2Index, NewIndices); 210e8d8bef9SDimitry Andric } 211e8d8bef9SDimitry Andric 212e8d8bef9SDimitry Andric namespace { 213e8d8bef9SDimitry Andric /// Represents either a condition that holds on entry to a block or a basic 214e8d8bef9SDimitry Andric /// block, with their respective Dominator DFS in and out numbers. 215e8d8bef9SDimitry Andric struct ConstraintOrBlock { 216e8d8bef9SDimitry Andric unsigned NumIn; 217e8d8bef9SDimitry Andric unsigned NumOut; 218e8d8bef9SDimitry Andric bool IsBlock; 219e8d8bef9SDimitry Andric bool Not; 220e8d8bef9SDimitry Andric union { 221e8d8bef9SDimitry Andric BasicBlock *BB; 222e8d8bef9SDimitry Andric CmpInst *Condition; 223e8d8bef9SDimitry Andric }; 224e8d8bef9SDimitry Andric 225e8d8bef9SDimitry Andric ConstraintOrBlock(DomTreeNode *DTN) 226e8d8bef9SDimitry Andric : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 227e8d8bef9SDimitry Andric BB(DTN->getBlock()) {} 228e8d8bef9SDimitry Andric ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 229e8d8bef9SDimitry Andric : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 230e8d8bef9SDimitry Andric Not(Not), Condition(Condition) {} 231e8d8bef9SDimitry Andric }; 232e8d8bef9SDimitry Andric 233e8d8bef9SDimitry Andric struct StackEntry { 234e8d8bef9SDimitry Andric unsigned NumIn; 235e8d8bef9SDimitry Andric unsigned NumOut; 236e8d8bef9SDimitry Andric CmpInst *Condition; 237e8d8bef9SDimitry Andric bool IsNot; 238e8d8bef9SDimitry Andric 239e8d8bef9SDimitry Andric StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot) 240e8d8bef9SDimitry Andric : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {} 241e8d8bef9SDimitry Andric }; 242e8d8bef9SDimitry Andric } // namespace 243e8d8bef9SDimitry Andric 244*fe6060f1SDimitry Andric #ifndef NDEBUG 245*fe6060f1SDimitry Andric static void dumpWithNames(ConstraintTy &C, 246*fe6060f1SDimitry Andric DenseMap<Value *, unsigned> &Value2Index) { 247*fe6060f1SDimitry Andric SmallVector<std::string> Names(Value2Index.size(), ""); 248*fe6060f1SDimitry Andric for (auto &KV : Value2Index) { 249*fe6060f1SDimitry Andric Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 250*fe6060f1SDimitry Andric } 251*fe6060f1SDimitry Andric ConstraintSystem CS; 252*fe6060f1SDimitry Andric CS.addVariableRowFill(C.Coefficients); 253*fe6060f1SDimitry Andric CS.dump(Names); 254*fe6060f1SDimitry Andric } 255*fe6060f1SDimitry Andric #endif 256*fe6060f1SDimitry Andric 257e8d8bef9SDimitry Andric static bool eliminateConstraints(Function &F, DominatorTree &DT) { 258e8d8bef9SDimitry Andric bool Changed = false; 259e8d8bef9SDimitry Andric DT.updateDFSNumbers(); 260e8d8bef9SDimitry Andric ConstraintSystem CS; 261e8d8bef9SDimitry Andric 262e8d8bef9SDimitry Andric SmallVector<ConstraintOrBlock, 64> WorkList; 263e8d8bef9SDimitry Andric 264e8d8bef9SDimitry Andric // First, collect conditions implied by branches and blocks with their 265e8d8bef9SDimitry Andric // Dominator DFS in and out numbers. 266e8d8bef9SDimitry Andric for (BasicBlock &BB : F) { 267e8d8bef9SDimitry Andric if (!DT.getNode(&BB)) 268e8d8bef9SDimitry Andric continue; 269e8d8bef9SDimitry Andric WorkList.emplace_back(DT.getNode(&BB)); 270e8d8bef9SDimitry Andric 271e8d8bef9SDimitry Andric auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 272e8d8bef9SDimitry Andric if (!Br || !Br->isConditional()) 273e8d8bef9SDimitry Andric continue; 274e8d8bef9SDimitry Andric 275*fe6060f1SDimitry Andric // Returns true if we can add a known condition from BB to its successor 276*fe6060f1SDimitry Andric // block Succ. Each predecessor of Succ can either be BB or be dominated by 277*fe6060f1SDimitry Andric // Succ (e.g. the case when adding a condition from a pre-header to a loop 278*fe6060f1SDimitry Andric // header). 279*fe6060f1SDimitry Andric auto CanAdd = [&BB, &DT](BasicBlock *Succ) { 280*fe6060f1SDimitry Andric return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) { 281*fe6060f1SDimitry Andric return Pred == &BB || DT.dominates(Succ, Pred); 282*fe6060f1SDimitry Andric }); 283*fe6060f1SDimitry Andric }; 284e8d8bef9SDimitry Andric // If the condition is an OR of 2 compares and the false successor only has 285e8d8bef9SDimitry Andric // the current block as predecessor, queue both negated conditions for the 286e8d8bef9SDimitry Andric // false successor. 287e8d8bef9SDimitry Andric Value *Op0, *Op1; 288e8d8bef9SDimitry Andric if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 289e8d8bef9SDimitry Andric match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { 290e8d8bef9SDimitry Andric BasicBlock *FalseSuccessor = Br->getSuccessor(1); 291*fe6060f1SDimitry Andric if (CanAdd(FalseSuccessor)) { 292e8d8bef9SDimitry Andric WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0), 293e8d8bef9SDimitry Andric true); 294e8d8bef9SDimitry Andric WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1), 295e8d8bef9SDimitry Andric true); 296e8d8bef9SDimitry Andric } 297e8d8bef9SDimitry Andric continue; 298e8d8bef9SDimitry Andric } 299e8d8bef9SDimitry Andric 300e8d8bef9SDimitry Andric // If the condition is an AND of 2 compares and the true successor only has 301e8d8bef9SDimitry Andric // the current block as predecessor, queue both conditions for the true 302e8d8bef9SDimitry Andric // successor. 303e8d8bef9SDimitry Andric if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 304e8d8bef9SDimitry Andric match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { 305e8d8bef9SDimitry Andric BasicBlock *TrueSuccessor = Br->getSuccessor(0); 306*fe6060f1SDimitry Andric if (CanAdd(TrueSuccessor)) { 307e8d8bef9SDimitry Andric WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0), 308e8d8bef9SDimitry Andric false); 309e8d8bef9SDimitry Andric WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1), 310e8d8bef9SDimitry Andric false); 311e8d8bef9SDimitry Andric } 312e8d8bef9SDimitry Andric continue; 313e8d8bef9SDimitry Andric } 314e8d8bef9SDimitry Andric 315e8d8bef9SDimitry Andric auto *CmpI = dyn_cast<CmpInst>(Br->getCondition()); 316e8d8bef9SDimitry Andric if (!CmpI) 317e8d8bef9SDimitry Andric continue; 318*fe6060f1SDimitry Andric if (CanAdd(Br->getSuccessor(0))) 319e8d8bef9SDimitry Andric WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 320*fe6060f1SDimitry Andric if (CanAdd(Br->getSuccessor(1))) 321e8d8bef9SDimitry Andric WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 322e8d8bef9SDimitry Andric } 323e8d8bef9SDimitry Andric 324e8d8bef9SDimitry Andric // Next, sort worklist by dominance, so that dominating blocks and conditions 325e8d8bef9SDimitry Andric // come before blocks and conditions dominated by them. If a block and a 326e8d8bef9SDimitry Andric // condition have the same numbers, the condition comes before the block, as 327e8d8bef9SDimitry Andric // it holds on entry to the block. 328e8d8bef9SDimitry Andric sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 329e8d8bef9SDimitry Andric return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 330e8d8bef9SDimitry Andric }); 331e8d8bef9SDimitry Andric 332e8d8bef9SDimitry Andric // Finally, process ordered worklist and eliminate implied conditions. 333e8d8bef9SDimitry Andric SmallVector<StackEntry, 16> DFSInStack; 334e8d8bef9SDimitry Andric DenseMap<Value *, unsigned> Value2Index; 335e8d8bef9SDimitry Andric for (ConstraintOrBlock &CB : WorkList) { 336e8d8bef9SDimitry Andric // First, pop entries from the stack that are out-of-scope for CB. Remove 337e8d8bef9SDimitry Andric // the corresponding entry from the constraint system. 338e8d8bef9SDimitry Andric while (!DFSInStack.empty()) { 339e8d8bef9SDimitry Andric auto &E = DFSInStack.back(); 340e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 341e8d8bef9SDimitry Andric << "\n"); 342e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 343e8d8bef9SDimitry Andric assert(E.NumIn <= CB.NumIn); 344e8d8bef9SDimitry Andric if (CB.NumOut <= E.NumOut) 345e8d8bef9SDimitry Andric break; 346e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot 347e8d8bef9SDimitry Andric << "\n"); 348e8d8bef9SDimitry Andric DFSInStack.pop_back(); 349e8d8bef9SDimitry Andric CS.popLastConstraint(); 350e8d8bef9SDimitry Andric } 351e8d8bef9SDimitry Andric 352e8d8bef9SDimitry Andric LLVM_DEBUG({ 353e8d8bef9SDimitry Andric dbgs() << "Processing "; 354e8d8bef9SDimitry Andric if (CB.IsBlock) 355e8d8bef9SDimitry Andric dbgs() << *CB.BB; 356e8d8bef9SDimitry Andric else 357e8d8bef9SDimitry Andric dbgs() << *CB.Condition; 358e8d8bef9SDimitry Andric dbgs() << "\n"; 359e8d8bef9SDimitry Andric }); 360e8d8bef9SDimitry Andric 361e8d8bef9SDimitry Andric // For a block, check if any CmpInsts become known based on the current set 362e8d8bef9SDimitry Andric // of constraints. 363e8d8bef9SDimitry Andric if (CB.IsBlock) { 364e8d8bef9SDimitry Andric for (Instruction &I : *CB.BB) { 365e8d8bef9SDimitry Andric auto *Cmp = dyn_cast<CmpInst>(&I); 366e8d8bef9SDimitry Andric if (!Cmp) 367e8d8bef9SDimitry Andric continue; 368*fe6060f1SDimitry Andric 369*fe6060f1SDimitry Andric DenseMap<Value *, unsigned> NewIndices; 370*fe6060f1SDimitry Andric auto R = getConstraint(Cmp, Value2Index, NewIndices); 371*fe6060f1SDimitry Andric if (R.size() != 1) 372e8d8bef9SDimitry Andric continue; 373*fe6060f1SDimitry Andric 374*fe6060f1SDimitry Andric // Check if all coefficients of new indices are 0 after building the 375*fe6060f1SDimitry Andric // constraint. Skip if any of the new indices has a non-null 376*fe6060f1SDimitry Andric // coefficient. 377*fe6060f1SDimitry Andric bool HasNewIndex = false; 378*fe6060f1SDimitry Andric for (unsigned I = 0; I < NewIndices.size(); ++I) { 379*fe6060f1SDimitry Andric int64_t Last = R[0].Coefficients.pop_back_val(); 380*fe6060f1SDimitry Andric if (Last != 0) { 381*fe6060f1SDimitry Andric HasNewIndex = true; 382*fe6060f1SDimitry Andric break; 383*fe6060f1SDimitry Andric } 384*fe6060f1SDimitry Andric } 385*fe6060f1SDimitry Andric if (HasNewIndex || R[0].size() == 1) 386*fe6060f1SDimitry Andric continue; 387*fe6060f1SDimitry Andric 388*fe6060f1SDimitry Andric if (CS.isConditionImplied(R[0].Coefficients)) { 389e8d8bef9SDimitry Andric if (!DebugCounter::shouldExecute(EliminatedCounter)) 390e8d8bef9SDimitry Andric continue; 391e8d8bef9SDimitry Andric 392e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Condition " << *Cmp 393e8d8bef9SDimitry Andric << " implied by dominating constraints\n"); 394e8d8bef9SDimitry Andric LLVM_DEBUG({ 395e8d8bef9SDimitry Andric for (auto &E : reverse(DFSInStack)) 396e8d8bef9SDimitry Andric dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 397e8d8bef9SDimitry Andric }); 398e8d8bef9SDimitry Andric Cmp->replaceAllUsesWith( 399e8d8bef9SDimitry Andric ConstantInt::getTrue(F.getParent()->getContext())); 400e8d8bef9SDimitry Andric NumCondsRemoved++; 401e8d8bef9SDimitry Andric Changed = true; 402e8d8bef9SDimitry Andric } 403*fe6060f1SDimitry Andric if (CS.isConditionImplied( 404*fe6060f1SDimitry Andric ConstraintSystem::negate(R[0].Coefficients))) { 405e8d8bef9SDimitry Andric if (!DebugCounter::shouldExecute(EliminatedCounter)) 406e8d8bef9SDimitry Andric continue; 407e8d8bef9SDimitry Andric 408e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Condition !" << *Cmp 409e8d8bef9SDimitry Andric << " implied by dominating constraints\n"); 410e8d8bef9SDimitry Andric LLVM_DEBUG({ 411e8d8bef9SDimitry Andric for (auto &E : reverse(DFSInStack)) 412e8d8bef9SDimitry Andric dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; 413e8d8bef9SDimitry Andric }); 414e8d8bef9SDimitry Andric Cmp->replaceAllUsesWith( 415e8d8bef9SDimitry Andric ConstantInt::getFalse(F.getParent()->getContext())); 416e8d8bef9SDimitry Andric NumCondsRemoved++; 417e8d8bef9SDimitry Andric Changed = true; 418e8d8bef9SDimitry Andric } 419e8d8bef9SDimitry Andric } 420e8d8bef9SDimitry Andric continue; 421e8d8bef9SDimitry Andric } 422e8d8bef9SDimitry Andric 423*fe6060f1SDimitry Andric // Set up a function to restore the predicate at the end of the scope if it 424*fe6060f1SDimitry Andric // has been negated. Negate the predicate in-place, if required. 425*fe6060f1SDimitry Andric auto *CI = dyn_cast<CmpInst>(CB.Condition); 426*fe6060f1SDimitry Andric auto PredicateRestorer = make_scope_exit([CI, &CB]() { 427*fe6060f1SDimitry Andric if (CB.Not && CI) 428*fe6060f1SDimitry Andric CI->setPredicate(CI->getInversePredicate()); 429*fe6060f1SDimitry Andric }); 430*fe6060f1SDimitry Andric if (CB.Not) { 431*fe6060f1SDimitry Andric if (CI) { 432*fe6060f1SDimitry Andric CI->setPredicate(CI->getInversePredicate()); 433*fe6060f1SDimitry Andric } else { 434*fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 435*fe6060f1SDimitry Andric continue; 436*fe6060f1SDimitry Andric } 437*fe6060f1SDimitry Andric } 438*fe6060f1SDimitry Andric 439e8d8bef9SDimitry Andric // Otherwise, add the condition to the system and stack, if we can transform 440e8d8bef9SDimitry Andric // it into a constraint. 441*fe6060f1SDimitry Andric DenseMap<Value *, unsigned> NewIndices; 442*fe6060f1SDimitry Andric auto R = getConstraint(CB.Condition, Value2Index, NewIndices); 443e8d8bef9SDimitry Andric if (R.empty()) 444e8d8bef9SDimitry Andric continue; 445e8d8bef9SDimitry Andric 446*fe6060f1SDimitry Andric for (auto &KV : NewIndices) 447*fe6060f1SDimitry Andric Value2Index.insert(KV); 448e8d8bef9SDimitry Andric 449*fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); 450*fe6060f1SDimitry Andric bool Added = false; 451*fe6060f1SDimitry Andric for (auto &C : R) { 452*fe6060f1SDimitry Andric auto Coeffs = C.Coefficients; 453*fe6060f1SDimitry Andric LLVM_DEBUG({ 454*fe6060f1SDimitry Andric dbgs() << " constraint: "; 455*fe6060f1SDimitry Andric dumpWithNames(C, Value2Index); 456*fe6060f1SDimitry Andric }); 457*fe6060f1SDimitry Andric Added |= CS.addVariableRowFill(Coeffs); 458e8d8bef9SDimitry Andric // If R has been added to the system, queue it for removal once it goes 459e8d8bef9SDimitry Andric // out-of-scope. 460*fe6060f1SDimitry Andric if (Added) 461e8d8bef9SDimitry Andric DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not); 462e8d8bef9SDimitry Andric } 463*fe6060f1SDimitry Andric } 464e8d8bef9SDimitry Andric 465*fe6060f1SDimitry Andric assert(CS.size() == DFSInStack.size() && 466*fe6060f1SDimitry Andric "updates to CS and DFSInStack are out of sync"); 467e8d8bef9SDimitry Andric return Changed; 468e8d8bef9SDimitry Andric } 469e8d8bef9SDimitry Andric 470e8d8bef9SDimitry Andric PreservedAnalyses ConstraintEliminationPass::run(Function &F, 471e8d8bef9SDimitry Andric FunctionAnalysisManager &AM) { 472e8d8bef9SDimitry Andric auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 473e8d8bef9SDimitry Andric if (!eliminateConstraints(F, DT)) 474e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 475e8d8bef9SDimitry Andric 476e8d8bef9SDimitry Andric PreservedAnalyses PA; 477e8d8bef9SDimitry Andric PA.preserve<DominatorTreeAnalysis>(); 478e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 479e8d8bef9SDimitry Andric return PA; 480e8d8bef9SDimitry Andric } 481e8d8bef9SDimitry Andric 482e8d8bef9SDimitry Andric namespace { 483e8d8bef9SDimitry Andric 484e8d8bef9SDimitry Andric class ConstraintElimination : public FunctionPass { 485e8d8bef9SDimitry Andric public: 486e8d8bef9SDimitry Andric static char ID; 487e8d8bef9SDimitry Andric 488e8d8bef9SDimitry Andric ConstraintElimination() : FunctionPass(ID) { 489e8d8bef9SDimitry Andric initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 490e8d8bef9SDimitry Andric } 491e8d8bef9SDimitry Andric 492e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override { 493e8d8bef9SDimitry Andric auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 494e8d8bef9SDimitry Andric return eliminateConstraints(F, DT); 495e8d8bef9SDimitry Andric } 496e8d8bef9SDimitry Andric 497e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 498e8d8bef9SDimitry Andric AU.setPreservesCFG(); 499e8d8bef9SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 500e8d8bef9SDimitry Andric AU.addPreserved<GlobalsAAWrapperPass>(); 501e8d8bef9SDimitry Andric AU.addPreserved<DominatorTreeWrapperPass>(); 502e8d8bef9SDimitry Andric } 503e8d8bef9SDimitry Andric }; 504e8d8bef9SDimitry Andric 505e8d8bef9SDimitry Andric } // end anonymous namespace 506e8d8bef9SDimitry Andric 507e8d8bef9SDimitry Andric char ConstraintElimination::ID = 0; 508e8d8bef9SDimitry Andric 509e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 510e8d8bef9SDimitry Andric "Constraint Elimination", false, false) 511e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 512e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 513e8d8bef9SDimitry Andric INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 514e8d8bef9SDimitry Andric "Constraint Elimination", false, false) 515e8d8bef9SDimitry Andric 516e8d8bef9SDimitry Andric FunctionPass *llvm::createConstraintEliminationPass() { 517e8d8bef9SDimitry Andric return new ConstraintElimination(); 518e8d8bef9SDimitry Andric } 519